xref: /openbmc/qemu/target/arm/internals.h (revision 30b6852c)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* We use a few fake FSR values for internal purposes in M profile.
85  * M profile cores don't have A/R format FSRs, but currently our
86  * get_phys_addr() code assumes A/R profile and reports failures via
87  * an A/R format FSR value. We then translate that into the proper
88  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89  * Mostly the FSR values we use for this are those defined for v7PMSA,
90  * since we share some of that codepath. A few kinds of fault are
91  * only for M profile and have no A/R equivalent, though, so we have
92  * to pick a value from the reserved range (which we never otherwise
93  * generate) to use for these.
94  * These values will never be visible to the guest.
95  */
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 
99 /**
100  * raise_exception: Raise the specified exception.
101  * Raise a guest exception with the specified value, syndrome register
102  * and target exception level. This should be called from helper functions,
103  * and never returns because we will longjump back up to the CPU main loop.
104  */
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106                                    uint32_t syndrome, uint32_t target_el);
107 
108 /*
109  * Similarly, but also use unwinding to restore cpu state.
110  */
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112                                       uint32_t syndrome, uint32_t target_el,
113                                       uintptr_t ra);
114 
115 /*
116  * For AArch64, map a given EL to an index in the banked_spsr array.
117  * Note that this mapping and the AArch32 mapping defined in bank_number()
118  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119  * mandated mapping between each other.
120  */
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 {
123     static const unsigned int map[4] = {
124         [1] = BANK_SVC, /* EL1.  */
125         [2] = BANK_HYP, /* EL2.  */
126         [3] = BANK_MON, /* EL3.  */
127     };
128     assert(el >= 1 && el <= 3);
129     return map[el];
130 }
131 
132 /* Map CPU modes onto saved register banks.  */
133 static inline int bank_number(int mode)
134 {
135     switch (mode) {
136     case ARM_CPU_MODE_USR:
137     case ARM_CPU_MODE_SYS:
138         return BANK_USRSYS;
139     case ARM_CPU_MODE_SVC:
140         return BANK_SVC;
141     case ARM_CPU_MODE_ABT:
142         return BANK_ABT;
143     case ARM_CPU_MODE_UND:
144         return BANK_UND;
145     case ARM_CPU_MODE_IRQ:
146         return BANK_IRQ;
147     case ARM_CPU_MODE_FIQ:
148         return BANK_FIQ;
149     case ARM_CPU_MODE_HYP:
150         return BANK_HYP;
151     case ARM_CPU_MODE_MON:
152         return BANK_MON;
153     }
154     g_assert_not_reached();
155 }
156 
157 /**
158  * r14_bank_number: Map CPU mode onto register bank for r14
159  *
160  * Given an AArch32 CPU mode, return the index into the saved register
161  * banks to use for the R14 (LR) in that mode. This is the same as
162  * bank_number(), except for the special case of Hyp mode, where
163  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164  * This should be used as the index into env->banked_r14[], and
165  * bank_number() used for the index into env->banked_r13[] and
166  * env->banked_spsr[].
167  */
168 static inline int r14_bank_number(int mode)
169 {
170     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 }
172 
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
175 
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
179 
180 /**
181  * aarch64_sve_zcr_get_valid_len:
182  * @cpu: cpu context
183  * @start_len: maximum len to consider
184  *
185  * Return the maximum supported sve vector length <= @start_len.
186  * Note that both @start_len and the return value are in units
187  * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
188  */
189 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
190 
191 enum arm_fprounding {
192     FPROUNDING_TIEEVEN,
193     FPROUNDING_POSINF,
194     FPROUNDING_NEGINF,
195     FPROUNDING_ZERO,
196     FPROUNDING_TIEAWAY,
197     FPROUNDING_ODD
198 };
199 
200 int arm_rmode_to_sf(int rmode);
201 
202 static inline void aarch64_save_sp(CPUARMState *env, int el)
203 {
204     if (env->pstate & PSTATE_SP) {
205         env->sp_el[el] = env->xregs[31];
206     } else {
207         env->sp_el[0] = env->xregs[31];
208     }
209 }
210 
211 static inline void aarch64_restore_sp(CPUARMState *env, int el)
212 {
213     if (env->pstate & PSTATE_SP) {
214         env->xregs[31] = env->sp_el[el];
215     } else {
216         env->xregs[31] = env->sp_el[0];
217     }
218 }
219 
220 static inline void update_spsel(CPUARMState *env, uint32_t imm)
221 {
222     unsigned int cur_el = arm_current_el(env);
223     /* Update PSTATE SPSel bit; this requires us to update the
224      * working stack pointer in xregs[31].
