1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 32 /* register banks for CPU modes */ 33 #define BANK_USRSYS 0 34 #define BANK_SVC 1 35 #define BANK_ABT 2 36 #define BANK_UND 3 37 #define BANK_IRQ 4 38 #define BANK_FIQ 5 39 #define BANK_HYP 6 40 #define BANK_MON 7 41 42 static inline bool excp_is_internal(int excp) 43 { 44 /* Return true if this exception number represents a QEMU-internal 45 * exception that will not be passed to the guest. 46 */ 47 return excp == EXCP_INTERRUPT 48 || excp == EXCP_HLT 49 || excp == EXCP_DEBUG 50 || excp == EXCP_HALTED 51 || excp == EXCP_EXCEPTION_EXIT 52 || excp == EXCP_KERNEL_TRAP 53 || excp == EXCP_SEMIHOST; 54 } 55 56 /* Scale factor for generic timers, ie number of ns per tick. 57 * This gives a 62.5MHz timer. 58 */ 59 #define GTIMER_SCALE 16 60 61 /* Bit definitions for the v7M CONTROL register */ 62 FIELD(V7M_CONTROL, NPRIV, 0, 1) 63 FIELD(V7M_CONTROL, SPSEL, 1, 1) 64 FIELD(V7M_CONTROL, FPCA, 2, 1) 65 FIELD(V7M_CONTROL, SFPA, 3, 1) 66 67 /* Bit definitions for v7M exception return payload */ 68 FIELD(V7M_EXCRET, ES, 0, 1) 69 FIELD(V7M_EXCRET, RES0, 1, 1) 70 FIELD(V7M_EXCRET, SPSEL, 2, 1) 71 FIELD(V7M_EXCRET, MODE, 3, 1) 72 FIELD(V7M_EXCRET, FTYPE, 4, 1) 73 FIELD(V7M_EXCRET, DCRS, 5, 1) 74 FIELD(V7M_EXCRET, S, 6, 1) 75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 76 77 /* Minimum value which is a magic number for exception return */ 78 #define EXC_RETURN_MIN_MAGIC 0xff000000 79 /* Minimum number which is a magic number for function or exception return 80 * when using v8M security extension 81 */ 82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 83 84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 85 FIELD(DBGWCR, E, 0, 1) 86 FIELD(DBGWCR, PAC, 1, 2) 87 FIELD(DBGWCR, LSC, 3, 2) 88 FIELD(DBGWCR, BAS, 5, 8) 89 FIELD(DBGWCR, HMC, 13, 1) 90 FIELD(DBGWCR, SSC, 14, 2) 91 FIELD(DBGWCR, LBN, 16, 4) 92 FIELD(DBGWCR, WT, 20, 1) 93 FIELD(DBGWCR, MASK, 24, 5) 94 FIELD(DBGWCR, SSCE, 29, 1) 95 96 /* We use a few fake FSR values for internal purposes in M profile. 97 * M profile cores don't have A/R format FSRs, but currently our 98 * get_phys_addr() code assumes A/R profile and reports failures via 99 * an A/R format FSR value. We then translate that into the proper 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 101 * Mostly the FSR values we use for this are those defined for v7PMSA, 102 * since we share some of that codepath. A few kinds of fault are 103 * only for M profile and have no A/R equivalent, though, so we have 104 * to pick a value from the reserved range (which we never otherwise 105 * generate) to use for these. 106 * These values will never be visible to the guest. 107 */ 108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 110 111 /** 112 * raise_exception: Raise the specified exception. 113 * Raise a guest exception with the specified value, syndrome register 114 * and target exception level. This should be called from helper functions, 115 * and never returns because we will longjump back up to the CPU main loop. 116 */ 117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 118 uint32_t syndrome, uint32_t target_el); 119 120 /* 121 * Similarly, but also use unwinding to restore cpu state. 122 */ 123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 124 uint32_t syndrome, uint32_t target_el, 125 uintptr_t ra); 126 127 /* 128 * For AArch64, map a given EL to an index in the banked_spsr array. 129 * Note that this mapping and the AArch32 mapping defined in bank_number() 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 131 * mandated mapping between each other. 132 */ 133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 134 { 135 static const unsigned int map[4] = { 136 [1] = BANK_SVC, /* EL1. */ 137 [2] = BANK_HYP, /* EL2. */ 138 [3] = BANK_MON, /* EL3. */ 139 }; 140 assert(el >= 1 && el <= 3); 141 return map[el]; 142 } 143 144 /* Map CPU modes onto saved register banks. */ 145 static inline int bank_number(int mode) 146 { 147 switch (mode) { 148 case ARM_CPU_MODE_USR: 149 case ARM_CPU_MODE_SYS: 150 return BANK_USRSYS; 151 case ARM_CPU_MODE_SVC: 152 return BANK_SVC; 153 case ARM_CPU_MODE_ABT: 154 return BANK_ABT; 155 case ARM_CPU_MODE_UND: 156 return BANK_UND; 157 case ARM_CPU_MODE_IRQ: 158 return BANK_IRQ; 159 case ARM_CPU_MODE_FIQ: 160 return BANK_FIQ; 161 case ARM_CPU_MODE_HYP: 162 return BANK_HYP; 163 case ARM_CPU_MODE_MON: 164 return BANK_MON; 165 } 166 g_assert_not_reached(); 167 } 168 169 /** 170 * r14_bank_number: Map CPU mode onto register bank for r14 171 * 172 * Given an AArch32 CPU mode, return the index into the saved register 173 * banks to use for the R14 (LR) in that mode. This is the same as 174 * bank_number(), except for the special case of Hyp mode, where 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 176 * This should be used as the index into env->banked_r14[], and 177 * bank_number() used for the index into env->banked_r13[] and 178 * env->banked_spsr[]. 