1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "exec/breakpoint.h" 29 #include "hw/registerfields.h" 30 #include "tcg/tcg-gvec-desc.h" 31 #include "syndrome.h" 32 #include "cpu-features.h" 33 34 /* register banks for CPU modes */ 35 #define BANK_USRSYS 0 36 #define BANK_SVC 1 37 #define BANK_ABT 2 38 #define BANK_UND 3 39 #define BANK_IRQ 4 40 #define BANK_FIQ 5 41 #define BANK_HYP 6 42 #define BANK_MON 7 43 44 static inline int arm_env_mmu_index(CPUARMState *env) 45 { 46 return EX_TBFLAG_ANY(env->hflags, MMUIDX); 47 } 48 49 static inline bool excp_is_internal(int excp) 50 { 51 /* Return true if this exception number represents a QEMU-internal 52 * exception that will not be passed to the guest. 53 */ 54 return excp == EXCP_INTERRUPT 55 || excp == EXCP_HLT 56 || excp == EXCP_DEBUG 57 || excp == EXCP_HALTED 58 || excp == EXCP_EXCEPTION_EXIT 59 || excp == EXCP_KERNEL_TRAP 60 || excp == EXCP_SEMIHOST; 61 } 62 63 /* 64 * Default frequency for the generic timer, in Hz. 65 * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before 66 * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz, 67 * which gives a 16ns tick period. 68 * 69 * We will use the back-compat value: 70 * - for QEMU CPU types added before we standardized on 1GHz 71 * - for versioned machine types with a version of 9.0 or earlier 72 * In any case, the machine model may override via the cntfrq property. 73 */ 74 #define GTIMER_DEFAULT_HZ 1000000000 75 #define GTIMER_BACKCOMPAT_HZ 62500000 76 77 /* Bit definitions for the v7M CONTROL register */ 78 FIELD(V7M_CONTROL, NPRIV, 0, 1) 79 FIELD(V7M_CONTROL, SPSEL, 1, 1) 80 FIELD(V7M_CONTROL, FPCA, 2, 1) 81 FIELD(V7M_CONTROL, SFPA, 3, 1) 82 83 /* Bit definitions for v7M exception return payload */ 84 FIELD(V7M_EXCRET, ES, 0, 1) 85 FIELD(V7M_EXCRET, RES0, 1, 1) 86 FIELD(V7M_EXCRET, SPSEL, 2, 1) 87 FIELD(V7M_EXCRET, MODE, 3, 1) 88 FIELD(V7M_EXCRET, FTYPE, 4, 1) 89 FIELD(V7M_EXCRET, DCRS, 5, 1) 90 FIELD(V7M_EXCRET, S, 6, 1) 91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 92 93 /* Minimum value which is a magic number for exception return */ 94 #define EXC_RETURN_MIN_MAGIC 0xff000000 95 /* Minimum number which is a magic number for function or exception return 96 * when using v8M security extension 97 */ 98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 99 100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 101 FIELD(DBGWCR, E, 0, 1) 102 FIELD(DBGWCR, PAC, 1, 2) 103 FIELD(DBGWCR, LSC, 3, 2) 104 FIELD(DBGWCR, BAS, 5, 8) 105 FIELD(DBGWCR, HMC, 13, 1) 106 FIELD(DBGWCR, SSC, 14, 2) 107 FIELD(DBGWCR, LBN, 16, 4) 108 FIELD(DBGWCR, WT, 20, 1) 109 FIELD(DBGWCR, MASK, 24, 5) 110 FIELD(DBGWCR, SSCE, 29, 1) 111 112 #define VTCR_NSW (1u << 29) 113 #define VTCR_NSA (1u << 30) 114 #define VSTCR_SW VTCR_NSW 115 #define VSTCR_SA VTCR_NSA 116 117 /* Bit definitions for CPACR (AArch32 only) */ 118 FIELD(CPACR, CP10, 20, 2) 119 FIELD(CPACR, CP11, 22, 2) 120 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */ 121 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */ 122 FIELD(CPACR, ASEDIS, 31, 1) 123 124 /* Bit definitions for CPACR_EL1 (AArch64 only) */ 125 FIELD(CPACR_EL1, ZEN, 16, 2) 126 FIELD(CPACR_EL1, FPEN, 20, 2) 127 FIELD(CPACR_EL1, SMEN, 24, 2) 128 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */ 129 130 /* Bit definitions for HCPTR (AArch32 only) */ 131 FIELD(HCPTR, TCP10, 10, 1) 132 FIELD(HCPTR, TCP11, 11, 1) 133 FIELD(HCPTR, TASE, 15, 1) 134 FIELD(HCPTR, TTA, 20, 1) 135 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */ 136 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */ 137 138 /* Bit definitions for CPTR_EL2 (AArch64 only) */ 139 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */ 140 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */ 141 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */ 142 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */ 143 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */ 144 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */ 145 FIELD(CPTR_EL2, TTA, 28, 1) 146 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */ 147 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */ 148 149 /* Bit definitions for CPTR_EL3 (AArch64 only) */ 150 FIELD(CPTR_EL3, EZ, 8, 1) 151 FIELD(CPTR_EL3, TFP, 10, 1) 152 FIELD(CPTR_EL3, ESM, 12, 1) 153 FIELD(CPTR_EL3, TTA, 20, 1) 154 FIELD(CPTR_EL3, TAM, 30, 1) 155 FIELD(CPTR_EL3, TCPAC, 31, 1) 156 157 #define MDCR_MTPME (1U << 28) 158 #define MDCR_TDCC (1U << 27) 159 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */ 160 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */ 161 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */ 162 #define MDCR_EPMAD (1U << 21) 163 #define MDCR_EDAD (1U << 20) 164 #define MDCR_TTRF (1U << 19) 165 #define MDCR_STE (1U << 18) /* MDCR_EL3 */ 166 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 167 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 168 #define MDCR_SDD (1U << 16) 169 #define MDCR_SPD (3U << 14) 170 #define MDCR_TDRA (1U << 11) 171 #define MDCR_TDOSA (1U << 10) 172 #define MDCR_TDA (1U << 9) 173 #define MDCR_TDE (1U << 8) 174 #define MDCR_HPME (1U << 7) 175 #define MDCR_TPM (1U << 6) 176 #define MDCR_TPMCR (1U << 5) 177 #define MDCR_HPMN (0x1fU) 178 179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \ 181 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \ 182 MDCR_STE | MDCR_SPME | MDCR_SPD) 183 184 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 185 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 186 #define TTBCR_PD0 (1U << 4) 187 #define TTBCR_PD1 (1U << 5) 188 #define TTBCR_EPD0 (1U << 7) 189 #define TTBCR_IRGN0 (3U << 8) 190 #define TTBCR_ORGN0 (3U << 10) 191 #define TTBCR_SH0 (3U << 12) 192 #define TTBCR_T1SZ (3U << 16) 193 #define TTBCR_A1 (1U << 22) 194 #define TTBCR_EPD1 (1U << 23) 195 #define TTBCR_IRGN1 (3U << 24) 196 #define TTBCR_ORGN1 (3U << 26) 197 #define TTBCR_SH1 (1U << 28) 198 #define TTBCR_EAE (1U << 31) 199 200 FIELD(VTCR, T0SZ, 0, 6) 201 FIELD(VTCR, SL0, 6, 2) 202 FIELD(VTCR, IRGN0, 8, 2) 203 FIELD(VTCR, ORGN0, 10, 2) 204 FIELD(VTCR, SH0, 12, 2) 205 FIELD(VTCR, TG0, 14, 2) 206 FIELD(VTCR, PS, 16, 3) 207 FIELD(VTCR, VS, 19, 1) 208 FIELD(VTCR, HA, 21, 1) 209 FIELD(VTCR, HD, 22, 1) 210 FIELD(VTCR, HWU59, 25, 1) 211 FIELD(VTCR, HWU60, 26, 1) 212 FIELD(VTCR, HWU61, 27, 1) 213 FIELD(VTCR, HWU62, 28, 1) 214 FIELD(VTCR, NSW, 29, 1) 215 FIELD(VTCR, NSA, 30, 1) 216 FIELD(VTCR, DS, 32, 1) 217 FIELD(VTCR, SL2, 33, 1) 218 219 #define HCRX_ENAS0 (1ULL << 0) 220 #define HCRX_ENALS (1ULL << 1) 221 #define HCRX_ENASR (1ULL << 2) 222 #define HCRX_FNXS (1ULL << 3) 223 #define HCRX_FGTNXS (1ULL << 4) 224 #define HCRX_SMPME (1ULL << 5) 225 #define HCRX_TALLINT (1ULL << 6) 226 #define HCRX_VINMI (1ULL << 7) 227 #define HCRX_VFNMI (1ULL << 8) 228 #define HCRX_CMOW (1ULL << 9) 229 #define HCRX_MCE2 (1ULL << 10) 230 #define HCRX_MSCEN (1ULL << 11) 231 232 #define HPFAR_NS (1ULL << 63) 233 234 #define HSTR_TTEE (1 << 16) 235 #define HSTR_TJDBX (1 << 17) 236 237 /* 238 * Depending on the value of HCR_EL2.E2H, bits 0 and 1 239 * have different bit definitions, and EL1PCTEN might be 240 * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to 241 * disambiguate if necessary. 