xref: /openbmc/qemu/target/arm/internals.h (revision 259ebed4)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 #include "cpu-features.h"
32 
33 /* register banks for CPU modes */
34 #define BANK_USRSYS 0
35 #define BANK_SVC    1
36 #define BANK_ABT    2
37 #define BANK_UND    3
38 #define BANK_IRQ    4
39 #define BANK_FIQ    5
40 #define BANK_HYP    6
41 #define BANK_MON    7
42 
43 static inline bool excp_is_internal(int excp)
44 {
45     /* Return true if this exception number represents a QEMU-internal
46      * exception that will not be passed to the guest.
47      */
48     return excp == EXCP_INTERRUPT
49         || excp == EXCP_HLT
50         || excp == EXCP_DEBUG
51         || excp == EXCP_HALTED
52         || excp == EXCP_EXCEPTION_EXIT
53         || excp == EXCP_KERNEL_TRAP
54         || excp == EXCP_SEMIHOST;
55 }
56 
57 /* Scale factor for generic timers, ie number of ns per tick.
58  * This gives a 62.5MHz timer.
59  */
60 #define GTIMER_SCALE 16
61 
62 /* Bit definitions for the v7M CONTROL register */
63 FIELD(V7M_CONTROL, NPRIV, 0, 1)
64 FIELD(V7M_CONTROL, SPSEL, 1, 1)
65 FIELD(V7M_CONTROL, FPCA, 2, 1)
66 FIELD(V7M_CONTROL, SFPA, 3, 1)
67 
68 /* Bit definitions for v7M exception return payload */
69 FIELD(V7M_EXCRET, ES, 0, 1)
70 FIELD(V7M_EXCRET, RES0, 1, 1)
71 FIELD(V7M_EXCRET, SPSEL, 2, 1)
72 FIELD(V7M_EXCRET, MODE, 3, 1)
73 FIELD(V7M_EXCRET, FTYPE, 4, 1)
74 FIELD(V7M_EXCRET, DCRS, 5, 1)
75 FIELD(V7M_EXCRET, S, 6, 1)
76 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
77 
78 /* Minimum value which is a magic number for exception return */
79 #define EXC_RETURN_MIN_MAGIC 0xff000000
80 /* Minimum number which is a magic number for function or exception return
81  * when using v8M security extension
82  */
83 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
84 
85 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
86 FIELD(DBGWCR, E, 0, 1)
87 FIELD(DBGWCR, PAC, 1, 2)
88 FIELD(DBGWCR, LSC, 3, 2)
89 FIELD(DBGWCR, BAS, 5, 8)
90 FIELD(DBGWCR, HMC, 13, 1)
91 FIELD(DBGWCR, SSC, 14, 2)
92 FIELD(DBGWCR, LBN, 16, 4)
93 FIELD(DBGWCR, WT, 20, 1)
94 FIELD(DBGWCR, MASK, 24, 5)
95 FIELD(DBGWCR, SSCE, 29, 1)
96 
97 /* We use a few fake FSR values for internal purposes in M profile.
98  * M profile cores don't have A/R format FSRs, but currently our
99  * get_phys_addr() code assumes A/R profile and reports failures via
100  * an A/R format FSR value. We then translate that into the proper
101  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
102  * Mostly the FSR values we use for this are those defined for v7PMSA,
103  * since we share some of that codepath. A few kinds of fault are
104  * only for M profile and have no A/R equivalent, though, so we have
105  * to pick a value from the reserved range (which we never otherwise
106  * generate) to use for these.
107  * These values will never be visible to the guest.
108  */
109 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
110 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
111 
112 /**
113  * raise_exception: Raise the specified exception.
114  * Raise a guest exception with the specified value, syndrome register
115  * and target exception level. This should be called from helper functions,
116  * and never returns because we will longjump back up to the CPU main loop.
117  */
118 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
119                                 uint32_t syndrome, uint32_t target_el);
120 
121 /*
122  * Similarly, but also use unwinding to restore cpu state.
123  */
124 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
125                                       uint32_t syndrome, uint32_t target_el,
126                                       uintptr_t ra);
127 
128 /*
129  * For AArch64, map a given EL to an index in the banked_spsr array.
130  * Note that this mapping and the AArch32 mapping defined in bank_number()
131  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
132  * mandated mapping between each other.
133  */
134 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
135 {
136     static const unsigned int map[4] = {
137         [1] = BANK_SVC, /* EL1.  */
138         [2] = BANK_HYP, /* EL2.  */
139         [3] = BANK_MON, /* EL3.  */
140     };
141     assert(el >= 1 && el <= 3);
142     return map[el];
143 }
144 
145 /* Map CPU modes onto saved register banks.  */
146 static inline int bank_number(int mode)
147 {
148     switch (mode) {
149     case ARM_CPU_MODE_USR:
150     case ARM_CPU_MODE_SYS:
151         return BANK_USRSYS;
152     case ARM_CPU_MODE_SVC:
153         return BANK_SVC;
154     case ARM_CPU_MODE_ABT:
155         return BANK_ABT;
156     case ARM_CPU_MODE_UND:
157         return BANK_UND;
158     case ARM_CPU_MODE_IRQ:
159         return BANK_IRQ;
160     case ARM_CPU_MODE_FIQ:
161         return BANK_FIQ;
162     case ARM_CPU_MODE_HYP:
163         return BANK_HYP;
164     case ARM_CPU_MODE_MON:
165         return BANK_MON;
166     }
167     g_assert_not_reached();
168 }
169 
170 /**
171  * r14_bank_number: Map CPU mode onto register bank for r14
172  *
173  * Given an AArch32 CPU mode, return the index into the saved register
174  * banks to use for the R14 (LR) in that mode. This is the same as
175  * bank_number(), except for the special case of Hyp mode, where
176  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
177  * This should be used as the index into env->banked_r14[], and
178  * bank_number() used for the index into env->banked_r13[] and
179  * env->banked_spsr[].
