1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 32 /* register banks for CPU modes */ 33 #define BANK_USRSYS 0 34 #define BANK_SVC 1 35 #define BANK_ABT 2 36 #define BANK_UND 3 37 #define BANK_IRQ 4 38 #define BANK_FIQ 5 39 #define BANK_HYP 6 40 #define BANK_MON 7 41 42 static inline bool excp_is_internal(int excp) 43 { 44 /* Return true if this exception number represents a QEMU-internal 45 * exception that will not be passed to the guest. 46 */ 47 return excp == EXCP_INTERRUPT 48 || excp == EXCP_HLT 49 || excp == EXCP_DEBUG 50 || excp == EXCP_HALTED 51 || excp == EXCP_EXCEPTION_EXIT 52 || excp == EXCP_KERNEL_TRAP 53 || excp == EXCP_SEMIHOST; 54 } 55 56 /* Scale factor for generic timers, ie number of ns per tick. 57 * This gives a 62.5MHz timer. 58 */ 59 #define GTIMER_SCALE 16 60 61 /* Bit definitions for the v7M CONTROL register */ 62 FIELD(V7M_CONTROL, NPRIV, 0, 1) 63 FIELD(V7M_CONTROL, SPSEL, 1, 1) 64 FIELD(V7M_CONTROL, FPCA, 2, 1) 65 FIELD(V7M_CONTROL, SFPA, 3, 1) 66 67 /* Bit definitions for v7M exception return payload */ 68 FIELD(V7M_EXCRET, ES, 0, 1) 69 FIELD(V7M_EXCRET, RES0, 1, 1) 70 FIELD(V7M_EXCRET, SPSEL, 2, 1) 71 FIELD(V7M_EXCRET, MODE, 3, 1) 72 FIELD(V7M_EXCRET, FTYPE, 4, 1) 73 FIELD(V7M_EXCRET, DCRS, 5, 1) 74 FIELD(V7M_EXCRET, S, 6, 1) 75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 76 77 /* Minimum value which is a magic number for exception return */ 78 #define EXC_RETURN_MIN_MAGIC 0xff000000 79 /* Minimum number which is a magic number for function or exception return 80 * when using v8M security extension 81 */ 82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 83 84 /* We use a few fake FSR values for internal purposes in M profile. 85 * M profile cores don't have A/R format FSRs, but currently our 86 * get_phys_addr() code assumes A/R profile and reports failures via 87 * an A/R format FSR value. We then translate that into the proper 88 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 89 * Mostly the FSR values we use for this are those defined for v7PMSA, 90 * since we share some of that codepath. A few kinds of fault are 91 * only for M profile and have no A/R equivalent, though, so we have 92 * to pick a value from the reserved range (which we never otherwise 93 * generate) to use for these. 94 * These values will never be visible to the guest. 95 */ 96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 98 99 /** 100 * raise_exception: Raise the specified exception. 101 * Raise a guest exception with the specified value, syndrome register 102 * and target exception level. This should be called from helper functions, 103 * and never returns because we will longjump back up to the CPU main loop. 104 */ 105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp, 106 uint32_t syndrome, uint32_t target_el); 107 108 /* 109 * Similarly, but also use unwinding to restore cpu state. 110 */ 111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp, 112 uint32_t syndrome, uint32_t target_el, 113 uintptr_t ra); 114 115 /* 116 * For AArch64, map a given EL to an index in the banked_spsr array. 117 * Note that this mapping and the AArch32 mapping defined in bank_number() 118 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 119 * mandated mapping between each other. 120 */ 121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 122 { 123 static const unsigned int map[4] = { 124 [1] = BANK_SVC, /* EL1. */ 125 [2] = BANK_HYP, /* EL2. */ 126 [3] = BANK_MON, /* EL3. */ 127 }; 128 assert(el >= 1 && el <= 3); 129 return map[el]; 130 } 131 132 /* Map CPU modes onto saved register banks. */ 133 static inline int bank_number(int mode) 134 { 135 switch (mode) { 136 case ARM_CPU_MODE_USR: 137 case ARM_CPU_MODE_SYS: 138 return BANK_USRSYS; 139 case ARM_CPU_MODE_SVC: 140 return BANK_SVC; 141 case ARM_CPU_MODE_ABT: 142 return BANK_ABT; 143 case ARM_CPU_MODE_UND: 144 return BANK_UND; 145 case ARM_CPU_MODE_IRQ: 146 return BANK_IRQ; 147 case ARM_CPU_MODE_FIQ: 148 return BANK_FIQ; 149 case ARM_CPU_MODE_HYP: 150 return BANK_HYP; 151 case ARM_CPU_MODE_MON: 152 return BANK_MON; 153 } 154 g_assert_not_reached(); 155 } 156 157 /** 158 * r14_bank_number: Map CPU mode onto register bank for r14 159 * 160 * Given an AArch32 CPU mode, return the index into the saved register 161 * banks to use for the R14 (LR) in that mode. This is the same as 162 * bank_number(), except for the special case of Hyp mode, where 163 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 164 * This should be used as the index into env->banked_r14[], and 165 * bank_number() used for the index into env->banked_r13[] and 166 * env->banked_spsr[]. 