1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 32 /* register banks for CPU modes */ 33 #define BANK_USRSYS 0 34 #define BANK_SVC 1 35 #define BANK_ABT 2 36 #define BANK_UND 3 37 #define BANK_IRQ 4 38 #define BANK_FIQ 5 39 #define BANK_HYP 6 40 #define BANK_MON 7 41 42 static inline bool excp_is_internal(int excp) 43 { 44 /* Return true if this exception number represents a QEMU-internal 45 * exception that will not be passed to the guest. 46 */ 47 return excp == EXCP_INTERRUPT 48 || excp == EXCP_HLT 49 || excp == EXCP_DEBUG 50 || excp == EXCP_HALTED 51 || excp == EXCP_EXCEPTION_EXIT 52 || excp == EXCP_KERNEL_TRAP 53 || excp == EXCP_SEMIHOST; 54 } 55 56 /* Scale factor for generic timers, ie number of ns per tick. 57 * This gives a 62.5MHz timer. 58 */ 59 #define GTIMER_SCALE 16 60 61 /* Bit definitions for the v7M CONTROL register */ 62 FIELD(V7M_CONTROL, NPRIV, 0, 1) 63 FIELD(V7M_CONTROL, SPSEL, 1, 1) 64 FIELD(V7M_CONTROL, FPCA, 2, 1) 65 FIELD(V7M_CONTROL, SFPA, 3, 1) 66 67 /* Bit definitions for v7M exception return payload */ 68 FIELD(V7M_EXCRET, ES, 0, 1) 69 FIELD(V7M_EXCRET, RES0, 1, 1) 70 FIELD(V7M_EXCRET, SPSEL, 2, 1) 71 FIELD(V7M_EXCRET, MODE, 3, 1) 72 FIELD(V7M_EXCRET, FTYPE, 4, 1) 73 FIELD(V7M_EXCRET, DCRS, 5, 1) 74 FIELD(V7M_EXCRET, S, 6, 1) 75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 76 77 /* Minimum value which is a magic number for exception return */ 78 #define EXC_RETURN_MIN_MAGIC 0xff000000 79 /* Minimum number which is a magic number for function or exception return 80 * when using v8M security extension 81 */ 82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 83 84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 85 FIELD(DBGWCR, E, 0, 1) 86 FIELD(DBGWCR, PAC, 1, 2) 87 FIELD(DBGWCR, LSC, 3, 2) 88 FIELD(DBGWCR, BAS, 5, 8) 89 FIELD(DBGWCR, HMC, 13, 1) 90 FIELD(DBGWCR, SSC, 14, 2) 91 FIELD(DBGWCR, LBN, 16, 4) 92 FIELD(DBGWCR, WT, 20, 1) 93 FIELD(DBGWCR, MASK, 24, 5) 94 FIELD(DBGWCR, SSCE, 29, 1) 95 96 /* We use a few fake FSR values for internal purposes in M profile. 97 * M profile cores don't have A/R format FSRs, but currently our 98 * get_phys_addr() code assumes A/R profile and reports failures via 99 * an A/R format FSR value. We then translate that into the proper 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 101 * Mostly the FSR values we use for this are those defined for v7PMSA, 102 * since we share some of that codepath. A few kinds of fault are 103 * only for M profile and have no A/R equivalent, though, so we have 104 * to pick a value from the reserved range (which we never otherwise 105 * generate) to use for these. 106 * These values will never be visible to the guest. 107 */ 108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 110 111 /** 112 * raise_exception: Raise the specified exception. 113 * Raise a guest exception with the specified value, syndrome register 114 * and target exception level. This should be called from helper functions, 115 * and never returns because we will longjump back up to the CPU main loop. 116 */ 117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 118 uint32_t syndrome, uint32_t target_el); 119 120 /* 121 * Similarly, but also use unwinding to restore cpu state. 122 */ 123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 124 uint32_t syndrome, uint32_t target_el, 125 uintptr_t ra); 126 127 /* 128 * For AArch64, map a given EL to an index in the banked_spsr array. 129 * Note that this mapping and the AArch32 mapping defined in bank_number() 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 131 * mandated mapping between each other. 132 */ 133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 134 { 135 static const unsigned int map[4] = { 136 [1] = BANK_SVC, /* EL1. */ 137 [2] = BANK_HYP, /* EL2. */ 138 [3] = BANK_MON, /* EL3. */ 139 }; 140 assert(el >= 1 && el <= 3); 141 return map[el]; 142 } 143 144 /* Map CPU modes onto saved register banks. */ 145 static inline int bank_number(int mode) 146 { 147 switch (mode) { 148 case ARM_CPU_MODE_USR: 149 case ARM_CPU_MODE_SYS: 150 return BANK_USRSYS; 151 case ARM_CPU_MODE_SVC: 152 return BANK_SVC; 153 case ARM_CPU_MODE_ABT: 154 return BANK_ABT; 155 case ARM_CPU_MODE_UND: 156 return BANK_UND; 157 case ARM_CPU_MODE_IRQ: 158 return BANK_IRQ; 159 case ARM_CPU_MODE_FIQ: 160 return BANK_FIQ; 161 case ARM_CPU_MODE_HYP: 162 return BANK_HYP; 163 case ARM_CPU_MODE_MON: 164 return BANK_MON; 165 } 166 g_assert_not_reached(); 167 } 168 169 /** 170 * r14_bank_number: Map CPU mode onto register bank for r14 171 * 172 * Given an AArch32 CPU mode, return the index into the saved register 173 * banks to use for the R14 (LR) in that mode. This is the same as 174 * bank_number(), except for the special case of Hyp mode, where 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 176 * This should be used as the index into env->banked_r14[], and 177 * bank_number() used for the index into env->banked_r13[] and 178 * env->banked_spsr[]. 