xref: /openbmc/qemu/target/arm/internals.h (revision 544803c7)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* We use a few fake FSR values for internal purposes in M profile.
85  * M profile cores don't have A/R format FSRs, but currently our
86  * get_phys_addr() code assumes A/R profile and reports failures via
87  * an A/R format FSR value. We then translate that into the proper
88  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89  * Mostly the FSR values we use for this are those defined for v7PMSA,
90  * since we share some of that codepath. A few kinds of fault are
91  * only for M profile and have no A/R equivalent, though, so we have
92  * to pick a value from the reserved range (which we never otherwise
93  * generate) to use for these.
94  * These values will never be visible to the guest.
95  */
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 
99 /**
100  * raise_exception: Raise the specified exception.
101  * Raise a guest exception with the specified value, syndrome register
102  * and target exception level. This should be called from helper functions,
103  * and never returns because we will longjump back up to the CPU main loop.
104  */
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106                                    uint32_t syndrome, uint32_t target_el);
107 
108 /*
109  * Similarly, but also use unwinding to restore cpu state.
110  */
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112                                       uint32_t syndrome, uint32_t target_el,
113                                       uintptr_t ra);
114 
115 /*
116  * For AArch64, map a given EL to an index in the banked_spsr array.
117  * Note that this mapping and the AArch32 mapping defined in bank_number()
118  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119  * mandated mapping between each other.
120  */
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 {
123     static const unsigned int map[4] = {
124         [1] = BANK_SVC, /* EL1.  */
125         [2] = BANK_HYP, /* EL2.  */
126         [3] = BANK_MON, /* EL3.  */
127     };
128     assert(el >= 1 && el <= 3);
129     return map[el];
130 }
131 
132 /* Map CPU modes onto saved register banks.  */
133 static inline int bank_number(int mode)
134 {
135     switch (mode) {
136     case ARM_CPU_MODE_USR:
137     case ARM_CPU_MODE_SYS:
138         return BANK_USRSYS;
139     case ARM_CPU_MODE_SVC:
140         return BANK_SVC;
141     case ARM_CPU_MODE_ABT:
142         return BANK_ABT;
143     case ARM_CPU_MODE_UND:
144         return BANK_UND;
145     case ARM_CPU_MODE_IRQ:
146         return BANK_IRQ;
147     case ARM_CPU_MODE_FIQ:
148         return BANK_FIQ;
149     case ARM_CPU_MODE_HYP:
150         return BANK_HYP;
151     case ARM_CPU_MODE_MON:
152         return BANK_MON;
153     }
154     g_assert_not_reached();
155 }
156 
157 /**
158  * r14_bank_number: Map CPU mode onto register bank for r14
159  *
160  * Given an AArch32 CPU mode, return the index into the saved register
161  * banks to use for the R14 (LR) in that mode. This is the same as
162  * bank_number(), except for the special case of Hyp mode, where
163  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164  * This should be used as the index into env->banked_r14[], and
165  * bank_number() used for the index into env->banked_r13[] and
166  * env->banked_spsr[].
167  */
168 static inline int r14_bank_number(int mode)
169 {
170     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 }
172 
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
175 
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
179 
180 /**
181  * aarch64_sve_zcr_get_valid_len:
182  * @cpu: cpu context
183  * @start_len: maximum len to consider
184  *
185  * Return the maximum supported sve vector length <= @start_len.
186  * Note that both @start_len and the return value are in units
187  * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
188  */
189 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
190 
191 enum arm_fprounding {
192     FPROUNDING_TIEEVEN,
193     FPROUNDING_POSINF,
194     FPROUNDING_NEGINF,
195     FPROUNDING_ZERO,
196     FPROUNDING_TIEAWAY,
197     FPROUNDING_ODD
198 };
199 
200 int arm_rmode_to_sf(int rmode);
201 
202 static inline void aarch64_save_sp(CPUARMState *env, int el)
203 {
204     if (env->pstate & PSTATE_SP) {
205         env->sp_el[el] = env->xregs[31];
206     } else {
207         env->sp_el[0] = env->xregs[31];
208     }
209 }
210 
211 static inline void aarch64_restore_sp(CPUARMState *env, int el)
212 {
213     if (env->pstate & PSTATE_SP) {
214         env->xregs[31] = env->sp_el[el];
215     } else {
216         env->xregs[31] = env->sp_el[0];
217     }
218 }
219 
220 static inline void update_spsel(CPUARMState *env, uint32_t imm)
221 {
222     unsigned int cur_el = arm_current_el(env);
223     /* Update PSTATE SPSel bit; this requires us to update the
224      * working stack pointer in xregs[31].