180  */
181 static inline int r14_bank_number(int mode)
182 {
183     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
184 }
185 
186 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
187 void arm_translate_init(void);
188 
189 void arm_restore_state_to_opc(CPUState *cs,
190                               const TranslationBlock *tb,
191                               const uint64_t *data);
192 
193 #ifdef CONFIG_TCG
194 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
195 #endif /* CONFIG_TCG */
196 
197 typedef enum ARMFPRounding {
198     FPROUNDING_TIEEVEN,
199     FPROUNDING_POSINF,
200     FPROUNDING_NEGINF,
201     FPROUNDING_ZERO,
202     FPROUNDING_TIEAWAY,
203     FPROUNDING_ODD
204 } ARMFPRounding;
205 
206 extern const FloatRoundMode arm_rmode_to_sf_map[6];
207 
208 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
209 {
210     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
211     return arm_rmode_to_sf_map[rmode];
212 }
213 
214 static inline void aarch64_save_sp(CPUARMState *env, int el)
215 {
216     if (env->pstate & PSTATE_SP) {
217         env->sp_el[el] = env->xregs[31];
218     } else {
219         env->sp_el[0] = env->xregs[31];
220     }
221 }
222 
223 static inline void aarch64_restore_sp(CPUARMState *env, int el)
224 {
225     if (env->pstate & PSTATE_SP) {
226         env->xregs[31] = env->sp_el[el];
227     } else {
228         env->xregs[31] = env->sp_el[0];
229     }
230 }
231 
232 static inline void update_spsel(CPUARMState *env, uint32_t imm)
233 {
234     unsigned int cur_el = arm_current_el(env);
235     /* Update PSTATE SPSel bit; this requires us to update the
236      * working stack pointer in xregs[31].
237      */
238     if (!((imm ^ env->pstate) & PSTATE_SP)) {
239         return;
240     }
241     aarch64_save_sp(env, cur_el);
242     env->pstate = deposit32(env->pstate, 0, 1, imm);
243 
244     /* We rely on illegal updates to SPsel from EL0 to get trapped
245      * at translation time.
246      */
247     assert(cur_el >= 1 && cur_el <= 3);
248     aarch64_restore_sp(env, cur_el);
249 }
250 
251 /*
252  * arm_pamax
253  * @cpu: ARMCPU
254  *
255  * Returns the implementation defined bit-width of physical addresses.
256  * The ARMv8 reference manuals refer to this as PAMax().
257  */
258 unsigned int arm_pamax(ARMCPU *cpu);
259 
260 /* Return true if extended addresses are enabled.
261  * This is always the case if our translation regime is 64 bit,
262  * but depends on TTBCR.EAE for 32 bit.
263  */
264 static inline bool extended_addresses_enabled(CPUARMState *env)
265 {
266     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
267     if (arm_feature(env, ARM_FEATURE_PMSA) &&
268         arm_feature(env, ARM_FEATURE_V8)) {
269         return true;
270     }
271     return arm_el_is_aa64(env, 1) ||
272            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
273 }
274 
275 /* Update a QEMU watchpoint based on the information the guest has set in the
276  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
277  */
278 void hw_watchpoint_update(ARMCPU *cpu, int n);
279 /* Update the QEMU watchpoints for every guest watchpoint. This does a
280  * complete delete-and-reinstate of the QEMU watchpoint list and so is
281  * suitable for use after migration or on reset.
282  */
283 void hw_watchpoint_update_all(ARMCPU *cpu);
284 /* Update a QEMU breakpoint based on the information the guest has set in the
285  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
286  */
287 void hw_breakpoint_update(ARMCPU *cpu, int n);
288 /* Update the QEMU breakpoints for every guest breakpoint. This does a
289  * complete delete-and-reinstate of the QEMU breakpoint list and so is
290  * suitable for use after migration or on reset.
291  */
292 void hw_breakpoint_update_all(ARMCPU *cpu);
293 
294 /* Callback function for checking if a breakpoint should trigger. */
295 bool arm_debug_check_breakpoint(CPUState *cs);
296 
297 /* Callback function for checking if a watchpoint should trigger. */
298 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
299 
300 /* Adjust addresses (in BE32 mode) before testing against watchpoint
301  * addresses.
302  */
303 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
304 
305 /* Callback function for when a watchpoint or breakpoint triggers. */
306 void arm_debug_excp_handler(CPUState *cs);
307 
308 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
309 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
310 {
311     return false;
312 }
313 static inline void arm_handle_psci_call(ARMCPU *cpu)
314 {
315     g_assert_not_reached();
316 }
317 #else
318 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
319 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
320 /* Actually handle a PSCI call */
321 void arm_handle_psci_call(ARMCPU *cpu);
322 #endif
323 
324 /**
325  * arm_clear_exclusive: clear the exclusive monitor
326  * @env: CPU env
327  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
328  */
329 static inline void arm_clear_exclusive(CPUARMState *env)
330 {
331     env->exclusive_addr = -1;
332 }
333 
334 /**
335  * ARMFaultType: type of an ARM MMU fault
336  * This corresponds to the v8A pseudocode's Fault enumeration,
337  * with extensions for QEMU internal conditions.
