xref: /openbmc/qemu/target/arm/internals.h (revision 33a24910)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 #include "cpu-features.h"
32 
33 /* register banks for CPU modes */
34 #define BANK_USRSYS 0
35 #define BANK_SVC    1
36 #define BANK_ABT    2
37 #define BANK_UND    3
38 #define BANK_IRQ    4
39 #define BANK_FIQ    5
40 #define BANK_HYP    6
41 #define BANK_MON    7
42 
43 static inline int arm_env_mmu_index(CPUARMState *env)
44 {
45     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
46 }
47 
48 static inline bool excp_is_internal(int excp)
49 {
50     /* Return true if this exception number represents a QEMU-internal
51      * exception that will not be passed to the guest.
52      */
53     return excp == EXCP_INTERRUPT
54         || excp == EXCP_HLT
55         || excp == EXCP_DEBUG
56         || excp == EXCP_HALTED
57         || excp == EXCP_EXCEPTION_EXIT
58         || excp == EXCP_KERNEL_TRAP
59         || excp == EXCP_SEMIHOST;
60 }
61 
62 /* Scale factor for generic timers, ie number of ns per tick.
63  * This gives a 62.5MHz timer.
64  */
65 #define GTIMER_SCALE 16
66 
67 /* Bit definitions for the v7M CONTROL register */
68 FIELD(V7M_CONTROL, NPRIV, 0, 1)
69 FIELD(V7M_CONTROL, SPSEL, 1, 1)
70 FIELD(V7M_CONTROL, FPCA, 2, 1)
71 FIELD(V7M_CONTROL, SFPA, 3, 1)
72 
73 /* Bit definitions for v7M exception return payload */
74 FIELD(V7M_EXCRET, ES, 0, 1)
75 FIELD(V7M_EXCRET, RES0, 1, 1)
76 FIELD(V7M_EXCRET, SPSEL, 2, 1)
77 FIELD(V7M_EXCRET, MODE, 3, 1)
78 FIELD(V7M_EXCRET, FTYPE, 4, 1)
79 FIELD(V7M_EXCRET, DCRS, 5, 1)
80 FIELD(V7M_EXCRET, S, 6, 1)
81 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
82 
83 /* Minimum value which is a magic number for exception return */
84 #define EXC_RETURN_MIN_MAGIC 0xff000000
85 /* Minimum number which is a magic number for function or exception return
86  * when using v8M security extension
87  */
88 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
89 
90 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
91 FIELD(DBGWCR, E, 0, 1)
92 FIELD(DBGWCR, PAC, 1, 2)
93 FIELD(DBGWCR, LSC, 3, 2)
94 FIELD(DBGWCR, BAS, 5, 8)
95 FIELD(DBGWCR, HMC, 13, 1)
96 FIELD(DBGWCR, SSC, 14, 2)
97 FIELD(DBGWCR, LBN, 16, 4)
98 FIELD(DBGWCR, WT, 20, 1)
99 FIELD(DBGWCR, MASK, 24, 5)
100 FIELD(DBGWCR, SSCE, 29, 1)
101 
102 /* We use a few fake FSR values for internal purposes in M profile.
103  * M profile cores don't have A/R format FSRs, but currently our
104  * get_phys_addr() code assumes A/R profile and reports failures via
105  * an A/R format FSR value. We then translate that into the proper
106  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
107  * Mostly the FSR values we use for this are those defined for v7PMSA,
108  * since we share some of that codepath. A few kinds of fault are
109  * only for M profile and have no A/R equivalent, though, so we have
110  * to pick a value from the reserved range (which we never otherwise
111  * generate) to use for these.
112  * These values will never be visible to the guest.
113  */
114 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
115 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
116 
117 /**
118  * raise_exception: Raise the specified exception.
119  * Raise a guest exception with the specified value, syndrome register
120  * and target exception level. This should be called from helper functions,
121  * and never returns because we will longjump back up to the CPU main loop.
122  */
123 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
124                                 uint32_t syndrome, uint32_t target_el);
125 
126 /*
127  * Similarly, but also use unwinding to restore cpu state.
128  */
129 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
130                                       uint32_t syndrome, uint32_t target_el,
131                                       uintptr_t ra);
132 
133 /*
134  * For AArch64, map a given EL to an index in the banked_spsr array.
135  * Note that this mapping and the AArch32 mapping defined in bank_number()
136  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
137  * mandated mapping between each other.
138  */
139 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
140 {
141     static const unsigned int map[4] = {
142         [1] = BANK_SVC, /* EL1.  */
143         [2] = BANK_HYP, /* EL2.  */
144         [3] = BANK_MON, /* EL3.  */
145     };
146     assert(el >= 1 && el <= 3);
147     return map[el];
148 }
149 
150 /* Map CPU modes onto saved register banks.  */
151 static inline int bank_number(int mode)
152 {
153     switch (mode) {
154     case ARM_CPU_MODE_USR:
155     case ARM_CPU_MODE_SYS:
156         return BANK_USRSYS;
157     case ARM_CPU_MODE_SVC:
158         return BANK_SVC;
159     case ARM_CPU_MODE_ABT:
160         return BANK_ABT;
161     case ARM_CPU_MODE_UND:
162         return BANK_UND;
163     case ARM_CPU_MODE_IRQ:
164         return BANK_IRQ;
165     case ARM_CPU_MODE_FIQ:
166         return BANK_FIQ;
167     case ARM_CPU_MODE_HYP:
168         return BANK_HYP;
169     case ARM_CPU_MODE_MON:
170         return BANK_MON;
171     }
172     g_assert_not_reached();
173 }
174 
175 /**
176  * r14_bank_number: Map CPU mode onto register bank for r14
177  *
178  * Given an AArch32 CPU mode, return the index into the saved register
179  * banks to use for the R14 (LR) in that mode. This is the same as
180  * bank_number(), except for the special case of Hyp mode, where
181  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
182  * This should be used as the index into env->banked_r14[], and
183  * bank_number() used for the index into env->banked_r13[] and
184  * env->banked_spsr[].