167 */ 168 static inline int r14_bank_number(int mode) 169 { 170 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 171 } 172 173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 174 void arm_translate_init(void); 175 176 #ifdef CONFIG_TCG 177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 178 #endif /* CONFIG_TCG */ 179 180 /** 181 * aarch64_sve_zcr_get_valid_len: 182 * @cpu: cpu context 183 * @start_len: maximum len to consider 184 * 185 * Return the maximum supported sve vector length <= @start_len. 186 * Note that both @start_len and the return value are in units 187 * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128. 188 */ 189 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len); 190 191 enum arm_fprounding { 192 FPROUNDING_TIEEVEN, 193 FPROUNDING_POSINF, 194 FPROUNDING_NEGINF, 195 FPROUNDING_ZERO, 196 FPROUNDING_TIEAWAY, 197 FPROUNDING_ODD 198 }; 199 200 int arm_rmode_to_sf(int rmode); 201 202 static inline void aarch64_save_sp(CPUARMState *env, int el) 203 { 204 if (env->pstate & PSTATE_SP) { 205 env->sp_el[el] = env->xregs[31]; 206 } else { 207 env->sp_el[0] = env->xregs[31]; 208 } 209 } 210 211 static inline void aarch64_restore_sp(CPUARMState *env, int el) 212 { 213 if (env->pstate & PSTATE_SP) { 214 env->xregs[31] = env->sp_el[el]; 215 } else { 216 env->xregs[31] = env->sp_el[0]; 217 } 218 } 219 220 static inline void update_spsel(CPUARMState *env, uint32_t imm) 221 { 222 unsigned int cur_el = arm_current_el(env); 223 /* Update PSTATE SPSel bit; this requires us to update the 224 * working stack pointer in xregs[31]. 225 */ 226 if (!((imm ^ env->pstate) & PSTATE_SP)) { 227 return; 228 } 229 aarch64_save_sp(env, cur_el); 230 env->pstate = deposit32(env->pstate, 0, 1, imm); 231 232 /* We rely on illegal updates to SPsel from EL0 to get trapped 233 * at translation time. 234 */ 235 assert(cur_el >= 1 && cur_el <= 3); 236 aarch64_restore_sp(env, cur_el); 237 } 238 239 /* 240 * arm_pamax 241 * @cpu: ARMCPU 242 * 243 * Returns the implementation defined bit-width of physical addresses. 244 * The ARMv8 reference manuals refer to this as PAMax(). 245 */ 246 static inline unsigned int arm_pamax(ARMCPU *cpu) 247 { 248 static const unsigned int pamax_map[] = { 249 [0] = 32, 250 [1] = 36, 251 [2] = 40, 252 [3] = 42, 253 [4] = 44, 254 [5] = 48, 255 }; 256 unsigned int parange = 257 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 258 259 /* id_aa64mmfr0 is a read-only register so values outside of the 260 * supported mappings can be considered an implementation error. */ 261 assert(parange < ARRAY_SIZE(pamax_map)); 262 return pamax_map[parange]; 263 } 264 265 /* Return true if extended addresses are enabled. 266 * This is always the case if our translation regime is 64 bit, 267 * but depends on TTBCR.EAE for 32 bit. 268 */ 269 static inline bool extended_addresses_enabled(CPUARMState *env) 270 { 271 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 272 return arm_el_is_aa64(env, 1) || 273 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); 274 } 275 276 /* Update a QEMU watchpoint based on the information the guest has set in the 277 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 278 */ 279 void hw_watchpoint_update(ARMCPU *cpu, int n); 280 /* Update the QEMU watchpoints for every guest watchpoint. This does a 281 * complete delete-and-reinstate of the QEMU watchpoint list and so is 282 * suitable for use after migration or on reset. 283 */ 284 void hw_watchpoint_update_all(ARMCPU *cpu); 285 /* Update a QEMU breakpoint based on the information the guest has set in the 286 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 287 */ 288 void hw_breakpoint_update(ARMCPU *cpu, int n); 289 /* Update the QEMU breakpoints for every guest breakpoint. This does a 290 * complete delete-and-reinstate of the QEMU breakpoint list and so is 291 * suitable for use after migration or on reset. 292 */ 293 void hw_breakpoint_update_all(ARMCPU *cpu); 294 295 /* Callback function for checking if a breakpoint should trigger. */ 296 bool arm_debug_check_breakpoint(CPUState *cs); 297 298 /* Callback function for checking if a watchpoint should trigger. */ 299 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 300 301 /* Adjust addresses (in BE32 mode) before testing against watchpoint 302 * addresses. 