1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "syndrome.h" 30 31 /* register banks for CPU modes */ 32 #define BANK_USRSYS 0 33 #define BANK_SVC 1 34 #define BANK_ABT 2 35 #define BANK_UND 3 36 #define BANK_IRQ 4 37 #define BANK_FIQ 5 38 #define BANK_HYP 6 39 #define BANK_MON 7 40 41 static inline bool excp_is_internal(int excp) 42 { 43 /* Return true if this exception number represents a QEMU-internal 44 * exception that will not be passed to the guest. 45 */ 46 return excp == EXCP_INTERRUPT 47 || excp == EXCP_HLT 48 || excp == EXCP_DEBUG 49 || excp == EXCP_HALTED 50 || excp == EXCP_EXCEPTION_EXIT 51 || excp == EXCP_KERNEL_TRAP 52 || excp == EXCP_SEMIHOST; 53 } 54 55 /* Scale factor for generic timers, ie number of ns per tick. 56 * This gives a 62.5MHz timer. 57 */ 58 #define GTIMER_SCALE 16 59 60 /* Bit definitions for the v7M CONTROL register */ 61 FIELD(V7M_CONTROL, NPRIV, 0, 1) 62 FIELD(V7M_CONTROL, SPSEL, 1, 1) 63 FIELD(V7M_CONTROL, FPCA, 2, 1) 64 FIELD(V7M_CONTROL, SFPA, 3, 1) 65 66 /* Bit definitions for v7M exception return payload */ 67 FIELD(V7M_EXCRET, ES, 0, 1) 68 FIELD(V7M_EXCRET, RES0, 1, 1) 69 FIELD(V7M_EXCRET, SPSEL, 2, 1) 70 FIELD(V7M_EXCRET, MODE, 3, 1) 71 FIELD(V7M_EXCRET, FTYPE, 4, 1) 72 FIELD(V7M_EXCRET, DCRS, 5, 1) 73 FIELD(V7M_EXCRET, S, 6, 1) 74 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 75 76 /* Minimum value which is a magic number for exception return */ 77 #define EXC_RETURN_MIN_MAGIC 0xff000000 78 /* Minimum number which is a magic number for function or exception return 79 * when using v8M security extension 80 */ 81 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 82 83 /* We use a few fake FSR values for internal purposes in M profile. 84 * M profile cores don't have A/R format FSRs, but currently our 85 * get_phys_addr() code assumes A/R profile and reports failures via 86 * an A/R format FSR value. We then translate that into the proper 87 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 88 * Mostly the FSR values we use for this are those defined for v7PMSA, 89 * since we share some of that codepath. A few kinds of fault are 90 * only for M profile and have no A/R equivalent, though, so we have 91 * to pick a value from the reserved range (which we never otherwise 92 * generate) to use for these. 93 * These values will never be visible to the guest. 94 */ 95 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 96 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 97 98 /** 99 * raise_exception: Raise the specified exception. 100 * Raise a guest exception with the specified value, syndrome register 101 * and target exception level. This should be called from helper functions, 102 * and never returns because we will longjump back up to the CPU main loop. 103 */ 104 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp, 105 uint32_t syndrome, uint32_t target_el); 106 107 /* 108 * Similarly, but also use unwinding to restore cpu state. 109 */ 110 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp, 111 uint32_t syndrome, uint32_t target_el, 112 uintptr_t ra); 113 114 /* 115 * For AArch64, map a given EL to an index in the banked_spsr array. 116 * Note that this mapping and the AArch32 mapping defined in bank_number() 117 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 118 * mandated mapping between each other. 119 */ 120 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 121 { 122 static const unsigned int map[4] = { 123 [1] = BANK_SVC, /* EL1. */ 124 [2] = BANK_HYP, /* EL2. */ 125 [3] = BANK_MON, /* EL3. */ 126 }; 127 assert(el >= 1 && el <= 3); 128 return map[el]; 129 } 130 131 /* Map CPU modes onto saved register banks. */ 132 static inline int bank_number(int mode) 133 { 134 switch (mode) { 135 case ARM_CPU_MODE_USR: 136 case ARM_CPU_MODE_SYS: 137 return BANK_USRSYS; 138 case ARM_CPU_MODE_SVC: 139 return BANK_SVC; 140 case ARM_CPU_MODE_ABT: 141 return BANK_ABT; 142 case ARM_CPU_MODE_UND: 143 return BANK_UND; 144 case ARM_CPU_MODE_IRQ: 145 return BANK_IRQ; 146 case ARM_CPU_MODE_FIQ: 147 return BANK_FIQ; 148 case ARM_CPU_MODE_HYP: 149 return BANK_HYP; 150 case ARM_CPU_MODE_MON: 151 return BANK_MON; 152 } 153 g_assert_not_reached(); 154 } 155 156 /** 157 * r14_bank_number: Map CPU mode onto register bank for r14 158 * 159 * Given an AArch32 CPU mode, return the index into the saved register 160 * banks to use for the R14 (LR) in that mode. This is the same as 161 * bank_number(), except for the special case of Hyp mode, where 162 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 163 * This should be used as the index into env->banked_r14[], and 164 * bank_number() used for the index into env->banked_r13[] and 165 * env->banked_spsr[]. 