185  */
186 static inline int r14_bank_number(int mode)
187 {
188     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
189 }
190 
191 void arm_cpu_register(const ARMCPUInfo *info);
192 void aarch64_cpu_register(const ARMCPUInfo *info);
193 
194 void register_cp_regs_for_features(ARMCPU *cpu);
195 void init_cpreg_list(ARMCPU *cpu);
196 
197 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
198 void arm_translate_init(void);
199 
200 void arm_restore_state_to_opc(CPUState *cs,
201                               const TranslationBlock *tb,
202                               const uint64_t *data);
203 
204 #ifdef CONFIG_TCG
205 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
206 #endif /* CONFIG_TCG */
207 
208 typedef enum ARMFPRounding {
209     FPROUNDING_TIEEVEN,
210     FPROUNDING_POSINF,
211     FPROUNDING_NEGINF,
212     FPROUNDING_ZERO,
213     FPROUNDING_TIEAWAY,
214     FPROUNDING_ODD
215 } ARMFPRounding;
216 
217 extern const FloatRoundMode arm_rmode_to_sf_map[6];
218 
219 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
220 {
221     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
222     return arm_rmode_to_sf_map[rmode];
223 }
224 
225 static inline void aarch64_save_sp(CPUARMState *env, int el)
226 {
227     if (env->pstate & PSTATE_SP) {
228         env->sp_el[el] = env->xregs[31];
229     } else {
230         env->sp_el[0] = env->xregs[31];
231     }
232 }
233 
234 static inline void aarch64_restore_sp(CPUARMState *env, int el)
235 {
236     if (env->pstate & PSTATE_SP) {
237         env->xregs[31] = env->sp_el[el];
238     } else {
239         env->xregs[31] = env->sp_el[0];
240     }
241 }
242 
243 static inline void update_spsel(CPUARMState *env, uint32_t imm)
244 {
245     unsigned int cur_el = arm_current_el(env);
246     /* Update PSTATE SPSel bit; this requires us to update the
247      * working stack pointer in xregs[31].
248      */
249     if (!((imm ^ env->pstate) & PSTATE_SP)) {
250         return;
251     }
252     aarch64_save_sp(env, cur_el);
253     env->pstate = deposit32(env->pstate, 0, 1, imm);
254 
255     /* We rely on illegal updates to SPsel from EL0 to get trapped
256      * at translation time.
257      */
258     assert(cur_el >= 1 && cur_el <= 3);
259     aarch64_restore_sp(env, cur_el);
260 }
261 
262 /*
263  * arm_pamax
264  * @cpu: ARMCPU
265  *
266  * Returns the implementation defined bit-width of physical addresses.
267  * The ARMv8 reference manuals refer to this as PAMax().
268  */
269 unsigned int arm_pamax(ARMCPU *cpu);
270 
271 /* Return true if extended addresses are enabled.
272  * This is always the case if our translation regime is 64 bit,
273  * but depends on TTBCR.EAE for 32 bit.
274  */
275 static inline bool extended_addresses_enabled(CPUARMState *env)
276 {
277     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
278     if (arm_feature(env, ARM_FEATURE_PMSA) &&
279         arm_feature(env, ARM_FEATURE_V8)) {
280         return true;
281     }
282     return arm_el_is_aa64(env, 1) ||
283            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
284 }
285 
286 /* Update a QEMU watchpoint based on the information the guest has set in the
287  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
288  */
289 void hw_watchpoint_update(ARMCPU *cpu, int n);
290 /* Update the QEMU watchpoints for every guest watchpoint. This does a
291  * complete delete-and-reinstate of the QEMU watchpoint list and so is
292  * suitable for use after migration or on reset.
293  */
294 void hw_watchpoint_update_all(ARMCPU *cpu);
295 /* Update a QEMU breakpoint based on the information the guest has set in the
296  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
297  */
298 void hw_breakpoint_update(ARMCPU *cpu, int n);
299 /* Update the QEMU breakpoints for every guest breakpoint. This does a
300  * complete delete-and-reinstate of the QEMU breakpoint list and so is
301  * suitable for use after migration or on reset.
302  */
303 void hw_breakpoint_update_all(ARMCPU *cpu);
304 
305 /* Callback function for checking if a breakpoint should trigger. */
306 bool arm_debug_check_breakpoint(CPUState *cs);
307 
308 /* Callback function for checking if a watchpoint should trigger. */
309 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
310 
311 /* Adjust addresses (in BE32 mode) before testing against watchpoint
312  * addresses.
313  */
314 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
315 
316 /* Callback function for when a watchpoint or breakpoint triggers. */
317 void arm_debug_excp_handler(CPUState *cs);
318 
319 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
320 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
321 {
322     return false;
323 }
324 static inline void arm_handle_psci_call(ARMCPU *cpu)
325 {
326     g_assert_not_reached();
327 }
328 #else
329 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
330 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
331 /* Actually handle a PSCI call */
332 void arm_handle_psci_call(ARMCPU *cpu);
333 #endif
334 
335 /**
336  * arm_clear_exclusive: clear the exclusive monitor
337  * @env: CPU env
338  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
339  */
340 static inline void arm_clear_exclusive(CPUARMState *env)
341 {
342     env->exclusive_addr = -1;
343 }
344 
345 /**
346  * ARMFaultType: type of an ARM MMU fault
347  * This corresponds to the v8A pseudocode's Fault enumeration,
348  * with extensions for QEMU internal conditions.