179 */ 180 static inline int r14_bank_number(int mode) 181 { 182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 183 } 184 185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 186 void arm_translate_init(void); 187 188 #ifdef CONFIG_TCG 189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 190 #endif /* CONFIG_TCG */ 191 192 /** 193 * aarch64_sve_zcr_get_valid_len: 194 * @cpu: cpu context 195 * @start_len: maximum len to consider 196 * 197 * Return the maximum supported sve vector length <= @start_len. 198 * Note that both @start_len and the return value are in units 199 * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128. 200 */ 201 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len); 202 203 enum arm_fprounding { 204 FPROUNDING_TIEEVEN, 205 FPROUNDING_POSINF, 206 FPROUNDING_NEGINF, 207 FPROUNDING_ZERO, 208 FPROUNDING_TIEAWAY, 209 FPROUNDING_ODD 210 }; 211 212 int arm_rmode_to_sf(int rmode); 213 214 static inline void aarch64_save_sp(CPUARMState *env, int el) 215 { 216 if (env->pstate & PSTATE_SP) { 217 env->sp_el[el] = env->xregs[31]; 218 } else { 219 env->sp_el[0] = env->xregs[31]; 220 } 221 } 222 223 static inline void aarch64_restore_sp(CPUARMState *env, int el) 224 { 225 if (env->pstate & PSTATE_SP) { 226 env->xregs[31] = env->sp_el[el]; 227 } else { 228 env->xregs[31] = env->sp_el[0]; 229 } 230 } 231 232 static inline void update_spsel(CPUARMState *env, uint32_t imm) 233 { 234 unsigned int cur_el = arm_current_el(env); 235 /* Update PSTATE SPSel bit; this requires us to update the 236 * working stack pointer in xregs[31]. 237 */ 238 if (!((imm ^ env->pstate) & PSTATE_SP)) { 239 return; 240 } 241 aarch64_save_sp(env, cur_el); 242 env->pstate = deposit32(env->pstate, 0, 1, imm); 243 244 /* We rely on illegal updates to SPsel from EL0 to get trapped 245 * at translation time. 246 */ 247 assert(cur_el >= 1 && cur_el <= 3); 248 aarch64_restore_sp(env, cur_el); 249 } 250 251 /* 252 * arm_pamax 253 * @cpu: ARMCPU 254 * 255 * Returns the implementation defined bit-width of physical addresses. 256 * The ARMv8 reference manuals refer to this as PAMax(). 257 */ 258 unsigned int arm_pamax(ARMCPU *cpu); 259 260 /* Return true if extended addresses are enabled. 261 * This is always the case if our translation regime is 64 bit, 262 * but depends on TTBCR.EAE for 32 bit. 263 */ 264 static inline bool extended_addresses_enabled(CPUARMState *env) 265 { 266 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 267 return arm_el_is_aa64(env, 1) || 268 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); 269 } 270 271 /* Update a QEMU watchpoint based on the information the guest has set in the 272 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 273 */ 274 void hw_watchpoint_update(ARMCPU *cpu, int n); 275 /* Update the QEMU watchpoints for every guest watchpoint. This does a 276 * complete delete-and-reinstate of the QEMU watchpoint list and so is 277 * suitable for use after migration or on reset. 278 */ 279 void hw_watchpoint_update_all(ARMCPU *cpu); 280 /* Update a QEMU breakpoint based on the information the guest has set in the 281 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 282 */ 283 void hw_breakpoint_update(ARMCPU *cpu, int n); 284 /* Update the QEMU breakpoints for every guest breakpoint. This does a 285 * complete delete-and-reinstate of the QEMU breakpoint list and so is 286 * suitable for use after migration or on reset. 287 */ 288 void hw_breakpoint_update_all(ARMCPU *cpu); 289 290 /* Callback function for checking if a breakpoint should trigger. */ 291 bool arm_debug_check_breakpoint(CPUState *cs); 292 293 /* Callback function for checking if a watchpoint should trigger. */ 294 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 295 296 /* Adjust addresses (in BE32 mode) before testing against watchpoint 297 * addresses. 298 */ 299 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 300 301 /* Callback function for when a watchpoint or breakpoint triggers. */ 302 void arm_debug_excp_handler(CPUState *cs); 303 304 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 305 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 306 { 307 return false; 308 } 309 static inline void arm_handle_psci_call(ARMCPU *cpu) 310 { 311 g_assert_not_reached(); 312 } 313 #else 314 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 315 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 316 /* Actually handle a PSCI call */ 317 void arm_handle_psci_call(ARMCPU *cpu); 318 #endif 319 320 /** 321 * arm_clear_exclusive: clear the exclusive monitor 322 * @env: CPU env 323 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 324 */ 325 static inline void arm_clear_exclusive(CPUARMState *env) 326 { 327 env->exclusive_addr = -1; 328 } 329 330 /** 331 * ARMFaultType: type of an ARM MMU fault 332 * This corresponds to the v8A pseudocode's Fault enumeration, 333 * with extensions for QEMU internal conditions. 