xref: /openbmc/qemu/target/arm/internals.h (revision 53d28455)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /**
98  * raise_exception: Raise the specified exception.
99  * Raise a guest exception with the specified value, syndrome register
100  * and target exception level. This should be called from helper functions,
101  * and never returns because we will longjump back up to the CPU main loop.
102  */
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104                                    uint32_t syndrome, uint32_t target_el);
105 
106 /*
107  * For AArch64, map a given EL to an index in the banked_spsr array.
108  * Note that this mapping and the AArch32 mapping defined in bank_number()
109  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110  * mandated mapping between each other.
111  */
112 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
113 {
114     static const unsigned int map[4] = {
115         [1] = BANK_SVC, /* EL1.  */
116         [2] = BANK_HYP, /* EL2.  */
117         [3] = BANK_MON, /* EL3.  */
118     };
119     assert(el >= 1 && el <= 3);
120     return map[el];
121 }
122 
123 /* Map CPU modes onto saved register banks.  */
124 static inline int bank_number(int mode)
125 {
126     switch (mode) {
127     case ARM_CPU_MODE_USR:
128     case ARM_CPU_MODE_SYS:
129         return BANK_USRSYS;
130     case ARM_CPU_MODE_SVC:
131         return BANK_SVC;
132     case ARM_CPU_MODE_ABT:
133         return BANK_ABT;
134     case ARM_CPU_MODE_UND:
135         return BANK_UND;
136     case ARM_CPU_MODE_IRQ:
137         return BANK_IRQ;
138     case ARM_CPU_MODE_FIQ:
139         return BANK_FIQ;
140     case ARM_CPU_MODE_HYP:
141         return BANK_HYP;
142     case ARM_CPU_MODE_MON:
143         return BANK_MON;
144     }
145     g_assert_not_reached();
146 }
147 
148 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
149 void arm_translate_init(void);
150 
151 enum arm_fprounding {
152     FPROUNDING_TIEEVEN,
153     FPROUNDING_POSINF,
154     FPROUNDING_NEGINF,
155     FPROUNDING_ZERO,
156     FPROUNDING_TIEAWAY,
157     FPROUNDING_ODD
158 };
159 
160 int arm_rmode_to_sf(int rmode);
161 
162 static inline void aarch64_save_sp(CPUARMState *env, int el)
163 {
164     if (env->pstate & PSTATE_SP) {
165         env->sp_el[el] = env->xregs[31];
166     } else {
167         env->sp_el[0] = env->xregs[31];
168     }
169 }
170 
171 static inline void aarch64_restore_sp(CPUARMState *env, int el)
172 {
173     if (env->pstate & PSTATE_SP) {
174         env->xregs[31] = env->sp_el[el];
175     } else {
176         env->xregs[31] = env->sp_el[0];
177     }
178 }
179 
180 static inline void update_spsel(CPUARMState *env, uint32_t imm)
181 {
182     unsigned int cur_el = arm_current_el(env);
183     /* Update PSTATE SPSel bit; this requires us to update the
184      * working stack pointer in xregs[31].
185      */
186     if (!((imm ^ env->pstate) & PSTATE_SP)) {
187         return;
188     }
189     aarch64_save_sp(env, cur_el);
190     env->pstate = deposit32(env->pstate, 0, 1, imm);
191 
192     /* We rely on illegal updates to SPsel from EL0 to get trapped
193      * at translation time.
194      */
195     assert(cur_el >= 1 && cur_el <= 3);
196     aarch64_restore_sp(env, cur_el);
197 }
198 
199 /*
200  * arm_pamax
201  * @cpu: ARMCPU
202  *
203  * Returns the implementation defined bit-width of physical addresses.
204  * The ARMv8 reference manuals refer to this as PAMax().
205  */
206 static inline unsigned int arm_pamax(ARMCPU *cpu)
207 {
208     static const unsigned int pamax_map[] = {
209         [0] = 32,
210         [1] = 36,
211         [2] = 40,
212         [3] = 42,
213         [4] = 44,
214         [5] = 48,
215     };
216     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
217 
218     /* id_aa64mmfr0 is a read-only register so values outside of the
219      * supported mappings can be considered an implementation error.  */
220     assert(parange < ARRAY_SIZE(pamax_map));
221     return pamax_map[parange];
222 }
223 
224 /* Return true if extended addresses are enabled.
