xref: /openbmc/qemu/target/arm/internals.h (revision dbdf841b)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 void arm_restore_state_to_opc(CPUState *cs,
189                               const TranslationBlock *tb,
190                               const uint64_t *data);
191 
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195 
196 typedef enum ARMFPRounding {
197     FPROUNDING_TIEEVEN,
198     FPROUNDING_POSINF,
199     FPROUNDING_NEGINF,
200     FPROUNDING_ZERO,
201     FPROUNDING_TIEAWAY,
202     FPROUNDING_ODD
203 } ARMFPRounding;
204 
205 extern const FloatRoundMode arm_rmode_to_sf_map[6];
206 
207 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
208 {
209     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
210     return arm_rmode_to_sf_map[rmode];
211 }
212 
213 static inline void aarch64_save_sp(CPUARMState *env, int el)
214 {
215     if (env->pstate & PSTATE_SP) {
216         env->sp_el[el] = env->xregs[31];
217     } else {
218         env->sp_el[0] = env->xregs[31];
219     }
220 }
221 
222 static inline void aarch64_restore_sp(CPUARMState *env, int el)
223 {
224     if (env->pstate & PSTATE_SP) {
225         env->xregs[31] = env->sp_el[el];
226     } else {
227         env->xregs[31] = env->sp_el[0];
228     }
229 }
230 
231 static inline void update_spsel(CPUARMState *env, uint32_t imm)
232 {
233     unsigned int cur_el = arm_current_el(env);
234     /* Update PSTATE SPSel bit; this requires us to update the
235      * working stack pointer in xregs[31].
236      */
237     if (!((imm ^ env->pstate) & PSTATE_SP)) {
238         return;
239     }
240     aarch64_save_sp(env, cur_el);
241     env->pstate = deposit32(env->pstate, 0, 1, imm);
242 
243     /* We rely on illegal updates to SPsel from EL0 to get trapped
244      * at translation time.
245      */
246     assert(cur_el >= 1 && cur_el <= 3);
247     aarch64_restore_sp(env, cur_el);
248 }
249 
250 /*
251  * arm_pamax
252  * @cpu: ARMCPU
253  *
254  * Returns the implementation defined bit-width of physical addresses.
255  * The ARMv8 reference manuals refer to this as PAMax().
256  */
257 unsigned int arm_pamax(ARMCPU *cpu);
258 
259 /* Return true if extended addresses are enabled.
260  * This is always the case if our translation regime is 64 bit,
261  * but depends on TTBCR.EAE for 32 bit.
262  */
263 static inline bool extended_addresses_enabled(CPUARMState *env)
264 {
265     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
266     if (arm_feature(env, ARM_FEATURE_PMSA) &&
267         arm_feature(env, ARM_FEATURE_V8)) {
268         return true;
269     }
270     return arm_el_is_aa64(env, 1) ||
271            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
272 }
273 
274 /* Update a QEMU watchpoint based on the information the guest has set in the
275  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
276  */
277 void hw_watchpoint_update(ARMCPU *cpu, int n);
278 /* Update the QEMU watchpoints for every guest watchpoint. This does a
279  * complete delete-and-reinstate of the QEMU watchpoint list and so is
280  * suitable for use after migration or on reset.
281  */
282 void hw_watchpoint_update_all(ARMCPU *cpu);
283 /* Update a QEMU breakpoint based on the information the guest has set in the
284  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
285  */
286 void hw_breakpoint_update(ARMCPU *cpu, int n);
287 /* Update the QEMU breakpoints for every guest breakpoint. This does a
288  * complete delete-and-reinstate of the QEMU breakpoint list and so is
289  * suitable for use after migration or on reset.
290  */
291 void hw_breakpoint_update_all(ARMCPU *cpu);
292 
293 /* Callback function for checking if a breakpoint should trigger. */
294 bool arm_debug_check_breakpoint(CPUState *cs);
295 
296 /* Callback function for checking if a watchpoint should trigger. */
297 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
298 
299 /* Adjust addresses (in BE32 mode) before testing against watchpoint
300  * addresses.
301  */
302 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
303 
304 /* Callback function for when a watchpoint or breakpoint triggers. */
305 void arm_debug_excp_handler(CPUState *cs);
306 
307 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
308 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
309 {
310     return false;
311 }
312 static inline void arm_handle_psci_call(ARMCPU *cpu)
313 {
314     g_assert_not_reached();
315 }
316 #else
317 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
318 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
319 /* Actually handle a PSCI call */
320 void arm_handle_psci_call(ARMCPU *cpu);
321 #endif
322 
323 /**
324  * arm_clear_exclusive: clear the exclusive monitor
325  * @env: CPU env
326  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
327  */
328 static inline void arm_clear_exclusive(CPUARMState *env)
329 {
330     env->exclusive_addr = -1;
331 }
332 
333 /**
334  * ARMFaultType: type of an ARM MMU fault
335  * This corresponds to the v8A pseudocode's Fault enumeration,
336  * with extensions for QEMU internal conditions.
