xref: /openbmc/qemu/target/arm/internals.h (revision 671efad1)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 void arm_restore_state_to_opc(CPUState *cs,
189                               const TranslationBlock *tb,
190                               const uint64_t *data);
191 
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195 
196 enum arm_fprounding {
197     FPROUNDING_TIEEVEN,
198     FPROUNDING_POSINF,
199     FPROUNDING_NEGINF,
200     FPROUNDING_ZERO,
201     FPROUNDING_TIEAWAY,
202     FPROUNDING_ODD
203 };
204 
205 int arm_rmode_to_sf(int rmode);
206 
207 static inline void aarch64_save_sp(CPUARMState *env, int el)
208 {
209     if (env->pstate & PSTATE_SP) {
210         env->sp_el[el] = env->xregs[31];
211     } else {
212         env->sp_el[0] = env->xregs[31];
213     }
214 }
215 
216 static inline void aarch64_restore_sp(CPUARMState *env, int el)
217 {
218     if (env->pstate & PSTATE_SP) {
219         env->xregs[31] = env->sp_el[el];
220     } else {
221         env->xregs[31] = env->sp_el[0];
222     }
223 }
224 
225 static inline void update_spsel(CPUARMState *env, uint32_t imm)
226 {
227     unsigned int cur_el = arm_current_el(env);
228     /* Update PSTATE SPSel bit; this requires us to update the
229      * working stack pointer in xregs[31].
230      */
231     if (!((imm ^ env->pstate) & PSTATE_SP)) {
232         return;
233     }
234     aarch64_save_sp(env, cur_el);
235     env->pstate = deposit32(env->pstate, 0, 1, imm);
236 
237     /* We rely on illegal updates to SPsel from EL0 to get trapped
238      * at translation time.
239      */
240     assert(cur_el >= 1 && cur_el <= 3);
241     aarch64_restore_sp(env, cur_el);
242 }
243 
244 /*
245  * arm_pamax
246  * @cpu: ARMCPU
247  *
248  * Returns the implementation defined bit-width of physical addresses.
249  * The ARMv8 reference manuals refer to this as PAMax().
250  */
251 unsigned int arm_pamax(ARMCPU *cpu);
252 
253 /* Return true if extended addresses are enabled.
254  * This is always the case if our translation regime is 64 bit,
255  * but depends on TTBCR.EAE for 32 bit.
256  */
257 static inline bool extended_addresses_enabled(CPUARMState *env)
258 {
259     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
260     if (arm_feature(env, ARM_FEATURE_PMSA) &&
261         arm_feature(env, ARM_FEATURE_V8)) {
262         return true;
263     }
264     return arm_el_is_aa64(env, 1) ||
265            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
266 }
267 
268 /* Update a QEMU watchpoint based on the information the guest has set in the
269  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
270  */
271 void hw_watchpoint_update(ARMCPU *cpu, int n);
272 /* Update the QEMU watchpoints for every guest watchpoint. This does a
273  * complete delete-and-reinstate of the QEMU watchpoint list and so is
274  * suitable for use after migration or on reset.
275  */
276 void hw_watchpoint_update_all(ARMCPU *cpu);
277 /* Update a QEMU breakpoint based on the information the guest has set in the
278  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
279  */
280 void hw_breakpoint_update(ARMCPU *cpu, int n);
281 /* Update the QEMU breakpoints for every guest breakpoint. This does a
282  * complete delete-and-reinstate of the QEMU breakpoint list and so is
283  * suitable for use after migration or on reset.
284  */
285 void hw_breakpoint_update_all(ARMCPU *cpu);
286 
287 /* Callback function for checking if a breakpoint should trigger. */
288 bool arm_debug_check_breakpoint(CPUState *cs);
289 
290 /* Callback function for checking if a watchpoint should trigger. */
291 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
292 
293 /* Adjust addresses (in BE32 mode) before testing against watchpoint
294  * addresses.
295  */
296 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
297 
298 /* Callback function for when a watchpoint or breakpoint triggers. */
299 void arm_debug_excp_handler(CPUState *cs);
300 
301 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
302 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
303 {
304     return false;
305 }
306 static inline void arm_handle_psci_call(ARMCPU *cpu)
307 {
308     g_assert_not_reached();
309 }
310 #else
311 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
312 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
313 /* Actually handle a PSCI call */
314 void arm_handle_psci_call(ARMCPU *cpu);
315 #endif
316 
317 /**
318  * arm_clear_exclusive: clear the exclusive monitor
319  * @env: CPU env
320  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
321  */
322 static inline void arm_clear_exclusive(CPUARMState *env)
323 {
324     env->exclusive_addr = -1;
325 }
326 
327 /**
328  * ARMFaultType: type of an ARM MMU fault
329  * This corresponds to the v8A pseudocode's Fault enumeration,
330  * with extensions for QEMU internal conditions.