338  */
339 typedef enum ARMFaultType {
340     ARMFault_None,
341     ARMFault_AccessFlag,
342     ARMFault_Alignment,
343     ARMFault_Background,
344     ARMFault_Domain,
345     ARMFault_Permission,
346     ARMFault_Translation,
347     ARMFault_AddressSize,
348     ARMFault_SyncExternal,
349     ARMFault_SyncExternalOnWalk,
350     ARMFault_SyncParity,
351     ARMFault_SyncParityOnWalk,
352     ARMFault_AsyncParity,
353     ARMFault_AsyncExternal,
354     ARMFault_Debug,
355     ARMFault_TLBConflict,
356     ARMFault_UnsuppAtomicUpdate,
357     ARMFault_Lockdown,
358     ARMFault_Exclusive,
359     ARMFault_ICacheMaint,
360     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
361     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
362     ARMFault_GPCFOnWalk,
363     ARMFault_GPCFOnOutput,
364 } ARMFaultType;
365 
366 typedef enum ARMGPCF {
367     GPCF_None,
368     GPCF_AddressSize,
369     GPCF_Walk,
370     GPCF_EABT,
371     GPCF_Fail,
372 } ARMGPCF;
373 
374 /**
375  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
376  * @type: Type of fault
377  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
378  * @level: Table walk level (for translation, access flag and permission faults)
379  * @domain: Domain of the fault address (for non-LPAE CPUs only)
380  * @s2addr: Address that caused a fault at stage 2
381  * @paddr: physical address that caused a fault for gpc
382  * @paddr_space: physical address space that caused a fault for gpc
383  * @stage2: True if we faulted at stage 2
384  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
385  * @s1ns: True if we faulted on a non-secure IPA while in secure state
386  * @ea: True if we should set the EA (external abort type) bit in syndrome
387  */
388 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
389 struct ARMMMUFaultInfo {
390     ARMFaultType type;
391     ARMGPCF gpcf;
392     target_ulong s2addr;
393     target_ulong paddr;
394     ARMSecuritySpace paddr_space;
395     int level;
396     int domain;
397     bool stage2;
398     bool s1ptw;
399     bool s1ns;
400     bool ea;
401 };
402 
403 /**
404  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
405  * Compare pseudocode EncodeSDFSC(), though unlike that function
406  * we set up a whole FSR-format code including domain field and
407  * putting the high bit of the FSC into bit 10.
408  */
409 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
410 {
411     uint32_t fsc;
412 
413     switch (fi->type) {
414     case ARMFault_None:
415         return 0;
416     case ARMFault_AccessFlag:
417         fsc = fi->level == 1 ? 0x3 : 0x6;
418         break;
419     case ARMFault_Alignment:
420         fsc = 0x1;
421         break;
422     case ARMFault_Permission:
423         fsc = fi->level == 1 ? 0xd : 0xf;
424         break;
425     case ARMFault_Domain:
426         fsc = fi->level == 1 ? 0x9 : 0xb;
427         break;
428     case ARMFault_Translation:
429         fsc = fi->level == 1 ? 0x5 : 0x7;
430         break;
431     case ARMFault_SyncExternal:
432         fsc = 0x8 | (fi->ea << 12);
433         break;
434     case ARMFault_SyncExternalOnWalk:
435         fsc = fi->level == 1 ? 0xc : 0xe;
436         fsc |= (fi->ea << 12);
437         break;
438     case ARMFault_SyncParity:
439         fsc = 0x409;
440         break;
441     case ARMFault_SyncParityOnWalk:
442         fsc = fi->level == 1 ? 0x40c : 0x40e;
443         break;
444     case ARMFault_AsyncParity:
445         fsc = 0x408;
446         break;
447     case ARMFault_AsyncExternal:
448         fsc = 0x406 | (fi->ea << 12);
449         break;
450     case ARMFault_Debug:
451         fsc = 0x2;
452         break;
453     case ARMFault_TLBConflict:
454         fsc = 0x400;
455         break;
456     case ARMFault_Lockdown:
457         fsc = 0x404;
458         break;
459     case ARMFault_Exclusive:
460         fsc = 0x405;
461         break;
462     case ARMFault_ICacheMaint:
463         fsc = 0x4;
464         break;
465     case ARMFault_Background:
466         fsc = 0x0;
467         break;
468     case ARMFault_QEMU_NSCExec:
469         fsc = M_FAKE_FSR_NSC_EXEC;
470         break;
471     case ARMFault_QEMU_SFault:
472         fsc = M_FAKE_FSR_SFAULT;
473         break;
474     default:
475         /* Other faults can't occur in a context that requires a
476          * short-format status code.
477          */
478         g_assert_not_reached();
479     }
480 
481     fsc |= (fi->domain << 4);
482     return fsc;
483 }
484 
485 /**
486  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
487  * Compare pseudocode EncodeLDFSC(), though unlike that function
488  * we fill in also the LPAE bit 9 of a DFSR format.
489  */
490 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
491 {
492     uint32_t fsc;
493 
494     switch (fi->type) {
495     case ARMFault_None:
496         return 0;
497     case ARMFault_AddressSize:
498         assert(fi->level >= -1 && fi->level <= 3);
499         if (fi->level < 0) {
500             fsc = 0b101001;
501         } else {
502             fsc = fi->level;
503         }
504         break;
505     case ARMFault_AccessFlag:
506         assert(fi->level >= 0 && fi->level <= 3);
507         fsc = 0b001000 | fi->level;
508         break;
509     case ARMFault_Permission:
510         assert(fi->level >= 0 && fi->level <= 3);
511         fsc = 0b001100 | fi->level;
512         break;
513     case ARMFault_Translation:
514         assert(fi->level >= -1 && fi->level <= 3);
515         if (fi->level < 0) {
516             fsc = 0b101011;
517         } else {
518             fsc = 0b000100 | fi->level;
519         }
520         break;
521     case ARMFault_SyncExternal:
522         fsc = 0x10 | (fi->ea << 12);
523         break;
524     case ARMFault_SyncExternalOnWalk:
525         assert(fi->level >= -1 && fi->level <= 3);
526         if (fi->level < 0) {
527             fsc = 0b010011;
528         } else {
529             fsc = 0b010100 | fi->level;
530         }
531         fsc |= fi->ea << 12;
532         break;
533     case ARMFault_SyncParity:
534         fsc = 0x18;
535         break;
536     case ARMFault_SyncParityOnWalk:
537         assert(fi->level >= -1 && fi->level <= 3);
538         if (fi->level < 0) {
539             fsc = 0b011011;
540         } else {
541             fsc = 0b011100 | fi->level;
542         }
543         break;
544     case ARMFault_AsyncParity:
545         fsc = 0x19;
546         break;
547     case ARMFault_AsyncExternal:
548         fsc = 0x11 | (fi->ea << 12);
549         break;
550     case ARMFault_Alignment:
551         fsc = 0x21;
552         break;
553     case ARMFault_Debug:
554         fsc = 0x22;
555         break;
556     case ARMFault_TLBConflict:
557         fsc = 0x30;
558         break;
559     case ARMFault_UnsuppAtomicUpdate:
560         fsc = 0x31;
561         break;
562     case ARMFault_Lockdown:
563         fsc = 0x34;
564         break;
565     case ARMFault_Exclusive:
566         fsc = 0x35;
567         break;
568     case ARMFault_GPCFOnWalk:
569         assert(fi->level >= -1 && fi->level <= 3);
570         if (fi->level < 0) {
571             fsc = 0b100011;
572         } else {
573             fsc = 0b100100 | fi->level;
574         }
575         break;
576     case ARMFault_GPCFOnOutput:
577         fsc = 0b101000;
578         break;
579     default:
580         /* Other faults can't occur in a context that requires a
581          * long-format status code.