166 */ 167 static inline int r14_bank_number(int mode) 168 { 169 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 170 } 171 172 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 173 void arm_translate_init(void); 174 175 #ifdef CONFIG_TCG 176 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 177 #endif /* CONFIG_TCG */ 178 179 180 enum arm_fprounding { 181 FPROUNDING_TIEEVEN, 182 FPROUNDING_POSINF, 183 FPROUNDING_NEGINF, 184 FPROUNDING_ZERO, 185 FPROUNDING_TIEAWAY, 186 FPROUNDING_ODD 187 }; 188 189 int arm_rmode_to_sf(int rmode); 190 191 static inline void aarch64_save_sp(CPUARMState *env, int el) 192 { 193 if (env->pstate & PSTATE_SP) { 194 env->sp_el[el] = env->xregs[31]; 195 } else { 196 env->sp_el[0] = env->xregs[31]; 197 } 198 } 199 200 static inline void aarch64_restore_sp(CPUARMState *env, int el) 201 { 202 if (env->pstate & PSTATE_SP) { 203 env->xregs[31] = env->sp_el[el]; 204 } else { 205 env->xregs[31] = env->sp_el[0]; 206 } 207 } 208 209 static inline void update_spsel(CPUARMState *env, uint32_t imm) 210 { 211 unsigned int cur_el = arm_current_el(env); 212 /* Update PSTATE SPSel bit; this requires us to update the 213 * working stack pointer in xregs[31]. 214 */ 215 if (!((imm ^ env->pstate) & PSTATE_SP)) { 216 return; 217 } 218 aarch64_save_sp(env, cur_el); 219 env->pstate = deposit32(env->pstate, 0, 1, imm); 220 221 /* We rely on illegal updates to SPsel from EL0 to get trapped 222 * at translation time. 223 */ 224 assert(cur_el >= 1 && cur_el <= 3); 225 aarch64_restore_sp(env, cur_el); 226 } 227 228 /* 229 * arm_pamax 230 * @cpu: ARMCPU 231 * 232 * Returns the implementation defined bit-width of physical addresses. 233 * The ARMv8 reference manuals refer to this as PAMax(). 234 */ 235 static inline unsigned int arm_pamax(ARMCPU *cpu) 236 { 237 static const unsigned int pamax_map[] = { 238 [0] = 32, 239 [1] = 36, 240 [2] = 40, 241 [3] = 42, 242 [4] = 44, 243 [5] = 48, 244 }; 245 unsigned int parange = 246 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 247 248 /* id_aa64mmfr0 is a read-only register so values outside of the 249 * supported mappings can be considered an implementation error. */ 250 assert(parange < ARRAY_SIZE(pamax_map)); 251 return pamax_map[parange]; 252 } 253 254 /* Return true if extended addresses are enabled. 255 * This is always the case if our translation regime is 64 bit, 256 * but depends on TTBCR.EAE for 32 bit. 257 */ 258 static inline bool extended_addresses_enabled(CPUARMState *env) 259 { 260 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 261 return arm_el_is_aa64(env, 1) || 262 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); 263 } 264 265 /* Update a QEMU watchpoint based on the information the guest has set in the 266 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 267 */ 268 void hw_watchpoint_update(ARMCPU *cpu, int n); 269 /* Update the QEMU watchpoints for every guest watchpoint. This does a 270 * complete delete-and-reinstate of the QEMU watchpoint list and so is 271 * suitable for use after migration or on reset. 272 */ 273 void hw_watchpoint_update_all(ARMCPU *cpu); 274 /* Update a QEMU breakpoint based on the information the guest has set in the 275 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 276 */ 277 void hw_breakpoint_update(ARMCPU *cpu, int n); 278 /* Update the QEMU breakpoints for every guest breakpoint. This does a 279 * complete delete-and-reinstate of the QEMU breakpoint list and so is 280 * suitable for use after migration or on reset. 281 */ 282 void hw_breakpoint_update_all(ARMCPU *cpu); 283 284 /* Callback function for checking if a watchpoint should trigger. */ 285 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 286 287 /* Adjust addresses (in BE32 mode) before testing against watchpoint 288 * addresses. 