331  */
332 typedef enum ARMFaultType {
333     ARMFault_None,
334     ARMFault_AccessFlag,
335     ARMFault_Alignment,
336     ARMFault_Background,
337     ARMFault_Domain,
338     ARMFault_Permission,
339     ARMFault_Translation,
340     ARMFault_AddressSize,
341     ARMFault_SyncExternal,
342     ARMFault_SyncExternalOnWalk,
343     ARMFault_SyncParity,
344     ARMFault_SyncParityOnWalk,
345     ARMFault_AsyncParity,
346     ARMFault_AsyncExternal,
347     ARMFault_Debug,
348     ARMFault_TLBConflict,
349     ARMFault_UnsuppAtomicUpdate,
350     ARMFault_Lockdown,
351     ARMFault_Exclusive,
352     ARMFault_ICacheMaint,
353     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
354     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
355 } ARMFaultType;
356 
357 /**
358  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
359  * @type: Type of fault
360  * @level: Table walk level (for translation, access flag and permission faults)
361  * @domain: Domain of the fault address (for non-LPAE CPUs only)
362  * @s2addr: Address that caused a fault at stage 2
363  * @stage2: True if we faulted at stage 2
364  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
365  * @s1ns: True if we faulted on a non-secure IPA while in secure state
366  * @ea: True if we should set the EA (external abort type) bit in syndrome
367  */
368 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
369 struct ARMMMUFaultInfo {
370     ARMFaultType type;
371     target_ulong s2addr;
372     int level;
373     int domain;
374     bool stage2;
375     bool s1ptw;
376     bool s1ns;
377     bool ea;
378 };
379 
380 /**
381  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
382  * Compare pseudocode EncodeSDFSC(), though unlike that function
383  * we set up a whole FSR-format code including domain field and
384  * putting the high bit of the FSC into bit 10.
385  */
386 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
387 {
388     uint32_t fsc;
389 
390     switch (fi->type) {
391     case ARMFault_None:
392         return 0;
393     case ARMFault_AccessFlag:
394         fsc = fi->level == 1 ? 0x3 : 0x6;
395         break;
396     case ARMFault_Alignment:
397         fsc = 0x1;
398         break;
399     case ARMFault_Permission:
400         fsc = fi->level == 1 ? 0xd : 0xf;
401         break;
402     case ARMFault_Domain:
403         fsc = fi->level == 1 ? 0x9 : 0xb;
404         break;
405     case ARMFault_Translation:
406         fsc = fi->level == 1 ? 0x5 : 0x7;
407         break;
408     case ARMFault_SyncExternal:
409         fsc = 0x8 | (fi->ea << 12);
410         break;
411     case ARMFault_SyncExternalOnWalk:
412         fsc = fi->level == 1 ? 0xc : 0xe;
413         fsc |= (fi->ea << 12);
414         break;
415     case ARMFault_SyncParity:
416         fsc = 0x409;
417         break;
418     case ARMFault_SyncParityOnWalk:
419         fsc = fi->level == 1 ? 0x40c : 0x40e;
420         break;
421     case ARMFault_AsyncParity:
422         fsc = 0x408;
423         break;
424     case ARMFault_AsyncExternal:
425         fsc = 0x406 | (fi->ea << 12);
426         break;
427     case ARMFault_Debug:
428         fsc = 0x2;
429         break;
430     case ARMFault_TLBConflict:
431         fsc = 0x400;
432         break;
433     case ARMFault_Lockdown:
434         fsc = 0x404;
435         break;
436     case ARMFault_Exclusive:
437         fsc = 0x405;
438         break;
439     case ARMFault_ICacheMaint:
440         fsc = 0x4;
441         break;
442     case ARMFault_Background:
443         fsc = 0x0;
444         break;
445     case ARMFault_QEMU_NSCExec:
446         fsc = M_FAKE_FSR_NSC_EXEC;
447         break;
448     case ARMFault_QEMU_SFault:
449         fsc = M_FAKE_FSR_SFAULT;
450         break;
451     default:
452         /* Other faults can't occur in a context that requires a
453          * short-format status code.
454          */
455         g_assert_not_reached();
456     }
457 
458     fsc |= (fi->domain << 4);
459     return fsc;
460 }
461 
462 /**
463  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
464  * Compare pseudocode EncodeLDFSC(), though unlike that function
465  * we fill in also the LPAE bit 9 of a DFSR format.