225  * This is always the case if our translation regime is 64 bit,
226  * but depends on TTBCR.EAE for 32 bit.
227  */
228 static inline bool extended_addresses_enabled(CPUARMState *env)
229 {
230     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
231     return arm_el_is_aa64(env, 1) ||
232            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
233 }
234 
235 /* Valid Syndrome Register EC field values */
236 enum arm_exception_class {
237     EC_UNCATEGORIZED          = 0x00,
238     EC_WFX_TRAP               = 0x01,
239     EC_CP15RTTRAP             = 0x03,
240     EC_CP15RRTTRAP            = 0x04,
241     EC_CP14RTTRAP             = 0x05,
242     EC_CP14DTTRAP             = 0x06,
243     EC_ADVSIMDFPACCESSTRAP    = 0x07,
244     EC_FPIDTRAP               = 0x08,
245     EC_CP14RRTTRAP            = 0x0c,
246     EC_ILLEGALSTATE           = 0x0e,
247     EC_AA32_SVC               = 0x11,
248     EC_AA32_HVC               = 0x12,
249     EC_AA32_SMC               = 0x13,
250     EC_AA64_SVC               = 0x15,
251     EC_AA64_HVC               = 0x16,
252     EC_AA64_SMC               = 0x17,
253     EC_SYSTEMREGISTERTRAP     = 0x18,
254     EC_SVEACCESSTRAP          = 0x19,
255     EC_INSNABORT              = 0x20,
256     EC_INSNABORT_SAME_EL      = 0x21,
257     EC_PCALIGNMENT            = 0x22,
258     EC_DATAABORT              = 0x24,
259     EC_DATAABORT_SAME_EL      = 0x25,
260     EC_SPALIGNMENT            = 0x26,
261     EC_AA32_FPTRAP            = 0x28,
262     EC_AA64_FPTRAP            = 0x2c,
263     EC_SERROR                 = 0x2f,
264     EC_BREAKPOINT             = 0x30,
265     EC_BREAKPOINT_SAME_EL     = 0x31,
266     EC_SOFTWARESTEP           = 0x32,
267     EC_SOFTWARESTEP_SAME_EL   = 0x33,
268     EC_WATCHPOINT             = 0x34,
269     EC_WATCHPOINT_SAME_EL     = 0x35,
270     EC_AA32_BKPT              = 0x38,
271     EC_VECTORCATCH            = 0x3a,
272     EC_AA64_BKPT              = 0x3c,
273 };
274 
275 #define ARM_EL_EC_SHIFT 26
276 #define ARM_EL_IL_SHIFT 25
277 #define ARM_EL_ISV_SHIFT 24
278 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
279 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
280 
281 static inline uint32_t syn_get_ec(uint32_t syn)
282 {
283     return syn >> ARM_EL_EC_SHIFT;
284 }
285 
286 /* Utility functions for constructing various kinds of syndrome value.
287  * Note that in general we follow the AArch64 syndrome values; in a
288  * few cases the value in HSR for exceptions taken to AArch32 Hyp
289  * mode differs slightly, and we fix this up when populating HSR in
290  * arm_cpu_do_interrupt_aarch32_hyp().
291  * The exception is FP/SIMD access traps -- these report extra information
292  * when taking an exception to AArch32. For those we include the extra coproc
293  * and TA fields, and mask them out when taking the exception to AArch64.
