xref: /openbmc/qemu/target/arm/internals.h (revision 19f70347)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /**
98  * raise_exception: Raise the specified exception.
99  * Raise a guest exception with the specified value, syndrome register
100  * and target exception level. This should be called from helper functions,
101  * and never returns because we will longjump back up to the CPU main loop.
102  */
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104                                    uint32_t syndrome, uint32_t target_el);
105 
106 /*
107  * Similarly, but also use unwinding to restore cpu state.
108  */
109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
110                                       uint32_t syndrome, uint32_t target_el,
111                                       uintptr_t ra);
112 
113 /*
114  * For AArch64, map a given EL to an index in the banked_spsr array.
115  * Note that this mapping and the AArch32 mapping defined in bank_number()
116  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117  * mandated mapping between each other.
118  */
119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
120 {
121     static const unsigned int map[4] = {
122         [1] = BANK_SVC, /* EL1.  */
123         [2] = BANK_HYP, /* EL2.  */
124         [3] = BANK_MON, /* EL3.  */
125     };
126     assert(el >= 1 && el <= 3);
127     return map[el];
128 }
129 
130 /* Map CPU modes onto saved register banks.  */
131 static inline int bank_number(int mode)
132 {
133     switch (mode) {
134     case ARM_CPU_MODE_USR:
135     case ARM_CPU_MODE_SYS:
136         return BANK_USRSYS;
137     case ARM_CPU_MODE_SVC:
138         return BANK_SVC;
139     case ARM_CPU_MODE_ABT:
140         return BANK_ABT;
141     case ARM_CPU_MODE_UND:
142         return BANK_UND;
143     case ARM_CPU_MODE_IRQ:
144         return BANK_IRQ;
145     case ARM_CPU_MODE_FIQ:
146         return BANK_FIQ;
147     case ARM_CPU_MODE_HYP:
148         return BANK_HYP;
149     case ARM_CPU_MODE_MON:
150         return BANK_MON;
151     }
152     g_assert_not_reached();
153 }
154 
155 /**
156  * r14_bank_number: Map CPU mode onto register bank for r14
157  *
158  * Given an AArch32 CPU mode, return the index into the saved register
159  * banks to use for the R14 (LR) in that mode. This is the same as
160  * bank_number(), except for the special case of Hyp mode, where
161  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162  * This should be used as the index into env->banked_r14[], and
163  * bank_number() used for the index into env->banked_r13[] and
164  * env->banked_spsr[].
165  */
166 static inline int r14_bank_number(int mode)
167 {
168     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
169 }
170 
171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
172 void arm_translate_init(void);
173 
174 enum arm_fprounding {
175     FPROUNDING_TIEEVEN,
176     FPROUNDING_POSINF,
177     FPROUNDING_NEGINF,
178     FPROUNDING_ZERO,
179     FPROUNDING_TIEAWAY,
180     FPROUNDING_ODD
181 };
182 
183 int arm_rmode_to_sf(int rmode);
184 
185 static inline void aarch64_save_sp(CPUARMState *env, int el)
186 {
187     if (env->pstate & PSTATE_SP) {
188         env->sp_el[el] = env->xregs[31];
189     } else {
190         env->sp_el[0] = env->xregs[31];
191     }
192 }
193 
194 static inline void aarch64_restore_sp(CPUARMState *env, int el)
195 {
196     if (env->pstate & PSTATE_SP) {
197         env->xregs[31] = env->sp_el[el];
198     } else {
199         env->xregs[31] = env->sp_el[0];
200     }
201 }
202 
203 static inline void update_spsel(CPUARMState *env, uint32_t imm)
204 {
205     unsigned int cur_el = arm_current_el(env);
206     /* Update PSTATE SPSel bit; this requires us to update the
207      * working stack pointer in xregs[31].
208      */
209     if (!((imm ^ env->pstate) & PSTATE_SP)) {
210         return;
211     }
212     aarch64_save_sp(env, cur_el);
213     env->pstate = deposit32(env->pstate, 0, 1, imm);
214 
215     /* We rely on illegal updates to SPsel from EL0 to get trapped
216      * at translation time.
