1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 32 /* register banks for CPU modes */ 33 #define BANK_USRSYS 0 34 #define BANK_SVC 1 35 #define BANK_ABT 2 36 #define BANK_UND 3 37 #define BANK_IRQ 4 38 #define BANK_FIQ 5 39 #define BANK_HYP 6 40 #define BANK_MON 7 41 42 static inline bool excp_is_internal(int excp) 43 { 44 /* Return true if this exception number represents a QEMU-internal 45 * exception that will not be passed to the guest. 46 */ 47 return excp == EXCP_INTERRUPT 48 || excp == EXCP_HLT 49 || excp == EXCP_DEBUG 50 || excp == EXCP_HALTED 51 || excp == EXCP_EXCEPTION_EXIT 52 || excp == EXCP_KERNEL_TRAP 53 || excp == EXCP_SEMIHOST; 54 } 55 56 /* Scale factor for generic timers, ie number of ns per tick. 57 * This gives a 62.5MHz timer. 58 */ 59 #define GTIMER_SCALE 16 60 61 /* Bit definitions for the v7M CONTROL register */ 62 FIELD(V7M_CONTROL, NPRIV, 0, 1) 63 FIELD(V7M_CONTROL, SPSEL, 1, 1) 64 FIELD(V7M_CONTROL, FPCA, 2, 1) 65 FIELD(V7M_CONTROL, SFPA, 3, 1) 66 67 /* Bit definitions for v7M exception return payload */ 68 FIELD(V7M_EXCRET, ES, 0, 1) 69 FIELD(V7M_EXCRET, RES0, 1, 1) 70 FIELD(V7M_EXCRET, SPSEL, 2, 1) 71 FIELD(V7M_EXCRET, MODE, 3, 1) 72 FIELD(V7M_EXCRET, FTYPE, 4, 1) 73 FIELD(V7M_EXCRET, DCRS, 5, 1) 74 FIELD(V7M_EXCRET, S, 6, 1) 75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 76 77 /* Minimum value which is a magic number for exception return */ 78 #define EXC_RETURN_MIN_MAGIC 0xff000000 79 /* Minimum number which is a magic number for function or exception return 80 * when using v8M security extension 81 */ 82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 83 84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 85 FIELD(DBGWCR, E, 0, 1) 86 FIELD(DBGWCR, PAC, 1, 2) 87 FIELD(DBGWCR, LSC, 3, 2) 88 FIELD(DBGWCR, BAS, 5, 8) 89 FIELD(DBGWCR, HMC, 13, 1) 90 FIELD(DBGWCR, SSC, 14, 2) 91 FIELD(DBGWCR, LBN, 16, 4) 92 FIELD(DBGWCR, WT, 20, 1) 93 FIELD(DBGWCR, MASK, 24, 5) 94 FIELD(DBGWCR, SSCE, 29, 1) 95 96 /* We use a few fake FSR values for internal purposes in M profile. 97 * M profile cores don't have A/R format FSRs, but currently our 98 * get_phys_addr() code assumes A/R profile and reports failures via 99 * an A/R format FSR value. We then translate that into the proper 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 101 * Mostly the FSR values we use for this are those defined for v7PMSA, 102 * since we share some of that codepath. A few kinds of fault are 103 * only for M profile and have no A/R equivalent, though, so we have 104 * to pick a value from the reserved range (which we never otherwise 105 * generate) to use for these. 106 * These values will never be visible to the guest. 107 */ 108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 110 111 /** 112 * raise_exception: Raise the specified exception. 113 * Raise a guest exception with the specified value, syndrome register 114 * and target exception level. This should be called from helper functions, 115 * and never returns because we will longjump back up to the CPU main loop. 116 */ 117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 118 uint32_t syndrome, uint32_t target_el); 119 120 /* 121 * Similarly, but also use unwinding to restore cpu state. 122 */ 123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 124 uint32_t syndrome, uint32_t target_el, 125 uintptr_t ra); 126 127 /* 128 * For AArch64, map a given EL to an index in the banked_spsr array. 129 * Note that this mapping and the AArch32 mapping defined in bank_number() 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 131 * mandated mapping between each other. 132 */ 133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 134 { 135 static const unsigned int map[4] = { 136 [1] = BANK_SVC, /* EL1. */ 137 [2] = BANK_HYP, /* EL2. */ 138 [3] = BANK_MON, /* EL3. */ 139 }; 140 assert(el >= 1 && el <= 3); 141 return map[el]; 142 } 143 144 /* Map CPU modes onto saved register banks. */ 145 static inline int bank_number(int mode) 146 { 147 switch (mode) { 148 case ARM_CPU_MODE_USR: 149 case ARM_CPU_MODE_SYS: 150 return BANK_USRSYS; 151 case ARM_CPU_MODE_SVC: 152 return BANK_SVC; 153 case ARM_CPU_MODE_ABT: 154 return BANK_ABT; 155 case ARM_CPU_MODE_UND: 156 return BANK_UND; 157 case ARM_CPU_MODE_IRQ: 158 return BANK_IRQ; 159 case ARM_CPU_MODE_FIQ: 160 return BANK_FIQ; 161 case ARM_CPU_MODE_HYP: 162 return BANK_HYP; 163 case ARM_CPU_MODE_MON: 164 return BANK_MON; 165 } 166 g_assert_not_reached(); 167 } 168 169 /** 170 * r14_bank_number: Map CPU mode onto register bank for r14 171 * 172 * Given an AArch32 CPU mode, return the index into the saved register 173 * banks to use for the R14 (LR) in that mode. This is the same as 174 * bank_number(), except for the special case of Hyp mode, where 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 176 * This should be used as the index into env->banked_r14[], and 177 * bank_number() used for the index into env->banked_r13[] and 178 * env->banked_spsr[]. 