1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 30 /* register banks for CPU modes */ 31 #define BANK_USRSYS 0 32 #define BANK_SVC 1 33 #define BANK_ABT 2 34 #define BANK_UND 3 35 #define BANK_IRQ 4 36 #define BANK_FIQ 5 37 #define BANK_HYP 6 38 #define BANK_MON 7 39 40 static inline bool excp_is_internal(int excp) 41 { 42 /* Return true if this exception number represents a QEMU-internal 43 * exception that will not be passed to the guest. 44 */ 45 return excp == EXCP_INTERRUPT 46 || excp == EXCP_HLT 47 || excp == EXCP_DEBUG 48 || excp == EXCP_HALTED 49 || excp == EXCP_EXCEPTION_EXIT 50 || excp == EXCP_KERNEL_TRAP 51 || excp == EXCP_SEMIHOST; 52 } 53 54 /* Scale factor for generic timers, ie number of ns per tick. 55 * This gives a 62.5MHz timer. 56 */ 57 #define GTIMER_SCALE 16 58 59 /* Bit definitions for the v7M CONTROL register */ 60 FIELD(V7M_CONTROL, NPRIV, 0, 1) 61 FIELD(V7M_CONTROL, SPSEL, 1, 1) 62 FIELD(V7M_CONTROL, FPCA, 2, 1) 63 FIELD(V7M_CONTROL, SFPA, 3, 1) 64 65 /* Bit definitions for v7M exception return payload */ 66 FIELD(V7M_EXCRET, ES, 0, 1) 67 FIELD(V7M_EXCRET, RES0, 1, 1) 68 FIELD(V7M_EXCRET, SPSEL, 2, 1) 69 FIELD(V7M_EXCRET, MODE, 3, 1) 70 FIELD(V7M_EXCRET, FTYPE, 4, 1) 71 FIELD(V7M_EXCRET, DCRS, 5, 1) 72 FIELD(V7M_EXCRET, S, 6, 1) 73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 74 75 /* Minimum value which is a magic number for exception return */ 76 #define EXC_RETURN_MIN_MAGIC 0xff000000 77 /* Minimum number which is a magic number for function or exception return 78 * when using v8M security extension 79 */ 80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 81 82 /* We use a few fake FSR values for internal purposes in M profile. 83 * M profile cores don't have A/R format FSRs, but currently our 84 * get_phys_addr() code assumes A/R profile and reports failures via 85 * an A/R format FSR value. We then translate that into the proper 86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 87 * Mostly the FSR values we use for this are those defined for v7PMSA, 88 * since we share some of that codepath. A few kinds of fault are 89 * only for M profile and have no A/R equivalent, though, so we have 90 * to pick a value from the reserved range (which we never otherwise 91 * generate) to use for these. 92 * These values will never be visible to the guest. 93 */ 94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 96 97 /** 98 * raise_exception: Raise the specified exception. 99 * Raise a guest exception with the specified value, syndrome register 100 * and target exception level. This should be called from helper functions, 101 * and never returns because we will longjump back up to the CPU main loop. 102 */ 103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp, 104 uint32_t syndrome, uint32_t target_el); 105 106 /* 107 * Similarly, but also use unwinding to restore cpu state. 108 */ 109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp, 110 uint32_t syndrome, uint32_t target_el, 111 uintptr_t ra); 112 113 /* 114 * For AArch64, map a given EL to an index in the banked_spsr array. 115 * Note that this mapping and the AArch32 mapping defined in bank_number() 116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 117 * mandated mapping between each other. 118 */ 119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 120 { 121 static const unsigned int map[4] = { 122 [1] = BANK_SVC, /* EL1. */ 123 [2] = BANK_HYP, /* EL2. */ 124 [3] = BANK_MON, /* EL3. */ 125 }; 126 assert(el >= 1 && el <= 3); 127 return map[el]; 128 } 129 130 /* Map CPU modes onto saved register banks. */ 131 static inline int bank_number(int mode) 132 { 133 switch (mode) { 134 case ARM_CPU_MODE_USR: 135 case ARM_CPU_MODE_SYS: 136 return BANK_USRSYS; 137 case ARM_CPU_MODE_SVC: 138 return BANK_SVC; 139 case ARM_CPU_MODE_ABT: 140 return BANK_ABT; 141 case ARM_CPU_MODE_UND: 142 return BANK_UND; 143 case ARM_CPU_MODE_IRQ: 144 return BANK_IRQ; 145 case ARM_CPU_MODE_FIQ: 146 return BANK_FIQ; 147 case ARM_CPU_MODE_HYP: 148 return BANK_HYP; 149 case ARM_CPU_MODE_MON: 150 return BANK_MON; 151 } 152 g_assert_not_reached(); 153 } 154 155 /** 156 * r14_bank_number: Map CPU mode onto register bank for r14 157 * 158 * Given an AArch32 CPU mode, return the index into the saved register 159 * banks to use for the R14 (LR) in that mode. This is the same as 160 * bank_number(), except for the special case of Hyp mode, where 161 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 162 * This should be used as the index into env->banked_r14[], and 163 * bank_number() used for the index into env->banked_r13[] and 164 * env->banked_spsr[]. 