217      */
218     assert(cur_el >= 1 && cur_el <= 3);
219     aarch64_restore_sp(env, cur_el);
220 }
221 
222 /*
223  * arm_pamax
224  * @cpu: ARMCPU
225  *
226  * Returns the implementation defined bit-width of physical addresses.
227  * The ARMv8 reference manuals refer to this as PAMax().
228  */
229 static inline unsigned int arm_pamax(ARMCPU *cpu)
230 {
231     static const unsigned int pamax_map[] = {
232         [0] = 32,
233         [1] = 36,
234         [2] = 40,
235         [3] = 42,
236         [4] = 44,
237         [5] = 48,
238     };
239     unsigned int parange =
240         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
241 
242     /* id_aa64mmfr0 is a read-only register so values outside of the
243      * supported mappings can be considered an implementation error.  */
244     assert(parange < ARRAY_SIZE(pamax_map));
245     return pamax_map[parange];
246 }
247 
248 /* Return true if extended addresses are enabled.
249  * This is always the case if our translation regime is 64 bit,
250  * but depends on TTBCR.EAE for 32 bit.
251  */
252 static inline bool extended_addresses_enabled(CPUARMState *env)
253 {
254     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
255     return arm_el_is_aa64(env, 1) ||
256            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
257 }
258 
259 /* Valid Syndrome Register EC field values */
260 enum arm_exception_class {
261     EC_UNCATEGORIZED          = 0x00,
262     EC_WFX_TRAP               = 0x01,
263     EC_CP15RTTRAP             = 0x03,
264     EC_CP15RRTTRAP            = 0x04,
265     EC_CP14RTTRAP             = 0x05,
266     EC_CP14DTTRAP             = 0x06,
267     EC_ADVSIMDFPACCESSTRAP    = 0x07,
268     EC_FPIDTRAP               = 0x08,
269     EC_PACTRAP                = 0x09,
270     EC_CP14RRTTRAP            = 0x0c,
271     EC_BTITRAP                = 0x0d,
272     EC_ILLEGALSTATE           = 0x0e,
273     EC_AA32_SVC               = 0x11,
274     EC_AA32_HVC               = 0x12,
275     EC_AA32_SMC               = 0x13,
276     EC_AA64_SVC               = 0x15,
277     EC_AA64_HVC               = 0x16,
278     EC_AA64_SMC               = 0x17,
279     EC_SYSTEMREGISTERTRAP     = 0x18,
280     EC_SVEACCESSTRAP          = 0x19,
281     EC_INSNABORT              = 0x20,
282     EC_INSNABORT_SAME_EL      = 0x21,
283     EC_PCALIGNMENT            = 0x22,
284     EC_DATAABORT              = 0x24,
285     EC_DATAABORT_SAME_EL      = 0x25,
286     EC_SPALIGNMENT            = 0x26,
287     EC_AA32_FPTRAP            = 0x28,
288     EC_AA64_FPTRAP            = 0x2c,
289     EC_SERROR                 = 0x2f,
290     EC_BREAKPOINT             = 0x30,
291     EC_BREAKPOINT_SAME_EL     = 0x31,
292     EC_SOFTWARESTEP           = 0x32,
293     EC_SOFTWARESTEP_SAME_EL   = 0x33,
294     EC_WATCHPOINT             = 0x34,
295     EC_WATCHPOINT_SAME_EL     = 0x35,
296     EC_AA32_BKPT              = 0x38,
297     EC_VECTORCATCH            = 0x3a,
298     EC_AA64_BKPT              = 0x3c,
299 };
300 
301 #define ARM_EL_EC_SHIFT 26
302 #define ARM_EL_IL_SHIFT 25
303 #define ARM_EL_ISV_SHIFT 24
304 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
305 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
306 
307 static inline uint32_t syn_get_ec(uint32_t syn)
308 {
309     return syn >> ARM_EL_EC_SHIFT;
310 }
311 
312 /* Utility functions for constructing various kinds of syndrome value.
313  * Note that in general we follow the AArch64 syndrome values; in a
314  * few cases the value in HSR for exceptions taken to AArch32 Hyp
315  * mode differs slightly, and we fix this up when populating HSR in
316  * arm_cpu_do_interrupt_aarch32_hyp().