225      */
226     if (!((imm ^ env->pstate) & PSTATE_SP)) {
227         return;
228     }
229     aarch64_save_sp(env, cur_el);
230     env->pstate = deposit32(env->pstate, 0, 1, imm);
231 
232     /* We rely on illegal updates to SPsel from EL0 to get trapped
233      * at translation time.
234      */
235     assert(cur_el >= 1 && cur_el <= 3);
236     aarch64_restore_sp(env, cur_el);
237 }
238 
239 /*
240  * arm_pamax
241  * @cpu: ARMCPU
242  *
243  * Returns the implementation defined bit-width of physical addresses.
244  * The ARMv8 reference manuals refer to this as PAMax().
245  */
246 unsigned int arm_pamax(ARMCPU *cpu);
247 
248 /* Return true if extended addresses are enabled.
249  * This is always the case if our translation regime is 64 bit,
250  * but depends on TTBCR.EAE for 32 bit.
251  */
252 static inline bool extended_addresses_enabled(CPUARMState *env)
253 {
254     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
255     return arm_el_is_aa64(env, 1) ||
256            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
257 }
258 
259 /* Update a QEMU watchpoint based on the information the guest has set in the
260  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
261  */
262 void hw_watchpoint_update(ARMCPU *cpu, int n);
263 /* Update the QEMU watchpoints for every guest watchpoint. This does a
264  * complete delete-and-reinstate of the QEMU watchpoint list and so is
265  * suitable for use after migration or on reset.
266  */
267 void hw_watchpoint_update_all(ARMCPU *cpu);
268 /* Update a QEMU breakpoint based on the information the guest has set in the
269  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
270  */
271 void hw_breakpoint_update(ARMCPU *cpu, int n);
272 /* Update the QEMU breakpoints for every guest breakpoint. This does a
273  * complete delete-and-reinstate of the QEMU breakpoint list and so is
274  * suitable for use after migration or on reset.
275  */
276 void hw_breakpoint_update_all(ARMCPU *cpu);
277 
278 /* Callback function for checking if a breakpoint should trigger. */
279 bool arm_debug_check_breakpoint(CPUState *cs);
280 
281 /* Callback function for checking if a watchpoint should trigger. */
282 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
283 
284 /* Adjust addresses (in BE32 mode) before testing against watchpoint
285  * addresses.
286  */
287 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
288 
289 /* Callback function for when a watchpoint or breakpoint triggers. */
290 void arm_debug_excp_handler(CPUState *cs);
291 
292 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
293 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
294 {
295     return false;
296 }
297 static inline void arm_handle_psci_call(ARMCPU *cpu)
298 {
299     g_assert_not_reached();
300 }
301 #else
302 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
303 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
304 /* Actually handle a PSCI call */
305 void arm_handle_psci_call(ARMCPU *cpu);
306 #endif
307 
308 /**
309  * arm_clear_exclusive: clear the exclusive monitor
310  * @env: CPU env
311  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
312  */
313 static inline void arm_clear_exclusive(CPUARMState *env)
314 {
315     env->exclusive_addr = -1;
316 }
317 
318 /**
319  * ARMFaultType: type of an ARM MMU fault
320  * This corresponds to the v8A pseudocode's Fault enumeration,
321  * with extensions for QEMU internal conditions.
322  */
323 typedef enum ARMFaultType {
324     ARMFault_None,
325     ARMFault_AccessFlag,
326     ARMFault_Alignment,
327     ARMFault_Background,
328     ARMFault_Domain,
329     ARMFault_Permission,
330     ARMFault_Translation,
331     ARMFault_AddressSize,
332     ARMFault_SyncExternal,
333     ARMFault_SyncExternalOnWalk,
334     ARMFault_SyncParity,
335     ARMFault_SyncParityOnWalk,
336     ARMFault_AsyncParity,
337     ARMFault_AsyncExternal,
338     ARMFault_Debug,
339     ARMFault_TLBConflict,
340     ARMFault_Lockdown,
341     ARMFault_Exclusive,
342     ARMFault_ICacheMaint,
343     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
344     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
345 } ARMFaultType;
346 
347 /**
348  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
349  * @type: Type of fault
350  * @level: Table walk level (for translation, access flag and permission faults)
351  * @domain: Domain of the fault address (for non-LPAE CPUs only)
352  * @s2addr: Address that caused a fault at stage 2
353  * @stage2: True if we faulted at stage 2
354  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
355  * @s1ns: True if we faulted on a non-secure IPA while in secure state
356  * @ea: True if we should set the EA (external abort type) bit in syndrome
357  */
358 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
359 struct ARMMMUFaultInfo {
360     ARMFaultType type;
361     target_ulong s2addr;
362     int level;
363     int domain;
364     bool stage2;
365     bool s1ptw;
366     bool s1ns;
367     bool ea;
368 };
369 
370 /**
371  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
372  * Compare pseudocode EncodeSDFSC(), though unlike that function
373  * we set up a whole FSR-format code including domain field and
374  * putting the high bit of the FSC into bit 10.