337  */
338 typedef enum ARMFaultType {
339     ARMFault_None,
340     ARMFault_AccessFlag,
341     ARMFault_Alignment,
342     ARMFault_Background,
343     ARMFault_Domain,
344     ARMFault_Permission,
345     ARMFault_Translation,
346     ARMFault_AddressSize,
347     ARMFault_SyncExternal,
348     ARMFault_SyncExternalOnWalk,
349     ARMFault_SyncParity,
350     ARMFault_SyncParityOnWalk,
351     ARMFault_AsyncParity,
352     ARMFault_AsyncExternal,
353     ARMFault_Debug,
354     ARMFault_TLBConflict,
355     ARMFault_UnsuppAtomicUpdate,
356     ARMFault_Lockdown,
357     ARMFault_Exclusive,
358     ARMFault_ICacheMaint,
359     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
360     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
361     ARMFault_GPCFOnWalk,
362     ARMFault_GPCFOnOutput,
363 } ARMFaultType;
364 
365 typedef enum ARMGPCF {
366     GPCF_None,
367     GPCF_AddressSize,
368     GPCF_Walk,
369     GPCF_EABT,
370     GPCF_Fail,
371 } ARMGPCF;
372 
373 /**
374  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
375  * @type: Type of fault
376  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
377  * @level: Table walk level (for translation, access flag and permission faults)
378  * @domain: Domain of the fault address (for non-LPAE CPUs only)
379  * @s2addr: Address that caused a fault at stage 2
380  * @paddr: physical address that caused a fault for gpc
381  * @paddr_space: physical address space that caused a fault for gpc
382  * @stage2: True if we faulted at stage 2
383  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
384  * @s1ns: True if we faulted on a non-secure IPA while in secure state
385  * @ea: True if we should set the EA (external abort type) bit in syndrome
386  */
387 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
388 struct ARMMMUFaultInfo {
389     ARMFaultType type;
390     ARMGPCF gpcf;
391     target_ulong s2addr;
392     target_ulong paddr;
393     ARMSecuritySpace paddr_space;
394     int level;
395     int domain;
396     bool stage2;
397     bool s1ptw;
398     bool s1ns;
399     bool ea;
400 };
401 
402 /**
403  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
404  * Compare pseudocode EncodeSDFSC(), though unlike that function
405  * we set up a whole FSR-format code including domain field and
406  * putting the high bit of the FSC into bit 10.
407  */
408 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
409 {
410     uint32_t fsc;
411 
412     switch (fi->type) {
413     case ARMFault_None:
414         return 0;
415     case ARMFault_AccessFlag:
416         fsc = fi->level == 1 ? 0x3 : 0x6;
417         break;
418     case ARMFault_Alignment:
419         fsc = 0x1;
420         break;
421     case ARMFault_Permission:
422         fsc = fi->level == 1 ? 0xd : 0xf;
423         break;
424     case ARMFault_Domain:
425         fsc = fi->level == 1 ? 0x9 : 0xb;
426         break;
427     case ARMFault_Translation:
428         fsc = fi->level == 1 ? 0x5 : 0x7;
429         break;
430     case ARMFault_SyncExternal:
431         fsc = 0x8 | (fi->ea << 12);
432         break;
433     case ARMFault_SyncExternalOnWalk:
434         fsc = fi->level == 1 ? 0xc : 0xe;
435         fsc |= (fi->ea << 12);
436         break;
437     case ARMFault_SyncParity:
438         fsc = 0x409;
439         break;
440     case ARMFault_SyncParityOnWalk:
441         fsc = fi->level == 1 ? 0x40c : 0x40e;
442         break;
443     case ARMFault_AsyncParity:
444         fsc = 0x408;
445         break;
446     case ARMFault_AsyncExternal:
447         fsc = 0x406 | (fi->ea << 12);
448         break;
449     case ARMFault_Debug:
450         fsc = 0x2;
451         break;
452     case ARMFault_TLBConflict:
453         fsc = 0x400;
454         break;
455     case ARMFault_Lockdown:
456         fsc = 0x404;
457         break;
458     case ARMFault_Exclusive:
459         fsc = 0x405;
460         break;
461     case ARMFault_ICacheMaint:
462         fsc = 0x4;
463         break;
464     case ARMFault_Background:
465         fsc = 0x0;
466         break;
467     case ARMFault_QEMU_NSCExec:
468         fsc = M_FAKE_FSR_NSC_EXEC;
469         break;
470     case ARMFault_QEMU_SFault:
471         fsc = M_FAKE_FSR_SFAULT;
472         break;
473     default:
474         /* Other faults can't occur in a context that requires a
475          * short-format status code.
476          */
477         g_assert_not_reached();
478     }
479 
480     fsc |= (fi->domain << 4);
481     return fsc;
482 }
483 
484 /**
485  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
486  * Compare pseudocode EncodeLDFSC(), though unlike that function
487  * we fill in also the LPAE bit 9 of a DFSR format.
