xref: /openbmc/qemu/target/arm/internals.h (revision 78271684)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /**
98  * raise_exception: Raise the specified exception.
99  * Raise a guest exception with the specified value, syndrome register
100  * and target exception level. This should be called from helper functions,
101  * and never returns because we will longjump back up to the CPU main loop.
102  */
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104                                    uint32_t syndrome, uint32_t target_el);
105 
106 /*
107  * Similarly, but also use unwinding to restore cpu state.
108  */
109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
110                                       uint32_t syndrome, uint32_t target_el,
111                                       uintptr_t ra);
112 
113 /*
114  * For AArch64, map a given EL to an index in the banked_spsr array.
115  * Note that this mapping and the AArch32 mapping defined in bank_number()
116  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117  * mandated mapping between each other.
118  */
119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
120 {
121     static const unsigned int map[4] = {
122         [1] = BANK_SVC, /* EL1.  */
123         [2] = BANK_HYP, /* EL2.  */
124         [3] = BANK_MON, /* EL3.  */
125     };
126     assert(el >= 1 && el <= 3);
127     return map[el];
128 }
129 
130 /* Map CPU modes onto saved register banks.  */
131 static inline int bank_number(int mode)
132 {
133     switch (mode) {
134     case ARM_CPU_MODE_USR:
135     case ARM_CPU_MODE_SYS:
136         return BANK_USRSYS;
137     case ARM_CPU_MODE_SVC:
138         return BANK_SVC;
139     case ARM_CPU_MODE_ABT:
140         return BANK_ABT;
141     case ARM_CPU_MODE_UND:
142         return BANK_UND;
143     case ARM_CPU_MODE_IRQ:
144         return BANK_IRQ;
145     case ARM_CPU_MODE_FIQ:
146         return BANK_FIQ;
147     case ARM_CPU_MODE_HYP:
148         return BANK_HYP;
149     case ARM_CPU_MODE_MON:
150         return BANK_MON;
151     }
152     g_assert_not_reached();
153 }
154 
155 /**
156  * r14_bank_number: Map CPU mode onto register bank for r14
157  *
158  * Given an AArch32 CPU mode, return the index into the saved register
159  * banks to use for the R14 (LR) in that mode. This is the same as
160  * bank_number(), except for the special case of Hyp mode, where
161  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162  * This should be used as the index into env->banked_r14[], and
163  * bank_number() used for the index into env->banked_r13[] and
164  * env->banked_spsr[].
165  */
166 static inline int r14_bank_number(int mode)
167 {
168     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
169 }
170 
171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
172 void arm_translate_init(void);
173 
174 #ifdef CONFIG_TCG
175 void arm_cpu_synchronize_from_tb(CPUState *cs,
176                                  const struct TranslationBlock *tb);
177 #endif /* CONFIG_TCG */
178 
179 
180 enum arm_fprounding {
181     FPROUNDING_TIEEVEN,
182     FPROUNDING_POSINF,
183     FPROUNDING_NEGINF,
184     FPROUNDING_ZERO,
185     FPROUNDING_TIEAWAY,
186     FPROUNDING_ODD
187 };
188 
189 int arm_rmode_to_sf(int rmode);
190 
191 static inline void aarch64_save_sp(CPUARMState *env, int el)
192 {
193     if (env->pstate & PSTATE_SP) {
194         env->sp_el[el] = env->xregs[31];
195     } else {
196         env->sp_el[0] = env->xregs[31];
197     }
198 }
199 
200 static inline void aarch64_restore_sp(CPUARMState *env, int el)
201 {
202     if (env->pstate & PSTATE_SP) {
203         env->xregs[31] = env->sp_el[el];
204     } else {
205         env->xregs[31] = env->sp_el[0];
206     }
207 }
208 
209 static inline void update_spsel(CPUARMState *env, uint32_t imm)
210 {
211     unsigned int cur_el = arm_current_el(env);
212     /* Update PSTATE SPSel bit; this requires us to update the
213      * working stack pointer in xregs[31].
214      */
215     if (!((imm ^ env->pstate) & PSTATE_SP)) {
216         return;
217     }
218     aarch64_save_sp(env, cur_el);
219     env->pstate = deposit32(env->pstate, 0, 1, imm);
220 
221     /* We rely on illegal updates to SPsel from EL0 to get trapped
222      * at translation time.
223      */
224     assert(cur_el >= 1 && cur_el <= 3);
225     aarch64_restore_sp(env, cur_el);
226 }
227 
228 /*
229  * arm_pamax
230  * @cpu: ARMCPU
231  *
232  * Returns the implementation defined bit-width of physical addresses.
233  * The ARMv8 reference manuals refer to this as PAMax().
234  */
235 static inline unsigned int arm_pamax(ARMCPU *cpu)
236 {
237     static const unsigned int pamax_map[] = {
238         [0] = 32,
239         [1] = 36,
240         [2] = 40,
241         [3] = 42,
242         [4] = 44,
243         [5] = 48,
244     };
245     unsigned int parange =
246         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
247 
248     /* id_aa64mmfr0 is a read-only register so values outside of the
249      * supported mappings can be considered an implementation error.  */
250     assert(parange < ARRAY_SIZE(pamax_map));
251     return pamax_map[parange];
252 }
253 
254 /* Return true if extended addresses are enabled.