334 */ 335 typedef enum ARMFaultType { 336 ARMFault_None, 337 ARMFault_AccessFlag, 338 ARMFault_Alignment, 339 ARMFault_Background, 340 ARMFault_Domain, 341 ARMFault_Permission, 342 ARMFault_Translation, 343 ARMFault_AddressSize, 344 ARMFault_SyncExternal, 345 ARMFault_SyncExternalOnWalk, 346 ARMFault_SyncParity, 347 ARMFault_SyncParityOnWalk, 348 ARMFault_AsyncParity, 349 ARMFault_AsyncExternal, 350 ARMFault_Debug, 351 ARMFault_TLBConflict, 352 ARMFault_Lockdown, 353 ARMFault_Exclusive, 354 ARMFault_ICacheMaint, 355 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 356 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 357 } ARMFaultType; 358 359 /** 360 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 361 * @type: Type of fault 362 * @level: Table walk level (for translation, access flag and permission faults) 363 * @domain: Domain of the fault address (for non-LPAE CPUs only) 364 * @s2addr: Address that caused a fault at stage 2 365 * @stage2: True if we faulted at stage 2 366 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 367 * @s1ns: True if we faulted on a non-secure IPA while in secure state 368 * @ea: True if we should set the EA (external abort type) bit in syndrome 369 */ 370 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 371 struct ARMMMUFaultInfo { 372 ARMFaultType type; 373 target_ulong s2addr; 374 int level; 375 int domain; 376 bool stage2; 377 bool s1ptw; 378 bool s1ns; 379 bool ea; 380 }; 381 382 /** 383 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 384 * Compare pseudocode EncodeSDFSC(), though unlike that function 385 * we set up a whole FSR-format code including domain field and 386 * putting the high bit of the FSC into bit 10. 387 */ 388 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 389 { 390 uint32_t fsc; 391 392 switch (fi->type) { 393 case ARMFault_None: 394 return 0; 395 case ARMFault_AccessFlag: 396 fsc = fi->level == 1 ? 0x3 : 0x6; 397 break; 398 case ARMFault_Alignment: 399 fsc = 0x1; 400 break; 401 case ARMFault_Permission: 402 fsc = fi->level == 1 ? 0xd : 0xf; 403 break; 404 case ARMFault_Domain: 405 fsc = fi->level == 1 ? 0x9 : 0xb; 406 break; 407 case ARMFault_Translation: 408 fsc = fi->level == 1 ? 0x5 : 0x7; 409 break; 410 case ARMFault_SyncExternal: 411 fsc = 0x8 | (fi->ea << 12); 412 break; 413 case ARMFault_SyncExternalOnWalk: 414 fsc = fi->level == 1 ? 0xc : 0xe; 415 fsc |= (fi->ea << 12); 416 break; 417 case ARMFault_SyncParity: 418 fsc = 0x409; 419 break; 420 case ARMFault_SyncParityOnWalk: 421 fsc = fi->level == 1 ? 0x40c : 0x40e; 422 break; 423 case ARMFault_AsyncParity: 424 fsc = 0x408; 425 break; 426 case ARMFault_AsyncExternal: 427 fsc = 0x406 | (fi->ea << 12); 428 break; 429 case ARMFault_Debug: 430 fsc = 0x2; 431 break; 432 case ARMFault_TLBConflict: 433 fsc = 0x400; 434 break; 435 case ARMFault_Lockdown: 436 fsc = 0x404; 437 break; 438 case ARMFault_Exclusive: 439 fsc = 0x405; 440 break; 441 case ARMFault_ICacheMaint: 442 fsc = 0x4; 443 break; 444 case ARMFault_Background: 445 fsc = 0x0; 446 break; 447 case ARMFault_QEMU_NSCExec: 448 fsc = M_FAKE_FSR_NSC_EXEC; 449 break; 450 case ARMFault_QEMU_SFault: 451 fsc = M_FAKE_FSR_SFAULT; 452 break; 453 default: 454 /* Other faults can't occur in a context that requires a 455 * short-format status code. 456 */ 457 g_assert_not_reached(); 458 } 459 460 fsc |= (fi->domain << 4); 461 return fsc; 462 } 463 464 /** 465 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 466 * Compare pseudocode EncodeLDFSC(), though unlike that function 467 * we fill in also the LPAE bit 9 of a DFSR format. 468 */ 469 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 470 { 471 uint32_t fsc; 472 473 switch (fi->type) { 474 case ARMFault_None: 475 return 0; 476 case ARMFault_AddressSize: 477 assert(fi->level >= -1 && fi->level <= 3); 478 if (fi->level < 0) { 479 fsc = 0b101001; 480 } else { 481 fsc = fi->level; 482 } 483 break; 484 case ARMFault_AccessFlag: 485 assert(fi->level >= 0 && fi->level <= 3); 486 fsc = 0b001000 | fi->level; 487 break; 488 case ARMFault_Permission: 489 assert(fi->level >= 0 && fi->level <= 3); 490 fsc = 0b001100 | fi->level; 491 break; 492 case ARMFault_Translation: 493 assert(fi->level >= -1 && fi->level <= 3); 494 if (fi->level < 0) { 495 fsc = 0b101011; 496 } else { 497 fsc = 0b000100 | fi->level; 498 } 499 break; 500 case ARMFault_SyncExternal: 501 fsc = 0x10 | (fi->ea << 12); 502 break; 503 case ARMFault_SyncExternalOnWalk: 504 assert(fi->level >= -1 && fi->level <= 3); 505 if (fi->level < 