303 */ 304 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 305 306 /* Callback function for when a watchpoint or breakpoint triggers. */ 307 void arm_debug_excp_handler(CPUState *cs); 308 309 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 310 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 311 { 312 return false; 313 } 314 static inline void arm_handle_psci_call(ARMCPU *cpu) 315 { 316 g_assert_not_reached(); 317 } 318 #else 319 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 320 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 321 /* Actually handle a PSCI call */ 322 void arm_handle_psci_call(ARMCPU *cpu); 323 #endif 324 325 /** 326 * arm_clear_exclusive: clear the exclusive monitor 327 * @env: CPU env 328 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 329 */ 330 static inline void arm_clear_exclusive(CPUARMState *env) 331 { 332 env->exclusive_addr = -1; 333 } 334 335 /** 336 * ARMFaultType: type of an ARM MMU fault 337 * This corresponds to the v8A pseudocode's Fault enumeration, 338 * with extensions for QEMU internal conditions. 339 */ 340 typedef enum ARMFaultType { 341 ARMFault_None, 342 ARMFault_AccessFlag, 343 ARMFault_Alignment, 344 ARMFault_Background, 345 ARMFault_Domain, 346 ARMFault_Permission, 347 ARMFault_Translation, 348 ARMFault_AddressSize, 349 ARMFault_SyncExternal, 350 ARMFault_SyncExternalOnWalk, 351 ARMFault_SyncParity, 352 ARMFault_SyncParityOnWalk, 353 ARMFault_AsyncParity, 354 ARMFault_AsyncExternal, 355 ARMFault_Debug, 356 ARMFault_TLBConflict, 357 ARMFault_Lockdown, 358 ARMFault_Exclusive, 359 ARMFault_ICacheMaint, 360 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 361 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 362 } ARMFaultType; 363 364 /** 365 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 366 * @type: Type of fault 367 * @level: Table walk level (for translation, access flag and permission faults) 368 * @domain: Domain of the fault address (for non-LPAE CPUs only) 369 * @s2addr: Address that caused a fault at stage 2 370 * @stage2: True if we faulted at stage 2 371 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 372 * @s1ns: True if we faulted on a non-secure IPA while in secure state 373 * @ea: True if we should set the EA (external abort type) bit in syndrome 374 */ 375 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 376 struct ARMMMUFaultInfo { 377 ARMFaultType type; 378 target_ulong s2addr; 379 int level; 380 int domain; 381 bool stage2; 382 bool s1ptw; 383 bool s1ns; 384 bool ea; 385 }; 386 387 /** 388 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 389 * Compare pseudocode EncodeSDFSC(), though unlike that function 390 * we set up a whole FSR-format code including domain field and 391 * putting the high bit of the FSC into bit 10. 392 */ 393 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 394 { 395 uint32_t fsc; 396 397 switch (fi->type) { 398 case ARMFault_None: 399 return 0; 400 case ARMFault_AccessFlag: 401 fsc = fi->level == 1 ? 0x3 : 0x6; 402 break; 403 case ARMFault_Alignment: 404 fsc = 0x1; 405 break; 406 case ARMFault_Permission: 407 fsc = fi->level == 1 ? 0xd : 0xf; 408 break; 409 case ARMFault_Domain: 410 fsc = fi->level == 1 ? 0x9 : 0xb; 411 break; 412 case ARMFault_Translation: 413 fsc = fi->level == 1 ? 0x5 : 0x7; 414 break; 415 case ARMFault_SyncExternal: 416 fsc = 0x8 | (fi->ea << 12); 417 break; 418 case ARMFault_SyncExternalOnWalk: 419 fsc = fi->level == 1 ? 0xc : 0xe; 420 fsc |= (fi->ea << 12); 421 break; 422 case ARMFault_SyncParity: 423 fsc = 0x409; 424 break; 425 case ARMFault_SyncParityOnWalk: 426 fsc = fi->level == 1 ? 0x40c : 0x40e; 427 break; 428 case ARMFault_AsyncParity: 429 fsc = 0x408; 430 break; 431 case ARMFault_AsyncExternal: 432 fsc = 0x406 | (fi->ea << 12); 433 break; 434 case ARMFault_Debug: 435 fsc = 0x2; 436 break; 437 case ARMFault_TLBConflict: 438 fsc = 0x400; 439 break; 440 case ARMFault_Lockdown: 441 fsc = 0x404; 442 break; 443 case ARMFault_Exclusive: 444 fsc = 0x405; 445 break; 446 case ARMFault_ICacheMaint: 447 fsc = 0x4; 448 break; 449 case ARMFault_Background: 450 fsc = 0x0; 451 break; 452 case ARMFault_QEMU_NSCExec: 453 fsc = M_FAKE_FSR_NSC_EXEC; 454 break; 455 case ARMFault_QEMU_SFault: 456 fsc = M_FAKE_FSR_SFAULT; 457 break; 458 default: 459 /* Other faults can't occur in a context that requires a 460 * short-format status code. 461 */ 462 g_assert_not_reached(); 463 } 464 465 fsc |= (fi->domain << 4); 466 return fsc; 467 } 468 469 /** 470 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 471 * Compare pseudocode EncodeLDFSC(), though unlike that function 472 * we fill in also the LPAE bit 9 of a DFSR format. 