242 */ 243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1) 244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1) 245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1) 246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1) 247 FIELD(CNTHCTL, EVNTEN, 2, 1) 248 FIELD(CNTHCTL, EVNTDIR, 3, 1) 249 FIELD(CNTHCTL, EVNTI, 4, 4) 250 FIELD(CNTHCTL, EL0VTEN, 8, 1) 251 FIELD(CNTHCTL, EL0PTEN, 9, 1) 252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1) 253 FIELD(CNTHCTL, EL1PTEN, 11, 1) 254 FIELD(CNTHCTL, ECV, 12, 1) 255 FIELD(CNTHCTL, EL1TVT, 13, 1) 256 FIELD(CNTHCTL, EL1TVCT, 14, 1) 257 FIELD(CNTHCTL, EL1NVPCT, 15, 1) 258 FIELD(CNTHCTL, EL1NVVCT, 16, 1) 259 FIELD(CNTHCTL, EVNTIS, 17, 1) 260 FIELD(CNTHCTL, CNTVMASK, 18, 1) 261 FIELD(CNTHCTL, CNTPMASK, 19, 1) 262 263 /* We use a few fake FSR values for internal purposes in M profile. 264 * M profile cores don't have A/R format FSRs, but currently our 265 * get_phys_addr() code assumes A/R profile and reports failures via 266 * an A/R format FSR value. We then translate that into the proper 267 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 268 * Mostly the FSR values we use for this are those defined for v7PMSA, 269 * since we share some of that codepath. A few kinds of fault are 270 * only for M profile and have no A/R equivalent, though, so we have 271 * to pick a value from the reserved range (which we never otherwise 272 * generate) to use for these. 273 * These values will never be visible to the guest. 274 */ 275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 277 278 /** 279 * arm_aa32_secure_pl1_0(): Return true if in Secure PL1&0 regime 280 * 281 * Return true if the CPU is in the Secure PL1&0 translation regime. 282 * This requires that EL3 exists and is AArch32 and we are currently 283 * Secure. If this is the case then the ARMMMUIdx_E10* apply and 284 * mean we are in EL3, not EL1. 285 */ 286 static inline bool arm_aa32_secure_pl1_0(CPUARMState *env) 287 { 288 return arm_feature(env, ARM_FEATURE_EL3) && 289 !arm_el_is_aa64(env, 3) && arm_is_secure(env); 290 } 291 292 /** 293 * raise_exception: Raise the specified exception. 294 * Raise a guest exception with the specified value, syndrome register 295 * and target exception level. This should be called from helper functions, 296 * and never returns because we will longjump back up to the CPU main loop. 297 */ 298 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 299 uint32_t syndrome, uint32_t target_el); 300 301 /* 302 * Similarly, but also use unwinding to restore cpu state. 303 */ 304 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 305 uint32_t syndrome, uint32_t target_el, 306 uintptr_t ra); 307 308 /* 309 * For AArch64, map a given EL to an index in the banked_spsr array. 310 * Note that this mapping and the AArch32 mapping defined in bank_number() 311 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 312 * mandated mapping between each other. 313 */ 314 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 315 { 316 static const unsigned int map[4] = { 317 [1] = BANK_SVC, /* EL1. */ 318 [2] = BANK_HYP, /* EL2. */ 319 [3] = BANK_MON, /* EL3. */ 320 }; 321 assert(el >= 1 && el <= 3); 322 return map[el]; 323 } 324 325 /* Map CPU modes onto saved register banks. */ 326 static inline int bank_number(int mode) 327 { 328 switch (mode) { 329 case ARM_CPU_MODE_USR: 330 case ARM_CPU_MODE_SYS: 331 return BANK_USRSYS; 332 case ARM_CPU_MODE_SVC: 333 return BANK_SVC; 334 case ARM_CPU_MODE_ABT: 335 return BANK_ABT; 336 case ARM_CPU_MODE_UND: 337 return BANK_UND; 338 case ARM_CPU_MODE_IRQ: 339 return BANK_IRQ; 340 case ARM_CPU_MODE_FIQ: 341 return BANK_FIQ; 342 case ARM_CPU_MODE_HYP: 343 return BANK_HYP; 344 case ARM_CPU_MODE_MON: 345 return BANK_MON; 346 } 347 g_assert_not_reached(); 348 } 349 350 /** 351 * r14_bank_number: Map CPU mode onto register bank for r14 352 * 353 * Given an AArch32 CPU mode, return the index into the saved register 354 * banks to use for the R14 (LR) in that mode. This is the same as 355 * bank_number(), except for the special case of Hyp mode, where 356 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 357 * This should be used as the index into env->banked_r14[], and 358 * bank_number() used for the index into env->banked_r13[] and 359 * env->banked_spsr[]. 360 */ 361 static inline int r14_bank_number(int mode) 362 { 363 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 364 } 365 366 void arm_cpu_register(const ARMCPUInfo *info); 367 void aarch64_cpu_register(const ARMCPUInfo *info); 368 369 void register_cp_regs_for_features(ARMCPU *cpu); 370 void init_cpreg_list(ARMCPU *cpu); 371 372 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 373 void arm_translate_init(void); 374 375 void arm_cpu_register_gdb_commands(ARMCPU *cpu); 376 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *, 377 GPtrArray *, GPtrArray *); 378 379 void arm_restore_state_to_opc(CPUState *cs, 380 const TranslationBlock *tb, 381 const uint64_t *data); 382 383 #ifdef CONFIG_TCG 384 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 385 386 /* Our implementation of TCGCPUOps::cpu_exec_halt */ 387 bool arm_cpu_exec_halt(CPUState *cs); 388 #endif /* CONFIG_TCG */ 389 390 typedef enum ARMFPRounding { 391 FPROUNDING_TIEEVEN, 392 FPROUNDING_POSINF, 393 FPROUNDING_NEGINF, 394 FPROUNDING_ZERO, 395 FPROUNDING_TIEAWAY, 396 FPROUNDING_ODD 397 } ARMFPRounding; 398 399 extern const FloatRoundMode arm_rmode_to_sf_map[6]; 400 401 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) 402 { 403 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); 404 return arm_rmode_to_sf_map[rmode]; 405 } 406 407 static inline void aarch64_save_sp(CPUARMState *env, int el) 408 { 409 if (env->pstate & PSTATE_SP) { 410 env->sp_el[el] = env->xregs[31]; 411 } else { 412 env->sp_el[0] = env->xregs[31]; 413 } 414 } 415 416 static inline void aarch64_restore_sp(CPUARMState *env, int el) 417 { 418 if (env->pstate & PSTATE_SP) { 419 env->xregs[31] = env->sp_el[el]; 420 } else { 421 env->xregs[31] = env->sp_el[0]; 422 } 423 } 424 425 static inline void update_spsel(CPUARMState *env, uint32_t imm) 426 { 427 unsigned int cur_el = arm_current_el(env); 428 /* Update PSTATE SPSel bit; this requires us to update the 429 * working stack pointer in xregs[31]. 430 */ 431 if (!((imm ^ env->pstate) & PSTATE_SP)) { 432 return; 433 } 434 aarch64_save_sp(env, cur_el); 435 env->pstate = deposit32(env->pstate, 0, 1, imm); 436 437 /* We rely on illegal updates to SPsel from EL0 to get trapped 438 * at translation time. 439 */ 440 assert(cur_el >= 1 && cur_el <= 3); 441 aarch64_restore_sp(env, cur_el); 442 } 443 444 /* 445 * arm_pamax 446 * @cpu: ARMCPU 447 * 448 * Returns the implementation defined bit-width of physical addresses. 449 * The ARMv8 reference manuals refer to this as PAMax(). 