488  */
489 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
490 {
491     uint32_t fsc;
492 
493     switch (fi->type) {
494     case ARMFault_None:
495         return 0;
496     case ARMFault_AddressSize:
497         assert(fi->level >= -1 && fi->level <= 3);
498         if (fi->level < 0) {
499             fsc = 0b101001;
500         } else {
501             fsc = fi->level;
502         }
503         break;
504     case ARMFault_AccessFlag:
505         assert(fi->level >= 0 && fi->level <= 3);
506         fsc = 0b001000 | fi->level;
507         break;
508     case ARMFault_Permission:
509         assert(fi->level >= 0 && fi->level <= 3);
510         fsc = 0b001100 | fi->level;
511         break;
512     case ARMFault_Translation:
513         assert(fi->level >= -1 && fi->level <= 3);
514         if (fi->level < 0) {
515             fsc = 0b101011;
516         } else {
517             fsc = 0b000100 | fi->level;
518         }
519         break;
520     case ARMFault_SyncExternal:
521         fsc = 0x10 | (fi->ea << 12);
522         break;
523     case ARMFault_SyncExternalOnWalk:
524         assert(fi->level >= -1 && fi->level <= 3);
525         if (fi->level < 0) {
526             fsc = 0b010011;
527         } else {
528             fsc = 0b010100 | fi->level;
529         }
530         fsc |= fi->ea << 12;
531         break;
532     case ARMFault_SyncParity:
533         fsc = 0x18;
534         break;
535     case ARMFault_SyncParityOnWalk:
536         assert(fi->level >= -1 && fi->level <= 3);
537         if (fi->level < 0) {
538             fsc = 0b011011;
539         } else {
540             fsc = 0b011100 | fi->level;
541         }
542         break;
543     case ARMFault_AsyncParity:
544         fsc = 0x19;
545         break;
546     case ARMFault_AsyncExternal:
547         fsc = 0x11 | (fi->ea << 12);
548         break;
549     case ARMFault_Alignment:
550         fsc = 0x21;
551         break;
552     case ARMFault_Debug:
553         fsc = 0x22;
554         break;
555     case ARMFault_TLBConflict:
556         fsc = 0x30;
557         break;
558     case ARMFault_UnsuppAtomicUpdate:
559         fsc = 0x31;
560         break;
561     case ARMFault_Lockdown:
562         fsc = 0x34;
563         break;
564     case ARMFault_Exclusive:
565         fsc = 0x35;
566         break;
567     case ARMFault_GPCFOnWalk:
568         assert(fi->level >= -1 && fi->level <= 3);
569         if (fi->level < 0) {
570             fsc = 0b100011;
571         } else {
572             fsc = 0b100100 | fi->level;
573         }
574         break;
575     case ARMFault_GPCFOnOutput:
576         fsc = 0b101000;
577         break;
578     default:
579         /* Other faults can't occur in a context that requires a
580          * long-format status code.
581          */
582         g_assert_not_reached();
583     }
584 
585     fsc |= 1 << 9;
586     return fsc;
587 }
588 
589 static inline bool arm_extabort_type(MemTxResult result)
590 {
591     /* The EA bit in syndromes and fault status registers is an
592      * IMPDEF classification of external aborts. ARM implementations
593      * usually use this to indicate AXI bus Decode error (0) or
594      * Slave error (1); in QEMU we follow that.
595      */
596     return result != MEMTX_DECODE_ERROR;
597 }
598 
599 #ifdef CONFIG_USER_ONLY
600 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
601                             MMUAccessType access_type,
602                             bool maperr, uintptr_t ra);
603 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
604                            MMUAccessType access_type, uintptr_t ra);
605 #else
606 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
607                       MMUAccessType access_type, int mmu_idx,
608                       bool probe, uintptr_t retaddr);
609 #endif
610 
611 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
612 {
613     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
614 }
615 
616 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
617 {
618     if (arm_feature(env, ARM_FEATURE_M)) {
619         return mmu_idx | ARM_MMU_IDX_M;
620     } else {
621         return mmu_idx | ARM_MMU_IDX_A;
622     }
623 }
624 
625 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
626 {
627     /* AArch64 is always a-profile. */
628     return mmu_idx | ARM_MMU_IDX_A;
629 }
630 
631 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
632 
633 /* Return the MMU index for a v7M CPU in the specified security state */
634 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
635 
636 /*
637  * Return true if the stage 1 translation regime is using LPAE
638  * format page tables
639  */
640 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
641 
642 /* Raise a data fault alignment exception for the specified virtual address */
643 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
644                                             MMUAccessType access_type,
645                                             int mmu_idx, uintptr_t retaddr);
646 
647 #ifndef CONFIG_USER_ONLY
648 /* arm_cpu_do_transaction_failed: handle a memory system error response
649  * (eg "no device/memory present at address") by raising an external abort
650  * exception
651  */
652 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
653                                    vaddr addr, unsigned size,
654                                    MMUAccessType access_type,
655                                    int mmu_idx, MemTxAttrs attrs,
656                                    MemTxResult response, uintptr_t retaddr);
657 #endif
658 
659 /* Call any registered EL change hooks */
660 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
661 {
662     ARMELChangeHook *hook, *next;
663     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
664         hook->hook(cpu, hook->opaque);
665     }
666 }