473 */ 474 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 475 { 476 uint32_t fsc; 477 478 switch (fi->type) { 479 case ARMFault_None: 480 return 0; 481 case ARMFault_AddressSize: 482 fsc = fi->level & 3; 483 break; 484 case ARMFault_AccessFlag: 485 fsc = (fi->level & 3) | (0x2 << 2); 486 break; 487 case ARMFault_Permission: 488 fsc = (fi->level & 3) | (0x3 << 2); 489 break; 490 case ARMFault_Translation: 491 fsc = (fi->level & 3) | (0x1 << 2); 492 break; 493 case ARMFault_SyncExternal: 494 fsc = 0x10 | (fi->ea << 12); 495 break; 496 case ARMFault_SyncExternalOnWalk: 497 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12); 498 break; 499 case ARMFault_SyncParity: 500 fsc = 0x18; 501 break; 502 case ARMFault_SyncParityOnWalk: 503 fsc = (fi->level & 3) | (0x7 << 2); 504 break; 505 case ARMFault_AsyncParity: 506 fsc = 0x19; 507 break; 508 case ARMFault_AsyncExternal: 509 fsc = 0x11 | (fi->ea << 12); 510 break; 511 case ARMFault_Alignment: 512 fsc = 0x21; 513 break; 514 case ARMFault_Debug: 515 fsc = 0x22; 516 break; 517 case ARMFault_TLBConflict: 518 fsc = 0x30; 519 break; 520 case ARMFault_Lockdown: 521 fsc = 0x34; 522 break; 523 case ARMFault_Exclusive: 524 fsc = 0x35; 525 break; 526 default: 527 /* Other faults can't occur in a context that requires a 528 * long-format status code. 529 */ 530 g_assert_not_reached(); 531 } 532 533 fsc |= 1 << 9; 534 return fsc; 535 } 536 537 static inline bool arm_extabort_type(MemTxResult result) 538 { 539 /* The EA bit in syndromes and fault status registers is an 540 * IMPDEF classification of external aborts. ARM implementations 541 * usually use this to indicate AXI bus Decode error (0) or 542 * Slave error (1); in QEMU we follow that. 543 */ 544 return result != MEMTX_DECODE_ERROR; 545 } 546 547 #ifdef CONFIG_USER_ONLY 548 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 549 MMUAccessType access_type, 550 bool maperr, uintptr_t ra); 551 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 552 MMUAccessType access_type, uintptr_t ra); 553 #else 554 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 555 MMUAccessType access_type, int mmu_idx, 556 bool probe, uintptr_t retaddr); 557 #endif 558 559 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 560 { 561 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 562 } 563 564 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 565 { 566 if (arm_feature(env, ARM_FEATURE_M)) { 567 return mmu_idx | ARM_MMU_IDX_M; 568 } else { 569 return mmu_idx | ARM_MMU_IDX_A; 570 } 571 } 572 573 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 574 { 575 /* AArch64 is always a-profile. */ 576 return mmu_idx | ARM_MMU_IDX_A; 577 } 578 579 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 580 581 /* 582 * Return the MMU index for a v7M CPU with all relevant information 583 * manually specified. 584 */ 585 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 586 bool secstate, bool priv, bool negpri); 587 588 /* 589 * Return the MMU index for a v7M CPU in the specified security and 590 * privilege state. 591 */ 592 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 593 bool secstate, bool priv); 594 595 /* Return the MMU index for a v7M CPU in the specified security state */ 596 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 597 598 /* Return true if the stage 1 translation regime is using LPAE format page 599 * tables */ 600 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 601 602 /* Raise a data fault alignment exception for the specified virtual address */ 603 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 604 MMUAccessType access_type, 605 int mmu_idx, uintptr_t retaddr) QEMU_NORETURN; 606 607 /* arm_cpu_do_transaction_failed: handle a memory system error response 608 * (eg "no device/memory present at address") by raising an external abort 609 * exception 610 */ 611 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 612 vaddr addr, unsigned size, 613 MMUAccessType access_type, 614 int mmu_idx, MemTxAttrs attrs, 615 MemTxResult response, uintptr_t retaddr); 616 617 /* Call any registered EL change hooks */ 618 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 619 { 620 ARMELChangeHook *hook, *next; 621 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 622 hook->hook(cpu, hook->opaque); 623 } 624 } 625 static inline void arm_call_el_change_hook(ARMCPU *cpu) 626 { 627 ARMELChangeHook *hook, *next; 628 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 629 hook->hook(cpu, hook->opaque); 630 } 631 } 632 633 /* Return true if this address translation regime has two ranges. */ 634 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 635 { 636 switch (mmu_idx) { 637 case ARMMMUIdx_Stage1_E0: 638 case ARMMMUIdx_Stage1_E1: 639 case ARMMMUIdx_Stage1_E1_PAN: 640 case ARMMMUIdx_Stage1_SE0: 641 case ARMMMUIdx_Stage1_SE1: 642 case ARMMMUIdx_Stage1_SE1_PAN: 643 case ARMMMUIdx_E10_0: 644 case ARMMMUIdx_E10_1: 645 case ARMMMUIdx_E10_1_PAN: 646 case ARMMMUIdx_E20_0: 647 case ARMMMUIdx_E20_2: 648 case ARMMMUIdx_E20_2_PAN: 649 case