179 */ 180 static inline int r14_bank_number(int mode) 181 { 182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 183 } 184 185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 186 void arm_translate_init(void); 187 188 void arm_restore_state_to_opc(CPUState *cs, 189 const TranslationBlock *tb, 190 const uint64_t *data); 191 192 #ifdef CONFIG_TCG 193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 194 #endif /* CONFIG_TCG */ 195 196 enum arm_fprounding { 197 FPROUNDING_TIEEVEN, 198 FPROUNDING_POSINF, 199 FPROUNDING_NEGINF, 200 FPROUNDING_ZERO, 201 FPROUNDING_TIEAWAY, 202 FPROUNDING_ODD 203 }; 204 205 int arm_rmode_to_sf(int rmode); 206 207 static inline void aarch64_save_sp(CPUARMState *env, int el) 208 { 209 if (env->pstate & PSTATE_SP) { 210 env->sp_el[el] = env->xregs[31]; 211 } else { 212 env->sp_el[0] = env->xregs[31]; 213 } 214 } 215 216 static inline void aarch64_restore_sp(CPUARMState *env, int el) 217 { 218 if (env->pstate & PSTATE_SP) { 219 env->xregs[31] = env->sp_el[el]; 220 } else { 221 env->xregs[31] = env->sp_el[0]; 222 } 223 } 224 225 static inline void update_spsel(CPUARMState *env, uint32_t imm) 226 { 227 unsigned int cur_el = arm_current_el(env); 228 /* Update PSTATE SPSel bit; this requires us to update the 229 * working stack pointer in xregs[31]. 230 */ 231 if (!((imm ^ env->pstate) & PSTATE_SP)) { 232 return; 233 } 234 aarch64_save_sp(env, cur_el); 235 env->pstate = deposit32(env->pstate, 0, 1, imm); 236 237 /* We rely on illegal updates to SPsel from EL0 to get trapped 238 * at translation time. 239 */ 240 assert(cur_el >= 1 && cur_el <= 3); 241 aarch64_restore_sp(env, cur_el); 242 } 243 244 /* 245 * arm_pamax 246 * @cpu: ARMCPU 247 * 248 * Returns the implementation defined bit-width of physical addresses. 249 * The ARMv8 reference manuals refer to this as PAMax(). 250 */ 251 unsigned int arm_pamax(ARMCPU *cpu); 252 253 /* Return true if extended addresses are enabled. 254 * This is always the case if our translation regime is 64 bit, 255 * but depends on TTBCR.EAE for 32 bit. 256 */ 257 static inline bool extended_addresses_enabled(CPUARMState *env) 258 { 259 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 260 if (arm_feature(env, ARM_FEATURE_PMSA) && 261 arm_feature(env, ARM_FEATURE_V8)) { 262 return true; 263 } 264 return arm_el_is_aa64(env, 1) || 265 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 266 } 267 268 /* Update a QEMU watchpoint based on the information the guest has set in the 269 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 270 */ 271 void hw_watchpoint_update(ARMCPU *cpu, int n); 272 /* Update the QEMU watchpoints for every guest watchpoint. This does a 273 * complete delete-and-reinstate of the QEMU watchpoint list and so is 274 * suitable for use after migration or on reset. 275 */ 276 void hw_watchpoint_update_all(ARMCPU *cpu); 277 /* Update a QEMU breakpoint based on the information the guest has set in the 278 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 279 */ 280 void hw_breakpoint_update(ARMCPU *cpu, int n); 281 /* Update the QEMU breakpoints for every guest breakpoint. This does a 282 * complete delete-and-reinstate of the QEMU breakpoint list and so is 283 * suitable for use after migration or on reset. 284 */ 285 void hw_breakpoint_update_all(ARMCPU *cpu); 286 287 /* Callback function for checking if a breakpoint should trigger. */ 288 bool arm_debug_check_breakpoint(CPUState *cs); 289 290 /* Callback function for checking if a watchpoint should trigger. */ 291 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 292 293 /* Adjust addresses (in BE32 mode) before testing against watchpoint 294 * addresses. 295 */ 296 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 297 298 /* Callback function for when a watchpoint or breakpoint triggers. */ 299 void arm_debug_excp_handler(CPUState *cs); 300 301 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 302 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 303 { 304 return false; 305 } 306 static inline void arm_handle_psci_call(ARMCPU *cpu) 307 { 308 g_assert_not_reached(); 309 } 310 #else 311 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 312 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 313 /* Actually handle a PSCI call */ 314 void arm_handle_psci_call(ARMCPU *cpu); 315 #endif 316 317 /** 318 * arm_clear_exclusive: clear the exclusive monitor 319 * @env: CPU env 320 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 321 */ 322 static inline void arm_clear_exclusive(CPUARMState *env) 323 { 324 env->exclusive_addr = -1; 325 } 326 327 /** 328 * ARMFaultType: type of an ARM MMU fault 329 * This corresponds to the v8A pseudocode's Fault enumeration, 330 * with extensions for QEMU internal conditions. 