225      */
226     if (!((imm ^ env->pstate) & PSTATE_SP)) {
227         return;
228     }
229     aarch64_save_sp(env, cur_el);
230     env->pstate = deposit32(env->pstate, 0, 1, imm);
231 
232     /* We rely on illegal updates to SPsel from EL0 to get trapped
233      * at translation time.
234      */
235     assert(cur_el >= 1 && cur_el <= 3);
236     aarch64_restore_sp(env, cur_el);
237 }
238 
239 /*
240  * arm_pamax
241  * @cpu: ARMCPU
242  *
243  * Returns the implementation defined bit-width of physical addresses.
244  * The ARMv8 reference manuals refer to this as PAMax().
245  */
246 static inline unsigned int arm_pamax(ARMCPU *cpu)
247 {
248     static const unsigned int pamax_map[] = {
249         [0] = 32,
250         [1] = 36,
251         [2] = 40,
252         [3] = 42,
253         [4] = 44,
254         [5] = 48,
255     };
256     unsigned int parange =
257         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
258 
259     /* id_aa64mmfr0 is a read-only register so values outside of the
260      * supported mappings can be considered an implementation error.  */
261     assert(parange < ARRAY_SIZE(pamax_map));
262     return pamax_map[parange];
263 }
264 
265 /* Return true if extended addresses are enabled.
266  * This is always the case if our translation regime is 64 bit,
267  * but depends on TTBCR.EAE for 32 bit.
268  */
269 static inline bool extended_addresses_enabled(CPUARMState *env)
270 {
271     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
272     return arm_el_is_aa64(env, 1) ||
273            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
274 }
275 
276 /* Update a QEMU watchpoint based on the information the guest has set in the
277  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
278  */
279 void hw_watchpoint_update(ARMCPU *cpu, int n);
280 /* Update the QEMU watchpoints for every guest watchpoint. This does a
281  * complete delete-and-reinstate of the QEMU watchpoint list and so is
282  * suitable for use after migration or on reset.
283  */
284 void hw_watchpoint_update_all(ARMCPU *cpu);
285 /* Update a QEMU breakpoint based on the information the guest has set in the
286  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
287  */
288 void hw_breakpoint_update(ARMCPU *cpu, int n);
289 /* Update the QEMU breakpoints for every guest breakpoint. This does a
290  * complete delete-and-reinstate of the QEMU breakpoint list and so is
291  * suitable for use after migration or on reset.
292  */
293 void hw_breakpoint_update_all(ARMCPU *cpu);
294 
295 /* Callback function for checking if a breakpoint should trigger. */
296 bool arm_debug_check_breakpoint(CPUState *cs);
297 
298 /* Callback function for checking if a watchpoint should trigger. */
299 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
300 
301 /* Adjust addresses (in BE32 mode) before testing against watchpoint
302  * addresses.
303  */
304 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
305 
306 /* Callback function for when a watchpoint or breakpoint triggers. */
307 void arm_debug_excp_handler(CPUState *cs);
308 
309 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
310 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
311 {
312     return false;
313 }
314 static inline void arm_handle_psci_call(ARMCPU *cpu)
315 {
316     g_assert_not_reached();
317 }
318 #else
319 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
320 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
321 /* Actually handle a PSCI call */
322 void arm_handle_psci_call(ARMCPU *cpu);
323 #endif
324 
325 /**
326  * arm_clear_exclusive: clear the exclusive monitor
327  * @env: CPU env
328  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
329  */
330 static inline void arm_clear_exclusive(CPUARMState *env)
331 {
332     env->exclusive_addr = -1;
333 }
334 
335 /**
336  * ARMFaultType: type of an ARM MMU fault
337  * This corresponds to the v8A pseudocode's Fault enumeration,
338  * with extensions for QEMU internal conditions.
339  */
340 typedef enum ARMFaultType {
341     ARMFault_None,
342     ARMFault_AccessFlag,
343     ARMFault_Alignment,
344     ARMFault_Background,
345     ARMFault_Domain,
346     ARMFault_Permission,
347     ARMFault_Translation,
348     ARMFault_AddressSize,
349     ARMFault_SyncExternal,
350     ARMFault_SyncExternalOnWalk,
351     ARMFault_SyncParity,
352     ARMFault_SyncParityOnWalk,
353     ARMFault_AsyncParity,
354     ARMFault_AsyncExternal,
355     ARMFault_Debug,
356     ARMFault_TLBConflict,
357     ARMFault_Lockdown,
358     ARMFault_Exclusive,
359     ARMFault_ICacheMaint,
360     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
361     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
362 } ARMFaultType;
363 
364 /**
365  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
366  * @type: Type of fault
367  * @level: Table walk level (for translation, access flag and permission faults)
368  * @domain: Domain of the fault address (for non-LPAE CPUs only)
369  * @s2addr: Address that caused a fault at stage 2
370  * @stage2: True if we faulted at stage 2
371  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
372  * @s1ns: True if we faulted on a non-secure IPA while in secure state
373  * @ea: True if we should set the EA (external abort type) bit in syndrome
374  */
375 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
376 struct ARMMMUFaultInfo {
377     ARMFaultType type;
378     target_ulong s2addr;
379     int level;
380     int domain;
381     bool stage2;
382     bool s1ptw;
383     bool s1ns;
384     bool ea;
385 };
386 
387 /**
388  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
389  * Compare pseudocode EncodeSDFSC(), though unlike that function
390  * we set up a whole FSR-format code including domain field and
391  * putting the high bit of the FSC into bit 10.
