xref: /openbmc/qemu/target/arm/internals.h (revision 9f2b8488)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "syndrome.h"
32 #include "cpu-features.h"
33 
34 /* register banks for CPU modes */
35 #define BANK_USRSYS 0
36 #define BANK_SVC    1
37 #define BANK_ABT    2
38 #define BANK_UND    3
39 #define BANK_IRQ    4
40 #define BANK_FIQ    5
41 #define BANK_HYP    6
42 #define BANK_MON    7
43 
44 static inline int arm_env_mmu_index(CPUARMState *env)
45 {
46     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
47 }
48 
49 static inline bool excp_is_internal(int excp)
50 {
51     /* Return true if this exception number represents a QEMU-internal
52      * exception that will not be passed to the guest.
53      */
54     return excp == EXCP_INTERRUPT
55         || excp == EXCP_HLT
56         || excp == EXCP_DEBUG
57         || excp == EXCP_HALTED
58         || excp == EXCP_EXCEPTION_EXIT
59         || excp == EXCP_KERNEL_TRAP
60         || excp == EXCP_SEMIHOST;
61 }
62 
63 /*
64  * Default frequency for the generic timer, in Hz.
65  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
66  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
67  * which gives a 16ns tick period.
68  *
69  * We will use the back-compat value:
70  *  - for QEMU CPU types added before we standardized on 1GHz
71  *  - for versioned machine types with a version of 9.0 or earlier
72  * In any case, the machine model may override via the cntfrq property.
73  */
74 #define GTIMER_DEFAULT_HZ 1000000000
75 #define GTIMER_BACKCOMPAT_HZ 62500000
76 
77 /* Bit definitions for the v7M CONTROL register */
78 FIELD(V7M_CONTROL, NPRIV, 0, 1)
79 FIELD(V7M_CONTROL, SPSEL, 1, 1)
80 FIELD(V7M_CONTROL, FPCA, 2, 1)
81 FIELD(V7M_CONTROL, SFPA, 3, 1)
82 
83 /* Bit definitions for v7M exception return payload */
84 FIELD(V7M_EXCRET, ES, 0, 1)
85 FIELD(V7M_EXCRET, RES0, 1, 1)
86 FIELD(V7M_EXCRET, SPSEL, 2, 1)
87 FIELD(V7M_EXCRET, MODE, 3, 1)
88 FIELD(V7M_EXCRET, FTYPE, 4, 1)
89 FIELD(V7M_EXCRET, DCRS, 5, 1)
90 FIELD(V7M_EXCRET, S, 6, 1)
91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
92 
93 /* Minimum value which is a magic number for exception return */
94 #define EXC_RETURN_MIN_MAGIC 0xff000000
95 /* Minimum number which is a magic number for function or exception return
96  * when using v8M security extension
97  */
98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
99 
100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
101 FIELD(DBGWCR, E, 0, 1)
102 FIELD(DBGWCR, PAC, 1, 2)
103 FIELD(DBGWCR, LSC, 3, 2)
104 FIELD(DBGWCR, BAS, 5, 8)
105 FIELD(DBGWCR, HMC, 13, 1)
106 FIELD(DBGWCR, SSC, 14, 2)
107 FIELD(DBGWCR, LBN, 16, 4)
108 FIELD(DBGWCR, WT, 20, 1)
109 FIELD(DBGWCR, MASK, 24, 5)
110 FIELD(DBGWCR, SSCE, 29, 1)
111 
112 #define VTCR_NSW (1u << 29)
113 #define VTCR_NSA (1u << 30)
114 #define VSTCR_SW VTCR_NSW
115 #define VSTCR_SA VTCR_NSA
116 
117 /* Bit definitions for CPACR (AArch32 only) */
118 FIELD(CPACR, CP10, 20, 2)
119 FIELD(CPACR, CP11, 22, 2)
120 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
121 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
122 FIELD(CPACR, ASEDIS, 31, 1)
123 
124 /* Bit definitions for CPACR_EL1 (AArch64 only) */
125 FIELD(CPACR_EL1, ZEN, 16, 2)
126 FIELD(CPACR_EL1, FPEN, 20, 2)
127 FIELD(CPACR_EL1, SMEN, 24, 2)
128 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
129 
130 /* Bit definitions for HCPTR (AArch32 only) */
131 FIELD(HCPTR, TCP10, 10, 1)
132 FIELD(HCPTR, TCP11, 11, 1)
133 FIELD(HCPTR, TASE, 15, 1)
134 FIELD(HCPTR, TTA, 20, 1)
135 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
136 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
137 
138 /* Bit definitions for CPTR_EL2 (AArch64 only) */
139 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
140 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
141 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
142 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
143 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
144 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
145 FIELD(CPTR_EL2, TTA, 28, 1)
146 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
147 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
148 
149 /* Bit definitions for CPTR_EL3 (AArch64 only) */
150 FIELD(CPTR_EL3, EZ, 8, 1)
151 FIELD(CPTR_EL3, TFP, 10, 1)
152 FIELD(CPTR_EL3, ESM, 12, 1)
153 FIELD(CPTR_EL3, TTA, 20, 1)
154 FIELD(CPTR_EL3, TAM, 30, 1)
155 FIELD(CPTR_EL3, TCPAC, 31, 1)
156 
157 #define MDCR_MTPME    (1U << 28)
158 #define MDCR_TDCC     (1U << 27)
159 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
160 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
161 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
162 #define MDCR_EPMAD    (1U << 21)
163 #define MDCR_EDAD     (1U << 20)
164 #define MDCR_TTRF     (1U << 19)
165 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
166 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
167 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
168 #define MDCR_SDD      (1U << 16)
169 #define MDCR_SPD      (3U << 14)
170 #define MDCR_TDRA     (1U << 11)
171 #define MDCR_TDOSA    (1U << 10)
172 #define MDCR_TDA      (1U << 9)
173 #define MDCR_TDE      (1U << 8)
174 #define MDCR_HPME     (1U << 7)
175 #define MDCR_TPM      (1U << 6)
176 #define MDCR_TPMCR    (1U << 5)
177 #define MDCR_HPMN     (0x1fU)
178 
179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
181                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
182                          MDCR_STE | MDCR_SPME | MDCR_SPD)
183 
184 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
185 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
186 #define TTBCR_PD0    (1U << 4)
187 #define TTBCR_PD1    (1U << 5)
188 #define TTBCR_EPD0   (1U << 7)
189 #define TTBCR_IRGN0  (3U << 8)
190 #define TTBCR_ORGN0  (3U << 10)
191 #define TTBCR_SH0    (3U << 12)
192 #define TTBCR_T1SZ   (3U << 16)
193 #define TTBCR_A1     (1U << 22)
194 #define TTBCR_EPD1   (1U << 23)
195 #define TTBCR_IRGN1  (3U << 24)
196 #define TTBCR_ORGN1  (3U << 26)
197 #define TTBCR_SH1    (1U << 28)
198 #define TTBCR_EAE    (1U << 31)
199 
200 FIELD(VTCR, T0SZ, 0, 6)
201 FIELD(VTCR, SL0, 6, 2)
202 FIELD(VTCR, IRGN0, 8, 2)
203 FIELD(VTCR, ORGN0, 10, 2)
204 FIELD(VTCR, SH0, 12, 2)
205 FIELD(VTCR, TG0, 14, 2)
206 FIELD(VTCR, PS, 16, 3)
207 FIELD(VTCR, VS, 19, 1)
208 FIELD(VTCR, HA, 21, 1)
209 FIELD(VTCR, HD, 22, 1)
210 FIELD(VTCR, HWU59, 25, 1)
211 FIELD(VTCR, HWU60, 26, 1)
212 FIELD(VTCR, HWU61, 27, 1)
213 FIELD(VTCR, HWU62, 28, 1)
214 FIELD(VTCR, NSW, 29, 1)
215 FIELD(VTCR, NSA, 30, 1)
216 FIELD(VTCR, DS, 32, 1)
217 FIELD(VTCR, SL2, 33, 1)
218 
219 #define HCRX_ENAS0    (1ULL << 0)
220 #define HCRX_ENALS    (1ULL << 1)
221 #define HCRX_ENASR    (1ULL << 2)
222 #define HCRX_FNXS     (1ULL << 3)
223 #define HCRX_FGTNXS   (1ULL << 4)
224 #define HCRX_SMPME    (1ULL << 5)
225 #define HCRX_TALLINT  (1ULL << 6)
226 #define HCRX_VINMI    (1ULL << 7)
227 #define HCRX_VFNMI    (1ULL << 8)
228 #define HCRX_CMOW     (1ULL << 9)
229 #define HCRX_MCE2     (1ULL << 10)
230 #define HCRX_MSCEN    (1ULL << 11)
231 
232 #define HPFAR_NS      (1ULL << 63)
233 
234 #define HSTR_TTEE (1 << 16)
235 #define HSTR_TJDBX (1 << 17)
236 
237 /*
238  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
239  * have different bit definitions, and EL1PCTEN might be
240  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
241  * disambiguate if necessary.
