xref: /openbmc/qemu/target/arm/internals.h (revision bef6a77f)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "syndrome.h"
32 #include "cpu-features.h"
33 
34 /* register banks for CPU modes */
35 #define BANK_USRSYS 0
36 #define BANK_SVC    1
37 #define BANK_ABT    2
38 #define BANK_UND    3
39 #define BANK_IRQ    4
40 #define BANK_FIQ    5
41 #define BANK_HYP    6
42 #define BANK_MON    7
43 
44 static inline int arm_env_mmu_index(CPUARMState *env)
45 {
46     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
47 }
48 
49 static inline bool excp_is_internal(int excp)
50 {
51     /* Return true if this exception number represents a QEMU-internal
52      * exception that will not be passed to the guest.
53      */
54     return excp == EXCP_INTERRUPT
55         || excp == EXCP_HLT
56         || excp == EXCP_DEBUG
57         || excp == EXCP_HALTED
58         || excp == EXCP_EXCEPTION_EXIT
59         || excp == EXCP_KERNEL_TRAP
60         || excp == EXCP_SEMIHOST;
61 }
62 
63 /*
64  * Default frequency for the generic timer, in Hz.
65  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
66  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
67  * which gives a 16ns tick period.
68  *
69  * We will use the back-compat value:
70  *  - for QEMU CPU types added before we standardized on 1GHz
71  *  - for versioned machine types with a version of 9.0 or earlier
72  * In any case, the machine model may override via the cntfrq property.
73  */
74 #define GTIMER_DEFAULT_HZ 1000000000
75 #define GTIMER_BACKCOMPAT_HZ 62500000
76 
77 /* Bit definitions for the v7M CONTROL register */
78 FIELD(V7M_CONTROL, NPRIV, 0, 1)
79 FIELD(V7M_CONTROL, SPSEL, 1, 1)
80 FIELD(V7M_CONTROL, FPCA, 2, 1)
81 FIELD(V7M_CONTROL, SFPA, 3, 1)
82 
83 /* Bit definitions for v7M exception return payload */
84 FIELD(V7M_EXCRET, ES, 0, 1)
85 FIELD(V7M_EXCRET, RES0, 1, 1)
86 FIELD(V7M_EXCRET, SPSEL, 2, 1)
87 FIELD(V7M_EXCRET, MODE, 3, 1)
88 FIELD(V7M_EXCRET, FTYPE, 4, 1)
89 FIELD(V7M_EXCRET, DCRS, 5, 1)
90 FIELD(V7M_EXCRET, S, 6, 1)
91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
92 
93 /* Minimum value which is a magic number for exception return */
94 #define EXC_RETURN_MIN_MAGIC 0xff000000
95 /* Minimum number which is a magic number for function or exception return
96  * when using v8M security extension
97  */
98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
99 
100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
101 FIELD(DBGWCR, E, 0, 1)
102 FIELD(DBGWCR, PAC, 1, 2)
103 FIELD(DBGWCR, LSC, 3, 2)
104 FIELD(DBGWCR, BAS, 5, 8)
105 FIELD(DBGWCR, HMC, 13, 1)
106 FIELD(DBGWCR, SSC, 14, 2)
107 FIELD(DBGWCR, LBN, 16, 4)
108 FIELD(DBGWCR, WT, 20, 1)
109 FIELD(DBGWCR, MASK, 24, 5)
110 FIELD(DBGWCR, SSCE, 29, 1)
111 
112 #define VTCR_NSW (1u << 29)
113 #define VTCR_NSA (1u << 30)
114 #define VSTCR_SW VTCR_NSW
115 #define VSTCR_SA VTCR_NSA
116 
117 /* Bit definitions for CPACR (AArch32 only) */
118 FIELD(CPACR, CP10, 20, 2)
119 FIELD(CPACR, CP11, 22, 2)
120 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
121 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
122 FIELD(CPACR, ASEDIS, 31, 1)
123 
124 /* Bit definitions for CPACR_EL1 (AArch64 only) */
125 FIELD(CPACR_EL1, ZEN, 16, 2)
126 FIELD(CPACR_EL1, FPEN, 20, 2)
127 FIELD(CPACR_EL1, SMEN, 24, 2)
128 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
129 
130 /* Bit definitions for HCPTR (AArch32 only) */
131 FIELD(HCPTR, TCP10, 10, 1)
132 FIELD(HCPTR, TCP11, 11, 1)
133 FIELD(HCPTR, TASE, 15, 1)
134 FIELD(HCPTR, TTA, 20, 1)
135 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
136 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
137 
138 /* Bit definitions for CPTR_EL2 (AArch64 only) */
139 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
140 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
141 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
142 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
143 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
144 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
145 FIELD(CPTR_EL2, TTA, 28, 1)
146 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
147 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
148 
149 /* Bit definitions for CPTR_EL3 (AArch64 only) */
150 FIELD(CPTR_EL3, EZ, 8, 1)
151 FIELD(CPTR_EL3, TFP, 10, 1)
152 FIELD(CPTR_EL3, ESM, 12, 1)
153 FIELD(CPTR_EL3, TTA, 20, 1)
154 FIELD(CPTR_EL3, TAM, 30, 1)
155 FIELD(CPTR_EL3, TCPAC, 31, 1)
156 
157 #define MDCR_MTPME    (1U << 28)
158 #define MDCR_TDCC     (1U << 27)
159 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
160 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
161 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
162 #define MDCR_EPMAD    (1U << 21)
163 #define MDCR_EDAD     (1U << 20)
164 #define MDCR_TTRF     (1U << 19)
165 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
166 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
167 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
168 #define MDCR_SDD      (1U << 16)
169 #define MDCR_SPD      (3U << 14)
170 #define MDCR_TDRA     (1U << 11)
171 #define MDCR_TDOSA    (1U << 10)
172 #define MDCR_TDA      (1U << 9)
173 #define MDCR_TDE      (1U << 8)
174 #define MDCR_HPME     (1U << 7)
175 #define MDCR_TPM      (1U << 6)
176 #define MDCR_TPMCR    (1U << 5)
177 #define MDCR_HPMN     (0x1fU)
178 
179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
181                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
182                          MDCR_STE | MDCR_SPME | MDCR_SPD)
183 
184 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
185 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
186 #define TTBCR_PD0    (1U << 4)
187 #define TTBCR_PD1    (1U << 5)
188 #define TTBCR_EPD0   (1U << 7)
189 #define TTBCR_IRGN0  (3U << 8)
190 #define TTBCR_ORGN0  (3U << 10)
191 #define TTBCR_SH0    (3U << 12)
192 #define TTBCR_T1SZ   (3U << 16)
193 #define TTBCR_A1     (1U << 22)
194 #define TTBCR_EPD1   (1U << 23)
195 #define TTBCR_IRGN1  (3U << 24)
196 #define TTBCR_ORGN1  (3U << 26)
197 #define TTBCR_SH1    (1U << 28)
198 #define TTBCR_EAE    (1U << 31)
199 
200 FIELD(VTCR, T0SZ, 0, 6)
201 FIELD(VTCR, SL0, 6, 2)
202 FIELD(VTCR, IRGN0, 8, 2)
203 FIELD(VTCR, ORGN0, 10, 2)
204 FIELD(VTCR, SH0, 12, 2)
205 FIELD(VTCR, TG0, 14, 2)
206 FIELD(VTCR, PS, 16, 3)
207 FIELD(VTCR, VS, 19, 1)
208 FIELD(VTCR, HA, 21, 1)
209 FIELD(VTCR, HD, 22, 1)
210 FIELD(VTCR, HWU59, 25, 1)
211 FIELD(VTCR, HWU60, 26, 1)
212 FIELD(VTCR, HWU61, 27, 1)
213 FIELD(VTCR, HWU62, 28, 1)
214 FIELD(VTCR, NSW, 29, 1)
215 FIELD(VTCR, NSA, 30, 1)
216 FIELD(VTCR, DS, 32, 1)
217 FIELD(VTCR, SL2, 33, 1)
218 
219 #define HCRX_ENAS0    (1ULL << 0)
220 #define HCRX_ENALS    (1ULL << 1)
221 #define HCRX_ENASR    (1ULL << 2)
222 #define HCRX_FNXS     (1ULL << 3)
223 #define HCRX_FGTNXS   (1ULL << 4)
224 #define HCRX_SMPME    (1ULL << 5)
225 #define HCRX_TALLINT  (1ULL << 6)
226 #define HCRX_VINMI    (1ULL << 7)
227 #define HCRX_VFNMI    (1ULL << 8)
228 #define HCRX_CMOW     (1ULL << 9)
229 #define HCRX_MCE2     (1ULL << 10)
230 #define HCRX_MSCEN    (1ULL << 11)
231 
232 #define HPFAR_NS      (1ULL << 63)
233 
234 #define HSTR_TTEE (1 << 16)
235 #define HSTR_TJDBX (1 << 17)
236 
237 /*
238  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
239  * have different bit definitions, and EL1PCTEN might be
240  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
241  * disambiguate if necessary.
