xref: /openbmc/qemu/target/arm/internals.h (revision 31cf4b97)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /**
98  * raise_exception: Raise the specified exception.
99  * Raise a guest exception with the specified value, syndrome register
100  * and target exception level. This should be called from helper functions,
101  * and never returns because we will longjump back up to the CPU main loop.
102  */
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104                                    uint32_t syndrome, uint32_t target_el);
105 
106 /*
107  * For AArch64, map a given EL to an index in the banked_spsr array.
108  * Note that this mapping and the AArch32 mapping defined in bank_number()
109  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110  * mandated mapping between each other.
111  */
112 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
113 {
114     static const unsigned int map[4] = {
115         [1] = BANK_SVC, /* EL1.  */
116         [2] = BANK_HYP, /* EL2.  */
117         [3] = BANK_MON, /* EL3.  */
118     };
119     assert(el >= 1 && el <= 3);
120     return map[el];
121 }
122 
123 /* Map CPU modes onto saved register banks.  */
124 static inline int bank_number(int mode)
125 {
126     switch (mode) {
127     case ARM_CPU_MODE_USR:
128     case ARM_CPU_MODE_SYS:
129         return BANK_USRSYS;
130     case ARM_CPU_MODE_SVC:
131         return BANK_SVC;
132     case ARM_CPU_MODE_ABT:
133         return BANK_ABT;
134     case ARM_CPU_MODE_UND:
135         return BANK_UND;
136     case ARM_CPU_MODE_IRQ:
137         return BANK_IRQ;
138     case ARM_CPU_MODE_FIQ:
139         return BANK_FIQ;
140     case ARM_CPU_MODE_HYP:
141         return BANK_HYP;
142     case ARM_CPU_MODE_MON:
143         return BANK_MON;
144     }
145     g_assert_not_reached();
146 }
147 
148 /**
149  * r14_bank_number: Map CPU mode onto register bank for r14
150  *
151  * Given an AArch32 CPU mode, return the index into the saved register
152  * banks to use for the R14 (LR) in that mode. This is the same as
153  * bank_number(), except for the special case of Hyp mode, where
154  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
155  * This should be used as the index into env->banked_r14[], and
156  * bank_number() used for the index into env->banked_r13[] and
157  * env->banked_spsr[].
158  */
159 static inline int r14_bank_number(int mode)
160 {
161     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
162 }
163 
164 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
165 void arm_translate_init(void);
166 
167 enum arm_fprounding {
168     FPROUNDING_TIEEVEN,
169     FPROUNDING_POSINF,
170     FPROUNDING_NEGINF,
171     FPROUNDING_ZERO,
172     FPROUNDING_TIEAWAY,
173     FPROUNDING_ODD
174 };
175 
176 int arm_rmode_to_sf(int rmode);
177 
178 static inline void aarch64_save_sp(CPUARMState *env, int el)
179 {
180     if (env->pstate & PSTATE_SP) {
181         env->sp_el[el] = env->xregs[31];
182     } else {
183         env->sp_el[0] = env->xregs[31];
184     }
185 }
186 
187 static inline void aarch64_restore_sp(CPUARMState *env, int el)
188 {
189     if (env->pstate & PSTATE_SP) {
190         env->xregs[31] = env->sp_el[el];
191     } else {
192         env->xregs[31] = env->sp_el[0];
193     }
194 }
195 
196 static inline void update_spsel(CPUARMState *env, uint32_t imm)
197 {
198     unsigned int cur_el = arm_current_el(env);
199     /* Update PSTATE SPSel bit; this requires us to update the
200      * working stack pointer in xregs[31].
201      */
202     if (!((imm ^ env->pstate) & PSTATE_SP)) {
203         return;
204     }
205     aarch64_save_sp(env, cur_el);
206     env->pstate = deposit32(env->pstate, 0, 1, imm);
207 
208     /* We rely on illegal updates to SPsel from EL0 to get trapped
209      * at translation time.
210      */
211     assert(cur_el >= 1 && cur_el <= 3);
212     aarch64_restore_sp(env, cur_el);
213 }
214 
215 /*
216  * arm_pamax
217  * @cpu: ARMCPU
218  *
219  * Returns the implementation defined bit-width of physical addresses.