289 */ 290 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 291 292 /* Callback function for when a watchpoint or breakpoint triggers. */ 293 void arm_debug_excp_handler(CPUState *cs); 294 295 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 296 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 297 { 298 return false; 299 } 300 static inline void arm_handle_psci_call(ARMCPU *cpu) 301 { 302 g_assert_not_reached(); 303 } 304 #else 305 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 306 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 307 /* Actually handle a PSCI call */ 308 void arm_handle_psci_call(ARMCPU *cpu); 309 #endif 310 311 /** 312 * arm_clear_exclusive: clear the exclusive monitor 313 * @env: CPU env 314 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 315 */ 316 static inline void arm_clear_exclusive(CPUARMState *env) 317 { 318 env->exclusive_addr = -1; 319 } 320 321 /** 322 * ARMFaultType: type of an ARM MMU fault 323 * This corresponds to the v8A pseudocode's Fault enumeration, 324 * with extensions for QEMU internal conditions. 325 */ 326 typedef enum ARMFaultType { 327 ARMFault_None, 328 ARMFault_AccessFlag, 329 ARMFault_Alignment, 330 ARMFault_Background, 331 ARMFault_Domain, 332 ARMFault_Permission, 333 ARMFault_Translation, 334 ARMFault_AddressSize, 335 ARMFault_SyncExternal, 336 ARMFault_SyncExternalOnWalk, 337 ARMFault_SyncParity, 338 ARMFault_SyncParityOnWalk, 339 ARMFault_AsyncParity, 340 ARMFault_AsyncExternal, 341 ARMFault_Debug, 342 ARMFault_TLBConflict, 343 ARMFault_Lockdown, 344 ARMFault_Exclusive, 345 ARMFault_ICacheMaint, 346 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 347 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 348 } ARMFaultType; 349 350 /** 351 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 352 * @type: Type of fault 353 * @level: Table walk level (for translation, access flag and permission faults) 354 * @domain: Domain of the fault address (for non-LPAE CPUs only) 355 * @s2addr: Address that caused a fault at stage 2 356 * @stage2: True if we faulted at stage 2 357 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 358 * @s1ns: True if we faulted on a non-secure IPA while in secure state 359 * @ea: True if we should set the EA (external abort type) bit in syndrome 360 */ 361 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 362 struct ARMMMUFaultInfo { 363 ARMFaultType type; 364 target_ulong s2addr; 365 int level; 366 int domain; 367 bool stage2; 368 bool s1ptw; 369 bool s1ns; 370 bool ea; 371 }; 372 373 /** 374 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 375 * Compare pseudocode EncodeSDFSC(), though unlike that function 376 * we set up a whole FSR-format code including domain field and 377 * putting the high bit of the FSC into bit 10. 378 */ 379 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 380 { 381 uint32_t fsc; 382 383 switch (fi->type) { 384 case ARMFault_None: 385 return 0; 386 case ARMFault_AccessFlag: 387 fsc = fi->level == 1 ? 0x3 : 0x6; 388 break; 389 case ARMFault_Alignment: 390 fsc = 0x1; 391 break; 392 case ARMFault_Permission: 393 fsc = fi->level == 1 ? 0xd : 0xf; 394 break; 395 case ARMFault_Domain: 396 fsc = fi->level == 1 ? 0x9 : 0xb; 397 break; 398 case ARMFault_Translation: 399 fsc = fi->level == 1 ? 0x5 : 0x7; 400 break; 401 case ARMFault_SyncExternal: 402 fsc = 0x8 | (fi->ea << 12); 403 break; 404 case ARMFault_SyncExternalOnWalk: 405 fsc = fi->level == 1 ? 0xc : 0xe; 406 fsc |= (fi->ea << 12); 407 break; 408 case ARMFault_SyncParity: 409 fsc = 0x409; 410 break; 411 case ARMFault_SyncParityOnWalk: 412 fsc = fi->level == 1 ? 0x40c : 0x40e; 413 break; 414 case ARMFault_AsyncParity: 415 fsc = 0x408; 416 break; 417 case ARMFault_AsyncExternal: 418 fsc = 0x406 | (fi->ea << 12); 419 break; 420 case ARMFault_Debug: 421 fsc = 0x2; 422 break; 423 case ARMFault_TLBConflict: 424 fsc = 0x400; 425 break; 426 case ARMFault_Lockdown: 427 fsc = 0x404; 428 break; 429 case ARMFault_Exclusive: 430 fsc = 0x405; 431 break; 432 case ARMFault_ICacheMaint: 433 fsc = 0x4; 434 break; 435 case ARMFault_Background: 436 fsc = 0x0; 437 break; 438 case ARMFault_QEMU_NSCExec: 439 fsc = M_FAKE_FSR_NSC_EXEC; 440 break; 441 case ARMFault_QEMU_SFault: 442 fsc = M_FAKE_FSR_SFAULT; 443 break; 444 default: 445 /* Other faults can't occur in a context that requires a 446 * short-format status code. 447 */ 448 g_assert_not_reached(); 449 } 450 451 fsc |= (fi->domain << 4); 452 return fsc; 453 } 454 455 /** 456 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 457 * Compare pseudocode EncodeLDFSC(), though unlike that function 458 * we fill in also the LPAE bit 9 of a DFSR format. 