242  */
243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
247 FIELD(CNTHCTL, EVNTEN, 2, 1)
248 FIELD(CNTHCTL, EVNTDIR, 3, 1)
249 FIELD(CNTHCTL, EVNTI, 4, 4)
250 FIELD(CNTHCTL, EL0VTEN, 8, 1)
251 FIELD(CNTHCTL, EL0PTEN, 9, 1)
252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
253 FIELD(CNTHCTL, EL1PTEN, 11, 1)
254 FIELD(CNTHCTL, ECV, 12, 1)
255 FIELD(CNTHCTL, EL1TVT, 13, 1)
256 FIELD(CNTHCTL, EL1TVCT, 14, 1)
257 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
258 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
259 FIELD(CNTHCTL, EVNTIS, 17, 1)
260 FIELD(CNTHCTL, CNTVMASK, 18, 1)
261 FIELD(CNTHCTL, CNTPMASK, 19, 1)
262 
263 /* We use a few fake FSR values for internal purposes in M profile.
264  * M profile cores don't have A/R format FSRs, but currently our
265  * get_phys_addr() code assumes A/R profile and reports failures via
266  * an A/R format FSR value. We then translate that into the proper
267  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
268  * Mostly the FSR values we use for this are those defined for v7PMSA,
269  * since we share some of that codepath. A few kinds of fault are
270  * only for M profile and have no A/R equivalent, though, so we have
271  * to pick a value from the reserved range (which we never otherwise
272  * generate) to use for these.
273  * These values will never be visible to the guest.
274  */
275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
277 
278 /**
279  * raise_exception: Raise the specified exception.
280  * Raise a guest exception with the specified value, syndrome register
281  * and target exception level. This should be called from helper functions,
282  * and never returns because we will longjump back up to the CPU main loop.
283  */
284 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
285                                 uint32_t syndrome, uint32_t target_el);
286 
287 /*
288  * Similarly, but also use unwinding to restore cpu state.
289  */
290 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
291                                       uint32_t syndrome, uint32_t target_el,
292                                       uintptr_t ra);
293 
294 /*
295  * For AArch64, map a given EL to an index in the banked_spsr array.
296  * Note that this mapping and the AArch32 mapping defined in bank_number()
297  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
298  * mandated mapping between each other.
299  */
300 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
301 {
302     static const unsigned int map[4] = {
303         [1] = BANK_SVC, /* EL1.  */
304         [2] = BANK_HYP, /* EL2.  */
305         [3] = BANK_MON, /* EL3.  */
306     };
307     assert(el >= 1 && el <= 3);
308     return map[el];
309 }
310 
311 /* Map CPU modes onto saved register banks.  */
312 static inline int bank_number(int mode)
313 {
314     switch (mode) {
315     case ARM_CPU_MODE_USR:
316     case ARM_CPU_MODE_SYS:
317         return BANK_USRSYS;
318     case ARM_CPU_MODE_SVC:
319         return BANK_SVC;
320     case ARM_CPU_MODE_ABT:
321         return BANK_ABT;
322     case ARM_CPU_MODE_UND:
323         return BANK_UND;
324     case ARM_CPU_MODE_IRQ:
325         return BANK_IRQ;
326     case ARM_CPU_MODE_FIQ:
327         return BANK_FIQ;
328     case ARM_CPU_MODE_HYP:
329         return BANK_HYP;
330     case ARM_CPU_MODE_MON:
331         return BANK_MON;
332     }
333     g_assert_not_reached();
334 }
335 
336 /**
337  * r14_bank_number: Map CPU mode onto register bank for r14
338  *
339  * Given an AArch32 CPU mode, return the index into the saved register
340  * banks to use for the R14 (LR) in that mode. This is the same as
341  * bank_number(), except for the special case of Hyp mode, where
342  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
343  * This should be used as the index into env->banked_r14[], and
344  * bank_number() used for the index into env->banked_r13[] and
345  * env->banked_spsr[].
346  */
347 static inline int r14_bank_number(int mode)
348 {
349     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
350 }
351 
352 void arm_cpu_register(const ARMCPUInfo *info);
353 void aarch64_cpu_register(const ARMCPUInfo *info);
354 
355 void register_cp_regs_for_features(ARMCPU *cpu);
356 void init_cpreg_list(ARMCPU *cpu);
357 
358 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
359 void arm_translate_init(void);
360 
361 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
362 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *, GArray *,
363                                        GArray *);
364 
365 void arm_restore_state_to_opc(CPUState *cs,
366                               const TranslationBlock *tb,
367                               const uint64_t *data);
368 
369 #ifdef CONFIG_TCG
370 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
371 #endif /* CONFIG_TCG */
372 
373 typedef enum ARMFPRounding {
374     FPROUNDING_TIEEVEN,
375     FPROUNDING_POSINF,
376     FPROUNDING_NEGINF,
377     FPROUNDING_ZERO,
378     FPROUNDING_TIEAWAY,
379     FPROUNDING_ODD
380 } ARMFPRounding;
381 
382 extern const FloatRoundMode arm_rmode_to_sf_map[6];
383 
384 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
385 {
386     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
387     return arm_rmode_to_sf_map[rmode];
388 }
389 
390 static inline void aarch64_save_sp(CPUARMState *env, int el)
391 {
392     if (env->pstate & PSTATE_SP) {
393         env->sp_el[el] = env->xregs[31];
394     } else {
395         env->sp_el[0] = env->xregs[31];
396     }
397 }
398 
399 static inline void aarch64_restore_sp(CPUARMState *env, int el)
400 {
401     if (env->pstate & PSTATE_SP) {
402         env->xregs[31] = env->sp_el[el];
403     } else {
404         env->xregs[31] = env->sp_el[0];
405     }
406 }
407 
408 static inline void update_spsel(CPUARMState *env, uint32_t imm)
409 {
410     unsigned int cur_el = arm_current_el(env);
411     /* Update PSTATE SPSel bit; this requires us to update the
412      * working stack pointer in xregs[31].