450 */ 451 unsigned int arm_pamax(ARMCPU *cpu); 452 453 /* 454 * round_down_to_parange_index 455 * @bit_size: uint8_t 456 * 457 * Rounds down the bit_size supplied to the first supported ARM physical 458 * address range and returns the index for this. The index is intended to 459 * be used to set ID_AA64MMFR0_EL1's PARANGE bits. 460 */ 461 uint8_t round_down_to_parange_index(uint8_t bit_size); 462 463 /* 464 * round_down_to_parange_bit_size 465 * @bit_size: uint8_t 466 * 467 * Rounds down the bit_size supplied to the first supported ARM physical 468 * address range bit size and returns this. 469 */ 470 uint8_t round_down_to_parange_bit_size(uint8_t bit_size); 471 472 /* Return true if extended addresses are enabled. 473 * This is always the case if our translation regime is 64 bit, 474 * but depends on TTBCR.EAE for 32 bit. 475 */ 476 static inline bool extended_addresses_enabled(CPUARMState *env) 477 { 478 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 479 if (arm_feature(env, ARM_FEATURE_PMSA) && 480 arm_feature(env, ARM_FEATURE_V8)) { 481 return true; 482 } 483 return arm_el_is_aa64(env, 1) || 484 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 485 } 486 487 /* Update a QEMU watchpoint based on the information the guest has set in the 488 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 489 */ 490 void hw_watchpoint_update(ARMCPU *cpu, int n); 491 /* Update the QEMU watchpoints for every guest watchpoint. This does a 492 * complete delete-and-reinstate of the QEMU watchpoint list and so is 493 * suitable for use after migration or on reset. 494 */ 495 void hw_watchpoint_update_all(ARMCPU *cpu); 496 /* Update a QEMU breakpoint based on the information the guest has set in the 497 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 498 */ 499 void hw_breakpoint_update(ARMCPU *cpu, int n); 500 /* Update the QEMU breakpoints for every guest breakpoint. This does a 501 * complete delete-and-reinstate of the QEMU breakpoint list and so is 502 * suitable for use after migration or on reset. 503 */ 504 void hw_breakpoint_update_all(ARMCPU *cpu); 505 506 /* Callback function for checking if a breakpoint should trigger. */ 507 bool arm_debug_check_breakpoint(CPUState *cs); 508 509 /* Callback function for checking if a watchpoint should trigger. */ 510 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 511 512 /* Adjust addresses (in BE32 mode) before testing against watchpoint 513 * addresses. 514 */ 515 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 516 517 /* Callback function for when a watchpoint or breakpoint triggers. */ 518 void arm_debug_excp_handler(CPUState *cs); 519 520 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 521 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 522 { 523 return false; 524 } 525 static inline void arm_handle_psci_call(ARMCPU *cpu) 526 { 527 g_assert_not_reached(); 528 } 529 #else 530 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 531 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 532 /* Actually handle a PSCI call */ 533 void arm_handle_psci_call(ARMCPU *cpu); 534 #endif 535 536 /** 537 * arm_clear_exclusive: clear the exclusive monitor 538 * @env: CPU env 539 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 540 */ 541 static inline void arm_clear_exclusive(CPUARMState *env) 542 { 543 env->exclusive_addr = -1; 544 } 545 546 /** 547 * ARMFaultType: type of an ARM MMU fault 548 * This corresponds to the v8A pseudocode's Fault enumeration, 549 * with extensions for QEMU internal conditions. 550 */ 551 typedef enum ARMFaultType { 552 ARMFault_None, 553 ARMFault_AccessFlag, 554 ARMFault_Alignment, 555 ARMFault_Background, 556 ARMFault_Domain, 557 ARMFault_Permission, 558 ARMFault_Translation, 559 ARMFault_AddressSize, 560 ARMFault_SyncExternal, 561 ARMFault_SyncExternalOnWalk, 562 ARMFault_SyncParity, 563 ARMFault_SyncParityOnWalk, 564 ARMFault_AsyncParity, 565 ARMFault_AsyncExternal, 566 ARMFault_Debug, 567 ARMFault_TLBConflict, 568 ARMFault_UnsuppAtomicUpdate, 569 ARMFault_Lockdown, 570 ARMFault_Exclusive, 571 ARMFault_ICacheMaint, 572 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 573 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 574 ARMFault_GPCFOnWalk, 575 ARMFault_GPCFOnOutput, 576 } ARMFaultType; 577 578 typedef enum ARMGPCF { 579 GPCF_None, 580 GPCF_AddressSize, 581 GPCF_Walk, 582 GPCF_EABT, 583 GPCF_Fail, 584 } ARMGPCF; 585 586 /** 587 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 588 * @type: Type of fault 589 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}. 590 * @level: Table walk level (for translation, access flag and permission faults) 591 * @domain: Domain of the fault address (for non-LPAE CPUs only) 592 * @s2addr: Address that caused a fault at stage 2 593 * @paddr: physical address that caused a fault for gpc 594 * @paddr_space: physical address space that caused a fault for gpc 595 * @stage2: True if we faulted at stage 2 596 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 597 * @s1ns: True if we faulted on a non-secure IPA while in secure state 598 * @ea: True if we should set the EA (external abort type) bit in syndrome 599 */ 600 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 601 struct ARMMMUFaultInfo { 602 ARMFaultType type; 603 ARMGPCF gpcf; 604 target_ulong s2addr; 605 target_ulong paddr; 606 ARMSecuritySpace paddr_space; 607 int level; 608 int domain; 609 bool stage2; 610 bool s1ptw; 611 bool s1ns; 612 bool ea; 613 }; 614 615 /** 616 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 617 * Compare pseudocode EncodeSDFSC(), though unlike that function 618 * we set up a whole FSR-format code including domain field and 619 * putting the high bit of the FSC into bit 10. 620 */ 621 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 622 { 623 uint32_t fsc; 624 625 switch (fi->type) { 626 case ARMFault_None: 627 return 0; 628 case ARMFault_AccessFlag: 629 fsc = fi->level == 1 ? 0x3 : 0x6; 630 break; 631 case ARMFault_Alignment: 632 fsc = 0x1; 633 break; 634 case ARMFault_Permission: 635 fsc = fi->level == 1 ? 0xd : 0xf; 636 break; 637 case ARMFault_Domain: 638 fsc = fi->level == 1 ? 0x9 : 0xb; 639 break; 640 case ARMFault_Translation: 641 fsc = fi->level == 1 ? 0x5 : 0x7; 642 break; 643 case ARMFault_SyncExternal: 644 fsc = 0x8 | (fi->ea << 12); 645 break; 646 case ARMFault_SyncExternalOnWalk: 647 fsc = fi->level == 1 ? 0xc : 0xe; 648 fsc |= (fi->ea << 12); 649 break; 650 case ARMFault_SyncParity: 651 fsc = 0x409; 652 break; 653 case ARMFault_SyncParityOnWalk: 654 fsc = fi->level == 1 ? 0x40c : 0x40e; 655 break; 656 case ARMFault_AsyncParity: 657 fsc = 0x408; 658 break; 659 case ARMFault_AsyncExternal: 660 fsc = 0x406 | (fi->ea << 12); 661 break; 662 case ARMFault_Debug: 663 fsc = 0x2; 664 break; 665 case ARMFault_TLBConflict: 666 fsc = 0x400; 667 break; 668 case ARMFault_Lockdown: 669 fsc = 0x404; 670 break; 671 case ARMFault_Exclusive: 672 fsc = 0x405; 673 break; 674 case ARMFault_ICacheMaint: 675 fsc = 0x4; 676 break; 677 case ARMFault_Background: 678 fsc = 0x0; 679 break; 680 case ARMFault_QEMU_NSCExec: 681 fsc = M_FAKE_FSR_NSC_EXEC; 682 break; 683 case ARMFault_QEMU_SFault: 684 fsc = M_FAKE_FSR_SFAULT; 685 break; 686 default: 687 /* Other faults can't occur in a context that requires a 688 * short-format status code. 689 */ 690 g_assert_not_reached(); 691 } 692 693 fsc |= (fi->domain << 4); 694 return fsc; 695 } 696 697 /** 698 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 699 * Compare pseudocode EncodeLDFSC(), though unlike that function 700 * we fill in also the LPAE bit 9 of a DFSR format. 