xref: /openbmc/qemu/target/arm/internals.h (revision ad1e84f5)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 #ifdef CONFIG_TCG
189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
190 #endif /* CONFIG_TCG */
191 
192 enum arm_fprounding {
193     FPROUNDING_TIEEVEN,
194     FPROUNDING_POSINF,
195     FPROUNDING_NEGINF,
196     FPROUNDING_ZERO,
197     FPROUNDING_TIEAWAY,
198     FPROUNDING_ODD
199 };
200 
201 int arm_rmode_to_sf(int rmode);
202 
203 static inline void aarch64_save_sp(CPUARMState *env, int el)
204 {
205     if (env->pstate & PSTATE_SP) {
206         env->sp_el[el] = env->xregs[31];
207     } else {
208         env->sp_el[0] = env->xregs[31];
209     }
210 }
211 
212 static inline void aarch64_restore_sp(CPUARMState *env, int el)
213 {
214     if (env->pstate & PSTATE_SP) {
215         env->xregs[31] = env->sp_el[el];
216     } else {
217         env->xregs[31] = env->sp_el[0];
218     }
219 }
220 
221 static inline void update_spsel(CPUARMState *env, uint32_t imm)
222 {
223     unsigned int cur_el = arm_current_el(env);
224     /* Update PSTATE SPSel bit; this requires us to update the
225      * working stack pointer in xregs[31].
226      */
227     if (!((imm ^ env->pstate) & PSTATE_SP)) {
228         return;
229     }
230     aarch64_save_sp(env, cur_el);
231     env->pstate = deposit32(env->pstate, 0, 1, imm);
232 
233     /* We rely on illegal updates to SPsel from EL0 to get trapped
234      * at translation time.
235      */
236     assert(cur_el >= 1 && cur_el <= 3);
237     aarch64_restore_sp(env, cur_el);
238 }
239 
240 /*
241  * arm_pamax
242  * @cpu: ARMCPU
243  *
244  * Returns the implementation defined bit-width of physical addresses.
245  * The ARMv8 reference manuals refer to this as PAMax().
246  */
247 unsigned int arm_pamax(ARMCPU *cpu);
248 
249 /* Return true if extended addresses are enabled.
250  * This is always the case if our translation regime is 64 bit,
251  * but depends on TTBCR.EAE for 32 bit.
252  */
253 static inline bool extended_addresses_enabled(CPUARMState *env)
254 {
255     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
256     return arm_el_is_aa64(env, 1) ||
257            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
258 }
259 
260 /* Update a QEMU watchpoint based on the information the guest has set in the
261  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
262  */
263 void hw_watchpoint_update(ARMCPU *cpu, int n);
264 /* Update the QEMU watchpoints for every guest watchpoint. This does a
265  * complete delete-and-reinstate of the QEMU watchpoint list and so is
266  * suitable for use after migration or on reset.
267  */
268 void hw_watchpoint_update_all(ARMCPU *cpu);
269 /* Update a QEMU breakpoint based on the information the guest has set in the
270  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
271  */
272 void hw_breakpoint_update(ARMCPU *cpu, int n);
273 /* Update the QEMU breakpoints for every guest breakpoint. This does a
274  * complete delete-and-reinstate of the QEMU breakpoint list and so is
275  * suitable for use after migration or on reset.
276  */
277 void hw_breakpoint_update_all(ARMCPU *cpu);
278 
279 /* Callback function for checking if a breakpoint should trigger. */
280 bool arm_debug_check_breakpoint(CPUState *cs);
281 
282 /* Callback function for checking if a watchpoint should trigger. */
283 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
284 
285 /* Adjust addresses (in BE32 mode) before testing against watchpoint
286  * addresses.
287  */
288 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
289 
290 /* Callback function for when a watchpoint or breakpoint triggers. */
291 void arm_debug_excp_handler(CPUState *cs);
292 
293 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
294 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
295 {
296     return false;
297 }
298 static inline void arm_handle_psci_call(ARMCPU *cpu)
299 {
300     g_assert_not_reached();
301 }
302 #else
303 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
304 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
305 /* Actually handle a PSCI call */
306 void arm_handle_psci_call(ARMCPU *cpu);
307 #endif
308 
309 /**
310  * arm_clear_exclusive: clear the exclusive monitor
311  * @env: CPU env
312  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
313  */
314 static inline void arm_clear_exclusive(CPUARMState *env)
315 {
316     env->exclusive_addr = -1;
317 }
318 
319 /**
320  * ARMFaultType: type of an ARM MMU fault
321  * This corresponds to the v8A pseudocode's Fault enumeration,
322  * with extensions for QEMU internal conditions.