317  * The exception is FP/SIMD access traps -- these report extra information
318  * when taking an exception to AArch32. For those we include the extra coproc
319  * and TA fields, and mask them out when taking the exception to AArch64.
320  */
321 static inline uint32_t syn_uncategorized(void)
322 {
323     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
324 }
325 
326 static inline uint32_t syn_aa64_svc(uint32_t imm16)
327 {
328     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
329 }
330 
331 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
332 {
333     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
334 }
335 
336 static inline uint32_t syn_aa64_smc(uint32_t imm16)
337 {
338     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
339 }
340 
341 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
342 {
343     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
344         | (is_16bit ? 0 : ARM_EL_IL);
345 }
346 
347 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
348 {
349     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
350 }
351 
352 static inline uint32_t syn_aa32_smc(void)
353 {
354     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
355 }
356 
357 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
358 {
359     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
360 }
361 
362 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
363 {
364     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
365         | (is_16bit ? 0 : ARM_EL_IL);
366 }
367 
368 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
369                                            int crn, int crm, int rt,
370                                            int isread)
371 {
372     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
373         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
374         | (crm << 1) | isread;
375 }
376 
377 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
378                                         int crn, int crm, int rt, int isread,
379                                         bool is_16bit)
380 {
381     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
382         | (is_16bit ? 0 : ARM_EL_IL)
383         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
384         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
385 }
386 
387 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
388                                         int crn, int crm, int rt, int isread,
389                                         bool is_16bit)
390 {
391     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
392         | (is_16bit ? 0 : ARM_EL_IL)
393         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
394         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
395 }
396 
397 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
398                                          int rt, int rt2, int isread,
399                                          bool is_16bit)
400 {
401     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
402         | (is_16bit ? 0 : ARM_EL_IL)
403         | (cv << 24) | (cond << 20) | (opc1 << 16)
404         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
405 }
406 
407 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
408                                          int rt, int rt2, int isread,
409                                          bool is_16bit)
410 {
411     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
412         | (is_16bit ? 0 : ARM_EL_IL)
413         | (cv << 24) | (cond << 20) | (opc1 << 16)
414         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
415 }
416 
417 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
418 {
419     /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
420     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
421         | (is_16bit ? 0 : ARM_EL_IL)
422         | (cv << 24) | (cond << 20) | 0xa;
423 }
424 
425 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
426 {
427     /* AArch32 SIMD trap: TA == 1 coproc == 0 */
428     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
429         | (is_16bit ? 0 : ARM_EL_IL)
430         | (cv << 24) | (cond << 20) | (1 << 5);
431 }
432 
433 static inline uint32_t syn_sve_access_trap(void)
434 {
435     return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
436 }
437 
438 static inline uint32_t syn_pactrap(void)
439 {
440     return EC_PACTRAP << ARM_EL_EC_SHIFT;
441 }
442 
443 static inline uint32_t syn_btitrap(int btype)
444 {
445     return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
446 }
447 
448 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
449 {
450     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
451         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
452 }
453 
454 static inline uint32_t syn_data_abort_no_iss(int same_el,
455                                              int ea, int cm, int s1ptw,
456                                              int wnr, int fsc)
457 {
458     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
459            | ARM_EL_IL
460            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
461 }
462 
463 static inline uint32_t syn_data_abort_with_iss(int same_el,
464                                                int sas, int sse, int srt,
465                                                int sf, int ar,
466                                                int ea, int cm, int s1ptw,
467                                                int wnr, int fsc,
468                                                bool is_16bit)
469 {
470     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
471            | (is_16bit ? 0 : ARM_EL_IL)
472            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
473            | (sf << 15) | (ar << 14)
474            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
475 }
476 
477 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
478 {
479     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
480         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
481 }
482 
483 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
484 {
485     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
486         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
487 }
488 
489 static inline uint32_t syn_breakpoint(int same_el)
490 {
491     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
492         | ARM_EL_IL | 0x22;
493 }
494 
495 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
496 {
497     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
498            (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
499            (cv << 24) | (cond << 20) | ti;
500 }
501 
502 /* Update a QEMU watchpoint based on the information the guest has set in the
503  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
504  */
505 void hw_watchpoint_update(ARMCPU *cpu, int n);
506 /* Update the QEMU watchpoints for every guest watchpoint. This does a
507  * complete delete-and-reinstate of the QEMU watchpoint list and so is
508  * suitable for use after migration or on reset.
