xref: /openbmc/qemu/target/arm/internals.h (revision 59b6b42c)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 void arm_restore_state_to_opc(CPUState *cs,
189                               const TranslationBlock *tb,
190                               const uint64_t *data);
191 
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195 
196 typedef enum ARMFPRounding {
197     FPROUNDING_TIEEVEN,
198     FPROUNDING_POSINF,
199     FPROUNDING_NEGINF,
200     FPROUNDING_ZERO,
201     FPROUNDING_TIEAWAY,
202     FPROUNDING_ODD
203 } ARMFPRounding;
204 
205 extern const FloatRoundMode arm_rmode_to_sf_map[6];
206 
207 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
208 {
209     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
210     return arm_rmode_to_sf_map[rmode];
211 }
212 
213 static inline void aarch64_save_sp(CPUARMState *env, int el)
214 {
215     if (env->pstate & PSTATE_SP) {
216         env->sp_el[el] = env->xregs[31];
217     } else {
218         env->sp_el[0] = env->xregs[31];
219     }
220 }
221 
222 static inline void aarch64_restore_sp(CPUARMState *env, int el)
223 {
224     if (env->pstate & PSTATE_SP) {
225         env->xregs[31] = env->sp_el[el];
226     } else {
227         env->xregs[31] = env->sp_el[0];
228     }
229 }
230 
231 static inline void update_spsel(CPUARMState *env, uint32_t imm)
232 {
233     unsigned int cur_el = arm_current_el(env);
234     /* Update PSTATE SPSel bit; this requires us to update the
235      * working stack pointer in xregs[31].
236      */
237     if (!((imm ^ env->pstate) & PSTATE_SP)) {
238         return;
239     }
240     aarch64_save_sp(env, cur_el);
241     env->pstate = deposit32(env->pstate, 0, 1, imm);
242 
243     /* We rely on illegal updates to SPsel from EL0 to get trapped
244      * at translation time.
245      */
246     assert(cur_el >= 1 && cur_el <= 3);
247     aarch64_restore_sp(env, cur_el);
248 }
249 
250 /*
251  * arm_pamax
252  * @cpu: ARMCPU
253  *
254  * Returns the implementation defined bit-width of physical addresses.
255  * The ARMv8 reference manuals refer to this as PAMax().
256  */
257 unsigned int arm_pamax(ARMCPU *cpu);
258 
259 /* Return true if extended addresses are enabled.
260  * This is always the case if our translation regime is 64 bit,
261  * but depends on TTBCR.EAE for 32 bit.
262  */
263 static inline bool extended_addresses_enabled(CPUARMState *env)
264 {
265     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
266     if (arm_feature(env, ARM_FEATURE_PMSA) &&
267         arm_feature(env, ARM_FEATURE_V8)) {
268         return true;
269     }
270     return arm_el_is_aa64(env, 1) ||
271            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
272 }
273 
274 /* Update a QEMU watchpoint based on the information the guest has set in the
275  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
276  */
277 void hw_watchpoint_update(ARMCPU *cpu, int n);
278 /* Update the QEMU watchpoints for every guest watchpoint. This does a
279  * complete delete-and-reinstate of the QEMU watchpoint list and so is
280  * suitable for use after migration or on reset.
281  */
282 void hw_watchpoint_update_all(ARMCPU *cpu);
283 /* Update a QEMU breakpoint based on the information the guest has set in the
284  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
285  */
286 void hw_breakpoint_update(ARMCPU *cpu, int n);
287 /* Update the QEMU breakpoints for every guest breakpoint. This does a
288  * complete delete-and-reinstate of the QEMU breakpoint list and so is
289  * suitable for use after migration or on reset.
290  */
291 void hw_breakpoint_update_all(ARMCPU *cpu);
292 
293 /* Callback function for checking if a breakpoint should trigger. */
294 bool arm_debug_check_breakpoint(CPUState *cs);
295 
296 /* Callback function for checking if a watchpoint should trigger. */
297 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
298 
299 /* Adjust addresses (in BE32 mode) before testing against watchpoint
300  * addresses.
301  */
302 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
303 
304 /* Callback function for when a watchpoint or breakpoint triggers. */
305 void arm_debug_excp_handler(CPUState *cs);
306 
307 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
308 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
309 {
310     return false;
311 }
312 static inline void arm_handle_psci_call(ARMCPU *cpu)
313 {
314     g_assert_not_reached();
315 }
316 #else
317 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
318 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
319 /* Actually handle a PSCI call */
320 void arm_handle_psci_call(ARMCPU *cpu);
321 #endif
322 
323 /**
324  * arm_clear_exclusive: clear the exclusive monitor
325  * @env: CPU env
326  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
327  */
328 static inline void arm_clear_exclusive(CPUARMState *env)
329 {
330     env->exclusive_addr = -1;
331 }
332 
333 /**
334  * ARMFaultType: type of an ARM MMU fault
335  * This corresponds to the v8A pseudocode's Fault enumeration,
336  * with extensions for QEMU internal conditions.