701 */ 702 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 703 { 704 uint32_t fsc; 705 706 switch (fi->type) { 707 case ARMFault_None: 708 return 0; 709 case ARMFault_AddressSize: 710 assert(fi->level >= -1 && fi->level <= 3); 711 if (fi->level < 0) { 712 fsc = 0b101001; 713 } else { 714 fsc = fi->level; 715 } 716 break; 717 case ARMFault_AccessFlag: 718 assert(fi->level >= 0 && fi->level <= 3); 719 fsc = 0b001000 | fi->level; 720 break; 721 case ARMFault_Permission: 722 assert(fi->level >= 0 && fi->level <= 3); 723 fsc = 0b001100 | fi->level; 724 break; 725 case ARMFault_Translation: 726 assert(fi->level >= -1 && fi->level <= 3); 727 if (fi->level < 0) { 728 fsc = 0b101011; 729 } else { 730 fsc = 0b000100 | fi->level; 731 } 732 break; 733 case ARMFault_SyncExternal: 734 fsc = 0x10 | (fi->ea << 12); 735 break; 736 case ARMFault_SyncExternalOnWalk: 737 assert(fi->level >= -1 && fi->level <= 3); 738 if (fi->level < 0) { 739 fsc = 0b010011; 740 } else { 741 fsc = 0b010100 | fi->level; 742 } 743 fsc |= fi->ea << 12; 744 break; 745 case ARMFault_SyncParity: 746 fsc = 0x18; 747 break; 748 case ARMFault_SyncParityOnWalk: 749 assert(fi->level >= -1 && fi->level <= 3); 750 if (fi->level < 0) { 751 fsc = 0b011011; 752 } else { 753 fsc = 0b011100 | fi->level; 754 } 755 break; 756 case ARMFault_AsyncParity: 757 fsc = 0x19; 758 break; 759 case ARMFault_AsyncExternal: 760 fsc = 0x11 | (fi->ea << 12); 761 break; 762 case ARMFault_Alignment: 763 fsc = 0x21; 764 break; 765 case ARMFault_Debug: 766 fsc = 0x22; 767 break; 768 case ARMFault_TLBConflict: 769 fsc = 0x30; 770 break; 771 case ARMFault_UnsuppAtomicUpdate: 772 fsc = 0x31; 773 break; 774 case ARMFault_Lockdown: 775 fsc = 0x34; 776 break; 777 case ARMFault_Exclusive: 778 fsc = 0x35; 779 break; 780 case ARMFault_GPCFOnWalk: 781 assert(fi->level >= -1 && fi->level <= 3); 782 if (fi->level < 0) { 783 fsc = 0b100011; 784 } else { 785 fsc = 0b100100 | fi->level; 786 } 787 break; 788 case ARMFault_GPCFOnOutput: 789 fsc = 0b101000; 790 break; 791 default: 792 /* Other faults can't occur in a context that requires a 793 * long-format status code. 794 */ 795 g_assert_not_reached(); 796 } 797 798 fsc |= 1 << 9; 799 return fsc; 800 } 801 802 static inline bool arm_extabort_type(MemTxResult result) 803 { 804 /* The EA bit in syndromes and fault status registers is an 805 * IMPDEF classification of external aborts. ARM implementations 806 * usually use this to indicate AXI bus Decode error (0) or 807 * Slave error (1); in QEMU we follow that. 808 */ 809 return result != MEMTX_DECODE_ERROR; 810 } 811 812 #ifdef CONFIG_USER_ONLY 813 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 814 MMUAccessType access_type, 815 bool maperr, uintptr_t ra); 816 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 817 MMUAccessType access_type, uintptr_t ra); 818 #else 819 bool arm_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr, 820 MMUAccessType access_type, int mmu_idx, 821 MemOp memop, int size, bool probe, uintptr_t ra); 822 #endif 823 824 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 825 { 826 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 827 } 828 829 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 830 { 831 if (arm_feature(env, ARM_FEATURE_M)) { 832 return mmu_idx | ARM_MMU_IDX_M; 833 } else { 834 return mmu_idx | ARM_MMU_IDX_A; 835 } 836 } 837 838 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 839 { 840 /* AArch64 is always a-profile. */ 841 return mmu_idx | ARM_MMU_IDX_A; 842 } 843 844 /** 845 * Return the exception level we're running at if our current MMU index 846 * is @mmu_idx. @s_pl1_0 should be true if this is the AArch32 847 * Secure PL1&0 translation regime. 848 */ 849 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0); 850 851 /* Return the MMU index for a v7M CPU in the specified security state */ 852 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 853 854 /* 855 * Return true if the stage 1 translation regime is using LPAE 856 * format page tables 857 */ 858 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 859 860 /* Raise a data fault alignment exception for the specified virtual address */ 861 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 862 MMUAccessType access_type, 863 int mmu_idx, uintptr_t retaddr); 864 865 #ifndef CONFIG_USER_ONLY 866 /* arm_cpu_do_transaction_failed: handle a memory system error response 867 * (eg "no device/memory present at address") by raising an external abort 868 * exception 869 */ 870 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 871 vaddr addr, unsigned size, 872 MMUAccessType access_type, 873 int mmu_idx, MemTxAttrs attrs, 874 MemTxResult response, uintptr_t retaddr); 875 #endif 876 877 /* Call any registered EL change hooks */ 878 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 879 { 880 ARMELChangeHook *hook, *next; 881 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 882 hook->hook(cpu, hook->opaque); 883 } 884 } 885 static inline void arm_call_el_change_hook(ARMCPU *cpu) 886 { 887 ARMELChangeHook *hook, *next; 888 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 889 hook->hook(cpu, hook->opaque); 890 } 891 } 892 893 /* Return true if this address translation regime has two ranges. */ 894 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 895 { 896 switch (mmu_idx) { 897 case ARMMMUIdx_Stage1_E0: 898 case ARMMMUIdx_Stage1_E1: 899 case ARMMMUIdx_Stage1_E1_PAN: 900 case ARMMMUIdx_E10_0: 901 case ARMMMUIdx_E10_1: 902 case ARMMMUIdx_E10_1_PAN: 903 case ARMMMUIdx_E20_0: 904 case ARMMMUIdx_E20_2: 905 case ARMMMUIdx_E20_2_PAN: 906 return true; 907 default: 908 return false; 909 } 910 } 911 912 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 913 { 914 switch (mmu_idx) { 915 case ARMMMUIdx_Stage1_E1_PAN: 916 case ARMMMUIdx_E10_1_PAN: 917 case ARMMMUIdx_E20_2_PAN: 918 return true; 919 default: 920 return false; 921 } 922 } 923 924 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) 925 { 926 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 927 } 928 929 /* Return the exception level which controls this address translation regime */ 930 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 931 { 932 switch (mmu_idx) { 933 case ARMMMUIdx_E20_0: 934 case ARMMMUIdx_E20_2: 935 case ARMMMUIdx_E20_2_PAN: 936 case ARMMMUIdx_Stage2: 937 case ARMMMUIdx_Stage2_S: 938 case ARMMMUIdx_E2: 939 return 2; 940 case ARMMMUIdx_E3: 941 return 3; 942 case ARMMMUIdx_E10_0: 943 case ARMMMUIdx_Stage1_E0: 944 case ARMMMUIdx_E10_1: 945 case ARMMMUIdx_E10_1_PAN: 946 case ARMMMUIdx_Stage1_E1: 947 case ARMMMUIdx_Stage1_E1_PAN: 948 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 949 case ARMMMUIdx_MPrivNegPri: 950 case ARMMMUIdx_MUserNegPri: 951 case ARMMMUIdx_MPriv: 952 case ARMMMUIdx_MUser: 953 case ARMMMUIdx_MSPrivNegPri: 954 case ARMMMUIdx_MSUserNegPri: 955 case ARMMMUIdx_MSPriv: 956 case ARMMMUIdx_MSUser: 957 return 1; 958 default: 959 g_assert_not_reached(); 960 } 961 } 962 963 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 964 { 965 switch (mmu_idx) { 966 case ARMMMUIdx_E10_0: 967 case ARMMMUIdx_E20_0: 968 case ARMMMUIdx_Stage1_E0: 969 case ARMMMUIdx_MUser: 970 case ARMMMUIdx_MSUser: 971 case ARMMMUIdx_MUserNegPri: 972 case ARMMMUIdx_MSUserNegPri: 973 return true; 974 default: 975 return false; 976 } 977 } 978 979 /* Return the SCTLR value which controls this address translation regime */ 980 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 981 { 982 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 983 } 984 985 /* 986 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 987 * and the Non-Secure stage 2 translation regimes (and hence which are 988 * not present in VSTCR_EL2). 