466  */
467 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
468 {
469     uint32_t fsc;
470 
471     switch (fi->type) {
472     case ARMFault_None:
473         return 0;
474     case ARMFault_AddressSize:
475         assert(fi->level >= -1 && fi->level <= 3);
476         if (fi->level < 0) {
477             fsc = 0b101001;
478         } else {
479             fsc = fi->level;
480         }
481         break;
482     case ARMFault_AccessFlag:
483         assert(fi->level >= 0 && fi->level <= 3);
484         fsc = 0b001000 | fi->level;
485         break;
486     case ARMFault_Permission:
487         assert(fi->level >= 0 && fi->level <= 3);
488         fsc = 0b001100 | fi->level;
489         break;
490     case ARMFault_Translation:
491         assert(fi->level >= -1 && fi->level <= 3);
492         if (fi->level < 0) {
493             fsc = 0b101011;
494         } else {
495             fsc = 0b000100 | fi->level;
496         }
497         break;
498     case ARMFault_SyncExternal:
499         fsc = 0x10 | (fi->ea << 12);
500         break;
501     case ARMFault_SyncExternalOnWalk:
502         assert(fi->level >= -1 && fi->level <= 3);
503         if (fi->level < 0) {
504             fsc = 0b010011;
505         } else {
506             fsc = 0b010100 | fi->level;
507         }
508         fsc |= fi->ea << 12;
509         break;
510     case ARMFault_SyncParity:
511         fsc = 0x18;
512         break;
513     case ARMFault_SyncParityOnWalk:
514         assert(fi->level >= -1 && fi->level <= 3);
515         if (fi->level < 0) {
516             fsc = 0b011011;
517         } else {
518             fsc = 0b011100 | fi->level;
519         }
520         break;
521     case ARMFault_AsyncParity:
522         fsc = 0x19;
523         break;
524     case ARMFault_AsyncExternal:
525         fsc = 0x11 | (fi->ea << 12);
526         break;
527     case ARMFault_Alignment:
528         fsc = 0x21;
529         break;
530     case ARMFault_Debug:
531         fsc = 0x22;
532         break;
533     case ARMFault_TLBConflict:
534         fsc = 0x30;
535         break;
536     case ARMFault_UnsuppAtomicUpdate:
537         fsc = 0x31;
538         break;
539     case ARMFault_Lockdown:
540         fsc = 0x34;
541         break;
542     case ARMFault_Exclusive:
543         fsc = 0x35;
544         break;
545     default:
546         /* Other faults can't occur in a context that requires a
547          * long-format status code.
548          */
549         g_assert_not_reached();
550     }
551 
552     fsc |= 1 << 9;
553     return fsc;
554 }
555 
556 static inline bool arm_extabort_type(MemTxResult result)
557 {
558     /* The EA bit in syndromes and fault status registers is an
559      * IMPDEF classification of external aborts. ARM implementations
560      * usually use this to indicate AXI bus Decode error (0) or
561      * Slave error (1); in QEMU we follow that.
562      */
563     return result != MEMTX_DECODE_ERROR;
564 }
565 
566 #ifdef CONFIG_USER_ONLY
567 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
568                             MMUAccessType access_type,
569                             bool maperr, uintptr_t ra);
570 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
571                            MMUAccessType access_type, uintptr_t ra);
572 #else
573 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
574                       MMUAccessType access_type, int mmu_idx,
575                       bool probe, uintptr_t retaddr);
576 #endif
577 
578 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
579 {
580     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
581 }
582 
583 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
584 {
585     if (arm_feature(env, ARM_FEATURE_M)) {
586         return mmu_idx | ARM_MMU_IDX_M;
587     } else {
588         return mmu_idx | ARM_MMU_IDX_A;
589     }
590 }
591 
592 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
593 {
594     /* AArch64 is always a-profile. */
595     return mmu_idx | ARM_MMU_IDX_A;
596 }
597 
598 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
599 
600 /* Return the MMU index for a v7M CPU in the specified security state */
601 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
602 
603 /* Return true if the translation regime is using LPAE format page tables */
604 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
605 
606 /*
607  * Return true if the stage 1 translation regime is using LPAE
608  * format page tables
609  */
610 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
611 
612 /* Raise a data fault alignment exception for the specified virtual address */
613 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
614                                             MMUAccessType access_type,
615                                             int mmu_idx, uintptr_t retaddr);