323  */
324 typedef enum ARMFaultType {
325     ARMFault_None,
326     ARMFault_AccessFlag,
327     ARMFault_Alignment,
328     ARMFault_Background,
329     ARMFault_Domain,
330     ARMFault_Permission,
331     ARMFault_Translation,
332     ARMFault_AddressSize,
333     ARMFault_SyncExternal,
334     ARMFault_SyncExternalOnWalk,
335     ARMFault_SyncParity,
336     ARMFault_SyncParityOnWalk,
337     ARMFault_AsyncParity,
338     ARMFault_AsyncExternal,
339     ARMFault_Debug,
340     ARMFault_TLBConflict,
341     ARMFault_Lockdown,
342     ARMFault_Exclusive,
343     ARMFault_ICacheMaint,
344     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
345     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
346 } ARMFaultType;
347 
348 /**
349  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
350  * @type: Type of fault
351  * @level: Table walk level (for translation, access flag and permission faults)
352  * @domain: Domain of the fault address (for non-LPAE CPUs only)
353  * @s2addr: Address that caused a fault at stage 2
354  * @stage2: True if we faulted at stage 2
355  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
356  * @s1ns: True if we faulted on a non-secure IPA while in secure state
357  * @ea: True if we should set the EA (external abort type) bit in syndrome
358  */
359 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
360 struct ARMMMUFaultInfo {
361     ARMFaultType type;
362     target_ulong s2addr;
363     int level;
364     int domain;
365     bool stage2;
366     bool s1ptw;
367     bool s1ns;
368     bool ea;
369 };
370 
371 /**
372  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
373  * Compare pseudocode EncodeSDFSC(), though unlike that function
374  * we set up a whole FSR-format code including domain field and
375  * putting the high bit of the FSC into bit 10.
376  */
377 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
378 {
379     uint32_t fsc;
380 
381     switch (fi->type) {
382     case ARMFault_None:
383         return 0;
384     case ARMFault_AccessFlag:
385         fsc = fi->level == 1 ? 0x3 : 0x6;
386         break;
387     case ARMFault_Alignment:
388         fsc = 0x1;
389         break;
390     case ARMFault_Permission:
391         fsc = fi->level == 1 ? 0xd : 0xf;
392         break;
393     case ARMFault_Domain:
394         fsc = fi->level == 1 ? 0x9 : 0xb;
395         break;
396     case ARMFault_Translation:
397         fsc = fi->level == 1 ? 0x5 : 0x7;
398         break;
399     case ARMFault_SyncExternal:
400         fsc = 0x8 | (fi->ea << 12);
401         break;
402     case ARMFault_SyncExternalOnWalk:
403         fsc = fi->level == 1 ? 0xc : 0xe;
404         fsc |= (fi->ea << 12);
405         break;
406     case ARMFault_SyncParity:
407         fsc = 0x409;
408         break;
409     case ARMFault_SyncParityOnWalk:
410         fsc = fi->level == 1 ? 0x40c : 0x40e;
411         break;
412     case ARMFault_AsyncParity:
413         fsc = 0x408;
414         break;
415     case ARMFault_AsyncExternal:
416         fsc = 0x406 | (fi->ea << 12);
417         break;
418     case ARMFault_Debug:
419         fsc = 0x2;
420         break;
421     case ARMFault_TLBConflict:
422         fsc = 0x400;
423         break;
424     case ARMFault_Lockdown:
425         fsc = 0x404;
426         break;
427     case ARMFault_Exclusive:
428         fsc = 0x405;
429         break;
430     case ARMFault_ICacheMaint:
431         fsc = 0x4;
432         break;
433     case ARMFault_Background:
434         fsc = 0x0;
435         break;
436     case ARMFault_QEMU_NSCExec:
437         fsc = M_FAKE_FSR_NSC_EXEC;
438         break;
439     case ARMFault_QEMU_SFault:
440         fsc = M_FAKE_FSR_SFAULT;
441         break;
442     default:
443         /* Other faults can't occur in a context that requires a
444          * short-format status code.