413      */
414     if (!((imm ^ env->pstate) & PSTATE_SP)) {
415         return;
416     }
417     aarch64_save_sp(env, cur_el);
418     env->pstate = deposit32(env->pstate, 0, 1, imm);
419 
420     /* We rely on illegal updates to SPsel from EL0 to get trapped
421      * at translation time.
422      */
423     assert(cur_el >= 1 && cur_el <= 3);
424     aarch64_restore_sp(env, cur_el);
425 }
426 
427 /*
428  * arm_pamax
429  * @cpu: ARMCPU
430  *
431  * Returns the implementation defined bit-width of physical addresses.
432  * The ARMv8 reference manuals refer to this as PAMax().
433  */
434 unsigned int arm_pamax(ARMCPU *cpu);
435 
436 /* Return true if extended addresses are enabled.
437  * This is always the case if our translation regime is 64 bit,
438  * but depends on TTBCR.EAE for 32 bit.
439  */
440 static inline bool extended_addresses_enabled(CPUARMState *env)
441 {
442     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
443     if (arm_feature(env, ARM_FEATURE_PMSA) &&
444         arm_feature(env, ARM_FEATURE_V8)) {
445         return true;
446     }
447     return arm_el_is_aa64(env, 1) ||
448            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
449 }
450 
451 /* Update a QEMU watchpoint based on the information the guest has set in the
452  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
453  */
454 void hw_watchpoint_update(ARMCPU *cpu, int n);
455 /* Update the QEMU watchpoints for every guest watchpoint. This does a
456  * complete delete-and-reinstate of the QEMU watchpoint list and so is
457  * suitable for use after migration or on reset.
458  */
459 void hw_watchpoint_update_all(ARMCPU *cpu);
460 /* Update a QEMU breakpoint based on the information the guest has set in the
461  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
462  */
463 void hw_breakpoint_update(ARMCPU *cpu, int n);
464 /* Update the QEMU breakpoints for every guest breakpoint. This does a
465  * complete delete-and-reinstate of the QEMU breakpoint list and so is
466  * suitable for use after migration or on reset.
467  */
468 void hw_breakpoint_update_all(ARMCPU *cpu);
469 
470 /* Callback function for checking if a breakpoint should trigger. */
471 bool arm_debug_check_breakpoint(CPUState *cs);
472 
473 /* Callback function for checking if a watchpoint should trigger. */
474 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
475 
476 /* Adjust addresses (in BE32 mode) before testing against watchpoint
477  * addresses.
478  */
479 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
480 
481 /* Callback function for when a watchpoint or breakpoint triggers. */
482 void arm_debug_excp_handler(CPUState *cs);
483 
484 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
485 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
486 {
487     return false;
488 }
489 static inline void arm_handle_psci_call(ARMCPU *cpu)
490 {
491     g_assert_not_reached();
492 }
493 #else
494 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
495 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
496 /* Actually handle a PSCI call */
497 void arm_handle_psci_call(ARMCPU *cpu);
498 #endif
499 
500 /**
501  * arm_clear_exclusive: clear the exclusive monitor
502  * @env: CPU env
503  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
504  */
505 static inline void arm_clear_exclusive(CPUARMState *env)
506 {
507     env->exclusive_addr = -1;
508 }
509 
510 /**
511  * ARMFaultType: type of an ARM MMU fault
512  * This corresponds to the v8A pseudocode's Fault enumeration,
513  * with extensions for QEMU internal conditions.
514  */
515 typedef enum ARMFaultType {
516     ARMFault_None,
517     ARMFault_AccessFlag,
518     ARMFault_Alignment,
519     ARMFault_Background,
520     ARMFault_Domain,
521     ARMFault_Permission,
522     ARMFault_Translation,
523     ARMFault_AddressSize,
524     ARMFault_SyncExternal,
525     ARMFault_SyncExternalOnWalk,
526     ARMFault_SyncParity,
527     ARMFault_SyncParityOnWalk,
528     ARMFault_AsyncParity,
529     ARMFault_AsyncExternal,
530     ARMFault_Debug,
531     ARMFault_TLBConflict,
532     ARMFault_UnsuppAtomicUpdate,
533     ARMFault_Lockdown,
534     ARMFault_Exclusive,
535     ARMFault_ICacheMaint,
536     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
537     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
538     ARMFault_GPCFOnWalk,
539     ARMFault_GPCFOnOutput,
540 } ARMFaultType;
541 
542 typedef enum ARMGPCF {
543     GPCF_None,
544     GPCF_AddressSize,
545     GPCF_Walk,
546     GPCF_EABT,
547     GPCF_Fail,
548 } ARMGPCF;
549 
550 /**
551  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
552  * @type: Type of fault
553  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
554  * @level: Table walk level (for translation, access flag and permission faults)
555  * @domain: Domain of the fault address (for non-LPAE CPUs only)
556  * @s2addr: Address that caused a fault at stage 2
557  * @paddr: physical address that caused a fault for gpc
558  * @paddr_space: physical address space that caused a fault for gpc
559  * @stage2: True if we faulted at stage 2
560  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
561  * @s1ns: True if we faulted on a non-secure IPA while in secure state
562  * @ea: True if we should set the EA (external abort type) bit in syndrome
563  */
564 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
565 struct ARMMMUFaultInfo {
566     ARMFaultType type;
567     ARMGPCF gpcf;
568     target_ulong s2addr;
569     target_ulong paddr;
570     ARMSecuritySpace paddr_space;
571     int level;
572     int domain;
573     bool stage2;
574     bool s1ptw;
575     bool s1ns;
576     bool ea;
577 };
578 
579 /**
580  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
581  * Compare pseudocode EncodeSDFSC(), though unlike that function
582  * we set up a whole FSR-format code including domain field and
583  * putting the high bit of the FSC into bit 10.