616 
617 /* arm_cpu_do_transaction_failed: handle a memory system error response
618  * (eg "no device/memory present at address") by raising an external abort
619  * exception
620  */
621 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
622                                    vaddr addr, unsigned size,
623                                    MMUAccessType access_type,
624                                    int mmu_idx, MemTxAttrs attrs,
625                                    MemTxResult response, uintptr_t retaddr);
626 
627 /* Call any registered EL change hooks */
628 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
629 {
630     ARMELChangeHook *hook, *next;
631     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
632         hook->hook(cpu, hook->opaque);
633     }
634 }
635 static inline void arm_call_el_change_hook(ARMCPU *cpu)
636 {
637     ARMELChangeHook *hook, *next;
638     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
639         hook->hook(cpu, hook->opaque);
640     }
641 }
642 
643 /* Return true if this address translation regime has two ranges.  */
644 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
645 {
646     switch (mmu_idx) {
647     case ARMMMUIdx_Stage1_E0:
648     case ARMMMUIdx_Stage1_E1:
649     case ARMMMUIdx_Stage1_E1_PAN:
650     case ARMMMUIdx_E10_0:
651     case ARMMMUIdx_E10_1:
652     case ARMMMUIdx_E10_1_PAN:
653     case ARMMMUIdx_E20_0:
654     case ARMMMUIdx_E20_2:
655     case ARMMMUIdx_E20_2_PAN:
656         return true;
657     default:
658         return false;
659     }
660 }
661 
662 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
663 {
664     switch (mmu_idx) {
665     case ARMMMUIdx_Stage1_E1_PAN:
666     case ARMMMUIdx_E10_1_PAN:
667     case ARMMMUIdx_E20_2_PAN:
668         return true;
669     default:
670         return false;
671     }
672 }
673 
674 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
675 {
676     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
677 }
678 
679 /* Return the exception level which controls this address translation regime */
680 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
681 {
682     switch (mmu_idx) {
683     case ARMMMUIdx_E20_0:
684     case ARMMMUIdx_E20_2:
685     case ARMMMUIdx_E20_2_PAN:
686     case ARMMMUIdx_Stage2:
687     case ARMMMUIdx_Stage2_S:
688     case ARMMMUIdx_E2:
689         return 2;
690     case ARMMMUIdx_E3:
691         return 3;
692     case ARMMMUIdx_E10_0:
693     case ARMMMUIdx_Stage1_E0:
694         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
695     case ARMMMUIdx_Stage1_E1:
696     case ARMMMUIdx_Stage1_E1_PAN:
697     case ARMMMUIdx_E10_1:
698     case ARMMMUIdx_E10_1_PAN:
699     case ARMMMUIdx_MPrivNegPri:
700     case ARMMMUIdx_MUserNegPri:
701     case ARMMMUIdx_MPriv:
702     case ARMMMUIdx_MUser:
703     case ARMMMUIdx_MSPrivNegPri:
704     case ARMMMUIdx_MSUserNegPri:
705     case ARMMMUIdx_MSPriv:
706     case ARMMMUIdx_MSUser:
707         return 1;
708     default:
709         g_assert_not_reached();
710     }
711 }
712 
713 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
714 {
715     switch (mmu_idx) {
716     case ARMMMUIdx_E20_0:
717     case ARMMMUIdx_Stage1_E0:
718     case ARMMMUIdx_MUser:
719     case ARMMMUIdx_MSUser:
720     case ARMMMUIdx_MUserNegPri:
721     case ARMMMUIdx_MSUserNegPri:
722         return true;
723     default:
724         return false;
725     case ARMMMUIdx_E10_0:
726     case ARMMMUIdx_E10_1:
727     case ARMMMUIdx_E10_1_PAN:
728         g_assert_not_reached();
729     }
730 }
731 
732 /* Return the SCTLR value which controls this address translation regime */
733 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
734 {
735     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
736 }
737 
738 /*
739  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
740  * and the Non-Secure stage 2 translation regimes (and hence which are
741  * not present in VSTCR_EL2).
742  */
743 #define VTCR_SHARED_FIELD_MASK \
744     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
745      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
746      R_VTCR_DS_MASK)
747 
748 /* Return the value of the TCR controlling this translation regime */
749 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
750 {
751     if (mmu_idx == ARMMMUIdx_Stage2) {
752         return env->cp15.vtcr_el2;
753     }
754     if (mmu_idx == ARMMMUIdx_Stage2_S) {
755         /*
756          * Secure stage 2 shares fields from VTCR_EL2. We merge those
757          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
758          * value so the callers don't need to special case this.
759          *
760          * If a future architecture change defines bits in VSTCR_EL2 that
761          * overlap with these VTCR_EL2 fields we may need to revisit this.
