xref: /openbmc/qemu/target/arm/internals.h (revision da1849c1)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 
64 /* Bit definitions for v7M exception return payload */
65 FIELD(V7M_EXCRET, ES, 0, 1)
66 FIELD(V7M_EXCRET, RES0, 1, 1)
67 FIELD(V7M_EXCRET, SPSEL, 2, 1)
68 FIELD(V7M_EXCRET, MODE, 3, 1)
69 FIELD(V7M_EXCRET, FTYPE, 4, 1)
70 FIELD(V7M_EXCRET, DCRS, 5, 1)
71 FIELD(V7M_EXCRET, S, 6, 1)
72 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
73 
74 /*
75  * For AArch64, map a given EL to an index in the banked_spsr array.
76  * Note that this mapping and the AArch32 mapping defined in bank_number()
77  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
78  * mandated mapping between each other.
79  */
80 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
81 {
82     static const unsigned int map[4] = {
83         [1] = BANK_SVC, /* EL1.  */
84         [2] = BANK_HYP, /* EL2.  */
85         [3] = BANK_MON, /* EL3.  */
86     };
87     assert(el >= 1 && el <= 3);
88     return map[el];
89 }
90 
91 /* Map CPU modes onto saved register banks.  */
92 static inline int bank_number(int mode)
93 {
94     switch (mode) {
95     case ARM_CPU_MODE_USR:
96     case ARM_CPU_MODE_SYS:
97         return BANK_USRSYS;
98     case ARM_CPU_MODE_SVC:
99         return BANK_SVC;
100     case ARM_CPU_MODE_ABT:
101         return BANK_ABT;
102     case ARM_CPU_MODE_UND:
103         return BANK_UND;
104     case ARM_CPU_MODE_IRQ:
105         return BANK_IRQ;
106     case ARM_CPU_MODE_FIQ:
107         return BANK_FIQ;
108     case ARM_CPU_MODE_HYP:
109         return BANK_HYP;
110     case ARM_CPU_MODE_MON:
111         return BANK_MON;
112     }
113     g_assert_not_reached();
114 }
115 
116 void switch_mode(CPUARMState *, int);
117 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
118 void arm_translate_init(void);
119 
120 enum arm_fprounding {
121     FPROUNDING_TIEEVEN,
122     FPROUNDING_POSINF,
123     FPROUNDING_NEGINF,
124     FPROUNDING_ZERO,
125     FPROUNDING_TIEAWAY,
126     FPROUNDING_ODD
127 };
128 
129 int arm_rmode_to_sf(int rmode);
130 
131 static inline void aarch64_save_sp(CPUARMState *env, int el)
132 {
133     if (env->pstate & PSTATE_SP) {
134         env->sp_el[el] = env->xregs[31];
135     } else {
136         env->sp_el[0] = env->xregs[31];
137     }
138 }
139 
140 static inline void aarch64_restore_sp(CPUARMState *env, int el)
141 {
142     if (env->pstate & PSTATE_SP) {
143         env->xregs[31] = env->sp_el[el];
144     } else {
145         env->xregs[31] = env->sp_el[0];
146     }
147 }
148 
149 static inline void update_spsel(CPUARMState *env, uint32_t imm)
150 {
151     unsigned int cur_el = arm_current_el(env);
152     /* Update PSTATE SPSel bit; this requires us to update the
153      * working stack pointer in xregs[31].
154      */
155     if (!((imm ^ env->pstate) & PSTATE_SP)) {
156         return;
157     }
158     aarch64_save_sp(env, cur_el);
159     env->pstate = deposit32(env->pstate, 0, 1, imm);
160 
161     /* We rely on illegal updates to SPsel from EL0 to get trapped
162      * at translation time.
163      */
164     assert(cur_el >= 1 && cur_el <= 3);
165     aarch64_restore_sp(env, cur_el);
166 }
167 
168 /*
169  * arm_pamax
170  * @cpu: ARMCPU
171  *
172  * Returns the implementation defined bit-width of physical addresses.
173  * The ARMv8 reference manuals refer to this as PAMax().
174  */
175 static inline unsigned int arm_pamax(ARMCPU *cpu)
176 {
177     static const unsigned int pamax_map[] = {
178         [0] = 32,
179         [1] = 36,
180         [2] = 40,
181         [3] = 42,
182         [4] = 44,
183         [5] = 48,
184     };
185     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
186 
187     /* id_aa64mmfr0 is a read-only register so values outside of the
188      * supported mappings can be considered an implementation error.  */
189     assert(parange < ARRAY_SIZE(pamax_map));
190     return pamax_map[parange];
191 }
192 
193 /* Return true if extended addresses are enabled.
194  * This is always the case if our translation regime is 64 bit,
195  * but depends on TTBCR.EAE for 32 bit.