582          */
583         g_assert_not_reached();
584     }
585 
586     fsc |= 1 << 9;
587     return fsc;
588 }
589 
590 static inline bool arm_extabort_type(MemTxResult result)
591 {
592     /* The EA bit in syndromes and fault status registers is an
593      * IMPDEF classification of external aborts. ARM implementations
594      * usually use this to indicate AXI bus Decode error (0) or
595      * Slave error (1); in QEMU we follow that.
596      */
597     return result != MEMTX_DECODE_ERROR;
598 }
599 
600 #ifdef CONFIG_USER_ONLY
601 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
602                             MMUAccessType access_type,
603                             bool maperr, uintptr_t ra);
604 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
605                            MMUAccessType access_type, uintptr_t ra);
606 #else
607 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
608                       MMUAccessType access_type, int mmu_idx,
609                       bool probe, uintptr_t retaddr);
610 #endif
611 
612 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
613 {
614     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
615 }
616 
617 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
618 {
619     if (arm_feature(env, ARM_FEATURE_M)) {
620         return mmu_idx | ARM_MMU_IDX_M;
621     } else {
622         return mmu_idx | ARM_MMU_IDX_A;
623     }
624 }
625 
626 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
627 {
628     /* AArch64 is always a-profile. */
629     return mmu_idx | ARM_MMU_IDX_A;
630 }
631 
632 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
633 
634 /* Return the MMU index for a v7M CPU in the specified security state */
635 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
636 
637 /*
638  * Return true if the stage 1 translation regime is using LPAE
639  * format page tables
640  */
641 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
642 
643 /* Raise a data fault alignment exception for the specified virtual address */
644 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
645                                             MMUAccessType access_type,
646                                             int mmu_idx, uintptr_t retaddr);
647 
648 #ifndef CONFIG_USER_ONLY
649 /* arm_cpu_do_transaction_failed: handle a memory system error response
650  * (eg "no device/memory present at address") by raising an external abort
651  * exception
652  */
653 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
654                                    vaddr addr, unsigned size,
655                                    MMUAccessType access_type,
656                                    int mmu_idx, MemTxAttrs attrs,
657                                    MemTxResult response, uintptr_t retaddr);
658 #endif
659 
660 /* Call any registered EL change hooks */
661 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
662 {
663     ARMELChangeHook *hook, *next;
664     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
665         hook->hook(cpu, hook->opaque);
666     }
667 }
668 static inline void arm_call_el_change_hook(ARMCPU *cpu)
669 {
670     ARMELChangeHook *hook, *next;
671     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
672         hook->hook(cpu, hook->opaque);
673     }
674 }
675 
676 /* Return true if this address translation regime has two ranges.  */
677 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
678 {
679     switch (mmu_idx) {
680     case ARMMMUIdx_Stage1_E0:
681     case ARMMMUIdx_Stage1_E1:
682     case ARMMMUIdx_Stage1_E1_PAN:
683     case ARMMMUIdx_E10_0:
684     case ARMMMUIdx_E10_1:
685     case ARMMMUIdx_E10_1_PAN:
686     case ARMMMUIdx_E20_0:
687     case ARMMMUIdx_E20_2:
688     case ARMMMUIdx_E20_2_PAN:
689         return true;
690     default:
691         return false;
692     }
693 }
694 
695 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
696 {
697     switch (mmu_idx) {
698     case ARMMMUIdx_Stage1_E1_PAN:
699     case ARMMMUIdx_E10_1_PAN:
700     case ARMMMUIdx_E20_2_PAN:
701         return true;
702     default:
703         return false;
704     }
705 }
706 
707 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
708 {
709     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
710 }
711 
712 /* Return the exception level which controls this address translation regime */
713 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
714 {
715     switch (mmu_idx) {
716     case ARMMMUIdx_E20_0:
717     case ARMMMUIdx_E20_2:
718     case ARMMMUIdx_E20_2_PAN:
719     case ARMMMUIdx_Stage2:
720     case ARMMMUIdx_Stage2_S:
721     case ARMMMUIdx_E2:
722         return 2;
723     case ARMMMUIdx_E3:
724         return 3;
725     case ARMMMUIdx_E10_0:
726     case ARMMMUIdx_Stage1_E0:
727         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
728     case ARMMMUIdx_Stage1_E1:
729     case ARMMMUIdx_Stage1_E1_PAN:
730     case ARMMMUIdx_E10_1:
731     case ARMMMUIdx_E10_1_PAN:
732     case ARMMMUIdx_MPrivNegPri:
733     case ARMMMUIdx_MUserNegPri:
734     case ARMMMUIdx_MPriv:
735     case ARMMMUIdx_MUser:
736     case ARMMMUIdx_MSPrivNegPri:
737     case ARMMMUIdx_MSUserNegPri:
738     case ARMMMUIdx_MSPriv:
739     case ARMMMUIdx_MSUser:
740         return 1;
741     default:
742         g_assert_not_reached();
743     }
744 }
745 
746 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
747 {
748     switch (mmu_idx) {
749     case ARMMMUIdx_E20_0:
750     case ARMMMUIdx_Stage1_E0:
751     case ARMMMUIdx_MUser:
752     case ARMMMUIdx_MSUser:
753     case ARMMMUIdx_MUserNegPri:
754     case ARMMMUIdx_MSUserNegPri:
755         return true;
756     default:
757         return false;
758     case ARMMMUIdx_E10_0:
759     case ARMMMUIdx_E10_1:
760     case ARMMMUIdx_E10_1_PAN:
761         g_assert_not_reached();
762     }
763 }
764 
765 /* Return the SCTLR value which controls this address translation regime */
766 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
767 {
768     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
769 }
770 
771 /*
772  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
773  * and the Non-Secure stage 2 translation regimes (and hence which are
774  * not present in VSTCR_EL2).