242  */
243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
247 FIELD(CNTHCTL, EVNTEN, 2, 1)
248 FIELD(CNTHCTL, EVNTDIR, 3, 1)
249 FIELD(CNTHCTL, EVNTI, 4, 4)
250 FIELD(CNTHCTL, EL0VTEN, 8, 1)
251 FIELD(CNTHCTL, EL0PTEN, 9, 1)
252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
253 FIELD(CNTHCTL, EL1PTEN, 11, 1)
254 FIELD(CNTHCTL, ECV, 12, 1)
255 FIELD(CNTHCTL, EL1TVT, 13, 1)
256 FIELD(CNTHCTL, EL1TVCT, 14, 1)
257 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
258 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
259 FIELD(CNTHCTL, EVNTIS, 17, 1)
260 FIELD(CNTHCTL, CNTVMASK, 18, 1)
261 FIELD(CNTHCTL, CNTPMASK, 19, 1)
262 
263 /* We use a few fake FSR values for internal purposes in M profile.
264  * M profile cores don't have A/R format FSRs, but currently our
265  * get_phys_addr() code assumes A/R profile and reports failures via
266  * an A/R format FSR value. We then translate that into the proper
267  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
268  * Mostly the FSR values we use for this are those defined for v7PMSA,
269  * since we share some of that codepath. A few kinds of fault are
270  * only for M profile and have no A/R equivalent, though, so we have
271  * to pick a value from the reserved range (which we never otherwise
272  * generate) to use for these.
273  * These values will never be visible to the guest.
274  */
275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
277 
278 /**
279  * raise_exception: Raise the specified exception.
280  * Raise a guest exception with the specified value, syndrome register
281  * and target exception level. This should be called from helper functions,
282  * and never returns because we will longjump back up to the CPU main loop.
283  */
284 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
285                                 uint32_t syndrome, uint32_t target_el);
286 
287 /*
288  * Similarly, but also use unwinding to restore cpu state.
289  */
290 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
291                                       uint32_t syndrome, uint32_t target_el,
292                                       uintptr_t ra);
293 
294 /*
295  * For AArch64, map a given EL to an index in the banked_spsr array.
296  * Note that this mapping and the AArch32 mapping defined in bank_number()
297  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
298  * mandated mapping between each other.
299  */
300 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
301 {
302     static const unsigned int map[4] = {
303         [1] = BANK_SVC, /* EL1.  */
304         [2] = BANK_HYP, /* EL2.  */
305         [3] = BANK_MON, /* EL3.  */
306     };
307     assert(el >= 1 && el <= 3);
308     return map[el];
309 }
310 
311 /* Map CPU modes onto saved register banks.  */
312 static inline int bank_number(int mode)
313 {
314     switch (mode) {
315     case ARM_CPU_MODE_USR:
316     case ARM_CPU_MODE_SYS:
317         return BANK_USRSYS;
318     case ARM_CPU_MODE_SVC:
319         return BANK_SVC;
320     case ARM_CPU_MODE_ABT:
321         return BANK_ABT;
322     case ARM_CPU_MODE_UND:
323         return BANK_UND;
324     case ARM_CPU_MODE_IRQ:
325         return BANK_IRQ;
326     case ARM_CPU_MODE_FIQ:
327         return BANK_FIQ;
328     case ARM_CPU_MODE_HYP:
329         return BANK_HYP;
330     case ARM_CPU_MODE_MON:
331         return BANK_MON;
332     }
333     g_assert_not_reached();
334 }
335 
336 /**
337  * r14_bank_number: Map CPU mode onto register bank for r14
338  *
339  * Given an AArch32 CPU mode, return the index into the saved register
340  * banks to use for the R14 (LR) in that mode. This is the same as
341  * bank_number(), except for the special case of Hyp mode, where
342  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
343  * This should be used as the index into env->banked_r14[], and
344  * bank_number() used for the index into env->banked_r13[] and
345  * env->banked_spsr[].
346  */
347 static inline int r14_bank_number(int mode)
348 {
349     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
350 }
351 
352 void arm_cpu_register(const ARMCPUInfo *info);
353 void aarch64_cpu_register(const ARMCPUInfo *info);
354 
355 void register_cp_regs_for_features(ARMCPU *cpu);
356 void init_cpreg_list(ARMCPU *cpu);
357 
358 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
359 void arm_translate_init(void);
360 
361 void arm_restore_state_to_opc(CPUState *cs,
362                               const TranslationBlock *tb,
363                               const uint64_t *data);
364 
365 #ifdef CONFIG_TCG
366 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
367 #endif /* CONFIG_TCG */
368 
369 typedef enum ARMFPRounding {
370     FPROUNDING_TIEEVEN,
371     FPROUNDING_POSINF,
372     FPROUNDING_NEGINF,
373     FPROUNDING_ZERO,
374     FPROUNDING_TIEAWAY,
375     FPROUNDING_ODD
376 } ARMFPRounding;
377 
378 extern const FloatRoundMode arm_rmode_to_sf_map[6];
379 
380 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
381 {
382     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
383     return arm_rmode_to_sf_map[rmode];
384 }
385 
386 static inline void aarch64_save_sp(CPUARMState *env, int el)
387 {
388     if (env->pstate & PSTATE_SP) {
389         env->sp_el[el] = env->xregs[31];
390     } else {
391         env->sp_el[0] = env->xregs[31];
392     }
393 }
394 
395 static inline void aarch64_restore_sp(CPUARMState *env, int el)
396 {
397     if (env->pstate & PSTATE_SP) {
398         env->xregs[31] = env->sp_el[el];
399     } else {
400         env->xregs[31] = env->sp_el[0];
401     }
402 }
403 
404 static inline void update_spsel(CPUARMState *env, uint32_t imm)
405 {
406     unsigned int cur_el = arm_current_el(env);
407     /* Update PSTATE SPSel bit; this requires us to update the
408      * working stack pointer in xregs[31].