179 */ 180 static inline int r14_bank_number(int mode) 181 { 182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 183 } 184 185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 186 void arm_translate_init(void); 187 188 #ifdef CONFIG_TCG 189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 190 #endif /* CONFIG_TCG */ 191 192 enum arm_fprounding { 193 FPROUNDING_TIEEVEN, 194 FPROUNDING_POSINF, 195 FPROUNDING_NEGINF, 196 FPROUNDING_ZERO, 197 FPROUNDING_TIEAWAY, 198 FPROUNDING_ODD 199 }; 200 201 int arm_rmode_to_sf(int rmode); 202 203 static inline void aarch64_save_sp(CPUARMState *env, int el) 204 { 205 if (env->pstate & PSTATE_SP) { 206 env->sp_el[el] = env->xregs[31]; 207 } else { 208 env->sp_el[0] = env->xregs[31]; 209 } 210 } 211 212 static inline void aarch64_restore_sp(CPUARMState *env, int el) 213 { 214 if (env->pstate & PSTATE_SP) { 215 env->xregs[31] = env->sp_el[el]; 216 } else { 217 env->xregs[31] = env->sp_el[0]; 218 } 219 } 220 221 static inline void update_spsel(CPUARMState *env, uint32_t imm) 222 { 223 unsigned int cur_el = arm_current_el(env); 224 /* Update PSTATE SPSel bit; this requires us to update the 225 * working stack pointer in xregs[31]. 226 */ 227 if (!((imm ^ env->pstate) & PSTATE_SP)) { 228 return; 229 } 230 aarch64_save_sp(env, cur_el); 231 env->pstate = deposit32(env->pstate, 0, 1, imm); 232 233 /* We rely on illegal updates to SPsel from EL0 to get trapped 234 * at translation time. 235 */ 236 assert(cur_el >= 1 && cur_el <= 3); 237 aarch64_restore_sp(env, cur_el); 238 } 239 240 /* 241 * arm_pamax 242 * @cpu: ARMCPU 243 * 244 * Returns the implementation defined bit-width of physical addresses. 245 * The ARMv8 reference manuals refer to this as PAMax(). 246 */ 247 unsigned int arm_pamax(ARMCPU *cpu); 248 249 /* Return true if extended addresses are enabled. 250 * This is always the case if our translation regime is 64 bit, 251 * but depends on TTBCR.EAE for 32 bit. 252 */ 253 static inline bool extended_addresses_enabled(CPUARMState *env) 254 { 255 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 256 return arm_el_is_aa64(env, 1) || 257 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 258 } 259 260 /* Update a QEMU watchpoint based on the information the guest has set in the 261 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 262 */ 263 void hw_watchpoint_update(ARMCPU *cpu, int n); 264 /* Update the QEMU watchpoints for every guest watchpoint. This does a 265 * complete delete-and-reinstate of the QEMU watchpoint list and so is 266 * suitable for use after migration or on reset. 267 */ 268 void hw_watchpoint_update_all(ARMCPU *cpu); 269 /* Update a QEMU breakpoint based on the information the guest has set in the 270 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 271 */ 272 void hw_breakpoint_update(ARMCPU *cpu, int n); 273 /* Update the QEMU breakpoints for every guest breakpoint. This does a 274 * complete delete-and-reinstate of the QEMU breakpoint list and so is 275 * suitable for use after migration or on reset. 276 */ 277 void hw_breakpoint_update_all(ARMCPU *cpu); 278 279 /* Callback function for checking if a breakpoint should trigger. */ 280 bool arm_debug_check_breakpoint(CPUState *cs); 281 282 /* Callback function for checking if a watchpoint should trigger. */ 283 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 284 285 /* Adjust addresses (in BE32 mode) before testing against watchpoint 286 * addresses. 287 */ 288 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 289 290 /* Callback function for when a watchpoint or breakpoint triggers. */ 291 void arm_debug_excp_handler(CPUState *cs); 292 293 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 294 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 295 { 296 return false; 297 } 298 static inline void arm_handle_psci_call(ARMCPU *cpu) 299 { 300 g_assert_not_reached(); 301 } 302 #else 303 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 304 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 305 /* Actually handle a PSCI call */ 306 void arm_handle_psci_call(ARMCPU *cpu); 307 #endif 308 309 /** 310 * arm_clear_exclusive: clear the exclusive monitor 311 * @env: CPU env 312 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 313 */ 314 static inline void arm_clear_exclusive(CPUARMState *env) 315 { 316 env->exclusive_addr = -1; 317 } 318 319 /** 320 * ARMFaultType: type of an ARM MMU fault 321 * This corresponds to the v8A pseudocode's Fault enumeration, 322 * with extensions for QEMU internal conditions. 