392  */
393 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
394 {
395     uint32_t fsc;
396 
397     switch (fi->type) {
398     case ARMFault_None:
399         return 0;
400     case ARMFault_AccessFlag:
401         fsc = fi->level == 1 ? 0x3 : 0x6;
402         break;
403     case ARMFault_Alignment:
404         fsc = 0x1;
405         break;
406     case ARMFault_Permission:
407         fsc = fi->level == 1 ? 0xd : 0xf;
408         break;
409     case ARMFault_Domain:
410         fsc = fi->level == 1 ? 0x9 : 0xb;
411         break;
412     case ARMFault_Translation:
413         fsc = fi->level == 1 ? 0x5 : 0x7;
414         break;
415     case ARMFault_SyncExternal:
416         fsc = 0x8 | (fi->ea << 12);
417         break;
418     case ARMFault_SyncExternalOnWalk:
419         fsc = fi->level == 1 ? 0xc : 0xe;
420         fsc |= (fi->ea << 12);
421         break;
422     case ARMFault_SyncParity:
423         fsc = 0x409;
424         break;
425     case ARMFault_SyncParityOnWalk:
426         fsc = fi->level == 1 ? 0x40c : 0x40e;
427         break;
428     case ARMFault_AsyncParity:
429         fsc = 0x408;
430         break;
431     case ARMFault_AsyncExternal:
432         fsc = 0x406 | (fi->ea << 12);
433         break;
434     case ARMFault_Debug:
435         fsc = 0x2;
436         break;
437     case ARMFault_TLBConflict:
438         fsc = 0x400;
439         break;
440     case ARMFault_Lockdown:
441         fsc = 0x404;
442         break;
443     case ARMFault_Exclusive:
444         fsc = 0x405;
445         break;
446     case ARMFault_ICacheMaint:
447         fsc = 0x4;
448         break;
449     case ARMFault_Background:
450         fsc = 0x0;
451         break;
452     case ARMFault_QEMU_NSCExec:
453         fsc = M_FAKE_FSR_NSC_EXEC;
454         break;
455     case ARMFault_QEMU_SFault:
456         fsc = M_FAKE_FSR_SFAULT;
457         break;
458     default:
459         /* Other faults can't occur in a context that requires a
460          * short-format status code.
461          */
462         g_assert_not_reached();
463     }
464 
465     fsc |= (fi->domain << 4);
466     return fsc;
467 }
468 
469 /**
470  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
471  * Compare pseudocode EncodeLDFSC(), though unlike that function
472  * we fill in also the LPAE bit 9 of a DFSR format.
473  */
474 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
475 {
476     uint32_t fsc;
477 
478     switch (fi->type) {
479     case ARMFault_None:
480         return 0;
481     case ARMFault_AddressSize:
482         fsc = fi->level & 3;
483         break;
484     case ARMFault_AccessFlag:
485         fsc = (fi->level & 3) | (0x2 << 2);
486         break;
487     case ARMFault_Permission:
488         fsc = (fi->level & 3) | (0x3 << 2);
489         break;
490     case ARMFault_Translation:
491         fsc = (fi->level & 3) | (0x1 << 2);
492         break;
493     case ARMFault_SyncExternal:
494         fsc = 0x10 | (fi->ea << 12);
495         break;
496     case ARMFault_SyncExternalOnWalk:
497         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
498         break;
499     case ARMFault_SyncParity:
500         fsc = 0x18;
501         break;
502     case ARMFault_SyncParityOnWalk:
503         fsc = (fi->level & 3) | (0x7 << 2);
504         break;
505     case ARMFault_AsyncParity:
506         fsc = 0x19;
507         break;
508     case ARMFault_AsyncExternal:
509         fsc = 0x11 | (fi->ea << 12);
510         break;
511     case ARMFault_Alignment:
512         fsc = 0x21;
513         break;
514     case ARMFault_Debug:
515         fsc = 0x22;
516         break;
517     case ARMFault_TLBConflict:
518         fsc = 0x30;
519         break;
520     case ARMFault_Lockdown:
521         fsc = 0x34;
522         break;
523     case ARMFault_Exclusive:
524         fsc = 0x35;
525         break;
526     default:
527         /* Other faults can't occur in a context that requires a
528          * long-format status code.