509  */
510 void hw_watchpoint_update_all(ARMCPU *cpu);
511 /* Update a QEMU breakpoint based on the information the guest has set in the
512  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
513  */
514 void hw_breakpoint_update(ARMCPU *cpu, int n);
515 /* Update the QEMU breakpoints for every guest breakpoint. This does a
516  * complete delete-and-reinstate of the QEMU breakpoint list and so is
517  * suitable for use after migration or on reset.
518  */
519 void hw_breakpoint_update_all(ARMCPU *cpu);
520 
521 /* Callback function for checking if a watchpoint should trigger. */
522 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
523 
524 /* Adjust addresses (in BE32 mode) before testing against watchpoint
525  * addresses.
526  */
527 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
528 
529 /* Callback function for when a watchpoint or breakpoint triggers. */
530 void arm_debug_excp_handler(CPUState *cs);
531 
532 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
533 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
534 {
535     return false;
536 }
537 static inline void arm_handle_psci_call(ARMCPU *cpu)
538 {
539     g_assert_not_reached();
540 }
541 #else
542 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
543 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
544 /* Actually handle a PSCI call */
545 void arm_handle_psci_call(ARMCPU *cpu);
546 #endif
547 
548 /**
549  * arm_clear_exclusive: clear the exclusive monitor
550  * @env: CPU env
551  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
552  */
553 static inline void arm_clear_exclusive(CPUARMState *env)
554 {
555     env->exclusive_addr = -1;
556 }
557 
558 /**
559  * ARMFaultType: type of an ARM MMU fault
560  * This corresponds to the v8A pseudocode's Fault enumeration,
561  * with extensions for QEMU internal conditions.
562  */
563 typedef enum ARMFaultType {
564     ARMFault_None,
565     ARMFault_AccessFlag,
566     ARMFault_Alignment,
567     ARMFault_Background,
568     ARMFault_Domain,
569     ARMFault_Permission,
570     ARMFault_Translation,
571     ARMFault_AddressSize,
572     ARMFault_SyncExternal,
573     ARMFault_SyncExternalOnWalk,
574     ARMFault_SyncParity,
575     ARMFault_SyncParityOnWalk,
576     ARMFault_AsyncParity,
577     ARMFault_AsyncExternal,
578     ARMFault_Debug,
579     ARMFault_TLBConflict,
580     ARMFault_Lockdown,
581     ARMFault_Exclusive,
582     ARMFault_ICacheMaint,
583     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
584     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
585 } ARMFaultType;
586 
587 /**
588  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
589  * @type: Type of fault
590  * @level: Table walk level (for translation, access flag and permission faults)
591  * @domain: Domain of the fault address (for non-LPAE CPUs only)
592  * @s2addr: Address that caused a fault at stage 2
593  * @stage2: True if we faulted at stage 2
594  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
595  * @ea: True if we should set the EA (external abort type) bit in syndrome
596  */
597 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
598 struct ARMMMUFaultInfo {
599     ARMFaultType type;
600     target_ulong s2addr;
601     int level;
602     int domain;
603     bool stage2;
604     bool s1ptw;
605     bool ea;
606 };
607 
608 /**
609  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
610  * Compare pseudocode EncodeSDFSC(), though unlike that function
611  * we set up a whole FSR-format code including domain field and
612  * putting the high bit of the FSC into bit 10.