409      */
410     if (!((imm ^ env->pstate) & PSTATE_SP)) {
411         return;
412     }
413     aarch64_save_sp(env, cur_el);
414     env->pstate = deposit32(env->pstate, 0, 1, imm);
415 
416     /* We rely on illegal updates to SPsel from EL0 to get trapped
417      * at translation time.
418      */
419     assert(cur_el >= 1 && cur_el <= 3);
420     aarch64_restore_sp(env, cur_el);
421 }
422 
423 /*
424  * arm_pamax
425  * @cpu: ARMCPU
426  *
427  * Returns the implementation defined bit-width of physical addresses.
428  * The ARMv8 reference manuals refer to this as PAMax().
429  */
430 unsigned int arm_pamax(ARMCPU *cpu);
431 
432 /* Return true if extended addresses are enabled.
433  * This is always the case if our translation regime is 64 bit,
434  * but depends on TTBCR.EAE for 32 bit.
435  */
436 static inline bool extended_addresses_enabled(CPUARMState *env)
437 {
438     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
439     if (arm_feature(env, ARM_FEATURE_PMSA) &&
440         arm_feature(env, ARM_FEATURE_V8)) {
441         return true;
442     }
443     return arm_el_is_aa64(env, 1) ||
444            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
445 }
446 
447 /* Update a QEMU watchpoint based on the information the guest has set in the
448  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
449  */
450 void hw_watchpoint_update(ARMCPU *cpu, int n);
451 /* Update the QEMU watchpoints for every guest watchpoint. This does a
452  * complete delete-and-reinstate of the QEMU watchpoint list and so is
453  * suitable for use after migration or on reset.
454  */
455 void hw_watchpoint_update_all(ARMCPU *cpu);
456 /* Update a QEMU breakpoint based on the information the guest has set in the
457  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
458  */
459 void hw_breakpoint_update(ARMCPU *cpu, int n);
460 /* Update the QEMU breakpoints for every guest breakpoint. This does a
461  * complete delete-and-reinstate of the QEMU breakpoint list and so is
462  * suitable for use after migration or on reset.
463  */
464 void hw_breakpoint_update_all(ARMCPU *cpu);
465 
466 /* Callback function for checking if a breakpoint should trigger. */
467 bool arm_debug_check_breakpoint(CPUState *cs);
468 
469 /* Callback function for checking if a watchpoint should trigger. */
470 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
471 
472 /* Adjust addresses (in BE32 mode) before testing against watchpoint
473  * addresses.
474  */
475 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
476 
477 /* Callback function for when a watchpoint or breakpoint triggers. */
478 void arm_debug_excp_handler(CPUState *cs);
479 
480 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
481 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
482 {
483     return false;
484 }
485 static inline void arm_handle_psci_call(ARMCPU *cpu)
486 {
487     g_assert_not_reached();
488 }
489 #else
490 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
491 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
492 /* Actually handle a PSCI call */
493 void arm_handle_psci_call(ARMCPU *cpu);
494 #endif
495 
496 /**
497  * arm_clear_exclusive: clear the exclusive monitor
498  * @env: CPU env
499  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
500  */
501 static inline void arm_clear_exclusive(CPUARMState *env)
502 {
503     env->exclusive_addr = -1;
504 }
505 
506 /**
507  * ARMFaultType: type of an ARM MMU fault
508  * This corresponds to the v8A pseudocode's Fault enumeration,
509  * with extensions for QEMU internal conditions.
510  */
511 typedef enum ARMFaultType {
512     ARMFault_None,
513     ARMFault_AccessFlag,
514     ARMFault_Alignment,
515     ARMFault_Background,
516     ARMFault_Domain,
517     ARMFault_Permission,
518     ARMFault_Translation,
519     ARMFault_AddressSize,
520     ARMFault_SyncExternal,
521     ARMFault_SyncExternalOnWalk,
522     ARMFault_SyncParity,
523     ARMFault_SyncParityOnWalk,
524     ARMFault_AsyncParity,
525     ARMFault_AsyncExternal,
526     ARMFault_Debug,
527     ARMFault_TLBConflict,
528     ARMFault_UnsuppAtomicUpdate,
529     ARMFault_Lockdown,
530     ARMFault_Exclusive,
531     ARMFault_ICacheMaint,
532     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
533     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
534     ARMFault_GPCFOnWalk,
535     ARMFault_GPCFOnOutput,
536 } ARMFaultType;
537 
538 typedef enum ARMGPCF {
539     GPCF_None,
540     GPCF_AddressSize,
541     GPCF_Walk,
542     GPCF_EABT,
543     GPCF_Fail,
544 } ARMGPCF;
545 
546 /**
547  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
548  * @type: Type of fault
549  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
550  * @level: Table walk level (for translation, access flag and permission faults)
551  * @domain: Domain of the fault address (for non-LPAE CPUs only)
552  * @s2addr: Address that caused a fault at stage 2
553  * @paddr: physical address that caused a fault for gpc
554  * @paddr_space: physical address space that caused a fault for gpc
555  * @stage2: True if we faulted at stage 2
556  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
557  * @s1ns: True if we faulted on a non-secure IPA while in secure state
558  * @ea: True if we should set the EA (external abort type) bit in syndrome
559  */
560 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
561 struct ARMMMUFaultInfo {
562     ARMFaultType type;
563     ARMGPCF gpcf;
564     target_ulong s2addr;
565     target_ulong paddr;
566     ARMSecuritySpace paddr_space;
567     int level;
568     int domain;
569     bool stage2;
570     bool s1ptw;
571     bool s1ns;
572     bool ea;
573 };
574 
575 /**
576  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
577  * Compare pseudocode EncodeSDFSC(), though unlike that function
578  * we set up a whole FSR-format code including domain field and
579  * putting the high bit of the FSC into bit 10.