165 */ 166 static inline int r14_bank_number(int mode) 167 { 168 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 169 } 170 171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 172 void arm_translate_init(void); 173 174 #ifdef CONFIG_TCG 175 void arm_cpu_synchronize_from_tb(CPUState *cs, 176 const struct TranslationBlock *tb); 177 #endif /* CONFIG_TCG */ 178 179 180 enum arm_fprounding { 181 FPROUNDING_TIEEVEN, 182 FPROUNDING_POSINF, 183 FPROUNDING_NEGINF, 184 FPROUNDING_ZERO, 185 FPROUNDING_TIEAWAY, 186 FPROUNDING_ODD 187 }; 188 189 int arm_rmode_to_sf(int rmode); 190 191 static inline void aarch64_save_sp(CPUARMState *env, int el) 192 { 193 if (env->pstate & PSTATE_SP) { 194 env->sp_el[el] = env->xregs[31]; 195 } else { 196 env->sp_el[0] = env->xregs[31]; 197 } 198 } 199 200 static inline void aarch64_restore_sp(CPUARMState *env, int el) 201 { 202 if (env->pstate & PSTATE_SP) { 203 env->xregs[31] = env->sp_el[el]; 204 } else { 205 env->xregs[31] = env->sp_el[0]; 206 } 207 } 208 209 static inline void update_spsel(CPUARMState *env, uint32_t imm) 210 { 211 unsigned int cur_el = arm_current_el(env); 212 /* Update PSTATE SPSel bit; this requires us to update the 213 * working stack pointer in xregs[31]. 214 */ 215 if (!((imm ^ env->pstate) & PSTATE_SP)) { 216 return; 217 } 218 aarch64_save_sp(env, cur_el); 219 env->pstate = deposit32(env->pstate, 0, 1, imm); 220 221 /* We rely on illegal updates to SPsel from EL0 to get trapped 222 * at translation time. 223 */ 224 assert(cur_el >= 1 && cur_el <= 3); 225 aarch64_restore_sp(env, cur_el); 226 } 227 228 /* 229 * arm_pamax 230 * @cpu: ARMCPU 231 * 232 * Returns the implementation defined bit-width of physical addresses. 233 * The ARMv8 reference manuals refer to this as PAMax(). 234 */ 235 static inline unsigned int arm_pamax(ARMCPU *cpu) 236 { 237 static const unsigned int pamax_map[] = { 238 [0] = 32, 239 [1] = 36, 240 [2] = 40, 241 [3] = 42, 242 [4] = 44, 243 [5] = 48, 244 }; 245 unsigned int parange = 246 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 247 248 /* id_aa64mmfr0 is a read-only register so values outside of the 249 * supported mappings can be considered an implementation error. */ 250 assert(parange < ARRAY_SIZE(pamax_map)); 251 return pamax_map[parange]; 252 } 253 254 /* Return true if extended addresses are enabled. 255 * This is always the case if our translation regime is 64 bit, 256 * but depends on TTBCR.EAE for 32 bit. 257 */ 258 static inline bool extended_addresses_enabled(CPUARMState *env) 259 { 260 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 261 return arm_el_is_aa64(env, 1) || 262 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); 263 } 264 265 /* Valid Syndrome Register EC field values */ 266 enum arm_exception_class { 267 EC_UNCATEGORIZED = 0x00, 268 EC_WFX_TRAP = 0x01, 269 EC_CP15RTTRAP = 0x03, 270 EC_CP15RRTTRAP = 0x04, 271 EC_CP14RTTRAP = 0x05, 272 EC_CP14DTTRAP = 0x06, 273 EC_ADVSIMDFPACCESSTRAP = 0x07, 274 EC_FPIDTRAP = 0x08, 275 EC_PACTRAP = 0x09, 276 EC_CP14RRTTRAP = 0x0c, 277 EC_BTITRAP = 0x0d, 278 EC_ILLEGALSTATE = 0x0e, 279 EC_AA32_SVC = 0x11, 280 EC_AA32_HVC = 0x12, 281 EC_AA32_SMC = 0x13, 282 EC_AA64_SVC = 0x15, 283 EC_AA64_HVC = 0x16, 284 EC_AA64_SMC = 0x17, 285 EC_SYSTEMREGISTERTRAP = 0x18, 286 EC_SVEACCESSTRAP = 0x19, 287 EC_INSNABORT = 0x20, 288 EC_INSNABORT_SAME_EL = 0x21, 289 EC_PCALIGNMENT = 0x22, 290 EC_DATAABORT = 0x24, 291 EC_DATAABORT_SAME_EL = 0x25, 292 EC_SPALIGNMENT = 0x26, 293 EC_AA32_FPTRAP = 0x28, 294 EC_AA64_FPTRAP = 0x2c, 295 EC_SERROR = 0x2f, 296 EC_BREAKPOINT = 0x30, 297 EC_BREAKPOINT_SAME_EL = 0x31, 298 EC_SOFTWARESTEP = 0x32, 299 EC_SOFTWARESTEP_SAME_EL = 0x33, 300 EC_WATCHPOINT = 0x34, 301 EC_WATCHPOINT_SAME_EL = 0x35, 302 EC_AA32_BKPT = 0x38, 303 EC_VECTORCATCH = 0x3a, 304 EC_AA64_BKPT = 0x3c, 305 }; 306 307 #define ARM_EL_EC_SHIFT 26 308 #define ARM_EL_IL_SHIFT 25 309 #define ARM_EL_ISV_SHIFT 24 310 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT) 311 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT) 312 313 static inline uint32_t syn_get_ec(uint32_t syn) 314 { 315 return syn >> ARM_EL_EC_SHIFT; 316 } 317 318 /* Utility functions for constructing various kinds of syndrome value. 319 * Note that in general we follow the AArch64 syndrome values; in a 320 * few cases the value in HSR for exceptions taken to AArch32 Hyp 321 * mode differs slightly, and we fix this up when populating HSR in 322 * arm_cpu_do_interrupt_aarch32_hyp(). 323 * The exception is FP/SIMD access traps -- these report extra information 324 * when taking an exception to AArch32. For those we include the extra coproc 325 * and TA fields, and mask them out when taking the exception to AArch64. 326 */ 327 static inline uint32_t syn_uncategorized(void) 328 { 329 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL; 330 } 331 332 static inline uint32_t syn_aa64_svc(uint32_t imm16) 333 { 334 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 335 } 336 337 static inline uint32_t syn_aa64_hvc(uint32_t imm16) 338 { 339 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 340 } 341 342 static inline uint32_t syn_aa64_smc(uint32_t imm16) 343 { 344 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 345 } 346 347 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit) 348 { 349 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) 350 | (is_16bit ? 0 : ARM_EL_IL); 351 } 352 353 static inline uint32_t syn_aa32_hvc(uint32_t imm16) 354 { 355 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 356 } 357 358 static inline uint32_t syn_aa32_smc(void) 359 { 360 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL; 361 } 362 363 static inline uint32_t syn_aa64_bkpt(uint32_t imm16) 364 { 365 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 366 } 367 368 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit) 369 { 370 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) 371 | (is_16bit ? 