337  */
338 typedef enum ARMFaultType {
339     ARMFault_None,
340     ARMFault_AccessFlag,
341     ARMFault_Alignment,
342     ARMFault_Background,
343     ARMFault_Domain,
344     ARMFault_Permission,
345     ARMFault_Translation,
346     ARMFault_AddressSize,
347     ARMFault_SyncExternal,
348     ARMFault_SyncExternalOnWalk,
349     ARMFault_SyncParity,
350     ARMFault_SyncParityOnWalk,
351     ARMFault_AsyncParity,
352     ARMFault_AsyncExternal,
353     ARMFault_Debug,
354     ARMFault_TLBConflict,
355     ARMFault_UnsuppAtomicUpdate,
356     ARMFault_Lockdown,
357     ARMFault_Exclusive,
358     ARMFault_ICacheMaint,
359     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
360     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
361 } ARMFaultType;
362 
363 /**
364  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
365  * @type: Type of fault
366  * @level: Table walk level (for translation, access flag and permission faults)
367  * @domain: Domain of the fault address (for non-LPAE CPUs only)
368  * @s2addr: Address that caused a fault at stage 2
369  * @stage2: True if we faulted at stage 2
370  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
371  * @s1ns: True if we faulted on a non-secure IPA while in secure state
372  * @ea: True if we should set the EA (external abort type) bit in syndrome
373  */
374 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
375 struct ARMMMUFaultInfo {
376     ARMFaultType type;
377     target_ulong s2addr;
378     int level;
379     int domain;
380     bool stage2;
381     bool s1ptw;
382     bool s1ns;
383     bool ea;
384 };
385 
386 /**
387  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
388  * Compare pseudocode EncodeSDFSC(), though unlike that function
389  * we set up a whole FSR-format code including domain field and
390  * putting the high bit of the FSC into bit 10.
391  */
392 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
393 {
394     uint32_t fsc;
395 
396     switch (fi->type) {
397     case ARMFault_None:
398         return 0;
399     case ARMFault_AccessFlag:
400         fsc = fi->level == 1 ? 0x3 : 0x6;
401         break;
402     case ARMFault_Alignment:
403         fsc = 0x1;
404         break;
405     case ARMFault_Permission:
406         fsc = fi->level == 1 ? 0xd : 0xf;
407         break;
408     case ARMFault_Domain:
409         fsc = fi->level == 1 ? 0x9 : 0xb;
410         break;
411     case ARMFault_Translation:
412         fsc = fi->level == 1 ? 0x5 : 0x7;
413         break;
414     case ARMFault_SyncExternal:
415         fsc = 0x8 | (fi->ea << 12);
416         break;
417     case ARMFault_SyncExternalOnWalk:
418         fsc = fi->level == 1 ? 0xc : 0xe;
419         fsc |= (fi->ea << 12);
420         break;
421     case ARMFault_SyncParity:
422         fsc = 0x409;
423         break;
424     case ARMFault_SyncParityOnWalk:
425         fsc = fi->level == 1 ? 0x40c : 0x40e;
426         break;
427     case ARMFault_AsyncParity:
428         fsc = 0x408;
429         break;
430     case ARMFault_AsyncExternal:
431         fsc = 0x406 | (fi->ea << 12);
432         break;
433     case ARMFault_Debug:
434         fsc = 0x2;
435         break;
436     case ARMFault_TLBConflict:
437         fsc = 0x400;
438         break;
439     case ARMFault_Lockdown:
440         fsc = 0x404;
441         break;
442     case ARMFault_Exclusive:
443         fsc = 0x405;
444         break;
445     case ARMFault_ICacheMaint:
446         fsc = 0x4;
447         break;
448     case ARMFault_Background:
449         fsc = 0x0;
450         break;
451     case ARMFault_QEMU_NSCExec:
452         fsc = M_FAKE_FSR_NSC_EXEC;
453         break;
454     case ARMFault_QEMU_SFault:
455         fsc = M_FAKE_FSR_SFAULT;
456         break;
457     default:
458         /* Other faults can't occur in a context that requires a
459          * short-format status code.
460          */
461         g_assert_not_reached();
462     }
463 
464     fsc |= (fi->domain << 4);
465     return fsc;
466 }
467 
468 /**
469  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
470  * Compare pseudocode EncodeLDFSC(), though unlike that function
471  * we fill in also the LPAE bit 9 of a DFSR format.