580  */
581 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
582 {
583     uint32_t fsc;
584 
585     switch (fi->type) {
586     case ARMFault_None:
587         return 0;
588     case ARMFault_AccessFlag:
589         fsc = fi->level == 1 ? 0x3 : 0x6;
590         break;
591     case ARMFault_Alignment:
592         fsc = 0x1;
593         break;
594     case ARMFault_Permission:
595         fsc = fi->level == 1 ? 0xd : 0xf;
596         break;
597     case ARMFault_Domain:
598         fsc = fi->level == 1 ? 0x9 : 0xb;
599         break;
600     case ARMFault_Translation:
601         fsc = fi->level == 1 ? 0x5 : 0x7;
602         break;
603     case ARMFault_SyncExternal:
604         fsc = 0x8 | (fi->ea << 12);
605         break;
606     case ARMFault_SyncExternalOnWalk:
607         fsc = fi->level == 1 ? 0xc : 0xe;
608         fsc |= (fi->ea << 12);
609         break;
610     case ARMFault_SyncParity:
611         fsc = 0x409;
612         break;
613     case ARMFault_SyncParityOnWalk:
614         fsc = fi->level == 1 ? 0x40c : 0x40e;
615         break;
616     case ARMFault_AsyncParity:
617         fsc = 0x408;
618         break;
619     case ARMFault_AsyncExternal:
620         fsc = 0x406 | (fi->ea << 12);
621         break;
622     case ARMFault_Debug:
623         fsc = 0x2;
624         break;
625     case ARMFault_TLBConflict:
626         fsc = 0x400;
627         break;
628     case ARMFault_Lockdown:
629         fsc = 0x404;
630         break;
631     case ARMFault_Exclusive:
632         fsc = 0x405;
633         break;
634     case ARMFault_ICacheMaint:
635         fsc = 0x4;
636         break;
637     case ARMFault_Background:
638         fsc = 0x0;
639         break;
640     case ARMFault_QEMU_NSCExec:
641         fsc = M_FAKE_FSR_NSC_EXEC;
642         break;
643     case ARMFault_QEMU_SFault:
644         fsc = M_FAKE_FSR_SFAULT;
645         break;
646     default:
647         /* Other faults can't occur in a context that requires a
648          * short-format status code.
649          */
650         g_assert_not_reached();
651     }
652 
653     fsc |= (fi->domain << 4);
654     return fsc;
655 }
656 
657 /**
658  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
659  * Compare pseudocode EncodeLDFSC(), though unlike that function
660  * we fill in also the LPAE bit 9 of a DFSR format.
661  */
662 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
663 {
664     uint32_t fsc;
665 
666     switch (fi->type) {
667     case ARMFault_None:
668         return 0;
669     case ARMFault_AddressSize:
670         assert(fi->level >= -1 && fi->level <= 3);
671         if (fi->level < 0) {
672             fsc = 0b101001;
673         } else {
674             fsc = fi->level;
675         }
676         break;
677     case ARMFault_AccessFlag:
678         assert(fi->level >= 0 && fi->level <= 3);
679         fsc = 0b001000 | fi->level;
680         break;
681     case ARMFault_Permission:
682         assert(fi->level >= 0 && fi->level <= 3);
683         fsc = 0b001100 | fi->level;
684         break;
685     case ARMFault_Translation:
686         assert(fi->level >= -1 && fi->level <= 3);
687         if (fi->level < 0) {
688             fsc = 0b101011;
689         } else {
690             fsc = 0b000100 | fi->level;
691         }
692         break;
693     case ARMFault_SyncExternal:
694         fsc = 0x10 | (fi->ea << 12);
695         break;
696     case ARMFault_SyncExternalOnWalk:
697         assert(fi->level >= -1 && fi->level <= 3);
698         if (fi->level < 0) {
699             fsc = 0b010011;
700         } else {
701             fsc = 0b010100 | fi->level;
702         }
703         fsc |= fi->ea << 12;
704         break;
705     case ARMFault_SyncParity:
706         fsc = 0x18;
707         break;
708     case ARMFault_SyncParityOnWalk:
709         assert(fi->level >= -1 && fi->level <= 3);
710         if (fi->level < 0) {
711             fsc = 0b011011;
712         } else {
713             fsc = 0b011100 | fi->level;
714         }
715         break;
716     case ARMFault_AsyncParity:
717         fsc = 0x19;
718         break;
719     case ARMFault_AsyncExternal:
720         fsc = 0x11 | (fi->ea << 12);
721         break;
722     case ARMFault_Alignment:
723         fsc = 0x21;
724         break;
725     case ARMFault_Debug:
726         fsc = 0x22;
727         break;
728     case ARMFault_TLBConflict:
729         fsc = 0x30;
730         break;
731     case ARMFault_UnsuppAtomicUpdate:
732         fsc = 0x31;
733         break;
734     case ARMFault_Lockdown:
735         fsc = 0x34;
736         break;
737     case ARMFault_Exclusive:
738         fsc = 0x35;
739         break;
740     case ARMFault_GPCFOnWalk:
741         assert(fi->level >= -1 && fi->level <= 3);
742         if (fi->level < 0) {
743             fsc = 0b100011;
744         } else {
745             fsc = 0b100100 | fi->level;
746         }
747         break;
748     case ARMFault_GPCFOnOutput:
749         fsc = 0b101000;
750         break;
751     default:
752         /* Other faults can't occur in a context that requires a
753          * long-format status code.
754          */
755         g_assert_not_reached();
756     }
757 
758     fsc |= 1 << 9;
759     return fsc;
760 }
761 
762 static inline bool arm_extabort_type(MemTxResult result)
763 {
764     /* The EA bit in syndromes and fault status registers is an
765      * IMPDEF classification of external aborts. ARM implementations
766      * usually use this to indicate AXI bus Decode error (0) or
767      * Slave error (1); in QEMU we follow that.