445          */
446         g_assert_not_reached();
447     }
448 
449     fsc |= (fi->domain << 4);
450     return fsc;
451 }
452 
453 /**
454  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
455  * Compare pseudocode EncodeLDFSC(), though unlike that function
456  * we fill in also the LPAE bit 9 of a DFSR format.
457  */
458 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
459 {
460     uint32_t fsc;
461 
462     switch (fi->type) {
463     case ARMFault_None:
464         return 0;
465     case ARMFault_AddressSize:
466         assert(fi->level >= -1 && fi->level <= 3);
467         if (fi->level < 0) {
468             fsc = 0b101001;
469         } else {
470             fsc = fi->level;
471         }
472         break;
473     case ARMFault_AccessFlag:
474         assert(fi->level >= 0 && fi->level <= 3);
475         fsc = 0b001000 | fi->level;
476         break;
477     case ARMFault_Permission:
478         assert(fi->level >= 0 && fi->level <= 3);
479         fsc = 0b001100 | fi->level;
480         break;
481     case ARMFault_Translation:
482         assert(fi->level >= -1 && fi->level <= 3);
483         if (fi->level < 0) {
484             fsc = 0b101011;
485         } else {
486             fsc = 0b000100 | fi->level;
487         }
488         break;
489     case ARMFault_SyncExternal:
490         fsc = 0x10 | (fi->ea << 12);
491         break;
492     case ARMFault_SyncExternalOnWalk:
493         assert(fi->level >= -1 && fi->level <= 3);
494         if (fi->level < 0) {
495             fsc = 0b010011;
496         } else {
497             fsc = 0b010100 | fi->level;
498         }
499         fsc |= fi->ea << 12;
500         break;
501     case ARMFault_SyncParity:
502         fsc = 0x18;
503         break;
504     case ARMFault_SyncParityOnWalk:
505         assert(fi->level >= -1 && fi->level <= 3);
506         if (fi->level < 0) {
507             fsc = 0b011011;
508         } else {
509             fsc = 0b011100 | fi->level;
510         }
511         break;
512     case ARMFault_AsyncParity:
513         fsc = 0x19;
514         break;
515     case ARMFault_AsyncExternal:
516         fsc = 0x11 | (fi->ea << 12);
517         break;
518     case ARMFault_Alignment:
519         fsc = 0x21;
520         break;
521     case ARMFault_Debug:
522         fsc = 0x22;
523         break;
524     case ARMFault_TLBConflict:
525         fsc = 0x30;
526         break;
527     case ARMFault_Lockdown:
528         fsc = 0x34;
529         break;
530     case ARMFault_Exclusive:
531         fsc = 0x35;
532         break;
533     default:
534         /* Other faults can't occur in a context that requires a
535          * long-format status code.
536          */
537         g_assert_not_reached();
538     }
539 
540     fsc |= 1 << 9;
541     return fsc;
542 }
543 
544 static inline bool arm_extabort_type(MemTxResult result)
545 {
546     /* The EA bit in syndromes and fault status registers is an
547      * IMPDEF classification of external aborts. ARM implementations
548      * usually use this to indicate AXI bus Decode error (0) or
549      * Slave error (1); in QEMU we follow that.
550      */
551     return result != MEMTX_DECODE_ERROR;
552 }
553 
554 #ifdef CONFIG_USER_ONLY
555 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
556                             MMUAccessType access_type,
557                             bool maperr, uintptr_t ra);
558 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
559                            MMUAccessType access_type, uintptr_t ra);
560 #else
561 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
562                       MMUAccessType access_type, int mmu_idx,
563                       bool probe, uintptr_t retaddr);
564 #endif
565 
566 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
567 {
568     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
569 }
570 
571 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
572 {
573     if (arm_feature(env, ARM_FEATURE_M)) {
574         return mmu_idx | ARM_MMU_IDX_M;
575     } else {
576         return mmu_idx | ARM_MMU_IDX_A;
577     }
578 }
579 
580 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
581 {
582     /* AArch64 is always a-profile. */
583     return mmu_idx | ARM_MMU_IDX_A;
584 }
585 
586 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
587 
588 /*
589  * Return the MMU index for a v7M CPU with all relevant information
590  * manually specified.
591  */
592 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
593                               bool secstate, bool priv, bool negpri);
594 
595 /*
596  * Return the MMU index for a v7M CPU in the specified security and
597  * privilege state.