472  */
473 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
474 {
475     uint32_t fsc;
476 
477     switch (fi->type) {
478     case ARMFault_None:
479         return 0;
480     case ARMFault_AddressSize:
481         assert(fi->level >= -1 && fi->level <= 3);
482         if (fi->level < 0) {
483             fsc = 0b101001;
484         } else {
485             fsc = fi->level;
486         }
487         break;
488     case ARMFault_AccessFlag:
489         assert(fi->level >= 0 && fi->level <= 3);
490         fsc = 0b001000 | fi->level;
491         break;
492     case ARMFault_Permission:
493         assert(fi->level >= 0 && fi->level <= 3);
494         fsc = 0b001100 | fi->level;
495         break;
496     case ARMFault_Translation:
497         assert(fi->level >= -1 && fi->level <= 3);
498         if (fi->level < 0) {
499             fsc = 0b101011;
500         } else {
501             fsc = 0b000100 | fi->level;
502         }
503         break;
504     case ARMFault_SyncExternal:
505         fsc = 0x10 | (fi->ea << 12);
506         break;
507     case ARMFault_SyncExternalOnWalk:
508         assert(fi->level >= -1 && fi->level <= 3);
509         if (fi->level < 0) {
510             fsc = 0b010011;
511         } else {
512             fsc = 0b010100 | fi->level;
513         }
514         fsc |= fi->ea << 12;
515         break;
516     case ARMFault_SyncParity:
517         fsc = 0x18;
518         break;
519     case ARMFault_SyncParityOnWalk:
520         assert(fi->level >= -1 && fi->level <= 3);
521         if (fi->level < 0) {
522             fsc = 0b011011;
523         } else {
524             fsc = 0b011100 | fi->level;
525         }
526         break;
527     case ARMFault_AsyncParity:
528         fsc = 0x19;
529         break;
530     case ARMFault_AsyncExternal:
531         fsc = 0x11 | (fi->ea << 12);
532         break;
533     case ARMFault_Alignment:
534         fsc = 0x21;
535         break;
536     case ARMFault_Debug:
537         fsc = 0x22;
538         break;
539     case ARMFault_TLBConflict:
540         fsc = 0x30;
541         break;
542     case ARMFault_UnsuppAtomicUpdate:
543         fsc = 0x31;
544         break;
545     case ARMFault_Lockdown:
546         fsc = 0x34;
547         break;
548     case ARMFault_Exclusive:
549         fsc = 0x35;
550         break;
551     default:
552         /* Other faults can't occur in a context that requires a
553          * long-format status code.
554          */
555         g_assert_not_reached();
556     }
557 
558     fsc |= 1 << 9;
559     return fsc;
560 }
561 
562 static inline bool arm_extabort_type(MemTxResult result)
563 {
564     /* The EA bit in syndromes and fault status registers is an
565      * IMPDEF classification of external aborts. ARM implementations
566      * usually use this to indicate AXI bus Decode error (0) or
567      * Slave error (1); in QEMU we follow that.
568      */
569     return result != MEMTX_DECODE_ERROR;
570 }
571 
572 #ifdef CONFIG_USER_ONLY
573 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
574                             MMUAccessType access_type,
575                             bool maperr, uintptr_t ra);
576 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
577                            MMUAccessType access_type, uintptr_t ra);
578 #else
579 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
580                       MMUAccessType access_type, int mmu_idx,
581                       bool probe, uintptr_t retaddr);
582 #endif
583 
584 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
585 {
586     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
587 }
588 
589 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
590 {
591     if (arm_feature(env, ARM_FEATURE_M)) {
592         return mmu_idx | ARM_MMU_IDX_M;
593     } else {
594         return mmu_idx | ARM_MMU_IDX_A;
595     }
596 }
597 
598 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
599 {
600     /* AArch64 is always a-profile. */
601     return mmu_idx | ARM_MMU_IDX_A;
602 }
603 
604 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
605 
606 /* Return the MMU index for a v7M CPU in the specified security state */
607 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
608 
609 /*
610  * Return true if the stage 1 translation regime is using LPAE
611  * format page tables
612  */
613 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
614 
615 /* Raise a data fault alignment exception for the specified virtual address */
616 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
617                                             MMUAccessType access_type,
618                                             int mmu_idx, uintptr_t retaddr);
619 
620 #ifndef CONFIG_USER_ONLY
621 /* arm_cpu_do_transaction_failed: handle a memory system error response
622  * (eg "no device/memory present at address") by raising an external abort
623  * exception
624  */
625 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
626                                    vaddr addr, unsigned size,
627                                    MMUAccessType access_type,
628                                    int mmu_idx, MemTxAttrs attrs,
629                                    MemTxResult response, uintptr_t retaddr);
630 #endif
631 
632 /* Call any registered EL change hooks */
633 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
634 {
635     ARMELChangeHook *hook, *next;
636     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
637         hook->hook(cpu, hook->opaque);
638     }
639 }
640 static inline void arm_call_el_change_hook(ARMCPU *cpu)
641 {
642     ARMELChangeHook *hook, *next;
643     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
644         hook->hook(cpu, hook->opaque);
645     }
646 }
647 
648 /* Return true if this address translation regime has two ranges.  */
649 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
650 {
651     switch (mmu_idx) {
652     case ARMMMUIdx_Stage1_E0:
653     case ARMMMUIdx_Stage1_E1:
654     case ARMMMUIdx_Stage1_E1_PAN:
655     case ARMMMUIdx_E10_0:
656     case ARMMMUIdx_E10_1:
657     case ARMMMUIdx_E10_1_PAN:
658     case ARMMMUIdx_E20_0:
659     case ARMMMUIdx_E20_2:
660     case ARMMMUIdx_E20_2_PAN:
661         return true;
662     default:
663         return false;
664     }
665 }
666 
667 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
668 {
669     switch (mmu_idx) {
670     case ARMMMUIdx_Stage1_E1_PAN:
671     case ARMMMUIdx_E10_1_PAN:
672     case ARMMMUIdx_E20_2_PAN:
673         return true;
674     default:
675         return false;
676     }
677 }
678 
679 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
680 {
681     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
682 }
683 
684 /* Return the exception level which controls this address translation regime */
685 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
686 {
687     switch (mmu_idx) {
688     case ARMMMUIdx_E20_0:
689     case ARMMMUIdx_E20_2:
690     case ARMMMUIdx_E20_2_PAN:
691     case ARMMMUIdx_Stage2:
692     case ARMMMUIdx_Stage2_S:
693     case ARMMMUIdx_E2:
694         return 2;
695     case ARMMMUIdx_E3:
696         return 3;
697     case ARMMMUIdx_E10_0:
698     case ARMMMUIdx_Stage1_E0:
699         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
700     case ARMMMUIdx_Stage1_E1:
701     case ARMMMUIdx_Stage1_E1_PAN:
702     case ARMMMUIdx_E10_1:
703     case ARMMMUIdx_E10_1_PAN:
704     case ARMMMUIdx_MPrivNegPri:
705     case ARMMMUIdx_MUserNegPri:
706     case ARMMMUIdx_MPriv:
707     case ARMMMUIdx_MUser:
708     case ARMMMUIdx_MSPrivNegPri:
709     case ARMMMUIdx_MSUserNegPri:
710     case ARMMMUIdx_MSPriv:
711     case ARMMMUIdx_MSUser:
712         return 1;
713     default:
714         g_assert_not_reached();
715     }
716 }
717 
718 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
719 {
720     switch (mmu_idx) {
721     case ARMMMUIdx_E20_0:
722     case ARMMMUIdx_Stage1_E0:
723     case ARMMMUIdx_MUser:
724     case ARMMMUIdx_MSUser:
725     case ARMMMUIdx_MUserNegPri:
726     case ARMMMUIdx_MSUserNegPri:
727         return true;
728     default:
729         return false;
730     case ARMMMUIdx_E10_0:
731     case ARMMMUIdx_E10_1:
732     case ARMMMUIdx_E10_1_PAN:
733         g_assert_not_reached();
734     }
735 }
736 
737 /* Return the SCTLR value which controls this address translation regime */
738 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
739 {
740     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
741 }
742 
743 /*
744  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
745  * and the Non-Secure stage 2 translation regimes (and hence which are
746  * not present in VSTCR_EL2).
747  */
748 #define VTCR_SHARED_FIELD_MASK \
749     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
750      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
751      R_VTCR_DS_MASK)
752 
753 /* Return the value of the TCR controlling this translation regime */
754 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
755 {
756     if (mmu_idx == ARMMMUIdx_Stage2) {
757         return env->cp15.vtcr_el2;
758     }
759     if (mmu_idx == ARMMMUIdx_Stage2_S) {
760         /*
761          * Secure stage 2 shares fields from VTCR_EL2. We merge those
762          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
763          * value so the callers don't need to special case this.
764          *
765          * If a future architecture change defines bits in VSTCR_EL2 that
766          * overlap with these VTCR_EL2 fields we may need to revisit this.
767          */
768         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
769         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
770         return v;
771     }
772     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
773 }
774 
775 /* Return true if the translation regime is using LPAE format page tables */
776 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
777 {
778     int el = regime_el(env, mmu_idx);
779     if (el == 2 || arm_el_is_aa64(env, el)) {
780         return true;
781     }
782     if (arm_feature(env, ARM_FEATURE_PMSA) &&
783         arm_feature(env, ARM_FEATURE_V8)) {
784         return true;
785     }
786     if (arm_feature(env, ARM_FEATURE_LPAE)
787         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
788         return true;
789     }
790     return false;
791 }
792 
793 /**
794  * arm_num_brps: Return number of implemented breakpoints.
795  * Note that the ID register BRPS field is "number of bps - 1",
796  * and we return the actual number of breakpoints.
797  */
798 static inline int arm_num_brps(ARMCPU *cpu)
799 {
800     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
801         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
802     } else {
803         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
804     }
805 }
806 
807 /**
808  * arm_num_wrps: Return number of implemented watchpoints.
809  * Note that the ID register WRPS field is "number of wps - 1",
810  * and we return the actual number of watchpoints.
811  */
812 static inline int arm_num_wrps(ARMCPU *cpu)
813 {
814     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
815         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
816     } else {
817         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
818     }
819 }
820 
821 /**
822  * arm_num_ctx_cmps: Return number of implemented context comparators.
823  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
824  * and we return the actual number of comparators.
825  */
826 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
827 {
828     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
829         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
830     } else {
831         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
832     }
833 }
834 
835 /**
836  * v7m_using_psp: Return true if using process stack pointer
837  * Return true if the CPU is currently using the process stack
838  * pointer, or false if it is using the main stack pointer.