584  */
585 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
586 {
587     uint32_t fsc;
588 
589     switch (fi->type) {
590     case ARMFault_None:
591         return 0;
592     case ARMFault_AccessFlag:
593         fsc = fi->level == 1 ? 0x3 : 0x6;
594         break;
595     case ARMFault_Alignment:
596         fsc = 0x1;
597         break;
598     case ARMFault_Permission:
599         fsc = fi->level == 1 ? 0xd : 0xf;
600         break;
601     case ARMFault_Domain:
602         fsc = fi->level == 1 ? 0x9 : 0xb;
603         break;
604     case ARMFault_Translation:
605         fsc = fi->level == 1 ? 0x5 : 0x7;
606         break;
607     case ARMFault_SyncExternal:
608         fsc = 0x8 | (fi->ea << 12);
609         break;
610     case ARMFault_SyncExternalOnWalk:
611         fsc = fi->level == 1 ? 0xc : 0xe;
612         fsc |= (fi->ea << 12);
613         break;
614     case ARMFault_SyncParity:
615         fsc = 0x409;
616         break;
617     case ARMFault_SyncParityOnWalk:
618         fsc = fi->level == 1 ? 0x40c : 0x40e;
619         break;
620     case ARMFault_AsyncParity:
621         fsc = 0x408;
622         break;
623     case ARMFault_AsyncExternal:
624         fsc = 0x406 | (fi->ea << 12);
625         break;
626     case ARMFault_Debug:
627         fsc = 0x2;
628         break;
629     case ARMFault_TLBConflict:
630         fsc = 0x400;
631         break;
632     case ARMFault_Lockdown:
633         fsc = 0x404;
634         break;
635     case ARMFault_Exclusive:
636         fsc = 0x405;
637         break;
638     case ARMFault_ICacheMaint:
639         fsc = 0x4;
640         break;
641     case ARMFault_Background:
642         fsc = 0x0;
643         break;
644     case ARMFault_QEMU_NSCExec:
645         fsc = M_FAKE_FSR_NSC_EXEC;
646         break;
647     case ARMFault_QEMU_SFault:
648         fsc = M_FAKE_FSR_SFAULT;
649         break;
650     default:
651         /* Other faults can't occur in a context that requires a
652          * short-format status code.
653          */
654         g_assert_not_reached();
655     }
656 
657     fsc |= (fi->domain << 4);
658     return fsc;
659 }
660 
661 /**
662  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
663  * Compare pseudocode EncodeLDFSC(), though unlike that function
664  * we fill in also the LPAE bit 9 of a DFSR format.
665  */
666 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
667 {
668     uint32_t fsc;
669 
670     switch (fi->type) {
671     case ARMFault_None:
672         return 0;
673     case ARMFault_AddressSize:
674         assert(fi->level >= -1 && fi->level <= 3);
675         if (fi->level < 0) {
676             fsc = 0b101001;
677         } else {
678             fsc = fi->level;
679         }
680         break;
681     case ARMFault_AccessFlag:
682         assert(fi->level >= 0 && fi->level <= 3);
683         fsc = 0b001000 | fi->level;
684         break;
685     case ARMFault_Permission:
686         assert(fi->level >= 0 && fi->level <= 3);
687         fsc = 0b001100 | fi->level;
688         break;
689     case ARMFault_Translation:
690         assert(fi->level >= -1 && fi->level <= 3);
691         if (fi->level < 0) {
692             fsc = 0b101011;
693         } else {
694             fsc = 0b000100 | fi->level;
695         }
696         break;
697     case ARMFault_SyncExternal:
698         fsc = 0x10 | (fi->ea << 12);
699         break;
700     case ARMFault_SyncExternalOnWalk:
701         assert(fi->level >= -1 && fi->level <= 3);
702         if (fi->level < 0) {
703             fsc = 0b010011;
704         } else {
705             fsc = 0b010100 | fi->level;
706         }
707         fsc |= fi->ea << 12;
708         break;
709     case ARMFault_SyncParity:
710         fsc = 0x18;
711         break;
712     case ARMFault_SyncParityOnWalk:
713         assert(fi->level >= -1 && fi->level <= 3);
714         if (fi->level < 0) {
715             fsc = 0b011011;
716         } else {
717             fsc = 0b011100 | fi->level;
718         }
719         break;
720     case ARMFault_AsyncParity:
721         fsc = 0x19;
722         break;
723     case ARMFault_AsyncExternal:
724         fsc = 0x11 | (fi->ea << 12);
725         break;
726     case ARMFault_Alignment:
727         fsc = 0x21;
728         break;
729     case ARMFault_Debug:
730         fsc = 0x22;
731         break;
732     case ARMFault_TLBConflict:
733         fsc = 0x30;
734         break;
735     case ARMFault_UnsuppAtomicUpdate:
736         fsc = 0x31;
737         break;
738     case ARMFault_Lockdown:
739         fsc = 0x34;
740         break;
741     case ARMFault_Exclusive:
742         fsc = 0x35;
743         break;
744     case ARMFault_GPCFOnWalk:
745         assert(fi->level >= -1 && fi->level <= 3);
746         if (fi->level < 0) {
747             fsc = 0b100011;
748         } else {
749             fsc = 0b100100 | fi->level;
750         }
751         break;
752     case ARMFault_GPCFOnOutput:
753         fsc = 0b101000;
754         break;
755     default:
756         /* Other faults can't occur in a context that requires a
757          * long-format status code.
758          */
759         g_assert_not_reached();
760     }
761 
762     fsc |= 1 << 9;
763     return fsc;
764 }
765 
766 static inline bool arm_extabort_type(MemTxResult result)
767 {
768     /* The EA bit in syndromes and fault status registers is an
769      * IMPDEF classification of external aborts. ARM implementations
770      * usually use this to indicate AXI bus Decode error (0) or
771      * Slave error (1); in QEMU we follow that.