459 */ 460 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 461 { 462 uint32_t fsc; 463 464 switch (fi->type) { 465 case ARMFault_None: 466 return 0; 467 case ARMFault_AddressSize: 468 fsc = fi->level & 3; 469 break; 470 case ARMFault_AccessFlag: 471 fsc = (fi->level & 3) | (0x2 << 2); 472 break; 473 case ARMFault_Permission: 474 fsc = (fi->level & 3) | (0x3 << 2); 475 break; 476 case ARMFault_Translation: 477 fsc = (fi->level & 3) | (0x1 << 2); 478 break; 479 case ARMFault_SyncExternal: 480 fsc = 0x10 | (fi->ea << 12); 481 break; 482 case ARMFault_SyncExternalOnWalk: 483 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12); 484 break; 485 case ARMFault_SyncParity: 486 fsc = 0x18; 487 break; 488 case ARMFault_SyncParityOnWalk: 489 fsc = (fi->level & 3) | (0x7 << 2); 490 break; 491 case ARMFault_AsyncParity: 492 fsc = 0x19; 493 break; 494 case ARMFault_AsyncExternal: 495 fsc = 0x11 | (fi->ea << 12); 496 break; 497 case ARMFault_Alignment: 498 fsc = 0x21; 499 break; 500 case ARMFault_Debug: 501 fsc = 0x22; 502 break; 503 case ARMFault_TLBConflict: 504 fsc = 0x30; 505 break; 506 case ARMFault_Lockdown: 507 fsc = 0x34; 508 break; 509 case ARMFault_Exclusive: 510 fsc = 0x35; 511 break; 512 default: 513 /* Other faults can't occur in a context that requires a 514 * long-format status code. 515 */ 516 g_assert_not_reached(); 517 } 518 519 fsc |= 1 << 9; 520 return fsc; 521 } 522 523 static inline bool arm_extabort_type(MemTxResult result) 524 { 525 /* The EA bit in syndromes and fault status registers is an 526 * IMPDEF classification of external aborts. ARM implementations 527 * usually use this to indicate AXI bus Decode error (0) or 528 * Slave error (1); in QEMU we follow that. 529 */ 530 return result != MEMTX_DECODE_ERROR; 531 } 532 533 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 534 MMUAccessType access_type, int mmu_idx, 535 bool probe, uintptr_t retaddr); 536 537 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 538 { 539 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 540 } 541 542 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 543 { 544 if (arm_feature(env, ARM_FEATURE_M)) { 545 return mmu_idx | ARM_MMU_IDX_M; 546 } else { 547 return mmu_idx | ARM_MMU_IDX_A; 548 } 549 } 550 551 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 552 { 553 /* AArch64 is always a-profile. */ 554 return mmu_idx | ARM_MMU_IDX_A; 555 } 556 557 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 558 559 /* 560 * Return the MMU index for a v7M CPU with all relevant information 561 * manually specified. 562 */ 563 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 564 bool secstate, bool priv, bool negpri); 565 566 /* 567 * Return the MMU index for a v7M CPU in the specified security and 568 * privilege state. 569 */ 570 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 571 bool secstate, bool priv); 572 573 /* Return the MMU index for a v7M CPU in the specified security state */ 574 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 575 576 /* Return true if the stage 1 translation regime is using LPAE format page 577 * tables */ 578 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 579 580 /* Raise a data fault alignment exception for the specified virtual address */ 581 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 582 MMUAccessType access_type, 583 int mmu_idx, uintptr_t retaddr); 584 585 /* arm_cpu_do_transaction_failed: handle a memory system error response 586 * (eg "no device/memory present at address") by raising an external abort 587 * exception 588 */ 589 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 590 vaddr addr, unsigned size, 591 MMUAccessType access_type, 592 int mmu_idx, MemTxAttrs attrs, 593 MemTxResult response, uintptr_t retaddr); 594 595 /* Call any registered EL change hooks */ 596 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 597 { 598 ARMELChangeHook *hook, *next; 599 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 600 hook->hook(cpu, hook->opaque); 601 } 602 } 603 static inline void arm_call_el_change_hook(ARMCPU *cpu) 604 { 605 ARMELChangeHook *hook, *next; 606 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 607 hook->hook(cpu, hook->opaque); 608 } 609 } 610 611 /* Return true if this address translation regime has two ranges. */ 612 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 613 { 614 switch (mmu_idx) { 615 case ARMMMUIdx_Stage1_E0: 616 case ARMMMUIdx_Stage1_E1: 617 case ARMMMUIdx_Stage1_E1_PAN: 618 case ARMMMUIdx_Stage1_SE0: 619 case ARMMMUIdx_Stage1_SE1: 620 case ARMMMUIdx_Stage1_SE1_PAN: 621 case ARMMMUIdx_E10_0: 622 case ARMMMUIdx_E10_1: 623 case ARMMMUIdx_E10_1_PAN: 624 case ARMMMUIdx_E20_0: 625 case ARMMMUIdx_E20_2: 626 case ARMMMUIdx_E20_2_PAN: 627 case ARMMMUIdx_SE10_0: 628 case ARMMMUIdx_SE10_1: 629 case ARMMMUIdx_SE10_1_PAN: 630 case ARMMMUIdx_SE20_0: 631 case ARMMMUIdx_SE20_2: 632 case ARMMMUIdx_SE20_2_PAN: 633 return true; 634 default: 635 return false; 636 } 637 } 638 639 /* Return true if this address translation regime is secure */ 640 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 641 { 642 switch (mmu_idx) { 643 case ARMMMUIdx_E10_0: 644 case ARMMMUIdx_E10_1: 645 case ARMMMUIdx_E10_1_PAN: 646 case ARMMMUIdx_E20_0: 647 case ARMMMUIdx_E20_2: 648 case ARMMMUIdx_E20_2_PAN: 649 case ARMMMUIdx_Stage1_E0: 650 case ARMMMUIdx_Stage1_E1: 651 case ARMMMUIdx_Stage1_E1_PAN: 652 case ARMMMUIdx_E2: 653 case ARMMMUIdx_Stage2: 654 case ARMMMUIdx_MPrivNegPri: 655 case ARMMMUIdx_MUserNegPri: 656 case ARMMMUIdx_MPriv: 657 case ARMMMUIdx_MUser: 658 return false; 659 case ARMMMUIdx_SE3: 660 case ARMMMUIdx_SE10_0: 661 case ARMMMUIdx_SE10_1: 662 case ARMMMUIdx_SE10_1_PAN: 663 case ARMMMUIdx_SE20_0: 664 case ARMMMUIdx_SE20_2: 665 case ARMMMUIdx_SE20_2_PAN: 666 case ARMMMUIdx_Stage1_SE0: 667 case ARMMMUIdx_Stage1_SE1: 668 case ARMMMUIdx_Stage1_SE1_PAN: 669 case ARMMMUIdx_SE2: 670 case ARMMMUIdx_Stage2_S: 671 case ARMMMUIdx_MSPrivNegPri: 672 case ARMMMUIdx_MSUserNegPri: 673 case ARMMMUIdx_MSPriv: 674 case ARMMMUIdx_MSUser: 675 return true; 676 default: 677 g_assert_not_reached(); 678 } 679 } 680 681 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 682 { 683 switch (mmu_idx) { 684 case ARMMMUIdx_Stage1_E1_PAN: 685 case ARMMMUIdx_Stage1_SE1_PAN: 686 case ARMMMUIdx_E10_1_PAN: 687 case ARMMMUIdx_E20_2_PAN: 688 case ARMMMUIdx_SE10_1_PAN: 689 case ARMMMUIdx_SE20_2_PAN: 690 return true; 691 default: 692 return false; 693 } 694 } 695 696 /* Return the exception level which controls this address translation regime */ 697 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 698 { 699 switch (mmu_idx) { 700 case ARMMMUIdx_SE20_0: 701 case ARMMMUIdx_SE20_2: 702 case ARMMMUIdx_SE20_2_PAN: 703 case ARMMMUIdx_E20_0: 704 case ARMMMUIdx_E20_2: 705 case ARMMMUIdx_E20_2_PAN: 706 case ARMMMUIdx_Stage2: 707 case ARMMMUIdx_Stage2_S: 708 case ARMMMUIdx_SE2: 709 case ARMMMUIdx_E2: 710 return 2; 711 case ARMMMUIdx_SE3: 712 return 3; 713 case ARMMMUIdx_SE10_0: 714 case ARMMMUIdx_Stage1_SE0: 715 return arm_el_is_aa64(env, 3) ? 1 : 3; 716 case ARMMMUIdx_SE10_1: 717 case ARMMMUIdx_SE10_1_PAN: 718 case ARMMMUIdx_Stage1_E0: 719 case ARMMMUIdx_Stage1_E1: 720 case ARMMMUIdx_Stage1_E1_PAN: 721 case ARMMMUIdx_Stage1_SE1: 722 case ARMMMUIdx_Stage1_SE1_PAN: 723 case ARMMMUIdx_E10_0: 724 case ARMMMUIdx_E10_1: 725 case ARMMMUIdx_E10_1_PAN: 726 case ARMMMUIdx_MPrivNegPri: 727 case ARMMMUIdx_MUserNegPri: 728 case ARMMMUIdx_MPriv: 729 case ARMMMUIdx_MUser: 730 case ARMMMUIdx_MSPrivNegPri: 731 case ARMMMUIdx_MSUserNegPri: 732 case ARMMMUIdx_MSPriv: 733 case ARMMMUIdx_MSUser: 734 return 1; 735 default: 736 g_assert_not_reached(); 737 } 738 } 739 740 /* Return the TCR controlling this translation regime */ 741 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 742 { 743 if (mmu_idx == ARMMMUIdx_Stage2) { 744 return &env->cp15.vtcr_el2; 745 } 746 if (mmu_idx == ARMMMUIdx_Stage2_S) { 747 /* 748 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but 749 * those are not currently used by QEMU, so just return VSTCR_EL2. 750 */ 751 return &env->cp15.vstcr_el2; 752 } 753 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 754 } 755 756 /* Return the FSR value for a debug exception (watchpoint, hardware 757 * breakpoint or BKPT insn) targeting the specified exception level. 