255  * This is always the case if our translation regime is 64 bit,
256  * but depends on TTBCR.EAE for 32 bit.
257  */
258 static inline bool extended_addresses_enabled(CPUARMState *env)
259 {
260     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
261     return arm_el_is_aa64(env, 1) ||
262            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
263 }
264 
265 /* Valid Syndrome Register EC field values */
266 enum arm_exception_class {
267     EC_UNCATEGORIZED          = 0x00,
268     EC_WFX_TRAP               = 0x01,
269     EC_CP15RTTRAP             = 0x03,
270     EC_CP15RRTTRAP            = 0x04,
271     EC_CP14RTTRAP             = 0x05,
272     EC_CP14DTTRAP             = 0x06,
273     EC_ADVSIMDFPACCESSTRAP    = 0x07,
274     EC_FPIDTRAP               = 0x08,
275     EC_PACTRAP                = 0x09,
276     EC_CP14RRTTRAP            = 0x0c,
277     EC_BTITRAP                = 0x0d,
278     EC_ILLEGALSTATE           = 0x0e,
279     EC_AA32_SVC               = 0x11,
280     EC_AA32_HVC               = 0x12,
281     EC_AA32_SMC               = 0x13,
282     EC_AA64_SVC               = 0x15,
283     EC_AA64_HVC               = 0x16,
284     EC_AA64_SMC               = 0x17,
285     EC_SYSTEMREGISTERTRAP     = 0x18,
286     EC_SVEACCESSTRAP          = 0x19,
287     EC_INSNABORT              = 0x20,
288     EC_INSNABORT_SAME_EL      = 0x21,
289     EC_PCALIGNMENT            = 0x22,
290     EC_DATAABORT              = 0x24,
291     EC_DATAABORT_SAME_EL      = 0x25,
292     EC_SPALIGNMENT            = 0x26,
293     EC_AA32_FPTRAP            = 0x28,
294     EC_AA64_FPTRAP            = 0x2c,
295     EC_SERROR                 = 0x2f,
296     EC_BREAKPOINT             = 0x30,
297     EC_BREAKPOINT_SAME_EL     = 0x31,
298     EC_SOFTWARESTEP           = 0x32,
299     EC_SOFTWARESTEP_SAME_EL   = 0x33,
300     EC_WATCHPOINT             = 0x34,
301     EC_WATCHPOINT_SAME_EL     = 0x35,
302     EC_AA32_BKPT              = 0x38,
303     EC_VECTORCATCH            = 0x3a,
304     EC_AA64_BKPT              = 0x3c,
305 };
306 
307 #define ARM_EL_EC_SHIFT 26
308 #define ARM_EL_IL_SHIFT 25
309 #define ARM_EL_ISV_SHIFT 24
310 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
311 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
312 
313 static inline uint32_t syn_get_ec(uint32_t syn)
314 {
315     return syn >> ARM_EL_EC_SHIFT;
316 }
317 
318 /* Utility functions for constructing various kinds of syndrome value.
319  * Note that in general we follow the AArch64 syndrome values; in a
320  * few cases the value in HSR for exceptions taken to AArch32 Hyp
321  * mode differs slightly, and we fix this up when populating HSR in
322  * arm_cpu_do_interrupt_aarch32_hyp().
323  * The exception is FP/SIMD access traps -- these report extra information
324  * when taking an exception to AArch32. For those we include the extra coproc
325  * and TA fields, and mask them out when taking the exception to AArch64.
326  */
327 static inline uint32_t syn_uncategorized(void)
328 {
329     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
330 }
331 
332 static inline uint32_t syn_aa64_svc(uint32_t imm16)
333 {
334     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
335 }
336 
337 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
338 {
339     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
340 }
341 
342 static inline uint32_t syn_aa64_smc(uint32_t imm16)
343 {
344     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
345 }
346 
347 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
348 {
349     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
350         | (is_16bit ? 0 : ARM_EL_IL);
351 }
352 
353 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
354 {
355     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
356 }
357 
358 static inline uint32_t syn_aa32_smc(void)
359 {
360     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
361 }
362 
363 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
364 {
365     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
366 }
367 
368 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
369 {
370     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
371         | (is_16bit ? 0 : ARM_EL_IL);
372 }
373 
374 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
375                                            int crn, int crm, int rt,
376                                            int isread)
377 {
378     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
379         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
380         | (crm << 1) | isread;
381 }
382 
383 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
384                                         int crn, int crm, int rt, int isread,
385                                         bool is_16bit)
386 {
387     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
388         | (is_16bit ? 0 : ARM_EL_IL)
389         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
390         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
391 }
392 
393 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
394                                         int crn, int crm, int rt, int isread,
395                                         bool is_16bit)
396 {
397     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
398         | (is_16bit ? 0 : ARM_EL_IL)
399         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
400         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
401 }
402 
403 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
404                                          int rt, int rt2, int isread,
405                                          bool is_16bit)
406 {
407     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
408         | (is_16bit ? 0 : ARM_EL_IL)
409         | (cv << 24) | (cond << 20) | (opc1 << 16)
410         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
411 }
412 
413 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
414                                          int rt, int rt2, int isread,
415                                          bool is_16bit)
416 {
417     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
418         | (is_16bit ? 0 : ARM_EL_IL)
419         | (cv << 24) | (cond << 20) | (opc1 << 16)
420         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
421 }
422 
423 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
424 {
425     /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
426     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
427         | (is_16bit ? 0 : ARM_EL_IL)
428         | (cv << 24) | (cond << 20) | 0xa;
429 }
430 
431 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
432 {
433     /* AArch32 SIMD trap: TA == 1 coproc == 0 */