775  */
776 #define VTCR_SHARED_FIELD_MASK \
777     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
778      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
779      R_VTCR_DS_MASK)
780 
781 /* Return the value of the TCR controlling this translation regime */
782 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
783 {
784     if (mmu_idx == ARMMMUIdx_Stage2) {
785         return env->cp15.vtcr_el2;
786     }
787     if (mmu_idx == ARMMMUIdx_Stage2_S) {
788         /*
789          * Secure stage 2 shares fields from VTCR_EL2. We merge those
790          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
791          * value so the callers don't need to special case this.
792          *
793          * If a future architecture change defines bits in VSTCR_EL2 that
794          * overlap with these VTCR_EL2 fields we may need to revisit this.
795          */
796         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
797         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
798         return v;
799     }
800     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
801 }
802 
803 /* Return true if the translation regime is using LPAE format page tables */
804 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
805 {
806     int el = regime_el(env, mmu_idx);
807     if (el == 2 || arm_el_is_aa64(env, el)) {
808         return true;
809     }
810     if (arm_feature(env, ARM_FEATURE_PMSA) &&
811         arm_feature(env, ARM_FEATURE_V8)) {
812         return true;
813     }
814     if (arm_feature(env, ARM_FEATURE_LPAE)
815         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
816         return true;
817     }
818     return false;
819 }
820 
821 /**
822  * arm_num_brps: Return number of implemented breakpoints.
823  * Note that the ID register BRPS field is "number of bps - 1",
824  * and we return the actual number of breakpoints.
825  */
826 static inline int arm_num_brps(ARMCPU *cpu)
827 {
828     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
829         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
830     } else {
831         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
832     }
833 }
834 
835 /**
836  * arm_num_wrps: Return number of implemented watchpoints.
837  * Note that the ID register WRPS field is "number of wps - 1",
838  * and we return the actual number of watchpoints.
839  */
840 static inline int arm_num_wrps(ARMCPU *cpu)
841 {
842     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
843         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
844     } else {
845         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
846     }
847 }
848 
849 /**
850  * arm_num_ctx_cmps: Return number of implemented context comparators.
851  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
852  * and we return the actual number of comparators.
853  */
854 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
855 {
856     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
857         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
858     } else {
859         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
860     }
861 }
862 
863 /**
864  * v7m_using_psp: Return true if using process stack pointer
865  * Return true if the CPU is currently using the process stack
866  * pointer, or false if it is using the main stack pointer.
867  */
868 static inline bool v7m_using_psp(CPUARMState *env)
869 {
870     /* Handler mode always uses the main stack; for thread mode
871      * the CONTROL.SPSEL bit determines the answer.
872      * Note that in v7M it is not possible to be in Handler mode with
873      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
874      */
875     return !arm_v7m_is_handler_mode(env) &&
876         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
877 }
878 
879 /**
880  * v7m_sp_limit: Return SP limit for current CPU state
881  * Return the SP limit value for the current CPU security state
882  * and stack pointer.
883  */
884 static inline uint32_t v7m_sp_limit(CPUARMState *env)
885 {
886     if (v7m_using_psp(env)) {
887         return env->v7m.psplim[env->v7m.secure];
888     } else {
889         return env->v7m.msplim[env->v7m.secure];
890     }
891 }
892 
893 /**
894  * v7m_cpacr_pass:
895  * Return true if the v7M CPACR permits access to the FPU for the specified
896  * security state and privilege level.
897  */
898 static inline bool v7m_cpacr_pass(CPUARMState *env,
899                                   bool is_secure, bool is_priv)
900 {
901     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
902     case 0:
903     case 2: /* UNPREDICTABLE: we treat like 0 */
904         return false;
905     case 1:
906         return is_priv;
907     case 3:
908         return true;
909     default:
910         g_assert_not_reached();
911     }
912 }
913 
914 /**
915  * aarch32_mode_name(): Return name of the AArch32 CPU mode
916  * @psr: Program Status Register indicating CPU mode
917  *
918  * Returns, for debug logging purposes, a printable representation
919  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
920  * the low bits of the specified PSR.
921  */
922 static inline const char *aarch32_mode_name(uint32_t psr)
923 {
924     static const char cpu_mode_names[16][4] = {
925         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
926         "???", "???", "hyp", "und", "???", "???", "???", "sys"
927     };
928 
929     return cpu_mode_names[psr & 0xf];
930 }
931 
932 /**
933  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
934  *
935  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
936  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
937  * Must be called with the iothread lock held.
938  */
939 void arm_cpu_update_virq(ARMCPU *cpu);
940 
941 /**
942  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
943  *
944  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
945  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
946  * Must be called with the iothread lock held.
947  */
948 void arm_cpu_update_vfiq(ARMCPU *cpu);
949 
950 /**
951  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
952  *
953  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
954  * following a change to the HCR_EL2.VSE bit.
955  */
956 void arm_cpu_update_vserr(ARMCPU *cpu);
957 
958 /**
959  * arm_mmu_idx_el:
960  * @env: The cpu environment
961  * @el: The EL to use.
962  *
963  * Return the full ARMMMUIdx for the translation regime for EL.
964  */
965 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
966 
967 /**
968  * arm_mmu_idx:
969  * @env: The cpu environment
970  *
971  * Return the full ARMMMUIdx for the current translation regime.
972  */
973 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
974 
975 /**
976  * arm_stage1_mmu_idx:
977  * @env: The cpu environment
978  *
979  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
980  */
981 #ifdef CONFIG_USER_ONLY
982 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
983 {
984     return ARMMMUIdx_Stage1_E0;
985 }
986 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
987 {
988     return ARMMMUIdx_Stage1_E0;
989 }
990 #else
991 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
992 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
993 #endif
994 
995 /**
996  * arm_mmu_idx_is_stage1_of_2:
997  * @mmu_idx: The ARMMMUIdx to test
998  *
999  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1000  * first stage of a two stage regime.