772      */
773     return result != MEMTX_DECODE_ERROR;
774 }
775 
776 #ifdef CONFIG_USER_ONLY
777 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
778                             MMUAccessType access_type,
779                             bool maperr, uintptr_t ra);
780 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
781                            MMUAccessType access_type, uintptr_t ra);
782 #else
783 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
784                       MMUAccessType access_type, int mmu_idx,
785                       bool probe, uintptr_t retaddr);
786 #endif
787 
788 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
789 {
790     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
791 }
792 
793 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
794 {
795     if (arm_feature(env, ARM_FEATURE_M)) {
796         return mmu_idx | ARM_MMU_IDX_M;
797     } else {
798         return mmu_idx | ARM_MMU_IDX_A;
799     }
800 }
801 
802 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
803 {
804     /* AArch64 is always a-profile. */
805     return mmu_idx | ARM_MMU_IDX_A;
806 }
807 
808 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
809 
810 /* Return the MMU index for a v7M CPU in the specified security state */
811 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
812 
813 /*
814  * Return true if the stage 1 translation regime is using LPAE
815  * format page tables
816  */
817 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
818 
819 /* Raise a data fault alignment exception for the specified virtual address */
820 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
821                                             MMUAccessType access_type,
822                                             int mmu_idx, uintptr_t retaddr);
823 
824 #ifndef CONFIG_USER_ONLY
825 /* arm_cpu_do_transaction_failed: handle a memory system error response
826  * (eg "no device/memory present at address") by raising an external abort
827  * exception
828  */
829 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
830                                    vaddr addr, unsigned size,
831                                    MMUAccessType access_type,
832                                    int mmu_idx, MemTxAttrs attrs,
833                                    MemTxResult response, uintptr_t retaddr);
834 #endif
835 
836 /* Call any registered EL change hooks */
837 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
838 {
839     ARMELChangeHook *hook, *next;
840     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
841         hook->hook(cpu, hook->opaque);
842     }
843 }
844 static inline void arm_call_el_change_hook(ARMCPU *cpu)
845 {
846     ARMELChangeHook *hook, *next;
847     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
848         hook->hook(cpu, hook->opaque);
849     }
850 }
851 
852 /* Return true if this address translation regime has two ranges.  */
853 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
854 {
855     switch (mmu_idx) {
856     case ARMMMUIdx_Stage1_E0:
857     case ARMMMUIdx_Stage1_E1:
858     case ARMMMUIdx_Stage1_E1_PAN:
859     case ARMMMUIdx_E10_0:
860     case ARMMMUIdx_E10_1:
861     case ARMMMUIdx_E10_1_PAN:
862     case ARMMMUIdx_E20_0:
863     case ARMMMUIdx_E20_2:
864     case ARMMMUIdx_E20_2_PAN:
865         return true;
866     default:
867         return false;
868     }
869 }
870 
871 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
872 {
873     switch (mmu_idx) {
874     case ARMMMUIdx_Stage1_E1_PAN:
875     case ARMMMUIdx_E10_1_PAN:
876     case ARMMMUIdx_E20_2_PAN:
877         return true;
878     default:
879         return false;
880     }
881 }
882 
883 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
884 {
885     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
886 }
887 
888 /* Return the exception level which controls this address translation regime */
889 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
890 {
891     switch (mmu_idx) {
892     case ARMMMUIdx_E20_0:
893     case ARMMMUIdx_E20_2:
894     case ARMMMUIdx_E20_2_PAN:
895     case ARMMMUIdx_Stage2:
896     case ARMMMUIdx_Stage2_S:
897     case ARMMMUIdx_E2:
898         return 2;
899     case ARMMMUIdx_E3:
900         return 3;
901     case ARMMMUIdx_E10_0:
902     case ARMMMUIdx_Stage1_E0:
903         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
904     case ARMMMUIdx_Stage1_E1:
905     case ARMMMUIdx_Stage1_E1_PAN:
906     case ARMMMUIdx_E10_1:
907     case ARMMMUIdx_E10_1_PAN:
908     case ARMMMUIdx_MPrivNegPri:
909     case ARMMMUIdx_MUserNegPri:
910     case ARMMMUIdx_MPriv:
911     case ARMMMUIdx_MUser:
912     case ARMMMUIdx_MSPrivNegPri:
913     case ARMMMUIdx_MSUserNegPri:
914     case ARMMMUIdx_MSPriv:
915     case ARMMMUIdx_MSUser:
916         return 1;
917     default:
918         g_assert_not_reached();
919     }
920 }
921 
922 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
923 {
924     switch (mmu_idx) {
925     case ARMMMUIdx_E20_0:
926     case ARMMMUIdx_Stage1_E0:
927     case ARMMMUIdx_MUser:
928     case ARMMMUIdx_MSUser:
929     case ARMMMUIdx_MUserNegPri:
930     case ARMMMUIdx_MSUserNegPri:
931         return true;
932     default:
933         return false;
934     case ARMMMUIdx_E10_0:
935     case ARMMMUIdx_E10_1:
936     case ARMMMUIdx_E10_1_PAN:
937         g_assert_not_reached();
938     }
939 }
940 
941 /* Return the SCTLR value which controls this address translation regime */
942 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
943 {
944     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
945 }
946 
947 /*
948  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
949  * and the Non-Secure stage 2 translation regimes (and hence which are
950  * not present in VSTCR_EL2).
951  */
952 #define VTCR_SHARED_FIELD_MASK \
953     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
954      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
955      R_VTCR_DS_MASK)
956 
957 /* Return the value of the TCR controlling this translation regime */
958 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
959 {
960     if (mmu_idx == ARMMMUIdx_Stage2) {
961         return env->cp15.vtcr_el2;
962     }
963     if (mmu_idx == ARMMMUIdx_Stage2_S) {
964         /*
965          * Secure stage 2 shares fields from VTCR_EL2. We merge those
966          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
967          * value so the callers don't need to special case this.
968          *
969          * If a future architecture change defines bits in VSTCR_EL2 that
970          * overlap with these VTCR_EL2 fields we may need to revisit this.
971          */
972         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
973         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
974         return v;
975     }
976     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
977 }
978 
979 /* Return true if the translation regime is using LPAE format page tables */
980 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
981 {
982     int el = regime_el(env, mmu_idx);
983     if (el == 2 || arm_el_is_aa64(env, el)) {
984         return true;
985     }
986     if (arm_feature(env, ARM_FEATURE_PMSA) &&
987         arm_feature(env, ARM_FEATURE_V8)) {
988         return true;
989     }
990     if (arm_feature(env, ARM_FEATURE_LPAE)
991         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
992         return true;
993     }
994     return false;
995 }
996 
997 /**
998  * arm_num_brps: Return number of implemented breakpoints.
999  * Note that the ID register BRPS field is "number of bps - 1",
1000  * and we return the actual number of breakpoints.
1001  */
1002 static inline int arm_num_brps(ARMCPU *cpu)
1003 {
1004     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1005         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1006     } else {
1007         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1008     }
1009 }
1010 
1011 /**
1012  * arm_num_wrps: Return number of implemented watchpoints.
1013  * Note that the ID register WRPS field is "number of wps - 1",
1014  * and we return the actual number of watchpoints.
1015  */
1016 static inline int arm_num_wrps(ARMCPU *cpu)
1017 {
1018     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1019         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1020     } else {
1021         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1022     }
1023 }
1024 
1025 /**
1026  * arm_num_ctx_cmps: Return number of implemented context comparators.
1027  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1028  * and we return the actual number of comparators.
1029  */
1030 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1031 {
1032     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1033         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1034     } else {
1035         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1036     }
1037 }
1038 
1039 /**
1040  * v7m_using_psp: Return true if using process stack pointer
1041  * Return true if the CPU is currently using the process stack
1042  * pointer, or false if it is using the main stack pointer.
1043  */
1044 static inline bool v7m_using_psp(CPUARMState *env)
1045 {
1046     /* Handler mode always uses the main stack; for thread mode
1047      * the CONTROL.SPSEL bit determines the answer.
1048      * Note that in v7M it is not possible to be in Handler mode with
1049      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1050      */
1051     return !arm_v7m_is_handler_mode(env) &&
1052         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1053 }
1054 
1055 /**
1056  * v7m_sp_limit: Return SP limit for current CPU state
1057  * Return the SP limit value for the current CPU security state
1058  * and stack pointer.
1059  */
1060 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1061 {
1062     if (v7m_using_psp(env)) {
1063         return env->v7m.psplim[env->v7m.secure];
1064     } else {
1065         return env->v7m.msplim[env->v7m.secure];
1066     }
1067 }
1068 
1069 /**
1070  * v7m_cpacr_pass:
1071  * Return true if the v7M CPACR permits access to the FPU for the specified
1072  * security state and privilege level.