434     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
435         | (is_16bit ? 0 : ARM_EL_IL)
436         | (cv << 24) | (cond << 20) | (1 << 5);
437 }
438 
439 static inline uint32_t syn_sve_access_trap(void)
440 {
441     return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
442 }
443 
444 static inline uint32_t syn_pactrap(void)
445 {
446     return EC_PACTRAP << ARM_EL_EC_SHIFT;
447 }
448 
449 static inline uint32_t syn_btitrap(int btype)
450 {
451     return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
452 }
453 
454 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
455 {
456     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
457         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
458 }
459 
460 static inline uint32_t syn_data_abort_no_iss(int same_el, int fnv,
461                                              int ea, int cm, int s1ptw,
462                                              int wnr, int fsc)
463 {
464     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
465            | ARM_EL_IL
466            | (fnv << 10) | (ea << 9) | (cm << 8) | (s1ptw << 7)
467            | (wnr << 6) | fsc;
468 }
469 
470 static inline uint32_t syn_data_abort_with_iss(int same_el,
471                                                int sas, int sse, int srt,
472                                                int sf, int ar,
473                                                int ea, int cm, int s1ptw,
474                                                int wnr, int fsc,
475                                                bool is_16bit)
476 {
477     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
478            | (is_16bit ? 0 : ARM_EL_IL)
479            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
480            | (sf << 15) | (ar << 14)
481            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
482 }
483 
484 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
485 {
486     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
487         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
488 }
489 
490 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
491 {
492     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
493         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
494 }
495 
496 static inline uint32_t syn_breakpoint(int same_el)
497 {
498     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
499         | ARM_EL_IL | 0x22;
500 }
501 
502 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
503 {
504     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
505            (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
506            (cv << 24) | (cond << 20) | ti;
507 }
508 
509 /* Update a QEMU watchpoint based on the information the guest has set in the
510  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
511  */
512 void hw_watchpoint_update(ARMCPU *cpu, int n);
513 /* Update the QEMU watchpoints for every guest watchpoint. This does a
514  * complete delete-and-reinstate of the QEMU watchpoint list and so is
515  * suitable for use after migration or on reset.
516  */
517 void hw_watchpoint_update_all(ARMCPU *cpu);
518 /* Update a QEMU breakpoint based on the information the guest has set in the
519  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
520  */
521 void hw_breakpoint_update(ARMCPU *cpu, int n);
522 /* Update the QEMU breakpoints for every guest breakpoint. This does a
523  * complete delete-and-reinstate of the QEMU breakpoint list and so is
524  * suitable for use after migration or on reset.
525  */
526 void hw_breakpoint_update_all(ARMCPU *cpu);
527 
528 /* Callback function for checking if a watchpoint should trigger. */
529 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
530 
531 /* Adjust addresses (in BE32 mode) before testing against watchpoint
532  * addresses.
533  */
534 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
535 
536 /* Callback function for when a watchpoint or breakpoint triggers. */
537 void arm_debug_excp_handler(CPUState *cs);
538 
539 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
540 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
541 {
542     return false;
543 }
544 static inline void arm_handle_psci_call(ARMCPU *cpu)
545 {
546     g_assert_not_reached();
547 }
548 #else
549 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
550 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
551 /* Actually handle a PSCI call */
552 void arm_handle_psci_call(ARMCPU *cpu);
553 #endif
554 
555 /**
556  * arm_clear_exclusive: clear the exclusive monitor
557  * @env: CPU env
558  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
559  */
560 static inline void arm_clear_exclusive(CPUARMState *env)
561 {
562     env->exclusive_addr = -1;
563 }
564 
565 /**
566  * ARMFaultType: type of an ARM MMU fault
567  * This corresponds to the v8A pseudocode's Fault enumeration,
568  * with extensions for QEMU internal conditions.
569  */
570 typedef enum ARMFaultType {
571     ARMFault_None,
572     ARMFault_AccessFlag,
573     ARMFault_Alignment,
574     ARMFault_Background,
575     ARMFault_Domain,
576     ARMFault_Permission,
577     ARMFault_Translation,
578     ARMFault_AddressSize,
579     ARMFault_SyncExternal,
580     ARMFault_SyncExternalOnWalk,
581     ARMFault_SyncParity,
582     ARMFault_SyncParityOnWalk,
583     ARMFault_AsyncParity,
584     ARMFault_AsyncExternal,
585     ARMFault_Debug,
586     ARMFault_TLBConflict,
587     ARMFault_Lockdown,
588     ARMFault_Exclusive,
589     ARMFault_ICacheMaint,
590     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
591     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
592 } ARMFaultType;
593 
594 /**
595  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
596  * @type: Type of fault
597  * @level: Table walk level (for translation, access flag and permission faults)
598  * @domain: Domain of the fault address (for non-LPAE CPUs only)
599  * @s2addr: Address that caused a fault at stage 2
600  * @stage2: True if we faulted at stage 2
601  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
602  * @s1ns: True if we faulted on a non-secure IPA while in secure state
603  * @ea: True if we should set the EA (external abort type) bit in syndrome
604  */
605 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
606 struct ARMMMUFaultInfo {
607     ARMFaultType type;
608     target_ulong s2addr;
609     int level;
610     int domain;
611     bool stage2;
612     bool s1ptw;
613     bool s1ns;
614     bool ea;
615 };
616 
617 /**
618  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
619  * Compare pseudocode EncodeSDFSC(), though unlike that function
620  * we set up a whole FSR-format code including domain field and
621  * putting the high bit of the FSC into bit 10.