762          */
763         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
764         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
765         return v;
766     }
767     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
768 }
769 
770 /**
771  * arm_num_brps: Return number of implemented breakpoints.
772  * Note that the ID register BRPS field is "number of bps - 1",
773  * and we return the actual number of breakpoints.
774  */
775 static inline int arm_num_brps(ARMCPU *cpu)
776 {
777     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
778         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
779     } else {
780         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
781     }
782 }
783 
784 /**
785  * arm_num_wrps: Return number of implemented watchpoints.
786  * Note that the ID register WRPS field is "number of wps - 1",
787  * and we return the actual number of watchpoints.
788  */
789 static inline int arm_num_wrps(ARMCPU *cpu)
790 {
791     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
792         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
793     } else {
794         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
795     }
796 }
797 
798 /**
799  * arm_num_ctx_cmps: Return number of implemented context comparators.
800  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
801  * and we return the actual number of comparators.
802  */
803 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
804 {
805     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
806         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
807     } else {
808         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
809     }
810 }
811 
812 /**
813  * v7m_using_psp: Return true if using process stack pointer
814  * Return true if the CPU is currently using the process stack
815  * pointer, or false if it is using the main stack pointer.
816  */
817 static inline bool v7m_using_psp(CPUARMState *env)
818 {
819     /* Handler mode always uses the main stack; for thread mode
820      * the CONTROL.SPSEL bit determines the answer.
821      * Note that in v7M it is not possible to be in Handler mode with
822      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
823      */
824     return !arm_v7m_is_handler_mode(env) &&
825         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
826 }
827 
828 /**
829  * v7m_sp_limit: Return SP limit for current CPU state
830  * Return the SP limit value for the current CPU security state
831  * and stack pointer.
832  */
833 static inline uint32_t v7m_sp_limit(CPUARMState *env)
834 {
835     if (v7m_using_psp(env)) {
836         return env->v7m.psplim[env->v7m.secure];
837     } else {
838         return env->v7m.msplim[env->v7m.secure];
839     }
840 }
841 
842 /**
843  * v7m_cpacr_pass:
844  * Return true if the v7M CPACR permits access to the FPU for the specified
845  * security state and privilege level.
846  */
847 static inline bool v7m_cpacr_pass(CPUARMState *env,
848                                   bool is_secure, bool is_priv)
849 {
850     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
851     case 0:
852     case 2: /* UNPREDICTABLE: we treat like 0 */
853         return false;
854     case 1:
855         return is_priv;
856     case 3:
857         return true;
858     default:
859         g_assert_not_reached();
860     }
861 }
862 
863 /**
864  * aarch32_mode_name(): Return name of the AArch32 CPU mode
865  * @psr: Program Status Register indicating CPU mode
866  *
867  * Returns, for debug logging purposes, a printable representation
868  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
869  * the low bits of the specified PSR.
870  */
871 static inline const char *aarch32_mode_name(uint32_t psr)
872 {
873     static const char cpu_mode_names[16][4] = {
874         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
875         "???", "???", "hyp", "und", "???", "???", "???", "sys"
876     };
877 
878     return cpu_mode_names[psr & 0xf];
879 }
880 
881 /**
882  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
883  *
884  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
885  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
886  * Must be called with the iothread lock held.
887  */
888 void arm_cpu_update_virq(ARMCPU *cpu);
889 
890 /**
891  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
892  *
893  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
894  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
895  * Must be called with the iothread lock held.
896  */
897 void arm_cpu_update_vfiq(ARMCPU *cpu);
898 
899 /**
900  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
901  *
902  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
903  * following a change to the HCR_EL2.VSE bit.
904  */
905 void arm_cpu_update_vserr(ARMCPU *cpu);
906 
907 /**
908  * arm_mmu_idx_el:
909  * @env: The cpu environment
910  * @el: The EL to use.
911  *
912  * Return the full ARMMMUIdx for the translation regime for EL.
913  */
914 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
915 
916 /**
917  * arm_mmu_idx:
918  * @env: The cpu environment
919  *
920  * Return the full ARMMMUIdx for the current translation regime.
921  */
922 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
923 
924 /**
925  * arm_stage1_mmu_idx:
926  * @env: The cpu environment
927  *
928  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
929  */
930 #ifdef CONFIG_USER_ONLY
931 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
932 {
933     return ARMMMUIdx_Stage1_E0;
934 }
935 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
936 {
937     return ARMMMUIdx_Stage1_E0;
938 }
939 #else
940 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
941 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
942 #endif
943 
944 /**
945  * arm_mmu_idx_is_stage1_of_2:
946  * @mmu_idx: The ARMMMUIdx to test
947  *
948  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
949  * first stage of a two stage regime.