331 */ 332 typedef enum ARMFaultType { 333 ARMFault_None, 334 ARMFault_AccessFlag, 335 ARMFault_Alignment, 336 ARMFault_Background, 337 ARMFault_Domain, 338 ARMFault_Permission, 339 ARMFault_Translation, 340 ARMFault_AddressSize, 341 ARMFault_SyncExternal, 342 ARMFault_SyncExternalOnWalk, 343 ARMFault_SyncParity, 344 ARMFault_SyncParityOnWalk, 345 ARMFault_AsyncParity, 346 ARMFault_AsyncExternal, 347 ARMFault_Debug, 348 ARMFault_TLBConflict, 349 ARMFault_UnsuppAtomicUpdate, 350 ARMFault_Lockdown, 351 ARMFault_Exclusive, 352 ARMFault_ICacheMaint, 353 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 354 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 355 } ARMFaultType; 356 357 /** 358 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 359 * @type: Type of fault 360 * @level: Table walk level (for translation, access flag and permission faults) 361 * @domain: Domain of the fault address (for non-LPAE CPUs only) 362 * @s2addr: Address that caused a fault at stage 2 363 * @stage2: True if we faulted at stage 2 364 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 365 * @s1ns: True if we faulted on a non-secure IPA while in secure state 366 * @ea: True if we should set the EA (external abort type) bit in syndrome 367 */ 368 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 369 struct ARMMMUFaultInfo { 370 ARMFaultType type; 371 target_ulong s2addr; 372 int level; 373 int domain; 374 bool stage2; 375 bool s1ptw; 376 bool s1ns; 377 bool ea; 378 }; 379 380 /** 381 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 382 * Compare pseudocode EncodeSDFSC(), though unlike that function 383 * we set up a whole FSR-format code including domain field and 384 * putting the high bit of the FSC into bit 10. 385 */ 386 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 387 { 388 uint32_t fsc; 389 390 switch (fi->type) { 391 case ARMFault_None: 392 return 0; 393 case ARMFault_AccessFlag: 394 fsc = fi->level == 1 ? 0x3 : 0x6; 395 break; 396 case ARMFault_Alignment: 397 fsc = 0x1; 398 break; 399 case ARMFault_Permission: 400 fsc = fi->level == 1 ? 0xd : 0xf; 401 break; 402 case ARMFault_Domain: 403 fsc = fi->level == 1 ? 0x9 : 0xb; 404 break; 405 case ARMFault_Translation: 406 fsc = fi->level == 1 ? 0x5 : 0x7; 407 break; 408 case ARMFault_SyncExternal: 409 fsc = 0x8 | (fi->ea << 12); 410 break; 411 case ARMFault_SyncExternalOnWalk: 412 fsc = fi->level == 1 ? 0xc : 0xe; 413 fsc |= (fi->ea << 12); 414 break; 415 case ARMFault_SyncParity: 416 fsc = 0x409; 417 break; 418 case ARMFault_SyncParityOnWalk: 419 fsc = fi->level == 1 ? 0x40c : 0x40e; 420 break; 421 case ARMFault_AsyncParity: 422 fsc = 0x408; 423 break; 424 case ARMFault_AsyncExternal: 425 fsc = 0x406 | (fi->ea << 12); 426 break; 427 case ARMFault_Debug: 428 fsc = 0x2; 429 break; 430 case ARMFault_TLBConflict: 431 fsc = 0x400; 432 break; 433 case ARMFault_Lockdown: 434 fsc = 0x404; 435 break; 436 case ARMFault_Exclusive: 437 fsc = 0x405; 438 break; 439 case ARMFault_ICacheMaint: 440 fsc = 0x4; 441 break; 442 case ARMFault_Background: 443 fsc = 0x0; 444 break; 445 case ARMFault_QEMU_NSCExec: 446 fsc = M_FAKE_FSR_NSC_EXEC; 447 break; 448 case ARMFault_QEMU_SFault: 449 fsc = M_FAKE_FSR_SFAULT; 450 break; 451 default: 452 /* Other faults can't occur in a context that requires a 453 * short-format status code. 454 */ 455 g_assert_not_reached(); 456 } 457 458 fsc |= (fi->domain << 4); 459 return fsc; 460 } 461 462 /** 463 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 464 * Compare pseudocode EncodeLDFSC(), though unlike that function 465 * we fill in also the LPAE bit 9 of a DFSR format. 466 */ 467 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 468 { 469 uint32_t fsc; 470 471 switch (fi->type) { 472 case ARMFault_None: 473 return 0; 474 case ARMFault_AddressSize: 475 assert(fi->level >= -1 && fi->level <= 3); 476 if (fi->level < 0) { 477 fsc = 0b101001; 478 } else { 479 fsc = fi->level; 480 } 481 break; 482 case ARMFault_AccessFlag: 483 assert(fi->level >= 0 && fi->level <= 3); 484 fsc = 0b001000 | fi->level; 485 break; 486 case ARMFault_Permission: 487 assert(fi->level >= 0 && fi->level <= 3); 488 fsc = 0b001100 | fi->level; 489 break; 490 case ARMFault_Translation: 491 assert(fi->level >= -1 && fi->level <= 3); 492 if (fi->level < 0) { 493 fsc = 0b101011; 494 } else { 495 fsc = 0b000100 | fi->level; 496 } 497 break; 498 case ARMFault_SyncExternal: 499 fsc = 0x10 | (fi->ea << 12); 500 break; 501 case ARMFault_SyncExternalOnWalk: 502 assert(fi->level >= -1 && fi->level <= 3); 503 if (fi->level < 0) { 504 fsc = 0b010011; 505 } else { 506 fsc = 0b010100 | fi->level; 507 } 508 fsc |= fi->ea << 12; 509 break; 510 case ARMFault_SyncParity: 511 fsc = 0x18; 512 break; 513 case ARMFault_SyncParityOnWalk: 514 assert(fi->level >= -1 && fi->level <= 3); 515 if (fi->level < 0) { 516 fsc = 0b011011; 517 } else { 518 fsc = 0b011100 | fi->level; 519 } 520 break; 521 case ARMFault_AsyncParity: 522 fsc = 0x19; 523 break; 524 case ARMFault_AsyncExternal: 525 fsc = 0x11 | (fi->ea << 12); 526 break; 527 case ARMFault_Alignment: 528 fsc = 0x21; 529 break; 530 case ARMFault_Debug: 531 fsc = 0x22; 532 break; 533 case ARMFault_TLBConflict: 534 fsc = 0x30; 535 break; 536 case ARMFault_UnsuppAtomicUpdate: 537 fsc = 0x31; 538 break; 539 case ARMFault_Lockdown: 540 fsc = 0x34; 541 break; 542 case ARMFault_Exclusive: 543 fsc = 0x35; 544 break; 545 default: 546 /* Other faults can't occur in a context that requires a 547 * long-format status code. 548 */ 549 g_assert_not_reached(); 550 } 551 552 fsc |= 1 << 9; 553 return fsc; 554 } 555 556 static inline bool arm_extabort_type(MemTxResult result) 557 { 558 /* The EA bit in syndromes