622  */
623 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
624 {
625     uint32_t fsc;
626 
627     switch (fi->type) {
628     case ARMFault_None:
629         return 0;
630     case ARMFault_AccessFlag:
631         fsc = fi->level == 1 ? 0x3 : 0x6;
632         break;
633     case ARMFault_Alignment:
634         fsc = 0x1;
635         break;
636     case ARMFault_Permission:
637         fsc = fi->level == 1 ? 0xd : 0xf;
638         break;
639     case ARMFault_Domain:
640         fsc = fi->level == 1 ? 0x9 : 0xb;
641         break;
642     case ARMFault_Translation:
643         fsc = fi->level == 1 ? 0x5 : 0x7;
644         break;
645     case ARMFault_SyncExternal:
646         fsc = 0x8 | (fi->ea << 12);
647         break;
648     case ARMFault_SyncExternalOnWalk:
649         fsc = fi->level == 1 ? 0xc : 0xe;
650         fsc |= (fi->ea << 12);
651         break;
652     case ARMFault_SyncParity:
653         fsc = 0x409;
654         break;
655     case ARMFault_SyncParityOnWalk:
656         fsc = fi->level == 1 ? 0x40c : 0x40e;
657         break;
658     case ARMFault_AsyncParity:
659         fsc = 0x408;
660         break;
661     case ARMFault_AsyncExternal:
662         fsc = 0x406 | (fi->ea << 12);
663         break;
664     case ARMFault_Debug:
665         fsc = 0x2;
666         break;
667     case ARMFault_TLBConflict:
668         fsc = 0x400;
669         break;
670     case ARMFault_Lockdown:
671         fsc = 0x404;
672         break;
673     case ARMFault_Exclusive:
674         fsc = 0x405;
675         break;
676     case ARMFault_ICacheMaint:
677         fsc = 0x4;
678         break;
679     case ARMFault_Background:
680         fsc = 0x0;
681         break;
682     case ARMFault_QEMU_NSCExec:
683         fsc = M_FAKE_FSR_NSC_EXEC;
684         break;
685     case ARMFault_QEMU_SFault:
686         fsc = M_FAKE_FSR_SFAULT;
687         break;
688     default:
689         /* Other faults can't occur in a context that requires a
690          * short-format status code.
691          */
692         g_assert_not_reached();
693     }
694 
695     fsc |= (fi->domain << 4);
696     return fsc;
697 }
698 
699 /**
700  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
701  * Compare pseudocode EncodeLDFSC(), though unlike that function
702  * we fill in also the LPAE bit 9 of a DFSR format.
703  */
704 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
705 {
706     uint32_t fsc;
707 
708     switch (fi->type) {
709     case ARMFault_None:
710         return 0;
711     case ARMFault_AddressSize:
712         fsc = fi->level & 3;
713         break;
714     case ARMFault_AccessFlag:
715         fsc = (fi->level & 3) | (0x2 << 2);
716         break;
717     case ARMFault_Permission:
718         fsc = (fi->level & 3) | (0x3 << 2);
719         break;
720     case ARMFault_Translation:
721         fsc = (fi->level & 3) | (0x1 << 2);
722         break;
723     case ARMFault_SyncExternal:
724         fsc = 0x10 | (fi->ea << 12);
725         break;
726     case ARMFault_SyncExternalOnWalk:
727         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
728         break;
729     case ARMFault_SyncParity:
730         fsc = 0x18;
731         break;
732     case ARMFault_SyncParityOnWalk:
733         fsc = (fi->level & 3) | (0x7 << 2);
734         break;
735     case ARMFault_AsyncParity:
736         fsc = 0x19;
737         break;
738     case ARMFault_AsyncExternal:
739         fsc = 0x11 | (fi->ea << 12);
740         break;
741     case ARMFault_Alignment:
742         fsc = 0x21;
743         break;
744     case ARMFault_Debug:
745         fsc = 0x22;
746         break;
747     case ARMFault_TLBConflict:
748         fsc = 0x30;
749         break;
750     case ARMFault_Lockdown:
751         fsc = 0x34;
752         break;
753     case ARMFault_Exclusive:
754         fsc = 0x35;
755         break;
756     default:
757         /* Other faults can't occur in a context that requires a
758          * long-format status code.
759          */
760         g_assert_not_reached();
761     }
762 
763     fsc |= 1 << 9;
764     return fsc;
765 }
766 
767 static inline bool arm_extabort_type(MemTxResult result)
768 {
769     /* The EA bit in syndromes and fault status registers is an
770      * IMPDEF classification of external aborts. ARM implementations
771      * usually use this to indicate AXI bus Decode error (0) or
772      * Slave error (1); in QEMU we follow that.