613  */
614 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
615 {
616     uint32_t fsc;
617 
618     switch (fi->type) {
619     case ARMFault_None:
620         return 0;
621     case ARMFault_AccessFlag:
622         fsc = fi->level == 1 ? 0x3 : 0x6;
623         break;
624     case ARMFault_Alignment:
625         fsc = 0x1;
626         break;
627     case ARMFault_Permission:
628         fsc = fi->level == 1 ? 0xd : 0xf;
629         break;
630     case ARMFault_Domain:
631         fsc = fi->level == 1 ? 0x9 : 0xb;
632         break;
633     case ARMFault_Translation:
634         fsc = fi->level == 1 ? 0x5 : 0x7;
635         break;
636     case ARMFault_SyncExternal:
637         fsc = 0x8 | (fi->ea << 12);
638         break;
639     case ARMFault_SyncExternalOnWalk:
640         fsc = fi->level == 1 ? 0xc : 0xe;
641         fsc |= (fi->ea << 12);
642         break;
643     case ARMFault_SyncParity:
644         fsc = 0x409;
645         break;
646     case ARMFault_SyncParityOnWalk:
647         fsc = fi->level == 1 ? 0x40c : 0x40e;
648         break;
649     case ARMFault_AsyncParity:
650         fsc = 0x408;
651         break;
652     case ARMFault_AsyncExternal:
653         fsc = 0x406 | (fi->ea << 12);
654         break;
655     case ARMFault_Debug:
656         fsc = 0x2;
657         break;
658     case ARMFault_TLBConflict:
659         fsc = 0x400;
660         break;
661     case ARMFault_Lockdown:
662         fsc = 0x404;
663         break;
664     case ARMFault_Exclusive:
665         fsc = 0x405;
666         break;
667     case ARMFault_ICacheMaint:
668         fsc = 0x4;
669         break;
670     case ARMFault_Background:
671         fsc = 0x0;
672         break;
673     case ARMFault_QEMU_NSCExec:
674         fsc = M_FAKE_FSR_NSC_EXEC;
675         break;
676     case ARMFault_QEMU_SFault:
677         fsc = M_FAKE_FSR_SFAULT;
678         break;
679     default:
680         /* Other faults can't occur in a context that requires a
681          * short-format status code.
682          */
683         g_assert_not_reached();
684     }
685 
686     fsc |= (fi->domain << 4);
687     return fsc;
688 }
689 
690 /**
691  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
692  * Compare pseudocode EncodeLDFSC(), though unlike that function
693  * we fill in also the LPAE bit 9 of a DFSR format.
694  */
695 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
696 {
697     uint32_t fsc;
698 
699     switch (fi->type) {
700     case ARMFault_None:
701         return 0;
702     case ARMFault_AddressSize:
703         fsc = fi->level & 3;
704         break;
705     case ARMFault_AccessFlag:
706         fsc = (fi->level & 3) | (0x2 << 2);
707         break;
708     case ARMFault_Permission:
709         fsc = (fi->level & 3) | (0x3 << 2);
710         break;
711     case ARMFault_Translation:
712         fsc = (fi->level & 3) | (0x1 << 2);
713         break;
714     case ARMFault_SyncExternal:
715         fsc = 0x10 | (fi->ea << 12);
716         break;
717     case ARMFault_SyncExternalOnWalk:
718         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
719         break;
720     case ARMFault_SyncParity:
721         fsc = 0x18;
722         break;
723     case ARMFault_SyncParityOnWalk:
724         fsc = (fi->level & 3) | (0x7 << 2);
725         break;
726     case ARMFault_AsyncParity:
727         fsc = 0x19;
728         break;
729     case ARMFault_AsyncExternal:
730         fsc = 0x11 | (fi->ea << 12);
731         break;
732     case ARMFault_Alignment:
733         fsc = 0x21;
734         break;
735     case ARMFault_Debug:
736         fsc = 0x22;
737         break;
738     case ARMFault_TLBConflict:
739         fsc = 0x30;
740         break;
741     case ARMFault_Lockdown:
742         fsc = 0x34;
743         break;
744     case ARMFault_Exclusive:
745         fsc = 0x35;
746         break;
747     default:
748         /* Other faults can't occur in a context that requires a
749          * long-format status code.
750          */
751         g_assert_not_reached();
752     }
753 
754     fsc |= 1 << 9;
755     return fsc;
756 }
757 
758 static inline bool arm_extabort_type(MemTxResult result)
759 {
760     /* The EA bit in syndromes and fault status registers is an
761      * IMPDEF classification of external aborts. ARM implementations
762      * usually use this to indicate AXI bus Decode error (0) or
763      * Slave error (1); in QEMU we follow that.