989 */ 990 #define VTCR_SHARED_FIELD_MASK \ 991 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 992 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 993 R_VTCR_DS_MASK) 994 995 /* Return the value of the TCR controlling this translation regime */ 996 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 997 { 998 if (mmu_idx == ARMMMUIdx_Stage2) { 999 return env->cp15.vtcr_el2; 1000 } 1001 if (mmu_idx == ARMMMUIdx_Stage2_S) { 1002 /* 1003 * Secure stage 2 shares fields from VTCR_EL2. We merge those 1004 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 1005 * value so the callers don't need to special case this. 1006 * 1007 * If a future architecture change defines bits in VSTCR_EL2 that 1008 * overlap with these VTCR_EL2 fields we may need to revisit this. 1009 */ 1010 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 1011 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 1012 return v; 1013 } 1014 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 1015 } 1016 1017 /* Return true if the translation regime is using LPAE format page tables */ 1018 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 1019 { 1020 int el = regime_el(env, mmu_idx); 1021 if (el == 2 || arm_el_is_aa64(env, el)) { 1022 return true; 1023 } 1024 if (arm_feature(env, ARM_FEATURE_PMSA) && 1025 arm_feature(env, ARM_FEATURE_V8)) { 1026 return true; 1027 } 1028 if (arm_feature(env, ARM_FEATURE_LPAE) 1029 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 /** 1036 * arm_num_brps: Return number of implemented breakpoints. 1037 * Note that the ID register BRPS field is "number of bps - 1", 1038 * and we return the actual number of breakpoints. 1039 */ 1040 static inline int arm_num_brps(ARMCPU *cpu) 1041 { 1042 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1043 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 1044 } else { 1045 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 1046 } 1047 } 1048 1049 /** 1050 * arm_num_wrps: Return number of implemented watchpoints. 1051 * Note that the ID register WRPS field is "number of wps - 1", 1052 * and we return the actual number of watchpoints. 1053 */ 1054 static inline int arm_num_wrps(ARMCPU *cpu) 1055 { 1056 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1057 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 1058 } else { 1059 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 1060 } 1061 } 1062 1063 /** 1064 * arm_num_ctx_cmps: Return number of implemented context comparators. 1065 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 1066 * and we return the actual number of comparators. 1067 */ 1068 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 1069 { 1070 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1071 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 1072 } else { 1073 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 1074 } 1075 } 1076 1077 /** 1078 * v7m_using_psp: Return true if using process stack pointer 1079 * Return true if the CPU is currently using the process stack 1080 * pointer, or false if it is using the main stack pointer. 1081 */ 1082 static inline bool v7m_using_psp(CPUARMState *env) 1083 { 1084 /* Handler mode always uses the main stack; for thread mode 1085 * the CONTROL.SPSEL bit determines the answer. 1086 * Note that in v7M it is not possible to be in Handler mode with 1087 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 1088 */ 1089 return !arm_v7m_is_handler_mode(env) && 1090 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 1091 } 1092 1093 /** 1094 * v7m_sp_limit: Return SP limit for current CPU state 1095 * Return the SP limit value for the current CPU security state 1096 * and stack pointer. 1097 */ 1098 static inline uint32_t v7m_sp_limit(CPUARMState *env) 1099 { 1100 if (v7m_using_psp(env)) { 1101 return env->v7m.psplim[env->v7m.secure]; 1102 } else { 1103 return env->v7m.msplim[env->v7m.secure]; 1104 } 1105 } 1106 1107 /** 1108 * v7m_cpacr_pass: 1109 * Return true if the v7M CPACR permits access to the FPU for the specified 1110 * security state and privilege level. 1111 */ 1112 static inline bool v7m_cpacr_pass(CPUARMState *env, 1113 bool is_secure, bool is_priv) 1114 { 1115 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 1116 case 0: 1117 case 2: /* UNPREDICTABLE: we treat like 0 */ 1118 return false; 1119 case 1: 1120 return is_priv; 1121 case 3: 1122 return true; 1123 default: 1124 g_assert_not_reached(); 1125 } 1126 } 1127 1128 /** 1129 * aarch32_mode_name(): Return name of the AArch32 CPU mode 1130 * @psr: Program Status Register indicating CPU mode 1131 * 1132 * Returns, for debug logging purposes, a printable representation 1133 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 1134 * the low bits of the specified PSR. 1135 */ 1136 static inline const char *aarch32_mode_name(uint32_t psr) 1137 { 1138 static const char cpu_mode_names[16][4] = { 1139 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 1140 "???", "???", "hyp", "und", "???", "???", "???", "sys" 1141 }; 1142 1143 return cpu_mode_names[psr & 0xf]; 1144 } 1145 1146 /** 1147 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 1148 * 1149 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 1150 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 1151 * Must be called with the BQL held. 1152 */ 1153 void arm_cpu_update_virq(ARMCPU *cpu); 1154 1155 /** 1156 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 1157 * 1158 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 1159 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 1160 * Must be called with the BQL held. 1161 */ 1162 void arm_cpu_update_vfiq(ARMCPU *cpu); 1163 1164 /** 1165 * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request 1166 * 1167 * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following 1168 * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI. 1169 * Must be called with the BQL held. 1170 */ 1171 void arm_cpu_update_vinmi(ARMCPU *cpu); 1172 1173 /** 1174 * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request 1175 * 1176 * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following 1177 * a change to the HCRX_EL2.VFNMI. 