773      */
774     return result != MEMTX_DECODE_ERROR;
775 }
776 
777 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
778                       MMUAccessType access_type, int mmu_idx,
779                       bool probe, uintptr_t retaddr);
780 
781 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
782 {
783     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
784 }
785 
786 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
787 {
788     if (arm_feature(env, ARM_FEATURE_M)) {
789         return mmu_idx | ARM_MMU_IDX_M;
790     } else {
791         return mmu_idx | ARM_MMU_IDX_A;
792     }
793 }
794 
795 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
796 {
797     /* AArch64 is always a-profile. */
798     return mmu_idx | ARM_MMU_IDX_A;
799 }
800 
801 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
802 
803 /*
804  * Return the MMU index for a v7M CPU with all relevant information
805  * manually specified.
806  */
807 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
808                               bool secstate, bool priv, bool negpri);
809 
810 /*
811  * Return the MMU index for a v7M CPU in the specified security and
812  * privilege state.
813  */
814 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
815                                                 bool secstate, bool priv);
816 
817 /* Return the MMU index for a v7M CPU in the specified security state */
818 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
819 
820 /* Return true if the stage 1 translation regime is using LPAE format page
821  * tables */
822 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
823 
824 /* Raise a data fault alignment exception for the specified virtual address */
825 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
826                                  MMUAccessType access_type,
827                                  int mmu_idx, uintptr_t retaddr);
828 
829 /* arm_cpu_do_transaction_failed: handle a memory system error response
830  * (eg "no device/memory present at address") by raising an external abort
831  * exception
832  */
833 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
834                                    vaddr addr, unsigned size,
835                                    MMUAccessType access_type,
836                                    int mmu_idx, MemTxAttrs attrs,
837                                    MemTxResult response, uintptr_t retaddr);
838 
839 /* Call any registered EL change hooks */
840 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
841 {
842     ARMELChangeHook *hook, *next;
843     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
844         hook->hook(cpu, hook->opaque);
845     }
846 }
847 static inline void arm_call_el_change_hook(ARMCPU *cpu)
848 {
849     ARMELChangeHook *hook, *next;
850     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
851         hook->hook(cpu, hook->opaque);
852     }
853 }
854 
855 /* Return true if this address translation regime has two ranges.  */
856 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
857 {
858     switch (mmu_idx) {
859     case ARMMMUIdx_Stage1_E0:
860     case ARMMMUIdx_Stage1_E1:
861     case ARMMMUIdx_Stage1_E1_PAN:
862     case ARMMMUIdx_Stage1_SE0:
863     case ARMMMUIdx_Stage1_SE1:
864     case ARMMMUIdx_Stage1_SE1_PAN:
865     case ARMMMUIdx_E10_0:
866     case ARMMMUIdx_E10_1:
867     case ARMMMUIdx_E10_1_PAN:
868     case ARMMMUIdx_E20_0:
869     case ARMMMUIdx_E20_2:
870     case ARMMMUIdx_E20_2_PAN:
871     case ARMMMUIdx_SE10_0:
872     case ARMMMUIdx_SE10_1:
873     case ARMMMUIdx_SE10_1_PAN:
874     case ARMMMUIdx_SE20_0:
875     case ARMMMUIdx_SE20_2:
876     case ARMMMUIdx_SE20_2_PAN:
877         return true;
878     default:
879         return false;
880     }
881 }
882 
883 /* Return true if this address translation regime is secure */
884 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
885 {
886     switch (mmu_idx) {
887     case ARMMMUIdx_E10_0:
888     case ARMMMUIdx_E10_1:
889     case ARMMMUIdx_E10_1_PAN:
890     case ARMMMUIdx_E20_0:
891     case ARMMMUIdx_E20_2:
892     case ARMMMUIdx_E20_2_PAN:
893     case ARMMMUIdx_Stage1_E0:
894     case ARMMMUIdx_Stage1_E1:
895     case ARMMMUIdx_Stage1_E1_PAN:
896     case ARMMMUIdx_E2:
897     case ARMMMUIdx_Stage2:
898     case ARMMMUIdx_MPrivNegPri:
899     case ARMMMUIdx_MUserNegPri:
900     case ARMMMUIdx_MPriv:
901     case ARMMMUIdx_MUser:
902         return false;
903     case ARMMMUIdx_SE3:
904     case ARMMMUIdx_SE10_0:
905     case ARMMMUIdx_SE10_1:
906     case ARMMMUIdx_SE10_1_PAN:
907     case ARMMMUIdx_SE20_0:
908     case ARMMMUIdx_SE20_2:
909     case ARMMMUIdx_SE20_2_PAN:
910     case ARMMMUIdx_Stage1_SE0:
911     case ARMMMUIdx_Stage1_SE1:
912     case ARMMMUIdx_Stage1_SE1_PAN:
913     case ARMMMUIdx_SE2:
914     case ARMMMUIdx_Stage2_S:
915     case ARMMMUIdx_MSPrivNegPri:
916     case ARMMMUIdx_MSUserNegPri:
917     case ARMMMUIdx_MSPriv:
918     case ARMMMUIdx_MSUser:
919         return true;
920     default:
921         g_assert_not_reached();
922     }
923 }
924 
925 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
926 {
927     switch (mmu_idx) {
928     case ARMMMUIdx_Stage1_E1_PAN:
929     case ARMMMUIdx_Stage1_SE1_PAN:
930     case ARMMMUIdx_E10_1_PAN:
