xref: /openbmc/qemu/target/arm/internals.h (revision c39f95dc)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /*
98  * For AArch64, map a given EL to an index in the banked_spsr array.
99  * Note that this mapping and the AArch32 mapping defined in bank_number()
100  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
101  * mandated mapping between each other.
102  */
103 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
104 {
105     static const unsigned int map[4] = {
106         [1] = BANK_SVC, /* EL1.  */
107         [2] = BANK_HYP, /* EL2.  */
108         [3] = BANK_MON, /* EL3.  */
109     };
110     assert(el >= 1 && el <= 3);
111     return map[el];
112 }
113 
114 /* Map CPU modes onto saved register banks.  */
115 static inline int bank_number(int mode)
116 {
117     switch (mode) {
118     case ARM_CPU_MODE_USR:
119     case ARM_CPU_MODE_SYS:
120         return BANK_USRSYS;
121     case ARM_CPU_MODE_SVC:
122         return BANK_SVC;
123     case ARM_CPU_MODE_ABT:
124         return BANK_ABT;
125     case ARM_CPU_MODE_UND:
126         return BANK_UND;
127     case ARM_CPU_MODE_IRQ:
128         return BANK_IRQ;
129     case ARM_CPU_MODE_FIQ:
130         return BANK_FIQ;
131     case ARM_CPU_MODE_HYP:
132         return BANK_HYP;
133     case ARM_CPU_MODE_MON:
134         return BANK_MON;
135     }
136     g_assert_not_reached();
137 }
138 
139 void switch_mode(CPUARMState *, int);
140 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
141 void arm_translate_init(void);
142 
143 enum arm_fprounding {
144     FPROUNDING_TIEEVEN,
145     FPROUNDING_POSINF,
146     FPROUNDING_NEGINF,
147     FPROUNDING_ZERO,
148     FPROUNDING_TIEAWAY,
149     FPROUNDING_ODD
150 };
151 
152 int arm_rmode_to_sf(int rmode);
153 
154 static inline void aarch64_save_sp(CPUARMState *env, int el)
155 {
156     if (env->pstate & PSTATE_SP) {
157         env->sp_el[el] = env->xregs[31];
158     } else {
159         env->sp_el[0] = env->xregs[31];
160     }
161 }
162 
163 static inline void aarch64_restore_sp(CPUARMState *env, int el)
164 {
165     if (env->pstate & PSTATE_SP) {
166         env->xregs[31] = env->sp_el[el];
167     } else {
168         env->xregs[31] = env->sp_el[0];
169     }
170 }
171 
172 static inline void update_spsel(CPUARMState *env, uint32_t imm)
173 {
174     unsigned int cur_el = arm_current_el(env);
175     /* Update PSTATE SPSel bit; this requires us to update the
176      * working stack pointer in xregs[31].
177      */
178     if (!((imm ^ env->pstate) & PSTATE_SP)) {
179         return;
180     }
181     aarch64_save_sp(env, cur_el);
182     env->pstate = deposit32(env->pstate, 0, 1, imm);
183 
184     /* We rely on illegal updates to SPsel from EL0 to get trapped
185      * at translation time.
186      */
187     assert(cur_el >= 1 && cur_el <= 3);
188     aarch64_restore_sp(env, cur_el);
189 }
190 
191 /*
192  * arm_pamax
193  * @cpu: ARMCPU
194  *
195  * Returns the implementation defined bit-width of physical addresses.
196  * The ARMv8 reference manuals refer to this as PAMax().
197  */
198 static inline unsigned int arm_pamax(ARMCPU *cpu)
199 {
200     static const unsigned int pamax_map[] = {
201         [0] = 32,
202         [1] = 36,
203         [2] = 40,
204         [3] = 42,
205         [4] = 44,
206         [5] = 48,
207     };
208     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
209 
210     /* id_aa64mmfr0 is a read-only register so values outside of the
211      * supported mappings can be considered an implementation error.  */
212     assert(parange < ARRAY_SIZE(pamax_map));
213     return pamax_map[parange];
214 }
215 
216 /* Return true if extended addresses are enabled.
217  * This is always the case if our translation regime is 64 bit,
218  * but depends on TTBCR.EAE for 32 bit.