294  */
295 static inline uint32_t syn_uncategorized(void)
296 {
297     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
298 }
299 
300 static inline uint32_t syn_aa64_svc(uint32_t imm16)
301 {
302     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
303 }
304 
305 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
306 {
307     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
308 }
309 
310 static inline uint32_t syn_aa64_smc(uint32_t imm16)
311 {
312     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
313 }
314 
315 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
316 {
317     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
318         | (is_16bit ? 0 : ARM_EL_IL);
319 }
320 
321 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
322 {
323     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
324 }
325 
326 static inline uint32_t syn_aa32_smc(void)
327 {
328     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
329 }
330 
331 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
332 {
333     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
334 }
335 
336 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
337 {
338     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
339         | (is_16bit ? 0 : ARM_EL_IL);
340 }
341 
342 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
343                                            int crn, int crm, int rt,
344                                            int isread)
345 {
346     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
347         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
348         | (crm << 1) | isread;
349 }
350 
351 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
352                                         int crn, int crm, int rt, int isread,
353                                         bool is_16bit)
354 {
355     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
356         | (is_16bit ? 0 : ARM_EL_IL)
357         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
358         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
359 }
360 
361 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
362                                         int crn, int crm, int rt, int isread,
363                                         bool is_16bit)
364 {
365     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
366         | (is_16bit ? 0 : ARM_EL_IL)
367         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
368         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
369 }
370 
371 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
372                                          int rt, int rt2, int isread,
373                                          bool is_16bit)
374 {
375     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
376         | (is_16bit ? 0 : ARM_EL_IL)
377         | (cv << 24) | (cond << 20) | (opc1 << 16)
378         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
379 }
380 
381 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
382                                          int rt, int rt2, int isread,
383                                          bool is_16bit)
384 {
385     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
386         | (is_16bit ? 0 : ARM_EL_IL)
387         | (cv << 24) | (cond << 20) | (opc1 << 16)
388         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
389 }
390 
391 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
392 {
393     /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
394     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
395         | (is_16bit ? 0 : ARM_EL_IL)
396         | (cv << 24) | (cond << 20) | 0xa;
397 }
398 
399 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
400 {
401     /* AArch32 SIMD trap: TA == 1 coproc == 0 */
402     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
403         | (is_16bit ? 0 : ARM_EL_IL)
404         | (cv << 24) | (cond << 20) | (1 << 5);
405 }
406 
407 static inline uint32_t syn_sve_access_trap(void)
408 {
409     return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
410 }
411 
412 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
413 {
414     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
415         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
416 }
417 
418 static inline uint32_t syn_data_abort_no_iss(int same_el,
419                                              int ea, int cm, int s1ptw,
420                                              int wnr, int fsc)
421 {
422     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
423            | ARM_EL_IL
424            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
425 }
426 
427 static inline uint32_t syn_data_abort_with_iss(int same_el,
428                                                int sas, int sse, int srt,
429                                                int sf, int ar,
430                                                int ea, int cm, int s1ptw,
431                                                int wnr, int fsc,
432                                                bool is_16bit)
433 {
434     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
435            | (is_16bit ? 0 : ARM_EL_IL)
436            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
437            | (sf << 15) | (ar << 14)
438            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
439 }
440 
441 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
442 {
443     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
444         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
445 }
446 
447 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
448 {
449     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
450         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
451 }
452 
453 static inline uint32_t syn_breakpoint(int same_el)
454 {
455     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
456         | ARM_EL_IL | 0x22;
457 }
458 
459 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
460 {
461     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
462            (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
463            (cv << 24) | (cond << 20) | ti;
464 }
465 
466 /* Update a QEMU watchpoint based on the information the guest has set in the
467  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
468  */
469 void hw_watchpoint_update(ARMCPU *cpu, int n);
470 /* Update the QEMU watchpoints for every guest watchpoint. This does a
471  * complete delete-and-reinstate of the QEMU watchpoint list and so is
472  * suitable for use after migration or on reset.
473  */
474 void hw_watchpoint_update_all(ARMCPU *cpu);
475 /* Update a QEMU breakpoint based on the information the guest has set in the
476  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
477  */
478 void hw_breakpoint_update(ARMCPU *cpu, int n);
479 /* Update the QEMU breakpoints for every guest breakpoint. This does a
480  * complete delete-and-reinstate of the QEMU breakpoint list and so is
481  * suitable for use after migration or on reset.