0 : ARM_EL_IL); 372 } 373 374 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2, 375 int crn, int crm, int rt, 376 int isread) 377 { 378 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL 379 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5) 380 | (crm << 1) | isread; 381 } 382 383 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2, 384 int crn, int crm, int rt, int isread, 385 bool is_16bit) 386 { 387 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT) 388 | (is_16bit ? 0 : ARM_EL_IL) 389 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) 390 | (crn << 10) | (rt << 5) | (crm << 1) | isread; 391 } 392 393 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2, 394 int crn, int crm, int rt, int isread, 395 bool is_16bit) 396 { 397 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT) 398 | (is_16bit ? 0 : ARM_EL_IL) 399 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) 400 | (crn << 10) | (rt << 5) | (crm << 1) | isread; 401 } 402 403 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm, 404 int rt, int rt2, int isread, 405 bool is_16bit) 406 { 407 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT) 408 | (is_16bit ? 0 : ARM_EL_IL) 409 | (cv << 24) | (cond << 20) | (opc1 << 16) 410 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; 411 } 412 413 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm, 414 int rt, int rt2, int isread, 415 bool is_16bit) 416 { 417 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT) 418 | (is_16bit ? 0 : ARM_EL_IL) 419 | (cv << 24) | (cond << 20) | (opc1 << 16) 420 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; 421 } 422 423 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit) 424 { 425 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */ 426 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) 427 | (is_16bit ? 0 : ARM_EL_IL) 428 | (cv << 24) | (cond << 20) | 0xa; 429 } 430 431 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit) 432 { 433 /* AArch32 SIMD trap: TA == 1 coproc == 0 */ 434 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) 435 | (is_16bit ? 0 : ARM_EL_IL) 436 | (cv << 24) | (cond << 20) | (1 << 5); 437 } 438 439 static inline uint32_t syn_sve_access_trap(void) 440 { 441 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT; 442 } 443 444 static inline uint32_t syn_pactrap(void) 445 { 446 return EC_PACTRAP << ARM_EL_EC_SHIFT; 447 } 448 449 static inline uint32_t syn_btitrap(int btype) 450 { 451 return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype; 452 } 453 454 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc) 455 { 456 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 457 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc; 458 } 459 460 static inline uint32_t syn_data_abort_no_iss(int same_el, int fnv, 461 int ea, int cm, int s1ptw, 462 int wnr, int fsc) 463 { 464 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 465 | ARM_EL_IL 466 | (fnv << 10) | (ea << 9) | (cm << 8) | (s1ptw << 7) 467 | (wnr << 6) | fsc; 468 } 469 470 static inline uint32_t syn_data_abort_with_iss(int same_el, 471 int sas, int sse, int srt, 472 int sf, int ar, 473 int ea, int cm, int s1ptw, 474 int wnr, int fsc, 475 bool is_16bit) 476 { 477 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 478 | (is_16bit ? 0 : ARM_EL_IL) 479 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16) 480 | (sf << 15) | (ar << 14) 481 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; 482 } 483 484 static inline uint32_t syn_swstep(int same_el, int isv, int ex) 485 { 486 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 487 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22; 488 } 489 490 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr) 491 { 492 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 493 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22; 494 } 495 496 static inline uint32_t syn_breakpoint(int same_el) 497 { 498 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 499 | ARM_EL_IL | 0x22; 500 } 501 502 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit) 503 { 504 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) | 505 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) | 506 (cv << 24) | (cond << 20) | ti; 507 } 508 509 /* Update a QEMU watchpoint based on the information the guest has set in the 510 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 511 */ 512 void hw_watchpoint_update(ARMCPU *cpu, int n); 513 /* Update the QEMU watchpoints for every guest watchpoint. This does a 514 * complete delete-and-reinstate of the QEMU watchpoint list and so is 515 * suitable for use after migration or on reset. 516 */ 517 void hw_watchpoint_update_all(ARMCPU *cpu); 518 /* Update a QEMU breakpoint based on the information the guest has set in the 519 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 520 */ 521 void hw_breakpoint_update(ARMCPU *cpu, int n); 522 /* Update the QEMU breakpoints for every guest breakpoint. This does a 523 * complete delete-and-reinstate of the QEMU breakpoint list and so is 524 * suitable for use after migration or on reset. 