931     case ARMMMUIdx_E20_2_PAN:
932     case ARMMMUIdx_SE10_1_PAN:
933     case ARMMMUIdx_SE20_2_PAN:
934         return true;
935     default:
936         return false;
937     }
938 }
939 
940 /* Return the exception level which controls this address translation regime */
941 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
942 {
943     switch (mmu_idx) {
944     case ARMMMUIdx_SE20_0:
945     case ARMMMUIdx_SE20_2:
946     case ARMMMUIdx_SE20_2_PAN:
947     case ARMMMUIdx_E20_0:
948     case ARMMMUIdx_E20_2:
949     case ARMMMUIdx_E20_2_PAN:
950     case ARMMMUIdx_Stage2:
951     case ARMMMUIdx_Stage2_S:
952     case ARMMMUIdx_SE2:
953     case ARMMMUIdx_E2:
954         return 2;
955     case ARMMMUIdx_SE3:
956         return 3;
957     case ARMMMUIdx_SE10_0:
958     case ARMMMUIdx_Stage1_SE0:
959         return arm_el_is_aa64(env, 3) ? 1 : 3;
960     case ARMMMUIdx_SE10_1:
961     case ARMMMUIdx_SE10_1_PAN:
962     case ARMMMUIdx_Stage1_E0:
963     case ARMMMUIdx_Stage1_E1:
964     case ARMMMUIdx_Stage1_E1_PAN:
965     case ARMMMUIdx_Stage1_SE1:
966     case ARMMMUIdx_Stage1_SE1_PAN:
967     case ARMMMUIdx_E10_0:
968     case ARMMMUIdx_E10_1:
969     case ARMMMUIdx_E10_1_PAN:
970     case ARMMMUIdx_MPrivNegPri:
971     case ARMMMUIdx_MUserNegPri:
972     case ARMMMUIdx_MPriv:
973     case ARMMMUIdx_MUser:
974     case ARMMMUIdx_MSPrivNegPri:
975     case ARMMMUIdx_MSUserNegPri:
976     case ARMMMUIdx_MSPriv:
977     case ARMMMUIdx_MSUser:
978         return 1;
979     default:
980         g_assert_not_reached();
981     }
982 }
983 
984 /* Return the TCR controlling this translation regime */
985 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
986 {
987     if (mmu_idx == ARMMMUIdx_Stage2) {
988         return &env->cp15.vtcr_el2;
989     }
990     if (mmu_idx == ARMMMUIdx_Stage2_S) {
991         /*
992          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
993          * those are not currently used by QEMU, so just return VSTCR_EL2.
994          */
995         return &env->cp15.vstcr_el2;
996     }
997     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
998 }
999 
1000 /* Return the FSR value for a debug exception (watchpoint, hardware
1001  * breakpoint or BKPT insn) targeting the specified exception level.
1002  */
1003 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
1004 {
1005     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
1006     int target_el = arm_debug_target_el(env);
1007     bool using_lpae = false;
1008 
1009     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
1010         using_lpae = true;
1011     } else {
1012         if (arm_feature(env, ARM_FEATURE_LPAE) &&
1013             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
1014             using_lpae = true;
1015         }
1016     }
1017 
1018     if (using_lpae) {
1019         return arm_fi_to_lfsc(&fi);
1020     } else {
1021         return arm_fi_to_sfsc(&fi);
1022     }
1023 }
1024 
1025 /**
1026  * arm_num_brps: Return number of implemented breakpoints.
1027  * Note that the ID register BRPS field is "number of bps - 1",
1028  * and we return the actual number of breakpoints.
1029  */
1030 static inline int arm_num_brps(ARMCPU *cpu)
1031 {
1032     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1033         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1034     } else {
1035         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1036     }
1037 }
1038 
1039 /**
1040  * arm_num_wrps: Return number of implemented watchpoints.
1041  * Note that the ID register WRPS field is "number of wps - 1",
1042  * and we return the actual number of watchpoints.
1043  */
1044 static inline int arm_num_wrps(ARMCPU *cpu)
1045 {
1046     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1047         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1048     } else {
1049         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1050     }
1051 }
1052 
1053 /**
1054  * arm_num_ctx_cmps: Return number of implemented context comparators.
1055  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1056  * and we return the actual number of comparators.
1057  */
1058 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1059 {
1060     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1061         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1062     } else {
1063         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1064     }
1065 }
1066 
1067 /**
1068  * v7m_using_psp: Return true if using process stack pointer
1069  * Return true if the CPU is currently using the process stack
1070  * pointer, or false if it is using the main stack pointer.
1071  */
1072 static inline bool v7m_using_psp(CPUARMState *env)
1073 {
1074     /* Handler mode always uses the main stack; for thread mode
1075      * the CONTROL.SPSEL bit determines the answer.
1076      * Note that in v7M it is not possible to be in Handler mode with
1077      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1078      */
1079     return !arm_v7m_is_handler_mode(env) &&
1080         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1081 }
1082 
1083 /**
1084  * v7m_sp_limit: Return SP limit for current CPU state
1085  * Return the SP limit value for the current CPU security state
1086  * and stack pointer.