323 */ 324 typedef enum ARMFaultType { 325 ARMFault_None, 326 ARMFault_AccessFlag, 327 ARMFault_Alignment, 328 ARMFault_Background, 329 ARMFault_Domain, 330 ARMFault_Permission, 331 ARMFault_Translation, 332 ARMFault_AddressSize, 333 ARMFault_SyncExternal, 334 ARMFault_SyncExternalOnWalk, 335 ARMFault_SyncParity, 336 ARMFault_SyncParityOnWalk, 337 ARMFault_AsyncParity, 338 ARMFault_AsyncExternal, 339 ARMFault_Debug, 340 ARMFault_TLBConflict, 341 ARMFault_Lockdown, 342 ARMFault_Exclusive, 343 ARMFault_ICacheMaint, 344 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 345 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 346 } ARMFaultType; 347 348 /** 349 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 350 * @type: Type of fault 351 * @level: Table walk level (for translation, access flag and permission faults) 352 * @domain: Domain of the fault address (for non-LPAE CPUs only) 353 * @s2addr: Address that caused a fault at stage 2 354 * @stage2: True if we faulted at stage 2 355 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 356 * @s1ns: True if we faulted on a non-secure IPA while in secure state 357 * @ea: True if we should set the EA (external abort type) bit in syndrome 358 */ 359 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 360 struct ARMMMUFaultInfo { 361 ARMFaultType type; 362 target_ulong s2addr; 363 int level; 364 int domain; 365 bool stage2; 366 bool s1ptw; 367 bool s1ns; 368 bool ea; 369 }; 370 371 /** 372 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 373 * Compare pseudocode EncodeSDFSC(), though unlike that function 374 * we set up a whole FSR-format code including domain field and 375 * putting the high bit of the FSC into bit 10. 376 */ 377 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 378 { 379 uint32_t fsc; 380 381 switch (fi->type) { 382 case ARMFault_None: 383 return 0; 384 case ARMFault_AccessFlag: 385 fsc = fi->level == 1 ? 0x3 : 0x6; 386 break; 387 case ARMFault_Alignment: 388 fsc = 0x1; 389 break; 390 case ARMFault_Permission: 391 fsc = fi->level == 1 ? 0xd : 0xf; 392 break; 393 case ARMFault_Domain: 394 fsc = fi->level == 1 ? 0x9 : 0xb; 395 break; 396 case ARMFault_Translation: 397 fsc = fi->level == 1 ? 0x5 : 0x7; 398 break; 399 case ARMFault_SyncExternal: 400 fsc = 0x8 | (fi->ea << 12); 401 break; 402 case ARMFault_SyncExternalOnWalk: 403 fsc = fi->level == 1 ? 0xc : 0xe; 404 fsc |= (fi->ea << 12); 405 break; 406 case ARMFault_SyncParity: 407 fsc = 0x409; 408 break; 409 case ARMFault_SyncParityOnWalk: 410 fsc = fi->level == 1 ? 0x40c : 0x40e; 411 break; 412 case ARMFault_AsyncParity: 413 fsc = 0x408; 414 break; 415 case ARMFault_AsyncExternal: 416 fsc = 0x406 | (fi->ea << 12); 417 break; 418 case ARMFault_Debug: 419 fsc = 0x2; 420 break; 421 case ARMFault_TLBConflict: 422 fsc = 0x400; 423 break; 424 case ARMFault_Lockdown: 425 fsc = 0x404; 426 break; 427 case ARMFault_Exclusive: 428 fsc = 0x405; 429 break; 430 case ARMFault_ICacheMaint: 431 fsc = 0x4; 432 break; 433 case ARMFault_Background: 434 fsc = 0x0; 435 break; 436 case ARMFault_QEMU_NSCExec: 437 fsc = M_FAKE_FSR_NSC_EXEC; 438 break; 439 case ARMFault_QEMU_SFault: 440 fsc = M_FAKE_FSR_SFAULT; 441 break; 442 default: 443 /* Other faults can't occur in a context that requires a 444 * short-format status code. 445 */ 446 g_assert_not_reached(); 447 } 448 449 fsc |= (fi->domain << 4); 450 return fsc; 451 } 452 453 /** 454 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 455 * Compare pseudocode EncodeLDFSC(), though unlike that function 456 * we fill in also the LPAE bit 9 of a DFSR format. 457 */ 458 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 459 { 460 uint32_t fsc; 461 462 switch (fi->type) { 463 case ARMFault_None: 464 return 0; 465 case ARMFault_AddressSize: 466 assert(fi->level >= -1 && fi->level <= 3); 467 if (fi->level < 0) { 468 fsc = 0b101001; 469 } else { 470 fsc = fi->level; 471 } 472 break; 473 case ARMFault_AccessFlag: 474 assert(fi->level >= 0 && fi->level <= 3); 475 fsc = 0b001000 | fi->level; 476 break; 477 case ARMFault_Permission: 478 assert(fi->level >= 0 && fi->level <= 3); 479 fsc = 0b001100 | fi->level; 480 break; 481 case ARMFault_Translation: 482 assert(fi->level >= -1 && fi->level <= 3); 483 if (fi->level < 0) { 484 fsc = 0b101011; 485 } else { 486 fsc = 0b000100 | fi->level; 487 } 488 break; 489 case ARMFault_SyncExternal: 490 fsc = 0x10 | (fi->ea << 12); 491 break; 492 case ARMFault_SyncExternalOnWalk: 493 assert(fi->level >= -1 && fi->level <= 3); 494 if (fi->level < 0) { 495 fsc = 0b010011; 496 } else { 497 fsc = 0b010100 | fi->level; 498 } 499 fsc |= fi->ea << 12; 500 break; 501 case ARMFault_SyncParity: 502 fsc = 0x18; 503 break; 504 case ARMFault_SyncParityOnWalk: 505 assert(fi->level >= -1 && fi->level <= 3); 506 if (fi->level < 0) { 507 fsc = 0b011011; 508 } else { 509 fsc = 0b011100 | fi->level; 510 } 511 break; 512 case ARMFault_AsyncParity: 513 fsc = 0x19; 514 break; 515 case ARMFault_AsyncExternal: 516 fsc = 0x11 | (fi->ea << 12); 517 break; 518 case ARMFault_Alignment: 519 fsc = 0x21; 520 break; 521 case ARMFault_Debug: 522 fsc = 0x22; 523 break; 524 case ARMFault_TLBConflict: 525 fsc = 0x30; 526 break; 527 case ARMFault_Lockdown: 528 fsc = 0x34; 529 break; 530 case ARMFault_Exclusive: 531 fsc = 0x35; 532 break; 533 default: 534 /* Other faults can't occur in a context that requires a 535 * long-format