950  */
951 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
952 {
953     switch (mmu_idx) {
954     case ARMMMUIdx_Stage1_E0:
955     case ARMMMUIdx_Stage1_E1:
956     case ARMMMUIdx_Stage1_E1_PAN:
957         return true;
958     default:
959         return false;
960     }
961 }
962 
963 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
964                                                const ARMISARegisters *id)
965 {
966     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
967 
968     if ((features >> ARM_FEATURE_V4T) & 1) {
969         valid |= CPSR_T;
970     }
971     if ((features >> ARM_FEATURE_V5) & 1) {
972         valid |= CPSR_Q; /* V5TE in reality*/
973     }
974     if ((features >> ARM_FEATURE_V6) & 1) {
975         valid |= CPSR_E | CPSR_GE;
976     }
977     if ((features >> ARM_FEATURE_THUMB2) & 1) {
978         valid |= CPSR_IT;
979     }
980     if (isar_feature_aa32_jazelle(id)) {
981         valid |= CPSR_J;
982     }
983     if (isar_feature_aa32_pan(id)) {
984         valid |= CPSR_PAN;
985     }
986     if (isar_feature_aa32_dit(id)) {
987         valid |= CPSR_DIT;
988     }
989     if (isar_feature_aa32_ssbs(id)) {
990         valid |= CPSR_SSBS;
991     }
992 
993     return valid;
994 }
995 
996 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
997 {
998     uint32_t valid;
999 
1000     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1001     if (isar_feature_aa64_bti(id)) {
1002         valid |= PSTATE_BTYPE;
1003     }
1004     if (isar_feature_aa64_pan(id)) {
1005         valid |= PSTATE_PAN;
1006     }
1007     if (isar_feature_aa64_uao(id)) {
1008         valid |= PSTATE_UAO;
1009     }
1010     if (isar_feature_aa64_dit(id)) {
1011         valid |= PSTATE_DIT;
1012     }
1013     if (isar_feature_aa64_ssbs(id)) {
1014         valid |= PSTATE_SSBS;
1015     }
1016     if (isar_feature_aa64_mte(id)) {
1017         valid |= PSTATE_TCO;
1018     }
1019 
1020     return valid;
1021 }
1022 
1023 /* Granule size (i.e. page size) */
1024 typedef enum ARMGranuleSize {
1025     /* Same order as TG0 encoding */
1026     Gran4K,
1027     Gran64K,
1028     Gran16K,
1029     GranInvalid,
1030 } ARMGranuleSize;
1031 
1032 /**
1033  * arm_granule_bits: Return address size of the granule in bits
1034  *
1035  * Return the address size of the granule in bits. This corresponds
1036  * to the pseudocode TGxGranuleBits().
1037  */
1038 static inline int arm_granule_bits(ARMGranuleSize gran)
1039 {
1040     switch (gran) {
1041     case Gran64K:
1042         return 16;
1043     case Gran16K:
1044         return 14;
1045     case Gran4K:
1046         return 12;
1047     default:
1048         g_assert_not_reached();
1049     }
1050 }
1051 
1052 /*
1053  * Parameters of a given virtual address, as extracted from the
1054  * translation control register (TCR) for a given regime.
1055  */
1056 typedef struct ARMVAParameters {
1057     unsigned tsz    : 8;
1058     unsigned ps     : 3;
1059     unsigned sh     : 2;
1060     unsigned select : 1;
1061     bool tbi        : 1;
1062     bool epd        : 1;
1063     bool hpd        : 1;
1064     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1065     bool ds         : 1;
1066     bool ha         : 1;
1067     bool hd         : 1;
1068     ARMGranuleSize gran : 2;
1069 } ARMVAParameters;
1070 
1071 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1072                                    ARMMMUIdx mmu_idx, bool data);
1073 
1074 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1075 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1076 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1077 
1078 /* Determine if allocation tags are available.  */
1079 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1080                                                  uint64_t sctlr)
1081 {
1082     if (el < 3
1083         && arm_feature(env, ARM_FEATURE_EL3)
1084         && !(env->cp15.scr_el3 & SCR_ATA)) {
1085         return false;
1086     }
1087     if (el < 2 && arm_is_el2_enabled(env)) {
1088         uint64_t hcr = arm_hcr_el2_eff(env);
1089         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1090             return false;
1091         }
1092     }
1093     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1094     return sctlr != 0;
1095 }
1096 
1097 #ifndef CONFIG_USER_ONLY
1098 
1099 /* Security attributes for an address, as returned by v8m_security_lookup. */
1100 typedef struct V8M_SAttributes {
1101     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1102     bool ns;
1103     bool nsc;
1104     uint8_t sregion;
1105     bool srvalid;
1106     uint8_t iregion;
1107     bool irvalid;
1108 } V8M_SAttributes;
1109 
1110 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1111                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1112                          bool secure, V8M_SAttributes *sattrs);
1113 
1114 /* Cacheability and shareability attributes for a memory access */
1115 typedef struct ARMCacheAttrs {
1116     /*
1117      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1118      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1119      */
1120     unsigned int attrs:8;
1121     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1122     bool is_s2_format:1;
1123     bool guarded:1;              /* guarded bit of the v8-64 PTE */
1124 } ARMCacheAttrs;
1125 
1126 /* Fields that are valid upon success. */
1127 typedef struct GetPhysAddrResult {
1128     CPUTLBEntryFull f;
1129     ARMCacheAttrs cacheattrs;
1130 } GetPhysAddrResult;
1131 
1132 /**
1133  * get_phys_addr_with_secure: get the physical address for a virtual address
1134  * @env: CPUARMState
1135  * @address: virtual address to get physical address for
1136  * @access_type: 0 for read, 1 for write, 2 for execute
1137  * @mmu_idx: MMU index indicating required translation regime
1138  * @is_secure: security state for the access
1139  * @result: set on translation success.