196  */
197 static inline bool extended_addresses_enabled(CPUARMState *env)
198 {
199     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
200     return arm_el_is_aa64(env, 1) ||
201            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
202 }
203 
204 /* Valid Syndrome Register EC field values */
205 enum arm_exception_class {
206     EC_UNCATEGORIZED          = 0x00,
207     EC_WFX_TRAP               = 0x01,
208     EC_CP15RTTRAP             = 0x03,
209     EC_CP15RRTTRAP            = 0x04,
210     EC_CP14RTTRAP             = 0x05,
211     EC_CP14DTTRAP             = 0x06,
212     EC_ADVSIMDFPACCESSTRAP    = 0x07,
213     EC_FPIDTRAP               = 0x08,
214     EC_CP14RRTTRAP            = 0x0c,
215     EC_ILLEGALSTATE           = 0x0e,
216     EC_AA32_SVC               = 0x11,
217     EC_AA32_HVC               = 0x12,
218     EC_AA32_SMC               = 0x13,
219     EC_AA64_SVC               = 0x15,
220     EC_AA64_HVC               = 0x16,
221     EC_AA64_SMC               = 0x17,
222     EC_SYSTEMREGISTERTRAP     = 0x18,
223     EC_INSNABORT              = 0x20,
224     EC_INSNABORT_SAME_EL      = 0x21,
225     EC_PCALIGNMENT            = 0x22,
226     EC_DATAABORT              = 0x24,
227     EC_DATAABORT_SAME_EL      = 0x25,
228     EC_SPALIGNMENT            = 0x26,
229     EC_AA32_FPTRAP            = 0x28,
230     EC_AA64_FPTRAP            = 0x2c,
231     EC_SERROR                 = 0x2f,
232     EC_BREAKPOINT             = 0x30,
233     EC_BREAKPOINT_SAME_EL     = 0x31,
234     EC_SOFTWARESTEP           = 0x32,
235     EC_SOFTWARESTEP_SAME_EL   = 0x33,
236     EC_WATCHPOINT             = 0x34,
237     EC_WATCHPOINT_SAME_EL     = 0x35,
238     EC_AA32_BKPT              = 0x38,
239     EC_VECTORCATCH            = 0x3a,
240     EC_AA64_BKPT              = 0x3c,
241 };
242 
243 #define ARM_EL_EC_SHIFT 26
244 #define ARM_EL_IL_SHIFT 25
245 #define ARM_EL_ISV_SHIFT 24
246 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
247 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
248 
249 /* Utility functions for constructing various kinds of syndrome value.
250  * Note that in general we follow the AArch64 syndrome values; in a
251  * few cases the value in HSR for exceptions taken to AArch32 Hyp
252  * mode differs slightly, so if we ever implemented Hyp mode then the
253  * syndrome value would need some massaging on exception entry.
254  * (One example of this is that AArch64 defaults to IL bit set for
255  * exceptions which don't specifically indicate information about the
256  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
257  */
258 static inline uint32_t syn_uncategorized(void)
259 {
260     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
261 }
262 
263 static inline uint32_t syn_aa64_svc(uint32_t imm16)
264 {
265     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
266 }
267 
268 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
269 {
270     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
271 }
272 
273 static inline uint32_t syn_aa64_smc(uint32_t imm16)
274 {
275     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
276 }
277 
278 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
279 {
280     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
281         | (is_16bit ? 0 : ARM_EL_IL);
282 }
283 
284 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
285 {
286     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287 }
288 
289 static inline uint32_t syn_aa32_smc(void)
290 {
291     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
292 }
293 
294 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
295 {
296     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
297 }
298 
299 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
300 {
301     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
302         | (is_16bit ? 0 : ARM_EL_IL);
303 }
304 
305 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
306                                            int crn, int crm, int rt,
307                                            int isread)
308 {
309     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
310         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
311         | (crm << 1) | isread;
312 }
313 
314 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
315                                         int crn, int crm, int rt, int isread,
316                                         bool is_16bit)
317 {
318     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
319         | (is_16bit ? 0 : ARM_EL_IL)
320         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
321         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
322 }
323 
324 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
325                                         int crn, int crm, int rt, int isread,
326                                         bool is_16bit)
327 {
328     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
329         | (is_16bit ? 0 : ARM_EL_IL)
330         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
331         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
332 }
333 
334 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
335                                          int rt, int rt2, int isread,
336                                          bool is_16bit)
337 {
338     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
339         | (is_16bit ? 0 : ARM_EL_IL)
340         | (cv << 24) | (cond << 20) | (opc1 << 16)
341         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
342 }
343 
344 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
345                                          int rt, int rt2, int isread,
346                                          bool is_16bit)
347 {
348     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
349         | (is_16bit ? 0 : ARM_EL_IL)
350         | (cv << 24) | (cond << 20) | (opc1 << 16)
351         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
352 }
353 
354 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
355 {
356     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
357         | (is_16bit ? 0 : ARM_EL_IL)
358         | (cv << 24) | (cond << 20);
359 }
360 
361 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
362 {
363     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
364         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
365 }
366 
367 static inline uint32_t syn_data_abort_no_iss(int same_el,
368                                              int ea, int cm, int s1ptw,
369                                              int wnr, int fsc)
370 {
371     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
372            | ARM_EL_IL
373            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
374 }
375 
376 static inline uint32_t syn_data_abort_with_iss(int same_el,
377                                                int sas, int sse, int srt,
378                                                int sf, int ar,
379                                                int ea, int cm, int s1ptw,
380                                                int wnr, int fsc,
381                                                bool is_16bit)
382 {
383     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
384            | (is_16bit ? 0 : ARM_EL_IL)
385            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
386            | (sf << 15) | (ar << 14)
387            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
388 }
389 
390 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
391 {
392     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
393         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
394 }
395 
396 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
397 {
398     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
399         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
400 }
401 
402 static inline uint32_t syn_breakpoint(int same_el)
403 {
404     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
405         | ARM_EL_IL | 0x22;
406 }
407 
408 static inline uint32_t syn_wfx(int cv, int cond, int ti)
409 {
410     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
411            (cv << 24) | (cond << 20) | ti;
412 }
413 
414 /* Update a QEMU watchpoint based on the information the guest has set in the
415  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
416  */
417 void hw_watchpoint_update(ARMCPU *cpu, int n);
418 /* Update the QEMU watchpoints for every guest watchpoint. This does a
419  * complete delete-and-reinstate of the QEMU watchpoint list and so is
420  * suitable for use after migration or on reset.