768      */
769     return result != MEMTX_DECODE_ERROR;
770 }
771 
772 #ifdef CONFIG_USER_ONLY
773 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
774                             MMUAccessType access_type,
775                             bool maperr, uintptr_t ra);
776 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
777                            MMUAccessType access_type, uintptr_t ra);
778 #else
779 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
780                       MMUAccessType access_type, int mmu_idx,
781                       bool probe, uintptr_t retaddr);
782 #endif
783 
784 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
785 {
786     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
787 }
788 
789 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
790 {
791     if (arm_feature(env, ARM_FEATURE_M)) {
792         return mmu_idx | ARM_MMU_IDX_M;
793     } else {
794         return mmu_idx | ARM_MMU_IDX_A;
795     }
796 }
797 
798 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
799 {
800     /* AArch64 is always a-profile. */
801     return mmu_idx | ARM_MMU_IDX_A;
802 }
803 
804 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
805 
806 /* Return the MMU index for a v7M CPU in the specified security state */
807 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
808 
809 /*
810  * Return true if the stage 1 translation regime is using LPAE
811  * format page tables
812  */
813 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
814 
815 /* Raise a data fault alignment exception for the specified virtual address */
816 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
817                                             MMUAccessType access_type,
818                                             int mmu_idx, uintptr_t retaddr);
819 
820 #ifndef CONFIG_USER_ONLY
821 /* arm_cpu_do_transaction_failed: handle a memory system error response
822  * (eg "no device/memory present at address") by raising an external abort
823  * exception
824  */
825 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
826                                    vaddr addr, unsigned size,
827                                    MMUAccessType access_type,
828                                    int mmu_idx, MemTxAttrs attrs,
829                                    MemTxResult response, uintptr_t retaddr);
830 #endif
831 
832 /* Call any registered EL change hooks */
833 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
834 {
835     ARMELChangeHook *hook, *next;
836     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
837         hook->hook(cpu, hook->opaque);
838     }
839 }
840 static inline void arm_call_el_change_hook(ARMCPU *cpu)
841 {
842     ARMELChangeHook *hook, *next;
843     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
844         hook->hook(cpu, hook->opaque);
845     }
846 }
847 
848 /* Return true if this address translation regime has two ranges.  */
849 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
850 {
851     switch (mmu_idx) {
852     case ARMMMUIdx_Stage1_E0:
853     case ARMMMUIdx_Stage1_E1:
854     case ARMMMUIdx_Stage1_E1_PAN:
855     case ARMMMUIdx_E10_0:
856     case ARMMMUIdx_E10_1:
857     case ARMMMUIdx_E10_1_PAN:
858     case ARMMMUIdx_E20_0:
859     case ARMMMUIdx_E20_2:
860     case ARMMMUIdx_E20_2_PAN:
861         return true;
862     default:
863         return false;
864     }
865 }
866 
867 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
868 {
869     switch (mmu_idx) {
870     case ARMMMUIdx_Stage1_E1_PAN:
871     case ARMMMUIdx_E10_1_PAN:
872     case ARMMMUIdx_E20_2_PAN:
873         return true;
874     default:
875         return false;
876     }
877 }
878 
879 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
880 {
881     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
882 }
883 
884 /* Return the exception level which controls this address translation regime */
885 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
886 {
887     switch (mmu_idx) {
888     case ARMMMUIdx_E20_0:
889     case ARMMMUIdx_E20_2:
890     case ARMMMUIdx_E20_2_PAN:
891     case ARMMMUIdx_Stage2:
892     case ARMMMUIdx_Stage2_S:
893     case ARMMMUIdx_E2:
894         return 2;
895     case ARMMMUIdx_E3:
896         return 3;
897     case ARMMMUIdx_E10_0:
898     case ARMMMUIdx_Stage1_E0:
899         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
900     case ARMMMUIdx_Stage1_E1:
901     case ARMMMUIdx_Stage1_E1_PAN:
902     case ARMMMUIdx_E10_1:
903     case ARMMMUIdx_E10_1_PAN:
904     case ARMMMUIdx_MPrivNegPri:
905     case ARMMMUIdx_MUserNegPri:
906     case ARMMMUIdx_MPriv:
907     case ARMMMUIdx_MUser:
908     case ARMMMUIdx_MSPrivNegPri:
909     case ARMMMUIdx_MSUserNegPri:
910     case ARMMMUIdx_MSPriv:
911     case ARMMMUIdx_MSUser:
912         return 1;
913     default:
914         g_assert_not_reached();
915     }
916 }
917 
918 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
919 {
920     switch (mmu_idx) {
921     case ARMMMUIdx_E20_0:
922     case ARMMMUIdx_Stage1_E0:
923     case ARMMMUIdx_MUser:
924     case ARMMMUIdx_MSUser:
925     case ARMMMUIdx_MUserNegPri:
926     case ARMMMUIdx_MSUserNegPri:
927         return true;
928     default:
929         return false;
930     case ARMMMUIdx_E10_0:
931     case ARMMMUIdx_E10_1:
932     case ARMMMUIdx_E10_1_PAN:
933         g_assert_not_reached();
934     }
935 }
936 
937 /* Return the SCTLR value which controls this address translation regime */
938 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
939 {
940     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
941 }
942 
943 /*
944  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
945  * and the Non-Secure stage 2 translation regimes (and hence which are
946  * not present in VSTCR_EL2).
947  */
948 #define VTCR_SHARED_FIELD_MASK \
949     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
950      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
951      R_VTCR_DS_MASK)
952 
953 /* Return the value of the TCR controlling this translation regime */
954 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
955 {
956     if (mmu_idx == ARMMMUIdx_Stage2) {
957         return env->cp15.vtcr_el2;
958     }
959     if (mmu_idx == ARMMMUIdx_Stage2_S) {
960         /*
961          * Secure stage 2 shares fields from VTCR_EL2. We merge those
962          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
963          * value so the callers don't need to special case this.
964          *
965          * If a future architecture change defines bits in VSTCR_EL2 that
966          * overlap with these VTCR_EL2 fields we may need to revisit this.
967          */
968         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
969         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
970         return v;
971     }
972     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
973 }
974 
975 /* Return true if the translation regime is using LPAE format page tables */
976 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
977 {
978     int el = regime_el(env, mmu_idx);
979     if (el == 2 || arm_el_is_aa64(env, el)) {
980         return true;
981     }
982     if (arm_feature(env, ARM_FEATURE_PMSA) &&
983         arm_feature(env, ARM_FEATURE_V8)) {
984         return true;
985     }
986     if (arm_feature(env, ARM_FEATURE_LPAE)
987         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
988         return true;
989     }
990     return false;
991 }
992 
993 /**
994  * arm_num_brps: Return number of implemented breakpoints.
995  * Note that the ID register BRPS field is "number of bps - 1",
996  * and we return the actual number of breakpoints.
997  */
998 static inline int arm_num_brps(ARMCPU *cpu)
999 {
1000     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1001         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1002     } else {
1003         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1004     }
1005 }
1006 
1007 /**
1008  * arm_num_wrps: Return number of implemented watchpoints.
1009  * Note that the ID register WRPS field is "number of wps - 1",
1010  * and we return the actual number of watchpoints.
1011  */
1012 static inline int arm_num_wrps(ARMCPU *cpu)
1013 {
1014     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1015         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1016     } else {
1017         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1018     }
1019 }
1020 
1021 /**
1022  * arm_num_ctx_cmps: Return number of implemented context comparators.
1023  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1024  * and we return the actual number of comparators.
1025  */
1026 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1027 {
1028     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1029         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1030     } else {
1031         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1032     }
1033 }
1034 
1035 /**
1036  * v7m_using_psp: Return true if using process stack pointer
1037  * Return true if the CPU is currently using the process stack
1038  * pointer, or false if it is using the main stack pointer.
1039  */
1040 static inline bool v7m_using_psp(CPUARMState *env)
1041 {
1042     /* Handler mode always uses the main stack; for thread mode
1043      * the CONTROL.SPSEL bit determines the answer.
1044      * Note that in v7M it is not possible to be in Handler mode with
1045      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1046      */
1047     return !arm_v7m_is_handler_mode(env) &&
1048         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1049 }
1050 
1051 /**
1052  * v7m_sp_limit: Return SP limit for current CPU state
1053  * Return the SP limit value for the current CPU security state
1054  * and stack pointer.
1055  */
1056 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1057 {
1058     if (v7m_using_psp(env)) {
1059         return env->v7m.psplim[env->v7m.secure];
1060     } else {
1061         return env->v7m.msplim[env->v7m.secure];
1062     }
1063 }
1064 
1065 /**
1066  * v7m_cpacr_pass:
1067  * Return true if the v7M CPACR permits access to the FPU for the specified
1068  * security state and privilege level.