1140  * @fi: set to fault info if the translation fails
1141  *
1142  * Find the physical address corresponding to the given virtual address,
1143  * by doing a translation table walk on MMU based systems or using the
1144  * MPU state on MPU based systems.
1145  *
1146  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1147  * prot and page_size may not be filled in, and the populated fsr value provides
1148  * information on why the translation aborted, in the format of a
1149  * DFSR/IFSR fault register, with the following caveats:
1150  *  * we honour the short vs long DFSR format differences.
1151  *  * the WnR bit is never set (the caller must do this).
1152  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1153  *    value.
1154  */
1155 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1156                                MMUAccessType access_type,
1157                                ARMMMUIdx mmu_idx, bool is_secure,
1158                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1159     __attribute__((nonnull));
1160 
1161 /**
1162  * get_phys_addr: get the physical address for a virtual address
1163  * @env: CPUARMState
1164  * @address: virtual address to get physical address for
1165  * @access_type: 0 for read, 1 for write, 2 for execute
1166  * @mmu_idx: MMU index indicating required translation regime
1167  * @result: set on translation success.
1168  * @fi: set to fault info if the translation fails
1169  *
1170  * Similarly, but use the security regime of @mmu_idx.
1171  */
1172 bool get_phys_addr(CPUARMState *env, target_ulong address,
1173                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1174                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1175     __attribute__((nonnull));
1176 
1177 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1178                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1179                        bool is_secure, GetPhysAddrResult *result,
1180                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1181 
1182 void arm_log_exception(CPUState *cs);
1183 
1184 #endif /* !CONFIG_USER_ONLY */
1185 
1186 /*
1187  * The log2 of the words in the tag block, for GMID_EL1.BS.
1188  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1189  */
1190 #define GMID_EL1_BS  6
1191 
1192 /*
1193  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1194  * the same simd_desc() encoding due to restrictions on size.
1195  * Use these instead.
1196  */
1197 FIELD(PREDDESC, OPRSZ, 0, 6)
1198 FIELD(PREDDESC, ESZ, 6, 2)
1199 FIELD(PREDDESC, DATA, 8, 24)
1200 
1201 /*
1202  * The SVE simd_data field, for memory ops, contains either
1203  * rd (5 bits) or a shift count (2 bits).
1204  */
1205 #define SVE_MTEDESC_SHIFT 5
1206 
1207 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1208 FIELD(MTEDESC, MIDX,  0, 4)
1209 FIELD(MTEDESC, TBI,   4, 2)
1210 FIELD(MTEDESC, TCMA,  6, 2)
1211 FIELD(MTEDESC, WRITE, 8, 1)
1212 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1213 
1214 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1215 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1216 
1217 static inline int allocation_tag_from_addr(uint64_t ptr)
1218 {
1219     return extract64(ptr, 56, 4);
1220 }
1221 
1222 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1223 {
1224     return deposit64(ptr, 56, 4, rtag);
1225 }
1226 
1227 /* Return true if tbi bits mean that the access is checked.  */
1228 static inline bool tbi_check(uint32_t desc, int bit55)
1229 {
1230     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1231 }
1232 
1233 /* Return true if tcma bits mean that the access is unchecked.  */
1234 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1235 {
1236     /*
1237      * We had extracted bit55 and ptr_tag for other reasons, so fold
1238      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1239      */
1240     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1241     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1242     return tcma && match;
1243 }
1244 
1245 /*
1246  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1247  * for the tag to be present in the FAR_ELx register.  But for user-only
1248  * mode, we do not have a TLB with which to implement this, so we must
1249  * remove the top byte.