0) { 506 fsc = 0b010011; 507 } else { 508 fsc = 0b010100 | fi->level; 509 } 510 fsc |= fi->ea << 12; 511 break; 512 case ARMFault_SyncParity: 513 fsc = 0x18; 514 break; 515 case ARMFault_SyncParityOnWalk: 516 assert(fi->level >= -1 && fi->level <= 3); 517 if (fi->level < 0) { 518 fsc = 0b011011; 519 } else { 520 fsc = 0b011100 | fi->level; 521 } 522 break; 523 case ARMFault_AsyncParity: 524 fsc = 0x19; 525 break; 526 case ARMFault_AsyncExternal: 527 fsc = 0x11 | (fi->ea << 12); 528 break; 529 case ARMFault_Alignment: 530 fsc = 0x21; 531 break; 532 case ARMFault_Debug: 533 fsc = 0x22; 534 break; 535 case ARMFault_TLBConflict: 536 fsc = 0x30; 537 break; 538 case ARMFault_Lockdown: 539 fsc = 0x34; 540 break; 541 case ARMFault_Exclusive: 542 fsc = 0x35; 543 break; 544 default: 545 /* Other faults can't occur in a context that requires a 546 * long-format status code. 547 */ 548 g_assert_not_reached(); 549 } 550 551 fsc |= 1 << 9; 552 return fsc; 553 } 554 555 static inline bool arm_extabort_type(MemTxResult result) 556 { 557 /* The EA bit in syndromes and fault status registers is an 558 * IMPDEF classification of external aborts. ARM implementations 559 * usually use this to indicate AXI bus Decode error (0) or 560 * Slave error (1); in QEMU we follow that. 561 */ 562 return result != MEMTX_DECODE_ERROR; 563 } 564 565 #ifdef CONFIG_USER_ONLY 566 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 567 MMUAccessType access_type, 568 bool maperr, uintptr_t ra); 569 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 570 MMUAccessType access_type, uintptr_t ra); 571 #else 572 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 573 MMUAccessType access_type, int mmu_idx, 574 bool probe, uintptr_t retaddr); 575 #endif 576 577 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 578 { 579 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 580 } 581 582 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 583 { 584 if (arm_feature(env, ARM_FEATURE_M)) { 585 return mmu_idx | ARM_MMU_IDX_M; 586 } else { 587 return mmu_idx | ARM_MMU_IDX_A; 588 } 589 } 590 591 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 592 { 593 /* AArch64 is always a-profile. */ 594 return mmu_idx | ARM_MMU_IDX_A; 595 } 596 597 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 598 599 /* 600 * Return the MMU index for a v7M CPU with all relevant information 601 * manually specified. 602 */ 603 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 604 bool secstate, bool priv, bool negpri); 605 606 /* 607 * Return the MMU index for a v7M CPU in the specified security and 608 * privilege state. 609 */ 610 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 611 bool secstate, bool priv); 612 613 /* Return the MMU index for a v7M CPU in the specified security state */ 614 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 615 616 /* Return true if the stage 1 translation regime is using LPAE format page 617 * tables */ 618 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 619 620 /* Raise a data fault alignment exception for the specified virtual address */ 621 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 622 MMUAccessType access_type, 623 int mmu_idx, uintptr_t retaddr); 624 625 /* arm_cpu_do_transaction_failed: handle a memory system error response 626 * (eg "no device/memory present at address") by raising an external abort 627 * exception 628 */ 629 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 630 vaddr addr, unsigned size, 631 MMUAccessType access_type, 632 int mmu_idx, MemTxAttrs attrs, 633 MemTxResult response, uintptr_t retaddr); 634 635 /* Call any registered EL change hooks */ 636 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 637 { 638 ARMELChangeHook *hook, *next; 639 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 640 hook->hook(cpu, hook->opaque); 641 } 642 } 643 static inline void arm_call_el_change_hook(ARMCPU *cpu) 644 { 645 ARMELChangeHook *hook, *next; 646 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 647 hook->hook(cpu, hook->opaque); 648 } 649 } 650 651 /* Return true if this address translation regime has two ranges. */ 652 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 653 { 654 switch (mmu_idx) { 655 case ARMMMUIdx_Stage1_E0: 656 case ARMMMUIdx_Stage1_E1: 657 case ARMMMUIdx_Stage1_E1_PAN: 658 case ARMMMUIdx_Stage1_SE0: 659 case ARMMMUIdx_Stage1_SE1: 660 case ARMMMUIdx_Stage1_SE1_PAN: 661 case ARMMMUIdx_E10_0: 662 case ARMMMUIdx_E10_1: 663 case ARMMMUIdx_E10_1_PAN: 664 case ARMMMUIdx_E20_0: 665 case ARMMMUIdx_E20_2: 666 case ARMMMUIdx_E20_2_PAN: 667 case ARMMMUIdx_SE10_0: 668 case ARMMMUIdx_SE10_1: 669 case ARMMMUIdx_SE10_1_PAN: 670 case ARMMMUIdx_SE20_0: 671 case ARMMMUIdx_SE20_2: 672 case ARMMMUIdx_SE20_2_PAN: 673 return true; 674 default: 675 return false; 676 } 677 } 678 679 /* Return true if this address translation regime is secure */ 680 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 681 { 682 switch (mmu_idx) { 683 case ARMMMUIdx_E10_0: 684 case ARMMMUIdx_E10_1: 685 case ARMMMUIdx_E10_1_PAN: 686 case ARMMMUIdx_E20_0: 687 case ARMMMUIdx_E20_2: 688 case ARMMMUIdx_E20_2_PAN: 689 case ARMMMUIdx_Stage1_E0: 690 case ARMMMUIdx_Stage1_E1: 691 case ARMMMUIdx_Stage1_E1_PAN: 692 case ARMMMUIdx_E2: 693 case ARMMMUIdx_Stage2: 694 case ARMMMUIdx_MPrivNegPri: 695 case ARMMMUIdx_MUserNegPri: 696 case ARMMMUIdx_MPriv: 697 case ARMMMUIdx_MUser: 698 return false; 699 case ARMMMUIdx_SE3: 700 case ARMMMUIdx_SE10_0: 701 case ARMMMUIdx_SE10_1: 702 case ARMMMUIdx_SE10_1_PAN: 703 case ARMMMUIdx_SE20_0: 704 case ARMMMUIdx_SE20_2: 705 case ARMMMUIdx_SE20_2_PAN: 706 case ARMMMUIdx_Stage1_SE0: 707 case ARMMMUIdx_Stage1_SE1: 708 case ARMMMUIdx_Stage1_SE1_PAN: 709 case ARMMMUIdx_SE2: 710 case ARMMMUIdx_Stage2_S: 711 case ARMMMUIdx_MSPrivNegPri: 712 case ARMMMUIdx_MSUserNegPri: 713 case ARMMMUIdx_MSPriv: 714 case ARMMMUIdx_MSUser: 715 return true; 716 default: 717 g_assert_not_reached(); 718 } 719 } 720 721 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 722 { 723 switch (mmu_idx) { 724 case ARMMMUIdx_Stage1_E1_PAN: 725 case ARMMMUIdx_Stage1_SE1_PAN: 726 case ARMMMUIdx_E10_1_PAN: 727 case ARMMMUIdx_E20_2_PAN: 728 case ARMMMUIdx_SE10_1_PAN: 729 case ARMMMUIdx_SE20_2_PAN: 730 return true; 731 default: 732 return false; 733 } 734 } 735 736 /* Return the exception level which controls this address translation regime */ 737 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 738 { 739 switch (mmu_idx) { 740 case ARMMMUIdx_SE20_0: 741 case ARMMMUIdx_SE20_2: 742 case ARMMMUIdx_SE20_2_PAN: 743 case ARMMMUIdx_E20_0: 744 case ARMMMUIdx_E20_2: 745 case ARMMMUIdx_E20_2_PAN: 746 case ARMMMUIdx_Stage2: 747 case ARMMMUIdx_Stage2_S: 748 case ARMMMUIdx_SE2: 749 case ARMMMUIdx_E2: 750 return 2; 751 case ARMMMUIdx_SE3: 752 return 3; 753 case ARMMMUIdx_SE10_0: 754 case ARMMMUIdx_Stage1_SE0: 755 return arm_el_is_aa64(env, 3) ? 1 : 3; 756 case ARMMMUIdx_SE10_1: 757 case ARMMMUIdx_SE10_1_PAN: 758 case ARMMMUIdx_Stage1_E0: 759 case ARMMMUIdx_Stage1_E1: 760 case ARMMMUIdx_Stage1_E1_PAN: 761 case ARMMMUIdx_Stage1_SE1: 762 case ARMMMUIdx_Stage1_SE1_PAN: 763 case ARMMMUIdx_E10_0: 764 case ARMMMUIdx_E10_1: 765 case ARMMMUIdx_E10_1_PAN: 766 case ARMMMUIdx_MPrivNegPri: 767 case ARMMMUIdx_MUserNegPri: 768 case ARMMMUIdx_MPriv: 769 case ARMMMUIdx_MUser: 770 case ARMMMUIdx_MSPrivNegPri: 771 case ARMMMUIdx_MSUserNegPri: 772 case ARMMMUIdx_MSPriv: 773 case ARMMMUIdx_MSUser: 774 return 1; 775 default: 776 g_assert_not_reached(); 777 } 778 } 779 780 /* Return the TCR controlling this translation regime */ 781 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 782 { 783 if (mmu_idx == ARMMMUIdx_Stage2) { 784 return &env->cp15.vtcr_el2; 785 } 786 if (mmu_idx == ARMMMUIdx_Stage2_S) { 787 /* 788 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but 789 * those are not currently used by QEMU, so just return VSTCR_EL2. 790 */ 791 return &env->cp15.vstcr_el2; 792 } 793 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 794 } 795 796 /* Return the FSR value for a debug exception (watchpoint, hardware 797 * breakpoint or BKPT insn) targeting the specified exception level. 798 */ 799 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) 800 { 801 ARMMMUFaultInfo fi = { .type = ARMFault_Debug }; 802 int target_el = arm_debug_target_el(env); 803 bool using_lpae = false; 804 805 if (target_el == 2 || arm_el_is_aa64(env, target_el)) { 806 using_lpae = true; 807 } else { 808 if (arm_feature(env, ARM_FEATURE_LPAE) && 809 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { 810 using_lpae = true; 811 } 812 } 813 814 if (using_lpae) { 815 return arm_fi_to_lfsc(&fi); 816 } else { 817 return arm_fi_to_sfsc(&fi); 818 } 819 } 820 821 /** 822 * arm_num_brps: Return number of implemented breakpoints. 823 * Note that the ID register BRPS field is "number of bps - 1", 824 * and we return the actual number of breakpoints. 825 */ 826 static inline int arm_num_brps(ARMCPU *cpu) 827 { 828 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 829 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 830 } else { 831 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 832 } 833 } 834 835 /** 836 * arm_num_wrps: Return number of implemented watchpoints. 837 * Note that the ID register WRPS field is "number of wps - 1", 838 * and we return the actual number of watchpoints. 839 */ 840 static inline int arm_num_wrps(ARMCPU *cpu) 841 { 842 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 843 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 844 } else { 845 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 846 } 847 } 848 849 /** 850 * arm_num_ctx_cmps: Return number of implemented context comparators. 