ARMMMUIdx_SE10_0: 650 case ARMMMUIdx_SE10_1: 651 case ARMMMUIdx_SE10_1_PAN: 652 case ARMMMUIdx_SE20_0: 653 case ARMMMUIdx_SE20_2: 654 case ARMMMUIdx_SE20_2_PAN: 655 return true; 656 default: 657 return false; 658 } 659 } 660 661 /* Return true if this address translation regime is secure */ 662 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 663 { 664 switch (mmu_idx) { 665 case ARMMMUIdx_E10_0: 666 case ARMMMUIdx_E10_1: 667 case ARMMMUIdx_E10_1_PAN: 668 case ARMMMUIdx_E20_0: 669 case ARMMMUIdx_E20_2: 670 case ARMMMUIdx_E20_2_PAN: 671 case ARMMMUIdx_Stage1_E0: 672 case ARMMMUIdx_Stage1_E1: 673 case ARMMMUIdx_Stage1_E1_PAN: 674 case ARMMMUIdx_E2: 675 case ARMMMUIdx_Stage2: 676 case ARMMMUIdx_MPrivNegPri: 677 case ARMMMUIdx_MUserNegPri: 678 case ARMMMUIdx_MPriv: 679 case ARMMMUIdx_MUser: 680 return false; 681 case ARMMMUIdx_SE3: 682 case ARMMMUIdx_SE10_0: 683 case ARMMMUIdx_SE10_1: 684 case ARMMMUIdx_SE10_1_PAN: 685 case ARMMMUIdx_SE20_0: 686 case ARMMMUIdx_SE20_2: 687 case ARMMMUIdx_SE20_2_PAN: 688 case ARMMMUIdx_Stage1_SE0: 689 case ARMMMUIdx_Stage1_SE1: 690 case ARMMMUIdx_Stage1_SE1_PAN: 691 case ARMMMUIdx_SE2: 692 case ARMMMUIdx_Stage2_S: 693 case ARMMMUIdx_MSPrivNegPri: 694 case ARMMMUIdx_MSUserNegPri: 695 case ARMMMUIdx_MSPriv: 696 case ARMMMUIdx_MSUser: 697 return true; 698 default: 699 g_assert_not_reached(); 700 } 701 } 702 703 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 704 { 705 switch (mmu_idx) { 706 case ARMMMUIdx_Stage1_E1_PAN: 707 case ARMMMUIdx_Stage1_SE1_PAN: 708 case ARMMMUIdx_E10_1_PAN: 709 case ARMMMUIdx_E20_2_PAN: 710 case ARMMMUIdx_SE10_1_PAN: 711 case ARMMMUIdx_SE20_2_PAN: 712 return true; 713 default: 714 return false; 715 } 716 } 717 718 /* Return the exception level which controls this address translation regime */ 719 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 720 { 721 switch (mmu_idx) { 722 case ARMMMUIdx_SE20_0: 723 case ARMMMUIdx_SE20_2: 724 case ARMMMUIdx_SE20_2_PAN: 725 case ARMMMUIdx_E20_0: 726 case ARMMMUIdx_E20_2: 727 case ARMMMUIdx_E20_2_PAN: 728 case ARMMMUIdx_Stage2: 729 case ARMMMUIdx_Stage2_S: 730 case ARMMMUIdx_SE2: 731 case ARMMMUIdx_E2: 732 return 2; 733 case ARMMMUIdx_SE3: 734 return 3; 735 case ARMMMUIdx_SE10_0: 736 case ARMMMUIdx_Stage1_SE0: 737 return arm_el_is_aa64(env, 3) ? 1 : 3; 738 case ARMMMUIdx_SE10_1: 739 case ARMMMUIdx_SE10_1_PAN: 740 case ARMMMUIdx_Stage1_E0: 741 case ARMMMUIdx_Stage1_E1: 742 case ARMMMUIdx_Stage1_E1_PAN: 743 case ARMMMUIdx_Stage1_SE1: 744 case ARMMMUIdx_Stage1_SE1_PAN: 745 case ARMMMUIdx_E10_0: 746 case ARMMMUIdx_E10_1: 747 case ARMMMUIdx_E10_1_PAN: 748 case ARMMMUIdx_MPrivNegPri: 749 case ARMMMUIdx_MUserNegPri: 750 case ARMMMUIdx_MPriv: 751 case ARMMMUIdx_MUser: 752 case ARMMMUIdx_MSPrivNegPri: 753 case ARMMMUIdx_MSUserNegPri: 754 case ARMMMUIdx_MSPriv: 755 case ARMMMUIdx_MSUser: 756 return 1; 757 default: 758 g_assert_not_reached(); 759 } 760 } 761 762 /* Return the TCR controlling this translation regime */ 763 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 764 { 765 if (mmu_idx == ARMMMUIdx_Stage2) { 766 return &env->cp15.vtcr_el2; 767 } 768 if (mmu_idx == ARMMMUIdx_Stage2_S) { 769 /* 770 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but 771 * those are not currently used by QEMU, so just return VSTCR_EL2. 772 */ 773 return &env->cp15.vstcr_el2; 774 } 775 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 776 } 777 778 /* Return the FSR value for a debug exception (watchpoint, hardware 779 * breakpoint or BKPT insn) targeting the specified exception level. 780 */ 781 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) 782 { 783 ARMMMUFaultInfo fi = { .type = ARMFault_Debug }; 784 int target_el = arm_debug_target_el(env); 785 bool using_lpae = false; 786 787 if (target_el == 2 || arm_el_is_aa64(env, target_el)) { 788 using_lpae = true; 789 } else { 790 if (arm_feature(env, ARM_FEATURE_LPAE) && 791 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { 792 using_lpae = true; 793 } 794 } 795 796 if (using_lpae) { 797 return arm_fi_to_lfsc(&fi); 798 } else { 799 return arm_fi_to_sfsc(&fi); 800 } 801 } 802 803 /** 804 * arm_num_brps: Return number of implemented breakpoints. 805 * Note that the ID register BRPS field is "number of bps - 1", 806 * and we return the actual number of breakpoints. 807 */ 808 static inline int arm_num_brps(ARMCPU *cpu) 809 { 810 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 811 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 812 } else { 813 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 814 } 815 } 816 817 /** 818 * arm_num_wrps: Return number of implemented watchpoints. 