1069  */
1070 static inline bool v7m_cpacr_pass(CPUARMState *env,
1071                                   bool is_secure, bool is_priv)
1072 {
1073     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1074     case 0:
1075     case 2: /* UNPREDICTABLE: we treat like 0 */
1076         return false;
1077     case 1:
1078         return is_priv;
1079     case 3:
1080         return true;
1081     default:
1082         g_assert_not_reached();
1083     }
1084 }
1085 
1086 /**
1087  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1088  * @psr: Program Status Register indicating CPU mode
1089  *
1090  * Returns, for debug logging purposes, a printable representation
1091  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1092  * the low bits of the specified PSR.
1093  */
1094 static inline const char *aarch32_mode_name(uint32_t psr)
1095 {
1096     static const char cpu_mode_names[16][4] = {
1097         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1098         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1099     };
1100 
1101     return cpu_mode_names[psr & 0xf];
1102 }
1103 
1104 /**
1105  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1106  *
1107  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1108  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1109  * Must be called with the BQL held.
1110  */
1111 void arm_cpu_update_virq(ARMCPU *cpu);
1112 
1113 /**
1114  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1115  *
1116  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1117  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1118  * Must be called with the BQL held.
1119  */
1120 void arm_cpu_update_vfiq(ARMCPU *cpu);
1121 
1122 /**
1123  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1124  *
1125  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1126  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1127  * Must be called with the BQL held.
1128  */
1129 void arm_cpu_update_vinmi(ARMCPU *cpu);
1130 
1131 /**
1132  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1133  *
1134  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1135  * a change to the HCRX_EL2.VFNMI.
1136  * Must be called with the BQL held.
1137  */
1138 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1139 
1140 /**
1141  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1142  *
1143  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1144  * following a change to the HCR_EL2.VSE bit.
1145  */
1146 void arm_cpu_update_vserr(ARMCPU *cpu);
1147 
1148 /**
1149  * arm_mmu_idx_el:
1150  * @env: The cpu environment
1151  * @el: The EL to use.
1152  *
1153  * Return the full ARMMMUIdx for the translation regime for EL.
1154  */
1155 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1156 
1157 /**
1158  * arm_mmu_idx:
1159  * @env: The cpu environment
1160  *
1161  * Return the full ARMMMUIdx for the current translation regime.
1162  */
1163 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1164 
1165 /**
1166  * arm_stage1_mmu_idx:
1167  * @env: The cpu environment
1168  *
1169  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1170  */
1171 #ifdef CONFIG_USER_ONLY
1172 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1173 {
1174     return ARMMMUIdx_Stage1_E0;
1175 }
1176 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1177 {
1178     return ARMMMUIdx_Stage1_E0;
1179 }
1180 #else
1181 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1182 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1183 #endif
1184 
1185 /**
1186  * arm_mmu_idx_is_stage1_of_2:
1187  * @mmu_idx: The ARMMMUIdx to test
1188  *
1189  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1190  * first stage of a two stage regime.
1191  */
1192 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1193 {
1194     switch (mmu_idx) {
1195     case ARMMMUIdx_Stage1_E0:
1196     case ARMMMUIdx_Stage1_E1:
1197     case ARMMMUIdx_Stage1_E1_PAN:
1198         return true;
1199     default:
1200         return false;
1201     }
1202 }
1203 
1204 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1205                                                const ARMISARegisters *id)
1206 {
1207     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1208 
1209     if ((features >> ARM_FEATURE_V4T) & 1) {
1210         valid |= CPSR_T;
1211     }
1212     if ((features >> ARM_FEATURE_V5) & 1) {
1213         valid |= CPSR_Q; /* V5TE in reality*/
1214     }
1215     if ((features >> ARM_FEATURE_V6) & 1) {
1216         valid |= CPSR_E | CPSR_GE;
1217     }
1218     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1219         valid |= CPSR_IT;
1220     }
1221     if (isar_feature_aa32_jazelle(id)) {
1222         valid |= CPSR_J;
1223     }
1224     if (isar_feature_aa32_pan(id)) {
1225         valid |= CPSR_PAN;
1226     }
1227     if (isar_feature_aa32_dit(id)) {
1228         valid |= CPSR_DIT;
1229     }
1230     if (isar_feature_aa32_ssbs(id)) {
1231         valid |= CPSR_SSBS;
1232     }
1233 
1234     return valid;
1235 }
1236 
1237 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1238 {
1239     uint32_t valid;
1240 
1241     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1242     if (isar_feature_aa64_bti(id)) {
1243         valid |= PSTATE_BTYPE;
1244     }
1245     if (isar_feature_aa64_pan(id)) {
1246         valid |= PSTATE_PAN;
1247     }
1248     if (isar_feature_aa64_uao(id)) {
1249         valid |= PSTATE_UAO;
1250     }
1251     if (isar_feature_aa64_dit(id)) {
1252         valid |= PSTATE_DIT;
1253     }
1254     if (isar_feature_aa64_ssbs(id)) {
1255         valid |= PSTATE_SSBS;
1256     }
1257     if (isar_feature_aa64_mte(id)) {
1258         valid |= PSTATE_TCO;
1259     }
1260     if (isar_feature_aa64_nmi(id)) {
1261         valid |= PSTATE_ALLINT;
1262     }
1263 
1264     return valid;
1265 }
1266 
1267 /* Granule size (i.e. page size) */
1268 typedef enum ARMGranuleSize {
1269     /* Same order as TG0 encoding */
1270     Gran4K,
1271     Gran64K,
1272     Gran16K,
1273     GranInvalid,
1274 } ARMGranuleSize;
1275 
1276 /**
1277  * arm_granule_bits: Return address size of the granule in bits
1278  *
1279  * Return the address size of the granule in bits. This corresponds
1280  * to the pseudocode TGxGranuleBits().
1281  */
1282 static inline int arm_granule_bits(ARMGranuleSize gran)
1283 {
1284     switch (gran) {
1285     case Gran64K:
1286         return 16;
1287     case Gran16K:
1288         return 14;
1289     case Gran4K:
1290         return 12;
1291     default:
1292         g_assert_not_reached();
1293     }
1294 }
1295 
1296 /*
1297  * Parameters of a given virtual address, as extracted from the
1298  * translation control register (TCR) for a given regime.