status code. 536 */ 537 g_assert_not_reached(); 538 } 539 540 fsc |= 1 << 9; 541 return fsc; 542 } 543 544 static inline bool arm_extabort_type(MemTxResult result) 545 { 546 /* The EA bit in syndromes and fault status registers is an 547 * IMPDEF classification of external aborts. ARM implementations 548 * usually use this to indicate AXI bus Decode error (0) or 549 * Slave error (1); in QEMU we follow that. 550 */ 551 return result != MEMTX_DECODE_ERROR; 552 } 553 554 #ifdef CONFIG_USER_ONLY 555 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 556 MMUAccessType access_type, 557 bool maperr, uintptr_t ra); 558 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 559 MMUAccessType access_type, uintptr_t ra); 560 #else 561 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 562 MMUAccessType access_type, int mmu_idx, 563 bool probe, uintptr_t retaddr); 564 #endif 565 566 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 567 { 568 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 569 } 570 571 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 572 { 573 if (arm_feature(env, ARM_FEATURE_M)) { 574 return mmu_idx | ARM_MMU_IDX_M; 575 } else { 576 return mmu_idx | ARM_MMU_IDX_A; 577 } 578 } 579 580 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 581 { 582 /* AArch64 is always a-profile. */ 583 return mmu_idx | ARM_MMU_IDX_A; 584 } 585 586 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 587 588 /* 589 * Return the MMU index for a v7M CPU with all relevant information 590 * manually specified. 591 */ 592 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 593 bool secstate, bool priv, bool negpri); 594 595 /* 596 * Return the MMU index for a v7M CPU in the specified security and 597 * privilege state. 598 */ 599 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 600 bool secstate, bool priv); 601 602 /* Return the MMU index for a v7M CPU in the specified security state */ 603 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 604 605 /* Return true if the translation regime is using LPAE format page tables */ 606 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 607 608 /* 609 * Return true if the stage 1 translation regime is using LPAE 610 * format page tables 611 */ 612 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 613 614 /* Raise a data fault alignment exception for the specified virtual address */ 615 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 616 MMUAccessType access_type, 617 int mmu_idx, uintptr_t retaddr); 618 619 /* arm_cpu_do_transaction_failed: handle a memory system error response 620 * (eg "no device/memory present at address") by raising an external abort 621 * exception 622 */ 623 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 624 vaddr addr, unsigned size, 625 MMUAccessType access_type, 626 int mmu_idx, MemTxAttrs attrs, 627 MemTxResult response, uintptr_t retaddr); 628 629 /* Call any registered EL change hooks */ 630 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 631 { 632 ARMELChangeHook *hook, *next; 633 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 634 hook->hook(cpu, hook->opaque); 635 } 636 } 637 static inline void arm_call_el_change_hook(ARMCPU *cpu) 638 { 639 ARMELChangeHook *hook, *next; 640 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 641 hook->hook(cpu, hook->opaque); 642 } 643 } 644 645 /* Return true if this address translation regime has two ranges. */ 646 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 647 { 648 switch (mmu_idx) { 649 case ARMMMUIdx_Stage1_E0: 650 case ARMMMUIdx_Stage1_E1: 651 case ARMMMUIdx_Stage1_E1_PAN: 652 case ARMMMUIdx_E10_0: 653 case ARMMMUIdx_E10_1: 654 case ARMMMUIdx_E10_1_PAN: 655 case ARMMMUIdx_E20_0: 656 case ARMMMUIdx_E20_2: 657 case ARMMMUIdx_E20_2_PAN: 658 return true; 659 default: 660 return false; 661 } 662 } 663 664 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 665 { 666 switch (mmu_idx) { 667 case ARMMMUIdx_Stage1_E1_PAN: 668 case ARMMMUIdx_E10_1_PAN: 669 case ARMMMUIdx_E20_2_PAN: 670 return true; 671 default: 672 return false; 673 } 674 } 675 676 /* Return the exception level which controls this address translation regime */ 677 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 678 { 679 switch (mmu_idx) { 680 case ARMMMUIdx_E20_0: 681 case ARMMMUIdx_E20_2: 682 case ARMMMUIdx_E20_2_PAN: 683 case ARMMMUIdx_Stage2: 684 case ARMMMUIdx_Stage2_S: 685 case ARMMMUIdx_E2: 686 return 2; 687 case ARMMMUIdx_E3: 688 return 3; 689 case ARMMMUIdx_E10_0: 690 case ARMMMUIdx_Stage1_E0: 691 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 692 case ARMMMUIdx_Stage1_E1: 693 case ARMMMUIdx_Stage1_E1_PAN: 694 case ARMMMUIdx_E10_1: 695 case ARMMMUIdx_E10_1_PAN: 696 case ARMMMUIdx_MPrivNegPri: 697 case ARMMMUIdx_MUserNegPri: 698 case ARMMMUIdx_MPriv: 699 case ARMMMUIdx_MUser: 700 case ARMMMUIdx_MSPrivNegPri: 701 case ARMMMUIdx_MSUserNegPri: 702 case ARMMMUIdx_MSPriv: 703 case ARMMMUIdx_MSUser: 704 return 1; 705 default: 706 g_assert_not_reached(); 707 } 708 } 709 710 /* Return the SCTLR value which controls this address translation regime */ 711 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 712 { 713 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 714 } 715 716 /* 717 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 718 * and the Non-Secure stage 2 translation regimes (and hence which are 719 * not present in VSTCR_EL2). 