667 static inline void arm_call_el_change_hook(ARMCPU *cpu)
668 {
669     ARMELChangeHook *hook, *next;
670     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
671         hook->hook(cpu, hook->opaque);
672     }
673 }
674 
675 /* Return true if this address translation regime has two ranges.  */
676 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
677 {
678     switch (mmu_idx) {
679     case ARMMMUIdx_Stage1_E0:
680     case ARMMMUIdx_Stage1_E1:
681     case ARMMMUIdx_Stage1_E1_PAN:
682     case ARMMMUIdx_E10_0:
683     case ARMMMUIdx_E10_1:
684     case ARMMMUIdx_E10_1_PAN:
685     case ARMMMUIdx_E20_0:
686     case ARMMMUIdx_E20_2:
687     case ARMMMUIdx_E20_2_PAN:
688         return true;
689     default:
690         return false;
691     }
692 }
693 
694 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
695 {
696     switch (mmu_idx) {
697     case ARMMMUIdx_Stage1_E1_PAN:
698     case ARMMMUIdx_E10_1_PAN:
699     case ARMMMUIdx_E20_2_PAN:
700         return true;
701     default:
702         return false;
703     }
704 }
705 
706 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
707 {
708     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
709 }
710 
711 /* Return the exception level which controls this address translation regime */
712 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
713 {
714     switch (mmu_idx) {
715     case ARMMMUIdx_E20_0:
716     case ARMMMUIdx_E20_2:
717     case ARMMMUIdx_E20_2_PAN:
718     case ARMMMUIdx_Stage2:
719     case ARMMMUIdx_Stage2_S:
720     case ARMMMUIdx_E2:
721         return 2;
722     case ARMMMUIdx_E3:
723         return 3;
724     case ARMMMUIdx_E10_0:
725     case ARMMMUIdx_Stage1_E0:
726         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
727     case ARMMMUIdx_Stage1_E1:
728     case ARMMMUIdx_Stage1_E1_PAN:
729     case ARMMMUIdx_E10_1:
730     case ARMMMUIdx_E10_1_PAN:
731     case ARMMMUIdx_MPrivNegPri:
732     case ARMMMUIdx_MUserNegPri:
733     case ARMMMUIdx_MPriv:
734     case ARMMMUIdx_MUser:
735     case ARMMMUIdx_MSPrivNegPri:
736     case ARMMMUIdx_MSUserNegPri:
737     case ARMMMUIdx_MSPriv:
738     case ARMMMUIdx_MSUser:
739         return 1;
740     default:
741         g_assert_not_reached();
742     }
743 }
744 
745 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
746 {
747     switch (mmu_idx) {
748     case ARMMMUIdx_E20_0:
749     case ARMMMUIdx_Stage1_E0:
750     case ARMMMUIdx_MUser:
751     case ARMMMUIdx_MSUser:
752     case ARMMMUIdx_MUserNegPri:
753     case ARMMMUIdx_MSUserNegPri:
754         return true;
755     default:
756         return false;
757     case ARMMMUIdx_E10_0:
758     case ARMMMUIdx_E10_1:
759     case ARMMMUIdx_E10_1_PAN:
760         g_assert_not_reached();
761     }
762 }
763 
764 /* Return the SCTLR value which controls this address translation regime */
765 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
766 {
767     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
768 }
769 
770 /*
771  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
772  * and the Non-Secure stage 2 translation regimes (and hence which are
773  * not present in VSTCR_EL2).
774  */
775 #define VTCR_SHARED_FIELD_MASK \
776     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
777      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
778      R_VTCR_DS_MASK)
779 
780 /* Return the value of the TCR controlling this translation regime */
781 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
782 {
783     if (mmu_idx == ARMMMUIdx_Stage2) {
784         return env->cp15.vtcr_el2;
785     }
786     if (mmu_idx == ARMMMUIdx_Stage2_S) {
787         /*
788          * Secure stage 2 shares fields from VTCR_EL2. We merge those
789          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
790          * value so the callers don't need to special case this.
791          *
792          * If a future architecture change defines bits in VSTCR_EL2 that
793          * overlap with these VTCR_EL2 fields we may need to revisit this.
794          */
795         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
796         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
797         return v;
798     }
799     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
800 }
801 
802 /* Return true if the translation regime is using LPAE format page tables */
803 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
804 {
805     int el = regime_el(env, mmu_idx);
806     if (el == 2 || arm_el_is_aa64(env, el)) {
807         return true;
808     }
809     if (arm_feature(env, ARM_FEATURE_PMSA) &&
810         arm_feature(env, ARM_FEATURE_V8)) {
811         return true;
812     }
813     if (arm_feature(env, ARM_FEATURE_LPAE)
814         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
815         return true;
816     }
817     return false;
818 }
819 
820 /**
821  * arm_num_brps: Return number of implemented breakpoints.
822  * Note that the ID register BRPS field is "number of bps - 1",
823  * and we return the actual number of breakpoints.
824  */
825 static inline int arm_num_brps(ARMCPU *cpu)
826 {
827     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
828         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
829     } else {
830         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
831     }
832 }
833 
834 /**
835  * arm_num_wrps: Return number of implemented watchpoints.
836  * Note that the ID register WRPS field is "number of wps - 1",
837  * and we return the actual number of watchpoints.
838  */
839 static inline int arm_num_wrps(ARMCPU *cpu)
840 {
841     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
842         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
843     } else {
844         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
845     }
846 }
847 
848 /**
849  * arm_num_ctx_cmps: Return number of implemented context comparators.