421  */
422 void hw_watchpoint_update_all(ARMCPU *cpu);
423 /* Update a QEMU breakpoint based on the information the guest has set in the
424  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
425  */
426 void hw_breakpoint_update(ARMCPU *cpu, int n);
427 /* Update the QEMU breakpoints for every guest breakpoint. This does a
428  * complete delete-and-reinstate of the QEMU breakpoint list and so is
429  * suitable for use after migration or on reset.
430  */
431 void hw_breakpoint_update_all(ARMCPU *cpu);
432 
433 /* Callback function for checking if a watchpoint should trigger. */
434 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
435 
436 /* Adjust addresses (in BE32 mode) before testing against watchpoint
437  * addresses.
438  */
439 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
440 
441 /* Callback function for when a watchpoint or breakpoint triggers. */
442 void arm_debug_excp_handler(CPUState *cs);
443 
444 #ifdef CONFIG_USER_ONLY
445 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
446 {
447     return false;
448 }
449 #else
450 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
451 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
452 /* Actually handle a PSCI call */
453 void arm_handle_psci_call(ARMCPU *cpu);
454 #endif
455 
456 /**
457  * arm_clear_exclusive: clear the exclusive monitor
458  * @env: CPU env
459  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
460  */
461 static inline void arm_clear_exclusive(CPUARMState *env)
462 {
463     env->exclusive_addr = -1;
464 }
465 
466 /**
467  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
468  * @s2addr: Address that caused a fault at stage 2
469  * @stage2: True if we faulted at stage 2
470  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
471  * @ea: True if we should set the EA (external abort type) bit in syndrome
472  */
473 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
474 struct ARMMMUFaultInfo {
475     target_ulong s2addr;
476     bool stage2;
477     bool s1ptw;
478     bool ea;
479 };
480 
481 /* Do a page table walk and add page to TLB if possible */
482 bool arm_tlb_fill(CPUState *cpu, vaddr address,
483                   MMUAccessType access_type, int mmu_idx,
484                   uint32_t *fsr, ARMMMUFaultInfo *fi);
485 
486 /* Return true if the stage 1 translation regime is using LPAE format page
487  * tables */
488 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
489 
490 /* Raise a data fault alignment exception for the specified virtual address */
491 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
492                                  MMUAccessType access_type,
493                                  int mmu_idx, uintptr_t retaddr);
494 
495 /* arm_cpu_do_transaction_failed: handle a memory system error response
496  * (eg "no device/memory present at address") by raising an external abort
497  * exception
498  */
499 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
500                                    vaddr addr, unsigned size,
501                                    MMUAccessType access_type,
502                                    int mmu_idx, MemTxAttrs attrs,
503                                    MemTxResult response, uintptr_t retaddr);
504 
505 /* Call the EL change hook if one has been registered */
506 static inline void arm_call_el_change_hook(ARMCPU *cpu)
507 {
508     if (cpu->el_change_hook) {
509         cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
510     }
511 }
512 
513 /* Return true if this address translation regime is secure */
514 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
515 {
516     switch (mmu_idx) {
517     case ARMMMUIdx_S12NSE0:
518     case ARMMMUIdx_S12NSE1:
519     case ARMMMUIdx_S1NSE0:
520     case ARMMMUIdx_S1NSE1:
521     case ARMMMUIdx_S1E2:
522     case ARMMMUIdx_S2NS:
523     case ARMMMUIdx_MPriv:
524     case ARMMMUIdx_MNegPri:
525     case ARMMMUIdx_MUser:
526         return false;
527     case ARMMMUIdx_S1E3:
528     case ARMMMUIdx_S1SE0:
529     case ARMMMUIdx_S1SE1:
530     case ARMMMUIdx_MSPriv:
531     case ARMMMUIdx_MSNegPri:
532     case ARMMMUIdx_MSUser:
533         return true;
534     default:
535         g_assert_not_reached();
536     }
537 }
538 
539 #endif
540