839  */
840 static inline bool v7m_using_psp(CPUARMState *env)
841 {
842     /* Handler mode always uses the main stack; for thread mode
843      * the CONTROL.SPSEL bit determines the answer.
844      * Note that in v7M it is not possible to be in Handler mode with
845      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
846      */
847     return !arm_v7m_is_handler_mode(env) &&
848         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
849 }
850 
851 /**
852  * v7m_sp_limit: Return SP limit for current CPU state
853  * Return the SP limit value for the current CPU security state
854  * and stack pointer.
855  */
856 static inline uint32_t v7m_sp_limit(CPUARMState *env)
857 {
858     if (v7m_using_psp(env)) {
859         return env->v7m.psplim[env->v7m.secure];
860     } else {
861         return env->v7m.msplim[env->v7m.secure];
862     }
863 }
864 
865 /**
866  * v7m_cpacr_pass:
867  * Return true if the v7M CPACR permits access to the FPU for the specified
868  * security state and privilege level.
869  */
870 static inline bool v7m_cpacr_pass(CPUARMState *env,
871                                   bool is_secure, bool is_priv)
872 {
873     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
874     case 0:
875     case 2: /* UNPREDICTABLE: we treat like 0 */
876         return false;
877     case 1:
878         return is_priv;
879     case 3:
880         return true;
881     default:
882         g_assert_not_reached();
883     }
884 }
885 
886 /**
887  * aarch32_mode_name(): Return name of the AArch32 CPU mode
888  * @psr: Program Status Register indicating CPU mode
889  *
890  * Returns, for debug logging purposes, a printable representation
891  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
892  * the low bits of the specified PSR.
893  */
894 static inline const char *aarch32_mode_name(uint32_t psr)
895 {
896     static const char cpu_mode_names[16][4] = {
897         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
898         "???", "???", "hyp", "und", "???", "???", "???", "sys"
899     };
900 
901     return cpu_mode_names[psr & 0xf];
902 }
903 
904 /**
905  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
906  *
907  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
908  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
909  * Must be called with the iothread lock held.
910  */
911 void arm_cpu_update_virq(ARMCPU *cpu);
912 
913 /**
914  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
915  *
916  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
917  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
918  * Must be called with the iothread lock held.
919  */
920 void arm_cpu_update_vfiq(ARMCPU *cpu);
921 
922 /**
923  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
924  *
925  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
926  * following a change to the HCR_EL2.VSE bit.
927  */
928 void arm_cpu_update_vserr(ARMCPU *cpu);
929 
930 /**
931  * arm_mmu_idx_el:
932  * @env: The cpu environment
933  * @el: The EL to use.
934  *
935  * Return the full ARMMMUIdx for the translation regime for EL.
936  */
937 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
938 
939 /**
940  * arm_mmu_idx:
941  * @env: The cpu environment
942  *
943  * Return the full ARMMMUIdx for the current translation regime.
944  */
945 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
946 
947 /**
948  * arm_stage1_mmu_idx:
949  * @env: The cpu environment
950  *
951  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
952  */
953 #ifdef CONFIG_USER_ONLY
954 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
955 {
956     return ARMMMUIdx_Stage1_E0;
957 }
958 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
959 {
960     return ARMMMUIdx_Stage1_E0;
961 }
962 #else
963 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
964 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
965 #endif
966 
967 /**
968  * arm_mmu_idx_is_stage1_of_2:
969  * @mmu_idx: The ARMMMUIdx to test
970  *
971  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
972  * first stage of a two stage regime.
973  */
974 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
975 {
976     switch (mmu_idx) {
977     case ARMMMUIdx_Stage1_E0:
978     case ARMMMUIdx_Stage1_E1:
979     case ARMMMUIdx_Stage1_E1_PAN:
980         return true;
981     default:
982         return false;
983     }
984 }
985 
986 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
987                                                const ARMISARegisters *id)
988 {
989     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
990 
991     if ((features >> ARM_FEATURE_V4T) & 1) {
992         valid |= CPSR_T;
993     }
994     if ((features >> ARM_FEATURE_V5) & 1) {
995         valid |= CPSR_Q; /* V5TE in reality*/
996     }
997     if ((features >> ARM_FEATURE_V6) & 1) {
998         valid |= CPSR_E | CPSR_GE;
999     }
1000     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1001         valid |= CPSR_IT;
1002     }
1003     if (isar_feature_aa32_jazelle(id)) {
1004         valid |= CPSR_J;
1005     }
1006     if (isar_feature_aa32_pan(id)) {
1007         valid |= CPSR_PAN;
1008     }
1009     if (isar_feature_aa32_dit(id)) {
1010         valid |= CPSR_DIT;
1011     }
1012     if (isar_feature_aa32_ssbs(id)) {
1013         valid |= CPSR_SSBS;
1014     }
1015 
1016     return valid;
1017 }
1018 
1019 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1020 {
1021     uint32_t valid;
1022 
1023     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1024     if (isar_feature_aa64_bti(id)) {
1025         valid |= PSTATE_BTYPE;
1026     }
1027     if (isar_feature_aa64_pan(id)) {
1028         valid |= PSTATE_PAN;
1029     }
1030     if (isar_feature_aa64_uao(id)) {
1031         valid |= PSTATE_UAO;
1032     }
1033     if (isar_feature_aa64_dit(id)) {
1034         valid |= PSTATE_DIT;
1035     }
1036     if (isar_feature_aa64_ssbs(id)) {
1037         valid |= PSTATE_SSBS;
1038     }
1039     if (isar_feature_aa64_mte(id)) {
1040         valid |= PSTATE_TCO;
1041     }
1042 
1043     return valid;
1044 }
1045 
1046 /* Granule size (i.e. page size) */
1047 typedef enum ARMGranuleSize {
1048     /* Same order as TG0 encoding */
1049     Gran4K,
1050     Gran64K,
1051     Gran16K,
1052     GranInvalid,
1053 } ARMGranuleSize;
1054 
1055 /**
1056  * arm_granule_bits: Return address size of the granule in bits
1057  *
1058  * Return the address size of the granule in bits. This corresponds
1059  * to the pseudocode TGxGranuleBits().