220  * The ARMv8 reference manuals refer to this as PAMax().
221  */
222 static inline unsigned int arm_pamax(ARMCPU *cpu)
223 {
224     static const unsigned int pamax_map[] = {
225         [0] = 32,
226         [1] = 36,
227         [2] = 40,
228         [3] = 42,
229         [4] = 44,
230         [5] = 48,
231     };
232     unsigned int parange =
233         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
234 
235     /* id_aa64mmfr0 is a read-only register so values outside of the
236      * supported mappings can be considered an implementation error.  */
237     assert(parange < ARRAY_SIZE(pamax_map));
238     return pamax_map[parange];
239 }
240 
241 /* Return true if extended addresses are enabled.
242  * This is always the case if our translation regime is 64 bit,
243  * but depends on TTBCR.EAE for 32 bit.
244  */
245 static inline bool extended_addresses_enabled(CPUARMState *env)
246 {
247     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
248     return arm_el_is_aa64(env, 1) ||
249            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
250 }
251 
252 /* Valid Syndrome Register EC field values */
253 enum arm_exception_class {
254     EC_UNCATEGORIZED          = 0x00,
255     EC_WFX_TRAP               = 0x01,
256     EC_CP15RTTRAP             = 0x03,
257     EC_CP15RRTTRAP            = 0x04,
258     EC_CP14RTTRAP             = 0x05,
259     EC_CP14DTTRAP             = 0x06,
260     EC_ADVSIMDFPACCESSTRAP    = 0x07,
261     EC_FPIDTRAP               = 0x08,
262     EC_CP14RRTTRAP            = 0x0c,
263     EC_ILLEGALSTATE           = 0x0e,
264     EC_AA32_SVC               = 0x11,
265     EC_AA32_HVC               = 0x12,
266     EC_AA32_SMC               = 0x13,
267     EC_AA64_SVC               = 0x15,
268     EC_AA64_HVC               = 0x16,
269     EC_AA64_SMC               = 0x17,
270     EC_SYSTEMREGISTERTRAP     = 0x18,
271     EC_SVEACCESSTRAP          = 0x19,
272     EC_INSNABORT              = 0x20,
273     EC_INSNABORT_SAME_EL      = 0x21,
274     EC_PCALIGNMENT            = 0x22,
275     EC_DATAABORT              = 0x24,
276     EC_DATAABORT_SAME_EL      = 0x25,
277     EC_SPALIGNMENT            = 0x26,
278     EC_AA32_FPTRAP            = 0x28,
279     EC_AA64_FPTRAP            = 0x2c,
280     EC_SERROR                 = 0x2f,
281     EC_BREAKPOINT             = 0x30,
282     EC_BREAKPOINT_SAME_EL     = 0x31,
283     EC_SOFTWARESTEP           = 0x32,
284     EC_SOFTWARESTEP_SAME_EL   = 0x33,
285     EC_WATCHPOINT             = 0x34,
286     EC_WATCHPOINT_SAME_EL     = 0x35,
287     EC_AA32_BKPT              = 0x38,
288     EC_VECTORCATCH            = 0x3a,
289     EC_AA64_BKPT              = 0x3c,
290 };
291 
292 #define ARM_EL_EC_SHIFT 26
293 #define ARM_EL_IL_SHIFT 25
294 #define ARM_EL_ISV_SHIFT 24
295 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
296 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
297 
298 static inline uint32_t syn_get_ec(uint32_t syn)
299 {
300     return syn >> ARM_EL_EC_SHIFT;
301 }
302 
303 /* Utility functions for constructing various kinds of syndrome value.
304  * Note that in general we follow the AArch64 syndrome values; in a
305  * few cases the value in HSR for exceptions taken to AArch32 Hyp
306  * mode differs slightly, and we fix this up when populating HSR in
307  * arm_cpu_do_interrupt_aarch32_hyp().
308  * The exception is FP/SIMD access traps -- these report extra information
309  * when taking an exception to AArch32. For those we include the extra coproc
310  * and TA fields, and mask them out when taking the exception to AArch64.