1178 * Must be called with the BQL held. 1179 */ 1180 void arm_cpu_update_vfnmi(ARMCPU *cpu); 1181 1182 /** 1183 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 1184 * 1185 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 1186 * following a change to the HCR_EL2.VSE bit. 1187 */ 1188 void arm_cpu_update_vserr(ARMCPU *cpu); 1189 1190 /** 1191 * arm_mmu_idx_el: 1192 * @env: The cpu environment 1193 * @el: The EL to use. 1194 * 1195 * Return the full ARMMMUIdx for the translation regime for EL. 1196 */ 1197 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 1198 1199 /** 1200 * arm_mmu_idx: 1201 * @env: The cpu environment 1202 * 1203 * Return the full ARMMMUIdx for the current translation regime. 1204 */ 1205 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 1206 1207 /** 1208 * arm_stage1_mmu_idx: 1209 * @env: The cpu environment 1210 * 1211 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 1212 */ 1213 #ifdef CONFIG_USER_ONLY 1214 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 1215 { 1216 return ARMMMUIdx_Stage1_E0; 1217 } 1218 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 1219 { 1220 return ARMMMUIdx_Stage1_E0; 1221 } 1222 #else 1223 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 1224 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 1225 #endif 1226 1227 /** 1228 * arm_mmu_idx_is_stage1_of_2: 1229 * @mmu_idx: The ARMMMUIdx to test 1230 * 1231 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 1232 * first stage of a two stage regime. 1233 */ 1234 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 1235 { 1236 switch (mmu_idx) { 1237 case ARMMMUIdx_Stage1_E0: 1238 case ARMMMUIdx_Stage1_E1: 1239 case ARMMMUIdx_Stage1_E1_PAN: 1240 return true; 1241 default: 1242 return false; 1243 } 1244 } 1245 1246 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1247 const ARMISARegisters *id) 1248 { 1249 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1250 1251 if ((features >> ARM_FEATURE_V4T) & 1) { 1252 valid |= CPSR_T; 1253 } 1254 if ((features >> ARM_FEATURE_V5) & 1) { 1255 valid |= CPSR_Q; /* V5TE in reality*/ 1256 } 1257 if ((features >> ARM_FEATURE_V6) & 1) { 1258 valid |= CPSR_E | CPSR_GE; 1259 } 1260 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1261 valid |= CPSR_IT; 1262 } 1263 if (isar_feature_aa32_jazelle(id)) { 1264 valid |= CPSR_J; 1265 } 1266 if (isar_feature_aa32_pan(id)) { 1267 valid |= CPSR_PAN; 1268 } 1269 if (isar_feature_aa32_dit(id)) { 1270 valid |= CPSR_DIT; 1271 } 1272 if (isar_feature_aa32_ssbs(id)) { 1273 valid |= CPSR_SSBS; 1274 } 1275 1276 return valid; 1277 } 1278 1279 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1280 { 1281 uint32_t valid; 1282 1283 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1284 if (isar_feature_aa64_bti(id)) { 1285 valid |= PSTATE_BTYPE; 1286 } 1287 if (isar_feature_aa64_pan(id)) { 1288 valid |= PSTATE_PAN; 1289 } 1290 if (isar_feature_aa64_uao(id)) { 1291 valid |= PSTATE_UAO; 1292 } 1293 if (isar_feature_aa64_dit(id)) { 1294 valid |= PSTATE_DIT; 1295 } 1296 if (isar_feature_aa64_ssbs(id)) { 1297 valid |= PSTATE_SSBS; 1298 } 1299 if (isar_feature_aa64_mte(id)) { 1300 valid |= PSTATE_TCO; 1301 } 1302 if (isar_feature_aa64_nmi(id)) { 1303 valid |= PSTATE_ALLINT; 1304 } 1305 1306 return valid; 1307 } 1308 1309 /* Granule size (i.e. page size) */ 1310 typedef enum ARMGranuleSize { 1311 /* Same order as TG0 encoding */ 1312 Gran4K, 1313 Gran64K, 1314 Gran16K, 1315 GranInvalid, 1316 } ARMGranuleSize; 1317 1318 /** 1319 * arm_granule_bits: Return address size of the granule in bits 1320 * 1321 * Return the address size of the granule in bits. This corresponds 1322 * to the pseudocode TGxGranuleBits(). 1323 */ 1324 static inline int arm_granule_bits(ARMGranuleSize gran) 1325 { 1326 switch (gran) { 1327 case Gran64K: 1328 return 16; 1329 case Gran16K: 1330 return 14; 1331 case Gran4K: 1332 return 12; 1333 default: 1334 g_assert_not_reached(); 1335 } 1336 } 1337 1338 /* 1339 * Parameters of a given virtual address, as extracted from the 1340 * translation control register (TCR) for a given regime. 1341 */ 1342 typedef struct ARMVAParameters { 1343 unsigned tsz : 8; 1344 unsigned ps : 3; 1345 unsigned sh : 2; 1346 unsigned select : 1; 1347 bool tbi : 1; 1348 bool epd : 1; 1349 bool hpd : 1; 1350 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1351 bool ds : 1; 1352 bool ha : 1; 1353 bool hd : 1; 1354 ARMGranuleSize gran : 2; 1355 } ARMVAParameters; 1356 1357 /** 1358 * aa64_va_parameters: Return parameters for an AArch64 virtual address 1359 * @env: CPU 1360 * @va: virtual address to look up 1361 * @mmu_idx: determines translation regime to use 1362 * @data: true if this is a data access 1363 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 1364 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) 1365 */ 1366 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1367 ARMMMUIdx mmu_idx, bool data, 1368 bool el1_is_aa32); 1369 1370 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1371 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1372 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); 1373 1374 /* Determine if allocation tags are available. */ 1375 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1376 uint64_t sctlr) 1377 { 1378 if (el < 3 1379 && arm_feature(env, ARM_FEATURE_EL3) 1380 && !(env->cp15.scr_el3 & SCR_ATA)) { 1381 return false; 1382 } 1383 if (el < 2 && arm_is_el2_enabled(env)) { 1384 uint64_t hcr = arm_hcr_el2_eff(env); 1385 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1386 return false; 1387 } 1388 } 1389 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1390 return sctlr != 0; 1391 } 1392 1393 #ifndef CONFIG_USER_ONLY 1394 1395 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1396 typedef struct V8M_SAttributes { 1397 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1398 bool ns; 1399 bool nsc; 1400 uint8_t sregion; 1401 bool srvalid; 1402 uint8_t iregion; 1403 bool irvalid; 1404 } V8M_SAttributes; 1405 1406 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1407 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1408 bool secure, V8M_SAttributes *sattrs); 1409 1410 /* Cacheability and shareability attributes for a memory access */ 1411 typedef struct ARMCacheAttrs { 1412 /* 1413 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1414 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1415 */ 1416 unsigned int attrs:8; 1417 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1418 bool is_s2_format:1; 1419 } ARMCacheAttrs; 1420 1421 /* Fields that are valid upon success. */ 1422 typedef struct GetPhysAddrResult { 1423 CPUTLBEntryFull f; 1424 ARMCacheAttrs cacheattrs; 1425 } GetPhysAddrResult; 1426 1427 /** 1428 * get_phys_addr: get the physical address for a virtual address 1429 * @env: CPUARMState 1430 * @address: virtual address to get physical address for 1431 * @access_type: 0 for read, 1 for write, 2 for execute 1432 * @memop: memory operation feeding this access, or 0 for none 1433 * @mmu_idx: MMU index indicating required translation regime 1434 * @result: set on translation success. 1435 * @fi: set to fault info if the translation fails 1436 * 1437 * Find the physical address corresponding to the given virtual address, 1438 * by doing a translation table walk on MMU based systems or using the 1439 * MPU state on MPU based systems. 