375  */
376 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
377 {
378     uint32_t fsc;
379 
380     switch (fi->type) {
381     case ARMFault_None:
382         return 0;
383     case ARMFault_AccessFlag:
384         fsc = fi->level == 1 ? 0x3 : 0x6;
385         break;
386     case ARMFault_Alignment:
387         fsc = 0x1;
388         break;
389     case ARMFault_Permission:
390         fsc = fi->level == 1 ? 0xd : 0xf;
391         break;
392     case ARMFault_Domain:
393         fsc = fi->level == 1 ? 0x9 : 0xb;
394         break;
395     case ARMFault_Translation:
396         fsc = fi->level == 1 ? 0x5 : 0x7;
397         break;
398     case ARMFault_SyncExternal:
399         fsc = 0x8 | (fi->ea << 12);
400         break;
401     case ARMFault_SyncExternalOnWalk:
402         fsc = fi->level == 1 ? 0xc : 0xe;
403         fsc |= (fi->ea << 12);
404         break;
405     case ARMFault_SyncParity:
406         fsc = 0x409;
407         break;
408     case ARMFault_SyncParityOnWalk:
409         fsc = fi->level == 1 ? 0x40c : 0x40e;
410         break;
411     case ARMFault_AsyncParity:
412         fsc = 0x408;
413         break;
414     case ARMFault_AsyncExternal:
415         fsc = 0x406 | (fi->ea << 12);
416         break;
417     case ARMFault_Debug:
418         fsc = 0x2;
419         break;
420     case ARMFault_TLBConflict:
421         fsc = 0x400;
422         break;
423     case ARMFault_Lockdown:
424         fsc = 0x404;
425         break;
426     case ARMFault_Exclusive:
427         fsc = 0x405;
428         break;
429     case ARMFault_ICacheMaint:
430         fsc = 0x4;
431         break;
432     case ARMFault_Background:
433         fsc = 0x0;
434         break;
435     case ARMFault_QEMU_NSCExec:
436         fsc = M_FAKE_FSR_NSC_EXEC;
437         break;
438     case ARMFault_QEMU_SFault:
439         fsc = M_FAKE_FSR_SFAULT;
440         break;
441     default:
442         /* Other faults can't occur in a context that requires a
443          * short-format status code.
444          */
445         g_assert_not_reached();
446     }
447 
448     fsc |= (fi->domain << 4);
449     return fsc;
450 }
451 
452 /**
453  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
454  * Compare pseudocode EncodeLDFSC(), though unlike that function
455  * we fill in also the LPAE bit 9 of a DFSR format.
456  */
457 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
458 {
459     uint32_t fsc;
460 
461     switch (fi->type) {
462     case ARMFault_None:
463         return 0;
464     case ARMFault_AddressSize:
465         assert(fi->level >= -1 && fi->level <= 3);
466         if (fi->level < 0) {
467             fsc = 0b101001;
468         } else {
469             fsc = fi->level;
470         }
471         break;
472     case ARMFault_AccessFlag:
473         assert(fi->level >= 0 && fi->level <= 3);
474         fsc = 0b001000 | fi->level;
475         break;
476     case ARMFault_Permission:
477         assert(fi->level >= 0 && fi->level <= 3);
478         fsc = 0b001100 | fi->level;
479         break;
480     case ARMFault_Translation:
481         assert(fi->level >= -1 && fi->level <= 3);
482         if (fi->level < 0) {
483             fsc = 0b101011;
484         } else {
485             fsc = 0b000100 | fi->level;
486         }
487         break;
488     case ARMFault_SyncExternal:
489         fsc = 0x10 | (fi->ea << 12);
490         break;
491     case ARMFault_SyncExternalOnWalk:
492         assert(fi->level >= -1 && fi->level <= 3);
493         if (fi->level < 0) {
494             fsc = 0b010011;
495         } else {
496             fsc = 0b010100 | fi->level;
497         }
498         fsc |= fi->ea << 12;
499         break;
500     case ARMFault_SyncParity:
501         fsc = 0x18;
502         break;
503     case ARMFault_SyncParityOnWalk:
504         assert(fi->level >= -1 && fi->level <= 3);
505         if (fi->level < 0) {
506             fsc = 0b011011;
507         } else {
508             fsc = 0b011100 | fi->level;
509         }
510         break;
511     case ARMFault_AsyncParity:
512         fsc = 0x19;
513         break;
514     case ARMFault_AsyncExternal:
515         fsc = 0x11 | (fi->ea << 12);
516         break;
517     case ARMFault_Alignment:
518         fsc = 0x21;
519         break;
520     case ARMFault_Debug:
521         fsc = 0x22;
522         break;
523     case ARMFault_TLBConflict:
524         fsc = 0x30;
525         break;
526     case ARMFault_Lockdown:
527         fsc = 0x34;
528         break;
529     case ARMFault_Exclusive:
530         fsc = 0x35;
531         break;
532     default:
533         /* Other faults can't occur in a context that requires a
534          * long-format status code.