758 */ 759 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) 760 { 761 ARMMMUFaultInfo fi = { .type = ARMFault_Debug }; 762 int target_el = arm_debug_target_el(env); 763 bool using_lpae = false; 764 765 if (target_el == 2 || arm_el_is_aa64(env, target_el)) { 766 using_lpae = true; 767 } else { 768 if (arm_feature(env, ARM_FEATURE_LPAE) && 769 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { 770 using_lpae = true; 771 } 772 } 773 774 if (using_lpae) { 775 return arm_fi_to_lfsc(&fi); 776 } else { 777 return arm_fi_to_sfsc(&fi); 778 } 779 } 780 781 /** 782 * arm_num_brps: Return number of implemented breakpoints. 783 * Note that the ID register BRPS field is "number of bps - 1", 784 * and we return the actual number of breakpoints. 785 */ 786 static inline int arm_num_brps(ARMCPU *cpu) 787 { 788 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 789 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 790 } else { 791 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 792 } 793 } 794 795 /** 796 * arm_num_wrps: Return number of implemented watchpoints. 797 * Note that the ID register WRPS field is "number of wps - 1", 798 * and we return the actual number of watchpoints. 799 */ 800 static inline int arm_num_wrps(ARMCPU *cpu) 801 { 802 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 803 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 804 } else { 805 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 806 } 807 } 808 809 /** 810 * arm_num_ctx_cmps: Return number of implemented context comparators. 811 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 812 * and we return the actual number of comparators. 813 */ 814 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 815 { 816 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 817 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 818 } else { 819 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 820 } 821 } 822 823 /** 824 * v7m_using_psp: Return true if using process stack pointer 825 * Return true if the CPU is currently using the process stack 826 * pointer, or false if it is using the main stack pointer. 827 */ 828 static inline bool v7m_using_psp(CPUARMState *env) 829 { 830 /* Handler mode always uses the main stack; for thread mode 831 * the CONTROL.SPSEL bit determines the answer. 832 * Note that in v7M it is not possible to be in Handler mode with 833 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 834 */ 835 return !arm_v7m_is_handler_mode(env) && 836 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 837 } 838 839 /** 840 * v7m_sp_limit: Return SP limit for current CPU state 841 * Return the SP limit value for the current CPU security state 842 * and stack pointer. 843 */ 844 static inline uint32_t v7m_sp_limit(CPUARMState *env) 845 { 846 if (v7m_using_psp(env)) { 847 return env->v7m.psplim[env->v7m.secure]; 848 } else { 849 return env->v7m.msplim[env->v7m.secure]; 850 } 851 } 852 853 /** 854 * v7m_cpacr_pass: 855 * Return true if the v7M CPACR permits access to the FPU for the specified 856 * security state and privilege level. 857 */ 858 static inline bool v7m_cpacr_pass(CPUARMState *env, 859 bool is_secure, bool is_priv) 860 { 861 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 862 case 0: 863 case 2: /* UNPREDICTABLE: we treat like 0 */ 864 return false; 865 case 1: 866 return is_priv; 867 case 3: 868 return true; 869 default: 870 g_assert_not_reached(); 871 } 872 } 873 874 /** 875 * aarch32_mode_name(): Return name of the AArch32 CPU mode 876 * @psr: Program Status Register indicating CPU mode 877 * 878 * Returns, for debug logging purposes, a printable representation 879 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 880 * the low bits of the specified PSR. 881 */ 882 static inline const char *aarch32_mode_name(uint32_t psr) 883 { 884 static const char cpu_mode_names[16][4] = { 885 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 886 "???", "???", "hyp", "und", "???", "???", "???", "sys" 887 }; 888 889 return cpu_mode_names[psr & 0xf]; 890 } 891 892 /** 893 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 894 * 895 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 896 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 897 * Must be called with the iothread lock held. 898 */ 899 void