850  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
851  * and we return the actual number of comparators.
852  */
853 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
854 {
855     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
856         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
857     } else {
858         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
859     }
860 }
861 
862 /**
863  * v7m_using_psp: Return true if using process stack pointer
864  * Return true if the CPU is currently using the process stack
865  * pointer, or false if it is using the main stack pointer.
866  */
867 static inline bool v7m_using_psp(CPUARMState *env)
868 {
869     /* Handler mode always uses the main stack; for thread mode
870      * the CONTROL.SPSEL bit determines the answer.
871      * Note that in v7M it is not possible to be in Handler mode with
872      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
873      */
874     return !arm_v7m_is_handler_mode(env) &&
875         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
876 }
877 
878 /**
879  * v7m_sp_limit: Return SP limit for current CPU state
880  * Return the SP limit value for the current CPU security state
881  * and stack pointer.
882  */
883 static inline uint32_t v7m_sp_limit(CPUARMState *env)
884 {
885     if (v7m_using_psp(env)) {
886         return env->v7m.psplim[env->v7m.secure];
887     } else {
888         return env->v7m.msplim[env->v7m.secure];
889     }
890 }
891 
892 /**
893  * v7m_cpacr_pass:
894  * Return true if the v7M CPACR permits access to the FPU for the specified
895  * security state and privilege level.
896  */
897 static inline bool v7m_cpacr_pass(CPUARMState *env,
898                                   bool is_secure, bool is_priv)
899 {
900     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
901     case 0:
902     case 2: /* UNPREDICTABLE: we treat like 0 */
903         return false;
904     case 1:
905         return is_priv;
906     case 3:
907         return true;
908     default:
909         g_assert_not_reached();
910     }
911 }
912 
913 /**
914  * aarch32_mode_name(): Return name of the AArch32 CPU mode
915  * @psr: Program Status Register indicating CPU mode
916  *
917  * Returns, for debug logging purposes, a printable representation
918  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
919  * the low bits of the specified PSR.
920  */
921 static inline const char *aarch32_mode_name(uint32_t psr)
922 {
923     static const char cpu_mode_names[16][4] = {
924         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
925         "???", "???", "hyp", "und", "???", "???", "???", "sys"
926     };
927 
928     return cpu_mode_names[psr & 0xf];
929 }
930 
931 /**
932  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
933  *
934  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
935  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
936  * Must be called with the iothread lock held.
937  */
938 void arm_cpu_update_virq(ARMCPU *cpu);
939 
940 /**
941  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
942  *
943  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
944  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
945  * Must be called with the iothread lock held.
946  */
947 void arm_cpu_update_vfiq(ARMCPU *cpu);
948 
949 /**
950  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
951  *
952  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
953  * following a change to the HCR_EL2.VSE bit.
954  */
955 void arm_cpu_update_vserr(ARMCPU *cpu);
956 
957 /**
958  * arm_mmu_idx_el:
959  * @env: The cpu environment
960  * @el: The EL to use.
961  *
962  * Return the full ARMMMUIdx for the translation regime for EL.
963  */
964 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
965 
966 /**
967  * arm_mmu_idx:
968  * @env: The cpu environment
969  *
970  * Return the full ARMMMUIdx for the current translation regime.
971  */
972 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
973 
974 /**
975  * arm_stage1_mmu_idx:
976  * @env: The cpu environment
977  *
978  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
979  */
980 #ifdef CONFIG_USER_ONLY
981 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
982 {
983     return ARMMMUIdx_Stage1_E0;
984 }
985 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
986 {
987     return ARMMMUIdx_Stage1_E0;
988 }
989 #else
990 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
991 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
992 #endif
993 
994 /**
995  * arm_mmu_idx_is_stage1_of_2:
996  * @mmu_idx: The ARMMMUIdx to test
997  *
998  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
999  * first stage of a two stage regime.