482  */
483 void hw_breakpoint_update_all(ARMCPU *cpu);
484 
485 /* Callback function for checking if a watchpoint should trigger. */
486 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
487 
488 /* Adjust addresses (in BE32 mode) before testing against watchpoint
489  * addresses.
490  */
491 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
492 
493 /* Callback function for when a watchpoint or breakpoint triggers. */
494 void arm_debug_excp_handler(CPUState *cs);
495 
496 #ifdef CONFIG_USER_ONLY
497 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
498 {
499     return false;
500 }
501 #else
502 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
503 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
504 /* Actually handle a PSCI call */
505 void arm_handle_psci_call(ARMCPU *cpu);
506 #endif
507 
508 /**
509  * arm_clear_exclusive: clear the exclusive monitor
510  * @env: CPU env
511  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
512  */
513 static inline void arm_clear_exclusive(CPUARMState *env)
514 {
515     env->exclusive_addr = -1;
516 }
517 
518 /**
519  * ARMFaultType: type of an ARM MMU fault
520  * This corresponds to the v8A pseudocode's Fault enumeration,
521  * with extensions for QEMU internal conditions.
522  */
523 typedef enum ARMFaultType {
524     ARMFault_None,
525     ARMFault_AccessFlag,
526     ARMFault_Alignment,
527     ARMFault_Background,
528     ARMFault_Domain,
529     ARMFault_Permission,
530     ARMFault_Translation,
531     ARMFault_AddressSize,
532     ARMFault_SyncExternal,
533     ARMFault_SyncExternalOnWalk,
534     ARMFault_SyncParity,
535     ARMFault_SyncParityOnWalk,
536     ARMFault_AsyncParity,
537     ARMFault_AsyncExternal,
538     ARMFault_Debug,
539     ARMFault_TLBConflict,
540     ARMFault_Lockdown,
541     ARMFault_Exclusive,
542     ARMFault_ICacheMaint,
543     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
544     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
545 } ARMFaultType;
546 
547 /**
548  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
549  * @type: Type of fault
550  * @level: Table walk level (for translation, access flag and permission faults)
551  * @domain: Domain of the fault address (for non-LPAE CPUs only)
552  * @s2addr: Address that caused a fault at stage 2
553  * @stage2: True if we faulted at stage 2
554  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
555  * @ea: True if we should set the EA (external abort type) bit in syndrome
556  */
557 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
558 struct ARMMMUFaultInfo {
559     ARMFaultType type;
560     target_ulong s2addr;
561     int level;
562     int domain;
563     bool stage2;
564     bool s1ptw;
565     bool ea;
566 };
567 
568 /**
569  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
570  * Compare pseudocode EncodeSDFSC(), though unlike that function
571  * we set up a whole FSR-format code including domain field and
572  * putting the high bit of the FSC into bit 10.
573  */
574 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
575 {
576     uint32_t fsc;
577 
578     switch (fi->type) {
579     case ARMFault_None:
580         return 0;
581     case ARMFault_AccessFlag:
582         fsc = fi->level == 1 ? 0x3 : 0x6;
583         break;
584     case ARMFault_Alignment:
585         fsc = 0x1;
586         break;
587     case ARMFault_Permission:
588         fsc = fi->level == 1 ? 0xd : 0xf;
589         break;
590     case ARMFault_Domain:
591         fsc = fi->level == 1 ? 0x9 : 0xb;
592         break;
593     case ARMFault_Translation:
594         fsc = fi->level == 1 ? 0x5 : 0x7;
595         break;
596     case ARMFault_SyncExternal:
597         fsc = 0x8 | (fi->ea << 12);
598         break;
599     case ARMFault_SyncExternalOnWalk:
600         fsc = fi->level == 1 ? 0xc : 0xe;
601         fsc |= (fi->ea << 12);
602         break;
603     case ARMFault_SyncParity:
604         fsc = 0x409;
605         break;
606     case ARMFault_SyncParityOnWalk:
607         fsc = fi->level == 1 ? 0x40c : 0x40e;
608         break;
609     case ARMFault_AsyncParity:
610         fsc = 0x408;
611         break;
612     case ARMFault_AsyncExternal:
613         fsc = 0x406 | (fi->ea << 12);
614         break;
615     case ARMFault_Debug:
616         fsc = 0x2;
617         break;
618     case ARMFault_TLBConflict:
619         fsc = 0x400;
620         break;
621     case ARMFault_Lockdown:
622         fsc = 0x404;
623         break;
624     case ARMFault_Exclusive:
625         fsc = 0x405;
626         break;
627     case ARMFault_ICacheMaint:
628         fsc = 0x4;
629         break;
630     case ARMFault_Background:
631         fsc = 0x0;
632         break;
633     case ARMFault_QEMU_NSCExec:
634         fsc = M_FAKE_FSR_NSC_EXEC;
635         break;
636     case ARMFault_QEMU_SFault:
637         fsc = M_FAKE_FSR_SFAULT;
638         break;
639     default:
640         /* Other faults can't occur in a context that requires a
641          * short-format status code.