764      */
765     return result != MEMTX_DECODE_ERROR;
766 }
767 
768 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
769                       MMUAccessType access_type, int mmu_idx,
770                       bool probe, uintptr_t retaddr);
771 
772 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
773 {
774     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
775 }
776 
777 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
778 {
779     if (arm_feature(env, ARM_FEATURE_M)) {
780         return mmu_idx | ARM_MMU_IDX_M;
781     } else {
782         return mmu_idx | ARM_MMU_IDX_A;
783     }
784 }
785 
786 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
787 
788 /*
789  * Return the MMU index for a v7M CPU with all relevant information
790  * manually specified.
791  */
792 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
793                               bool secstate, bool priv, bool negpri);
794 
795 /*
796  * Return the MMU index for a v7M CPU in the specified security and
797  * privilege state.
798  */
799 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
800                                                 bool secstate, bool priv);
801 
802 /* Return the MMU index for a v7M CPU in the specified security state */
803 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
804 
805 /* Return true if the stage 1 translation regime is using LPAE format page
806  * tables */
807 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
808 
809 /* Raise a data fault alignment exception for the specified virtual address */
810 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
811                                  MMUAccessType access_type,
812                                  int mmu_idx, uintptr_t retaddr);
813 
814 /* arm_cpu_do_transaction_failed: handle a memory system error response
815  * (eg "no device/memory present at address") by raising an external abort
816  * exception
817  */
818 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
819                                    vaddr addr, unsigned size,
820                                    MMUAccessType access_type,
821                                    int mmu_idx, MemTxAttrs attrs,
822                                    MemTxResult response, uintptr_t retaddr);
823 
824 /* Call any registered EL change hooks */
825 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
826 {
827     ARMELChangeHook *hook, *next;
828     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
829         hook->hook(cpu, hook->opaque);
830     }
831 }
832 static inline void arm_call_el_change_hook(ARMCPU *cpu)
833 {
834     ARMELChangeHook *hook, *next;
835     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
836         hook->hook(cpu, hook->opaque);
837     }
838 }
839 
840 /* Return true if this address translation regime has two ranges.  */
841 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
842 {
843     switch (mmu_idx) {
844     case ARMMMUIdx_Stage1_E0:
845     case ARMMMUIdx_Stage1_E1:
846     case ARMMMUIdx_Stage1_E1_PAN:
847     case ARMMMUIdx_E10_0:
848     case ARMMMUIdx_E10_1:
849     case ARMMMUIdx_E10_1_PAN:
850     case ARMMMUIdx_E20_0:
851     case ARMMMUIdx_E20_2:
852     case ARMMMUIdx_E20_2_PAN:
853     case ARMMMUIdx_SE10_0:
854     case ARMMMUIdx_SE10_1:
855     case ARMMMUIdx_SE10_1_PAN:
856         return true;
857     default:
858         return false;
859     }
860 }
861 
862 /* Return true if this address translation regime is secure */
863 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
864 {
865     switch (mmu_idx) {
866     case ARMMMUIdx_E10_0:
867     case ARMMMUIdx_E10_1:
868     case ARMMMUIdx_E10_1_PAN:
869     case ARMMMUIdx_E20_0:
870     case ARMMMUIdx_E20_2:
871     case ARMMMUIdx_E20_2_PAN:
872     case ARMMMUIdx_Stage1_E0:
873     case ARMMMUIdx_Stage1_E1:
874     case ARMMMUIdx_Stage1_E1_PAN:
875     case ARMMMUIdx_E2:
876     case ARMMMUIdx_Stage2:
877     case ARMMMUIdx_MPrivNegPri:
878     case ARMMMUIdx_MUserNegPri:
879     case ARMMMUIdx_MPriv:
880     case ARMMMUIdx_MUser:
881         return false;
882     case ARMMMUIdx_SE3:
883     case ARMMMUIdx_SE10_0:
884     case ARMMMUIdx_SE10_1:
885     case ARMMMUIdx_SE10_1_PAN:
886     case ARMMMUIdx_MSPrivNegPri:
887     case ARMMMUIdx_MSUserNegPri:
888     case ARMMMUIdx_MSPriv:
889     case ARMMMUIdx_MSUser:
890         return true;
891     default:
892         g_assert_not_reached();
893     }
894 }
895 
896 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
897 {
898     switch (mmu_idx) {
899     case ARMMMUIdx_Stage1_E1_PAN:
900     case ARMMMUIdx_E10_1_PAN:
901     case ARMMMUIdx_E20_2_PAN:
902     case ARMMMUIdx_SE10_1_PAN:
903         return true;
904     default:
905         return false;
906     }
907 }
908 
909 /* Return the FSR value for a debug exception (watchpoint, hardware
910  * breakpoint or BKPT insn) targeting the specified exception level.