535          */
536         g_assert_not_reached();
537     }
538 
539     fsc |= 1 << 9;
540     return fsc;
541 }
542 
543 static inline bool arm_extabort_type(MemTxResult result)
544 {
545     /* The EA bit in syndromes and fault status registers is an
546      * IMPDEF classification of external aborts. ARM implementations
547      * usually use this to indicate AXI bus Decode error (0) or
548      * Slave error (1); in QEMU we follow that.
549      */
550     return result != MEMTX_DECODE_ERROR;
551 }
552 
553 #ifdef CONFIG_USER_ONLY
554 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
555                             MMUAccessType access_type,
556                             bool maperr, uintptr_t ra);
557 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
558                            MMUAccessType access_type, uintptr_t ra);
559 #else
560 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
561                       MMUAccessType access_type, int mmu_idx,
562                       bool probe, uintptr_t retaddr);
563 #endif
564 
565 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
566 {
567     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
568 }
569 
570 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
571 {
572     if (arm_feature(env, ARM_FEATURE_M)) {
573         return mmu_idx | ARM_MMU_IDX_M;
574     } else {
575         return mmu_idx | ARM_MMU_IDX_A;
576     }
577 }
578 
579 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
580 {
581     /* AArch64 is always a-profile. */
582     return mmu_idx | ARM_MMU_IDX_A;
583 }
584 
585 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
586 
587 /*
588  * Return the MMU index for a v7M CPU with all relevant information
589  * manually specified.
590  */
591 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
592                               bool secstate, bool priv, bool negpri);
593 
594 /*
595  * Return the MMU index for a v7M CPU in the specified security and
596  * privilege state.
597  */
598 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
599                                                 bool secstate, bool priv);
600 
601 /* Return the MMU index for a v7M CPU in the specified security state */
602 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
603 
604 /* Return true if the stage 1 translation regime is using LPAE format page
605  * tables */
606 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
607 
608 /* Raise a data fault alignment exception for the specified virtual address */
609 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
610                                  MMUAccessType access_type,
611                                  int mmu_idx, uintptr_t retaddr) QEMU_NORETURN;
612 
613 /* arm_cpu_do_transaction_failed: handle a memory system error response
614  * (eg "no device/memory present at address") by raising an external abort
615  * exception
616  */
617 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
618                                    vaddr addr, unsigned size,
619                                    MMUAccessType access_type,
620                                    int mmu_idx, MemTxAttrs attrs,
621                                    MemTxResult response, uintptr_t retaddr);
622 
623 /* Call any registered EL change hooks */
624 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
625 {
626     ARMELChangeHook *hook, *next;
627     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
628         hook->hook(cpu, hook->opaque);
629     }
630 }
631 static inline void arm_call_el_change_hook(ARMCPU *cpu)
632 {
633     ARMELChangeHook *hook, *next;
634     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
635         hook->hook(cpu, hook->opaque);
636     }
637 }
638 
639 /* Return true if this address translation regime has two ranges.  */
640 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
641 {
642     switch (mmu_idx) {
643     case ARMMMUIdx_Stage1_E0:
644     case ARMMMUIdx_Stage1_E1:
645     case ARMMMUIdx_Stage1_E1_PAN:
646     case ARMMMUIdx_Stage1_SE0:
647     case ARMMMUIdx_Stage1_SE1:
648     case ARMMMUIdx_Stage1_SE1_PAN:
649     case ARMMMUIdx_E10_0:
650     case ARMMMUIdx_E10_1:
651     case ARMMMUIdx_E10_1_PAN:
652     case ARMMMUIdx_E20_0:
653     case ARMMMUIdx_E20_2:
654     case ARMMMUIdx_E20_2_PAN:
655     case ARMMMUIdx_SE10_0:
656     case ARMMMUIdx_SE10_1:
657     case ARMMMUIdx_SE10_1_PAN:
658     case ARMMMUIdx_SE20_0:
659     case ARMMMUIdx_SE20_2:
660     case ARMMMUIdx_SE20_2_PAN:
661         return true;