and fault status registers is an 559 * IMPDEF classification of external aborts. ARM implementations 560 * usually use this to indicate AXI bus Decode error (0) or 561 * Slave error (1); in QEMU we follow that. 562 */ 563 return result != MEMTX_DECODE_ERROR; 564 } 565 566 #ifdef CONFIG_USER_ONLY 567 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 568 MMUAccessType access_type, 569 bool maperr, uintptr_t ra); 570 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 571 MMUAccessType access_type, uintptr_t ra); 572 #else 573 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 574 MMUAccessType access_type, int mmu_idx, 575 bool probe, uintptr_t retaddr); 576 #endif 577 578 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 579 { 580 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 581 } 582 583 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 584 { 585 if (arm_feature(env, ARM_FEATURE_M)) { 586 return mmu_idx | ARM_MMU_IDX_M; 587 } else { 588 return mmu_idx | ARM_MMU_IDX_A; 589 } 590 } 591 592 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 593 { 594 /* AArch64 is always a-profile. */ 595 return mmu_idx | ARM_MMU_IDX_A; 596 } 597 598 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 599 600 /* Return the MMU index for a v7M CPU in the specified security state */ 601 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 602 603 /* Return true if the translation regime is using LPAE format page tables */ 604 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 605 606 /* 607 * Return true if the stage 1 translation regime is using LPAE 608 * format page tables 609 */ 610 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 611 612 /* Raise a data fault alignment exception for the specified virtual address */ 613 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 614 MMUAccessType access_type, 615 int mmu_idx, uintptr_t retaddr); 616 617 /* arm_cpu_do_transaction_failed: handle a memory system error response 618 * (eg "no device/memory present at address") by raising an external abort 619 * exception 620 */ 621 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 622 vaddr addr, unsigned size, 623 MMUAccessType access_type, 624 int mmu_idx, MemTxAttrs attrs, 625 MemTxResult response, uintptr_t retaddr); 626 627 /* Call any registered EL change hooks */ 628 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 629 { 630 ARMELChangeHook *hook, *next; 631 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 632 hook->hook(cpu, hook->opaque); 633 } 634 } 635 static inline void arm_call_el_change_hook(ARMCPU *cpu) 636 { 637 ARMELChangeHook *hook, *next; 638 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 639 hook->hook(cpu, hook->opaque); 640 } 641 } 642 643 /* Return true if this address translation regime has two ranges. */ 644 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 645 { 646 switch (mmu_idx) { 647 case ARMMMUIdx_Stage1_E0: 648 case ARMMMUIdx_Stage1_E1: 649 case ARMMMUIdx_Stage1_E1_PAN: 650 case ARMMMUIdx_E10_0: 651 case ARMMMUIdx_E10_1: 652 case ARMMMUIdx_E10_1_PAN: 653 case ARMMMUIdx_E20_0: 654 case ARMMMUIdx_E20_2: 655 case ARMMMUIdx_E20_2_PAN: 656 return true; 657 default: 658 return false; 659 } 660 } 661 662 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 663 { 664 switch (mmu_idx) { 665 case ARMMMUIdx_Stage1_E1_PAN: 666 case ARMMMUIdx_E10_1_PAN: 667 case ARMMMUIdx_E20_2_PAN: 668 return true; 669 default: 670 return false; 671 } 672 } 673 674 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) 675 { 676 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 677 } 678 679 /* Return the exception level which controls this address translation regime */ 680 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 681 { 682 switch (mmu_idx) { 683 case ARMMMUIdx_E20_0: 684 case ARMMMUIdx_E20_2: 685 case ARMMMUIdx_E20_2_PAN: 686 case ARMMMUIdx_Stage2: 687 case ARMMMUIdx_Stage2_S: 688 case ARMMMUIdx_E2: 689 return 2; 690 case ARMMMUIdx_E3: 691 return 3; 692 case ARMMMUIdx_E10_0: 693 case ARMMMUIdx_Stage1_E0: 694 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 695 case ARMMMUIdx_Stage1_E1: 696 case ARMMMUIdx_Stage1_E1_PAN: 697 case ARMMMUIdx_E10_1: 698 case ARMMMUIdx_E10_1_PAN: 699 case ARMMMUIdx_MPrivNegPri: 700 case ARMMMUIdx_MUserNegPri: 701 case ARMMMUIdx_MPriv: 702 case ARMMMUIdx_MUser: 703 case ARMMMUIdx_MSPrivNegPri: 704 case ARMMMUIdx_MSUserNegPri: 705 case ARMMMUIdx_MSPriv: 706 case ARMMMUIdx_MSUser: 707 return 1; 708 default: 709 g_assert_not_reached(); 710 } 711 } 712 713 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 714 { 715 switch (mmu_idx) { 716 case ARMMMUIdx_E20_0: 717 case ARMMMUIdx_Stage1_E0: 718 case ARMMMUIdx_MUser: 719 case ARMMMUIdx_MSUser: 720 case ARMMMUIdx_MUserNegPri: 721 case ARMMMUIdx_MSUserNegPri: 722 return true; 723 default: 724 return false; 725 case ARMMMUIdx_E10_0: 726 case ARMMMUIdx_E10_1: 727 case ARMMMUIdx_E10_1_PAN: 728 g_assert_not_reached(); 729 } 730 } 731 732 /* Return the SCTLR value which controls this address translation regime */ 733 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 734 { 735 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 736 } 737 738 /* 739 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 740 * and the Non-Secure stage 2 translation regimes (and hence which are 741 * not present in VSTCR_EL2). 