349  */
350 typedef enum ARMFaultType {
351     ARMFault_None,
352     ARMFault_AccessFlag,
353     ARMFault_Alignment,
354     ARMFault_Background,
355     ARMFault_Domain,
356     ARMFault_Permission,
357     ARMFault_Translation,
358     ARMFault_AddressSize,
359     ARMFault_SyncExternal,
360     ARMFault_SyncExternalOnWalk,
361     ARMFault_SyncParity,
362     ARMFault_SyncParityOnWalk,
363     ARMFault_AsyncParity,
364     ARMFault_AsyncExternal,
365     ARMFault_Debug,
366     ARMFault_TLBConflict,
367     ARMFault_UnsuppAtomicUpdate,
368     ARMFault_Lockdown,
369     ARMFault_Exclusive,
370     ARMFault_ICacheMaint,
371     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
372     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
373     ARMFault_GPCFOnWalk,
374     ARMFault_GPCFOnOutput,
375 } ARMFaultType;
376 
377 typedef enum ARMGPCF {
378     GPCF_None,
379     GPCF_AddressSize,
380     GPCF_Walk,
381     GPCF_EABT,
382     GPCF_Fail,
383 } ARMGPCF;
384 
385 /**
386  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
387  * @type: Type of fault
388  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
389  * @level: Table walk level (for translation, access flag and permission faults)
390  * @domain: Domain of the fault address (for non-LPAE CPUs only)
391  * @s2addr: Address that caused a fault at stage 2
392  * @paddr: physical address that caused a fault for gpc
393  * @paddr_space: physical address space that caused a fault for gpc
394  * @stage2: True if we faulted at stage 2
395  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
396  * @s1ns: True if we faulted on a non-secure IPA while in secure state
397  * @ea: True if we should set the EA (external abort type) bit in syndrome
398  */
399 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
400 struct ARMMMUFaultInfo {
401     ARMFaultType type;
402     ARMGPCF gpcf;
403     target_ulong s2addr;
404     target_ulong paddr;
405     ARMSecuritySpace paddr_space;
406     int level;
407     int domain;
408     bool stage2;
409     bool s1ptw;
410     bool s1ns;
411     bool ea;
412 };
413 
414 /**
415  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
416  * Compare pseudocode EncodeSDFSC(), though unlike that function
417  * we set up a whole FSR-format code including domain field and
418  * putting the high bit of the FSC into bit 10.
419  */
420 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
421 {
422     uint32_t fsc;
423 
424     switch (fi->type) {
425     case ARMFault_None:
426         return 0;
427     case ARMFault_AccessFlag:
428         fsc = fi->level == 1 ? 0x3 : 0x6;
429         break;
430     case ARMFault_Alignment:
431         fsc = 0x1;
432         break;
433     case ARMFault_Permission:
434         fsc = fi->level == 1 ? 0xd : 0xf;
435         break;
436     case ARMFault_Domain:
437         fsc = fi->level == 1 ? 0x9 : 0xb;
438         break;
439     case ARMFault_Translation:
440         fsc = fi->level == 1 ? 0x5 : 0x7;
441         break;
442     case ARMFault_SyncExternal:
443         fsc = 0x8 | (fi->ea << 12);
444         break;
445     case ARMFault_SyncExternalOnWalk:
446         fsc = fi->level == 1 ? 0xc : 0xe;
447         fsc |= (fi->ea << 12);
448         break;
449     case ARMFault_SyncParity:
450         fsc = 0x409;
451         break;
452     case ARMFault_SyncParityOnWalk:
453         fsc = fi->level == 1 ? 0x40c : 0x40e;
454         break;
455     case ARMFault_AsyncParity:
456         fsc = 0x408;
457         break;
458     case ARMFault_AsyncExternal:
459         fsc = 0x406 | (fi->ea << 12);
460         break;
461     case ARMFault_Debug:
462         fsc = 0x2;
463         break;
464     case ARMFault_TLBConflict:
465         fsc = 0x400;
466         break;
467     case ARMFault_Lockdown:
468         fsc = 0x404;
469         break;
470     case ARMFault_Exclusive:
471         fsc = 0x405;
472         break;
473     case ARMFault_ICacheMaint:
474         fsc = 0x4;
475         break;
476     case ARMFault_Background:
477         fsc = 0x0;
478         break;
479     case ARMFault_QEMU_NSCExec:
480         fsc = M_FAKE_FSR_NSC_EXEC;
481         break;
482     case ARMFault_QEMU_SFault:
483         fsc = M_FAKE_FSR_SFAULT;
484         break;
485     default:
486         /* Other faults can't occur in a context that requires a
487          * short-format status code.
488          */
489         g_assert_not_reached();
490     }
491 
492     fsc |= (fi->domain << 4);
493     return fsc;
494 }
495 
496 /**
497  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
498  * Compare pseudocode EncodeLDFSC(), though unlike that function
499  * we fill in also the LPAE bit 9 of a DFSR format.
500  */
501 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
502 {
503     uint32_t fsc;
504 
505     switch (fi->type) {
506     case ARMFault_None:
507         return 0;
508     case ARMFault_AddressSize:
509         assert(fi->level >= -1 && fi->level <= 3);
510         if (fi->level < 0) {
511             fsc = 0b101001;
512         } else {
513             fsc = fi->level;
514         }
515         break;
516     case ARMFault_AccessFlag:
517         assert(fi->level >= 0 && fi->level <= 3);
518         fsc = 0b001000 | fi->level;
519         break;
520     case ARMFault_Permission:
521         assert(fi->level >= 0 && fi->level <= 3);
522         fsc = 0b001100 | fi->level;
523         break;
524     case ARMFault_Translation:
525         assert(fi->level >= -1 && fi->level <= 3);
526         if (fi->level < 0) {
527             fsc = 0b101011;
528         } else {
529             fsc = 0b000100 | fi->level;
530         }
531         break;
532     case ARMFault_SyncExternal:
533         fsc = 0x10 | (fi->ea << 12);
534         break;
535     case ARMFault_SyncExternalOnWalk:
536         assert(fi->level >= -1 && fi->level <= 3);
537         if (fi->level < 0) {
538             fsc = 0b010011;
539         } else {
540             fsc = 0b010100 | fi->level;
541         }
542         fsc |= fi->ea << 12;
543         break;
544     case ARMFault_SyncParity:
545         fsc = 0x18;
546         break;
547     case ARMFault_SyncParityOnWalk:
548         assert(fi->level >= -1 && fi->level <= 3);
549         if (fi->level < 0) {
550             fsc = 0b011011;
551         } else {
552             fsc = 0b011100 | fi->level;
553         }
554         break;
555     case ARMFault_AsyncParity:
556         fsc = 0x19;
557         break;
558     case ARMFault_AsyncExternal:
559         fsc = 0x11 | (fi->ea << 12);
560         break;
561     case ARMFault_Alignment:
562         fsc = 0x21;
563         break;
564     case ARMFault_Debug:
565         fsc = 0x22;
566         break;
567     case ARMFault_TLBConflict:
568         fsc = 0x30;
569         break;
570     case ARMFault_UnsuppAtomicUpdate:
571         fsc = 0x31;
572         break;
573     case ARMFault_Lockdown:
574         fsc = 0x34;
575         break;
576     case ARMFault_Exclusive:
577         fsc = 0x35;
578         break;
579     case ARMFault_GPCFOnWalk:
580         assert(fi->level >= -1 && fi->level <= 3);
581         if (fi->level < 0) {
582             fsc = 0b100011;
583         } else {
584             fsc = 0b100100 | fi->level;
585         }
586         break;
587     case ARMFault_GPCFOnOutput:
588         fsc = 0b101000;
589         break;
590     default:
591         /* Other faults can't occur in a context that requires a
592          * long-format status code.