720 */ 721 #define VTCR_SHARED_FIELD_MASK \ 722 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 723 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 724 R_VTCR_DS_MASK) 725 726 /* Return the value of the TCR controlling this translation regime */ 727 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 728 { 729 if (mmu_idx == ARMMMUIdx_Stage2) { 730 return env->cp15.vtcr_el2; 731 } 732 if (mmu_idx == ARMMMUIdx_Stage2_S) { 733 /* 734 * Secure stage 2 shares fields from VTCR_EL2. We merge those 735 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 736 * value so the callers don't need to special case this. 737 * 738 * If a future architecture change defines bits in VSTCR_EL2 that 739 * overlap with these VTCR_EL2 fields we may need to revisit this. 740 */ 741 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 742 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 743 return v; 744 } 745 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 746 } 747 748 /** 749 * arm_num_brps: Return number of implemented breakpoints. 750 * Note that the ID register BRPS field is "number of bps - 1", 751 * and we return the actual number of breakpoints. 752 */ 753 static inline int arm_num_brps(ARMCPU *cpu) 754 { 755 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 756 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 757 } else { 758 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 759 } 760 } 761 762 /** 763 * arm_num_wrps: Return number of implemented watchpoints. 764 * Note that the ID register WRPS field is "number of wps - 1", 765 * and we return the actual number of watchpoints. 766 */ 767 static inline int arm_num_wrps(ARMCPU *cpu) 768 { 769 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 770 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 771 } else { 772 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 773 } 774 } 775 776 /** 777 * arm_num_ctx_cmps: Return number of implemented context comparators. 778 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 779 * and we return the actual number of comparators. 780 */ 781 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 782 { 783 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 784 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 785 } else { 786 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 787 } 788 } 789 790 /** 791 * v7m_using_psp: Return true if using process stack pointer 792 * Return true if the CPU is currently using the process stack 793 * pointer, or false if it is using the main stack pointer. 794 */ 795 static inline bool v7m_using_psp(CPUARMState *env) 796 { 797 /* Handler mode always uses the main stack; for thread mode 798 * the CONTROL.SPSEL bit determines the answer. 799 * Note that in v7M it is not possible to be in Handler mode with 800 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 801 */ 802 return !arm_v7m_is_handler_mode(env) && 803 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 804 } 805 806 /** 807 * v7m_sp_limit: Return SP limit for current CPU state 808 * Return the SP limit value for the current CPU security state 809 * and stack pointer. 810 */ 811 static inline uint32_t v7m_sp_limit(CPUARMState *env) 812 { 813 if (v7m_using_psp(env)) { 814 return env->v7m.psplim[env->v7m.secure]; 815 } else { 816 return env->v7m.msplim[env->v7m.secure]; 817 } 818 } 819 820 /** 821 * v7m_cpacr_pass: 822 * Return true if the v7M CPACR permits access to the FPU for the specified 823 * security state and privilege level. 824 */ 825 static inline bool v7m_cpacr_pass(CPUARMState *env, 826 bool is_secure, bool is_priv) 827 { 828 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 829 case 0: 830 case 2: /* UNPREDICTABLE: we treat like 0 */ 831 return false; 832 case 1: 833 return is_priv; 834 case 3: 835 return true; 836 default: 837 g_assert_not_reached(); 838 } 839 } 840 841 /** 842 * aarch32_mode_name(): Return name of the AArch32 CPU mode 843 * @psr: Program Status Register indicating CPU mode 844 * 845 * Returns, for debug logging purposes, a printable representation 846 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 847 * the low bits of the specified PSR. 848 */ 849 static inline const char *aarch32_mode_name(uint32_t psr) 850 { 851 static const char cpu_mode_names[16][4] = { 852 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 853 "???", "???", "hyp", "und", "???", "???", "???", "sys" 854 }; 855 856 return cpu_mode_names[psr & 0xf]; 857 } 858 859 /** 860 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 