598  */
599 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
600                                                 bool secstate, bool priv);
601 
602 /* Return the MMU index for a v7M CPU in the specified security state */
603 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
604 
605 /* Return true if the translation regime is using LPAE format page tables */
606 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
607 
608 /*
609  * Return true if the stage 1 translation regime is using LPAE
610  * format page tables
611  */
612 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
613 
614 /* Raise a data fault alignment exception for the specified virtual address */
615 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
616                                             MMUAccessType access_type,
617                                             int mmu_idx, uintptr_t retaddr);
618 
619 /* arm_cpu_do_transaction_failed: handle a memory system error response
620  * (eg "no device/memory present at address") by raising an external abort
621  * exception
622  */
623 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
624                                    vaddr addr, unsigned size,
625                                    MMUAccessType access_type,
626                                    int mmu_idx, MemTxAttrs attrs,
627                                    MemTxResult response, uintptr_t retaddr);
628 
629 /* Call any registered EL change hooks */
630 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
631 {
632     ARMELChangeHook *hook, *next;
633     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
634         hook->hook(cpu, hook->opaque);
635     }
636 }
637 static inline void arm_call_el_change_hook(ARMCPU *cpu)
638 {
639     ARMELChangeHook *hook, *next;
640     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
641         hook->hook(cpu, hook->opaque);
642     }
643 }
644 
645 /* Return true if this address translation regime has two ranges.  */
646 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
647 {
648     switch (mmu_idx) {
649     case ARMMMUIdx_Stage1_E0:
650     case ARMMMUIdx_Stage1_E1:
651     case ARMMMUIdx_Stage1_E1_PAN:
652     case ARMMMUIdx_E10_0:
653     case ARMMMUIdx_E10_1:
654     case ARMMMUIdx_E10_1_PAN:
655     case ARMMMUIdx_E20_0:
656     case ARMMMUIdx_E20_2:
657     case ARMMMUIdx_E20_2_PAN:
658         return true;
659     default:
660         return false;
661     }
662 }
663 
664 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
665 {
666     switch (mmu_idx) {
667     case ARMMMUIdx_Stage1_E1_PAN:
668     case ARMMMUIdx_E10_1_PAN:
669     case ARMMMUIdx_E20_2_PAN:
670         return true;
671     default:
672         return false;
673     }
674 }
675 
676 /* Return the exception level which controls this address translation regime */
677 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
678 {
679     switch (mmu_idx) {
680     case ARMMMUIdx_E20_0:
681     case ARMMMUIdx_E20_2:
682     case ARMMMUIdx_E20_2_PAN:
683     case ARMMMUIdx_Stage2:
684     case ARMMMUIdx_Stage2_S:
685     case ARMMMUIdx_E2:
686         return 2;
687     case ARMMMUIdx_E3:
688         return 3;
689     case ARMMMUIdx_E10_0:
690     case ARMMMUIdx_Stage1_E0:
691         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
692     case ARMMMUIdx_Stage1_E1:
693     case ARMMMUIdx_Stage1_E1_PAN:
694     case ARMMMUIdx_E10_1:
695     case ARMMMUIdx_E10_1_PAN:
696     case ARMMMUIdx_MPrivNegPri:
697     case ARMMMUIdx_MUserNegPri:
698     case ARMMMUIdx_MPriv:
699     case ARMMMUIdx_MUser:
700     case ARMMMUIdx_MSPrivNegPri:
701     case ARMMMUIdx_MSUserNegPri:
702     case ARMMMUIdx_MSPriv:
703     case ARMMMUIdx_MSUser:
704         return 1;
705     default:
706         g_assert_not_reached();
707     }
708 }
709 
710 /* Return the SCTLR value which controls this address translation regime */
711 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
712 {
713     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
714 }
715 
716 /*
717  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
718  * and the Non-Secure stage 2 translation regimes (and hence which are
719  * not present in VSTCR_EL2).
720  */
721 #define VTCR_SHARED_FIELD_MASK \
722     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
723      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
724      R_VTCR_DS_MASK)
725 
726 /* Return the value of the TCR controlling this translation regime */
727 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
728 {
729     if (mmu_idx == ARMMMUIdx_Stage2) {
730         return env->cp15.vtcr_el2;
731     }
732     if (mmu_idx == ARMMMUIdx_Stage2_S) {
733         /*
734          * Secure stage 2 shares fields from VTCR_EL2. We merge those
735          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
736          * value so the callers don't need to special case this.
737          *
738          * If a future architecture change defines bits in VSTCR_EL2 that
739          * overlap with these VTCR_EL2 fields we may need to revisit this.