593          */
594         g_assert_not_reached();
595     }
596 
597     fsc |= 1 << 9;
598     return fsc;
599 }
600 
601 static inline bool arm_extabort_type(MemTxResult result)
602 {
603     /* The EA bit in syndromes and fault status registers is an
604      * IMPDEF classification of external aborts. ARM implementations
605      * usually use this to indicate AXI bus Decode error (0) or
606      * Slave error (1); in QEMU we follow that.
607      */
608     return result != MEMTX_DECODE_ERROR;
609 }
610 
611 #ifdef CONFIG_USER_ONLY
612 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
613                             MMUAccessType access_type,
614                             bool maperr, uintptr_t ra);
615 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
616                            MMUAccessType access_type, uintptr_t ra);
617 #else
618 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
619                       MMUAccessType access_type, int mmu_idx,
620                       bool probe, uintptr_t retaddr);
621 #endif
622 
623 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
624 {
625     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
626 }
627 
628 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
629 {
630     if (arm_feature(env, ARM_FEATURE_M)) {
631         return mmu_idx | ARM_MMU_IDX_M;
632     } else {
633         return mmu_idx | ARM_MMU_IDX_A;
634     }
635 }
636 
637 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
638 {
639     /* AArch64 is always a-profile. */
640     return mmu_idx | ARM_MMU_IDX_A;
641 }
642 
643 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
644 
645 /* Return the MMU index for a v7M CPU in the specified security state */
646 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
647 
648 /*
649  * Return true if the stage 1 translation regime is using LPAE
650  * format page tables
651  */
652 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
653 
654 /* Raise a data fault alignment exception for the specified virtual address */
655 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
656                                             MMUAccessType access_type,
657                                             int mmu_idx, uintptr_t retaddr);
658 
659 #ifndef CONFIG_USER_ONLY
660 /* arm_cpu_do_transaction_failed: handle a memory system error response
661  * (eg "no device/memory present at address") by raising an external abort
662  * exception
663  */
664 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
665                                    vaddr addr, unsigned size,
666                                    MMUAccessType access_type,
667                                    int mmu_idx, MemTxAttrs attrs,
668                                    MemTxResult response, uintptr_t retaddr);
669 #endif
670 
671 /* Call any registered EL change hooks */
672 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
673 {
674     ARMELChangeHook *hook, *next;
675     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
676         hook->hook(cpu, hook->opaque);
677     }
678 }
679 static inline void arm_call_el_change_hook(ARMCPU *cpu)
680 {
681     ARMELChangeHook *hook, *next;
682     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
683         hook->hook(cpu, hook->opaque);
684     }
685 }
686 
687 /* Return true if this address translation regime has two ranges.  */
688 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
689 {
690     switch (mmu_idx) {
691     case ARMMMUIdx_Stage1_E0:
692     case ARMMMUIdx_Stage1_E1:
693     case ARMMMUIdx_Stage1_E1_PAN:
694     case ARMMMUIdx_E10_0:
695     case ARMMMUIdx_E10_1:
696     case ARMMMUIdx_E10_1_PAN:
697     case ARMMMUIdx_E20_0:
698     case ARMMMUIdx_E20_2:
699     case ARMMMUIdx_E20_2_PAN:
700         return true;
701     default:
702         return false;
703     }
704 }
705 
706 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
707 {
708     switch (mmu_idx) {
709     case ARMMMUIdx_Stage1_E1_PAN:
710     case ARMMMUIdx_E10_1_PAN:
711     case ARMMMUIdx_E20_2_PAN:
712         return true;
713     default:
714         return false;
715     }
716 }
717 
718 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
719 {
720     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
721 }
722 
723 /* Return the exception level which controls this address translation regime */
724 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
725 {
726     switch (mmu_idx) {
727     case ARMMMUIdx_E20_0:
728     case ARMMMUIdx_E20_2:
729     case ARMMMUIdx_E20_2_PAN:
730     case ARMMMUIdx_Stage2:
731     case ARMMMUIdx_Stage2_S:
732     case ARMMMUIdx_E2:
733         return 2;
734     case ARMMMUIdx_E3:
735         return 3;
736     case ARMMMUIdx_E10_0:
737     case ARMMMUIdx_Stage1_E0:
738         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
739     case ARMMMUIdx_Stage1_E1:
740     case ARMMMUIdx_Stage1_E1_PAN:
741     case ARMMMUIdx_E10_1:
742     case ARMMMUIdx_E10_1_PAN:
743     case ARMMMUIdx_MPrivNegPri:
744     case ARMMMUIdx_MUserNegPri:
745     case ARMMMUIdx_MPriv:
746     case ARMMMUIdx_MUser:
747     case ARMMMUIdx_MSPrivNegPri:
748     case ARMMMUIdx_MSUserNegPri:
749     case ARMMMUIdx_MSPriv:
750     case ARMMMUIdx_MSUser:
751         return 1;
752     default:
753         g_assert_not_reached();
754     }
755 }
756 
757 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
758 {
759     switch (mmu_idx) {
760     case ARMMMUIdx_E20_0:
761     case ARMMMUIdx_Stage1_E0:
762     case ARMMMUIdx_MUser:
763     case ARMMMUIdx_MSUser:
764     case ARMMMUIdx_MUserNegPri:
765     case ARMMMUIdx_MSUserNegPri:
766         return true;
767     default:
768         return false;
769     case ARMMMUIdx_E10_0:
770     case ARMMMUIdx_E10_1:
771     case ARMMMUIdx_E10_1_PAN:
772         g_assert_not_reached();
773     }
774 }
775 
776 /* Return the SCTLR value which controls this address translation regime */
777 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
778 {
779     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
780 }
781 
782 /*
783  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
784  * and the Non-Secure stage 2 translation regimes (and hence which are
785  * not present in VSTCR_EL2).