529          */
530         g_assert_not_reached();
531     }
532 
533     fsc |= 1 << 9;
534     return fsc;
535 }
536 
537 static inline bool arm_extabort_type(MemTxResult result)
538 {
539     /* The EA bit in syndromes and fault status registers is an
540      * IMPDEF classification of external aborts. ARM implementations
541      * usually use this to indicate AXI bus Decode error (0) or
542      * Slave error (1); in QEMU we follow that.
543      */
544     return result != MEMTX_DECODE_ERROR;
545 }
546 
547 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
548                       MMUAccessType access_type, int mmu_idx,
549                       bool probe, uintptr_t retaddr);
550 
551 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
552 {
553     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
554 }
555 
556 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
557 {
558     if (arm_feature(env, ARM_FEATURE_M)) {
559         return mmu_idx | ARM_MMU_IDX_M;
560     } else {
561         return mmu_idx | ARM_MMU_IDX_A;
562     }
563 }
564 
565 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
566 {
567     /* AArch64 is always a-profile. */
568     return mmu_idx | ARM_MMU_IDX_A;
569 }
570 
571 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
572 
573 /*
574  * Return the MMU index for a v7M CPU with all relevant information
575  * manually specified.
576  */
577 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
578                               bool secstate, bool priv, bool negpri);
579 
580 /*
581  * Return the MMU index for a v7M CPU in the specified security and
582  * privilege state.
583  */
584 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
585                                                 bool secstate, bool priv);
586 
587 /* Return the MMU index for a v7M CPU in the specified security state */
588 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
589 
590 /* Return true if the stage 1 translation regime is using LPAE format page
591  * tables */
592 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
593 
594 /* Raise a data fault alignment exception for the specified virtual address */
595 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
596                                  MMUAccessType access_type,
597                                  int mmu_idx, uintptr_t retaddr) QEMU_NORETURN;
598 
599 /* arm_cpu_do_transaction_failed: handle a memory system error response
600  * (eg "no device/memory present at address") by raising an external abort
601  * exception
602  */
603 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
604                                    vaddr addr, unsigned size,
605                                    MMUAccessType access_type,
606                                    int mmu_idx, MemTxAttrs attrs,
607                                    MemTxResult response, uintptr_t retaddr);
608 
609 /* Call any registered EL change hooks */
610 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
611 {
612     ARMELChangeHook *hook, *next;
613     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
614         hook->hook(cpu, hook->opaque);
615     }
616 }
617 static inline void arm_call_el_change_hook(ARMCPU *cpu)
618 {
619     ARMELChangeHook *hook, *next;
620     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
621         hook->hook(cpu, hook->opaque);
622     }
623 }
624 
625 /* Return true if this address translation regime has two ranges.  */
626 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
627 {
628     switch (mmu_idx) {
629     case ARMMMUIdx_Stage1_E0:
630     case ARMMMUIdx_Stage1_E1:
631     case ARMMMUIdx_Stage1_E1_PAN:
632     case ARMMMUIdx_Stage1_SE0:
633     case ARMMMUIdx_Stage1_SE1:
634     case ARMMMUIdx_Stage1_SE1_PAN:
635     case ARMMMUIdx_E10_0:
636     case ARMMMUIdx_E10_1:
637     case ARMMMUIdx_E10_1_PAN:
638     case ARMMMUIdx_E20_0:
639     case ARMMMUIdx_E20_2:
640     case ARMMMUIdx_E20_2_PAN:
641     case ARMMMUIdx_SE10_0:
642     case ARMMMUIdx_SE10_1:
643     case ARMMMUIdx_SE10_1_PAN:
644     case ARMMMUIdx_SE20_0:
645     case ARMMMUIdx_SE20_2:
646     case ARMMMUIdx_SE20_2_PAN:
647         return true;
648     default:
649         return false;
650     }
651 }
652 
653 /* Return true if this address translation regime is secure */
654 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