819 * Note that the ID register WRPS field is "number of wps - 1", 820 * and we return the actual number of watchpoints. 821 */ 822 static inline int arm_num_wrps(ARMCPU *cpu) 823 { 824 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 825 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 826 } else { 827 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 828 } 829 } 830 831 /** 832 * arm_num_ctx_cmps: Return number of implemented context comparators. 833 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 834 * and we return the actual number of comparators. 835 */ 836 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 837 { 838 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 839 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 840 } else { 841 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 842 } 843 } 844 845 /** 846 * v7m_using_psp: Return true if using process stack pointer 847 * Return true if the CPU is currently using the process stack 848 * pointer, or false if it is using the main stack pointer. 849 */ 850 static inline bool v7m_using_psp(CPUARMState *env) 851 { 852 /* Handler mode always uses the main stack; for thread mode 853 * the CONTROL.SPSEL bit determines the answer. 854 * Note that in v7M it is not possible to be in Handler mode with 855 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 856 */ 857 return !arm_v7m_is_handler_mode(env) && 858 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 859 } 860 861 /** 862 * v7m_sp_limit: Return SP limit for current CPU state 863 * Return the SP limit value for the current CPU security state 864 * and stack pointer. 865 */ 866 static inline uint32_t v7m_sp_limit(CPUARMState *env) 867 { 868 if (v7m_using_psp(env)) { 869 return env->v7m.psplim[env->v7m.secure]; 870 } else { 871 return env->v7m.msplim[env->v7m.secure]; 872 } 873 } 874 875 /** 876 * v7m_cpacr_pass: 877 * Return true if the v7M CPACR permits access to the FPU for the specified 878 * security state and privilege level. 879 */ 880 static inline bool v7m_cpacr_pass(CPUARMState *env, 881 bool is_secure, bool is_priv) 882 { 883 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 884 case 0: 885 case 2: /* UNPREDICTABLE: we treat like 0 */ 886 return false; 887 case 1: 888 return is_priv; 889 case 3: 890 return true; 891 default: 892 g_assert_not_reached(); 893 } 894 } 895 896 /** 897 * aarch32_mode_name(): Return name of the AArch32 CPU mode 898 * @psr: Program Status Register indicating CPU mode 899 * 900 * Returns, for debug logging purposes, a printable representation 901 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 902 * the low bits of the specified PSR. 903 */ 904 static inline const char *aarch32_mode_name(uint32_t psr) 905 { 906 static const char cpu_mode_names[16][4] = { 907 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 908 "???", "???", "hyp", "und", "???", "???", "???", "sys" 909 }; 910 911 return cpu_mode_names[psr & 0xf]; 912 } 913 914 /** 915 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 916 * 917 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 918 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 919 * Must be called with the iothread lock held. 920 */ 921 void arm_cpu_update_virq(ARMCPU *cpu); 922 923 /** 924 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 925 * 926 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 927 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 928 * Must be called with the iothread lock held. 929 */ 930 void arm_cpu_update_vfiq(ARMCPU *cpu); 931 932 /** 933 * arm_mmu_idx_el: 934 * @env: The cpu environment 935 * @el: The EL to use. 936 * 937 * Return the full ARMMMUIdx for the translation regime for EL. 938 */ 939 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 940 941 /** 942 * arm_mmu_idx: 943 * @env: The cpu environment 944 * 945 * Return the full ARMMMUIdx for the current translation regime. 946 */ 947 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 948 949 /** 950 * arm_stage1_mmu_idx: 951 * @env: The cpu environment 952 * 953 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 954 */ 955 #ifdef CONFIG_USER_ONLY 956 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 957 { 958 return ARMMMUIdx_Stage1_E0; 959 } 960 #else 961 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 962 #endif 963 964 /** 965 * arm_mmu_idx_is_stage1_of_2: 966 * @mmu_idx: The ARMMMUIdx to test 967 * 968 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 969 * first stage of a two stage regime. 