742 */ 743 #define VTCR_SHARED_FIELD_MASK \ 744 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 745 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 746 R_VTCR_DS_MASK) 747 748 /* Return the value of the TCR controlling this translation regime */ 749 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 750 { 751 if (mmu_idx == ARMMMUIdx_Stage2) { 752 return env->cp15.vtcr_el2; 753 } 754 if (mmu_idx == ARMMMUIdx_Stage2_S) { 755 /* 756 * Secure stage 2 shares fields from VTCR_EL2. We merge those 757 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 758 * value so the callers don't need to special case this. 759 * 760 * If a future architecture change defines bits in VSTCR_EL2 that 761 * overlap with these VTCR_EL2 fields we may need to revisit this. 762 */ 763 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 764 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 765 return v; 766 } 767 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 768 } 769 770 /** 771 * arm_num_brps: Return number of implemented breakpoints. 772 * Note that the ID register BRPS field is "number of bps - 1", 773 * and we return the actual number of breakpoints. 774 */ 775 static inline int arm_num_brps(ARMCPU *cpu) 776 { 777 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 778 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 779 } else { 780 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 781 } 782 } 783 784 /** 785 * arm_num_wrps: Return number of implemented watchpoints. 786 * Note that the ID register WRPS field is "number of wps - 1", 787 * and we return the actual number of watchpoints. 788 */ 789 static inline int arm_num_wrps(ARMCPU *cpu) 790 { 791 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 792 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 793 } else { 794 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 795 } 796 } 797 798 /** 799 * arm_num_ctx_cmps: Return number of implemented context comparators. 800 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 801 * and we return the actual number of comparators. 802 */ 803 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 804 { 805 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 806 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 807 } else { 808 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 809 } 810 } 811 812 /** 813 * v7m_using_psp: Return true if using process stack pointer 814 * Return true if the CPU is currently using the process stack 815 * pointer, or false if it is using the main stack pointer. 816 */ 817 static inline bool v7m_using_psp(CPUARMState *env) 818 { 819 /* Handler mode always uses the main stack; for thread mode 820 * the CONTROL.SPSEL bit determines the answer. 821 * Note that in v7M it is not possible to be in Handler mode with 822 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 823 */ 824 return !arm_v7m_is_handler_mode(env) && 825 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 826 } 827 828 /** 829 * v7m_sp_limit: Return SP limit for current CPU state 830 * Return the SP limit value for the current CPU security state 831 * and stack pointer. 832 */ 833 static inline uint32_t v7m_sp_limit(CPUARMState *env) 834 { 835 if (v7m_using_psp(env)) { 836 return env->v7m.psplim[env->v7m.secure]; 837 } else { 838 return env->v7m.msplim[env->v7m.secure]; 839 } 840 } 841 842 /** 843 * v7m_cpacr_pass: 844 * Return true if the v7M CPACR permits access to the FPU for the specified 845 * security state and privilege level. 846 */ 847 static inline bool v7m_cpacr_pass(CPUARMState *env, 848 bool is_secure, bool is_priv) 849 { 850 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 851 case 0: 852 case 2: /* UNPREDICTABLE: we treat like 0 */ 853 return false; 854 case 1: 855 return is_priv; 856 case 3: 857 return true; 858 default: 859 g_assert_not_reached(); 860 } 861 } 862 863 /** 864 * aarch32_mode_name(): Return name of the AArch32 CPU mode 865 * @psr: Program Status Register indicating CPU mode 866 * 867 * Returns, for debug logging purposes, a printable representation 868 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 869 * the low bits of the specified PSR. 870 */ 871 static inline const char *aarch32_mode_name(uint32_t psr) 872 { 873 static const char cpu_mode_names[16][4] = { 874 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 875 "???", "???", "hyp", "und", "???", "???", "???", "sys" 876 }; 877 878 return cpu_mode_names[psr & 0xf]; 879 } 880 881 /** 882 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 883 * 884 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 885 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 886 * Must be called with the iothread lock held. 887 */ 888 void arm_cpu_update_virq(ARMCPU *cpu); 889 890 /** 891 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 892 * 893 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 894 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 895 * Must be called with the iothread lock held. 896 */ 897 void arm_cpu_update_vfiq(ARMCPU *cpu); 898 899 /** 900 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 901 * 902 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 903 * following a change to the HCR_EL2.VSE bit. 904 */ 905 void arm_cpu_update_vserr(ARMCPU *cpu); 906 907 /** 908 * arm_mmu_idx_el: 909 * @env: The cpu environment 910 * @el: The EL to use. 911 * 912 * Return the full ARMMMUIdx for the translation regime for EL. 913 */ 914 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 915 916 /** 917 * arm_mmu_idx: 918 * @env: The cpu environment 919 * 920 * Return the full ARMMMUIdx for the current translation regime. 