786  */
787 #define VTCR_SHARED_FIELD_MASK \
788     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
789      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
790      R_VTCR_DS_MASK)
791 
792 /* Return the value of the TCR controlling this translation regime */
793 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
794 {
795     if (mmu_idx == ARMMMUIdx_Stage2) {
796         return env->cp15.vtcr_el2;
797     }
798     if (mmu_idx == ARMMMUIdx_Stage2_S) {
799         /*
800          * Secure stage 2 shares fields from VTCR_EL2. We merge those
801          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
802          * value so the callers don't need to special case this.
803          *
804          * If a future architecture change defines bits in VSTCR_EL2 that
805          * overlap with these VTCR_EL2 fields we may need to revisit this.
806          */
807         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
808         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
809         return v;
810     }
811     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
812 }
813 
814 /* Return true if the translation regime is using LPAE format page tables */
815 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
816 {
817     int el = regime_el(env, mmu_idx);
818     if (el == 2 || arm_el_is_aa64(env, el)) {
819         return true;
820     }
821     if (arm_feature(env, ARM_FEATURE_PMSA) &&
822         arm_feature(env, ARM_FEATURE_V8)) {
823         return true;
824     }
825     if (arm_feature(env, ARM_FEATURE_LPAE)
826         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
827         return true;
828     }
829     return false;
830 }
831 
832 /**
833  * arm_num_brps: Return number of implemented breakpoints.
834  * Note that the ID register BRPS field is "number of bps - 1",
835  * and we return the actual number of breakpoints.
836  */
837 static inline int arm_num_brps(ARMCPU *cpu)
838 {
839     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
840         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
841     } else {
842         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
843     }
844 }
845 
846 /**
847  * arm_num_wrps: Return number of implemented watchpoints.
848  * Note that the ID register WRPS field is "number of wps - 1",
849  * and we return the actual number of watchpoints.
850  */
851 static inline int arm_num_wrps(ARMCPU *cpu)
852 {
853     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
854         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
855     } else {
856         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
857     }
858 }
859 
860 /**
861  * arm_num_ctx_cmps: Return number of implemented context comparators.
862  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
863  * and we return the actual number of comparators.
864  */
865 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
866 {
867     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
868         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
869     } else {
870         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
871     }
872 }
873 
874 /**
875  * v7m_using_psp: Return true if using process stack pointer
876  * Return true if the CPU is currently using the process stack
877  * pointer, or false if it is using the main stack pointer.
878  */
879 static inline bool v7m_using_psp(CPUARMState *env)
880 {
881     /* Handler mode always uses the main stack; for thread mode
882      * the CONTROL.SPSEL bit determines the answer.
883      * Note that in v7M it is not possible to be in Handler mode with
884      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
885      */
886     return !arm_v7m_is_handler_mode(env) &&
887         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
888 }
889 
890 /**
891  * v7m_sp_limit: Return SP limit for current CPU state
892  * Return the SP limit value for the current CPU security state
893  * and stack pointer.
894  */
895 static inline uint32_t v7m_sp_limit(CPUARMState *env)
896 {
897     if (v7m_using_psp(env)) {
898         return env->v7m.psplim[env->v7m.secure];
899     } else {
900         return env->v7m.msplim[env->v7m.secure];
901     }
902 }
903 
904 /**
905  * v7m_cpacr_pass:
906  * Return true if the v7M CPACR permits access to the FPU for the specified
907  * security state and privilege level.
908  */
909 static inline bool v7m_cpacr_pass(CPUARMState *env,
910                                   bool is_secure, bool is_priv)
911 {
912     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
913     case 0:
914     case 2: /* UNPREDICTABLE: we treat like 0 */
915         return false;
916     case 1:
917         return is_priv;
918     case 3:
919         return true;
920     default:
921         g_assert_not_reached();
922     }
923 }
924 
925 /**
926  * aarch32_mode_name(): Return name of the AArch32 CPU mode
927  * @psr: Program Status Register indicating CPU mode
928  *
929  * Returns, for debug logging purposes, a printable representation
930  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
931  * the low bits of the specified PSR.
932  */
933 static inline const char *aarch32_mode_name(uint32_t psr)
934 {
935     static const char cpu_mode_names[16][4] = {
936         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
937         "???", "???", "hyp", "und", "???", "???", "???", "sys"
938     };
939 
940     return cpu_mode_names[psr & 0xf];
941 }
942 
943 /**
944  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
945  *
946  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
947  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
948  * Must be called with the BQL held.
949  */
950 void arm_cpu_update_virq(ARMCPU *cpu);
951 
952 /**
953  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
954  *
955  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
956  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
957  * Must be called with the BQL held.
958  */
959 void arm_cpu_update_vfiq(ARMCPU *cpu);
960 
961 /**
962  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
963  *
964  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
965  * following a change to the HCR_EL2.VSE bit.
966  */
967 void arm_cpu_update_vserr(ARMCPU *cpu);
968 
969 /**
970  * arm_mmu_idx_el:
971  * @env: The cpu environment
972  * @el: The EL to use.
973  *
974  * Return the full ARMMMUIdx for the translation regime for EL.
975  */
976 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
977 
978 /**
979  * arm_mmu_idx:
980  * @env: The cpu environment
981  *
982  * Return the full ARMMMUIdx for the current translation regime.
983  */
984 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
985 
986 /**
987  * arm_stage1_mmu_idx:
988  * @env: The cpu environment
989  *
990  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
991  */
992 #ifdef CONFIG_USER_ONLY
993 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
994 {
995     return ARMMMUIdx_Stage1_E0;
996 }
997 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
998 {
999     return ARMMMUIdx_Stage1_E0;
1000 }
1001 #else
1002 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1003 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1004 #endif
1005 
1006 /**
1007  * arm_mmu_idx_is_stage1_of_2:
1008  * @mmu_idx: The ARMMMUIdx to test
1009  *
1010  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1011  * first stage of a two stage regime.