1000  */
1001 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1002 {
1003     switch (mmu_idx) {
1004     case ARMMMUIdx_Stage1_E0:
1005     case ARMMMUIdx_Stage1_E1:
1006     case ARMMMUIdx_Stage1_E1_PAN:
1007         return true;
1008     default:
1009         return false;
1010     }
1011 }
1012 
1013 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1014                                                const ARMISARegisters *id)
1015 {
1016     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1017 
1018     if ((features >> ARM_FEATURE_V4T) & 1) {
1019         valid |= CPSR_T;
1020     }
1021     if ((features >> ARM_FEATURE_V5) & 1) {
1022         valid |= CPSR_Q; /* V5TE in reality*/
1023     }
1024     if ((features >> ARM_FEATURE_V6) & 1) {
1025         valid |= CPSR_E | CPSR_GE;
1026     }
1027     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1028         valid |= CPSR_IT;
1029     }
1030     if (isar_feature_aa32_jazelle(id)) {
1031         valid |= CPSR_J;
1032     }
1033     if (isar_feature_aa32_pan(id)) {
1034         valid |= CPSR_PAN;
1035     }
1036     if (isar_feature_aa32_dit(id)) {
1037         valid |= CPSR_DIT;
1038     }
1039     if (isar_feature_aa32_ssbs(id)) {
1040         valid |= CPSR_SSBS;
1041     }
1042 
1043     return valid;
1044 }
1045 
1046 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1047 {
1048     uint32_t valid;
1049 
1050     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1051     if (isar_feature_aa64_bti(id)) {
1052         valid |= PSTATE_BTYPE;
1053     }
1054     if (isar_feature_aa64_pan(id)) {
1055         valid |= PSTATE_PAN;
1056     }
1057     if (isar_feature_aa64_uao(id)) {
1058         valid |= PSTATE_UAO;
1059     }
1060     if (isar_feature_aa64_dit(id)) {
1061         valid |= PSTATE_DIT;
1062     }
1063     if (isar_feature_aa64_ssbs(id)) {
1064         valid |= PSTATE_SSBS;
1065     }
1066     if (isar_feature_aa64_mte(id)) {
1067         valid |= PSTATE_TCO;
1068     }
1069 
1070     return valid;
1071 }
1072 
1073 /* Granule size (i.e. page size) */
1074 typedef enum ARMGranuleSize {
1075     /* Same order as TG0 encoding */
1076     Gran4K,
1077     Gran64K,
1078     Gran16K,
1079     GranInvalid,
1080 } ARMGranuleSize;
1081 
1082 /**
1083  * arm_granule_bits: Return address size of the granule in bits
1084  *
1085  * Return the address size of the granule in bits. This corresponds
1086  * to the pseudocode TGxGranuleBits().
1087  */
1088 static inline int arm_granule_bits(ARMGranuleSize gran)
1089 {
1090     switch (gran) {
1091     case Gran64K:
1092         return 16;
1093     case Gran16K:
1094         return 14;
1095     case Gran4K:
1096         return 12;
1097     default:
1098         g_assert_not_reached();
1099     }
1100 }
1101 
1102 /*
1103  * Parameters of a given virtual address, as extracted from the
1104  * translation control register (TCR) for a given regime.
1105  */
1106 typedef struct ARMVAParameters {
1107     unsigned tsz    : 8;
1108     unsigned ps     : 3;
1109     unsigned sh     : 2;
1110     unsigned select : 1;
1111     bool tbi        : 1;
1112     bool epd        : 1;
1113     bool hpd        : 1;
1114     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1115     bool ds         : 1;
1116     bool ha         : 1;
1117     bool hd         : 1;
1118     ARMGranuleSize gran : 2;
1119 } ARMVAParameters;
1120 
1121 /**
1122  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1123  * @env: CPU
1124  * @va: virtual address to look up
1125  * @mmu_idx: determines translation regime to use
1126  * @data: true if this is a data access
1127  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1128  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1129  */
1130 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1131                                    ARMMMUIdx mmu_idx, bool data,
1132                                    bool el1_is_aa32);
1133 
1134 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1135 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1136 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1137 
1138 /* Determine if allocation tags are available.  */
1139 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1140                                                  uint64_t sctlr)
1141 {
1142     if (el < 3
1143         && arm_feature(env, ARM_FEATURE_EL3)
1144         && !(env->cp15.scr_el3 & SCR_ATA)) {
1145         return false;
1146     }
1147     if (el < 2 && arm_is_el2_enabled(env)) {
1148         uint64_t hcr = arm_hcr_el2_eff(env);
1149         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1150             return false;
1151         }
1152     }
1153     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1154     return sctlr != 0;
1155 }
1156 
1157 #ifndef CONFIG_USER_ONLY
1158 
1159 /* Security attributes for an address, as returned by v8m_security_lookup. */
1160 typedef struct V8M_SAttributes {
1161     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1162     bool ns;
1163     bool nsc;
1164     uint8_t sregion;
1165     bool srvalid;
1166     uint8_t iregion;
1167     bool irvalid;
1168 } V8M_SAttributes;
1169 
1170 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1171                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1172                          bool secure, V8M_SAttributes *sattrs);
1173 
1174 /* Cacheability and shareability attributes for a memory access */
1175 typedef struct ARMCacheAttrs {
1176     /*
1177      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1178      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1179      */
1180     unsigned int attrs:8;
1181     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1182     bool is_s2_format:1;
1183     bool guarded:1;              /* guarded bit of the v8-64 PTE */
1184 } ARMCacheAttrs;
1185 
1186 /* Fields that are valid upon success. */
1187 typedef struct GetPhysAddrResult {
1188     CPUTLBEntryFull f;
1189     ARMCacheAttrs cacheattrs;
1190 } GetPhysAddrResult;
1191 
1192 /**
1193  * get_phys_addr_with_secure: get the physical address for a virtual address
1194  * @env: CPUARMState
1195  * @address: virtual address to get physical address for
1196  * @access_type: 0 for read, 1 for write, 2 for execute
1197  * @mmu_idx: MMU index indicating required translation regime
1198  * @is_secure: security state for the access
1199  * @result: set on translation success.
1200  * @fi: set to fault info if the translation fails
1201  *
1202  * Find the physical address corresponding to the given virtual address,
1203  * by doing a translation table walk on MMU based systems or using the
1204  * MPU state on MPU based systems.