921 */ 922 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 923 924 /** 925 * arm_stage1_mmu_idx: 926 * @env: The cpu environment 927 * 928 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 929 */ 930 #ifdef CONFIG_USER_ONLY 931 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 932 { 933 return ARMMMUIdx_Stage1_E0; 934 } 935 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 936 { 937 return ARMMMUIdx_Stage1_E0; 938 } 939 #else 940 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 941 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 942 #endif 943 944 /** 945 * arm_mmu_idx_is_stage1_of_2: 946 * @mmu_idx: The ARMMMUIdx to test 947 * 948 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 949 * first stage of a two stage regime. 950 */ 951 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 952 { 953 switch (mmu_idx) { 954 case ARMMMUIdx_Stage1_E0: 955 case ARMMMUIdx_Stage1_E1: 956 case ARMMMUIdx_Stage1_E1_PAN: 957 return true; 958 default: 959 return false; 960 } 961 } 962 963 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 964 const ARMISARegisters *id) 965 { 966 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 967 968 if ((features >> ARM_FEATURE_V4T) & 1) { 969 valid |= CPSR_T; 970 } 971 if ((features >> ARM_FEATURE_V5) & 1) { 972 valid |= CPSR_Q; /* V5TE in reality*/ 973 } 974 if ((features >> ARM_FEATURE_V6) & 1) { 975 valid |= CPSR_E | CPSR_GE; 976 } 977 if ((features >> ARM_FEATURE_THUMB2) & 1) { 978 valid |= CPSR_IT; 979 } 980 if (isar_feature_aa32_jazelle(id)) { 981 valid |= CPSR_J; 982 } 983 if (isar_feature_aa32_pan(id)) { 984 valid |= CPSR_PAN; 985 } 986 if (isar_feature_aa32_dit(id)) { 987 valid |= CPSR_DIT; 988 } 989 if (isar_feature_aa32_ssbs(id)) { 990 valid |= CPSR_SSBS; 991 } 992 993 return valid; 994 } 995 996 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 997 { 998 uint32_t valid; 999 1000 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1001 if (isar_feature_aa64_bti(id)) { 1002 valid |= PSTATE_BTYPE; 1003 } 1004 if (isar_feature_aa64_pan(id)) { 1005 valid |= PSTATE_PAN; 1006 } 1007 if (isar_feature_aa64_uao(id)) { 1008 valid |= PSTATE_UAO; 1009 } 1010 if (isar_feature_aa64_dit(id)) { 1011 valid |= PSTATE_DIT; 1012 } 1013 if (isar_feature_aa64_ssbs(id)) { 1014 valid |= PSTATE_SSBS; 1015 } 1016 if (isar_feature_aa64_mte(id)) { 1017 valid |= PSTATE_TCO; 1018 } 1019 1020 return valid; 1021 } 1022 1023 /* Granule size (i.e. page size) */ 1024 typedef enum ARMGranuleSize { 1025 /* Same order as TG0 encoding */ 1026 Gran4K, 1027 Gran64K, 1028 Gran16K, 1029 GranInvalid, 1030 } ARMGranuleSize; 1031 1032 /** 1033 * arm_granule_bits: Return address size of the granule in bits 1034 * 1035 * Return the address size of the granule in bits. This corresponds 1036 * to the pseudocode TGxGranuleBits(). 1037 */ 1038 static inline int arm_granule_bits(ARMGranuleSize gran) 1039 { 1040 switch (gran) { 1041 case Gran64K: 1042 return 16; 1043 case Gran16K: 1044 return 14; 1045 case Gran4K: 1046 return 12; 1047 default: 1048 g_assert_not_reached(); 1049 } 1050 } 1051 1052 /* 1053 * Parameters of a given virtual address, as extracted from the 1054 * translation control register (TCR) for a given regime. 1055 */ 1056 typedef struct ARMVAParameters { 1057 unsigned tsz : 8; 1058 unsigned ps : 3; 1059 unsigned sh : 2; 1060 unsigned select : 1; 1061 bool tbi : 1; 1062 bool epd : 1; 1063 bool hpd : 1; 1064 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1065 bool ds : 1; 1066 bool ha : 1; 1067 bool hd : 1; 1068 ARMGranuleSize gran : 2; 1069 } ARMVAParameters; 1070 1071 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1072 ARMMMUIdx mmu_idx, bool data); 1073 1074 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1075 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1076 1077 /* Determine if allocation tags are available. */ 1078 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1079 uint64_t sctlr) 1080 { 1081 if (el < 3 1082 && arm_feature(env, ARM_FEATURE_EL3) 1083 && !