525 */ 526 void hw_breakpoint_update_all(ARMCPU *cpu); 527 528 /* Callback function for checking if a watchpoint should trigger. */ 529 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 530 531 /* Adjust addresses (in BE32 mode) before testing against watchpoint 532 * addresses. 533 */ 534 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 535 536 /* Callback function for when a watchpoint or breakpoint triggers. */ 537 void arm_debug_excp_handler(CPUState *cs); 538 539 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 540 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 541 { 542 return false; 543 } 544 static inline void arm_handle_psci_call(ARMCPU *cpu) 545 { 546 g_assert_not_reached(); 547 } 548 #else 549 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 550 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 551 /* Actually handle a PSCI call */ 552 void arm_handle_psci_call(ARMCPU *cpu); 553 #endif 554 555 /** 556 * arm_clear_exclusive: clear the exclusive monitor 557 * @env: CPU env 558 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 559 */ 560 static inline void arm_clear_exclusive(CPUARMState *env) 561 { 562 env->exclusive_addr = -1; 563 } 564 565 /** 566 * ARMFaultType: type of an ARM MMU fault 567 * This corresponds to the v8A pseudocode's Fault enumeration, 568 * with extensions for QEMU internal conditions. 569 */ 570 typedef enum ARMFaultType { 571 ARMFault_None, 572 ARMFault_AccessFlag, 573 ARMFault_Alignment, 574 ARMFault_Background, 575 ARMFault_Domain, 576 ARMFault_Permission, 577 ARMFault_Translation, 578 ARMFault_AddressSize, 579 ARMFault_SyncExternal, 580 ARMFault_SyncExternalOnWalk, 581 ARMFault_SyncParity, 582 ARMFault_SyncParityOnWalk, 583 ARMFault_AsyncParity, 584 ARMFault_AsyncExternal, 585 ARMFault_Debug, 586 ARMFault_TLBConflict, 587 ARMFault_Lockdown, 588 ARMFault_Exclusive, 589 ARMFault_ICacheMaint, 590 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 591 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 592 } ARMFaultType; 593 594 /** 595 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 596 * @type: Type of fault 597 * @level: Table walk level (for translation, access flag and permission faults) 598 * @domain: Domain of the fault address (for non-LPAE CPUs only) 599 * @s2addr: Address that caused a fault at stage 2 600 * @stage2: True if we faulted at stage 2 601 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 602 * @s1ns: True if we faulted on a non-secure IPA while in secure state 603 * @ea: True if we should set the EA (external abort type) bit in syndrome 604 */ 605 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 606 struct ARMMMUFaultInfo { 607 ARMFaultType type; 608 target_ulong s2addr; 609 int level; 610 int domain; 611 bool stage2; 612 bool s1ptw; 613 bool s1ns; 614 bool ea; 615 }; 616 617 /** 618 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 619 * Compare pseudocode EncodeSDFSC(), though unlike that function 620 * we set up a whole FSR-format code including domain field and 621 * putting the high bit of the FSC into bit 10. 622 */ 623 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 624 { 625 uint32_t fsc; 626 627 switch (fi->type) { 628 case ARMFault_None: 629 return 0; 630 case ARMFault_AccessFlag: 631 fsc = fi->level == 1 ? 0x3 : 0x6; 632 break; 633 case ARMFault_Alignment: 634 fsc = 0x1; 635 break; 636 case ARMFault_Permission: 637 fsc = fi->level == 1 ? 0xd : 0xf; 638 break; 639 case ARMFault_Domain: 640 fsc = fi->level == 1 ? 0x9 : 0xb; 641 break; 642 case ARMFault_Translation: 643 fsc = fi->level == 1 ? 0x5 : 0x7; 644 break; 645 case ARMFault_SyncExternal: 646 fsc = 0x8 | (fi->ea << 12); 647 break; 648 case ARMFault_SyncExternalOnWalk: 649 fsc = fi->level == 1 ? 0xc : 0xe; 650 fsc |= (fi->ea << 12); 651 break; 652 case ARMFault_SyncParity: 653 fsc = 0x409; 654 break; 655 case ARMFault_SyncParityOnWalk: 656 fsc = fi->level == 1 ? 0x40c : 0x40e; 657 break; 658 case ARMFault_AsyncParity: 659 fsc = 0x408; 660 break; 661 case ARMFault_AsyncExternal: 662 fsc = 0x406 | (fi->ea << 12); 663 break; 664 case ARMFault_Debug: 665 fsc = 0x2; 666 break; 667 case ARMFault_TLBConflict: 668 fsc = 0x400; 669 break; 670 case ARMFault_Lockdown: 671 fsc = 0x404; 672 break; 673 case ARMFault_Exclusive: 674 fsc = 0x405; 675 break; 676 case ARMFault_ICacheMaint: 677 fsc = 0x4; 678 break; 679 case ARMFault_Background: 680 fsc = 0x0; 681 break; 682 case ARMFault_QEMU_NSCExec: 683 fsc = M_FAKE_FSR_NSC_EXEC; 684 break; 685 case ARMFault_QEMU_SFault: 686 fsc = M_FAKE_FSR_SFAULT; 687 break; 688 default: 689 /* Other faults can't occur in a context that requires a 690 * short-format status code. 691 */ 692 g_assert_not_reached(); 693 } 694 695 fsc |= (fi->domain << 4); 696 return fsc; 697 } 698 699 /** 700 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 701 * Compare pseudocode EncodeLDFSC(), though unlike that function 702 * we fill in also the LPAE bit 9 of a DFSR format. 