740          */
741         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
742         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
743         return v;
744     }
745     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
746 }
747 
748 /**
749  * arm_num_brps: Return number of implemented breakpoints.
750  * Note that the ID register BRPS field is "number of bps - 1",
751  * and we return the actual number of breakpoints.
752  */
753 static inline int arm_num_brps(ARMCPU *cpu)
754 {
755     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
756         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
757     } else {
758         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
759     }
760 }
761 
762 /**
763  * arm_num_wrps: Return number of implemented watchpoints.
764  * Note that the ID register WRPS field is "number of wps - 1",
765  * and we return the actual number of watchpoints.
766  */
767 static inline int arm_num_wrps(ARMCPU *cpu)
768 {
769     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
770         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
771     } else {
772         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
773     }
774 }
775 
776 /**
777  * arm_num_ctx_cmps: Return number of implemented context comparators.
778  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
779  * and we return the actual number of comparators.
780  */
781 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
782 {
783     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
784         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
785     } else {
786         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
787     }
788 }
789 
790 /**
791  * v7m_using_psp: Return true if using process stack pointer
792  * Return true if the CPU is currently using the process stack
793  * pointer, or false if it is using the main stack pointer.
794  */
795 static inline bool v7m_using_psp(CPUARMState *env)
796 {
797     /* Handler mode always uses the main stack; for thread mode
798      * the CONTROL.SPSEL bit determines the answer.
799      * Note that in v7M it is not possible to be in Handler mode with
800      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
801      */
802     return !arm_v7m_is_handler_mode(env) &&
803         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
804 }
805 
806 /**
807  * v7m_sp_limit: Return SP limit for current CPU state
808  * Return the SP limit value for the current CPU security state
809  * and stack pointer.
810  */
811 static inline uint32_t v7m_sp_limit(CPUARMState *env)
812 {
813     if (v7m_using_psp(env)) {
814         return env->v7m.psplim[env->v7m.secure];
815     } else {
816         return env->v7m.msplim[env->v7m.secure];
817     }
818 }
819 
820 /**
821  * v7m_cpacr_pass:
822  * Return true if the v7M CPACR permits access to the FPU for the specified
823  * security state and privilege level.
824  */
825 static inline bool v7m_cpacr_pass(CPUARMState *env,
826                                   bool is_secure, bool is_priv)
827 {
828     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
829     case 0:
830     case 2: /* UNPREDICTABLE: we treat like 0 */
831         return false;
832     case 1:
833         return is_priv;
834     case 3:
835         return true;
836     default:
837         g_assert_not_reached();
838     }
839 }
840 
841 /**
842  * aarch32_mode_name(): Return name of the AArch32 CPU mode
843  * @psr: Program Status Register indicating CPU mode
844  *
845  * Returns, for debug logging purposes, a printable representation
846  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
847  * the low bits of the specified PSR.
848  */
849 static inline const char *aarch32_mode_name(uint32_t psr)
850 {
851     static const char cpu_mode_names[16][4] = {
852         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
853         "???", "???", "hyp", "und", "???", "???", "???", "sys"
854     };
855 
856     return cpu_mode_names[psr & 0xf];
857 }
858 
859 /**
860  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
861  *
862  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
863  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
864  * Must be called with the iothread lock held.
865  */
866 void arm_cpu_update_virq(ARMCPU *cpu);
867 
868 /**
869  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
870  *
871  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
872  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
873  * Must be called with the iothread lock held.
874  */
875 void arm_cpu_update_vfiq(ARMCPU *cpu);
876 
877 /**
878  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
879  *
880  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
881  * following a change to the HCR_EL2.VSE bit.
882  */
883 void arm_cpu_update_vserr(ARMCPU *cpu);
884 
885 /**
886  * arm_mmu_idx_el:
887  * @env: The cpu environment
888  * @el: The EL to use.
889  *
890  * Return the full ARMMMUIdx for the translation regime for EL.
891  */
892 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
893 
894 /**
895  * arm_mmu_idx:
896  * @env: The cpu environment
897  *
898  * Return the full ARMMMUIdx for the current translation regime.