1060  */
1061 static inline int arm_granule_bits(ARMGranuleSize gran)
1062 {
1063     switch (gran) {
1064     case Gran64K:
1065         return 16;
1066     case Gran16K:
1067         return 14;
1068     case Gran4K:
1069         return 12;
1070     default:
1071         g_assert_not_reached();
1072     }
1073 }
1074 
1075 /*
1076  * Parameters of a given virtual address, as extracted from the
1077  * translation control register (TCR) for a given regime.
1078  */
1079 typedef struct ARMVAParameters {
1080     unsigned tsz    : 8;
1081     unsigned ps     : 3;
1082     unsigned sh     : 2;
1083     unsigned select : 1;
1084     bool tbi        : 1;
1085     bool epd        : 1;
1086     bool hpd        : 1;
1087     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1088     bool ds         : 1;
1089     bool ha         : 1;
1090     bool hd         : 1;
1091     ARMGranuleSize gran : 2;
1092 } ARMVAParameters;
1093 
1094 /**
1095  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1096  * @env: CPU
1097  * @va: virtual address to look up
1098  * @mmu_idx: determines translation regime to use
1099  * @data: true if this is a data access
1100  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1101  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1102  */
1103 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1104                                    ARMMMUIdx mmu_idx, bool data,
1105                                    bool el1_is_aa32);
1106 
1107 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1108 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1109 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1110 
1111 /* Determine if allocation tags are available.  */
1112 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1113                                                  uint64_t sctlr)
1114 {
1115     if (el < 3
1116         && arm_feature(env, ARM_FEATURE_EL3)
1117         && !(env->cp15.scr_el3 & SCR_ATA)) {
1118         return false;
1119     }
1120     if (el < 2 && arm_is_el2_enabled(env)) {
1121         uint64_t hcr = arm_hcr_el2_eff(env);
1122         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1123             return false;
1124         }
1125     }
1126     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1127     return sctlr != 0;
1128 }
1129 
1130 #ifndef CONFIG_USER_ONLY
1131 
1132 /* Security attributes for an address, as returned by v8m_security_lookup. */
1133 typedef struct V8M_SAttributes {
1134     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1135     bool ns;
1136     bool nsc;
1137     uint8_t sregion;
1138     bool srvalid;
1139     uint8_t iregion;
1140     bool irvalid;
1141 } V8M_SAttributes;
1142 
1143 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1144                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1145                          bool secure, V8M_SAttributes *sattrs);
1146 
1147 /* Cacheability and shareability attributes for a memory access */
1148 typedef struct ARMCacheAttrs {
1149     /*
1150      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1151      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1152      */
1153     unsigned int attrs:8;
1154     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1155     bool is_s2_format:1;
1156     bool guarded:1;              /* guarded bit of the v8-64 PTE */
1157 } ARMCacheAttrs;
1158 
1159 /* Fields that are valid upon success. */
1160 typedef struct GetPhysAddrResult {
1161     CPUTLBEntryFull f;
1162     ARMCacheAttrs cacheattrs;
1163 } GetPhysAddrResult;
1164 
1165 /**
1166  * get_phys_addr_with_secure: get the physical address for a virtual address
1167  * @env: CPUARMState
1168  * @address: virtual address to get physical address for
1169  * @access_type: 0 for read, 1 for write, 2 for execute
1170  * @mmu_idx: MMU index indicating required translation regime
1171  * @is_secure: security state for the access
1172  * @result: set on translation success.
1173  * @fi: set to fault info if the translation fails
1174  *
1175  * Find the physical address corresponding to the given virtual address,
1176  * by doing a translation table walk on MMU based systems or using the
1177  * MPU state on MPU based systems.
1178  *
1179  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1180  * prot and page_size may not be filled in, and the populated fsr value provides
1181  * information on why the translation aborted, in the format of a
1182  * DFSR/IFSR fault register, with the following caveats:
1183  *  * we honour the short vs long DFSR format differences.
1184  *  * the WnR bit is never set (the caller must do this).
1185  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1186  *    value.