662     default:
663         return false;
664     }
665 }
666 
667 /* Return true if this address translation regime is secure */
668 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
669 {
670     switch (mmu_idx) {
671     case ARMMMUIdx_E10_0:
672     case ARMMMUIdx_E10_1:
673     case ARMMMUIdx_E10_1_PAN:
674     case ARMMMUIdx_E20_0:
675     case ARMMMUIdx_E20_2:
676     case ARMMMUIdx_E20_2_PAN:
677     case ARMMMUIdx_Stage1_E0:
678     case ARMMMUIdx_Stage1_E1:
679     case ARMMMUIdx_Stage1_E1_PAN:
680     case ARMMMUIdx_E2:
681     case ARMMMUIdx_Stage2:
682     case ARMMMUIdx_MPrivNegPri:
683     case ARMMMUIdx_MUserNegPri:
684     case ARMMMUIdx_MPriv:
685     case ARMMMUIdx_MUser:
686         return false;
687     case ARMMMUIdx_SE3:
688     case ARMMMUIdx_SE10_0:
689     case ARMMMUIdx_SE10_1:
690     case ARMMMUIdx_SE10_1_PAN:
691     case ARMMMUIdx_SE20_0:
692     case ARMMMUIdx_SE20_2:
693     case ARMMMUIdx_SE20_2_PAN:
694     case ARMMMUIdx_Stage1_SE0:
695     case ARMMMUIdx_Stage1_SE1:
696     case ARMMMUIdx_Stage1_SE1_PAN:
697     case ARMMMUIdx_SE2:
698     case ARMMMUIdx_Stage2_S:
699     case ARMMMUIdx_MSPrivNegPri:
700     case ARMMMUIdx_MSUserNegPri:
701     case ARMMMUIdx_MSPriv:
702     case ARMMMUIdx_MSUser:
703         return true;
704     default:
705         g_assert_not_reached();
706     }
707 }
708 
709 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
710 {
711     switch (mmu_idx) {
712     case ARMMMUIdx_Stage1_E1_PAN:
713     case ARMMMUIdx_Stage1_SE1_PAN:
714     case ARMMMUIdx_E10_1_PAN:
715     case ARMMMUIdx_E20_2_PAN:
716     case ARMMMUIdx_SE10_1_PAN:
717     case ARMMMUIdx_SE20_2_PAN:
718         return true;
719     default:
720         return false;
721     }
722 }
723 
724 /* Return the exception level which controls this address translation regime */
725 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
726 {
727     switch (mmu_idx) {
728     case ARMMMUIdx_SE20_0:
729     case ARMMMUIdx_SE20_2:
730     case ARMMMUIdx_SE20_2_PAN:
731     case ARMMMUIdx_E20_0:
732     case ARMMMUIdx_E20_2:
733     case ARMMMUIdx_E20_2_PAN:
734     case ARMMMUIdx_Stage2:
735     case ARMMMUIdx_Stage2_S:
736     case ARMMMUIdx_SE2:
737     case ARMMMUIdx_E2:
738         return 2;
739     case ARMMMUIdx_SE3:
740         return 3;
741     case ARMMMUIdx_SE10_0:
742     case ARMMMUIdx_Stage1_SE0:
743         return arm_el_is_aa64(env, 3) ? 1 : 3;
744     case ARMMMUIdx_SE10_1:
745     case ARMMMUIdx_SE10_1_PAN:
746     case ARMMMUIdx_Stage1_E0:
747     case ARMMMUIdx_Stage1_E1:
748     case ARMMMUIdx_Stage1_E1_PAN:
749     case ARMMMUIdx_Stage1_SE1:
750     case ARMMMUIdx_Stage1_SE1_PAN:
751     case ARMMMUIdx_E10_0:
752     case ARMMMUIdx_E10_1:
753     case ARMMMUIdx_E10_1_PAN:
754     case ARMMMUIdx_MPrivNegPri:
755     case ARMMMUIdx_MUserNegPri:
756     case ARMMMUIdx_MPriv:
757     case ARMMMUIdx_MUser:
758     case ARMMMUIdx_MSPrivNegPri:
759     case ARMMMUIdx_MSUserNegPri:
760     case ARMMMUIdx_MSPriv:
761     case ARMMMUIdx_MSUser:
762         return 1;
763     default:
764         g_assert_not_reached();
765     }
766 }
767 
768 /* Return the TCR controlling this translation regime */
769 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
770 {
771     if (mmu_idx == ARMMMUIdx_Stage2) {
772         return &env->cp15.vtcr_el2;
773     }
774     if (mmu_idx == ARMMMUIdx_Stage2_S) {
775         /*
776          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
777          * those are not currently used by QEMU, so just return VSTCR_EL2.
778          */
779         return &env->cp15.vstcr_el2;
780     }
781     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
782 }
783 
784 /* Return the FSR value for a debug exception (watchpoint, hardware
785  * breakpoint or BKPT insn) targeting the specified exception level.
786  */
787 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
788 {
789     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
790     int target_el = arm_debug_target_el(env);
791     bool using_lpae = false;
792 
793     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
794         using_lpae = true;
795     } else {
796         if (arm_feature(env, ARM_FEATURE_LPAE) &&
797             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
798             using_lpae = true;
799         }
800     }
801 
802     if (using_lpae) {
803         return arm_fi_to_lfsc(&fi);
804     } else {
805         return arm_fi_to_sfsc(&fi);
806     }
807 }
808 
809 /**
810  * arm_num_brps: Return number of implemented breakpoints.