899  */
900 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
901 
902 /**
903  * arm_stage1_mmu_idx:
904  * @env: The cpu environment
905  *
906  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
907  */
908 #ifdef CONFIG_USER_ONLY
909 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
910 {
911     return ARMMMUIdx_Stage1_E0;
912 }
913 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
914 {
915     return ARMMMUIdx_Stage1_E0;
916 }
917 #else
918 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
919 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
920 #endif
921 
922 /**
923  * arm_mmu_idx_is_stage1_of_2:
924  * @mmu_idx: The ARMMMUIdx to test
925  *
926  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
927  * first stage of a two stage regime.
928  */
929 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
930 {
931     switch (mmu_idx) {
932     case ARMMMUIdx_Stage1_E0:
933     case ARMMMUIdx_Stage1_E1:
934     case ARMMMUIdx_Stage1_E1_PAN:
935         return true;
936     default:
937         return false;
938     }
939 }
940 
941 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
942                                                const ARMISARegisters *id)
943 {
944     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
945 
946     if ((features >> ARM_FEATURE_V4T) & 1) {
947         valid |= CPSR_T;
948     }
949     if ((features >> ARM_FEATURE_V5) & 1) {
950         valid |= CPSR_Q; /* V5TE in reality*/
951     }
952     if ((features >> ARM_FEATURE_V6) & 1) {
953         valid |= CPSR_E | CPSR_GE;
954     }
955     if ((features >> ARM_FEATURE_THUMB2) & 1) {
956         valid |= CPSR_IT;
957     }
958     if (isar_feature_aa32_jazelle(id)) {
959         valid |= CPSR_J;
960     }
961     if (isar_feature_aa32_pan(id)) {
962         valid |= CPSR_PAN;
963     }
964     if (isar_feature_aa32_dit(id)) {
965         valid |= CPSR_DIT;
966     }
967     if (isar_feature_aa32_ssbs(id)) {
968         valid |= CPSR_SSBS;
969     }
970 
971     return valid;
972 }
973 
974 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
975 {
976     uint32_t valid;
977 
978     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
979     if (isar_feature_aa64_bti(id)) {
980         valid |= PSTATE_BTYPE;
981     }
982     if (isar_feature_aa64_pan(id)) {
983         valid |= PSTATE_PAN;
984     }
985     if (isar_feature_aa64_uao(id)) {
986         valid |= PSTATE_UAO;
987     }
988     if (isar_feature_aa64_dit(id)) {
989         valid |= PSTATE_DIT;
990     }
991     if (isar_feature_aa64_ssbs(id)) {
992         valid |= PSTATE_SSBS;
993     }
994     if (isar_feature_aa64_mte(id)) {
995         valid |= PSTATE_TCO;
996     }
997 
998     return valid;
999 }
1000 
1001 /* Granule size (i.e. page size) */
1002 typedef enum ARMGranuleSize {
1003     /* Same order as TG0 encoding */
1004     Gran4K,
1005     Gran64K,
1006     Gran16K,
1007     GranInvalid,
1008 } ARMGranuleSize;
1009 
1010 /**
1011  * arm_granule_bits: Return address size of the granule in bits
1012  *
1013  * Return the address size of the granule in bits. This corresponds
1014  * to the pseudocode TGxGranuleBits().
1015  */
1016 static inline int arm_granule_bits(ARMGranuleSize gran)
1017 {
1018     switch (gran) {
1019     case Gran64K:
1020         return 16;
1021     case Gran16K:
1022         return 14;
1023     case Gran4K:
1024         return 12;
1025     default:
1026         g_assert_not_reached();
1027     }
1028 }
1029 
1030 /*
1031  * Parameters of a given virtual address, as extracted from the
1032  * translation control register (TCR) for a given regime.