1187  */
1188 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1189                                MMUAccessType access_type,
1190                                ARMMMUIdx mmu_idx, bool is_secure,
1191                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1192     __attribute__((nonnull));
1193 
1194 /**
1195  * get_phys_addr: get the physical address for a virtual address
1196  * @env: CPUARMState
1197  * @address: virtual address to get physical address for
1198  * @access_type: 0 for read, 1 for write, 2 for execute
1199  * @mmu_idx: MMU index indicating required translation regime
1200  * @result: set on translation success.
1201  * @fi: set to fault info if the translation fails
1202  *
1203  * Similarly, but use the security regime of @mmu_idx.
1204  */
1205 bool get_phys_addr(CPUARMState *env, target_ulong address,
1206                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1207                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1208     __attribute__((nonnull));
1209 
1210 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1211                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1212                        bool is_secure, GetPhysAddrResult *result,
1213                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1214 
1215 void arm_log_exception(CPUState *cs);
1216 
1217 #endif /* !CONFIG_USER_ONLY */
1218 
1219 /*
1220  * The log2 of the words in the tag block, for GMID_EL1.BS.
1221  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1222  */
1223 #define GMID_EL1_BS  6
1224 
1225 /*
1226  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1227  * the same simd_desc() encoding due to restrictions on size.
1228  * Use these instead.
1229  */
1230 FIELD(PREDDESC, OPRSZ, 0, 6)
1231 FIELD(PREDDESC, ESZ, 6, 2)
1232 FIELD(PREDDESC, DATA, 8, 24)
1233 
1234 /*
1235  * The SVE simd_data field, for memory ops, contains either
1236  * rd (5 bits) or a shift count (2 bits).
1237  */
1238 #define SVE_MTEDESC_SHIFT 5
1239 
1240 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1241 FIELD(MTEDESC, MIDX,  0, 4)
1242 FIELD(MTEDESC, TBI,   4, 2)
1243 FIELD(MTEDESC, TCMA,  6, 2)
1244 FIELD(MTEDESC, WRITE, 8, 1)
1245 FIELD(MTEDESC, ALIGN, 9, 3)
1246 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12)  /* size - 1 */
1247 
1248 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1249 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1250 
1251 static inline int allocation_tag_from_addr(uint64_t ptr)
1252 {
1253     return extract64(ptr, 56, 4);
1254 }
1255 
1256 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1257 {
1258     return deposit64(ptr, 56, 4, rtag);
1259 }
1260 
1261 /* Return true if tbi bits mean that the access is checked.  */
1262 static inline bool tbi_check(uint32_t desc, int bit55)
1263 {
1264     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1265 }
1266 
1267 /* Return true if tcma bits mean that the access is unchecked.  */
1268 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1269 {
1270     /*
1271      * We had extracted bit55 and ptr_tag for other reasons, so fold
1272      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1273      */
1274     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1275     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1276     return tcma && match;
1277 }
1278 
1279 /*
1280  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1281  * for the tag to be present in the FAR_ELx register.  But for user-only
1282  * mode, we do not have a TLB with which to implement this, so we must
1283  * remove the top byte.
1284  */
1285 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1286 {
1287 #ifdef CONFIG_USER_ONLY
1288     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1289     ptr &= sextract64(ptr, 0, 56);
1290 #endif
1291     return ptr;
1292 }
1293 
1294 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1295 {
1296 #ifdef CONFIG_USER_ONLY
1297     int64_t clean_ptr = sextract64(ptr, 0, 56);
1298     if (tbi_check(desc, clean_ptr < 0)) {
1299         ptr = clean_ptr;
1300     }
1301 #endif
1302     return ptr;
1303 }
1304 
1305 /* Values for M-profile PSR.ECI for MVE insns */
1306 enum MVEECIState {
1307     ECI_NONE = 0, /* No completed beats */
1308     ECI_A0 = 1, /* Completed: A0 */
1309     ECI_A0A1 = 2, /* Completed: A0, A1 */
1310     /* 3 is reserved */
1311     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1312     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1313     /* All other values reserved */
1314 };
1315 
1316 /* Definitions for the PMU registers */
1317 #define PMCRN_MASK  0xf800
1318 #define PMCRN_SHIFT 11
1319 #define PMCRLP  0x80
1320 #define PMCRLC  0x40
1321 #define PMCRDP  0x20
1322 #define PMCRX   0x10
1323 #define PMCRD   0x8
1324 #define PMCRC   0x4
1325 #define PMCRP   0x2
1326 #define PMCRE   0x1
1327 /*
1328  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1329  * which can be written as 1 to trigger behaviour but which stay RAZ).