811  * Note that the ID register BRPS field is "number of bps - 1",
812  * and we return the actual number of breakpoints.
813  */
814 static inline int arm_num_brps(ARMCPU *cpu)
815 {
816     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
817         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
818     } else {
819         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
820     }
821 }
822 
823 /**
824  * arm_num_wrps: Return number of implemented watchpoints.
825  * Note that the ID register WRPS field is "number of wps - 1",
826  * and we return the actual number of watchpoints.
827  */
828 static inline int arm_num_wrps(ARMCPU *cpu)
829 {
830     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
831         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
832     } else {
833         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
834     }
835 }
836 
837 /**
838  * arm_num_ctx_cmps: Return number of implemented context comparators.
839  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
840  * and we return the actual number of comparators.
841  */
842 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
843 {
844     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
845         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
846     } else {
847         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
848     }
849 }
850 
851 /**
852  * v7m_using_psp: Return true if using process stack pointer
853  * Return true if the CPU is currently using the process stack
854  * pointer, or false if it is using the main stack pointer.
855  */
856 static inline bool v7m_using_psp(CPUARMState *env)
857 {
858     /* Handler mode always uses the main stack; for thread mode
859      * the CONTROL.SPSEL bit determines the answer.
860      * Note that in v7M it is not possible to be in Handler mode with
861      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
862      */
863     return !arm_v7m_is_handler_mode(env) &&
864         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
865 }
866 
867 /**
868  * v7m_sp_limit: Return SP limit for current CPU state
869  * Return the SP limit value for the current CPU security state
870  * and stack pointer.
871  */
872 static inline uint32_t v7m_sp_limit(CPUARMState *env)
873 {
874     if (v7m_using_psp(env)) {
875         return env->v7m.psplim[env->v7m.secure];
876     } else {
877         return env->v7m.msplim[env->v7m.secure];
878     }
879 }
880 
881 /**
882  * v7m_cpacr_pass:
883  * Return true if the v7M CPACR permits access to the FPU for the specified
884  * security state and privilege level.
885  */
886 static inline bool v7m_cpacr_pass(CPUARMState *env,
887                                   bool is_secure, bool is_priv)
888 {
889     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
890     case 0:
891     case 2: /* UNPREDICTABLE: we treat like 0 */
892         return false;
893     case 1:
894         return is_priv;
895     case 3:
896         return true;
897     default:
898         g_assert_not_reached();
899     }
900 }
901 
902 /**
903  * aarch32_mode_name(): Return name of the AArch32 CPU mode
904  * @psr: Program Status Register indicating CPU mode
905  *
906  * Returns, for debug logging purposes, a printable representation
907  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
908  * the low bits of the specified PSR.
909  */
910 static inline const char *aarch32_mode_name(uint32_t psr)
911 {
912     static const char cpu_mode_names[16][4] = {
913         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
914         "???", "???", "hyp", "und", "???", "???", "???", "sys"
915     };
916 
917     return cpu_mode_names[psr & 0xf];
918 }
919 
920 /**
921  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
922  *
923  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
924  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
925  * Must be called with the iothread lock held.
926  */
927 void arm_cpu_update_virq(ARMCPU *cpu);
928 
929 /**
930  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
931  *
932  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
933  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
934  * Must be called with the iothread lock held.
935  */
936 void arm_cpu_update_vfiq(ARMCPU *cpu);
937 
938 /**
939  * arm_mmu_idx_el:
940  * @env: The cpu environment
941  * @el: The EL to use.
942  *
943  * Return the full ARMMMUIdx for the translation regime for EL.
944  */
945 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
946 
947 /**
948  * arm_mmu_idx:
949  * @env: The cpu environment
950  *
951  * Return the full ARMMMUIdx for the current translation regime.
952  */
953 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
954 
955 /**
956  * arm_stage1_mmu_idx:
957  * @env: The cpu environment
958  *
959  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
960  */
961 #ifdef CONFIG_USER_ONLY
962 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
963 {
964     return ARMMMUIdx_Stage1_E0;
965 }
966 #else
967 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
968 #endif
969 
970 /**
971  * arm_mmu_idx_is_stage1_of_2:
972  * @mmu_idx: The ARMMMUIdx to test
973  *
974  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
975  * first stage of a two stage regime.