311  */
312 static inline uint32_t syn_uncategorized(void)
313 {
314     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
315 }
316 
317 static inline uint32_t syn_aa64_svc(uint32_t imm16)
318 {
319     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
320 }
321 
322 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
323 {
324     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
325 }
326 
327 static inline uint32_t syn_aa64_smc(uint32_t imm16)
328 {
329     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
330 }
331 
332 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
333 {
334     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
335         | (is_16bit ? 0 : ARM_EL_IL);
336 }
337 
338 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
339 {
340     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
341 }
342 
343 static inline uint32_t syn_aa32_smc(void)
344 {
345     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
346 }
347 
348 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
349 {
350     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
351 }
352 
353 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
354 {
355     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
356         | (is_16bit ? 0 : ARM_EL_IL);
357 }
358 
359 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
360                                            int crn, int crm, int rt,
361                                            int isread)
362 {
363     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
364         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
365         | (crm << 1) | isread;
366 }
367 
368 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
369                                         int crn, int crm, int rt, int isread,
370                                         bool is_16bit)
371 {
372     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
373         | (is_16bit ? 0 : ARM_EL_IL)
374         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
375         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
376 }
377 
378 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
379                                         int crn, int crm, int rt, int isread,
380                                         bool is_16bit)
381 {
382     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
383         | (is_16bit ? 0 : ARM_EL_IL)
384         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
385         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
386 }
387 
388 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
389                                          int rt, int rt2, int isread,
390                                          bool is_16bit)
391 {
392     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
393         | (is_16bit ? 0 : ARM_EL_IL)
394         | (cv << 24) | (cond << 20) | (opc1 << 16)
395         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
396 }
397 
398 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
399                                          int rt, int rt2, int isread,
400                                          bool is_16bit)
401 {
402     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
403         | (is_16bit ? 0 : ARM_EL_IL)
404         | (cv << 24) | (cond << 20) | (opc1 << 16)
405         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
406 }
407 
408 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
409 {
410     /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
411     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
412         | (is_16bit ? 0 : ARM_EL_IL)
413         | (cv << 24) | (cond << 20) | 0xa;
414 }
415 
416 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
417 {
418     /* AArch32 SIMD trap: TA == 1 coproc == 0 */
419     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
420         | (is_16bit ? 0 : ARM_EL_IL)
421         | (cv << 24) | (cond << 20) | (1 << 5);
422 }
423 
424 static inline uint32_t syn_sve_access_trap(void)
425 {
426     return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
427 }
428 
429 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
430 {
431     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
432         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
433 }
434 
435 static inline uint32_t syn_data_abort_no_iss(int same_el,
436                                              int ea, int cm, int s1ptw,
437                                              int wnr, int fsc)
438 {
439     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
440            | ARM_EL_IL
441            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
442 }
443 
444 static inline uint32_t syn_data_abort_with_iss(int same_el,
445                                                int sas, int sse, int srt,
446                                                int sf, int ar,
447                                                int ea, int cm, int s1ptw,
448                                                int wnr, int fsc,
449                                                bool is_16bit)
450 {
451     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
452            | (is_16bit ? 0 : ARM_EL_IL)
453            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
454            | (sf << 15) | (ar << 14)
455            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
456 }
457 
458 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
459 {
460     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
461         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
462 }
463 
464 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
465 {
466     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
467         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
468 }
469 
470 static inline uint32_t syn_breakpoint(int same_el)
471 {
472     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
473         | ARM_EL_IL | 0x22;
474 }
475 
476 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
477 {
478     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
479            (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
480            (cv << 24) | (cond << 20) | ti;
481 }
482 
483 /* Update a QEMU watchpoint based on the information the guest has set in the
484  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
485  */
486 void hw_watchpoint_update(ARMCPU *cpu, int n);
487 /* Update the QEMU watchpoints for every guest watchpoint. This does a
488  * complete delete-and-reinstate of the QEMU watchpoint list and so is
489  * suitable for use after migration or on reset.
490  */
491 void hw_watchpoint_update_all(ARMCPU *cpu);
492 /* Update a QEMU breakpoint based on the information the guest has set in the
493  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
494  */
495 void hw_breakpoint_update(ARMCPU *cpu, int n);
496 /* Update the QEMU breakpoints for every guest breakpoint. This does a
497  * complete delete-and-reinstate of the QEMU breakpoint list and so is
498  * suitable for use after migration or on reset.