851 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 852 * and we return the actual number of comparators. 853 */ 854 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 855 { 856 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 857 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 858 } else { 859 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 860 } 861 } 862 863 /** 864 * v7m_using_psp: Return true if using process stack pointer 865 * Return true if the CPU is currently using the process stack 866 * pointer, or false if it is using the main stack pointer. 867 */ 868 static inline bool v7m_using_psp(CPUARMState *env) 869 { 870 /* Handler mode always uses the main stack; for thread mode 871 * the CONTROL.SPSEL bit determines the answer. 872 * Note that in v7M it is not possible to be in Handler mode with 873 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 874 */ 875 return !arm_v7m_is_handler_mode(env) && 876 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 877 } 878 879 /** 880 * v7m_sp_limit: Return SP limit for current CPU state 881 * Return the SP limit value for the current CPU security state 882 * and stack pointer. 883 */ 884 static inline uint32_t v7m_sp_limit(CPUARMState *env) 885 { 886 if (v7m_using_psp(env)) { 887 return env->v7m.psplim[env->v7m.secure]; 888 } else { 889 return env->v7m.msplim[env->v7m.secure]; 890 } 891 } 892 893 /** 894 * v7m_cpacr_pass: 895 * Return true if the v7M CPACR permits access to the FPU for the specified 896 * security state and privilege level. 897 */ 898 static inline bool v7m_cpacr_pass(CPUARMState *env, 899 bool is_secure, bool is_priv) 900 { 901 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 902 case 0: 903 case 2: /* UNPREDICTABLE: we treat like 0 */ 904 return false; 905 case 1: 906 return is_priv; 907 case 3: 908 return true; 909 default: 910 g_assert_not_reached(); 911 } 912 } 913 914 /** 915 * aarch32_mode_name(): Return name of the AArch32 CPU mode 916 * @psr: Program Status Register indicating CPU mode 917 * 918 * Returns, for debug logging purposes, a printable representation 919 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 920 * the low bits of the specified PSR. 921 */ 922 static inline const char *aarch32_mode_name(uint32_t psr) 923 { 924 static const char cpu_mode_names[16][4] = { 925 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 926 "???", "???", "hyp", "und", "???", "???", "???", "sys" 927 }; 928 929 return cpu_mode_names[psr & 0xf]; 930 } 931 932 /** 933 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 934 * 935 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 936 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 937 * Must be called with the iothread lock held. 938 */ 939 void arm_cpu_update_virq(ARMCPU *cpu); 940 941 /** 942 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 943 * 944 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 945 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 946 * Must be called with the iothread lock held. 947 */ 948 void arm_cpu_update_vfiq(ARMCPU *cpu); 949 950 /** 951 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 952 * 953 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 954 * following a change to the HCR_EL2.VSE bit. 955 */ 956 void arm_cpu_update_vserr(ARMCPU *cpu); 957 958 /** 959 * arm_mmu_idx_el: 960 * @env: The cpu environment 961 * @el: The EL to use. 962 * 963 * Return the full ARMMMUIdx for the translation regime for EL. 964 */ 965 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 966 967 /** 968 * arm_mmu_idx: 969 * @env: The cpu environment 970 * 971 * Return the full ARMMMUIdx for the current translation regime. 972 */ 973 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 974 975 /** 976 * arm_stage1_mmu_idx: 977 * @env: The cpu environment 978 * 979 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 980 */ 981 #ifdef CONFIG_USER_ONLY 982 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 983 { 984 return ARMMMUIdx_Stage1_E0; 985 } 986 #else 987 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 988 #endif 989 990 /** 991 * arm_mmu_idx_is_stage1_of_2: 992 * @mmu_idx: The ARMMMUIdx to test 993 * 994 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 995 * first stage of a two stage regime. 