703 */ 704 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 705 { 706 uint32_t fsc; 707 708 switch (fi->type) { 709 case ARMFault_None: 710 return 0; 711 case ARMFault_AddressSize: 712 fsc = fi->level & 3; 713 break; 714 case ARMFault_AccessFlag: 715 fsc = (fi->level & 3) | (0x2 << 2); 716 break; 717 case ARMFault_Permission: 718 fsc = (fi->level & 3) | (0x3 << 2); 719 break; 720 case ARMFault_Translation: 721 fsc = (fi->level & 3) | (0x1 << 2); 722 break; 723 case ARMFault_SyncExternal: 724 fsc = 0x10 | (fi->ea << 12); 725 break; 726 case ARMFault_SyncExternalOnWalk: 727 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12); 728 break; 729 case ARMFault_SyncParity: 730 fsc = 0x18; 731 break; 732 case ARMFault_SyncParityOnWalk: 733 fsc = (fi->level & 3) | (0x7 << 2); 734 break; 735 case ARMFault_AsyncParity: 736 fsc = 0x19; 737 break; 738 case ARMFault_AsyncExternal: 739 fsc = 0x11 | (fi->ea << 12); 740 break; 741 case ARMFault_Alignment: 742 fsc = 0x21; 743 break; 744 case ARMFault_Debug: 745 fsc = 0x22; 746 break; 747 case ARMFault_TLBConflict: 748 fsc = 0x30; 749 break; 750 case ARMFault_Lockdown: 751 fsc = 0x34; 752 break; 753 case ARMFault_Exclusive: 754 fsc = 0x35; 755 break; 756 default: 757 /* Other faults can't occur in a context that requires a 758 * long-format status code. 759 */ 760 g_assert_not_reached(); 761 } 762 763 fsc |= 1 << 9; 764 return fsc; 765 } 766 767 static inline bool arm_extabort_type(MemTxResult result) 768 { 769 /* The EA bit in syndromes and fault status registers is an 770 * IMPDEF classification of external aborts. ARM implementations 771 * usually use this to indicate AXI bus Decode error (0) or 772 * Slave error (1); in QEMU we follow that. 773 */ 774 return result != MEMTX_DECODE_ERROR; 775 } 776 777 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 778 MMUAccessType access_type, int mmu_idx, 779 bool probe, uintptr_t retaddr); 780 781 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 782 { 783 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 784 } 785 786 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 787 { 788 if (arm_feature(env, ARM_FEATURE_M)) { 789 return mmu_idx | ARM_MMU_IDX_M; 790 } else { 791 return mmu_idx | ARM_MMU_IDX_A; 792 } 793 } 794 795 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 796 { 797 /* AArch64 is always a-profile. */ 798 return mmu_idx | ARM_MMU_IDX_A; 799 } 800 801 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 802 803 /* 804 * Return the MMU index for a v7M CPU with all relevant information 805 * manually specified. 806 */ 807 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 808 bool secstate, bool priv, bool negpri); 809 810 /* 811 * Return the MMU index for a v7M CPU in the specified security and 812 * privilege state. 813 */ 814 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 815 bool secstate, bool priv); 816 817 /* Return the MMU index for a v7M CPU in the specified security state */ 818 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 819 820 /* Return true if the stage 1 translation regime is using LPAE format page 821 * tables */ 822 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 823 824 /* Raise a data fault alignment exception for the specified virtual address */ 825 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 826 MMUAccessType access_type, 827 int mmu_idx, uintptr_t retaddr); 828 829 /* arm_cpu_do_transaction_failed: handle a memory system error response 830 * (eg "no device/memory present at address") by raising an external abort 831 * exception 832 */ 833 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 834 vaddr addr, unsigned size, 835 MMUAccessType access_type, 836 int mmu_idx, MemTxAttrs attrs, 837 MemTxResult response, uintptr_t retaddr); 838 839 /* Call any registered EL change hooks */ 840 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 841 { 842 ARMELChangeHook *hook, *next; 843 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 844 hook->hook(cpu, hook->opaque); 845 } 846 } 847 static inline void arm_call_el_change_hook(ARMCPU *cpu) 848 { 849 ARMELChangeHook *hook, *next; 850 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 851 hook->hook(cpu, hook->opaque); 852 } 853 } 854 855 /* Return true if this address translation regime has two ranges. */ 856 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 857 { 858 switch (mmu_idx) { 859 case ARMMMUIdx_Stage1_E0: 860 case ARMMMUIdx_Stage1_E1: 861 case ARMMMUIdx_Stage1_E1_PAN: 862 case ARMMMUIdx_Stage1_SE0: 863 case ARMMMUIdx_Stage1_SE1: 864 case ARMMMUIdx_Stage1_SE1_PAN: 865 case ARMMMUIdx_E10_0: 866 case ARMMMUIdx_E10_1: 867 case ARMMMUIdx_E10_1_PAN: 868 case ARMMMUIdx_E20_0: 869 case ARMMMUIdx_E20_2: 870 case ARMMMUIdx_E20_2_PAN: 871 case ARMMMUIdx_SE10_0: 872 case ARMMMUIdx_SE10_1: 873 case ARMMMUIdx_SE10_1_PAN: 874 case ARMMMUIdx_SE20_0: 875 case ARMMMUIdx_SE20_2: 876 case ARMMMUIdx_SE20_2_PAN: 877 return true; 878 default: 879 return false; 880 } 881 } 882 883 /* Return true if this address translation regime is secure */ 884 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 885 { 886 switch (mmu_idx) { 887 case ARMMMUIdx_E10_0: 888 case ARMMMUIdx_E10_1: 889 case ARMMMUIdx_E10_1_PAN: 890 case ARMMMUIdx_E20_0: 891 case ARMMMUIdx_E20_2: 892 case ARMMMUIdx_E20_2_PAN: 893 case ARMMMUIdx_Stage1_E0: 894 case ARMMMUIdx_Stage1_E1: 895 case ARMMMUIdx_Stage1_E1_PAN: 896 case ARMMMUIdx_E2: 897 case ARMMMUIdx_Stage2: 898 case ARMMMUIdx_MPrivNegPri: 899 case ARMMMUIdx_MUserNegPri: 900 case ARMMMUIdx_MPriv: 901 case ARMMMUIdx_MUser: 902 return false; 903 case