861 * 862 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 863 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 864 * Must be called with the iothread lock held. 865 */ 866 void arm_cpu_update_virq(ARMCPU *cpu); 867 868 /** 869 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 870 * 871 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 872 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 873 * Must be called with the iothread lock held. 874 */ 875 void arm_cpu_update_vfiq(ARMCPU *cpu); 876 877 /** 878 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 879 * 880 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 881 * following a change to the HCR_EL2.VSE bit. 882 */ 883 void arm_cpu_update_vserr(ARMCPU *cpu); 884 885 /** 886 * arm_mmu_idx_el: 887 * @env: The cpu environment 888 * @el: The EL to use. 889 * 890 * Return the full ARMMMUIdx for the translation regime for EL. 891 */ 892 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 893 894 /** 895 * arm_mmu_idx: 896 * @env: The cpu environment 897 * 898 * Return the full ARMMMUIdx for the current translation regime. 899 */ 900 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 901 902 /** 903 * arm_stage1_mmu_idx: 904 * @env: The cpu environment 905 * 906 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 907 */ 908 #ifdef CONFIG_USER_ONLY 909 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 910 { 911 return ARMMMUIdx_Stage1_E0; 912 } 913 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 914 { 915 return ARMMMUIdx_Stage1_E0; 916 } 917 #else 918 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 919 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 920 #endif 921 922 /** 923 * arm_mmu_idx_is_stage1_of_2: 924 * @mmu_idx: The ARMMMUIdx to test 925 * 926 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 927 * first stage of a two stage regime. 928 */ 929 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 930 { 931 switch (mmu_idx) { 932 case ARMMMUIdx_Stage1_E0: 933 case ARMMMUIdx_Stage1_E1: 934 case ARMMMUIdx_Stage1_E1_PAN: 935 return true; 936 default: 937 return false; 938 } 939 } 940 941 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 942 const ARMISARegisters *id) 943 { 944 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 945 946 if ((features >> ARM_FEATURE_V4T) & 1) { 947 valid |= CPSR_T; 948 } 949 if ((features >> ARM_FEATURE_V5) & 1) { 950 valid |= CPSR_Q; /* V5TE in reality*/ 951 } 952 if ((features >> ARM_FEATURE_V6) & 1) { 953 valid |= CPSR_E | CPSR_GE; 954 } 955 if ((features >> ARM_FEATURE_THUMB2) & 1) { 956 valid |= CPSR_IT; 957 } 958 if (isar_feature_aa32_jazelle(id)) { 959 valid |= CPSR_J; 960 } 961 if (isar_feature_aa32_pan(id)) { 962 valid |= CPSR_PAN; 963 } 964 if (isar_feature_aa32_dit(id)) { 965 valid |= CPSR_DIT; 966 } 967 if (isar_feature_aa32_ssbs(id)) { 968 valid |= CPSR_SSBS; 969 } 970 971 return valid; 972 } 973 974 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 975 { 976 uint32_t valid; 977 978 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 979 if (isar_feature_aa64_bti(id)) { 980 valid |= PSTATE_BTYPE; 981 } 982 if (isar_feature_aa64_pan(id)) { 983 valid |= PSTATE_PAN; 984 } 985 if (isar_feature_aa64_uao(id)) { 986 valid |= PSTATE_UAO; 987 } 988 if (isar_feature_aa64_dit(id)) { 989 valid |= PSTATE_DIT; 990 } 991 if (isar_feature_aa64_ssbs(id)) { 992 valid |= PSTATE_SSBS; 993 } 994 if (isar_feature_aa64_mte(id)) { 995 valid |= PSTATE_TCO; 996 } 997 998 return valid; 999 } 1000 1001 /* Granule size (i.e. page size) */ 1002 typedef enum ARMGranuleSize { 1003 /* Same order as TG0 encoding */ 1004 Gran4K, 1005 Gran64K, 1006 Gran16K, 1007 GranInvalid, 1008 } ARMGranuleSize; 1009 1010 /** 1011 * arm_granule_bits: Return address size of the granule in bits 1012 * 1013 * Return the address size of the granule in bits. This corresponds 1014 * to the pseudocode TGxGranuleBits(). 1015 */ 1016 static inline int arm_granule_bits(ARMGranuleSize gran) 1017 { 1018 switch (gran) { 1019 case Gran64K: 1020 return 16; 1021 case Gran16K: 1022 return 14; 1023 case Gran4K: 1024 return 12; 1025 default: 1026 g_assert_not_reached(); 1027 } 1028 } 1029 1030 /* 1031 * Parameters of a given virtual address, as extracted from the 1032 * translation control register (TCR) for a given regime. 1033 */ 1034 typedef struct ARMVAParameters { 1035 unsigned tsz : 8; 1036 unsigned ps : 3; 1037 unsigned sh : 2; 1038 unsigned select : 1; 1039 bool tbi : 1; 1040 bool epd : 1; 1041 bool hpd : 1; 1042 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1043 bool ds : 1; 1044 ARMGranuleSize gran : 2; 1045 } ARMVAParameters; 1046 1047 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1048 ARMMMUIdx mmu_idx, bool data); 1049 1050 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1051 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1052 1053 /* Determine if allocation tags are available. */ 1054 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1055 uint64_t sctlr) 1056 { 1057 if (el < 3 1058 && arm_feature(env, ARM_FEATURE_EL3) 1059 && !