970 */ 971 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 972 { 973 switch (mmu_idx) { 974 case ARMMMUIdx_Stage1_E0: 975 case ARMMMUIdx_Stage1_E1: 976 case ARMMMUIdx_Stage1_E1_PAN: 977 case ARMMMUIdx_Stage1_SE0: 978 case ARMMMUIdx_Stage1_SE1: 979 case ARMMMUIdx_Stage1_SE1_PAN: 980 return true; 981 default: 982 return false; 983 } 984 } 985 986 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 987 const ARMISARegisters *id) 988 { 989 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 990 991 if ((features >> ARM_FEATURE_V4T) & 1) { 992 valid |= CPSR_T; 993 } 994 if ((features >> ARM_FEATURE_V5) & 1) { 995 valid |= CPSR_Q; /* V5TE in reality*/ 996 } 997 if ((features >> ARM_FEATURE_V6) & 1) { 998 valid |= CPSR_E | CPSR_GE; 999 } 1000 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1001 valid |= CPSR_IT; 1002 } 1003 if (isar_feature_aa32_jazelle(id)) { 1004 valid |= CPSR_J; 1005 } 1006 if (isar_feature_aa32_pan(id)) { 1007 valid |= CPSR_PAN; 1008 } 1009 if (isar_feature_aa32_dit(id)) { 1010 valid |= CPSR_DIT; 1011 } 1012 if (isar_feature_aa32_ssbs(id)) { 1013 valid |= CPSR_SSBS; 1014 } 1015 1016 return valid; 1017 } 1018 1019 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1020 { 1021 uint32_t valid; 1022 1023 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1024 if (isar_feature_aa64_bti(id)) { 1025 valid |= PSTATE_BTYPE; 1026 } 1027 if (isar_feature_aa64_pan(id)) { 1028 valid |= PSTATE_PAN; 1029 } 1030 if (isar_feature_aa64_uao(id)) { 1031 valid |= PSTATE_UAO; 1032 } 1033 if (isar_feature_aa64_dit(id)) { 1034 valid |= PSTATE_DIT; 1035 } 1036 if (isar_feature_aa64_ssbs(id)) { 1037 valid |= PSTATE_SSBS; 1038 } 1039 if (isar_feature_aa64_mte(id)) { 1040 valid |= PSTATE_TCO; 1041 } 1042 1043 return valid; 1044 } 1045 1046 /* 1047 * Parameters of a given virtual address, as extracted from the 1048 * translation control register (TCR) for a given regime. 1049 */ 1050 typedef struct ARMVAParameters { 1051 unsigned tsz : 8; 1052 unsigned select : 1; 1053 bool tbi : 1; 1054 bool epd : 1; 1055 bool hpd : 1; 1056 bool using16k : 1; 1057 bool using64k : 1; 1058 } ARMVAParameters; 1059 1060 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1061 ARMMMUIdx mmu_idx, bool data); 1062 1063 static inline int exception_target_el(CPUARMState *env) 1064 { 1065 int target_el = MAX(1, arm_current_el(env)); 1066 1067 /* 1068 * No such thing as secure EL1 if EL3 is aarch32, 1069 * so update the target EL to EL3 in this case. 1070 */ 1071 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 1072 target_el = 3; 1073 } 1074 1075 return target_el; 1076 } 1077 1078 /* Determine if allocation tags are available. */ 1079 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1080 uint64_t sctlr) 1081 { 1082 if (el < 3 1083 && arm_feature(env, ARM_FEATURE_EL3) 1084 && !(env->cp15.scr_el3 & SCR_ATA)) { 1085 return false; 1086 } 1087 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 1088 uint64_t hcr = arm_hcr_el2_eff(env); 1089 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1090 return false; 1091 } 1092 } 1093 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1094 return sctlr != 0; 1095 } 1096 1097 #ifndef CONFIG_USER_ONLY 1098 1099 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1100 typedef struct V8M_SAttributes { 1101 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1102 bool ns; 1103 bool nsc; 1104 uint8_t sregion; 1105 bool srvalid; 1106 uint8_t iregion; 1107 bool irvalid; 1108 } V8M_SAttributes; 1109 1110 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1111 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1112 V8M_SAttributes *sattrs); 1113 1114 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1115 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1116 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1117 int *prot, bool *is_subpage, 1118 ARMMMUFaultInfo *fi, uint32_t *mregion); 1119 1120 /* Cacheability and shareability attributes for a memory access */ 1121 typedef struct ARMCacheAttrs { 1122 unsigned int attrs:8; /* as in the MAIR register encoding */ 1123 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1124 } ARMCacheAttrs; 1125 1126 bool get_phys_addr(CPUARMState *env, target_ulong address, 1127 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1128 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 1129 target_ulong *page_size, 1130 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 1131 __attribute__((nonnull)); 1132 1133 void arm_log_exception(CPUState *cs); 1134 1135 #endif /* !CONFIG_USER_ONLY */ 1136 1137 /* 1138 * The log2 of the words in the tag block, for GMID_EL1.BS. 1139 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1140 */ 1141 #define GMID_EL1_BS 6 1142 1143 /* We associate one allocation tag per 16 bytes, the minimum. */ 1144 #define LOG2_TAG_GRANULE 4 1145 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 1146 1147 /* 1148 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1149 * the same simd_desc() encoding due to restrictions on size. 1150 * Use these instead. 