655 {
656     switch (mmu_idx) {
657     case ARMMMUIdx_E10_0:
658     case ARMMMUIdx_E10_1:
659     case ARMMMUIdx_E10_1_PAN:
660     case ARMMMUIdx_E20_0:
661     case ARMMMUIdx_E20_2:
662     case ARMMMUIdx_E20_2_PAN:
663     case ARMMMUIdx_Stage1_E0:
664     case ARMMMUIdx_Stage1_E1:
665     case ARMMMUIdx_Stage1_E1_PAN:
666     case ARMMMUIdx_E2:
667     case ARMMMUIdx_Stage2:
668     case ARMMMUIdx_MPrivNegPri:
669     case ARMMMUIdx_MUserNegPri:
670     case ARMMMUIdx_MPriv:
671     case ARMMMUIdx_MUser:
672         return false;
673     case ARMMMUIdx_SE3:
674     case ARMMMUIdx_SE10_0:
675     case ARMMMUIdx_SE10_1:
676     case ARMMMUIdx_SE10_1_PAN:
677     case ARMMMUIdx_SE20_0:
678     case ARMMMUIdx_SE20_2:
679     case ARMMMUIdx_SE20_2_PAN:
680     case ARMMMUIdx_Stage1_SE0:
681     case ARMMMUIdx_Stage1_SE1:
682     case ARMMMUIdx_Stage1_SE1_PAN:
683     case ARMMMUIdx_SE2:
684     case ARMMMUIdx_Stage2_S:
685     case ARMMMUIdx_MSPrivNegPri:
686     case ARMMMUIdx_MSUserNegPri:
687     case ARMMMUIdx_MSPriv:
688     case ARMMMUIdx_MSUser:
689         return true;
690     default:
691         g_assert_not_reached();
692     }
693 }
694 
695 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
696 {
697     switch (mmu_idx) {
698     case ARMMMUIdx_Stage1_E1_PAN:
699     case ARMMMUIdx_Stage1_SE1_PAN:
700     case ARMMMUIdx_E10_1_PAN:
701     case ARMMMUIdx_E20_2_PAN:
702     case ARMMMUIdx_SE10_1_PAN:
703     case ARMMMUIdx_SE20_2_PAN:
704         return true;
705     default:
706         return false;
707     }
708 }
709 
710 /* Return the exception level which controls this address translation regime */
711 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
712 {
713     switch (mmu_idx) {
714     case ARMMMUIdx_SE20_0:
715     case ARMMMUIdx_SE20_2:
716     case ARMMMUIdx_SE20_2_PAN:
717     case ARMMMUIdx_E20_0:
718     case ARMMMUIdx_E20_2:
719     case ARMMMUIdx_E20_2_PAN:
720     case ARMMMUIdx_Stage2:
721     case ARMMMUIdx_Stage2_S:
722     case ARMMMUIdx_SE2:
723     case ARMMMUIdx_E2:
724         return 2;
725     case ARMMMUIdx_SE3:
726         return 3;
727     case ARMMMUIdx_SE10_0:
728     case ARMMMUIdx_Stage1_SE0:
729         return arm_el_is_aa64(env, 3) ? 1 : 3;
730     case ARMMMUIdx_SE10_1:
731     case ARMMMUIdx_SE10_1_PAN:
732     case ARMMMUIdx_Stage1_E0:
733     case ARMMMUIdx_Stage1_E1:
734     case ARMMMUIdx_Stage1_E1_PAN:
735     case ARMMMUIdx_Stage1_SE1:
736     case ARMMMUIdx_Stage1_SE1_PAN:
737     case ARMMMUIdx_E10_0:
738     case ARMMMUIdx_E10_1:
739     case ARMMMUIdx_E10_1_PAN:
740     case ARMMMUIdx_MPrivNegPri:
741     case ARMMMUIdx_MUserNegPri:
742     case ARMMMUIdx_MPriv:
743     case ARMMMUIdx_MUser:
744     case ARMMMUIdx_MSPrivNegPri:
745     case ARMMMUIdx_MSUserNegPri:
746     case ARMMMUIdx_MSPriv:
747     case ARMMMUIdx_MSUser:
748         return 1;
749     default:
750         g_assert_not_reached();
751     }
752 }
753 
754 /* Return the TCR controlling this translation regime */
755 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
756 {
757     if (mmu_idx == ARMMMUIdx_Stage2) {
758         return &env->cp15.vtcr_el2;
759     }
760     if (mmu_idx == ARMMMUIdx_Stage2_S) {
761         /*
762          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
763          * those are not currently used by QEMU, so just return VSTCR_EL2.
764          */
765         return &env->cp15.vstcr_el2;
766     }
767     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
768 }
769 
770 /* Return the FSR value for a debug exception (watchpoint, hardware
771  * breakpoint or BKPT insn) targeting the specified exception level.
772  */
773 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
774 {
775     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
776     int target_el = arm_debug_target_el(env);
777     bool using_lpae = false;
778 
779     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
780         using_lpae = true;
781     } else {
782         if (arm_feature(env, ARM_FEATURE_LPAE) &&
783             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
784             using_lpae = true;
785         }
786     }
787 
788     if (using_lpae) {
789         return arm_fi_to_lfsc(&fi);
790     } else {
791         return arm_fi_to_sfsc(&fi);
792     }
793 }
794 
795 /**
796  * arm_num_brps: Return number of implemented breakpoints.