1001  */
1002 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1003 {
1004     switch (mmu_idx) {
1005     case ARMMMUIdx_Stage1_E0:
1006     case ARMMMUIdx_Stage1_E1:
1007     case ARMMMUIdx_Stage1_E1_PAN:
1008         return true;
1009     default:
1010         return false;
1011     }
1012 }
1013 
1014 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1015                                                const ARMISARegisters *id)
1016 {
1017     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1018 
1019     if ((features >> ARM_FEATURE_V4T) & 1) {
1020         valid |= CPSR_T;
1021     }
1022     if ((features >> ARM_FEATURE_V5) & 1) {
1023         valid |= CPSR_Q; /* V5TE in reality*/
1024     }
1025     if ((features >> ARM_FEATURE_V6) & 1) {
1026         valid |= CPSR_E | CPSR_GE;
1027     }
1028     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1029         valid |= CPSR_IT;
1030     }
1031     if (isar_feature_aa32_jazelle(id)) {
1032         valid |= CPSR_J;
1033     }
1034     if (isar_feature_aa32_pan(id)) {
1035         valid |= CPSR_PAN;
1036     }
1037     if (isar_feature_aa32_dit(id)) {
1038         valid |= CPSR_DIT;
1039     }
1040     if (isar_feature_aa32_ssbs(id)) {
1041         valid |= CPSR_SSBS;
1042     }
1043 
1044     return valid;
1045 }
1046 
1047 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1048 {
1049     uint32_t valid;
1050 
1051     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1052     if (isar_feature_aa64_bti(id)) {
1053         valid |= PSTATE_BTYPE;
1054     }
1055     if (isar_feature_aa64_pan(id)) {
1056         valid |= PSTATE_PAN;
1057     }
1058     if (isar_feature_aa64_uao(id)) {
1059         valid |= PSTATE_UAO;
1060     }
1061     if (isar_feature_aa64_dit(id)) {
1062         valid |= PSTATE_DIT;
1063     }
1064     if (isar_feature_aa64_ssbs(id)) {
1065         valid |= PSTATE_SSBS;
1066     }
1067     if (isar_feature_aa64_mte(id)) {
1068         valid |= PSTATE_TCO;
1069     }
1070 
1071     return valid;
1072 }
1073 
1074 /* Granule size (i.e. page size) */
1075 typedef enum ARMGranuleSize {
1076     /* Same order as TG0 encoding */
1077     Gran4K,
1078     Gran64K,
1079     Gran16K,
1080     GranInvalid,
1081 } ARMGranuleSize;
1082 
1083 /**
1084  * arm_granule_bits: Return address size of the granule in bits
1085  *
1086  * Return the address size of the granule in bits. This corresponds
1087  * to the pseudocode TGxGranuleBits().
1088  */
1089 static inline int arm_granule_bits(ARMGranuleSize gran)
1090 {
1091     switch (gran) {
1092     case Gran64K:
1093         return 16;
1094     case Gran16K:
1095         return 14;
1096     case Gran4K:
1097         return 12;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 /*
1104  * Parameters of a given virtual address, as extracted from the
1105  * translation control register (TCR) for a given regime.
1106  */
1107 typedef struct ARMVAParameters {
1108     unsigned tsz    : 8;
1109     unsigned ps     : 3;
1110     unsigned sh     : 2;
1111     unsigned select : 1;
1112     bool tbi        : 1;
1113     bool epd        : 1;
1114     bool hpd        : 1;
1115     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1116     bool ds         : 1;
1117     bool ha         : 1;
1118     bool hd         : 1;
1119     ARMGranuleSize gran : 2;
1120 } ARMVAParameters;
1121 
1122 /**
1123  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1124  * @env: CPU
1125  * @va: virtual address to look up
1126  * @mmu_idx: determines translation regime to use
1127  * @data: true if this is a data access
1128  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1129  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1130  */
1131 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1132                                    ARMMMUIdx mmu_idx, bool data,
1133                                    bool el1_is_aa32);
1134 
1135 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1136 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1137 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1138 
1139 /* Determine if allocation tags are available.  */
1140 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1141                                                  uint64_t sctlr)
1142 {
1143     if (el < 3
1144         && arm_feature(env, ARM_FEATURE_EL3)
1145         && !(env->cp15.scr_el3 & SCR_ATA)) {
1146         return false;
1147     }
1148     if (el < 2 && arm_is_el2_enabled(env)) {
1149         uint64_t hcr = arm_hcr_el2_eff(env);
1150         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1151             return false;
1152         }
1153     }
1154     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1155     return sctlr != 0;
1156 }
1157 
1158 #ifndef CONFIG_USER_ONLY
1159 
1160 /* Security attributes for an address, as returned by v8m_security_lookup. */
1161 typedef struct V8M_SAttributes {
1162     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1163     bool ns;
1164     bool nsc;
1165     uint8_t sregion;
1166     bool srvalid;
1167     uint8_t iregion;
1168     bool irvalid;
1169 } V8M_SAttributes;
1170 
1171 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1172                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1173                          bool secure, V8M_SAttributes *sattrs);
1174 
1175 /* Cacheability and shareability attributes for a memory access */
1176 typedef struct ARMCacheAttrs {
1177     /*
1178      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1179      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1180      */
1181     unsigned int attrs:8;
1182     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1183     bool is_s2_format:1;
1184 } ARMCacheAttrs;
1185 
1186 /* Fields that are valid upon success. */
1187 typedef struct GetPhysAddrResult {
1188     CPUTLBEntryFull f;
1189     ARMCacheAttrs cacheattrs;
1190 } GetPhysAddrResult;
1191 
1192 /**
1193  * get_phys_addr: get the physical address for a virtual address
1194  * @env: CPUARMState
1195  * @address: virtual address to get physical address for
1196  * @access_type: 0 for read, 1 for write, 2 for execute
1197  * @mmu_idx: MMU index indicating required translation regime
1198  * @result: set on translation success.