996 */ 997 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 998 { 999 switch (mmu_idx) { 1000 case ARMMMUIdx_Stage1_E0: 1001 case ARMMMUIdx_Stage1_E1: 1002 case ARMMMUIdx_Stage1_E1_PAN: 1003 case ARMMMUIdx_Stage1_SE0: 1004 case ARMMMUIdx_Stage1_SE1: 1005 case ARMMMUIdx_Stage1_SE1_PAN: 1006 return true; 1007 default: 1008 return false; 1009 } 1010 } 1011 1012 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1013 const ARMISARegisters *id) 1014 { 1015 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1016 1017 if ((features >> ARM_FEATURE_V4T) & 1) { 1018 valid |= CPSR_T; 1019 } 1020 if ((features >> ARM_FEATURE_V5) & 1) { 1021 valid |= CPSR_Q; /* V5TE in reality*/ 1022 } 1023 if ((features >> ARM_FEATURE_V6) & 1) { 1024 valid |= CPSR_E | CPSR_GE; 1025 } 1026 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1027 valid |= CPSR_IT; 1028 } 1029 if (isar_feature_aa32_jazelle(id)) { 1030 valid |= CPSR_J; 1031 } 1032 if (isar_feature_aa32_pan(id)) { 1033 valid |= CPSR_PAN; 1034 } 1035 if (isar_feature_aa32_dit(id)) { 1036 valid |= CPSR_DIT; 1037 } 1038 if (isar_feature_aa32_ssbs(id)) { 1039 valid |= CPSR_SSBS; 1040 } 1041 1042 return valid; 1043 } 1044 1045 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1046 { 1047 uint32_t valid; 1048 1049 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1050 if (isar_feature_aa64_bti(id)) { 1051 valid |= PSTATE_BTYPE; 1052 } 1053 if (isar_feature_aa64_pan(id)) { 1054 valid |= PSTATE_PAN; 1055 } 1056 if (isar_feature_aa64_uao(id)) { 1057 valid |= PSTATE_UAO; 1058 } 1059 if (isar_feature_aa64_dit(id)) { 1060 valid |= PSTATE_DIT; 1061 } 1062 if (isar_feature_aa64_ssbs(id)) { 1063 valid |= PSTATE_SSBS; 1064 } 1065 if (isar_feature_aa64_mte(id)) { 1066 valid |= PSTATE_TCO; 1067 } 1068 1069 return valid; 1070 } 1071 1072 /* 1073 * Parameters of a given virtual address, as extracted from the 1074 * translation control register (TCR) for a given regime. 1075 */ 1076 typedef struct ARMVAParameters { 1077 unsigned tsz : 8; 1078 unsigned ps : 3; 1079 unsigned sh : 2; 1080 unsigned select : 1; 1081 bool tbi : 1; 1082 bool epd : 1; 1083 bool hpd : 1; 1084 bool using16k : 1; 1085 bool using64k : 1; 1086 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1087 bool ds : 1; 1088 } ARMVAParameters; 1089 1090 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1091 ARMMMUIdx mmu_idx, bool data); 1092 1093 static inline int exception_target_el(CPUARMState *env) 1094 { 1095 int target_el = MAX(1, arm_current_el(env)); 1096 1097 /* 1098 * No such thing as secure EL1 if EL3 is aarch32, 1099 * so update the target EL to EL3 in this case. 1100 */ 1101 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 1102 target_el = 3; 1103 } 1104 1105 return target_el; 1106 } 1107 1108 /* Determine if allocation tags are available. */ 1109 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1110 uint64_t sctlr) 1111 { 1112 if (el < 3 1113 && arm_feature(env, ARM_FEATURE_EL3) 1114 && !(env->cp15.scr_el3 & SCR_ATA)) { 1115 return false; 1116 } 1117 if (el < 2 && arm_is_el2_enabled(env)) { 1118 uint64_t hcr = arm_hcr_el2_eff(env); 1119 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1120 return false; 1121 } 1122 } 1123 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1124 return sctlr != 0; 1125 } 1126 1127 #ifndef CONFIG_USER_ONLY 1128 1129 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1130 typedef struct V8M_SAttributes { 1131 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1132 bool ns; 1133 bool nsc; 1134 uint8_t sregion; 1135 bool srvalid; 1136 uint8_t iregion; 1137 bool irvalid; 1138 } V8M_SAttributes; 1139 1140 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1141 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1142 V8M_SAttributes *sattrs); 1143 1144 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1145 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1146 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1147 int *prot, bool *is_subpage, 1148 ARMMMUFaultInfo *fi, uint32_t *mregion); 1149 1150 /* Cacheability and shareability attributes for a memory access */ 1151 typedef struct ARMCacheAttrs { 1152 /* 1153 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1154 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1155 */ 1156 unsigned int attrs:8; 1157 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1158 bool is_s2_format:1; 1159 } ARMCacheAttrs; 1160 1161 bool get_phys_addr(CPUARMState *env, target_ulong address, 1162 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1163 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 1164 target_ulong *page_size, 1165 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 1166 __attribute__((nonnull)); 1167 1168 void arm_log_exception(CPUState *cs); 1169 1170 #endif /* !CONFIG_USER_ONLY */ 1171 1172 /* 1173 * The log2 of the words in the tag block, for GMID_EL1.BS. 1174 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1175 */ 1176 #define GMID_EL1_BS 6 1177 1178 /* We associate one allocation tag per 16 bytes, the minimum. */ 1179 #define LOG2_TAG_GRANULE 4 1180 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 1181 1182 /* 1183 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1184 * the same simd_desc() encoding due to restrictions on size. 1185 * Use these instead. 