911  */
912 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
913 {
914     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
915     int target_el = arm_debug_target_el(env);
916     bool using_lpae = false;
917 
918     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
919         using_lpae = true;
920     } else {
921         if (arm_feature(env, ARM_FEATURE_LPAE) &&
922             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
923             using_lpae = true;
924         }
925     }
926 
927     if (using_lpae) {
928         return arm_fi_to_lfsc(&fi);
929     } else {
930         return arm_fi_to_sfsc(&fi);
931     }
932 }
933 
934 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
935  * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
936  */
937 #define MEMOPIDX_SHIFT  8
938 
939 /**
940  * v7m_using_psp: Return true if using process stack pointer
941  * Return true if the CPU is currently using the process stack
942  * pointer, or false if it is using the main stack pointer.
943  */
944 static inline bool v7m_using_psp(CPUARMState *env)
945 {
946     /* Handler mode always uses the main stack; for thread mode
947      * the CONTROL.SPSEL bit determines the answer.
948      * Note that in v7M it is not possible to be in Handler mode with
949      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
950      */
951     return !arm_v7m_is_handler_mode(env) &&
952         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
953 }
954 
955 /**
956  * v7m_sp_limit: Return SP limit for current CPU state
957  * Return the SP limit value for the current CPU security state
958  * and stack pointer.
959  */
960 static inline uint32_t v7m_sp_limit(CPUARMState *env)
961 {
962     if (v7m_using_psp(env)) {
963         return env->v7m.psplim[env->v7m.secure];
964     } else {
965         return env->v7m.msplim[env->v7m.secure];
966     }
967 }
968 
969 /**
970  * v7m_cpacr_pass:
971  * Return true if the v7M CPACR permits access to the FPU for the specified
972  * security state and privilege level.
973  */
974 static inline bool v7m_cpacr_pass(CPUARMState *env,
975                                   bool is_secure, bool is_priv)
976 {
977     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
978     case 0:
979     case 2: /* UNPREDICTABLE: we treat like 0 */
980         return false;
981     case 1:
982         return is_priv;
983     case 3:
984         return true;
985     default:
986         g_assert_not_reached();
987     }
988 }
989 
990 /**
991  * aarch32_mode_name(): Return name of the AArch32 CPU mode
992  * @psr: Program Status Register indicating CPU mode
993  *
994  * Returns, for debug logging purposes, a printable representation
995  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
996  * the low bits of the specified PSR.
997  */
998 static inline const char *aarch32_mode_name(uint32_t psr)
999 {
1000     static const char cpu_mode_names[16][4] = {
1001         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1002         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1003     };
1004 
1005     return cpu_mode_names[psr & 0xf];
1006 }
1007 
1008 /**
1009  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1010  *
1011  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1012  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1013  * Must be called with the iothread lock held.
1014  */
1015 void arm_cpu_update_virq(ARMCPU *cpu);
1016 
1017 /**
1018  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1019  *
1020  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1021  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1022  * Must be called with the iothread lock held.
1023  */
1024 void arm_cpu_update_vfiq(ARMCPU *cpu);
1025 
1026 /**
1027  * arm_mmu_idx_el:
1028  * @env: The cpu environment
1029  * @el: The EL to use.
1030  *
1031  * Return the full ARMMMUIdx for the translation regime for EL.
1032  */
1033 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1034 
1035 /**
1036  * arm_mmu_idx:
1037  * @env: The cpu environment
1038  *
1039  * Return the full ARMMMUIdx for the current translation regime.