1151 */ 1152 FIELD(PREDDESC, OPRSZ, 0, 6) 1153 FIELD(PREDDESC, ESZ, 6, 2) 1154 FIELD(PREDDESC, DATA, 8, 24) 1155 1156 /* 1157 * The SVE simd_data field, for memory ops, contains either 1158 * rd (5 bits) or a shift count (2 bits). 1159 */ 1160 #define SVE_MTEDESC_SHIFT 5 1161 1162 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1163 FIELD(MTEDESC, MIDX, 0, 4) 1164 FIELD(MTEDESC, TBI, 4, 2) 1165 FIELD(MTEDESC, TCMA, 6, 2) 1166 FIELD(MTEDESC, WRITE, 8, 1) 1167 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */ 1168 1169 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1170 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1171 1172 static inline int allocation_tag_from_addr(uint64_t ptr) 1173 { 1174 return extract64(ptr, 56, 4); 1175 } 1176 1177 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1178 { 1179 return deposit64(ptr, 56, 4, rtag); 1180 } 1181 1182 /* Return true if tbi bits mean that the access is checked. */ 1183 static inline bool tbi_check(uint32_t desc, int bit55) 1184 { 1185 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1186 } 1187 1188 /* Return true if tcma bits mean that the access is unchecked. */ 1189 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1190 { 1191 /* 1192 * We had extracted bit55 and ptr_tag for other reasons, so fold 1193 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1194 */ 1195 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1196 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1197 return tcma && match; 1198 } 1199 1200 /* 1201 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1202 * for the tag to be present in the FAR_ELx register. But for user-only 1203 * mode, we do not have a TLB with which to implement this, so we must 1204 * remove the top byte. 1205 */ 1206 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1207 { 1208 #ifdef CONFIG_USER_ONLY 1209 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1210 ptr &= sextract64(ptr, 0, 56); 1211 #endif 1212 return ptr; 1213 } 1214 1215 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1216 { 1217 #ifdef CONFIG_USER_ONLY 1218 int64_t clean_ptr = sextract64(ptr, 0, 56); 1219 if (tbi_check(desc, clean_ptr < 0)) { 1220 ptr = clean_ptr; 1221 } 1222 #endif 1223 return ptr; 1224 } 1225 1226 /* Values for M-profile PSR.ECI for MVE insns */ 1227 enum MVEECIState { 1228 ECI_NONE = 0, /* No completed beats */ 1229 ECI_A0 = 1, /* Completed: A0 */ 1230 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1231 /* 3 is reserved */ 1232 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1233 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1234 /* All other values reserved */ 1235 }; 1236 1237 /* Definitions for the PMU registers */ 1238 #define PMCRN_MASK 0xf800 1239 #define PMCRN_SHIFT 11 1240 #define PMCRLC 0x40 1241 #define PMCRDP 0x20 1242 #define PMCRX 0x10 1243 #define PMCRD 0x8 1244 #define PMCRC 0x4 1245 #define PMCRP 0x2 1246 #define PMCRE 0x1 1247 /* 1248 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1249 * which can be written as 1 to trigger behaviour but which stay RAZ). 1250 */ 1251 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1252 1253 #define PMXEVTYPER_P 0x80000000 1254 #define PMXEVTYPER_U 0x40000000 1255 #define PMXEVTYPER_NSK 0x20000000 1256 #define PMXEVTYPER_NSU 0x10000000 1257 #define PMXEVTYPER_NSH 0x08000000 1258 #define PMXEVTYPER_M 0x04000000 1259 #define PMXEVTYPER_MT 0x02000000 1260 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1261 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1262 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1263 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1264 PMXEVTYPER_EVTCOUNT) 1265 1266 #define PMCCFILTR 0xf8000000 1267 #define PMCCFILTR_M PMXEVTYPER_M 1268 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1269 1270 static inline uint32_t pmu_num_counters(CPUARMState *env) 1271 { 1272 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1273 } 1274 1275 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1276 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1277 { 1278 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1279 } 1280 1281 #ifdef TARGET_AARCH64 1282 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg); 1283 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg); 1284 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg); 1285 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg); 1286 #endif 1287 1288 #endif 1289