1205  *
1206  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1207  * prot and page_size may not be filled in, and the populated fsr value provides
1208  * information on why the translation aborted, in the format of a
1209  * DFSR/IFSR fault register, with the following caveats:
1210  *  * we honour the short vs long DFSR format differences.
1211  *  * the WnR bit is never set (the caller must do this).
1212  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1213  *    value.
1214  */
1215 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1216                                MMUAccessType access_type,
1217                                ARMMMUIdx mmu_idx, bool is_secure,
1218                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1219     __attribute__((nonnull));
1220 
1221 /**
1222  * get_phys_addr: get the physical address for a virtual address
1223  * @env: CPUARMState
1224  * @address: virtual address to get physical address for
1225  * @access_type: 0 for read, 1 for write, 2 for execute
1226  * @mmu_idx: MMU index indicating required translation regime
1227  * @result: set on translation success.
1228  * @fi: set to fault info if the translation fails
1229  *
1230  * Similarly, but use the security regime of @mmu_idx.
1231  */
1232 bool get_phys_addr(CPUARMState *env, target_ulong address,
1233                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1234                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1235     __attribute__((nonnull));
1236 
1237 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1238                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1239                        bool is_secure, GetPhysAddrResult *result,
1240                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1241 
1242 void arm_log_exception(CPUState *cs);
1243 
1244 #endif /* !CONFIG_USER_ONLY */
1245 
1246 /*
1247  * The log2 of the words in the tag block, for GMID_EL1.BS.
1248  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1249  */
1250 #define GMID_EL1_BS  6
1251 
1252 /*
1253  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1254  * the same simd_desc() encoding due to restrictions on size.
1255  * Use these instead.
1256  */
1257 FIELD(PREDDESC, OPRSZ, 0, 6)
1258 FIELD(PREDDESC, ESZ, 6, 2)
1259 FIELD(PREDDESC, DATA, 8, 24)
1260 
1261 /*
1262  * The SVE simd_data field, for memory ops, contains either
1263  * rd (5 bits) or a shift count (2 bits).
1264  */
1265 #define SVE_MTEDESC_SHIFT 5
1266 
1267 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1268 FIELD(MTEDESC, MIDX,  0, 4)
1269 FIELD(MTEDESC, TBI,   4, 2)
1270 FIELD(MTEDESC, TCMA,  6, 2)
1271 FIELD(MTEDESC, WRITE, 8, 1)
1272 FIELD(MTEDESC, ALIGN, 9, 3)
1273 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12)  /* size - 1 */
1274 
1275 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1276 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1277 
1278 static inline int allocation_tag_from_addr(uint64_t ptr)
1279 {
1280     return extract64(ptr, 56, 4);
1281 }
1282 
1283 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1284 {
1285     return deposit64(ptr, 56, 4, rtag);
1286 }
1287 
1288 /* Return true if tbi bits mean that the access is checked.  */
1289 static inline bool tbi_check(uint32_t desc, int bit55)
1290 {
1291     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1292 }
1293 
1294 /* Return true if tcma bits mean that the access is unchecked.  */
1295 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1296 {
1297     /*
1298      * We had extracted bit55 and ptr_tag for other reasons, so fold
1299      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1300      */
1301     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1302     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1303     return tcma && match;
1304 }
1305 
1306 /*
1307  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1308  * for the tag to be present in the FAR_ELx register.  But for user-only
1309  * mode, we do not have a TLB with which to implement this, so we must
1310  * remove the top byte.
1311  */
1312 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1313 {
1314 #ifdef CONFIG_USER_ONLY
1315     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1316     ptr &= sextract64(ptr, 0, 56);
1317 #endif
1318     return ptr;
1319 }
1320 
1321 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1322 {
1323 #ifdef CONFIG_USER_ONLY
1324     int64_t clean_ptr = sextract64(ptr, 0, 56);
1325     if (tbi_check(desc, clean_ptr < 0)) {
1326         ptr = clean_ptr;
1327     }
1328 #endif
1329     return ptr;
1330 }
1331 
1332 /* Values for M-profile PSR.ECI for MVE insns */
1333 enum MVEECIState {
1334     ECI_NONE = 0, /* No completed beats */
1335     ECI_A0 = 1, /* Completed: A0 */
1336     ECI_A0A1 = 2, /* Completed: A0, A1 */
1337     /* 3 is reserved */
1338     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1339     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1340     /* All other values reserved */
1341 };
1342 
1343 /* Definitions for the PMU registers */
1344 #define PMCRN_MASK  0xf800
1345 #define PMCRN_SHIFT 11
1346 #define PMCRLP  0x80
1347 #define PMCRLC  0x40
1348 #define PMCRDP  0x20
1349 #define PMCRX   0x10
1350 #define PMCRD   0x8
1351 #define PMCRC   0x4
1352 #define PMCRP   0x2
1353 #define PMCRE   0x1
1354 /*
1355  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1356  * which can be written as 1 to trigger behaviour but which stay RAZ).