(env->cp15.scr_el3 & SCR_ATA)) { 1060 return false; 1061 } 1062 if (el < 2 && arm_is_el2_enabled(env)) { 1063 uint64_t hcr = arm_hcr_el2_eff(env); 1064 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1065 return false; 1066 } 1067 } 1068 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1069 return sctlr != 0; 1070 } 1071 1072 #ifndef CONFIG_USER_ONLY 1073 1074 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1075 typedef struct V8M_SAttributes { 1076 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1077 bool ns; 1078 bool nsc; 1079 uint8_t sregion; 1080 bool srvalid; 1081 uint8_t iregion; 1082 bool irvalid; 1083 } V8M_SAttributes; 1084 1085 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1086 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1087 bool secure, V8M_SAttributes *sattrs); 1088 1089 /* Cacheability and shareability attributes for a memory access */ 1090 typedef struct ARMCacheAttrs { 1091 /* 1092 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1093 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1094 */ 1095 unsigned int attrs:8; 1096 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1097 bool is_s2_format:1; 1098 bool guarded:1; /* guarded bit of the v8-64 PTE */ 1099 } ARMCacheAttrs; 1100 1101 /* Fields that are valid upon success. */ 1102 typedef struct GetPhysAddrResult { 1103 CPUTLBEntryFull f; 1104 ARMCacheAttrs cacheattrs; 1105 } GetPhysAddrResult; 1106 1107 /** 1108 * get_phys_addr_with_secure: get the physical address for a virtual address 1109 * @env: CPUARMState 1110 * @address: virtual address to get physical address for 1111 * @access_type: 0 for read, 1 for write, 2 for execute 1112 * @mmu_idx: MMU index indicating required translation regime 1113 * @is_secure: security state for the access 1114 * @result: set on translation success. 1115 * @fi: set to fault info if the translation fails 1116 * 1117 * Find the physical address corresponding to the given virtual address, 1118 * by doing a translation table walk on MMU based systems or using the 1119 * MPU state on MPU based systems. 1120 * 1121 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1122 * prot and page_size may not be filled in, and the populated fsr value provides 1123 * information on why the translation aborted, in the format of a 1124 * DFSR/IFSR fault register, with the following caveats: 1125 * * we honour the short vs long DFSR format differences. 1126 * * the WnR bit is never set (the caller must do this). 1127 * * for PSMAv5 based systems we don't bother to return a full FSR format 1128 * value. 1129 */ 1130 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 1131 MMUAccessType access_type, 1132 ARMMMUIdx mmu_idx, bool is_secure, 1133 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1134 __attribute__((nonnull)); 1135 1136 /** 1137 * get_phys_addr: get the physical address for a virtual address 1138 * @env: CPUARMState 1139 * @address: virtual address to get physical address for 1140 * @access_type: 0 for read, 1 for write, 2 for execute 1141 * @mmu_idx: MMU index indicating required translation regime 1142 * @result: set on translation success. 1143 * @fi: set to fault info if the translation fails 1144 * 1145 * Similarly, but use the security regime of @mmu_idx. 1146 */ 1147 bool get_phys_addr(CPUARMState *env, target_ulong address, 1148 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1149 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1150 __attribute__((nonnull)); 1151 1152 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1153 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1154 bool is_secure, GetPhysAddrResult *result, 1155 ARMMMUFaultInfo *fi, uint32_t *mregion); 1156 1157 void arm_log_exception(CPUState *cs); 1158 1159 #endif /* !CONFIG_USER_ONLY */ 1160 1161 /* 1162 * The log2 of the words in the tag block, for GMID_EL1.BS. 1163 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1164 */ 1165 #define GMID_EL1_BS 6 1166 1167 /* 1168 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1169 * the same simd_desc() encoding due to restrictions on size. 1170 * Use these instead. 1171 */ 1172 FIELD(PREDDESC, OPRSZ, 0, 6) 1173 FIELD(PREDDESC, ESZ, 6, 2) 1174 FIELD(PREDDESC, DATA, 8, 24) 1175 1176 /* 1177 * The SVE simd_data field, for memory ops, contains either 1178 * rd (5 bits) or a shift count (2 bits). 