1040  */
1041 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1042 
1043 /**
1044  * arm_stage1_mmu_idx:
1045  * @env: The cpu environment
1046  *
1047  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1048  */
1049 #ifdef CONFIG_USER_ONLY
1050 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1051 {
1052     return ARMMMUIdx_Stage1_E0;
1053 }
1054 #else
1055 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1056 #endif
1057 
1058 /**
1059  * arm_mmu_idx_is_stage1_of_2:
1060  * @mmu_idx: The ARMMMUIdx to test
1061  *
1062  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1063  * first stage of a two stage regime.
1064  */
1065 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1066 {
1067     switch (mmu_idx) {
1068     case ARMMMUIdx_Stage1_E0:
1069     case ARMMMUIdx_Stage1_E1:
1070     case ARMMMUIdx_Stage1_E1_PAN:
1071         return true;
1072     default:
1073         return false;
1074     }
1075 }
1076 
1077 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1078                                                const ARMISARegisters *id)
1079 {
1080     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1081 
1082     if ((features >> ARM_FEATURE_V4T) & 1) {
1083         valid |= CPSR_T;
1084     }
1085     if ((features >> ARM_FEATURE_V5) & 1) {
1086         valid |= CPSR_Q; /* V5TE in reality*/
1087     }
1088     if ((features >> ARM_FEATURE_V6) & 1) {
1089         valid |= CPSR_E | CPSR_GE;
1090     }
1091     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1092         valid |= CPSR_IT;
1093     }
1094     if (isar_feature_jazelle(id)) {
1095         valid |= CPSR_J;
1096     }
1097     if (isar_feature_aa32_pan(id)) {
1098         valid |= CPSR_PAN;
1099     }
1100 
1101     return valid;
1102 }
1103 
1104 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1105 {
1106     uint32_t valid;
1107 
1108     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1109     if (isar_feature_aa64_bti(id)) {
1110         valid |= PSTATE_BTYPE;
1111     }
1112     if (isar_feature_aa64_pan(id)) {
1113         valid |= PSTATE_PAN;
1114     }
1115     if (isar_feature_aa64_uao(id)) {
1116         valid |= PSTATE_UAO;
1117     }
1118 
1119     return valid;
1120 }
1121 
1122 /*
1123  * Parameters of a given virtual address, as extracted from the
1124  * translation control register (TCR) for a given regime.
1125  */
1126 typedef struct ARMVAParameters {
1127     unsigned tsz    : 8;
1128     unsigned select : 1;
1129     bool tbi        : 1;
1130     bool tbid       : 1;
1131     bool epd        : 1;
1132     bool hpd        : 1;
1133     bool using16k   : 1;
1134     bool using64k   : 1;
1135 } ARMVAParameters;
1136 
1137 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
1138                                         ARMMMUIdx mmu_idx);
1139 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1140                                    ARMMMUIdx mmu_idx, bool data);
1141 
1142 static inline int exception_target_el(CPUARMState *env)
1143 {
1144     int target_el = MAX(1, arm_current_el(env));
1145 
1146     /*
1147      * No such thing as secure EL1 if EL3 is aarch32,
1148      * so update the target EL to EL3 in this case.
1149      */
1150     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1151         target_el = 3;
1152     }
1153 
1154     return target_el;
1155 }
1156 
1157 #ifndef CONFIG_USER_ONLY
1158 
1159 /* Security attributes for an address, as returned by v8m_security_lookup. */
1160 typedef struct V8M_SAttributes {
1161     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1162     bool ns;
1163     bool nsc;
1164     uint8_t sregion;
1165     bool srvalid;
1166     uint8_t iregion;
1167     bool irvalid;
1168 } V8M_SAttributes;
1169 
1170 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1171                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1172                          V8M_SAttributes *sattrs);
1173 
1174 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1175                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1176                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1177                        int *prot, bool *is_subpage,
1178                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1179 
1180 /* Cacheability and shareability attributes for a memory access */
1181 typedef struct ARMCacheAttrs {
1182     unsigned int attrs:8; /* as in the MAIR register encoding */
1183     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1184 } ARMCacheAttrs;
1185 
1186 bool get_phys_addr(CPUARMState *env, target_ulong address,
1187                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1188                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1189                    target_ulong *page_size,
1190                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
1191 
1192 void arm_log_exception(int idx);
1193 
1194 #endif /* !CONFIG_USER_ONLY */
1195 
1196 #endif
1197