976  */
977 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
978 {
979     switch (mmu_idx) {
980     case ARMMMUIdx_Stage1_E0:
981     case ARMMMUIdx_Stage1_E1:
982     case ARMMMUIdx_Stage1_E1_PAN:
983     case ARMMMUIdx_Stage1_SE0:
984     case ARMMMUIdx_Stage1_SE1:
985     case ARMMMUIdx_Stage1_SE1_PAN:
986         return true;
987     default:
988         return false;
989     }
990 }
991 
992 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
993                                                const ARMISARegisters *id)
994 {
995     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
996 
997     if ((features >> ARM_FEATURE_V4T) & 1) {
998         valid |= CPSR_T;
999     }
1000     if ((features >> ARM_FEATURE_V5) & 1) {
1001         valid |= CPSR_Q; /* V5TE in reality*/
1002     }
1003     if ((features >> ARM_FEATURE_V6) & 1) {
1004         valid |= CPSR_E | CPSR_GE;
1005     }
1006     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1007         valid |= CPSR_IT;
1008     }
1009     if (isar_feature_aa32_jazelle(id)) {
1010         valid |= CPSR_J;
1011     }
1012     if (isar_feature_aa32_pan(id)) {
1013         valid |= CPSR_PAN;
1014     }
1015     if (isar_feature_aa32_dit(id)) {
1016         valid |= CPSR_DIT;
1017     }
1018     if (isar_feature_aa32_ssbs(id)) {
1019         valid |= CPSR_SSBS;
1020     }
1021 
1022     return valid;
1023 }
1024 
1025 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1026 {
1027     uint32_t valid;
1028 
1029     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1030     if (isar_feature_aa64_bti(id)) {
1031         valid |= PSTATE_BTYPE;
1032     }
1033     if (isar_feature_aa64_pan(id)) {
1034         valid |= PSTATE_PAN;
1035     }
1036     if (isar_feature_aa64_uao(id)) {
1037         valid |= PSTATE_UAO;
1038     }
1039     if (isar_feature_aa64_dit(id)) {
1040         valid |= PSTATE_DIT;
1041     }
1042     if (isar_feature_aa64_ssbs(id)) {
1043         valid |= PSTATE_SSBS;
1044     }
1045     if (isar_feature_aa64_mte(id)) {
1046         valid |= PSTATE_TCO;
1047     }
1048 
1049     return valid;
1050 }
1051 
1052 /*
1053  * Parameters of a given virtual address, as extracted from the
1054  * translation control register (TCR) for a given regime.
1055  */
1056 typedef struct ARMVAParameters {
1057     unsigned tsz    : 8;
1058     unsigned ps     : 3;
1059     unsigned sh     : 2;
1060     unsigned select : 1;
1061     bool tbi        : 1;
1062     bool epd        : 1;
1063     bool hpd        : 1;
1064     bool using16k   : 1;
1065     bool using64k   : 1;
1066     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1067     bool ds         : 1;
1068 } ARMVAParameters;
1069 
1070 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1071                                    ARMMMUIdx mmu_idx, bool data);
1072 
1073 static inline int exception_target_el(CPUARMState *env)
1074 {
1075     int target_el = MAX(1, arm_current_el(env));
1076 
1077     /*
1078      * No such thing as secure EL1 if EL3 is aarch32,
1079      * so update the target EL to EL3 in this case.
1080      */
1081     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1082         target_el = 3;
1083     }
1084 
1085     return target_el;
1086 }
1087 
1088 /* Determine if allocation tags are available.  */
1089 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1090                                                  uint64_t sctlr)
1091 {
1092     if (el < 3
1093         && arm_feature(env, ARM_FEATURE_EL3)
1094         && !(env->cp15.scr_el3 & SCR_ATA)) {
1095         return false;
1096     }
1097     if (el < 2 && arm_is_el2_enabled(env)) {
1098         uint64_t hcr = arm_hcr_el2_eff(env);
1099         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1100             return false;
1101         }
1102     }
1103     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1104     return sctlr != 0;
1105 }
1106 
1107 #ifndef CONFIG_USER_ONLY
1108 
1109 /* Security attributes for an address, as returned by v8m_security_lookup. */
1110 typedef struct V8M_SAttributes {
1111     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1112     bool ns;
1113     bool nsc;
1114     uint8_t sregion;
1115     bool srvalid;
1116     uint8_t iregion;
1117     bool irvalid;
1118 } V8M_SAttributes;
1119 
1120 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1121                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1122                          V8M_SAttributes *sattrs);
1123 
1124 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1125                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1126                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1127                        int *prot, bool *is_subpage,
1128                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1129 
1130 /* Cacheability and shareability attributes for a memory access */
1131 typedef struct ARMCacheAttrs {
1132     unsigned int attrs:8; /* as in the MAIR register encoding */
1133     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1134 } ARMCacheAttrs;
1135 
1136 bool get_phys_addr(CPUARMState *env, target_ulong address,
1137                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1138                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1139                    target_ulong *page_size,
1140                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1141     __attribute__((nonnull));
1142 
1143 void arm_log_exception(CPUState *cs);
1144 
1145 #endif /* !CONFIG_USER_ONLY */
1146 
1147 /*
1148  * The log2 of the words in the tag block, for GMID_EL1.BS.