1199  * @fi: set to fault info if the translation fails
1200  *
1201  * Find the physical address corresponding to the given virtual address,
1202  * by doing a translation table walk on MMU based systems or using the
1203  * MPU state on MPU based systems.
1204  *
1205  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1206  * prot and page_size may not be filled in, and the populated fsr value provides
1207  * information on why the translation aborted, in the format of a
1208  * DFSR/IFSR fault register, with the following caveats:
1209  *  * we honour the short vs long DFSR format differences.
1210  *  * the WnR bit is never set (the caller must do this).
1211  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1212  *    value.
1213  */
1214 bool get_phys_addr(CPUARMState *env, target_ulong address,
1215                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1216                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1217     __attribute__((nonnull));
1218 
1219 /**
1220  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1221  *                                 address
1222  * @env: CPUARMState
1223  * @address: virtual address to get physical address for
1224  * @access_type: 0 for read, 1 for write, 2 for execute
1225  * @mmu_idx: MMU index indicating required translation regime
1226  * @space: security space for the access
1227  * @result: set on translation success.
1228  * @fi: set to fault info if the translation fails
1229  *
1230  * Similar to get_phys_addr, but use the given security space and don't perform
1231  * a Granule Protection Check on the resulting address.
1232  */
1233 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1234                                     MMUAccessType access_type,
1235                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1236                                     GetPhysAddrResult *result,
1237                                     ARMMMUFaultInfo *fi)
1238     __attribute__((nonnull));
1239 
1240 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1241                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1242                        bool is_secure, GetPhysAddrResult *result,
1243                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1244 
1245 void arm_log_exception(CPUState *cs);
1246 
1247 #endif /* !CONFIG_USER_ONLY */
1248 
1249 /*
1250  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1251  * the same simd_desc() encoding due to restrictions on size.
1252  * Use these instead.
1253  */
1254 FIELD(PREDDESC, OPRSZ, 0, 6)
1255 FIELD(PREDDESC, ESZ, 6, 2)
1256 FIELD(PREDDESC, DATA, 8, 24)
1257 
1258 /*
1259  * The SVE simd_data field, for memory ops, contains either
1260  * rd (5 bits) or a shift count (2 bits).
1261  */
1262 #define SVE_MTEDESC_SHIFT 5
1263 
1264 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1265 FIELD(MTEDESC, MIDX,  0, 4)
1266 FIELD(MTEDESC, TBI,   4, 2)
1267 FIELD(MTEDESC, TCMA,  6, 2)
1268 FIELD(MTEDESC, WRITE, 8, 1)
1269 FIELD(MTEDESC, ALIGN, 9, 3)
1270 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12)  /* size - 1 */
1271 
1272 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1273 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1274 
1275 /**
1276  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1277  * @env: CPU env
1278  * @ptr: start address of memory region (dirty pointer)
1279  * @size: length of region (guaranteed not to cross a page boundary)
1280  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1281  * Returns: the size of the region that can be copied without hitting
1282  *          an MTE tag failure
1283  *
1284  * Note that we assume that the caller has already checked the TBI
1285  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1286  * required.
1287  */
1288 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1289                         uint32_t desc);
1290 
1291 /**
1292  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1293  *                     operation going in the reverse direction
1294  * @env: CPU env
1295  * @ptr: *end* address of memory region (dirty pointer)
1296  * @size: length of region (guaranteed not to cross a page boundary)
1297  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1298  * Returns: the size of the region that can be copied without hitting
1299  *          an MTE tag failure
1300  *
1301  * Note that we assume that the caller has already checked the TBI
1302  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1303  * required.
1304  */
1305 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1306                             uint32_t desc);
1307 
1308 /**
1309  * mte_check_fail: Record an MTE tag check failure
1310  * @env: CPU env
1311  * @desc: MTEDESC descriptor word
1312  * @dirty_ptr: Failing dirty address
1313  * @ra: TCG retaddr
1314  *
1315  * This may never return (if the MTE tag checks are configured to fault).
1316  */
1317 void mte_check_fail(CPUARMState *env, uint32_t desc,
1318                     uint64_t dirty_ptr, uintptr_t ra);
1319 
1320 /**
1321  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1322  * @env: CPU env
1323  * @dirty_ptr: Start address of memory region (dirty pointer)
1324  * @size: length of region (guaranteed not to cross page boundary)
1325  * @desc: MTEDESC descriptor word
1326  */
1327 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1328                        uint32_t desc);
1329 
1330 static inline int allocation_tag_from_addr(uint64_t ptr)
1331 {
1332     return extract64(ptr, 56, 4);
1333 }
1334 
1335 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1336 {
1337     return deposit64(ptr, 56, 4, rtag);
1338 }
1339 
1340 /* Return true if tbi bits mean that the access is checked.  */
1341 static inline bool tbi_check(uint32_t desc, int bit55)
1342 {
1343     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1344 }
1345 
1346 /* Return true if tcma bits mean that the access is unchecked.  */
1347 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1348 {
1349     /*
1350      * We had extracted bit55 and ptr_tag for other reasons, so fold
1351      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1352      */
1353     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1354     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1355     return tcma && match;
1356 }
1357 
1358 /*
1359  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1360  * for the tag to be present in the FAR_ELx register.  But for user-only
1361  * mode, we do not have a TLB with which to implement this, so we must
1362  * remove the top byte.
1363  */
1364 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1365 {
1366 #ifdef CONFIG_USER_ONLY
1367     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1368     ptr &= sextract64(ptr, 0, 56);
1369 #endif
1370     return ptr;
1371 }
1372 
1373 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1374 {
1375 #ifdef CONFIG_USER_ONLY
1376     int64_t clean_ptr = sextract64(ptr, 0, 56);
1377     if (tbi_check(desc, clean_ptr < 0)) {
1378         ptr = clean_ptr;
1379     }
1380 #endif
1381     return ptr;
1382 }
1383 
1384 /* Values for M-profile PSR.ECI for MVE insns */
1385 enum MVEECIState {
1386     ECI_NONE = 0, /* No completed beats */
1387     ECI_A0 = 1, /* Completed: A0 */
1388     ECI_A0A1 = 2, /* Completed: A0, A1 */
1389     /* 3 is reserved */
1390     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1391     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1392     /* All other values reserved */
1393 };
1394 
1395 /* Definitions for the PMU registers */
1396 #define PMCRN_MASK  0xf800
1397 #define PMCRN_SHIFT 11
1398 #define PMCRLP  0x80
1399 #define PMCRLC  0x40
1400 #define PMCRDP  0x20
1401 #define PMCRX   0x10
1402 #define PMCRD   0x8
1403 #define PMCRC   0x4
1404 #define PMCRP   0x2
1405 #define PMCRE   0x1
1406 /*
1407  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1408  * which can be written as 1 to trigger behaviour but which stay RAZ).