1073  */
1074 static inline bool v7m_cpacr_pass(CPUARMState *env,
1075                                   bool is_secure, bool is_priv)
1076 {
1077     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1078     case 0:
1079     case 2: /* UNPREDICTABLE: we treat like 0 */
1080         return false;
1081     case 1:
1082         return is_priv;
1083     case 3:
1084         return true;
1085     default:
1086         g_assert_not_reached();
1087     }
1088 }
1089 
1090 /**
1091  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1092  * @psr: Program Status Register indicating CPU mode
1093  *
1094  * Returns, for debug logging purposes, a printable representation
1095  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1096  * the low bits of the specified PSR.
1097  */
1098 static inline const char *aarch32_mode_name(uint32_t psr)
1099 {
1100     static const char cpu_mode_names[16][4] = {
1101         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1102         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1103     };
1104 
1105     return cpu_mode_names[psr & 0xf];
1106 }
1107 
1108 /**
1109  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1110  *
1111  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1112  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1113  * Must be called with the BQL held.
1114  */
1115 void arm_cpu_update_virq(ARMCPU *cpu);
1116 
1117 /**
1118  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1119  *
1120  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1121  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1122  * Must be called with the BQL held.
1123  */
1124 void arm_cpu_update_vfiq(ARMCPU *cpu);
1125 
1126 /**
1127  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1128  *
1129  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1130  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1131  * Must be called with the BQL held.
1132  */
1133 void arm_cpu_update_vinmi(ARMCPU *cpu);
1134 
1135 /**
1136  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1137  *
1138  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1139  * a change to the HCRX_EL2.VFNMI.
1140  * Must be called with the BQL held.
1141  */
1142 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1143 
1144 /**
1145  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1146  *
1147  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1148  * following a change to the HCR_EL2.VSE bit.
1149  */
1150 void arm_cpu_update_vserr(ARMCPU *cpu);
1151 
1152 /**
1153  * arm_mmu_idx_el:
1154  * @env: The cpu environment
1155  * @el: The EL to use.
1156  *
1157  * Return the full ARMMMUIdx for the translation regime for EL.
1158  */
1159 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1160 
1161 /**
1162  * arm_mmu_idx:
1163  * @env: The cpu environment
1164  *
1165  * Return the full ARMMMUIdx for the current translation regime.
1166  */
1167 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1168 
1169 /**
1170  * arm_stage1_mmu_idx:
1171  * @env: The cpu environment
1172  *
1173  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1174  */
1175 #ifdef CONFIG_USER_ONLY
1176 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1177 {
1178     return ARMMMUIdx_Stage1_E0;
1179 }
1180 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1181 {
1182     return ARMMMUIdx_Stage1_E0;
1183 }
1184 #else
1185 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1186 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1187 #endif
1188 
1189 /**
1190  * arm_mmu_idx_is_stage1_of_2:
1191  * @mmu_idx: The ARMMMUIdx to test
1192  *
1193  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1194  * first stage of a two stage regime.
1195  */
1196 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1197 {
1198     switch (mmu_idx) {
1199     case ARMMMUIdx_Stage1_E0:
1200     case ARMMMUIdx_Stage1_E1:
1201     case ARMMMUIdx_Stage1_E1_PAN:
1202         return true;
1203     default:
1204         return false;
1205     }
1206 }
1207 
1208 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1209                                                const ARMISARegisters *id)
1210 {
1211     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1212 
1213     if ((features >> ARM_FEATURE_V4T) & 1) {
1214         valid |= CPSR_T;
1215     }
1216     if ((features >> ARM_FEATURE_V5) & 1) {
1217         valid |= CPSR_Q; /* V5TE in reality*/
1218     }
1219     if ((features >> ARM_FEATURE_V6) & 1) {
1220         valid |= CPSR_E | CPSR_GE;
1221     }
1222     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1223         valid |= CPSR_IT;
1224     }
1225     if (isar_feature_aa32_jazelle(id)) {
1226         valid |= CPSR_J;
1227     }
1228     if (isar_feature_aa32_pan(id)) {
1229         valid |= CPSR_PAN;
1230     }
1231     if (isar_feature_aa32_dit(id)) {
1232         valid |= CPSR_DIT;
1233     }
1234     if (isar_feature_aa32_ssbs(id)) {
1235         valid |= CPSR_SSBS;
1236     }
1237 
1238     return valid;
1239 }
1240 
1241 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1242 {
1243     uint32_t valid;
1244 
1245     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1246     if (isar_feature_aa64_bti(id)) {
1247         valid |= PSTATE_BTYPE;
1248     }
1249     if (isar_feature_aa64_pan(id)) {
1250         valid |= PSTATE_PAN;
1251     }
1252     if (isar_feature_aa64_uao(id)) {
1253         valid |= PSTATE_UAO;
1254     }
1255     if (isar_feature_aa64_dit(id)) {
1256         valid |= PSTATE_DIT;
1257     }
1258     if (isar_feature_aa64_ssbs(id)) {
1259         valid |= PSTATE_SSBS;
1260     }
1261     if (isar_feature_aa64_mte(id)) {
1262         valid |= PSTATE_TCO;
1263     }
1264     if (isar_feature_aa64_nmi(id)) {
1265         valid |= PSTATE_ALLINT;
1266     }
1267 
1268     return valid;
1269 }
1270 
1271 /* Granule size (i.e. page size) */
1272 typedef enum ARMGranuleSize {
1273     /* Same order as TG0 encoding */
1274     Gran4K,
1275     Gran64K,
1276     Gran16K,
1277     GranInvalid,
1278 } ARMGranuleSize;
1279 
1280 /**
1281  * arm_granule_bits: Return address size of the granule in bits
1282  *
1283  * Return the address size of the granule in bits. This corresponds
1284  * to the pseudocode TGxGranuleBits().
1285  */
1286 static inline int arm_granule_bits(ARMGranuleSize gran)
1287 {
1288     switch (gran) {
1289     case Gran64K:
1290         return 16;
1291     case Gran16K:
1292         return 14;
1293     case Gran4K:
1294         return 12;
1295     default:
1296         g_assert_not_reached();
1297     }
1298 }
1299 
1300 /*
1301  * Parameters of a given virtual address, as extracted from the
1302  * translation control register (TCR) for a given regime.