arm_cpu_update_virq(ARMCPU *cpu); 900 901 /** 902 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 903 * 904 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 905 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 906 * Must be called with the iothread lock held. 907 */ 908 void arm_cpu_update_vfiq(ARMCPU *cpu); 909 910 /** 911 * arm_mmu_idx_el: 912 * @env: The cpu environment 913 * @el: The EL to use. 914 * 915 * Return the full ARMMMUIdx for the translation regime for EL. 916 */ 917 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 918 919 /** 920 * arm_mmu_idx: 921 * @env: The cpu environment 922 * 923 * Return the full ARMMMUIdx for the current translation regime. 924 */ 925 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 926 927 /** 928 * arm_stage1_mmu_idx: 929 * @env: The cpu environment 930 * 931 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 932 */ 933 #ifdef CONFIG_USER_ONLY 934 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 935 { 936 return ARMMMUIdx_Stage1_E0; 937 } 938 #else 939 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 940 #endif 941 942 /** 943 * arm_mmu_idx_is_stage1_of_2: 944 * @mmu_idx: The ARMMMUIdx to test 945 * 946 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 947 * first stage of a two stage regime. 948 */ 949 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 950 { 951 switch (mmu_idx) { 952 case ARMMMUIdx_Stage1_E0: 953 case ARMMMUIdx_Stage1_E1: 954 case ARMMMUIdx_Stage1_E1_PAN: 955 case ARMMMUIdx_Stage1_SE0: 956 case ARMMMUIdx_Stage1_SE1: 957 case ARMMMUIdx_Stage1_SE1_PAN: 958 return true; 959 default: 960 return false; 961 } 962 } 963 964 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 965 const ARMISARegisters *id) 966 { 967 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 968 969 if ((features >> ARM_FEATURE_V4T) & 1) { 970 valid |= CPSR_T; 971 } 972 if ((features >> ARM_FEATURE_V5) & 1) { 973 valid |= CPSR_Q; /* V5TE in reality*/ 974 } 975 if ((features >> ARM_FEATURE_V6) & 1) { 976 valid |= CPSR_E | CPSR_GE; 977 } 978 if ((features >> ARM_FEATURE_THUMB2) & 1) { 979 valid |= CPSR_IT; 980 } 981 if (isar_feature_aa32_jazelle(id)) { 982 valid |= CPSR_J; 983 } 984 if (isar_feature_aa32_pan(id)) { 985 valid |= CPSR_PAN; 986 } 987 if (isar_feature_aa32_dit(id)) { 988 valid |= CPSR_DIT; 989 } 990 991 return valid; 992 } 993 994 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 995 { 996 uint32_t valid; 997 998 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 999 if (isar_feature_aa64_bti(id)) { 1000 valid |= PSTATE_BTYPE; 1001 } 1002 if (isar_feature_aa64_pan(id)) { 1003 valid |= PSTATE_PAN; 1004 } 1005 if (isar_feature_aa64_uao(id)) { 1006 valid |= PSTATE_UAO; 1007 } 1008 if (isar_feature_aa64_dit(id)) { 1009 valid |= PSTATE_DIT; 1010 } 1011 if (isar_feature_aa64_mte(id)) { 1012 valid |= PSTATE_TCO; 1013 } 1014 1015 return valid; 1016 } 1017 1018 /* 1019 * Parameters of a given virtual address, as extracted from the 1020 * translation control register (TCR) for a given regime. 1021 */ 1022 typedef struct ARMVAParameters { 1023 unsigned tsz : 8; 1024 unsigned select : 1; 1025 bool tbi : 1; 1026 bool epd : 1; 1027 bool hpd : 1; 1028 bool using16k : 1; 1029 bool using64k : 1; 1030 } ARMVAParameters; 1031 1032 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1033 ARMMMUIdx mmu_idx, bool data); 1034 1035 static inline int exception_target_el(CPUARMState *env) 1036 { 1037 int target_el = MAX(1, arm_current_el(env)); 1038 1039 /* 1040 * No such thing as secure EL1 if EL3 is aarch32, 1041 * so update the target EL to EL3 in this case. 1042 */ 1043 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 1044 target_el = 3; 1045 } 1046 1047 return target_el; 1048 } 1049 1050 /* Determine if allocation tags are available. */ 1051 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1052 uint64_t sctlr) 1053 { 1054 if (el < 3 1055 && arm_feature(env, ARM_FEATURE_EL3) 1056 && !