642          */
643         g_assert_not_reached();
644     }
645 
646     fsc |= (fi->domain << 4);
647     return fsc;
648 }
649 
650 /**
651  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
652  * Compare pseudocode EncodeLDFSC(), though unlike that function
653  * we fill in also the LPAE bit 9 of a DFSR format.
654  */
655 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
656 {
657     uint32_t fsc;
658 
659     switch (fi->type) {
660     case ARMFault_None:
661         return 0;
662     case ARMFault_AddressSize:
663         fsc = fi->level & 3;
664         break;
665     case ARMFault_AccessFlag:
666         fsc = (fi->level & 3) | (0x2 << 2);
667         break;
668     case ARMFault_Permission:
669         fsc = (fi->level & 3) | (0x3 << 2);
670         break;
671     case ARMFault_Translation:
672         fsc = (fi->level & 3) | (0x1 << 2);
673         break;
674     case ARMFault_SyncExternal:
675         fsc = 0x10 | (fi->ea << 12);
676         break;
677     case ARMFault_SyncExternalOnWalk:
678         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
679         break;
680     case ARMFault_SyncParity:
681         fsc = 0x18;
682         break;
683     case ARMFault_SyncParityOnWalk:
684         fsc = (fi->level & 3) | (0x7 << 2);
685         break;
686     case ARMFault_AsyncParity:
687         fsc = 0x19;
688         break;
689     case ARMFault_AsyncExternal:
690         fsc = 0x11 | (fi->ea << 12);
691         break;
692     case ARMFault_Alignment:
693         fsc = 0x21;
694         break;
695     case ARMFault_Debug:
696         fsc = 0x22;
697         break;
698     case ARMFault_TLBConflict:
699         fsc = 0x30;
700         break;
701     case ARMFault_Lockdown:
702         fsc = 0x34;
703         break;
704     case ARMFault_Exclusive:
705         fsc = 0x35;
706         break;
707     default:
708         /* Other faults can't occur in a context that requires a
709          * long-format status code.
710          */
711         g_assert_not_reached();
712     }
713 
714     fsc |= 1 << 9;
715     return fsc;
716 }
717 
718 static inline bool arm_extabort_type(MemTxResult result)
719 {
720     /* The EA bit in syndromes and fault status registers is an
721      * IMPDEF classification of external aborts. ARM implementations
722      * usually use this to indicate AXI bus Decode error (0) or
723      * Slave error (1); in QEMU we follow that.