1303  */
1304 typedef struct ARMVAParameters {
1305     unsigned tsz    : 8;
1306     unsigned ps     : 3;
1307     unsigned sh     : 2;
1308     unsigned select : 1;
1309     bool tbi        : 1;
1310     bool epd        : 1;
1311     bool hpd        : 1;
1312     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1313     bool ds         : 1;
1314     bool ha         : 1;
1315     bool hd         : 1;
1316     ARMGranuleSize gran : 2;
1317 } ARMVAParameters;
1318 
1319 /**
1320  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1321  * @env: CPU
1322  * @va: virtual address to look up
1323  * @mmu_idx: determines translation regime to use
1324  * @data: true if this is a data access
1325  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1326  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1327  */
1328 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1329                                    ARMMMUIdx mmu_idx, bool data,
1330                                    bool el1_is_aa32);
1331 
1332 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1333 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1334 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1335 
1336 /* Determine if allocation tags are available.  */
1337 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1338                                                  uint64_t sctlr)
1339 {
1340     if (el < 3
1341         && arm_feature(env, ARM_FEATURE_EL3)
1342         && !(env->cp15.scr_el3 & SCR_ATA)) {
1343         return false;
1344     }
1345     if (el < 2 && arm_is_el2_enabled(env)) {
1346         uint64_t hcr = arm_hcr_el2_eff(env);
1347         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1348             return false;
1349         }
1350     }
1351     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1352     return sctlr != 0;
1353 }
1354 
1355 #ifndef CONFIG_USER_ONLY
1356 
1357 /* Security attributes for an address, as returned by v8m_security_lookup. */
1358 typedef struct V8M_SAttributes {
1359     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1360     bool ns;
1361     bool nsc;
1362     uint8_t sregion;
1363     bool srvalid;
1364     uint8_t iregion;
1365     bool irvalid;
1366 } V8M_SAttributes;
1367 
1368 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1369                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1370                          bool secure, V8M_SAttributes *sattrs);
1371 
1372 /* Cacheability and shareability attributes for a memory access */
1373 typedef struct ARMCacheAttrs {
1374     /*
1375      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1376      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1377      */
1378     unsigned int attrs:8;
1379     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1380     bool is_s2_format:1;
1381 } ARMCacheAttrs;
1382 
1383 /* Fields that are valid upon success. */
1384 typedef struct GetPhysAddrResult {
1385     CPUTLBEntryFull f;
1386     ARMCacheAttrs cacheattrs;
1387 } GetPhysAddrResult;
1388 
1389 /**
1390  * get_phys_addr: get the physical address for a virtual address
1391  * @env: CPUARMState
1392  * @address: virtual address to get physical address for
1393  * @access_type: 0 for read, 1 for write, 2 for execute
1394  * @mmu_idx: MMU index indicating required translation regime
1395  * @result: set on translation success.
1396  * @fi: set to fault info if the translation fails
1397  *
1398  * Find the physical address corresponding to the given virtual address,
1399  * by doing a translation table walk on MMU based systems or using the
1400  * MPU state on MPU based systems.
1401  *
1402  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1403  * prot and page_size may not be filled in, and the populated fsr value provides
1404  * information on why the translation aborted, in the format of a
1405  * DFSR/IFSR fault register, with the following caveats:
1406  *  * we honour the short vs long DFSR format differences.
1407  *  * the WnR bit is never set (the caller must do this).
1408  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1409  *    value.
1410  */
1411 bool get_phys_addr(CPUARMState *env, target_ulong address,
1412                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1413                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1414     __attribute__((nonnull));
1415 
1416 /**
1417  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1418  *                                 address
1419  * @env: CPUARMState
1420  * @address: virtual address to get physical address for
1421  * @access_type: 0 for read, 1 for write, 2 for execute
1422  * @mmu_idx: MMU index indicating required translation regime
1423  * @space: security space for the access
1424  * @result: set on translation success.
1425  * @fi: set to fault info if the translation fails
1426  *
1427  * Similar to get_phys_addr, but use the given security space and don't perform
1428  * a Granule Protection Check on the resulting address.
1429  */
1430 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1431                                     MMUAccessType access_type,
1432                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1433                                     GetPhysAddrResult *result,
1434                                     ARMMMUFaultInfo *fi)
1435     __attribute__((nonnull));
1436 
1437 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1438                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1439                        bool is_secure, GetPhysAddrResult *result,
1440                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1441 
1442 void arm_log_exception(CPUState *cs);
1443 
1444 #endif /* !CONFIG_USER_ONLY */
1445 
1446 /*
1447  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1448  * the same simd_desc() encoding due to restrictions on size.
1449  * Use these instead.
1450  */
1451 FIELD(PREDDESC, OPRSZ, 0, 6)
1452 FIELD(PREDDESC, ESZ, 6, 2)
1453 FIELD(PREDDESC, DATA, 8, 24)
1454 
1455 /*
1456  * The SVE simd_data field, for memory ops, contains either
1457  * rd (5 bits) or a shift count (2 bits).
1458  */
1459 #define SVE_MTEDESC_SHIFT 5
1460 
1461 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1462 FIELD(MTEDESC, MIDX,  0, 4)
1463 FIELD(MTEDESC, TBI,   4, 2)
1464 FIELD(MTEDESC, TCMA,  6, 2)
1465 FIELD(MTEDESC, WRITE, 8, 1)
1466 FIELD(MTEDESC, ALIGN, 9, 3)
1467 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1468 
1469 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1470 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1471 
1472 /**
1473  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1474  * @env: CPU env
1475  * @ptr: start address of memory region (dirty pointer)
1476  * @size: length of region (guaranteed not to cross a page boundary)
1477  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1478  * Returns: the size of the region that can be copied without hitting
1479  *          an MTE tag failure
1480  *
1481  * Note that we assume that the caller has already checked the TBI
1482  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1483  * required.
1484  */
1485 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1486                         uint32_t desc);
1487 
1488 /**
1489  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1490  *                     operation going in the reverse direction
1491  * @env: CPU env
1492  * @ptr: *end* address of memory region (dirty pointer)
1493  * @size: length of region (guaranteed not to cross a page boundary)
1494  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1495  * Returns: the size of the region that can be copied without hitting
1496  *          an MTE tag failure
1497  *
1498  * Note that we assume that the caller has already checked the TBI
1499  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1500  * required.
1501  */
1502 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1503                             uint32_t desc);
1504 
1505 /**
1506  * mte_check_fail: Record an MTE tag check failure
1507  * @env: CPU env
1508  * @desc: MTEDESC descriptor word
1509  * @dirty_ptr: Failing dirty address
1510  * @ra: TCG retaddr
1511  *
1512  * This may never return (if the MTE tag checks are configured to fault).
1513  */
1514 void mte_check_fail(CPUARMState *env, uint32_t desc,
1515                     uint64_t dirty_ptr, uintptr_t ra);
1516 
1517 /**
1518  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1519  * @env: CPU env
1520  * @dirty_ptr: Start address of memory region (dirty pointer)
1521  * @size: length of region (guaranteed not to cross page boundary)
1522  * @desc: MTEDESC descriptor word
1523  */
1524 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1525                        uint32_t desc);
1526 
1527 static inline int allocation_tag_from_addr(uint64_t ptr)
1528 {
1529     return extract64(ptr, 56, 4);
1530 }
1531 
1532 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1533 {
1534     return deposit64(ptr, 56, 4, rtag);
1535 }
1536 
1537 /* Return true if tbi bits mean that the access is checked.  */
1538 static inline bool tbi_check(uint32_t desc, int bit55)
1539 {
1540     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1541 }
1542 
1543 /* Return true if tcma bits mean that the access is unchecked.  */
1544 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1545 {
1546     /*
1547      * We had extracted bit55 and ptr_tag for other reasons, so fold
1548      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1549      */
1550     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1551     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1552     return tcma && match;
1553 }
1554 
1555 /*
1556  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1557  * for the tag to be present in the FAR_ELx register.  But for user-only
1558  * mode, we do not have a TLB with which to implement this, so we must
1559  * remove the top byte.