(env->cp15.scr_el3 & SCR_ATA)) { 1084 return false; 1085 } 1086 if (el < 2 && arm_is_el2_enabled(env)) { 1087 uint64_t hcr = arm_hcr_el2_eff(env); 1088 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1089 return false; 1090 } 1091 } 1092 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1093 return sctlr != 0; 1094 } 1095 1096 #ifndef CONFIG_USER_ONLY 1097 1098 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1099 typedef struct V8M_SAttributes { 1100 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1101 bool ns; 1102 bool nsc; 1103 uint8_t sregion; 1104 bool srvalid; 1105 uint8_t iregion; 1106 bool irvalid; 1107 } V8M_SAttributes; 1108 1109 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1110 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1111 bool secure, V8M_SAttributes *sattrs); 1112 1113 /* Cacheability and shareability attributes for a memory access */ 1114 typedef struct ARMCacheAttrs { 1115 /* 1116 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1117 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1118 */ 1119 unsigned int attrs:8; 1120 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1121 bool is_s2_format:1; 1122 bool guarded:1; /* guarded bit of the v8-64 PTE */ 1123 } ARMCacheAttrs; 1124 1125 /* Fields that are valid upon success. */ 1126 typedef struct GetPhysAddrResult { 1127 CPUTLBEntryFull f; 1128 ARMCacheAttrs cacheattrs; 1129 } GetPhysAddrResult; 1130 1131 /** 1132 * get_phys_addr_with_secure: get the physical address for a virtual address 1133 * @env: CPUARMState 1134 * @address: virtual address to get physical address for 1135 * @access_type: 0 for read, 1 for write, 2 for execute 1136 * @mmu_idx: MMU index indicating required translation regime 1137 * @is_secure: security state for the access 1138 * @result: set on translation success. 1139 * @fi: set to fault info if the translation fails 1140 * 1141 * Find the physical address corresponding to the given virtual address, 1142 * by doing a translation table walk on MMU based systems or using the 1143 * MPU state on MPU based systems. 1144 * 1145 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1146 * prot and page_size may not be filled in, and the populated fsr value provides 1147 * information on why the translation aborted, in the format of a 1148 * DFSR/IFSR fault register, with the following caveats: 1149 * * we honour the short vs long DFSR format differences. 1150 * * the WnR bit is never set (the caller must do this). 1151 * * for PSMAv5 based systems we don't bother to return a full FSR format 1152 * value. 1153 */ 1154 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 1155 MMUAccessType access_type, 1156 ARMMMUIdx mmu_idx, bool is_secure, 1157 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1158 __attribute__((nonnull)); 1159 1160 /** 1161 * get_phys_addr: get the physical address for a virtual address 1162 * @env: CPUARMState 1163 * @address: virtual address to get physical address for 1164 * @access_type: 0 for read, 1 for write, 2 for execute 1165 * @mmu_idx: MMU index indicating required translation regime 1166 * @result: set on translation success. 1167 * @fi: set to fault info if the translation fails 1168 * 1169 * Similarly, but use the security regime of @mmu_idx. 1170 */ 1171 bool get_phys_addr(CPUARMState *env, target_ulong address, 1172 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1173 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1174 __attribute__((nonnull)); 1175 1176 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1177 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1178 bool is_secure, GetPhysAddrResult *result, 1179 ARMMMUFaultInfo *fi, uint32_t *mregion); 1180 1181 void arm_log_exception(CPUState *cs); 1182 1183 #endif /* !CONFIG_USER_ONLY */ 1184 1185 /* 1186 * The log2 of the words in the tag block, for GMID_EL1.BS. 1187 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1188 */ 1189 #define GMID_EL1_BS 6 1190 1191 /* 1192 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1193 * the same simd_desc() encoding due to restrictions on size. 1194 * Use these instead. 1195 */ 1196 FIELD(PREDDESC, OPRSZ, 0, 6) 1197 FIELD(PREDDESC, ESZ, 6, 2) 1198 FIELD(PREDDESC, DATA, 8, 24) 1199 1200 /* 1201 * The SVE simd_data field, for memory ops, contains either 1202 * rd (5 bits) or a shift count (2 bits). 1203 */ 1204 #define SVE_MTEDESC_SHIFT 5 1205 1206 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1207 FIELD(MTEDESC, MIDX, 0, 4) 1208 FIELD(MTEDESC, TBI, 4, 2) 1209 FIELD(MTEDESC, TCMA, 6, 2) 1210 FIELD(MTEDESC, WRITE, 8, 1) 1211 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */ 1212 1213 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1214 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1215 1216 static inline int allocation_tag_from_addr(uint64_t ptr) 1217 { 1218 return extract64(ptr, 56, 4); 1219 } 1220 1221 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1222 { 1223 return deposit64(ptr, 56, 4, rtag); 1224 } 1225 1226 /* Return true if tbi bits mean that the access is checked. */ 1227 static inline bool tbi_check(uint32_t desc, int bit55) 1228 { 1229 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1230 } 1231 1232 /* Return true if tcma bits mean that the access is unchecked. */ 1233 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1234 { 1235 /* 1236 * We had extracted bit55 and ptr_tag for other reasons, so fold 1237 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1238 */ 1239 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1240 