724      */
725     return result != MEMTX_DECODE_ERROR;
726 }
727 
728 /* Do a page table walk and add page to TLB if possible */
729 bool arm_tlb_fill(CPUState *cpu, vaddr address,
730                   MMUAccessType access_type, int mmu_idx,
731                   ARMMMUFaultInfo *fi);
732 
733 /* Return true if the stage 1 translation regime is using LPAE format page
734  * tables */
735 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
736 
737 /* Raise a data fault alignment exception for the specified virtual address */
738 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
739                                  MMUAccessType access_type,
740                                  int mmu_idx, uintptr_t retaddr);
741 
742 /* arm_cpu_do_transaction_failed: handle a memory system error response
743  * (eg "no device/memory present at address") by raising an external abort
744  * exception
745  */
746 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
747                                    vaddr addr, unsigned size,
748                                    MMUAccessType access_type,
749                                    int mmu_idx, MemTxAttrs attrs,
750                                    MemTxResult response, uintptr_t retaddr);
751 
752 /* Call any registered EL change hooks */
753 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
754 {
755     ARMELChangeHook *hook, *next;
756     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
757         hook->hook(cpu, hook->opaque);
758     }
759 }
760 static inline void arm_call_el_change_hook(ARMCPU *cpu)
761 {
762     ARMELChangeHook *hook, *next;
763     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
764         hook->hook(cpu, hook->opaque);
765     }
766 }
767 
768 /* Return true if this address translation regime is secure */
769 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
770 {
771     switch (mmu_idx) {
772     case ARMMMUIdx_S12NSE0:
773     case ARMMMUIdx_S12NSE1:
774     case ARMMMUIdx_S1NSE0:
775     case ARMMMUIdx_S1NSE1:
776     case ARMMMUIdx_S1E2:
777     case ARMMMUIdx_S2NS:
778     case ARMMMUIdx_MPrivNegPri:
779     case ARMMMUIdx_MUserNegPri:
780     case ARMMMUIdx_MPriv:
781     case ARMMMUIdx_MUser:
782         return false;
783     case ARMMMUIdx_S1E3:
784     case ARMMMUIdx_S1SE0:
785     case ARMMMUIdx_S1SE1:
786     case ARMMMUIdx_MSPrivNegPri:
787     case ARMMMUIdx_MSUserNegPri:
788     case ARMMMUIdx_MSPriv:
789     case ARMMMUIdx_MSUser:
790         return true;
791     default:
792         g_assert_not_reached();
793     }
794 }
795 
796 /* Return the FSR value for a debug exception (watchpoint, hardware
797  * breakpoint or BKPT insn) targeting the specified exception level.
798  */
799 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
800 {
801     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
802     int target_el = arm_debug_target_el(env);
803     bool using_lpae = false;
804 
805     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
806         using_lpae = true;
807     } else {
808         if (arm_feature(env, ARM_FEATURE_LPAE) &&
809             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
810             using_lpae = true;
811         }
812     }
813 
814     if (using_lpae) {
815         return arm_fi_to_lfsc(&fi);
816     } else {
817         return arm_fi_to_sfsc(&fi);
818     }
819 }
820 
821 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
822  * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
823  */
824 #define MEMOPIDX_SHIFT  8
825 
826 /**
827  * v7m_using_psp: Return true if using process stack pointer
828  * Return true if the CPU is currently using the process stack
829  * pointer, or false if it is using the main stack pointer.
830  */
831 static inline bool v7m_using_psp(CPUARMState *env)
832 {
833     /* Handler mode always uses the main stack; for thread mode
834      * the CONTROL.SPSEL bit determines the answer.
835      * Note that in v7M it is not possible to be in Handler mode with
836      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
837      */
838     return !arm_v7m_is_handler_mode(env) &&
839         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
840 }
841 
842 /**
843  * v7m_sp_limit: Return SP limit for current CPU state
844  * Return the SP limit value for the current CPU security state
845  * and stack pointer.
846  */
847 static inline uint32_t v7m_sp_limit(CPUARMState *env)
848 {
849     if (v7m_using_psp(env)) {
850         return env->v7m.psplim[env->v7m.secure];
851     } else {
852         return env->v7m.msplim[env->v7m.secure];
853     }
854 }
855 
856 /**
857  * aarch32_mode_name(): Return name of the AArch32 CPU mode
858  * @psr: Program Status Register indicating CPU mode
859  *
860  * Returns, for debug logging purposes, a printable representation
861  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
862  * the low bits of the specified PSR.
863  */
864 static inline const char *aarch32_mode_name(uint32_t psr)
865 {
866     static const char cpu_mode_names[16][4] = {
867         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
868         "???", "???", "hyp", "und", "???", "???", "???", "sys"
869     };
870 
871     return cpu_mode_names[psr & 0xf];
872 }
873 
874 #endif
875