ARMMMUIdx_SE3: 904 case ARMMMUIdx_SE10_0: 905 case ARMMMUIdx_SE10_1: 906 case ARMMMUIdx_SE10_1_PAN: 907 case ARMMMUIdx_SE20_0: 908 case ARMMMUIdx_SE20_2: 909 case ARMMMUIdx_SE20_2_PAN: 910 case ARMMMUIdx_Stage1_SE0: 911 case ARMMMUIdx_Stage1_SE1: 912 case ARMMMUIdx_Stage1_SE1_PAN: 913 case ARMMMUIdx_SE2: 914 case ARMMMUIdx_Stage2_S: 915 case ARMMMUIdx_MSPrivNegPri: 916 case ARMMMUIdx_MSUserNegPri: 917 case ARMMMUIdx_MSPriv: 918 case ARMMMUIdx_MSUser: 919 return true; 920 default: 921 g_assert_not_reached(); 922 } 923 } 924 925 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 926 { 927 switch (mmu_idx) { 928 case ARMMMUIdx_Stage1_E1_PAN: 929 case ARMMMUIdx_Stage1_SE1_PAN: 930 case ARMMMUIdx_E10_1_PAN: 931 case ARMMMUIdx_E20_2_PAN: 932 case ARMMMUIdx_SE10_1_PAN: 933 case ARMMMUIdx_SE20_2_PAN: 934 return true; 935 default: 936 return false; 937 } 938 } 939 940 /* Return the exception level which controls this address translation regime */ 941 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 942 { 943 switch (mmu_idx) { 944 case ARMMMUIdx_SE20_0: 945 case ARMMMUIdx_SE20_2: 946 case ARMMMUIdx_SE20_2_PAN: 947 case ARMMMUIdx_E20_0: 948 case ARMMMUIdx_E20_2: 949 case ARMMMUIdx_E20_2_PAN: 950 case ARMMMUIdx_Stage2: 951 case ARMMMUIdx_Stage2_S: 952 case ARMMMUIdx_SE2: 953 case ARMMMUIdx_E2: 954 return 2; 955 case ARMMMUIdx_SE3: 956 return 3; 957 case ARMMMUIdx_SE10_0: 958 case ARMMMUIdx_Stage1_SE0: 959 return arm_el_is_aa64(env, 3) ? 1 : 3; 960 case ARMMMUIdx_SE10_1: 961 case ARMMMUIdx_SE10_1_PAN: 962 case ARMMMUIdx_Stage1_E0: 963 case ARMMMUIdx_Stage1_E1: 964 case ARMMMUIdx_Stage1_E1_PAN: 965 case ARMMMUIdx_Stage1_SE1: 966 case ARMMMUIdx_Stage1_SE1_PAN: 967 case ARMMMUIdx_E10_0: 968 case ARMMMUIdx_E10_1: 969 case ARMMMUIdx_E10_1_PAN: 970 case ARMMMUIdx_MPrivNegPri: 971 case ARMMMUIdx_MUserNegPri: 972 case ARMMMUIdx_MPriv: 973 case ARMMMUIdx_MUser: 974 case ARMMMUIdx_MSPrivNegPri: 975 case ARMMMUIdx_MSUserNegPri: 976 case ARMMMUIdx_MSPriv: 977 case ARMMMUIdx_MSUser: 978 return 1; 979 default: 980 g_assert_not_reached(); 981 } 982 } 983 984 /* Return the TCR controlling this translation regime */ 985 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 986 { 987 if (mmu_idx == ARMMMUIdx_Stage2) { 988 return &env->cp15.vtcr_el2; 989 } 990 if (mmu_idx == ARMMMUIdx_Stage2_S) { 991 /* 992 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but 993 * those are not currently used by QEMU, so just return VSTCR_EL2. 994 */ 995 return &env->cp15.vstcr_el2; 996 } 997 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 998 } 999 1000 /* Return the FSR value for a debug exception (watchpoint, hardware 1001 * breakpoint or BKPT insn) targeting the specified exception level. 1002 */ 1003 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) 1004 { 1005 ARMMMUFaultInfo fi = { .type = ARMFault_Debug }; 1006 int target_el = arm_debug_target_el(env); 1007 bool using_lpae = false; 1008 1009 if (target_el == 2 || arm_el_is_aa64(env, target_el)) { 1010 using_lpae = true; 1011 } else { 1012 if (arm_feature(env, ARM_FEATURE_LPAE) && 1013 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { 1014 using_lpae = true; 1015 } 1016 } 1017 1018 if (using_lpae) { 1019 return arm_fi_to_lfsc(&fi); 1020 } else { 1021 return arm_fi_to_sfsc(&fi); 1022 } 1023 } 1024 1025 /** 1026 * arm_num_brps: Return number of implemented breakpoints. 1027 * Note that the ID register BRPS field is "number of bps - 1", 1028 * and we return the actual number of breakpoints. 1029 */ 1030 static inline int arm_num_brps(ARMCPU *cpu) 1031 { 1032 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1033 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 1034 } else { 1035 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 1036 } 1037 } 1038 1039 /** 1040 * arm_num_wrps: Return number of implemented watchpoints. 1041 * Note that the ID register WRPS field is "number of wps - 1", 1042 * and we return the actual number of watchpoints. 1043 */ 1044 static inline int arm_num_wrps(ARMCPU *cpu) 1045 { 1046 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1047 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 1048 } else { 1049 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 1050 } 1051 } 1052 1053 /** 1054 * arm_num_ctx_cmps: Return number of implemented context comparators. 1055 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 1056 * and we return the actual number of comparators. 1057 */ 1058 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 1059 { 1060 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1061 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 1062 } else { 1063 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 1064 } 1065 } 1066 1067 /** 1068 * v7m_using_psp: Return true if using process stack pointer 1069 * Return true if the CPU is currently using the process stack 1070 * pointer, or false if it is using the main stack pointer. 1071 */ 1072 static inline bool v7m_using_psp(CPUARMState *env) 1073 { 1074 /* Handler mode always uses the main stack; for thread mode 1075 * the CONTROL.SPSEL bit determines the answer. 