1330  */
1331 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1332 
1333 #define PMXEVTYPER_P          0x80000000
1334 #define PMXEVTYPER_U          0x40000000
1335 #define PMXEVTYPER_NSK        0x20000000
1336 #define PMXEVTYPER_NSU        0x10000000
1337 #define PMXEVTYPER_NSH        0x08000000
1338 #define PMXEVTYPER_M          0x04000000
1339 #define PMXEVTYPER_MT         0x02000000
1340 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1341 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1342                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1343                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1344                                PMXEVTYPER_EVTCOUNT)
1345 
1346 #define PMCCFILTR             0xf8000000
1347 #define PMCCFILTR_M           PMXEVTYPER_M
1348 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1349 
1350 static inline uint32_t pmu_num_counters(CPUARMState *env)
1351 {
1352     ARMCPU *cpu = env_archcpu(env);
1353 
1354     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1355 }
1356 
1357 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1358 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1359 {
1360   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1361 }
1362 
1363 #ifdef TARGET_AARCH64
1364 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1365 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1366 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1367 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1368 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1369 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1370 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1371 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1372 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1373 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1374 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1375 void aarch64_max_tcg_initfn(Object *obj);
1376 void aarch64_add_pauth_properties(Object *obj);
1377 void aarch64_add_sve_properties(Object *obj);
1378 void aarch64_add_sme_properties(Object *obj);
1379 #endif
1380 
1381 /* Read the CONTROL register as the MRS instruction would. */
1382 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1383 
1384 /*
1385  * Return a pointer to the location where we currently store the
1386  * stack pointer for the requested security state and thread mode.
1387  * This pointer will become invalid if the CPU state is updated
1388  * such that the stack pointers are switched around (eg changing
1389  * the SPSEL control bit).
1390  */
1391 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1392                              bool threadmode, bool spsel);
1393 
1394 bool el_is_in_host(CPUARMState *env, int el);
1395 
1396 void aa32_max_features(ARMCPU *cpu);
1397 int exception_target_el(CPUARMState *env);
1398 bool arm_singlestep_active(CPUARMState *env);
1399 bool arm_generate_debug_exceptions(CPUARMState *env);
1400 
1401 /**
1402  * pauth_ptr_mask:
1403  * @param: parameters defining the MMU setup
1404  *
1405  * Return a mask of the address bits that contain the authentication code,
1406  * given the MMU config defined by @param.
1407  */
1408 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1409 {
1410     int bot_pac_bit = 64 - param.tsz;
1411     int top_pac_bit = 64 - 8 * param.tbi;
1412 
1413     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1414 }
1415 
1416 /* Add the cpreg definitions for debug related system registers */
1417 void define_debug_regs(ARMCPU *cpu);
1418 
1419 /* Effective value of MDCR_EL2 */
1420 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1421 {
1422     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1423 }
1424 
1425 /* Powers of 2 for sve_vq_map et al. */
1426 #define SVE_VQ_POW2_MAP                                 \
1427     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1428      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1429 
1430 /*
1431  * Return true if it is possible to take a fine-grained-trap to EL2.
1432  */
1433 static inline bool arm_fgt_active(CPUARMState *env, int el)
1434 {
1435     /*
1436      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1437      * that can affect EL0, but it is harmless to do the test also for
1438      * traps on registers that are only accessible at EL1 because if the test
1439      * returns true then we can't be executing at EL1 anyway.
1440      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1441      * traps from AArch32 only happen for the EL0 is AArch32 case.
1442      */
1443     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1444         el < 2 && arm_is_el2_enabled(env) &&
1445         arm_el_is_aa64(env, 1) &&
1446         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1447         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1448 }
1449 
1450 void assert_hflags_rebuild_correctly(CPUARMState *env);
1451 
1452 /*
1453  * Although the ARM implementation of hardware assisted debugging
1454  * allows for different breakpoints per-core, the current GDB
1455  * interface treats them as a global pool of registers (which seems to
1456  * be the case for x86, ppc and s390). As a result we store one copy
1457  * of registers which is used for all active cores.
1458  *
1459  * Write access is serialised by virtue of the GDB protocol which
1460  * updates things. Read access (i.e. when the values are copied to the
1461  * vCPU) is also gated by GDB's run control.
1462  *
1463  * This is not unreasonable as most of the time debugging kernels you
1464  * never know which core will eventually execute your function.
1465  */
1466 
1467 typedef struct {
1468     uint64_t bcr;
1469     uint64_t bvr;
1470 } HWBreakpoint;
1471 
1472 /*
1473  * The watchpoint registers can cover more area than the requested
1474  * watchpoint so we need to store the additional information
1475  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1476  * when the watchpoint is hit.
1477  */
1478 typedef struct {
1479     uint64_t wcr;
1480     uint64_t wvr;
1481     CPUWatchpoint details;
1482 } HWWatchpoint;
1483 
1484 /* Maximum and current break/watch point counts */
1485 extern int max_hw_bps, max_hw_wps;
1486 extern GArray *hw_breakpoints, *hw_watchpoints;
1487 
1488 #define cur_hw_wps      (hw_watchpoints->len)
1489 #define cur_hw_bps      (hw_breakpoints->len)
1490 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1491 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1492 
1493 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1494 int insert_hw_breakpoint(target_ulong pc);
1495 int delete_hw_breakpoint(target_ulong pc);
1496 
1497 bool check_watchpoint_in_range(int i, target_ulong addr);
1498 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1499 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1500 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1501 #endif
1502