1299  */
1300 typedef struct ARMVAParameters {
1301     unsigned tsz    : 8;
1302     unsigned ps     : 3;
1303     unsigned sh     : 2;
1304     unsigned select : 1;
1305     bool tbi        : 1;
1306     bool epd        : 1;
1307     bool hpd        : 1;
1308     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1309     bool ds         : 1;
1310     bool ha         : 1;
1311     bool hd         : 1;
1312     ARMGranuleSize gran : 2;
1313 } ARMVAParameters;
1314 
1315 /**
1316  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1317  * @env: CPU
1318  * @va: virtual address to look up
1319  * @mmu_idx: determines translation regime to use
1320  * @data: true if this is a data access
1321  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1322  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1323  */
1324 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1325                                    ARMMMUIdx mmu_idx, bool data,
1326                                    bool el1_is_aa32);
1327 
1328 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1329 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1330 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1331 
1332 /* Determine if allocation tags are available.  */
1333 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1334                                                  uint64_t sctlr)
1335 {
1336     if (el < 3
1337         && arm_feature(env, ARM_FEATURE_EL3)
1338         && !(env->cp15.scr_el3 & SCR_ATA)) {
1339         return false;
1340     }
1341     if (el < 2 && arm_is_el2_enabled(env)) {
1342         uint64_t hcr = arm_hcr_el2_eff(env);
1343         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1344             return false;
1345         }
1346     }
1347     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1348     return sctlr != 0;
1349 }
1350 
1351 #ifndef CONFIG_USER_ONLY
1352 
1353 /* Security attributes for an address, as returned by v8m_security_lookup. */
1354 typedef struct V8M_SAttributes {
1355     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1356     bool ns;
1357     bool nsc;
1358     uint8_t sregion;
1359     bool srvalid;
1360     uint8_t iregion;
1361     bool irvalid;
1362 } V8M_SAttributes;
1363 
1364 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1365                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1366                          bool secure, V8M_SAttributes *sattrs);
1367 
1368 /* Cacheability and shareability attributes for a memory access */
1369 typedef struct ARMCacheAttrs {
1370     /*
1371      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1372      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1373      */
1374     unsigned int attrs:8;
1375     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1376     bool is_s2_format:1;
1377 } ARMCacheAttrs;
1378 
1379 /* Fields that are valid upon success. */
1380 typedef struct GetPhysAddrResult {
1381     CPUTLBEntryFull f;
1382     ARMCacheAttrs cacheattrs;
1383 } GetPhysAddrResult;
1384 
1385 /**
1386  * get_phys_addr: get the physical address for a virtual address
1387  * @env: CPUARMState
1388  * @address: virtual address to get physical address for
1389  * @access_type: 0 for read, 1 for write, 2 for execute
1390  * @mmu_idx: MMU index indicating required translation regime
1391  * @result: set on translation success.
1392  * @fi: set to fault info if the translation fails
1393  *
1394  * Find the physical address corresponding to the given virtual address,
1395  * by doing a translation table walk on MMU based systems or using the
1396  * MPU state on MPU based systems.
1397  *
1398  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1399  * prot and page_size may not be filled in, and the populated fsr value provides
1400  * information on why the translation aborted, in the format of a
1401  * DFSR/IFSR fault register, with the following caveats:
1402  *  * we honour the short vs long DFSR format differences.
1403  *  * the WnR bit is never set (the caller must do this).
1404  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1405  *    value.
1406  */
1407 bool get_phys_addr(CPUARMState *env, target_ulong address,
1408                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1409                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1410     __attribute__((nonnull));
1411 
1412 /**
1413  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1414  *                                 address
1415  * @env: CPUARMState
1416  * @address: virtual address to get physical address for
1417  * @access_type: 0 for read, 1 for write, 2 for execute
1418  * @mmu_idx: MMU index indicating required translation regime
1419  * @space: security space for the access
1420  * @result: set on translation success.
1421  * @fi: set to fault info if the translation fails
1422  *
1423  * Similar to get_phys_addr, but use the given security space and don't perform
1424  * a Granule Protection Check on the resulting address.
1425  */
1426 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1427                                     MMUAccessType access_type,
1428                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1429                                     GetPhysAddrResult *result,
1430                                     ARMMMUFaultInfo *fi)
1431     __attribute__((nonnull));
1432 
1433 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1434                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1435                        bool is_secure, GetPhysAddrResult *result,
1436                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1437 
1438 void arm_log_exception(CPUState *cs);
1439 
1440 #endif /* !CONFIG_USER_ONLY */
1441 
1442 /*
1443  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1444  * the same simd_desc() encoding due to restrictions on size.
1445  * Use these instead.
1446  */
1447 FIELD(PREDDESC, OPRSZ, 0, 6)
1448 FIELD(PREDDESC, ESZ, 6, 2)
1449 FIELD(PREDDESC, DATA, 8, 24)
1450 
1451 /*
1452  * The SVE simd_data field, for memory ops, contains either
1453  * rd (5 bits) or a shift count (2 bits).
1454  */
1455 #define SVE_MTEDESC_SHIFT 5
1456 
1457 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1458 FIELD(MTEDESC, MIDX,  0, 4)
1459 FIELD(MTEDESC, TBI,   4, 2)
1460 FIELD(MTEDESC, TCMA,  6, 2)
1461 FIELD(MTEDESC, WRITE, 8, 1)
1462 FIELD(MTEDESC, ALIGN, 9, 3)
1463 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1464 
1465 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1466 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1467 
1468 /**
1469  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1470  * @env: CPU env
1471  * @ptr: start address of memory region (dirty pointer)
1472  * @size: length of region (guaranteed not to cross a page boundary)
1473  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1474  * Returns: the size of the region that can be copied without hitting
1475  *          an MTE tag failure
1476  *
1477  * Note that we assume that the caller has already checked the TBI
1478  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1479  * required.
1480  */
1481 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1482                         uint32_t desc);
1483 
1484 /**
1485  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1486  *                     operation going in the reverse direction
1487  * @env: CPU env
1488  * @ptr: *end* address of memory region (dirty pointer)
1489  * @size: length of region (guaranteed not to cross a page boundary)
1490  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1491  * Returns: the size of the region that can be copied without hitting
1492  *          an MTE tag failure
1493  *
1494  * Note that we assume that the caller has already checked the TBI
1495  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1496  * required.
1497  */
1498 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1499                             uint32_t desc);
1500 
1501 /**
1502  * mte_check_fail: Record an MTE tag check failure
1503  * @env: CPU env
1504  * @desc: MTEDESC descriptor word
1505  * @dirty_ptr: Failing dirty address
1506  * @ra: TCG retaddr
1507  *
1508  * This may never return (if the MTE tag checks are configured to fault).
1509  */
1510 void mte_check_fail(CPUARMState *env, uint32_t desc,
1511                     uint64_t dirty_ptr, uintptr_t ra);
1512 
1513 /**
1514  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1515  * @env: CPU env
1516  * @dirty_ptr: Start address of memory region (dirty pointer)
1517  * @size: length of region (guaranteed not to cross page boundary)
1518  * @desc: MTEDESC descriptor word
1519  */
1520 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1521                        uint32_t desc);
1522 
1523 static inline int allocation_tag_from_addr(uint64_t ptr)
1524 {
1525     return extract64(ptr, 56, 4);
1526 }
1527 
1528 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1529 {
1530     return deposit64(ptr, 56, 4, rtag);
1531 }
1532 
1533 /* Return true if tbi bits mean that the access is checked.  */
1534 static inline bool tbi_check(uint32_t desc, int bit55)
1535 {
1536     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1537 }
1538 
1539 /* Return true if tcma bits mean that the access is unchecked.  */
1540 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1541 {
1542     /*
1543      * We had extracted bit55 and ptr_tag for other reasons, so fold
1544      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1545      */
1546     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1547     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1548     return tcma && match;
1549 }
1550 
1551 /*
1552  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1553  * for the tag to be present in the FAR_ELx register.  But for user-only
1554  * mode, we do not have a TLB with which to implement this, so we must
1555  * remove the top byte.