1179 */ 1180 #define SVE_MTEDESC_SHIFT 5 1181 1182 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1183 FIELD(MTEDESC, MIDX, 0, 4) 1184 FIELD(MTEDESC, TBI, 4, 2) 1185 FIELD(MTEDESC, TCMA, 6, 2) 1186 FIELD(MTEDESC, WRITE, 8, 1) 1187 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */ 1188 1189 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1190 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1191 1192 static inline int allocation_tag_from_addr(uint64_t ptr) 1193 { 1194 return extract64(ptr, 56, 4); 1195 } 1196 1197 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1198 { 1199 return deposit64(ptr, 56, 4, rtag); 1200 } 1201 1202 /* Return true if tbi bits mean that the access is checked. */ 1203 static inline bool tbi_check(uint32_t desc, int bit55) 1204 { 1205 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1206 } 1207 1208 /* Return true if tcma bits mean that the access is unchecked. */ 1209 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1210 { 1211 /* 1212 * We had extracted bit55 and ptr_tag for other reasons, so fold 1213 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1214 */ 1215 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1216 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1217 return tcma && match; 1218 } 1219 1220 /* 1221 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1222 * for the tag to be present in the FAR_ELx register. But for user-only 1223 * mode, we do not have a TLB with which to implement this, so we must 1224 * remove the top byte. 1225 */ 1226 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1227 { 1228 #ifdef CONFIG_USER_ONLY 1229 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1230 ptr &= sextract64(ptr, 0, 56); 1231 #endif 1232 return ptr; 1233 } 1234 1235 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1236 { 1237 #ifdef CONFIG_USER_ONLY 1238 int64_t clean_ptr = sextract64(ptr, 0, 56); 1239 if (tbi_check(desc, clean_ptr < 0)) { 1240 ptr = clean_ptr; 1241 } 1242 #endif 1243 return ptr; 1244 } 1245 1246 /* Values for M-profile PSR.ECI for MVE insns */ 1247 enum MVEECIState { 1248 ECI_NONE = 0, /* No completed beats */ 1249 ECI_A0 = 1, /* Completed: A0 */ 1250 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1251 /* 3 is reserved */ 1252 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1253 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1254 /* All other values reserved */ 1255 }; 1256 1257 /* Definitions for the PMU registers */ 1258 #define PMCRN_MASK 0xf800 1259 #define PMCRN_SHIFT 11 1260 #define PMCRLP 0x80 1261 #define PMCRLC 0x40 1262 #define PMCRDP 0x20 1263 #define PMCRX 0x10 1264 #define PMCRD 0x8 1265 #define PMCRC 0x4 1266 #define PMCRP 0x2 1267 #define PMCRE 0x1 1268 /* 1269 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1270 * which can be written as 1 to trigger behaviour but which stay RAZ). 1271 */ 1272 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1273 1274 #define PMXEVTYPER_P 0x80000000 1275 #define PMXEVTYPER_U 0x40000000 1276 #define PMXEVTYPER_NSK 0x20000000 1277 #define PMXEVTYPER_NSU 0x10000000 1278 #define PMXEVTYPER_NSH 0x08000000 1279 #define PMXEVTYPER_M 0x04000000 1280 #define PMXEVTYPER_MT 0x02000000 1281 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1282 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1283 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1284 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1285 PMXEVTYPER_EVTCOUNT) 1286 1287 #define PMCCFILTR 0xf8000000 1288 #define PMCCFILTR_M PMXEVTYPER_M 1289 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1290 1291 static inline uint32_t pmu_num_counters(CPUARMState *env) 1292 { 1293 ARMCPU *cpu = env_archcpu(env); 1294 1295 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1296 } 1297 1298 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1299 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1300 { 1301 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1302 } 1303 1304 #ifdef TARGET_AARCH64 1305 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg); 1306 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg); 1307 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg); 1308 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg); 1309 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1310 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1311 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1312 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1313 #endif 1314 1315 #ifdef CONFIG_USER_ONLY 1316 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { } 1317 #else 1318 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu); 1319 #endif 1320 1321 bool el_is_in_host(CPUARMState *env, int el); 1322 1323 void aa32_max_features(ARMCPU *cpu); 1324 int exception_target_el(CPUARMState *env); 1325 bool arm_singlestep_active(CPUARMState *env); 1326 bool arm_generate_debug_exceptions(CPUARMState *env); 1327 1328 /* Add the cpreg definitions for debug related system registers */ 1329 void define_debug_regs(ARMCPU *cpu); 1330 1331 /* Effective value of MDCR_EL2 */ 1332 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1333 { 1334 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1335 } 1336 1337 /* Powers of 2 for sve_vq_map et al. */ 1338 #define SVE_VQ_POW2_MAP \ 1339 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1340 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1341 1342 #endif 1343