499  */
500 void hw_breakpoint_update_all(ARMCPU *cpu);
501 
502 /* Callback function for checking if a watchpoint should trigger. */
503 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
504 
505 /* Adjust addresses (in BE32 mode) before testing against watchpoint
506  * addresses.
507  */
508 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
509 
510 /* Callback function for when a watchpoint or breakpoint triggers. */
511 void arm_debug_excp_handler(CPUState *cs);
512 
513 #ifdef CONFIG_USER_ONLY
514 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
515 {
516     return false;
517 }
518 #else
519 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
520 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
521 /* Actually handle a PSCI call */
522 void arm_handle_psci_call(ARMCPU *cpu);
523 #endif
524 
525 /**
526  * arm_clear_exclusive: clear the exclusive monitor
527  * @env: CPU env
528  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
529  */
530 static inline void arm_clear_exclusive(CPUARMState *env)
531 {
532     env->exclusive_addr = -1;
533 }
534 
535 /**
536  * ARMFaultType: type of an ARM MMU fault
537  * This corresponds to the v8A pseudocode's Fault enumeration,
538  * with extensions for QEMU internal conditions.
539  */
540 typedef enum ARMFaultType {
541     ARMFault_None,
542     ARMFault_AccessFlag,
543     ARMFault_Alignment,
544     ARMFault_Background,
545     ARMFault_Domain,
546     ARMFault_Permission,
547     ARMFault_Translation,
548     ARMFault_AddressSize,
549     ARMFault_SyncExternal,
550     ARMFault_SyncExternalOnWalk,
551     ARMFault_SyncParity,
552     ARMFault_SyncParityOnWalk,
553     ARMFault_AsyncParity,
554     ARMFault_AsyncExternal,
555     ARMFault_Debug,
556     ARMFault_TLBConflict,
557     ARMFault_Lockdown,
558     ARMFault_Exclusive,
559     ARMFault_ICacheMaint,
560     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
561     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
562 } ARMFaultType;
563 
564 /**
565  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
566  * @type: Type of fault
567  * @level: Table walk level (for translation, access flag and permission faults)
568  * @domain: Domain of the fault address (for non-LPAE CPUs only)
569  * @s2addr: Address that caused a fault at stage 2
570  * @stage2: True if we faulted at stage 2
571  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
572  * @ea: True if we should set the EA (external abort type) bit in syndrome
573  */
574 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
575 struct ARMMMUFaultInfo {
576     ARMFaultType type;
577     target_ulong s2addr;
578     int level;
579     int domain;
580     bool stage2;
581     bool s1ptw;
582     bool ea;
583 };
584 
585 /**
586  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
587  * Compare pseudocode EncodeSDFSC(), though unlike that function
588  * we set up a whole FSR-format code including domain field and
589  * putting the high bit of the FSC into bit 10.
590  */
591 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
592 {
593     uint32_t fsc;
594 
595     switch (fi->type) {
596     case ARMFault_None:
597         return 0;
598     case ARMFault_AccessFlag:
599         fsc = fi->level == 1 ? 0x3 : 0x6;
600         break;
601     case ARMFault_Alignment:
602         fsc = 0x1;
603         break;
604     case ARMFault_Permission:
605         fsc = fi->level == 1 ? 0xd : 0xf;
606         break;
607     case ARMFault_Domain:
608         fsc = fi->level == 1 ? 0x9 : 0xb;
609         break;
610     case ARMFault_Translation:
611         fsc = fi->level == 1 ? 0x5 : 0x7;
612         break;
613     case ARMFault_SyncExternal:
614         fsc = 0x8 | (fi->ea << 12);
615         break;
616     case ARMFault_SyncExternalOnWalk:
617         fsc = fi->level == 1 ? 0xc : 0xe;
618         fsc |= (fi->ea << 12);
619         break;
620     case ARMFault_SyncParity:
621         fsc = 0x409;
622         break;
623     case ARMFault_SyncParityOnWalk:
624         fsc = fi->level == 1 ? 0x40c : 0x40e;
625         break;
626     case ARMFault_AsyncParity:
627         fsc = 0x408;
628         break;
629     case ARMFault_AsyncExternal:
630         fsc = 0x406 | (fi->ea << 12);
631         break;
632     case ARMFault_Debug:
633         fsc = 0x2;
634         break;
635     case ARMFault_TLBConflict:
636         fsc = 0x400;
637         break;
638     case ARMFault_Lockdown:
639         fsc = 0x404;
640         break;
641     case ARMFault_Exclusive:
642         fsc = 0x405;
643         break;
644     case ARMFault_ICacheMaint:
645         fsc = 0x4;
646         break;
647     case ARMFault_Background:
648         fsc = 0x0;
649         break;
650     case ARMFault_QEMU_NSCExec:
651         fsc = M_FAKE_FSR_NSC_EXEC;
652         break;
653     case ARMFault_QEMU_SFault:
654         fsc = M_FAKE_FSR_SFAULT;
655         break;
656     default:
657         /* Other faults can't occur in a context that requires a
658          * short-format status code.