1560  */
1561 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1562 {
1563 #ifdef CONFIG_USER_ONLY
1564     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1565     ptr &= sextract64(ptr, 0, 56);
1566 #endif
1567     return ptr;
1568 }
1569 
1570 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1571 {
1572 #ifdef CONFIG_USER_ONLY
1573     int64_t clean_ptr = sextract64(ptr, 0, 56);
1574     if (tbi_check(desc, clean_ptr < 0)) {
1575         ptr = clean_ptr;
1576     }
1577 #endif
1578     return ptr;
1579 }
1580 
1581 /* Values for M-profile PSR.ECI for MVE insns */
1582 enum MVEECIState {
1583     ECI_NONE = 0, /* No completed beats */
1584     ECI_A0 = 1, /* Completed: A0 */
1585     ECI_A0A1 = 2, /* Completed: A0, A1 */
1586     /* 3 is reserved */
1587     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1588     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1589     /* All other values reserved */
1590 };
1591 
1592 /* Definitions for the PMU registers */
1593 #define PMCRN_MASK  0xf800
1594 #define PMCRN_SHIFT 11
1595 #define PMCRLP  0x80
1596 #define PMCRLC  0x40
1597 #define PMCRDP  0x20
1598 #define PMCRX   0x10
1599 #define PMCRD   0x8
1600 #define PMCRC   0x4
1601 #define PMCRP   0x2
1602 #define PMCRE   0x1
1603 /*
1604  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1605  * which can be written as 1 to trigger behaviour but which stay RAZ).
1606  */
1607 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1608 
1609 #define PMXEVTYPER_P          0x80000000
1610 #define PMXEVTYPER_U          0x40000000
1611 #define PMXEVTYPER_NSK        0x20000000
1612 #define PMXEVTYPER_NSU        0x10000000
1613 #define PMXEVTYPER_NSH        0x08000000
1614 #define PMXEVTYPER_M          0x04000000
1615 #define PMXEVTYPER_MT         0x02000000
1616 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1617 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1618                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1619                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1620                                PMXEVTYPER_EVTCOUNT)
1621 
1622 #define PMCCFILTR             0xf8000000
1623 #define PMCCFILTR_M           PMXEVTYPER_M
1624 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1625 
1626 static inline uint32_t pmu_num_counters(CPUARMState *env)
1627 {
1628     ARMCPU *cpu = env_archcpu(env);
1629 
1630     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1631 }
1632 
1633 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1634 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1635 {
1636   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1637 }
1638 
1639 #ifdef TARGET_AARCH64
1640 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1641 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1642 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1643 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1644 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1645 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1646 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1647 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1648 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1649 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1650 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1651 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1652 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1653 void aarch64_max_tcg_initfn(Object *obj);
1654 void aarch64_add_pauth_properties(Object *obj);
1655 void aarch64_add_sve_properties(Object *obj);
1656 void aarch64_add_sme_properties(Object *obj);
1657 #endif
1658 
1659 /* Read the CONTROL register as the MRS instruction would. */
1660 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1661 
1662 /*
1663  * Return a pointer to the location where we currently store the
1664  * stack pointer for the requested security state and thread mode.
1665  * This pointer will become invalid if the CPU state is updated
1666  * such that the stack pointers are switched around (eg changing
1667  * the SPSEL control bit).
1668  */
1669 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1670                              bool threadmode, bool spsel);
1671 
1672 bool el_is_in_host(CPUARMState *env, int el);
1673 
1674 void aa32_max_features(ARMCPU *cpu);
1675 int exception_target_el(CPUARMState *env);
1676 bool arm_singlestep_active(CPUARMState *env);
1677 bool arm_generate_debug_exceptions(CPUARMState *env);
1678 
1679 /**
1680  * pauth_ptr_mask:
1681  * @param: parameters defining the MMU setup
1682  *
1683  * Return a mask of the address bits that contain the authentication code,
1684  * given the MMU config defined by @param.
1685  */
1686 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1687 {
1688     int bot_pac_bit = 64 - param.tsz;
1689     int top_pac_bit = 64 - 8 * param.tbi;
1690 
1691     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1692 }
1693 
1694 /* Add the cpreg definitions for debug related system registers */
1695 void define_debug_regs(ARMCPU *cpu);
1696 
1697 /* Effective value of MDCR_EL2 */
1698 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1699 {
1700     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1701 }
1702 
1703 /* Powers of 2 for sve_vq_map et al. */
1704 #define SVE_VQ_POW2_MAP                                 \
1705     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1706      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1707 
1708 /*
1709  * Return true if it is possible to take a fine-grained-trap to EL2.
1710  */
1711 static inline bool arm_fgt_active(CPUARMState *env, int el)
1712 {
1713     /*
1714      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1715      * that can affect EL0, but it is harmless to do the test also for
1716      * traps on registers that are only accessible at EL1 because if the test
1717      * returns true then we can't be executing at EL1 anyway.
1718      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1719      * traps from AArch32 only happen for the EL0 is AArch32 case.
1720      */
1721     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1722         el < 2 && arm_is_el2_enabled(env) &&
1723         arm_el_is_aa64(env, 1) &&
1724         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1725         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1726 }
1727 
1728 void assert_hflags_rebuild_correctly(CPUARMState *env);
1729 
1730 /*
1731  * Although the ARM implementation of hardware assisted debugging
1732  * allows for different breakpoints per-core, the current GDB
1733  * interface treats them as a global pool of registers (which seems to
1734  * be the case for x86, ppc and s390). As a result we store one copy
1735  * of registers which is used for all active cores.
1736  *
1737  * Write access is serialised by virtue of the GDB protocol which
1738  * updates things. Read access (i.e. when the values are copied to the
1739  * vCPU) is also gated by GDB's run control.
1740  *
1741  * This is not unreasonable as most of the time debugging kernels you
1742  * never know which core will eventually execute your function.
1743  */
1744 
1745 typedef struct {
1746     uint64_t bcr;
1747     uint64_t bvr;
1748 } HWBreakpoint;
1749 
1750 /*
1751  * The watchpoint registers can cover more area than the requested
1752  * watchpoint so we need to store the additional information
1753  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1754  * when the watchpoint is hit.
1755  */
1756 typedef struct {
1757     uint64_t wcr;
1758     uint64_t wvr;
1759     CPUWatchpoint details;
1760 } HWWatchpoint;
1761 
1762 /* Maximum and current break/watch point counts */
1763 extern int max_hw_bps, max_hw_wps;
1764 extern GArray *hw_breakpoints, *hw_watchpoints;
1765 
1766 #define cur_hw_wps      (hw_watchpoints->len)
1767 #define cur_hw_bps      (hw_breakpoints->len)
1768 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1769 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1770 
1771 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1772 int insert_hw_breakpoint(target_ulong pc);
1773 int delete_hw_breakpoint(target_ulong pc);
1774 
1775 bool check_watchpoint_in_range(int i, target_ulong addr);
1776 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1777 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1778 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1779 
1780 /* Return the current value of the system counter in ticks */
1781 uint64_t gt_get_countervalue(CPUARMState *env);
1782 /*
1783  * Return the currently applicable offset between the system counter
1784  * and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2).
1785  */
1786 uint64_t gt_virt_cnt_offset(CPUARMState *env);
1787 #endif
1788