1012  */
1013 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1014 {
1015     switch (mmu_idx) {
1016     case ARMMMUIdx_Stage1_E0:
1017     case ARMMMUIdx_Stage1_E1:
1018     case ARMMMUIdx_Stage1_E1_PAN:
1019         return true;
1020     default:
1021         return false;
1022     }
1023 }
1024 
1025 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1026                                                const ARMISARegisters *id)
1027 {
1028     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1029 
1030     if ((features >> ARM_FEATURE_V4T) & 1) {
1031         valid |= CPSR_T;
1032     }
1033     if ((features >> ARM_FEATURE_V5) & 1) {
1034         valid |= CPSR_Q; /* V5TE in reality*/
1035     }
1036     if ((features >> ARM_FEATURE_V6) & 1) {
1037         valid |= CPSR_E | CPSR_GE;
1038     }
1039     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1040         valid |= CPSR_IT;
1041     }
1042     if (isar_feature_aa32_jazelle(id)) {
1043         valid |= CPSR_J;
1044     }
1045     if (isar_feature_aa32_pan(id)) {
1046         valid |= CPSR_PAN;
1047     }
1048     if (isar_feature_aa32_dit(id)) {
1049         valid |= CPSR_DIT;
1050     }
1051     if (isar_feature_aa32_ssbs(id)) {
1052         valid |= CPSR_SSBS;
1053     }
1054 
1055     return valid;
1056 }
1057 
1058 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1059 {
1060     uint32_t valid;
1061 
1062     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1063     if (isar_feature_aa64_bti(id)) {
1064         valid |= PSTATE_BTYPE;
1065     }
1066     if (isar_feature_aa64_pan(id)) {
1067         valid |= PSTATE_PAN;
1068     }
1069     if (isar_feature_aa64_uao(id)) {
1070         valid |= PSTATE_UAO;
1071     }
1072     if (isar_feature_aa64_dit(id)) {
1073         valid |= PSTATE_DIT;
1074     }
1075     if (isar_feature_aa64_ssbs(id)) {
1076         valid |= PSTATE_SSBS;
1077     }
1078     if (isar_feature_aa64_mte(id)) {
1079         valid |= PSTATE_TCO;
1080     }
1081 
1082     return valid;
1083 }
1084 
1085 /* Granule size (i.e. page size) */
1086 typedef enum ARMGranuleSize {
1087     /* Same order as TG0 encoding */
1088     Gran4K,
1089     Gran64K,
1090     Gran16K,
1091     GranInvalid,
1092 } ARMGranuleSize;
1093 
1094 /**
1095  * arm_granule_bits: Return address size of the granule in bits
1096  *
1097  * Return the address size of the granule in bits. This corresponds
1098  * to the pseudocode TGxGranuleBits().
1099  */
1100 static inline int arm_granule_bits(ARMGranuleSize gran)
1101 {
1102     switch (gran) {
1103     case Gran64K:
1104         return 16;
1105     case Gran16K:
1106         return 14;
1107     case Gran4K:
1108         return 12;
1109     default:
1110         g_assert_not_reached();
1111     }
1112 }
1113 
1114 /*
1115  * Parameters of a given virtual address, as extracted from the
1116  * translation control register (TCR) for a given regime.
1117  */
1118 typedef struct ARMVAParameters {
1119     unsigned tsz    : 8;
1120     unsigned ps     : 3;
1121     unsigned sh     : 2;
1122     unsigned select : 1;
1123     bool tbi        : 1;
1124     bool epd        : 1;
1125     bool hpd        : 1;
1126     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1127     bool ds         : 1;
1128     bool ha         : 1;
1129     bool hd         : 1;
1130     ARMGranuleSize gran : 2;
1131 } ARMVAParameters;
1132 
1133 /**
1134  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1135  * @env: CPU
1136  * @va: virtual address to look up
1137  * @mmu_idx: determines translation regime to use
1138  * @data: true if this is a data access
1139  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1140  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1141  */
1142 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1143                                    ARMMMUIdx mmu_idx, bool data,
1144                                    bool el1_is_aa32);
1145 
1146 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1147 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1148 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1149 
1150 /* Determine if allocation tags are available.  */
1151 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1152                                                  uint64_t sctlr)
1153 {
1154     if (el < 3
1155         && arm_feature(env, ARM_FEATURE_EL3)
1156         && !(env->cp15.scr_el3 & SCR_ATA)) {
1157         return false;
1158     }
1159     if (el < 2 && arm_is_el2_enabled(env)) {
1160         uint64_t hcr = arm_hcr_el2_eff(env);
1161         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1162             return false;
1163         }
1164     }
1165     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1166     return sctlr != 0;
1167 }
1168 
1169 #ifndef CONFIG_USER_ONLY
1170 
1171 /* Security attributes for an address, as returned by v8m_security_lookup. */
1172 typedef struct V8M_SAttributes {
1173     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1174     bool ns;
1175     bool nsc;
1176     uint8_t sregion;
1177     bool srvalid;
1178     uint8_t iregion;
1179     bool irvalid;
1180 } V8M_SAttributes;
1181 
1182 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1183                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1184                          bool secure, V8M_SAttributes *sattrs);
1185 
1186 /* Cacheability and shareability attributes for a memory access */
1187 typedef struct ARMCacheAttrs {
1188     /*
1189      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1190      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1191      */
1192     unsigned int attrs:8;
1193     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1194     bool is_s2_format:1;
1195 } ARMCacheAttrs;
1196 
1197 /* Fields that are valid upon success. */
1198 typedef struct GetPhysAddrResult {
1199     CPUTLBEntryFull f;
1200     ARMCacheAttrs cacheattrs;
1201 } GetPhysAddrResult;
1202 
1203 /**
1204  * get_phys_addr: get the physical address for a virtual address
1205  * @env: CPUARMState
1206  * @address: virtual address to get physical address for
1207  * @access_type: 0 for read, 1 for write, 2 for execute
1208  * @mmu_idx: MMU index indicating required translation regime
1209  * @result: set on translation success.