797  * Note that the ID register BRPS field is "number of bps - 1",
798  * and we return the actual number of breakpoints.
799  */
800 static inline int arm_num_brps(ARMCPU *cpu)
801 {
802     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
803         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
804     } else {
805         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
806     }
807 }
808 
809 /**
810  * arm_num_wrps: Return number of implemented watchpoints.
811  * Note that the ID register WRPS field is "number of wps - 1",
812  * and we return the actual number of watchpoints.
813  */
814 static inline int arm_num_wrps(ARMCPU *cpu)
815 {
816     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
817         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
818     } else {
819         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
820     }
821 }
822 
823 /**
824  * arm_num_ctx_cmps: Return number of implemented context comparators.
825  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
826  * and we return the actual number of comparators.
827  */
828 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
829 {
830     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
831         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
832     } else {
833         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
834     }
835 }
836 
837 /**
838  * v7m_using_psp: Return true if using process stack pointer
839  * Return true if the CPU is currently using the process stack
840  * pointer, or false if it is using the main stack pointer.
841  */
842 static inline bool v7m_using_psp(CPUARMState *env)
843 {
844     /* Handler mode always uses the main stack; for thread mode
845      * the CONTROL.SPSEL bit determines the answer.
846      * Note that in v7M it is not possible to be in Handler mode with
847      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
848      */
849     return !arm_v7m_is_handler_mode(env) &&
850         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
851 }
852 
853 /**
854  * v7m_sp_limit: Return SP limit for current CPU state
855  * Return the SP limit value for the current CPU security state
856  * and stack pointer.
857  */
858 static inline uint32_t v7m_sp_limit(CPUARMState *env)
859 {
860     if (v7m_using_psp(env)) {
861         return env->v7m.psplim[env->v7m.secure];
862     } else {
863         return env->v7m.msplim[env->v7m.secure];
864     }
865 }
866 
867 /**
868  * v7m_cpacr_pass:
869  * Return true if the v7M CPACR permits access to the FPU for the specified
870  * security state and privilege level.
871  */
872 static inline bool v7m_cpacr_pass(CPUARMState *env,
873                                   bool is_secure, bool is_priv)
874 {
875     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
876     case 0:
877     case 2: /* UNPREDICTABLE: we treat like 0 */
878         return false;
879     case 1:
880         return is_priv;
881     case 3:
882         return true;
883     default:
884         g_assert_not_reached();
885     }
886 }
887 
888 /**
889  * aarch32_mode_name(): Return name of the AArch32 CPU mode
890  * @psr: Program Status Register indicating CPU mode
891  *
892  * Returns, for debug logging purposes, a printable representation
893  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
894  * the low bits of the specified PSR.
895  */
896 static inline const char *aarch32_mode_name(uint32_t psr)
897 {
898     static const char cpu_mode_names[16][4] = {
899         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
900         "???", "???", "hyp", "und", "???", "???", "???", "sys"
901     };
902 
903     return cpu_mode_names[psr & 0xf];
904 }
905 
906 /**
907  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
908  *
909  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
910  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
911  * Must be called with the iothread lock held.
912  */
913 void arm_cpu_update_virq(ARMCPU *cpu);
914 
915 /**
916  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
917  *
918  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
919  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
920  * Must be called with the iothread lock held.
921  */
922 void arm_cpu_update_vfiq(ARMCPU *cpu);
923 
924 /**
925  * arm_mmu_idx_el:
926  * @env: The cpu environment
927  * @el: The EL to use.
928  *
929  * Return the full ARMMMUIdx for the translation regime for EL.
930  */
931 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
932 
933 /**
934  * arm_mmu_idx:
935  * @env: The cpu environment
936  *
937  * Return the full ARMMMUIdx for the current translation regime.
938  */
939 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
940 
941 /**
942  * arm_stage1_mmu_idx:
943  * @env: The cpu environment
944  *
945  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
946  */
947 #ifdef CONFIG_USER_ONLY
948 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
949 {
950     return ARMMMUIdx_Stage1_E0;
951 }
952 #else
953 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
954 #endif
955 
956 /**
957  * arm_mmu_idx_is_stage1_of_2:
958  * @mmu_idx: The ARMMMUIdx to test
959  *
960  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
961  * first stage of a two stage regime.