1250  */
1251 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1252 {
1253 #ifdef CONFIG_USER_ONLY
1254     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1255     ptr &= sextract64(ptr, 0, 56);
1256 #endif
1257     return ptr;
1258 }
1259 
1260 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1261 {
1262 #ifdef CONFIG_USER_ONLY
1263     int64_t clean_ptr = sextract64(ptr, 0, 56);
1264     if (tbi_check(desc, clean_ptr < 0)) {
1265         ptr = clean_ptr;
1266     }
1267 #endif
1268     return ptr;
1269 }
1270 
1271 /* Values for M-profile PSR.ECI for MVE insns */
1272 enum MVEECIState {
1273     ECI_NONE = 0, /* No completed beats */
1274     ECI_A0 = 1, /* Completed: A0 */
1275     ECI_A0A1 = 2, /* Completed: A0, A1 */
1276     /* 3 is reserved */
1277     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1278     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1279     /* All other values reserved */
1280 };
1281 
1282 /* Definitions for the PMU registers */
1283 #define PMCRN_MASK  0xf800
1284 #define PMCRN_SHIFT 11
1285 #define PMCRLP  0x80
1286 #define PMCRLC  0x40
1287 #define PMCRDP  0x20
1288 #define PMCRX   0x10
1289 #define PMCRD   0x8
1290 #define PMCRC   0x4
1291 #define PMCRP   0x2
1292 #define PMCRE   0x1
1293 /*
1294  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1295  * which can be written as 1 to trigger behaviour but which stay RAZ).
1296  */
1297 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1298 
1299 #define PMXEVTYPER_P          0x80000000
1300 #define PMXEVTYPER_U          0x40000000
1301 #define PMXEVTYPER_NSK        0x20000000
1302 #define PMXEVTYPER_NSU        0x10000000
1303 #define PMXEVTYPER_NSH        0x08000000
1304 #define PMXEVTYPER_M          0x04000000
1305 #define PMXEVTYPER_MT         0x02000000
1306 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1307 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1308                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1309                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1310                                PMXEVTYPER_EVTCOUNT)
1311 
1312 #define PMCCFILTR             0xf8000000
1313 #define PMCCFILTR_M           PMXEVTYPER_M
1314 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1315 
1316 static inline uint32_t pmu_num_counters(CPUARMState *env)
1317 {
1318     ARMCPU *cpu = env_archcpu(env);
1319 
1320     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1321 }
1322 
1323 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1324 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1325 {
1326   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1327 }
1328 
1329 #ifdef TARGET_AARCH64
1330 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1331 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1332 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1333 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1334 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1335 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1336 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1337 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1338 #endif
1339 
1340 #ifdef CONFIG_USER_ONLY
1341 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1342 #else
1343 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1344 #endif
1345 
1346 bool el_is_in_host(CPUARMState *env, int el);
1347 
1348 void aa32_max_features(ARMCPU *cpu);
1349 int exception_target_el(CPUARMState *env);
1350 bool arm_singlestep_active(CPUARMState *env);
1351 bool arm_generate_debug_exceptions(CPUARMState *env);
1352 
1353 /* Add the cpreg definitions for debug related system registers */
1354 void define_debug_regs(ARMCPU *cpu);
1355 
1356 /* Effective value of MDCR_EL2 */
1357 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1358 {
1359     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1360 }
1361 
1362 /* Powers of 2 for sve_vq_map et al. */
1363 #define SVE_VQ_POW2_MAP                                 \
1364     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1365      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1366 
1367 /*
1368  * Return true if it is possible to take a fine-grained-trap to EL2.
1369  */
1370 static inline bool arm_fgt_active(CPUARMState *env, int el)
1371 {
1372     /*
1373      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1374      * that can affect EL0, but it is harmless to do the test also for
1375      * traps on registers that are only accessible at EL1 because if the test
1376      * returns true then we can't be executing at EL1 anyway.
1377      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1378      * traps from AArch32 only happen for the EL0 is AArch32 case.
1379      */
1380     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1381         el < 2 && arm_is_el2_enabled(env) &&
1382         arm_el_is_aa64(env, 1) &&
1383         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1384         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1385 }
1386 
1387 void assert_hflags_rebuild_correctly(CPUARMState *env);
1388 #endif
1389