1210  * @fi: set to fault info if the translation fails
1211  *
1212  * Find the physical address corresponding to the given virtual address,
1213  * by doing a translation table walk on MMU based systems or using the
1214  * MPU state on MPU based systems.
1215  *
1216  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1217  * prot and page_size may not be filled in, and the populated fsr value provides
1218  * information on why the translation aborted, in the format of a
1219  * DFSR/IFSR fault register, with the following caveats:
1220  *  * we honour the short vs long DFSR format differences.
1221  *  * the WnR bit is never set (the caller must do this).
1222  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1223  *    value.
1224  */
1225 bool get_phys_addr(CPUARMState *env, target_ulong address,
1226                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1227                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1228     __attribute__((nonnull));
1229 
1230 /**
1231  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1232  *                                 address
1233  * @env: CPUARMState
1234  * @address: virtual address to get physical address for
1235  * @access_type: 0 for read, 1 for write, 2 for execute
1236  * @mmu_idx: MMU index indicating required translation regime
1237  * @space: security space for the access
1238  * @result: set on translation success.
1239  * @fi: set to fault info if the translation fails
1240  *
1241  * Similar to get_phys_addr, but use the given security space and don't perform
1242  * a Granule Protection Check on the resulting address.
1243  */
1244 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1245                                     MMUAccessType access_type,
1246                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1247                                     GetPhysAddrResult *result,
1248                                     ARMMMUFaultInfo *fi)
1249     __attribute__((nonnull));
1250 
1251 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1252                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1253                        bool is_secure, GetPhysAddrResult *result,
1254                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1255 
1256 void arm_log_exception(CPUState *cs);
1257 
1258 #endif /* !CONFIG_USER_ONLY */
1259 
1260 /*
1261  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1262  * the same simd_desc() encoding due to restrictions on size.
1263  * Use these instead.
1264  */
1265 FIELD(PREDDESC, OPRSZ, 0, 6)
1266 FIELD(PREDDESC, ESZ, 6, 2)
1267 FIELD(PREDDESC, DATA, 8, 24)
1268 
1269 /*
1270  * The SVE simd_data field, for memory ops, contains either
1271  * rd (5 bits) or a shift count (2 bits).
1272  */
1273 #define SVE_MTEDESC_SHIFT 5
1274 
1275 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1276 FIELD(MTEDESC, MIDX,  0, 4)
1277 FIELD(MTEDESC, TBI,   4, 2)
1278 FIELD(MTEDESC, TCMA,  6, 2)
1279 FIELD(MTEDESC, WRITE, 8, 1)
1280 FIELD(MTEDESC, ALIGN, 9, 3)
1281 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1282 
1283 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1284 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1285 
1286 /**
1287  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1288  * @env: CPU env
1289  * @ptr: start address of memory region (dirty pointer)
1290  * @size: length of region (guaranteed not to cross a page boundary)
1291  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1292  * Returns: the size of the region that can be copied without hitting
1293  *          an MTE tag failure
1294  *
1295  * Note that we assume that the caller has already checked the TBI
1296  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1297  * required.
1298  */
1299 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1300                         uint32_t desc);
1301 
1302 /**
1303  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1304  *                     operation going in the reverse direction
1305  * @env: CPU env
1306  * @ptr: *end* address of memory region (dirty pointer)
1307  * @size: length of region (guaranteed not to cross a page boundary)
1308  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1309  * Returns: the size of the region that can be copied without hitting
1310  *          an MTE tag failure
1311  *
1312  * Note that we assume that the caller has already checked the TBI
1313  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1314  * required.
1315  */
1316 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1317                             uint32_t desc);
1318 
1319 /**
1320  * mte_check_fail: Record an MTE tag check failure
1321  * @env: CPU env
1322  * @desc: MTEDESC descriptor word
1323  * @dirty_ptr: Failing dirty address
1324  * @ra: TCG retaddr
1325  *
1326  * This may never return (if the MTE tag checks are configured to fault).
1327  */
1328 void mte_check_fail(CPUARMState *env, uint32_t desc,
1329                     uint64_t dirty_ptr, uintptr_t ra);
1330 
1331 /**
1332  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1333  * @env: CPU env
1334  * @dirty_ptr: Start address of memory region (dirty pointer)
1335  * @size: length of region (guaranteed not to cross page boundary)
1336  * @desc: MTEDESC descriptor word
1337  */
1338 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1339                        uint32_t desc);
1340 
1341 static inline int allocation_tag_from_addr(uint64_t ptr)
1342 {
1343     return extract64(ptr, 56, 4);
1344 }
1345 
1346 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1347 {
1348     return deposit64(ptr, 56, 4, rtag);
1349 }
1350 
1351 /* Return true if tbi bits mean that the access is checked.  */
1352 static inline bool tbi_check(uint32_t desc, int bit55)
1353 {
1354     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1355 }
1356 
1357 /* Return true if tcma bits mean that the access is unchecked.  */
1358 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1359 {
1360     /*
1361      * We had extracted bit55 and ptr_tag for other reasons, so fold
1362      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1363      */
1364     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1365     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1366     return tcma && match;
1367 }
1368 
1369 /*
1370  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1371  * for the tag to be present in the FAR_ELx register.  But for user-only
1372  * mode, we do not have a TLB with which to implement this, so we must
1373  * remove the top byte.
1374  */
1375 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1376 {
1377 #ifdef CONFIG_USER_ONLY
1378     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1379     ptr &= sextract64(ptr, 0, 56);
1380 #endif
1381     return ptr;
1382 }
1383 
1384 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1385 {
1386 #ifdef CONFIG_USER_ONLY
1387     int64_t clean_ptr = sextract64(ptr, 0, 56);
1388     if (tbi_check(desc, clean_ptr < 0)) {
1389         ptr = clean_ptr;
1390     }
1391 #endif
1392     return ptr;
1393 }
1394 
1395 /* Values for M-profile PSR.ECI for MVE insns */
1396 enum MVEECIState {
1397     ECI_NONE = 0, /* No completed beats */
1398     ECI_A0 = 1, /* Completed: A0 */
1399     ECI_A0A1 = 2, /* Completed: A0, A1 */
1400     /* 3 is reserved */
1401     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1402     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1403     /* All other values reserved */
1404 };
1405 
1406 /* Definitions for the PMU registers */
1407 #define PMCRN_MASK  0xf800
1408 #define PMCRN_SHIFT 11
1409 #define PMCRLP  0x80
1410 #define PMCRLC  0x40
1411 #define PMCRDP  0x20
1412 #define PMCRX   0x10
1413 #define PMCRD   0x8
1414 #define PMCRC   0x4
1415 #define PMCRP   0x2
1416 #define PMCRE   0x1
1417 /*
1418  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1419  * which can be written as 1 to trigger behaviour but which stay RAZ).