219  */
220 static inline bool extended_addresses_enabled(CPUARMState *env)
221 {
222     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
223     return arm_el_is_aa64(env, 1) ||
224            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
225 }
226 
227 /* Valid Syndrome Register EC field values */
228 enum arm_exception_class {
229     EC_UNCATEGORIZED          = 0x00,
230     EC_WFX_TRAP               = 0x01,
231     EC_CP15RTTRAP             = 0x03,
232     EC_CP15RRTTRAP            = 0x04,
233     EC_CP14RTTRAP             = 0x05,
234     EC_CP14DTTRAP             = 0x06,
235     EC_ADVSIMDFPACCESSTRAP    = 0x07,
236     EC_FPIDTRAP               = 0x08,
237     EC_CP14RRTTRAP            = 0x0c,
238     EC_ILLEGALSTATE           = 0x0e,
239     EC_AA32_SVC               = 0x11,
240     EC_AA32_HVC               = 0x12,
241     EC_AA32_SMC               = 0x13,
242     EC_AA64_SVC               = 0x15,
243     EC_AA64_HVC               = 0x16,
244     EC_AA64_SMC               = 0x17,
245     EC_SYSTEMREGISTERTRAP     = 0x18,
246     EC_INSNABORT              = 0x20,
247     EC_INSNABORT_SAME_EL      = 0x21,
248     EC_PCALIGNMENT            = 0x22,
249     EC_DATAABORT              = 0x24,
250     EC_DATAABORT_SAME_EL      = 0x25,
251     EC_SPALIGNMENT            = 0x26,
252     EC_AA32_FPTRAP            = 0x28,
253     EC_AA64_FPTRAP            = 0x2c,
254     EC_SERROR                 = 0x2f,
255     EC_BREAKPOINT             = 0x30,
256     EC_BREAKPOINT_SAME_EL     = 0x31,
257     EC_SOFTWARESTEP           = 0x32,
258     EC_SOFTWARESTEP_SAME_EL   = 0x33,
259     EC_WATCHPOINT             = 0x34,
260     EC_WATCHPOINT_SAME_EL     = 0x35,
261     EC_AA32_BKPT              = 0x38,
262     EC_VECTORCATCH            = 0x3a,
263     EC_AA64_BKPT              = 0x3c,
264 };
265 
266 #define ARM_EL_EC_SHIFT 26
267 #define ARM_EL_IL_SHIFT 25
268 #define ARM_EL_ISV_SHIFT 24
269 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
270 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
271 
272 /* Utility functions for constructing various kinds of syndrome value.
273  * Note that in general we follow the AArch64 syndrome values; in a
274  * few cases the value in HSR for exceptions taken to AArch32 Hyp
275  * mode differs slightly, so if we ever implemented Hyp mode then the
276  * syndrome value would need some massaging on exception entry.
277  * (One example of this is that AArch64 defaults to IL bit set for
278  * exceptions which don't specifically indicate information about the
279  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
280  */
281 static inline uint32_t syn_uncategorized(void)
282 {
283     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
284 }
285 
286 static inline uint32_t syn_aa64_svc(uint32_t imm16)
287 {
288     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
289 }
290 
291 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
292 {
293     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
294 }
295 
296 static inline uint32_t syn_aa64_smc(uint32_t imm16)
297 {
298     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
299 }
300 
301 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
302 {
303     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
304         | (is_16bit ? 0 : ARM_EL_IL);
305 }
306 
307 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
308 {
309     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
310 }
311 
312 static inline uint32_t syn_aa32_smc(void)
313 {
314     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
315 }
316 
317 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
318 {
319     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
320 }
321 
322 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
323 {
324     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
325         | (is_16bit ? 0 : ARM_EL_IL);
326 }
327 
328 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
329                                            int crn, int crm, int rt,
330                                            int isread)
331 {
332     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
333         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
334         | (crm << 1) | isread;
335 }
336 
337 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
338                                         int crn, int crm, int rt, int isread,
339                                         bool is_16bit)
340 {
341     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
342         | (is_16bit ? 0 : ARM_EL_IL)
343         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
344         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
345 }
346 
347 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
348                                         int crn, int crm, int rt, int isread,
349                                         bool is_16bit)
350 {
351     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
352         | (is_16bit ? 0 : ARM_EL_IL)
353         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
354         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
355 }
356 
357 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
358                                          int rt, int rt2, int isread,
359                                          bool is_16bit)
360 {
361     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
362         | (is_16bit ? 0 : ARM_EL_IL)
363         | (cv << 24) | (cond << 20) | (opc1 << 16)
364         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
365 }
366 
367 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
368                                          int rt, int rt2, int isread,
369                                          bool is_16bit)
370 {
371     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
372         | (is_16bit ? 0 : ARM_EL_IL)
373         | (cv << 24) | (cond << 20) | (opc1 << 16)
374         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
375 }
376 
377 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
378 {
379     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
380         | (is_16bit ? 0 : ARM_EL_IL)
381         | (cv << 24) | (cond << 20);
382 }
383 
384 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
385 {
386     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
387         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
388 }
389 
390 static inline uint32_t syn_data_abort_no_iss(int same_el,
391                                              int ea, int cm, int s1ptw,
392                                              int wnr, int fsc)
393 {
394     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
395            | ARM_EL_IL
396            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
397 }
398 
399 static inline uint32_t syn_data_abort_with_iss(int same_el,
400                                                int sas, int sse, int srt,
401                                                int sf, int ar,
402                                                int ea, int cm, int s1ptw,
403                                                int wnr, int fsc,
404                                                bool is_16bit)
405 {
406     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
407            | (is_16bit ? 0 : ARM_EL_IL)
408            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
409            | (sf << 15) | (ar << 14)
410            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
411 }
412 
413 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
414 {
415     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
416         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
417 }
418 
419 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
420 {
421     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
422         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
423 }
424 
425 static inline uint32_t syn_breakpoint(int same_el)
426 {
427     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
428         | ARM_EL_IL | 0x22;
429 }
430 
431 static inline uint32_t syn_wfx(int cv, int cond, int ti)
432 {
433     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
434            (cv << 24) | (cond << 20) | ti;
435 }
436 
437 /* Update a QEMU watchpoint based on the information the guest has set in the
438  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
439  */
440 void hw_watchpoint_update(ARMCPU *cpu, int n);
441 /* Update the QEMU watchpoints for every guest watchpoint. This does a
442  * complete delete-and-reinstate of the QEMU watchpoint list and so is
443  * suitable for use after migration or on reset.