1033  */
1034 typedef struct ARMVAParameters {
1035     unsigned tsz    : 8;
1036     unsigned ps     : 3;
1037     unsigned sh     : 2;
1038     unsigned select : 1;
1039     bool tbi        : 1;
1040     bool epd        : 1;
1041     bool hpd        : 1;
1042     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1043     bool ds         : 1;
1044     ARMGranuleSize gran : 2;
1045 } ARMVAParameters;
1046 
1047 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1048                                    ARMMMUIdx mmu_idx, bool data);
1049 
1050 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1051 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1052 
1053 /* Determine if allocation tags are available.  */
1054 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1055                                                  uint64_t sctlr)
1056 {
1057     if (el < 3
1058         && arm_feature(env, ARM_FEATURE_EL3)
1059         && !(env->cp15.scr_el3 & SCR_ATA)) {
1060         return false;
1061     }
1062     if (el < 2 && arm_is_el2_enabled(env)) {
1063         uint64_t hcr = arm_hcr_el2_eff(env);
1064         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1065             return false;
1066         }
1067     }
1068     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1069     return sctlr != 0;
1070 }
1071 
1072 #ifndef CONFIG_USER_ONLY
1073 
1074 /* Security attributes for an address, as returned by v8m_security_lookup. */
1075 typedef struct V8M_SAttributes {
1076     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1077     bool ns;
1078     bool nsc;
1079     uint8_t sregion;
1080     bool srvalid;
1081     uint8_t iregion;
1082     bool irvalid;
1083 } V8M_SAttributes;
1084 
1085 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1086                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1087                          bool secure, V8M_SAttributes *sattrs);
1088 
1089 /* Cacheability and shareability attributes for a memory access */
1090 typedef struct ARMCacheAttrs {
1091     /*
1092      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1093      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1094      */
1095     unsigned int attrs:8;
1096     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1097     bool is_s2_format:1;
1098     bool guarded:1;              /* guarded bit of the v8-64 PTE */
1099 } ARMCacheAttrs;
1100 
1101 /* Fields that are valid upon success. */
1102 typedef struct GetPhysAddrResult {
1103     CPUTLBEntryFull f;
1104     ARMCacheAttrs cacheattrs;
1105 } GetPhysAddrResult;
1106 
1107 /**
1108  * get_phys_addr_with_secure: get the physical address for a virtual address
1109  * @env: CPUARMState
1110  * @address: virtual address to get physical address for
1111  * @access_type: 0 for read, 1 for write, 2 for execute
1112  * @mmu_idx: MMU index indicating required translation regime
1113  * @is_secure: security state for the access
1114  * @result: set on translation success.
1115  * @fi: set to fault info if the translation fails
1116  *
1117  * Find the physical address corresponding to the given virtual address,
1118  * by doing a translation table walk on MMU based systems or using the
1119  * MPU state on MPU based systems.
1120  *
1121  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1122  * prot and page_size may not be filled in, and the populated fsr value provides
1123  * information on why the translation aborted, in the format of a
1124  * DFSR/IFSR fault register, with the following caveats:
1125  *  * we honour the short vs long DFSR format differences.
1126  *  * the WnR bit is never set (the caller must do this).
1127  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1128  *    value.
1129  */
1130 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1131                                MMUAccessType access_type,
1132                                ARMMMUIdx mmu_idx, bool is_secure,
1133                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1134     __attribute__((nonnull));
1135 
1136 /**
1137  * get_phys_addr: get the physical address for a virtual address
1138  * @env: CPUARMState
1139  * @address: virtual address to get physical address for
1140  * @access_type: 0 for read, 1 for write, 2 for execute
1141  * @mmu_idx: MMU index indicating required translation regime
1142  * @result: set on translation success.
1143  * @fi: set to fault info if the translation fails
1144  *
1145  * Similarly, but use the security regime of @mmu_idx.
1146  */
1147 bool get_phys_addr(CPUARMState *env, target_ulong address,
1148                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1149                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1150     __attribute__((nonnull));
1151 
1152 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1153                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1154                        bool is_secure, GetPhysAddrResult *result,
1155                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1156 
1157 void arm_log_exception(CPUState *cs);
1158 
1159 #endif /* !CONFIG_USER_ONLY */
1160 
1161 /*
1162  * The log2 of the words in the tag block, for GMID_EL1.BS.
1163  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1164  */
1165 #define GMID_EL1_BS  6
1166 
1167 /*
1168  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1169  * the same simd_desc() encoding due to restrictions on size.
1170  * Use these instead.
1171  */
1172 FIELD(PREDDESC, OPRSZ, 0, 6)
1173 FIELD(PREDDESC, ESZ, 6, 2)
1174 FIELD(PREDDESC, DATA, 8, 24)
1175 
1176 /*
1177  * The SVE simd_data field, for memory ops, contains either
1178  * rd (5 bits) or a shift count (2 bits).