(env->cp15.scr_el3 & SCR_ATA)) { 1057 return false; 1058 } 1059 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 1060 uint64_t hcr = arm_hcr_el2_eff(env); 1061 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1062 return false; 1063 } 1064 } 1065 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1066 return sctlr != 0; 1067 } 1068 1069 #ifndef CONFIG_USER_ONLY 1070 1071 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1072 typedef struct V8M_SAttributes { 1073 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1074 bool ns; 1075 bool nsc; 1076 uint8_t sregion; 1077 bool srvalid; 1078 uint8_t iregion; 1079 bool irvalid; 1080 } V8M_SAttributes; 1081 1082 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1083 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1084 V8M_SAttributes *sattrs); 1085 1086 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1087 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1088 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1089 int *prot, bool *is_subpage, 1090 ARMMMUFaultInfo *fi, uint32_t *mregion); 1091 1092 /* Cacheability and shareability attributes for a memory access */ 1093 typedef struct ARMCacheAttrs { 1094 unsigned int attrs:8; /* as in the MAIR register encoding */ 1095 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1096 } ARMCacheAttrs; 1097 1098 bool get_phys_addr(CPUARMState *env, target_ulong address, 1099 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1100 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 1101 target_ulong *page_size, 1102 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 1103 __attribute__((nonnull)); 1104 1105 void arm_log_exception(int idx); 1106 1107 #endif /* !CONFIG_USER_ONLY */ 1108 1109 /* 1110 * The log2 of the words in the tag block, for GMID_EL1.BS. 1111 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1112 */ 1113 #define GMID_EL1_BS 6 1114 1115 /* We associate one allocation tag per 16 bytes, the minimum. */ 1116 #define LOG2_TAG_GRANULE 4 1117 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 1118 1119 /* 1120 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1121 * the same simd_desc() encoding due to restrictions on size. 1122 * Use these instead. 1123 */ 1124 FIELD(PREDDESC, OPRSZ, 0, 6) 1125 FIELD(PREDDESC, ESZ, 6, 2) 1126 FIELD(PREDDESC, DATA, 8, 24) 1127 1128 /* 1129 * The SVE simd_data field, for memory ops, contains either 1130 * rd (5 bits) or a shift count (2 bits). 1131 */ 1132 #define SVE_MTEDESC_SHIFT 5 1133 1134 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1135 FIELD(MTEDESC, MIDX, 0, 4) 1136 FIELD(MTEDESC, TBI, 4, 2) 1137 FIELD(MTEDESC, TCMA, 6, 2) 1138 FIELD(MTEDESC, WRITE, 8, 1) 1139 FIELD(MTEDESC, ESIZE, 9, 5) 1140 FIELD(MTEDESC, TSIZE, 14, 10) /* mte_checkN only */ 1141 1142 bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr); 1143 uint64_t mte_check1(CPUARMState *env, uint32_t desc, 1144 uint64_t ptr, uintptr_t ra); 1145 uint64_t mte_checkN(CPUARMState *env, uint32_t desc, 1146 uint64_t ptr, uintptr_t ra); 1147 1148 static inline int allocation_tag_from_addr(uint64_t ptr) 1149 { 1150 return extract64(ptr, 56, 4); 1151 } 1152 1153 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1154 { 1155 return deposit64(ptr, 56, 4, rtag); 1156 } 1157 1158 /* Return true if tbi bits mean that the access is checked. */ 1159 static inline bool tbi_check(uint32_t desc, int bit55) 1160 { 1161 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1162 } 1163 1164 /* Return true if tcma bits mean that the access is unchecked. */ 1165 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1166 { 1167 /* 1168 * We had extracted bit55 and ptr_tag for other reasons, so fold 1169 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1170 */ 1171 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1172 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1173 return tcma && match; 1174 } 1175 1176 /* 1177 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1178 * for the tag to be present in the FAR_ELx register. But for user-only 1179 * mode, we do not have a TLB with which to implement this, so we must 1180 * remove the top byte. 1181 */ 1182 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1183 { 1184 #ifdef CONFIG_USER_ONLY 1185 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1186 ptr &= sextract64(ptr, 0, 56); 1187 #endif 1188 return ptr; 1189 } 1190 1191 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1192 { 1193 #ifdef CONFIG_USER_ONLY 1194 int64_t clean_ptr = sextract64(ptr, 0, 56); 1195 if (tbi_check(desc, clean_ptr < 0)) { 1196 ptr = clean_ptr; 1197 } 1198 #endif 1199 return ptr; 1200 } 1201 1202 #endif 1203