1440 * 1441 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1442 * prot and page_size may not be filled in, and the populated fsr value provides 1443 * information on why the translation aborted, in the format of a 1444 * DFSR/IFSR fault register, with the following caveats: 1445 * * we honour the short vs long DFSR format differences. 1446 * * the WnR bit is never set (the caller must do this). 1447 * * for PSMAv5 based systems we don't bother to return a full FSR format 1448 * value. 1449 */ 1450 bool get_phys_addr(CPUARMState *env, vaddr address, 1451 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx, 1452 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1453 __attribute__((nonnull)); 1454 1455 /** 1456 * get_phys_addr_with_space_nogpc: get the physical address for a virtual 1457 * address 1458 * @env: CPUARMState 1459 * @address: virtual address to get physical address for 1460 * @access_type: 0 for read, 1 for write, 2 for execute 1461 * @memop: memory operation feeding this access, or 0 for none 1462 * @mmu_idx: MMU index indicating required translation regime 1463 * @space: security space for the access 1464 * @result: set on translation success. 1465 * @fi: set to fault info if the translation fails 1466 * 1467 * Similar to get_phys_addr, but use the given security space and don't perform 1468 * a Granule Protection Check on the resulting address. 1469 */ 1470 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 1471 MMUAccessType access_type, MemOp memop, 1472 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 1473 GetPhysAddrResult *result, 1474 ARMMMUFaultInfo *fi) 1475 __attribute__((nonnull)); 1476 1477 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1478 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1479 bool is_secure, GetPhysAddrResult *result, 1480 ARMMMUFaultInfo *fi, uint32_t *mregion); 1481 1482 void arm_log_exception(CPUState *cs); 1483 1484 #endif /* !CONFIG_USER_ONLY */ 1485 1486 /* 1487 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1488 * the same simd_desc() encoding due to restrictions on size. 1489 * Use these instead. 1490 */ 1491 FIELD(PREDDESC, OPRSZ, 0, 6) 1492 FIELD(PREDDESC, ESZ, 6, 2) 1493 FIELD(PREDDESC, DATA, 8, 24) 1494 1495 /* 1496 * The SVE simd_data field, for memory ops, contains either 1497 * rd (5 bits) or a shift count (2 bits). 1498 */ 1499 #define SVE_MTEDESC_SHIFT 5 1500 1501 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1502 FIELD(MTEDESC, MIDX, 0, 4) 1503 FIELD(MTEDESC, TBI, 4, 2) 1504 FIELD(MTEDESC, TCMA, 6, 2) 1505 FIELD(MTEDESC, WRITE, 8, 1) 1506 FIELD(MTEDESC, ALIGN, 9, 3) 1507 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12) /* size - 1 */ 1508 1509 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1510 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1511 1512 /** 1513 * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation 1514 * @env: CPU env 1515 * @ptr: start address of memory region (dirty pointer) 1516 * @size: length of region (guaranteed not to cross a page boundary) 1517 * @desc: MTEDESC descriptor word (0 means no MTE checks) 1518 * Returns: the size of the region that can be copied without hitting 1519 * an MTE tag failure 1520 * 1521 * Note that we assume that the caller has already checked the TBI 1522 * and TCMA bits with mte_checks_needed() and an MTE check is definitely 1523 * required. 1524 */ 1525 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1526 uint32_t desc); 1527 1528 /** 1529 * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS 1530 * operation going in the reverse direction 1531 * @env: CPU env 1532 * @ptr: *end* address of memory region (dirty pointer) 1533 * @size: length of region (guaranteed not to cross a page boundary) 1534 * @desc: MTEDESC descriptor word (0 means no MTE checks) 1535 * Returns: the size of the region that can be copied without hitting 1536 * an MTE tag failure 1537 * 1538 * Note that we assume that the caller has already checked the TBI 1539 * and TCMA bits with mte_checks_needed() and an MTE check is definitely 1540 * required. 1541 */ 1542 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1543 uint32_t desc); 1544 1545 /** 1546 * mte_check_fail: Record an MTE tag check failure 1547 * @env: CPU env 1548 * @desc: MTEDESC descriptor word 1549 * @dirty_ptr: Failing dirty address 1550 * @ra: TCG retaddr 1551 * 1552 * This may never return (if the MTE tag checks are configured to fault). 1553 */ 1554 void mte_check_fail(CPUARMState *env, uint32_t desc, 1555 uint64_t dirty_ptr, uintptr_t ra); 1556 1557 /** 1558 * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation 1559 * @env: CPU env 1560 * @dirty_ptr: Start address of memory region (dirty pointer) 1561 * @size: length of region (guaranteed not to cross page boundary) 1562 * @desc: MTEDESC descriptor word 1563 */ 1564 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size, 1565 uint32_t desc); 1566 1567 static inline int allocation_tag_from_addr(uint64_t ptr) 1568 { 1569 return extract64(ptr, 56, 4); 1570 } 1571 1572 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1573 { 1574 return deposit64(ptr, 56, 4, rtag); 1575 } 1576 1577 /* Return true if tbi bits mean that the access is checked. */ 1578 static inline bool tbi_check(uint32_t desc, int bit55) 1579 { 1580 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1581 } 1582 1583 /* Return true if tcma bits mean that the access is unchecked. */ 1584 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1585 { 1586 /* 1587 * We had extracted bit55 and ptr_tag for other reasons, so fold 1588 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1589 */ 1590 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1591 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1592 return tcma && match; 1593 } 1594 1595 /* 1596 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1597 * for the tag to be present in the FAR_ELx register. But for user-only 1598 * mode, we do not have a TLB with which to implement this, so we must 1599 * remove the top byte. 1600 */ 1601 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1602 { 1603 #ifdef CONFIG_USER_ONLY 1604 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1605 ptr &= sextract64(ptr, 0, 56); 1606 #endif 1607 return ptr; 1608 } 1609 1610 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1611 { 1612 #ifdef CONFIG_USER_ONLY 1613 int64_t clean_ptr = sextract64(ptr, 0, 56); 1614 if (tbi_check(desc, clean_ptr < 0)) { 1615 ptr = clean_ptr; 1616 } 1617 #endif 1618 return ptr; 1619 } 1620 1621 /* Values for M-profile PSR.ECI for MVE insns */ 1622 enum MVEECIState { 1623 ECI_NONE = 0, /* No completed beats */ 1624 ECI_A0 = 1, /* Completed: A0 */ 1625 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1626 /* 3 is reserved */ 1627 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1628 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1629 /* All other values reserved */ 1630 }; 1631 1632 /* Definitions for the PMU registers */ 1633 #define PMCRN_MASK 0xf800 1634 #define PMCRN_SHIFT 11 1635 #define PMCRLP 0x80 1636 #define PMCRLC 0x40 1637 #define PMCRDP 0x20 1638 #define PMCRX 0x10 1639 #define PMCRD 0x8 1640 #define PMCRC 0x4 1641 #define PMCRP 0x2 1642 #define PMCRE 0x1 1643 /* 1644 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1645 * which can be written as 1 to trigger behaviour but which stay RAZ). 