1179  */
1180 #define SVE_MTEDESC_SHIFT 5
1181 
1182 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1183 FIELD(MTEDESC, MIDX,  0, 4)
1184 FIELD(MTEDESC, TBI,   4, 2)
1185 FIELD(MTEDESC, TCMA,  6, 2)
1186 FIELD(MTEDESC, WRITE, 8, 1)
1187 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1188 
1189 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1190 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1191 
1192 static inline int allocation_tag_from_addr(uint64_t ptr)
1193 {
1194     return extract64(ptr, 56, 4);
1195 }
1196 
1197 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1198 {
1199     return deposit64(ptr, 56, 4, rtag);
1200 }
1201 
1202 /* Return true if tbi bits mean that the access is checked.  */
1203 static inline bool tbi_check(uint32_t desc, int bit55)
1204 {
1205     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1206 }
1207 
1208 /* Return true if tcma bits mean that the access is unchecked.  */
1209 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1210 {
1211     /*
1212      * We had extracted bit55 and ptr_tag for other reasons, so fold
1213      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1214      */
1215     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1216     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1217     return tcma && match;
1218 }
1219 
1220 /*
1221  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1222  * for the tag to be present in the FAR_ELx register.  But for user-only
1223  * mode, we do not have a TLB with which to implement this, so we must
1224  * remove the top byte.
1225  */
1226 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1227 {
1228 #ifdef CONFIG_USER_ONLY
1229     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1230     ptr &= sextract64(ptr, 0, 56);
1231 #endif
1232     return ptr;
1233 }
1234 
1235 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1236 {
1237 #ifdef CONFIG_USER_ONLY
1238     int64_t clean_ptr = sextract64(ptr, 0, 56);
1239     if (tbi_check(desc, clean_ptr < 0)) {
1240         ptr = clean_ptr;
1241     }
1242 #endif
1243     return ptr;
1244 }
1245 
1246 /* Values for M-profile PSR.ECI for MVE insns */
1247 enum MVEECIState {
1248     ECI_NONE = 0, /* No completed beats */
1249     ECI_A0 = 1, /* Completed: A0 */
1250     ECI_A0A1 = 2, /* Completed: A0, A1 */
1251     /* 3 is reserved */
1252     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1253     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1254     /* All other values reserved */
1255 };
1256 
1257 /* Definitions for the PMU registers */
1258 #define PMCRN_MASK  0xf800
1259 #define PMCRN_SHIFT 11
1260 #define PMCRLP  0x80
1261 #define PMCRLC  0x40
1262 #define PMCRDP  0x20
1263 #define PMCRX   0x10
1264 #define PMCRD   0x8
1265 #define PMCRC   0x4
1266 #define PMCRP   0x2
1267 #define PMCRE   0x1
1268 /*
1269  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1270  * which can be written as 1 to trigger behaviour but which stay RAZ).
1271  */
1272 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1273 
1274 #define PMXEVTYPER_P          0x80000000
1275 #define PMXEVTYPER_U          0x40000000
1276 #define PMXEVTYPER_NSK        0x20000000
1277 #define PMXEVTYPER_NSU        0x10000000
1278 #define PMXEVTYPER_NSH        0x08000000
1279 #define PMXEVTYPER_M          0x04000000
1280 #define PMXEVTYPER_MT         0x02000000
1281 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1282 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1283                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1284                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1285                                PMXEVTYPER_EVTCOUNT)
1286 
1287 #define PMCCFILTR             0xf8000000
1288 #define PMCCFILTR_M           PMXEVTYPER_M
1289 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1290 
1291 static inline uint32_t pmu_num_counters(CPUARMState *env)
1292 {
1293     ARMCPU *cpu = env_archcpu(env);
1294 
1295     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1296 }
1297 
1298 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1299 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1300 {
1301   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1302 }
1303 
1304 #ifdef TARGET_AARCH64
1305 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1306 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1307 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1308 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1309 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1310 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1311 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1312 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1313 #endif
1314 
1315 #ifdef CONFIG_USER_ONLY
1316 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1317 #else
1318 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1319 #endif
1320 
1321 bool el_is_in_host(CPUARMState *env, int el);
1322 
1323 void aa32_max_features(ARMCPU *cpu);
1324 int exception_target_el(CPUARMState *env);
1325 bool arm_singlestep_active(CPUARMState *env);
1326 bool arm_generate_debug_exceptions(CPUARMState *env);
1327 
1328 /* Add the cpreg definitions for debug related system registers */
1329 void define_debug_regs(ARMCPU *cpu);
1330 
1331 /* Effective value of MDCR_EL2 */
1332 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1333 {
1334     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1335 }
1336 
1337 /* Powers of 2 for sve_vq_map et al. */
1338 #define SVE_VQ_POW2_MAP                                 \
1339     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1340      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1341 
1342 #endif
1343