1076 * Note that in v7M it is not possible to be in Handler mode with 1077 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 1078 */ 1079 return !arm_v7m_is_handler_mode(env) && 1080 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 1081 } 1082 1083 /** 1084 * v7m_sp_limit: Return SP limit for current CPU state 1085 * Return the SP limit value for the current CPU security state 1086 * and stack pointer. 1087 */ 1088 static inline uint32_t v7m_sp_limit(CPUARMState *env) 1089 { 1090 if (v7m_using_psp(env)) { 1091 return env->v7m.psplim[env->v7m.secure]; 1092 } else { 1093 return env->v7m.msplim[env->v7m.secure]; 1094 } 1095 } 1096 1097 /** 1098 * v7m_cpacr_pass: 1099 * Return true if the v7M CPACR permits access to the FPU for the specified 1100 * security state and privilege level. 1101 */ 1102 static inline bool v7m_cpacr_pass(CPUARMState *env, 1103 bool is_secure, bool is_priv) 1104 { 1105 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 1106 case 0: 1107 case 2: /* UNPREDICTABLE: we treat like 0 */ 1108 return false; 1109 case 1: 1110 return is_priv; 1111 case 3: 1112 return true; 1113 default: 1114 g_assert_not_reached(); 1115 } 1116 } 1117 1118 /** 1119 * aarch32_mode_name(): Return name of the AArch32 CPU mode 1120 * @psr: Program Status Register indicating CPU mode 1121 * 1122 * Returns, for debug logging purposes, a printable representation 1123 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 1124 * the low bits of the specified PSR. 1125 */ 1126 static inline const char *aarch32_mode_name(uint32_t psr) 1127 { 1128 static const char cpu_mode_names[16][4] = { 1129 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 1130 "???", "???", "hyp", "und", "???", "???", "???", "sys" 1131 }; 1132 1133 return cpu_mode_names[psr & 0xf]; 1134 } 1135 1136 /** 1137 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 1138 * 1139 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 1140 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 1141 * Must be called with the iothread lock held. 1142 */ 1143 void arm_cpu_update_virq(ARMCPU *cpu); 1144 1145 /** 1146 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 1147 * 1148 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 1149 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 1150 * Must be called with the iothread lock held. 1151 */ 1152 void arm_cpu_update_vfiq(ARMCPU *cpu); 1153 1154 /** 1155 * arm_mmu_idx_el: 1156 * @env: The cpu environment 1157 * @el: The EL to use. 1158 * 1159 * Return the full ARMMMUIdx for the translation regime for EL. 1160 */ 1161 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 1162 1163 /** 1164 * arm_mmu_idx: 1165 * @env: The cpu environment 1166 * 1167 * Return the full ARMMMUIdx for the current translation regime. 1168 */ 1169 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 1170 1171 /** 1172 * arm_stage1_mmu_idx: 1173 * @env: The cpu environment 1174 * 1175 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 1176 */ 1177 #ifdef CONFIG_USER_ONLY 1178 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 1179 { 1180 return ARMMMUIdx_Stage1_E0; 1181 } 1182 #else 1183 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 1184 #endif 1185 1186 /** 1187 * arm_mmu_idx_is_stage1_of_2: 1188 * @mmu_idx: The ARMMMUIdx to test 1189 * 1190 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 1191 * first stage of a two stage regime. 1192 */ 1193 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 1194 { 1195 switch (mmu_idx) { 1196 case ARMMMUIdx_Stage1_E0: 1197 case ARMMMUIdx_Stage1_E1: 1198 case ARMMMUIdx_Stage1_E1_PAN: 1199 case ARMMMUIdx_Stage1_SE0: 1200 case ARMMMUIdx_Stage1_SE1: 1201 case ARMMMUIdx_Stage1_SE1_PAN: 1202 return true; 1203 default: 1204 return false; 1205 } 1206 } 1207 1208 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1209 const ARMISARegisters *id) 1210 { 1211 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1212 1213 if ((features >> ARM_FEATURE_V4T) & 1) { 1214 valid |= CPSR_T; 1215 } 1216 if ((features >> ARM_FEATURE_V5) & 1) { 1217 valid |= CPSR_Q; /* V5TE in reality*/ 1218 } 1219 if ((features >> ARM_FEATURE_V6) & 1) { 1220 valid |= CPSR_E | CPSR_GE; 1221 } 1222 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1223 valid |= CPSR_IT; 1224 } 1225 if (isar_feature_aa32_jazelle(id)) { 1226 valid |= CPSR_J; 1227 } 1228 if (isar_feature_aa32_pan(id)) { 1229 valid |= CPSR_PAN; 1230 } 1231 1232 return valid; 1233 } 1234 1235 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1236 { 1237 uint32_t valid; 1238 1239 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1240 if (isar_feature_aa64_bti(id)) { 1241 valid |= PSTATE_BTYPE; 1242 } 1243 if (isar_feature_aa64_pan(id)) { 1244 valid |= PSTATE_PAN; 1245 } 1246 if (isar_feature_aa64_uao(id)) { 1247 valid |= PSTATE_UAO; 1248 } 1249 if (isar_feature_aa64_mte(id)) { 1250 valid |= PSTATE_TCO; 1251 } 1252 1253 return valid; 1254 } 1255 1256 /* 1257 * Parameters of a given virtual address, as extracted from the 1258 * translation control register (TCR) for a given regime. 