1420  */
1421 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1422 
1423 #define PMXEVTYPER_P          0x80000000
1424 #define PMXEVTYPER_U          0x40000000
1425 #define PMXEVTYPER_NSK        0x20000000
1426 #define PMXEVTYPER_NSU        0x10000000
1427 #define PMXEVTYPER_NSH        0x08000000
1428 #define PMXEVTYPER_M          0x04000000
1429 #define PMXEVTYPER_MT         0x02000000
1430 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1431 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1432                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1433                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1434                                PMXEVTYPER_EVTCOUNT)
1435 
1436 #define PMCCFILTR             0xf8000000
1437 #define PMCCFILTR_M           PMXEVTYPER_M
1438 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1439 
1440 static inline uint32_t pmu_num_counters(CPUARMState *env)
1441 {
1442     ARMCPU *cpu = env_archcpu(env);
1443 
1444     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1445 }
1446 
1447 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1448 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1449 {
1450   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1451 }
1452 
1453 #ifdef TARGET_AARCH64
1454 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1455 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1456 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1457 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1458 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1459 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1460 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1461 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1462 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1463 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1464 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1465 void aarch64_max_tcg_initfn(Object *obj);
1466 void aarch64_add_pauth_properties(Object *obj);
1467 void aarch64_add_sve_properties(Object *obj);
1468 void aarch64_add_sme_properties(Object *obj);
1469 #endif
1470 
1471 /* Read the CONTROL register as the MRS instruction would. */
1472 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1473 
1474 /*
1475  * Return a pointer to the location where we currently store the
1476  * stack pointer for the requested security state and thread mode.
1477  * This pointer will become invalid if the CPU state is updated
1478  * such that the stack pointers are switched around (eg changing
1479  * the SPSEL control bit).
1480  */
1481 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1482                              bool threadmode, bool spsel);
1483 
1484 bool el_is_in_host(CPUARMState *env, int el);
1485 
1486 void aa32_max_features(ARMCPU *cpu);
1487 int exception_target_el(CPUARMState *env);
1488 bool arm_singlestep_active(CPUARMState *env);
1489 bool arm_generate_debug_exceptions(CPUARMState *env);
1490 
1491 /**
1492  * pauth_ptr_mask:
1493  * @param: parameters defining the MMU setup
1494  *
1495  * Return a mask of the address bits that contain the authentication code,
1496  * given the MMU config defined by @param.
1497  */
1498 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1499 {
1500     int bot_pac_bit = 64 - param.tsz;
1501     int top_pac_bit = 64 - 8 * param.tbi;
1502 
1503     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1504 }
1505 
1506 /* Add the cpreg definitions for debug related system registers */
1507 void define_debug_regs(ARMCPU *cpu);
1508 
1509 /* Effective value of MDCR_EL2 */
1510 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1511 {
1512     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1513 }
1514 
1515 /* Powers of 2 for sve_vq_map et al. */
1516 #define SVE_VQ_POW2_MAP                                 \
1517     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1518      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1519 
1520 /*
1521  * Return true if it is possible to take a fine-grained-trap to EL2.
1522  */
1523 static inline bool arm_fgt_active(CPUARMState *env, int el)
1524 {
1525     /*
1526      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1527      * that can affect EL0, but it is harmless to do the test also for
1528      * traps on registers that are only accessible at EL1 because if the test
1529      * returns true then we can't be executing at EL1 anyway.
1530      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1531      * traps from AArch32 only happen for the EL0 is AArch32 case.
1532      */
1533     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1534         el < 2 && arm_is_el2_enabled(env) &&
1535         arm_el_is_aa64(env, 1) &&
1536         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1537         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1538 }
1539 
1540 void assert_hflags_rebuild_correctly(CPUARMState *env);
1541 
1542 /*
1543  * Although the ARM implementation of hardware assisted debugging
1544  * allows for different breakpoints per-core, the current GDB
1545  * interface treats them as a global pool of registers (which seems to
1546  * be the case for x86, ppc and s390). As a result we store one copy
1547  * of registers which is used for all active cores.
1548  *
1549  * Write access is serialised by virtue of the GDB protocol which
1550  * updates things. Read access (i.e. when the values are copied to the
1551  * vCPU) is also gated by GDB's run control.
1552  *
1553  * This is not unreasonable as most of the time debugging kernels you
1554  * never know which core will eventually execute your function.
1555  */
1556 
1557 typedef struct {
1558     uint64_t bcr;
1559     uint64_t bvr;
1560 } HWBreakpoint;
1561 
1562 /*
1563  * The watchpoint registers can cover more area than the requested
1564  * watchpoint so we need to store the additional information
1565  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1566  * when the watchpoint is hit.
1567  */
1568 typedef struct {
1569     uint64_t wcr;
1570     uint64_t wvr;
1571     CPUWatchpoint details;
1572 } HWWatchpoint;
1573 
1574 /* Maximum and current break/watch point counts */
1575 extern int max_hw_bps, max_hw_wps;
1576 extern GArray *hw_breakpoints, *hw_watchpoints;
1577 
1578 #define cur_hw_wps      (hw_watchpoints->len)
1579 #define cur_hw_bps      (hw_breakpoints->len)
1580 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1581 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1582 
1583 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1584 int insert_hw_breakpoint(target_ulong pc);
1585 int delete_hw_breakpoint(target_ulong pc);
1586 
1587 bool check_watchpoint_in_range(int i, target_ulong addr);
1588 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1589 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1590 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1591 #endif
1592