1186 */ 1187 FIELD(PREDDESC, OPRSZ, 0, 6) 1188 FIELD(PREDDESC, ESZ, 6, 2) 1189 FIELD(PREDDESC, DATA, 8, 24) 1190 1191 /* 1192 * The SVE simd_data field, for memory ops, contains either 1193 * rd (5 bits) or a shift count (2 bits). 1194 */ 1195 #define SVE_MTEDESC_SHIFT 5 1196 1197 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1198 FIELD(MTEDESC, MIDX, 0, 4) 1199 FIELD(MTEDESC, TBI, 4, 2) 1200 FIELD(MTEDESC, TCMA, 6, 2) 1201 FIELD(MTEDESC, WRITE, 8, 1) 1202 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */ 1203 1204 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1205 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1206 1207 static inline int allocation_tag_from_addr(uint64_t ptr) 1208 { 1209 return extract64(ptr, 56, 4); 1210 } 1211 1212 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1213 { 1214 return deposit64(ptr, 56, 4, rtag); 1215 } 1216 1217 /* Return true if tbi bits mean that the access is checked. */ 1218 static inline bool tbi_check(uint32_t desc, int bit55) 1219 { 1220 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1221 } 1222 1223 /* Return true if tcma bits mean that the access is unchecked. */ 1224 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1225 { 1226 /* 1227 * We had extracted bit55 and ptr_tag for other reasons, so fold 1228 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1229 */ 1230 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1231 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1232 return tcma && match; 1233 } 1234 1235 /* 1236 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1237 * for the tag to be present in the FAR_ELx register. But for user-only 1238 * mode, we do not have a TLB with which to implement this, so we must 1239 * remove the top byte. 1240 */ 1241 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1242 { 1243 #ifdef CONFIG_USER_ONLY 1244 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1245 ptr &= sextract64(ptr, 0, 56); 1246 #endif 1247 return ptr; 1248 } 1249 1250 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1251 { 1252 #ifdef CONFIG_USER_ONLY 1253 int64_t clean_ptr = sextract64(ptr, 0, 56); 1254 if (tbi_check(desc, clean_ptr < 0)) { 1255 ptr = clean_ptr; 1256 } 1257 #endif 1258 return ptr; 1259 } 1260 1261 /* Values for M-profile PSR.ECI for MVE insns */ 1262 enum MVEECIState { 1263 ECI_NONE = 0, /* No completed beats */ 1264 ECI_A0 = 1, /* Completed: A0 */ 1265 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1266 /* 3 is reserved */ 1267 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1268 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1269 /* All other values reserved */ 1270 }; 1271 1272 /* Definitions for the PMU registers */ 1273 #define PMCRN_MASK 0xf800 1274 #define PMCRN_SHIFT 11 1275 #define PMCRLC 0x40 1276 #define PMCRDP 0x20 1277 #define PMCRX 0x10 1278 #define PMCRD 0x8 1279 #define PMCRC 0x4 1280 #define PMCRP 0x2 1281 #define PMCRE 0x1 1282 /* 1283 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1284 * which can be written as 1 to trigger behaviour but which stay RAZ). 1285 */ 1286 #define PMCR_WRITABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1287 1288 #define PMXEVTYPER_P 0x80000000 1289 #define PMXEVTYPER_U 0x40000000 1290 #define PMXEVTYPER_NSK 0x20000000 1291 #define PMXEVTYPER_NSU 0x10000000 1292 #define PMXEVTYPER_NSH 0x08000000 1293 #define PMXEVTYPER_M 0x04000000 1294 #define PMXEVTYPER_MT 0x02000000 1295 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1296 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1297 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1298 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1299 PMXEVTYPER_EVTCOUNT) 1300 1301 #define PMCCFILTR 0xf8000000 1302 #define PMCCFILTR_M PMXEVTYPER_M 1303 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1304 1305 static inline uint32_t pmu_num_counters(CPUARMState *env) 1306 { 1307 ARMCPU *cpu = env_archcpu(env); 1308 1309 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1310 } 1311 1312 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1313 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1314 { 1315 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1316 } 1317 1318 #ifdef TARGET_AARCH64 1319 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg); 1320 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg); 1321 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg); 1322 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg); 1323 #endif 1324 1325 #ifdef CONFIG_USER_ONLY 1326 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { } 1327 #else 1328 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu); 1329 #endif 1330 1331 void aa32_max_features(ARMCPU *cpu); 1332 1333 #endif 1334