1087  */
1088 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1089 {
1090     if (v7m_using_psp(env)) {
1091         return env->v7m.psplim[env->v7m.secure];
1092     } else {
1093         return env->v7m.msplim[env->v7m.secure];
1094     }
1095 }
1096 
1097 /**
1098  * v7m_cpacr_pass:
1099  * Return true if the v7M CPACR permits access to the FPU for the specified
1100  * security state and privilege level.
1101  */
1102 static inline bool v7m_cpacr_pass(CPUARMState *env,
1103                                   bool is_secure, bool is_priv)
1104 {
1105     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1106     case 0:
1107     case 2: /* UNPREDICTABLE: we treat like 0 */
1108         return false;
1109     case 1:
1110         return is_priv;
1111     case 3:
1112         return true;
1113     default:
1114         g_assert_not_reached();
1115     }
1116 }
1117 
1118 /**
1119  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1120  * @psr: Program Status Register indicating CPU mode
1121  *
1122  * Returns, for debug logging purposes, a printable representation
1123  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1124  * the low bits of the specified PSR.
1125  */
1126 static inline const char *aarch32_mode_name(uint32_t psr)
1127 {
1128     static const char cpu_mode_names[16][4] = {
1129         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1130         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1131     };
1132 
1133     return cpu_mode_names[psr & 0xf];
1134 }
1135 
1136 /**
1137  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1138  *
1139  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1140  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1141  * Must be called with the iothread lock held.
1142  */
1143 void arm_cpu_update_virq(ARMCPU *cpu);
1144 
1145 /**
1146  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1147  *
1148  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1149  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1150  * Must be called with the iothread lock held.
1151  */
1152 void arm_cpu_update_vfiq(ARMCPU *cpu);
1153 
1154 /**
1155  * arm_mmu_idx_el:
1156  * @env: The cpu environment
1157  * @el: The EL to use.
1158  *
1159  * Return the full ARMMMUIdx for the translation regime for EL.
1160  */
1161 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1162 
1163 /**
1164  * arm_mmu_idx:
1165  * @env: The cpu environment
1166  *
1167  * Return the full ARMMMUIdx for the current translation regime.
1168  */
1169 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1170 
1171 /**
1172  * arm_stage1_mmu_idx:
1173  * @env: The cpu environment
1174  *
1175  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1176  */
1177 #ifdef CONFIG_USER_ONLY
1178 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1179 {
1180     return ARMMMUIdx_Stage1_E0;
1181 }
1182 #else
1183 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1184 #endif
1185 
1186 /**
1187  * arm_mmu_idx_is_stage1_of_2:
1188  * @mmu_idx: The ARMMMUIdx to test
1189  *
1190  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1191  * first stage of a two stage regime.
1192  */
1193 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1194 {
1195     switch (mmu_idx) {
1196     case ARMMMUIdx_Stage1_E0:
1197     case ARMMMUIdx_Stage1_E1:
1198     case ARMMMUIdx_Stage1_E1_PAN:
1199     case ARMMMUIdx_Stage1_SE0:
1200     case ARMMMUIdx_Stage1_SE1:
1201     case ARMMMUIdx_Stage1_SE1_PAN:
1202         return true;
1203     default:
1204         return false;
1205     }
1206 }
1207 
1208 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1209                                                const ARMISARegisters *id)
1210 {
1211     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1212 
1213     if ((features >> ARM_FEATURE_V4T) & 1) {
1214         valid |= CPSR_T;
1215     }
1216     if ((features >> ARM_FEATURE_V5) & 1) {
1217         valid |= CPSR_Q; /* V5TE in reality*/
1218     }
1219     if ((features >> ARM_FEATURE_V6) & 1) {
1220         valid |= CPSR_E | CPSR_GE;
1221     }
1222     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1223         valid |= CPSR_IT;
1224     }
1225     if (isar_feature_aa32_jazelle(id)) {
1226         valid |= CPSR_J;
1227     }
1228     if (isar_feature_aa32_pan(id)) {
1229         valid |= CPSR_PAN;
1230     }
1231 
1232     return valid;
1233 }
1234 
1235 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1236 {
1237     uint32_t valid;
1238 
1239     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1240     if (isar_feature_aa64_bti(id)) {
1241         valid |= PSTATE_BTYPE;
1242     }
1243     if (isar_feature_aa64_pan(id)) {
1244         valid |= PSTATE_PAN;
1245     }
1246     if (isar_feature_aa64_uao(id)) {
1247         valid |= PSTATE_UAO;
1248     }
1249     if (isar_feature_aa64_mte(id)) {
1250         valid |= PSTATE_TCO;
1251     }
1252 
1253     return valid;
1254 }
1255 
1256 /*
1257  * Parameters of a given virtual address, as extracted from the
1258  * translation control register (TCR) for a given regime.