659          */
660         g_assert_not_reached();
661     }
662 
663     fsc |= (fi->domain << 4);
664     return fsc;
665 }
666 
667 /**
668  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
669  * Compare pseudocode EncodeLDFSC(), though unlike that function
670  * we fill in also the LPAE bit 9 of a DFSR format.
671  */
672 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
673 {
674     uint32_t fsc;
675 
676     switch (fi->type) {
677     case ARMFault_None:
678         return 0;
679     case ARMFault_AddressSize:
680         fsc = fi->level & 3;
681         break;
682     case ARMFault_AccessFlag:
683         fsc = (fi->level & 3) | (0x2 << 2);
684         break;
685     case ARMFault_Permission:
686         fsc = (fi->level & 3) | (0x3 << 2);
687         break;
688     case ARMFault_Translation:
689         fsc = (fi->level & 3) | (0x1 << 2);
690         break;
691     case ARMFault_SyncExternal:
692         fsc = 0x10 | (fi->ea << 12);
693         break;
694     case ARMFault_SyncExternalOnWalk:
695         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
696         break;
697     case ARMFault_SyncParity:
698         fsc = 0x18;
699         break;
700     case ARMFault_SyncParityOnWalk:
701         fsc = (fi->level & 3) | (0x7 << 2);
702         break;
703     case ARMFault_AsyncParity:
704         fsc = 0x19;
705         break;
706     case ARMFault_AsyncExternal:
707         fsc = 0x11 | (fi->ea << 12);
708         break;
709     case ARMFault_Alignment:
710         fsc = 0x21;
711         break;
712     case ARMFault_Debug:
713         fsc = 0x22;
714         break;
715     case ARMFault_TLBConflict:
716         fsc = 0x30;
717         break;
718     case ARMFault_Lockdown:
719         fsc = 0x34;
720         break;
721     case ARMFault_Exclusive:
722         fsc = 0x35;
723         break;
724     default:
725         /* Other faults can't occur in a context that requires a
726          * long-format status code.
727          */
728         g_assert_not_reached();
729     }
730 
731     fsc |= 1 << 9;
732     return fsc;
733 }
734 
735 static inline bool arm_extabort_type(MemTxResult result)
736 {
737     /* The EA bit in syndromes and fault status registers is an
738      * IMPDEF classification of external aborts. ARM implementations
739      * usually use this to indicate AXI bus Decode error (0) or
740      * Slave error (1); in QEMU we follow that.