1409  */
1410 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1411 
1412 #define PMXEVTYPER_P          0x80000000
1413 #define PMXEVTYPER_U          0x40000000
1414 #define PMXEVTYPER_NSK        0x20000000
1415 #define PMXEVTYPER_NSU        0x10000000
1416 #define PMXEVTYPER_NSH        0x08000000
1417 #define PMXEVTYPER_M          0x04000000
1418 #define PMXEVTYPER_MT         0x02000000
1419 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1420 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1421                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1422                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1423                                PMXEVTYPER_EVTCOUNT)
1424 
1425 #define PMCCFILTR             0xf8000000
1426 #define PMCCFILTR_M           PMXEVTYPER_M
1427 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1428 
1429 static inline uint32_t pmu_num_counters(CPUARMState *env)
1430 {
1431     ARMCPU *cpu = env_archcpu(env);
1432 
1433     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1434 }
1435 
1436 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1437 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1438 {
1439   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1440 }
1441 
1442 #ifdef TARGET_AARCH64
1443 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1444 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1445 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1446 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1447 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1448 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1449 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1450 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1451 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1452 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1453 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1454 void aarch64_max_tcg_initfn(Object *obj);
1455 void aarch64_add_pauth_properties(Object *obj);
1456 void aarch64_add_sve_properties(Object *obj);
1457 void aarch64_add_sme_properties(Object *obj);
1458 #endif
1459 
1460 /* Read the CONTROL register as the MRS instruction would. */
1461 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1462 
1463 /*
1464  * Return a pointer to the location where we currently store the
1465  * stack pointer for the requested security state and thread mode.
1466  * This pointer will become invalid if the CPU state is updated
1467  * such that the stack pointers are switched around (eg changing
1468  * the SPSEL control bit).
1469  */
1470 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1471                              bool threadmode, bool spsel);
1472 
1473 bool el_is_in_host(CPUARMState *env, int el);
1474 
1475 void aa32_max_features(ARMCPU *cpu);
1476 int exception_target_el(CPUARMState *env);
1477 bool arm_singlestep_active(CPUARMState *env);
1478 bool arm_generate_debug_exceptions(CPUARMState *env);
1479 
1480 /**
1481  * pauth_ptr_mask:
1482  * @param: parameters defining the MMU setup
1483  *
1484  * Return a mask of the address bits that contain the authentication code,
1485  * given the MMU config defined by @param.
1486  */
1487 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1488 {
1489     int bot_pac_bit = 64 - param.tsz;
1490     int top_pac_bit = 64 - 8 * param.tbi;
1491 
1492     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1493 }
1494 
1495 /* Add the cpreg definitions for debug related system registers */
1496 void define_debug_regs(ARMCPU *cpu);
1497 
1498 /* Effective value of MDCR_EL2 */
1499 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1500 {
1501     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1502 }
1503 
1504 /* Powers of 2 for sve_vq_map et al. */
1505 #define SVE_VQ_POW2_MAP                                 \
1506     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1507      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1508 
1509 /*
1510  * Return true if it is possible to take a fine-grained-trap to EL2.
1511  */
1512 static inline bool arm_fgt_active(CPUARMState *env, int el)
1513 {
1514     /*
1515      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1516      * that can affect EL0, but it is harmless to do the test also for
1517      * traps on registers that are only accessible at EL1 because if the test
1518      * returns true then we can't be executing at EL1 anyway.
1519      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1520      * traps from AArch32 only happen for the EL0 is AArch32 case.
1521      */
1522     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1523         el < 2 && arm_is_el2_enabled(env) &&
1524         arm_el_is_aa64(env, 1) &&
1525         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1526         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1527 }
1528 
1529 void assert_hflags_rebuild_correctly(CPUARMState *env);
1530 
1531 /*
1532  * Although the ARM implementation of hardware assisted debugging
1533  * allows for different breakpoints per-core, the current GDB
1534  * interface treats them as a global pool of registers (which seems to
1535  * be the case for x86, ppc and s390). As a result we store one copy
1536  * of registers which is used for all active cores.
1537  *
1538  * Write access is serialised by virtue of the GDB protocol which
1539  * updates things. Read access (i.e. when the values are copied to the
1540  * vCPU) is also gated by GDB's run control.
1541  *
1542  * This is not unreasonable as most of the time debugging kernels you
1543  * never know which core will eventually execute your function.
1544  */
1545 
1546 typedef struct {
1547     uint64_t bcr;
1548     uint64_t bvr;
1549 } HWBreakpoint;
1550 
1551 /*
1552  * The watchpoint registers can cover more area than the requested
1553  * watchpoint so we need to store the additional information
1554  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1555  * when the watchpoint is hit.
1556  */
1557 typedef struct {
1558     uint64_t wcr;
1559     uint64_t wvr;
1560     CPUWatchpoint details;
1561 } HWWatchpoint;
1562 
1563 /* Maximum and current break/watch point counts */
1564 extern int max_hw_bps, max_hw_wps;
1565 extern GArray *hw_breakpoints, *hw_watchpoints;
1566 
1567 #define cur_hw_wps      (hw_watchpoints->len)
1568 #define cur_hw_bps      (hw_breakpoints->len)
1569 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1570 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1571 
1572 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1573 int insert_hw_breakpoint(target_ulong pc);
1574 int delete_hw_breakpoint(target_ulong pc);
1575 
1576 bool check_watchpoint_in_range(int i, target_ulong addr);
1577 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1578 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1579 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1580 #endif
1581