962  */
963 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
964 {
965     switch (mmu_idx) {
966     case ARMMMUIdx_Stage1_E0:
967     case ARMMMUIdx_Stage1_E1:
968     case ARMMMUIdx_Stage1_E1_PAN:
969     case ARMMMUIdx_Stage1_SE0:
970     case ARMMMUIdx_Stage1_SE1:
971     case ARMMMUIdx_Stage1_SE1_PAN:
972         return true;
973     default:
974         return false;
975     }
976 }
977 
978 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
979                                                const ARMISARegisters *id)
980 {
981     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
982 
983     if ((features >> ARM_FEATURE_V4T) & 1) {
984         valid |= CPSR_T;
985     }
986     if ((features >> ARM_FEATURE_V5) & 1) {
987         valid |= CPSR_Q; /* V5TE in reality*/
988     }
989     if ((features >> ARM_FEATURE_V6) & 1) {
990         valid |= CPSR_E | CPSR_GE;
991     }
992     if ((features >> ARM_FEATURE_THUMB2) & 1) {
993         valid |= CPSR_IT;
994     }
995     if (isar_feature_aa32_jazelle(id)) {
996         valid |= CPSR_J;
997     }
998     if (isar_feature_aa32_pan(id)) {
999         valid |= CPSR_PAN;
1000     }
1001     if (isar_feature_aa32_dit(id)) {
1002         valid |= CPSR_DIT;
1003     }
1004     if (isar_feature_aa32_ssbs(id)) {
1005         valid |= CPSR_SSBS;
1006     }
1007 
1008     return valid;
1009 }
1010 
1011 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1012 {
1013     uint32_t valid;
1014 
1015     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1016     if (isar_feature_aa64_bti(id)) {
1017         valid |= PSTATE_BTYPE;
1018     }
1019     if (isar_feature_aa64_pan(id)) {
1020         valid |= PSTATE_PAN;
1021     }
1022     if (isar_feature_aa64_uao(id)) {
1023         valid |= PSTATE_UAO;
1024     }
1025     if (isar_feature_aa64_dit(id)) {
1026         valid |= PSTATE_DIT;
1027     }
1028     if (isar_feature_aa64_ssbs(id)) {
1029         valid |= PSTATE_SSBS;
1030     }
1031     if (isar_feature_aa64_mte(id)) {
1032         valid |= PSTATE_TCO;
1033     }
1034 
1035     return valid;
1036 }
1037 
1038 /*
1039  * Parameters of a given virtual address, as extracted from the
1040  * translation control register (TCR) for a given regime.
1041  */
1042 typedef struct ARMVAParameters {
1043     unsigned tsz    : 8;
1044     unsigned select : 1;
1045     bool tbi        : 1;
1046     bool epd        : 1;
1047     bool hpd        : 1;
1048     bool using16k   : 1;
1049     bool using64k   : 1;
1050 } ARMVAParameters;
1051 
1052 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1053                                    ARMMMUIdx mmu_idx, bool data);
1054 
1055 static inline int exception_target_el(CPUARMState *env)
1056 {
1057     int target_el = MAX(1, arm_current_el(env));
1058 
1059     /*
1060      * No such thing as secure EL1 if EL3 is aarch32,
1061      * so update the target EL to EL3 in this case.
1062      */
1063     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1064         target_el = 3;
1065     }
1066 
1067     return target_el;
1068 }
1069 
1070 /* Determine if allocation tags are available.  */
1071 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1072                                                  uint64_t sctlr)
1073 {
1074     if (el < 3
1075         && arm_feature(env, ARM_FEATURE_EL3)
1076         && !(env->cp15.scr_el3 & SCR_ATA)) {
1077         return false;
1078     }
1079     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1080         uint64_t hcr = arm_hcr_el2_eff(env);
1081         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1082             return false;
1083         }
1084     }
1085     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1086     return sctlr != 0;
1087 }
1088 
1089 #ifndef CONFIG_USER_ONLY
1090 
1091 /* Security attributes for an address, as returned by v8m_security_lookup. */
1092 typedef struct V8M_SAttributes {
1093     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1094     bool ns;
1095     bool nsc;
1096     uint8_t sregion;
1097     bool srvalid;
1098     uint8_t iregion;
1099     bool irvalid;
1100 } V8M_SAttributes;
1101 
1102 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1103                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1104                          V8M_SAttributes *sattrs);
1105 
1106 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1107                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1108                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1109                        int *prot, bool *is_subpage,
1110                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1111 
1112 /* Cacheability and shareability attributes for a memory access */
1113 typedef struct ARMCacheAttrs {
1114     unsigned int attrs:8; /* as in the MAIR register encoding */
1115     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1116 } ARMCacheAttrs;
1117 
1118 bool get_phys_addr(CPUARMState *env, target_ulong address,
1119                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1120                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1121                    target_ulong *page_size,
1122                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1123     __attribute__((nonnull));
1124 
1125 void arm_log_exception(int idx);
1126 
1127 #endif /* !CONFIG_USER_ONLY */
1128 
1129 /*
1130  * The log2 of the words in the tag block, for GMID_EL1.BS.