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1241 return tcma && match; 1242 } 1243 1244 /* 1245 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1246 * for the tag to be present in the FAR_ELx register. But for user-only 1247 * mode, we do not have a TLB with which to implement this, so we must 1248 * remove the top byte. 1249 */ 1250 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1251 { 1252 #ifdef CONFIG_USER_ONLY 1253 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1254 ptr &= sextract64(ptr, 0, 56); 1255 #endif 1256 return ptr; 1257 } 1258 1259 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1260 { 1261 #ifdef CONFIG_USER_ONLY 1262 int64_t clean_ptr = sextract64(ptr, 0, 56); 1263 if (tbi_check(desc, clean_ptr < 0)) { 1264 ptr = clean_ptr; 1265 } 1266 #endif 1267 return ptr; 1268 } 1269 1270 /* Values for M-profile PSR.ECI for MVE insns */ 1271 enum MVEECIState { 1272 ECI_NONE = 0, /* No completed beats */ 1273 ECI_A0 = 1, /* Completed: A0 */ 1274 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1275 /* 3 is reserved */ 1276 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1277 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1278 /* All other values reserved */ 1279 }; 1280 1281 /* Definitions for the PMU registers */ 1282 #define PMCRN_MASK 0xf800 1283 #define PMCRN_SHIFT 11 1284 #define PMCRLP 0x80 1285 #define PMCRLC 0x40 1286 #define PMCRDP 0x20 1287 #define PMCRX 0x10 1288 #define PMCRD 0x8 1289 #define PMCRC 0x4 1290 #define PMCRP 0x2 1291 #define PMCRE 0x1 1292 /* 1293 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1294 * which can be written as 1 to trigger behaviour but which stay RAZ). 1295 */ 1296 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1297 1298 #define PMXEVTYPER_P 0x80000000 1299 #define PMXEVTYPER_U 0x40000000 1300 #define PMXEVTYPER_NSK 0x20000000 1301 #define PMXEVTYPER_NSU 0x10000000 1302 #define PMXEVTYPER_NSH 0x08000000 1303 #define PMXEVTYPER_M 0x04000000 1304 #define PMXEVTYPER_MT 0x02000000 1305 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1306 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1307 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1308 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1309 PMXEVTYPER_EVTCOUNT) 1310 1311 #define PMCCFILTR 0xf8000000 1312 #define PMCCFILTR_M PMXEVTYPER_M 1313 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1314 1315 static inline uint32_t pmu_num_counters(CPUARMState *env) 1316 { 1317 ARMCPU *cpu = env_archcpu(env); 1318 1319 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1320 } 1321 1322 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1323 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1324 { 1325 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1326 } 1327 1328 #ifdef TARGET_AARCH64 1329 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg); 1330 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg); 1331 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg); 1332 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg); 1333 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1334 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1335 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1336 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1337 #endif 1338 1339 #ifdef CONFIG_USER_ONLY 1340 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { } 1341 #else 1342 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu); 1343 #endif 1344 1345 bool el_is_in_host(CPUARMState *env, int el); 1346 1347 void aa32_max_features(ARMCPU *cpu); 1348 int exception_target_el(CPUARMState *env); 1349 bool arm_singlestep_active(CPUARMState *env); 1350 bool arm_generate_debug_exceptions(CPUARMState *env); 1351 1352 /* Add the cpreg definitions for debug related system registers */ 1353 void define_debug_regs(ARMCPU *cpu); 1354 1355 /* Effective value of MDCR_EL2 */ 1356 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1357 { 1358 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1359 } 1360 1361 /* Powers of 2 for sve_vq_map et al. */ 1362 #define SVE_VQ_POW2_MAP \ 1363 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1364 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1365 1366 /* 1367 * Return true if it is possible to take a fine-grained-trap to EL2. 1368 */ 1369 static inline bool arm_fgt_active(CPUARMState *env, int el) 1370 { 1371 /* 1372 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps 1373 * that can affect EL0, but it is harmless to do the test also for 1374 * traps on registers that are only accessible at EL1 because if the test 1375 * returns true then we can't be executing at EL1 anyway. 1376 * FGT traps only happen when EL2 is enabled and EL1 is AArch64; 1377 * traps from AArch32 only happen for the EL0 is AArch32 case. 1378 */ 1379 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && 1380 el < 2 && arm_is_el2_enabled(env) && 1381 arm_el_is_aa64(env, 1) && 1382 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && 1383 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); 1384 } 1385 1386 #endif 1387