1259  */
1260 typedef struct ARMVAParameters {
1261     unsigned tsz    : 8;
1262     unsigned select : 1;
1263     bool tbi        : 1;
1264     bool epd        : 1;
1265     bool hpd        : 1;
1266     bool using16k   : 1;
1267     bool using64k   : 1;
1268 } ARMVAParameters;
1269 
1270 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1271                                    ARMMMUIdx mmu_idx, bool data);
1272 
1273 static inline int exception_target_el(CPUARMState *env)
1274 {
1275     int target_el = MAX(1, arm_current_el(env));
1276 
1277     /*
1278      * No such thing as secure EL1 if EL3 is aarch32,
1279      * so update the target EL to EL3 in this case.
1280      */
1281     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1282         target_el = 3;
1283     }
1284 
1285     return target_el;
1286 }
1287 
1288 /* Determine if allocation tags are available.  */
1289 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1290                                                  uint64_t sctlr)
1291 {
1292     if (el < 3
1293         && arm_feature(env, ARM_FEATURE_EL3)
1294         && !(env->cp15.scr_el3 & SCR_ATA)) {
1295         return false;
1296     }
1297     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1298         uint64_t hcr = arm_hcr_el2_eff(env);
1299         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1300             return false;
1301         }
1302     }
1303     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1304     return sctlr != 0;
1305 }
1306 
1307 #ifndef CONFIG_USER_ONLY
1308 
1309 /* Security attributes for an address, as returned by v8m_security_lookup. */
1310 typedef struct V8M_SAttributes {
1311     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1312     bool ns;
1313     bool nsc;
1314     uint8_t sregion;
1315     bool srvalid;
1316     uint8_t iregion;
1317     bool irvalid;
1318 } V8M_SAttributes;
1319 
1320 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1321                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1322                          V8M_SAttributes *sattrs);
1323 
1324 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1325                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1326                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1327                        int *prot, bool *is_subpage,
1328                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1329 
1330 /* Cacheability and shareability attributes for a memory access */
1331 typedef struct ARMCacheAttrs {
1332     unsigned int attrs:8; /* as in the MAIR register encoding */
1333     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1334 } ARMCacheAttrs;
1335 
1336 bool get_phys_addr(CPUARMState *env, target_ulong address,
1337                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1338                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1339                    target_ulong *page_size,
1340                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1341     __attribute__((nonnull));
1342 
1343 void arm_log_exception(int idx);
1344 
1345 #endif /* !CONFIG_USER_ONLY */
1346 
1347 /*
1348  * The log2 of the words in the tag block, for GMID_EL1.BS.
1349  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1350  */
1351 #define GMID_EL1_BS  6
1352 
1353 /* We associate one allocation tag per 16 bytes, the minimum.  */
1354 #define LOG2_TAG_GRANULE 4
1355 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1356 
1357 /*
1358  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1359  * the same simd_desc() encoding due to restrictions on size.
1360  * Use these instead.
1361  */
1362 FIELD(PREDDESC, OPRSZ, 0, 6)
1363 FIELD(PREDDESC, ESZ, 6, 2)
1364 FIELD(PREDDESC, DATA, 8, 24)
1365 
1366 /*
1367  * The SVE simd_data field, for memory ops, contains either
1368  * rd (5 bits) or a shift count (2 bits).
1369  */
1370 #define SVE_MTEDESC_SHIFT 5
1371 
1372 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1373 FIELD(MTEDESC, MIDX,  0, 4)
1374 FIELD(MTEDESC, TBI,   4, 2)
1375 FIELD(MTEDESC, TCMA,  6, 2)
1376 FIELD(MTEDESC, WRITE, 8, 1)
1377 FIELD(MTEDESC, ESIZE, 9, 5)
1378 FIELD(MTEDESC, TSIZE, 14, 10)  /* mte_checkN only */
1379 
1380 bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr);
1381 uint64_t mte_check1(CPUARMState *env, uint32_t desc,
1382                     uint64_t ptr, uintptr_t ra);
1383 uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
1384                     uint64_t ptr, uintptr_t ra);
1385 
1386 static inline int allocation_tag_from_addr(uint64_t ptr)
1387 {
1388     return extract64(ptr, 56, 4);
1389 }
1390 
1391 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1392 {
1393     return deposit64(ptr, 56, 4, rtag);
1394 }
1395 
1396 /* Return true if tbi bits mean that the access is checked.  */
1397 static inline bool tbi_check(uint32_t desc, int bit55)
1398 {
1399     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1400 }
1401 
1402 /* Return true if tcma bits mean that the access is unchecked.  */
1403 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1404 {
1405     /*
1406      * We had extracted bit55 and ptr_tag for other reasons, so fold
1407      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1408      */
1409     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1410     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1411     return tcma && match;
1412 }
1413 
1414 /*
1415  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1416  * for the tag to be present in the FAR_ELx register.  But for user-only
1417  * mode, we do not have a TLB with which to implement this, so we must
1418  * remove the top byte.
1419  */
1420 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1421 {
1422     /* TBI is known to be enabled. */
1423 #ifdef CONFIG_USER_ONLY
1424     ptr = sextract64(ptr, 0, 56);
1425 #endif
1426     return ptr;
1427 }
1428 
1429 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1430 {
1431 #ifdef CONFIG_USER_ONLY
1432     int64_t clean_ptr = sextract64(ptr, 0, 56);
1433     if (tbi_check(desc, clean_ptr < 0)) {
1434         ptr = clean_ptr;
1435     }
1436 #endif
1437     return ptr;
1438 }
1439 
1440 #endif
1441