741      */
742     return result != MEMTX_DECODE_ERROR;
743 }
744 
745 /* Do a page table walk and add page to TLB if possible */
746 bool arm_tlb_fill(CPUState *cpu, vaddr address,
747                   MMUAccessType access_type, int mmu_idx,
748                   ARMMMUFaultInfo *fi);
749 
750 /* Return true if the stage 1 translation regime is using LPAE format page
751  * tables */
752 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
753 
754 /* Raise a data fault alignment exception for the specified virtual address */
755 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
756                                  MMUAccessType access_type,
757                                  int mmu_idx, uintptr_t retaddr);
758 
759 /* arm_cpu_do_transaction_failed: handle a memory system error response
760  * (eg "no device/memory present at address") by raising an external abort
761  * exception
762  */
763 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
764                                    vaddr addr, unsigned size,
765                                    MMUAccessType access_type,
766                                    int mmu_idx, MemTxAttrs attrs,
767                                    MemTxResult response, uintptr_t retaddr);
768 
769 /* Call any registered EL change hooks */
770 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
771 {
772     ARMELChangeHook *hook, *next;
773     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
774         hook->hook(cpu, hook->opaque);
775     }
776 }
777 static inline void arm_call_el_change_hook(ARMCPU *cpu)
778 {
779     ARMELChangeHook *hook, *next;
780     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
781         hook->hook(cpu, hook->opaque);
782     }
783 }
784 
785 /* Return true if this address translation regime is secure */
786 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
787 {
788     switch (mmu_idx) {
789     case ARMMMUIdx_S12NSE0:
790     case ARMMMUIdx_S12NSE1:
791     case ARMMMUIdx_S1NSE0:
792     case ARMMMUIdx_S1NSE1:
793     case ARMMMUIdx_S1E2:
794     case ARMMMUIdx_S2NS:
795     case ARMMMUIdx_MPrivNegPri:
796     case ARMMMUIdx_MUserNegPri:
797     case ARMMMUIdx_MPriv:
798     case ARMMMUIdx_MUser:
799         return false;
800     case ARMMMUIdx_S1E3:
801     case ARMMMUIdx_S1SE0:
802     case ARMMMUIdx_S1SE1:
803     case ARMMMUIdx_MSPrivNegPri:
804     case ARMMMUIdx_MSUserNegPri:
805     case ARMMMUIdx_MSPriv:
806     case ARMMMUIdx_MSUser:
807         return true;
808     default:
809         g_assert_not_reached();
810     }
811 }
812 
813 /* Return the FSR value for a debug exception (watchpoint, hardware
814  * breakpoint or BKPT insn) targeting the specified exception level.
815  */
816 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
817 {
818     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
819     int target_el = arm_debug_target_el(env);
820     bool using_lpae = false;
821 
822     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
823         using_lpae = true;
824     } else {
825         if (arm_feature(env, ARM_FEATURE_LPAE) &&
826             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
827             using_lpae = true;
828         }
829     }
830 
831     if (using_lpae) {
832         return arm_fi_to_lfsc(&fi);
833     } else {
834         return arm_fi_to_sfsc(&fi);
835     }
836 }
837 
838 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
839  * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
840  */
841 #define MEMOPIDX_SHIFT  8
842 
843 /**
844  * v7m_using_psp: Return true if using process stack pointer
845  * Return true if the CPU is currently using the process stack
846  * pointer, or false if it is using the main stack pointer.
847  */
848 static inline bool v7m_using_psp(CPUARMState *env)
849 {
850     /* Handler mode always uses the main stack; for thread mode
851      * the CONTROL.SPSEL bit determines the answer.
852      * Note that in v7M it is not possible to be in Handler mode with
853      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
854      */
855     return !arm_v7m_is_handler_mode(env) &&
856         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
857 }
858 
859 /**
860  * v7m_sp_limit: Return SP limit for current CPU state
861  * Return the SP limit value for the current CPU security state
862  * and stack pointer.
863  */
864 static inline uint32_t v7m_sp_limit(CPUARMState *env)
865 {
866     if (v7m_using_psp(env)) {
867         return env->v7m.psplim[env->v7m.secure];
868     } else {
869         return env->v7m.msplim[env->v7m.secure];
870     }
871 }
872 
873 /**
874  * aarch32_mode_name(): Return name of the AArch32 CPU mode
875  * @psr: Program Status Register indicating CPU mode
876  *
877  * Returns, for debug logging purposes, a printable representation
878  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
879  * the low bits of the specified PSR.
880  */
881 static inline const char *aarch32_mode_name(uint32_t psr)
882 {
883     static const char cpu_mode_names[16][4] = {
884         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
885         "???", "???", "hyp", "und", "???", "???", "???", "sys"
886     };
887 
888     return cpu_mode_names[psr & 0xf];
889 }
890 
891 /**
892  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
893  *
894  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
895  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
896  * Must be called with the iothread lock held.
897  */
898 void arm_cpu_update_virq(ARMCPU *cpu);
899 
900 /**
901  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
902  *
903  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
904  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
905  * Must be called with the iothread lock held.
906  */
907 void arm_cpu_update_vfiq(ARMCPU *cpu);
908 
909 #endif
910