1149  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1150  */
1151 #define GMID_EL1_BS  6
1152 
1153 /* We associate one allocation tag per 16 bytes, the minimum.  */
1154 #define LOG2_TAG_GRANULE 4
1155 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1156 
1157 /*
1158  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1159  * the same simd_desc() encoding due to restrictions on size.
1160  * Use these instead.
1161  */
1162 FIELD(PREDDESC, OPRSZ, 0, 6)
1163 FIELD(PREDDESC, ESZ, 6, 2)
1164 FIELD(PREDDESC, DATA, 8, 24)
1165 
1166 /*
1167  * The SVE simd_data field, for memory ops, contains either
1168  * rd (5 bits) or a shift count (2 bits).
1169  */
1170 #define SVE_MTEDESC_SHIFT 5
1171 
1172 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1173 FIELD(MTEDESC, MIDX,  0, 4)
1174 FIELD(MTEDESC, TBI,   4, 2)
1175 FIELD(MTEDESC, TCMA,  6, 2)
1176 FIELD(MTEDESC, WRITE, 8, 1)
1177 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1178 
1179 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1180 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1181 
1182 static inline int allocation_tag_from_addr(uint64_t ptr)
1183 {
1184     return extract64(ptr, 56, 4);
1185 }
1186 
1187 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1188 {
1189     return deposit64(ptr, 56, 4, rtag);
1190 }
1191 
1192 /* Return true if tbi bits mean that the access is checked.  */
1193 static inline bool tbi_check(uint32_t desc, int bit55)
1194 {
1195     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1196 }
1197 
1198 /* Return true if tcma bits mean that the access is unchecked.  */
1199 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1200 {
1201     /*
1202      * We had extracted bit55 and ptr_tag for other reasons, so fold
1203      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1204      */
1205     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1206     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1207     return tcma && match;
1208 }
1209 
1210 /*
1211  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1212  * for the tag to be present in the FAR_ELx register.  But for user-only
1213  * mode, we do not have a TLB with which to implement this, so we must
1214  * remove the top byte.
1215  */
1216 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1217 {
1218 #ifdef CONFIG_USER_ONLY
1219     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1220     ptr &= sextract64(ptr, 0, 56);
1221 #endif
1222     return ptr;
1223 }
1224 
1225 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1226 {
1227 #ifdef CONFIG_USER_ONLY
1228     int64_t clean_ptr = sextract64(ptr, 0, 56);
1229     if (tbi_check(desc, clean_ptr < 0)) {
1230         ptr = clean_ptr;
1231     }
1232 #endif
1233     return ptr;
1234 }
1235 
1236 /* Values for M-profile PSR.ECI for MVE insns */
1237 enum MVEECIState {
1238     ECI_NONE = 0, /* No completed beats */
1239     ECI_A0 = 1, /* Completed: A0 */
1240     ECI_A0A1 = 2, /* Completed: A0, A1 */
1241     /* 3 is reserved */
1242     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1243     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1244     /* All other values reserved */
1245 };
1246 
1247 /* Definitions for the PMU registers */
1248 #define PMCRN_MASK  0xf800
1249 #define PMCRN_SHIFT 11
1250 #define PMCRLC  0x40
1251 #define PMCRDP  0x20
1252 #define PMCRX   0x10
1253 #define PMCRD   0x8
1254 #define PMCRC   0x4
1255 #define PMCRP   0x2
1256 #define PMCRE   0x1
1257 /*
1258  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1259  * which can be written as 1 to trigger behaviour but which stay RAZ).
1260  */
1261 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1262 
1263 #define PMXEVTYPER_P          0x80000000
1264 #define PMXEVTYPER_U          0x40000000
1265 #define PMXEVTYPER_NSK        0x20000000
1266 #define PMXEVTYPER_NSU        0x10000000
1267 #define PMXEVTYPER_NSH        0x08000000
1268 #define PMXEVTYPER_M          0x04000000
1269 #define PMXEVTYPER_MT         0x02000000
1270 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1271 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1272                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1273                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1274                                PMXEVTYPER_EVTCOUNT)
1275 
1276 #define PMCCFILTR             0xf8000000
1277 #define PMCCFILTR_M           PMXEVTYPER_M
1278 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1279 
1280 static inline uint32_t pmu_num_counters(CPUARMState *env)
1281 {
1282   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1283 }
1284 
1285 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1286 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1287 {
1288   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1289 }
1290 
1291 #ifdef TARGET_AARCH64
1292 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1293 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1294 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1295 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1296 #endif
1297 
1298 #endif
1299