1131  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1132  */
1133 #define GMID_EL1_BS  6
1134 
1135 /* We associate one allocation tag per 16 bytes, the minimum.  */
1136 #define LOG2_TAG_GRANULE 4
1137 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1138 
1139 /*
1140  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1141  * the same simd_desc() encoding due to restrictions on size.
1142  * Use these instead.
1143  */
1144 FIELD(PREDDESC, OPRSZ, 0, 6)
1145 FIELD(PREDDESC, ESZ, 6, 2)
1146 FIELD(PREDDESC, DATA, 8, 24)
1147 
1148 /*
1149  * The SVE simd_data field, for memory ops, contains either
1150  * rd (5 bits) or a shift count (2 bits).
1151  */
1152 #define SVE_MTEDESC_SHIFT 5
1153 
1154 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1155 FIELD(MTEDESC, MIDX,  0, 4)
1156 FIELD(MTEDESC, TBI,   4, 2)
1157 FIELD(MTEDESC, TCMA,  6, 2)
1158 FIELD(MTEDESC, WRITE, 8, 1)
1159 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1160 
1161 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1162 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1163 
1164 static inline int allocation_tag_from_addr(uint64_t ptr)
1165 {
1166     return extract64(ptr, 56, 4);
1167 }
1168 
1169 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1170 {
1171     return deposit64(ptr, 56, 4, rtag);
1172 }
1173 
1174 /* Return true if tbi bits mean that the access is checked.  */
1175 static inline bool tbi_check(uint32_t desc, int bit55)
1176 {
1177     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1178 }
1179 
1180 /* Return true if tcma bits mean that the access is unchecked.  */
1181 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1182 {
1183     /*
1184      * We had extracted bit55 and ptr_tag for other reasons, so fold
1185      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1186      */
1187     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1188     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1189     return tcma && match;
1190 }
1191 
1192 /*
1193  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1194  * for the tag to be present in the FAR_ELx register.  But for user-only
1195  * mode, we do not have a TLB with which to implement this, so we must
1196  * remove the top byte.
1197  */
1198 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1199 {
1200 #ifdef CONFIG_USER_ONLY
1201     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1202     ptr &= sextract64(ptr, 0, 56);
1203 #endif
1204     return ptr;
1205 }
1206 
1207 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1208 {
1209 #ifdef CONFIG_USER_ONLY
1210     int64_t clean_ptr = sextract64(ptr, 0, 56);
1211     if (tbi_check(desc, clean_ptr < 0)) {
1212         ptr = clean_ptr;
1213     }
1214 #endif
1215     return ptr;
1216 }
1217 
1218 /* Values for M-profile PSR.ECI for MVE insns */
1219 enum MVEECIState {
1220     ECI_NONE = 0, /* No completed beats */
1221     ECI_A0 = 1, /* Completed: A0 */
1222     ECI_A0A1 = 2, /* Completed: A0, A1 */
1223     /* 3 is reserved */
1224     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1225     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1226     /* All other values reserved */
1227 };
1228 
1229 /* Definitions for the PMU registers */
1230 #define PMCRN_MASK  0xf800
1231 #define PMCRN_SHIFT 11
1232 #define PMCRLC  0x40
1233 #define PMCRDP  0x20
1234 #define PMCRX   0x10
1235 #define PMCRD   0x8
1236 #define PMCRC   0x4
1237 #define PMCRP   0x2
1238 #define PMCRE   0x1
1239 /*
1240  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1241  * which can be written as 1 to trigger behaviour but which stay RAZ).
1242  */
1243 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1244 
1245 #define PMXEVTYPER_P          0x80000000
1246 #define PMXEVTYPER_U          0x40000000
1247 #define PMXEVTYPER_NSK        0x20000000
1248 #define PMXEVTYPER_NSU        0x10000000
1249 #define PMXEVTYPER_NSH        0x08000000
1250 #define PMXEVTYPER_M          0x04000000
1251 #define PMXEVTYPER_MT         0x02000000
1252 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1253 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1254                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1255                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1256                                PMXEVTYPER_EVTCOUNT)
1257 
1258 #define PMCCFILTR             0xf8000000
1259 #define PMCCFILTR_M           PMXEVTYPER_M
1260 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1261 
1262 static inline uint32_t pmu_num_counters(CPUARMState *env)
1263 {
1264   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1265 }
1266 
1267 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1268 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1269 {
1270   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1271 }
1272 
1273 #ifdef TARGET_AARCH64
1274 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1275 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1276 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1277 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1278 #endif
1279 
1280 #endif
1281