444  */
445 void hw_watchpoint_update_all(ARMCPU *cpu);
446 /* Update a QEMU breakpoint based on the information the guest has set in the
447  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
448  */
449 void hw_breakpoint_update(ARMCPU *cpu, int n);
450 /* Update the QEMU breakpoints for every guest breakpoint. This does a
451  * complete delete-and-reinstate of the QEMU breakpoint list and so is
452  * suitable for use after migration or on reset.
453  */
454 void hw_breakpoint_update_all(ARMCPU *cpu);
455 
456 /* Callback function for checking if a watchpoint should trigger. */
457 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
458 
459 /* Adjust addresses (in BE32 mode) before testing against watchpoint
460  * addresses.
461  */
462 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
463 
464 /* Callback function for when a watchpoint or breakpoint triggers. */
465 void arm_debug_excp_handler(CPUState *cs);
466 
467 #ifdef CONFIG_USER_ONLY
468 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
469 {
470     return false;
471 }
472 #else
473 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
474 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
475 /* Actually handle a PSCI call */
476 void arm_handle_psci_call(ARMCPU *cpu);
477 #endif
478 
479 /**
480  * arm_clear_exclusive: clear the exclusive monitor
481  * @env: CPU env
482  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
483  */
484 static inline void arm_clear_exclusive(CPUARMState *env)
485 {
486     env->exclusive_addr = -1;
487 }
488 
489 /**
490  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
491  * @s2addr: Address that caused a fault at stage 2
492  * @stage2: True if we faulted at stage 2
493  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
494  * @ea: True if we should set the EA (external abort type) bit in syndrome
495  */
496 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
497 struct ARMMMUFaultInfo {
498     target_ulong s2addr;
499     bool stage2;
500     bool s1ptw;
501     bool ea;
502 };
503 
504 /* Do a page table walk and add page to TLB if possible */
505 bool arm_tlb_fill(CPUState *cpu, vaddr address,
506                   MMUAccessType access_type, int mmu_idx,
507                   uint32_t *fsr, ARMMMUFaultInfo *fi);
508 
509 /* Return true if the stage 1 translation regime is using LPAE format page
510  * tables */
511 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
512 
513 /* Raise a data fault alignment exception for the specified virtual address */
514 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
515                                  MMUAccessType access_type,
516                                  int mmu_idx, uintptr_t retaddr);
517 
518 /* arm_cpu_do_transaction_failed: handle a memory system error response
519  * (eg "no device/memory present at address") by raising an external abort
520  * exception
521  */
522 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
523                                    vaddr addr, unsigned size,
524                                    MMUAccessType access_type,
525                                    int mmu_idx, MemTxAttrs attrs,
526                                    MemTxResult response, uintptr_t retaddr);
527 
528 /* Call the EL change hook if one has been registered */
529 static inline void arm_call_el_change_hook(ARMCPU *cpu)
530 {
531     if (cpu->el_change_hook) {
532         cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
533     }
534 }
535 
536 /* Return true if this address translation regime is secure */
537 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
538 {
539     switch (mmu_idx) {
540     case ARMMMUIdx_S12NSE0:
541     case ARMMMUIdx_S12NSE1:
542     case ARMMMUIdx_S1NSE0:
543     case ARMMMUIdx_S1NSE1:
544     case ARMMMUIdx_S1E2:
545     case ARMMMUIdx_S2NS:
546     case ARMMMUIdx_MPriv:
547     case ARMMMUIdx_MNegPri:
548     case ARMMMUIdx_MUser:
549         return false;
550     case ARMMMUIdx_S1E3:
551     case ARMMMUIdx_S1SE0:
552     case ARMMMUIdx_S1SE1:
553     case ARMMMUIdx_MSPriv:
554     case ARMMMUIdx_MSNegPri:
555     case ARMMMUIdx_MSUser:
556         return true;
557     default:
558         g_assert_not_reached();
559     }
560 }
561 
562 #endif
563