1646 */ 1647 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1648 1649 #define PMXEVTYPER_P 0x80000000 1650 #define PMXEVTYPER_U 0x40000000 1651 #define PMXEVTYPER_NSK 0x20000000 1652 #define PMXEVTYPER_NSU 0x10000000 1653 #define PMXEVTYPER_NSH 0x08000000 1654 #define PMXEVTYPER_M 0x04000000 1655 #define PMXEVTYPER_MT 0x02000000 1656 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1657 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1658 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1659 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1660 PMXEVTYPER_EVTCOUNT) 1661 1662 #define PMCCFILTR 0xf8000000 1663 #define PMCCFILTR_M PMXEVTYPER_M 1664 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1665 1666 static inline uint32_t pmu_num_counters(CPUARMState *env) 1667 { 1668 ARMCPU *cpu = env_archcpu(env); 1669 1670 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1671 } 1672 1673 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1674 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1675 { 1676 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1677 } 1678 1679 #ifdef TARGET_AARCH64 1680 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg); 1681 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg); 1682 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg); 1683 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg); 1684 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg); 1685 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg); 1686 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg); 1687 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg); 1688 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg); 1689 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1690 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1691 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1692 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1693 void aarch64_max_tcg_initfn(Object *obj); 1694 void aarch64_add_pauth_properties(Object *obj); 1695 void aarch64_add_sve_properties(Object *obj); 1696 void aarch64_add_sme_properties(Object *obj); 1697 #endif 1698 1699 /* Read the CONTROL register as the MRS instruction would. */ 1700 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); 1701 1702 /* 1703 * Return a pointer to the location where we currently store the 1704 * stack pointer for the requested security state and thread mode. 1705 * This pointer will become invalid if the CPU state is updated 1706 * such that the stack pointers are switched around (eg changing 1707 * the SPSEL control bit). 1708 */ 1709 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, 1710 bool threadmode, bool spsel); 1711 1712 bool el_is_in_host(CPUARMState *env, int el); 1713 1714 void aa32_max_features(ARMCPU *cpu); 1715 int exception_target_el(CPUARMState *env); 1716 bool arm_singlestep_active(CPUARMState *env); 1717 bool arm_generate_debug_exceptions(CPUARMState *env); 1718 1719 /** 1720 * pauth_ptr_mask: 1721 * @param: parameters defining the MMU setup 1722 * 1723 * Return a mask of the address bits that contain the authentication code, 1724 * given the MMU config defined by @param. 1725 */ 1726 static inline uint64_t pauth_ptr_mask(ARMVAParameters param) 1727 { 1728 int bot_pac_bit = 64 - param.tsz; 1729 int top_pac_bit = 64 - 8 * param.tbi; 1730 1731 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); 1732 } 1733 1734 /* Add the cpreg definitions for debug related system registers */ 1735 void define_debug_regs(ARMCPU *cpu); 1736 1737 /* Effective value of MDCR_EL2 */ 1738 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1739 { 1740 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1741 } 1742 1743 /* Powers of 2 for sve_vq_map et al. */ 1744 #define SVE_VQ_POW2_MAP \ 1745 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1746 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1747 1748 /* 1749 * Return true if it is possible to take a fine-grained-trap to EL2. 1750 */ 1751 static inline bool arm_fgt_active(CPUARMState *env, int el) 1752 { 1753 /* 1754 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps 1755 * that can affect EL0, but it is harmless to do the test also for 1756 * traps on registers that are only accessible at EL1 because if the test 1757 * returns true then we can't be executing at EL1 anyway. 1758 * FGT traps only happen when EL2 is enabled and EL1 is AArch64; 1759 * traps from AArch32 only happen for the EL0 is AArch32 case. 1760 */ 1761 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && 1762 el < 2 && arm_is_el2_enabled(env) && 1763 arm_el_is_aa64(env, 1) && 1764 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && 1765 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); 1766 } 1767 1768 void assert_hflags_rebuild_correctly(CPUARMState *env); 1769 1770 /* 1771 * Although the ARM implementation of hardware assisted debugging 1772 * allows for different breakpoints per-core, the current GDB 1773 * interface treats them as a global pool of registers (which seems to 1774 * be the case for x86, ppc and s390). As a result we store one copy 1775 * of registers which is used for all active cores. 1776 * 1777 * Write access is serialised by virtue of the GDB protocol which 1778 * updates things. Read access (i.e. when the values are copied to the 1779 * vCPU) is also gated by GDB's run control. 1780 * 1781 * This is not unreasonable as most of the time debugging kernels you 1782 * never know which core will eventually execute your function. 1783 */ 1784 1785 typedef struct { 1786 uint64_t bcr; 1787 uint64_t bvr; 1788 } HWBreakpoint; 1789 1790 /* 1791 * The watchpoint registers can cover more area than the requested 1792 * watchpoint so we need to store the additional information 1793 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub 1794 * when the watchpoint is hit. 1795 */ 1796 typedef struct { 1797 uint64_t wcr; 1798 uint64_t wvr; 1799 CPUWatchpoint details; 1800 } HWWatchpoint; 1801 1802 /* Maximum and current break/watch point counts */ 1803 extern int max_hw_bps, max_hw_wps; 1804 extern GArray *hw_breakpoints, *hw_watchpoints; 1805 1806 #define cur_hw_wps (hw_watchpoints->len) 1807 #define cur_hw_bps (hw_breakpoints->len) 1808 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) 1809 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) 1810 1811 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); 1812 int insert_hw_breakpoint(target_ulong pc); 1813 int delete_hw_breakpoint(target_ulong pc); 1814 1815 bool check_watchpoint_in_range(int i, target_ulong addr); 1816 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); 1817 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1818 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1819 1820 /* Return the current value of the system counter in ticks */ 1821 uint64_t gt_get_countervalue(CPUARMState *env); 1822 /* 1823 * Return the currently applicable offset between the system counter 1824 * and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2). 1825 */ 1826 uint64_t gt_virt_cnt_offset(CPUARMState *env); 1827 #endif 1828