1259 */ 1260 typedef struct ARMVAParameters { 1261 unsigned tsz : 8; 1262 unsigned select : 1; 1263 bool tbi : 1; 1264 bool epd : 1; 1265 bool hpd : 1; 1266 bool using16k : 1; 1267 bool using64k : 1; 1268 } ARMVAParameters; 1269 1270 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1271 ARMMMUIdx mmu_idx, bool data); 1272 1273 static inline int exception_target_el(CPUARMState *env) 1274 { 1275 int target_el = MAX(1, arm_current_el(env)); 1276 1277 /* 1278 * No such thing as secure EL1 if EL3 is aarch32, 1279 * so update the target EL to EL3 in this case. 1280 */ 1281 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 1282 target_el = 3; 1283 } 1284 1285 return target_el; 1286 } 1287 1288 /* Determine if allocation tags are available. */ 1289 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1290 uint64_t sctlr) 1291 { 1292 if (el < 3 1293 && arm_feature(env, ARM_FEATURE_EL3) 1294 && !(env->cp15.scr_el3 & SCR_ATA)) { 1295 return false; 1296 } 1297 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 1298 uint64_t hcr = arm_hcr_el2_eff(env); 1299 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1300 return false; 1301 } 1302 } 1303 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1304 return sctlr != 0; 1305 } 1306 1307 #ifndef CONFIG_USER_ONLY 1308 1309 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1310 typedef struct V8M_SAttributes { 1311 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1312 bool ns; 1313 bool nsc; 1314 uint8_t sregion; 1315 bool srvalid; 1316 uint8_t iregion; 1317 bool irvalid; 1318 } V8M_SAttributes; 1319 1320 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1321 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1322 V8M_SAttributes *sattrs); 1323 1324 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1325 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1326 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1327 int *prot, bool *is_subpage, 1328 ARMMMUFaultInfo *fi, uint32_t *mregion); 1329 1330 /* Cacheability and shareability attributes for a memory access */ 1331 typedef struct ARMCacheAttrs { 1332 unsigned int attrs:8; /* as in the MAIR register encoding */ 1333 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1334 } ARMCacheAttrs; 1335 1336 bool get_phys_addr(CPUARMState *env, target_ulong address, 1337 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1338 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 1339 target_ulong *page_size, 1340 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 1341 __attribute__((nonnull)); 1342 1343 void arm_log_exception(int idx); 1344 1345 #endif /* !CONFIG_USER_ONLY */ 1346 1347 /* 1348 * The log2 of the words in the tag block, for GMID_EL1.BS. 1349 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1350 */ 1351 #define GMID_EL1_BS 6 1352 1353 /* We associate one allocation tag per 16 bytes, the minimum. */ 1354 #define LOG2_TAG_GRANULE 4 1355 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 1356 1357 /* 1358 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1359 * the same simd_desc() encoding due to restrictions on size. 1360 * Use these instead. 1361 */ 1362 FIELD(PREDDESC, OPRSZ, 0, 6) 1363 FIELD(PREDDESC, ESZ, 6, 2) 1364 FIELD(PREDDESC, DATA, 8, 24) 1365 1366 /* 1367 * The SVE simd_data field, for memory ops, contains either 1368 * rd (5 bits) or a shift count (2 bits). 1369 */ 1370 #define SVE_MTEDESC_SHIFT 5 1371 1372 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1373 FIELD(MTEDESC, MIDX, 0, 4) 1374 FIELD(MTEDESC, TBI, 4, 2) 1375 FIELD(MTEDESC, TCMA, 6, 2) 1376 FIELD(MTEDESC, WRITE, 8, 1) 1377 FIELD(MTEDESC, ESIZE, 9, 5) 1378 FIELD(MTEDESC, TSIZE, 14, 10) /* mte_checkN only */ 1379 1380 bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr); 1381 uint64_t mte_check1(CPUARMState *env, uint32_t desc, 1382 uint64_t ptr, uintptr_t ra); 1383 uint64_t mte_checkN(CPUARMState *env, uint32_t desc, 1384 uint64_t ptr, uintptr_t ra); 1385 1386 static inline int allocation_tag_from_addr(uint64_t ptr) 1387 { 1388 return extract64(ptr, 56, 4); 1389 } 1390 1391 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1392 { 1393 return deposit64(ptr, 56, 4, rtag); 1394 } 1395 1396 /* Return true if tbi bits mean that the access is checked. */ 1397 static inline bool tbi_check(uint32_t desc, int bit55) 1398 { 1399 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1400 } 1401 1402 /* Return true if tcma bits mean that the access is unchecked. */ 1403 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1404 { 1405 /* 1406 * We had extracted bit55 and ptr_tag for other reasons, so fold 1407 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1408 */ 1409 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1410 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1411 return tcma && match; 1412 } 1413 1414 /* 1415 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1416 * for the tag to be present in the FAR_ELx register. But for user-only 1417 * mode, we do not have a TLB with which to implement this, so we must 1418 * remove the top byte. 1419 */ 1420 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1421 { 1422 /* TBI is known to be enabled. */ 1423 #ifdef CONFIG_USER_ONLY 1424 ptr = sextract64(ptr, 0, 56); 1425 #endif 1426 return ptr; 1427 } 1428 1429 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1430 { 1431 #ifdef CONFIG_USER_ONLY 1432 int64_t clean_ptr = sextract64(ptr, 0, 56); 1433 if (tbi_check(desc, clean_ptr < 0)) { 1434 ptr = clean_ptr; 1435 } 1436 #endif 1437 return ptr; 1438 } 1439 1440 #endif 1441