1556  */
1557 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1558 {
1559 #ifdef CONFIG_USER_ONLY
1560     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1561     ptr &= sextract64(ptr, 0, 56);
1562 #endif
1563     return ptr;
1564 }
1565 
1566 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1567 {
1568 #ifdef CONFIG_USER_ONLY
1569     int64_t clean_ptr = sextract64(ptr, 0, 56);
1570     if (tbi_check(desc, clean_ptr < 0)) {
1571         ptr = clean_ptr;
1572     }
1573 #endif
1574     return ptr;
1575 }
1576 
1577 /* Values for M-profile PSR.ECI for MVE insns */
1578 enum MVEECIState {
1579     ECI_NONE = 0, /* No completed beats */
1580     ECI_A0 = 1, /* Completed: A0 */
1581     ECI_A0A1 = 2, /* Completed: A0, A1 */
1582     /* 3 is reserved */
1583     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1584     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1585     /* All other values reserved */
1586 };
1587 
1588 /* Definitions for the PMU registers */
1589 #define PMCRN_MASK  0xf800
1590 #define PMCRN_SHIFT 11
1591 #define PMCRLP  0x80
1592 #define PMCRLC  0x40
1593 #define PMCRDP  0x20
1594 #define PMCRX   0x10
1595 #define PMCRD   0x8
1596 #define PMCRC   0x4
1597 #define PMCRP   0x2
1598 #define PMCRE   0x1
1599 /*
1600  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1601  * which can be written as 1 to trigger behaviour but which stay RAZ).
1602  */
1603 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1604 
1605 #define PMXEVTYPER_P          0x80000000
1606 #define PMXEVTYPER_U          0x40000000
1607 #define PMXEVTYPER_NSK        0x20000000
1608 #define PMXEVTYPER_NSU        0x10000000
1609 #define PMXEVTYPER_NSH        0x08000000
1610 #define PMXEVTYPER_M          0x04000000
1611 #define PMXEVTYPER_MT         0x02000000
1612 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1613 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1614                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1615                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1616                                PMXEVTYPER_EVTCOUNT)
1617 
1618 #define PMCCFILTR             0xf8000000
1619 #define PMCCFILTR_M           PMXEVTYPER_M
1620 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1621 
1622 static inline uint32_t pmu_num_counters(CPUARMState *env)
1623 {
1624     ARMCPU *cpu = env_archcpu(env);
1625 
1626     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1627 }
1628 
1629 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1630 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1631 {
1632   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1633 }
1634 
1635 #ifdef TARGET_AARCH64
1636 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1637 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1638 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1639 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1640 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1641 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1642 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1643 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1644 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1645 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1646 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1647 void aarch64_max_tcg_initfn(Object *obj);
1648 void aarch64_add_pauth_properties(Object *obj);
1649 void aarch64_add_sve_properties(Object *obj);
1650 void aarch64_add_sme_properties(Object *obj);
1651 #endif
1652 
1653 /* Read the CONTROL register as the MRS instruction would. */
1654 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1655 
1656 /*
1657  * Return a pointer to the location where we currently store the
1658  * stack pointer for the requested security state and thread mode.
1659  * This pointer will become invalid if the CPU state is updated
1660  * such that the stack pointers are switched around (eg changing
1661  * the SPSEL control bit).
1662  */
1663 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1664                              bool threadmode, bool spsel);
1665 
1666 bool el_is_in_host(CPUARMState *env, int el);
1667 
1668 void aa32_max_features(ARMCPU *cpu);
1669 int exception_target_el(CPUARMState *env);
1670 bool arm_singlestep_active(CPUARMState *env);
1671 bool arm_generate_debug_exceptions(CPUARMState *env);
1672 
1673 /**
1674  * pauth_ptr_mask:
1675  * @param: parameters defining the MMU setup
1676  *
1677  * Return a mask of the address bits that contain the authentication code,
1678  * given the MMU config defined by @param.
1679  */
1680 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1681 {
1682     int bot_pac_bit = 64 - param.tsz;
1683     int top_pac_bit = 64 - 8 * param.tbi;
1684 
1685     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1686 }
1687 
1688 /* Add the cpreg definitions for debug related system registers */
1689 void define_debug_regs(ARMCPU *cpu);
1690 
1691 /* Effective value of MDCR_EL2 */
1692 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1693 {
1694     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1695 }
1696 
1697 /* Powers of 2 for sve_vq_map et al. */
1698 #define SVE_VQ_POW2_MAP                                 \
1699     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1700      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1701 
1702 /*
1703  * Return true if it is possible to take a fine-grained-trap to EL2.
1704  */
1705 static inline bool arm_fgt_active(CPUARMState *env, int el)
1706 {
1707     /*
1708      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1709      * that can affect EL0, but it is harmless to do the test also for
1710      * traps on registers that are only accessible at EL1 because if the test
1711      * returns true then we can't be executing at EL1 anyway.
1712      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1713      * traps from AArch32 only happen for the EL0 is AArch32 case.
1714      */
1715     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1716         el < 2 && arm_is_el2_enabled(env) &&
1717         arm_el_is_aa64(env, 1) &&
1718         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1719         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1720 }
1721 
1722 void assert_hflags_rebuild_correctly(CPUARMState *env);
1723 
1724 /*
1725  * Although the ARM implementation of hardware assisted debugging
1726  * allows for different breakpoints per-core, the current GDB
1727  * interface treats them as a global pool of registers (which seems to
1728  * be the case for x86, ppc and s390). As a result we store one copy
1729  * of registers which is used for all active cores.
1730  *
1731  * Write access is serialised by virtue of the GDB protocol which
1732  * updates things. Read access (i.e. when the values are copied to the
1733  * vCPU) is also gated by GDB's run control.
1734  *
1735  * This is not unreasonable as most of the time debugging kernels you
1736  * never know which core will eventually execute your function.
1737  */
1738 
1739 typedef struct {
1740     uint64_t bcr;
1741     uint64_t bvr;
1742 } HWBreakpoint;
1743 
1744 /*
1745  * The watchpoint registers can cover more area than the requested
1746  * watchpoint so we need to store the additional information
1747  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1748  * when the watchpoint is hit.
1749  */
1750 typedef struct {
1751     uint64_t wcr;
1752     uint64_t wvr;
1753     CPUWatchpoint details;
1754 } HWWatchpoint;
1755 
1756 /* Maximum and current break/watch point counts */
1757 extern int max_hw_bps, max_hw_wps;
1758 extern GArray *hw_breakpoints, *hw_watchpoints;
1759 
1760 #define cur_hw_wps      (hw_watchpoints->len)
1761 #define cur_hw_bps      (hw_breakpoints->len)
1762 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1763 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1764 
1765 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1766 int insert_hw_breakpoint(target_ulong pc);
1767 int delete_hw_breakpoint(target_ulong pc);
1768 
1769 bool check_watchpoint_in_range(int i, target_ulong addr);
1770 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1771 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1772 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1773 
1774 /* Return the current value of the system counter in ticks */
1775 uint64_t gt_get_countervalue(CPUARMState *env);
1776 /*
1777  * Return the currently applicable offset between the system counter
1778  * and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2).
1779  */
1780 uint64_t gt_virt_cnt_offset(CPUARMState *env);
1781 #endif
1782