1357  */
1358 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1359 
1360 #define PMXEVTYPER_P          0x80000000
1361 #define PMXEVTYPER_U          0x40000000
1362 #define PMXEVTYPER_NSK        0x20000000
1363 #define PMXEVTYPER_NSU        0x10000000
1364 #define PMXEVTYPER_NSH        0x08000000
1365 #define PMXEVTYPER_M          0x04000000
1366 #define PMXEVTYPER_MT         0x02000000
1367 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1368 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1369                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1370                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1371                                PMXEVTYPER_EVTCOUNT)
1372 
1373 #define PMCCFILTR             0xf8000000
1374 #define PMCCFILTR_M           PMXEVTYPER_M
1375 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1376 
1377 static inline uint32_t pmu_num_counters(CPUARMState *env)
1378 {
1379     ARMCPU *cpu = env_archcpu(env);
1380 
1381     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1382 }
1383 
1384 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1385 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1386 {
1387   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1388 }
1389 
1390 #ifdef TARGET_AARCH64
1391 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1392 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1393 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1394 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1395 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1396 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1397 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1398 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1399 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1400 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1401 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1402 void aarch64_max_tcg_initfn(Object *obj);
1403 void aarch64_add_pauth_properties(Object *obj);
1404 void aarch64_add_sve_properties(Object *obj);
1405 void aarch64_add_sme_properties(Object *obj);
1406 #endif
1407 
1408 /* Read the CONTROL register as the MRS instruction would. */
1409 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1410 
1411 /*
1412  * Return a pointer to the location where we currently store the
1413  * stack pointer for the requested security state and thread mode.
1414  * This pointer will become invalid if the CPU state is updated
1415  * such that the stack pointers are switched around (eg changing
1416  * the SPSEL control bit).
1417  */
1418 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1419                              bool threadmode, bool spsel);
1420 
1421 bool el_is_in_host(CPUARMState *env, int el);
1422 
1423 void aa32_max_features(ARMCPU *cpu);
1424 int exception_target_el(CPUARMState *env);
1425 bool arm_singlestep_active(CPUARMState *env);
1426 bool arm_generate_debug_exceptions(CPUARMState *env);
1427 
1428 /**
1429  * pauth_ptr_mask:
1430  * @param: parameters defining the MMU setup
1431  *
1432  * Return a mask of the address bits that contain the authentication code,
1433  * given the MMU config defined by @param.
1434  */
1435 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1436 {
1437     int bot_pac_bit = 64 - param.tsz;
1438     int top_pac_bit = 64 - 8 * param.tbi;
1439 
1440     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1441 }
1442 
1443 /* Add the cpreg definitions for debug related system registers */
1444 void define_debug_regs(ARMCPU *cpu);
1445 
1446 /* Effective value of MDCR_EL2 */
1447 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1448 {
1449     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1450 }
1451 
1452 /* Powers of 2 for sve_vq_map et al. */
1453 #define SVE_VQ_POW2_MAP                                 \
1454     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1455      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1456 
1457 /*
1458  * Return true if it is possible to take a fine-grained-trap to EL2.
1459  */
1460 static inline bool arm_fgt_active(CPUARMState *env, int el)
1461 {
1462     /*
1463      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1464      * that can affect EL0, but it is harmless to do the test also for
1465      * traps on registers that are only accessible at EL1 because if the test
1466      * returns true then we can't be executing at EL1 anyway.
1467      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1468      * traps from AArch32 only happen for the EL0 is AArch32 case.
1469      */
1470     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1471         el < 2 && arm_is_el2_enabled(env) &&
1472         arm_el_is_aa64(env, 1) &&
1473         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1474         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1475 }
1476 
1477 void assert_hflags_rebuild_correctly(CPUARMState *env);
1478 
1479 /*
1480  * Although the ARM implementation of hardware assisted debugging
1481  * allows for different breakpoints per-core, the current GDB
1482  * interface treats them as a global pool of registers (which seems to
1483  * be the case for x86, ppc and s390). As a result we store one copy
1484  * of registers which is used for all active cores.
1485  *
1486  * Write access is serialised by virtue of the GDB protocol which
1487  * updates things. Read access (i.e. when the values are copied to the
1488  * vCPU) is also gated by GDB's run control.
1489  *
1490  * This is not unreasonable as most of the time debugging kernels you
1491  * never know which core will eventually execute your function.
1492  */
1493 
1494 typedef struct {
1495     uint64_t bcr;
1496     uint64_t bvr;
1497 } HWBreakpoint;
1498 
1499 /*
1500  * The watchpoint registers can cover more area than the requested
1501  * watchpoint so we need to store the additional information
1502  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1503  * when the watchpoint is hit.
1504  */
1505 typedef struct {
1506     uint64_t wcr;
1507     uint64_t wvr;
1508     CPUWatchpoint details;
1509 } HWWatchpoint;
1510 
1511 /* Maximum and current break/watch point counts */
1512 extern int max_hw_bps, max_hw_wps;
1513 extern GArray *hw_breakpoints, *hw_watchpoints;
1514 
1515 #define cur_hw_wps      (hw_watchpoints->len)
1516 #define cur_hw_bps      (hw_breakpoints->len)
1517 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1518 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1519 
1520 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1521 int insert_hw_breakpoint(target_ulong pc);
1522 int delete_hw_breakpoint(target_ulong pc);
1523 
1524 bool check_watchpoint_in_range(int i, target_ulong addr);
1525 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1526 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1527 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1528 #endif
1529