xref: /openbmc/qemu/target/arm/internals.h (revision 19f4ed36)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* We use a few fake FSR values for internal purposes in M profile.
85  * M profile cores don't have A/R format FSRs, but currently our
86  * get_phys_addr() code assumes A/R profile and reports failures via
87  * an A/R format FSR value. We then translate that into the proper
88  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89  * Mostly the FSR values we use for this are those defined for v7PMSA,
90  * since we share some of that codepath. A few kinds of fault are
91  * only for M profile and have no A/R equivalent, though, so we have
92  * to pick a value from the reserved range (which we never otherwise
93  * generate) to use for these.
94  * These values will never be visible to the guest.
95  */
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 
99 /**
100  * raise_exception: Raise the specified exception.
101  * Raise a guest exception with the specified value, syndrome register
102  * and target exception level. This should be called from helper functions,
103  * and never returns because we will longjump back up to the CPU main loop.
104  */
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106                                    uint32_t syndrome, uint32_t target_el);
107 
108 /*
109  * Similarly, but also use unwinding to restore cpu state.
110  */
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112                                       uint32_t syndrome, uint32_t target_el,
113                                       uintptr_t ra);
114 
115 /*
116  * For AArch64, map a given EL to an index in the banked_spsr array.
117  * Note that this mapping and the AArch32 mapping defined in bank_number()
118  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119  * mandated mapping between each other.
120  */
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 {
123     static const unsigned int map[4] = {
124         [1] = BANK_SVC, /* EL1.  */
125         [2] = BANK_HYP, /* EL2.  */
126         [3] = BANK_MON, /* EL3.  */
127     };
128     assert(el >= 1 && el <= 3);
129     return map[el];
130 }
131 
132 /* Map CPU modes onto saved register banks.  */
133 static inline int bank_number(int mode)
134 {
135     switch (mode) {
136     case ARM_CPU_MODE_USR:
137     case ARM_CPU_MODE_SYS:
138         return BANK_USRSYS;
139     case ARM_CPU_MODE_SVC:
140         return BANK_SVC;
141     case ARM_CPU_MODE_ABT:
142         return BANK_ABT;
143     case ARM_CPU_MODE_UND:
144         return BANK_UND;
145     case ARM_CPU_MODE_IRQ:
146         return BANK_IRQ;
147     case ARM_CPU_MODE_FIQ:
148         return BANK_FIQ;
149     case ARM_CPU_MODE_HYP:
150         return BANK_HYP;
151     case ARM_CPU_MODE_MON:
152         return BANK_MON;
153     }
154     g_assert_not_reached();
155 }
156 
157 /**
158  * r14_bank_number: Map CPU mode onto register bank for r14
159  *
160  * Given an AArch32 CPU mode, return the index into the saved register
161  * banks to use for the R14 (LR) in that mode. This is the same as
162  * bank_number(), except for the special case of Hyp mode, where
163  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164  * This should be used as the index into env->banked_r14[], and
165  * bank_number() used for the index into env->banked_r13[] and
166  * env->banked_spsr[].
167  */
168 static inline int r14_bank_number(int mode)
169 {
170     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 }
172 
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
175 
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
179 
180 
181 enum arm_fprounding {
182     FPROUNDING_TIEEVEN,
183     FPROUNDING_POSINF,
184     FPROUNDING_NEGINF,
185     FPROUNDING_ZERO,
186     FPROUNDING_TIEAWAY,
187     FPROUNDING_ODD
188 };
189 
190 int arm_rmode_to_sf(int rmode);
191 
192 static inline void aarch64_save_sp(CPUARMState *env, int el)
193 {
194     if (env->pstate & PSTATE_SP) {
195         env->sp_el[el] = env->xregs[31];
196     } else {
197         env->sp_el[0] = env->xregs[31];
198     }
199 }
200 
201 static inline void aarch64_restore_sp(CPUARMState *env, int el)
202 {
203     if (env->pstate & PSTATE_SP) {
204         env->xregs[31] = env->sp_el[el];
205     } else {
206         env->xregs[31] = env->sp_el[0];
207     }
208 }
209 
210 static inline void update_spsel(CPUARMState *env, uint32_t imm)
211 {
212     unsigned int cur_el = arm_current_el(env);
213     /* Update PSTATE SPSel bit; this requires us to update the
214      * working stack pointer in xregs[31].
215      */
216     if (!((imm ^ env->pstate) & PSTATE_SP)) {
217         return;
218     }
219     aarch64_save_sp(env, cur_el);
220     env->pstate = deposit32(env->pstate, 0, 1, imm);
221 
222     /* We rely on illegal updates to SPsel from EL0 to get trapped
223      * at translation time.
224      */
225     assert(cur_el >= 1 && cur_el <= 3);
226     aarch64_restore_sp(env, cur_el);
227 }
228 
229 /*
230  * arm_pamax
231  * @cpu: ARMCPU
232  *
233  * Returns the implementation defined bit-width of physical addresses.
234  * The ARMv8 reference manuals refer to this as PAMax().
235  */
236 static inline unsigned int arm_pamax(ARMCPU *cpu)
237 {
238     static const unsigned int pamax_map[] = {
239         [0] = 32,
240         [1] = 36,
241         [2] = 40,
242         [3] = 42,
243         [4] = 44,
244         [5] = 48,
245     };
246     unsigned int parange =
247         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
248 
249     /* id_aa64mmfr0 is a read-only register so values outside of the
250      * supported mappings can be considered an implementation error.  */
251     assert(parange < ARRAY_SIZE(pamax_map));
252     return pamax_map[parange];
253 }
254 
255 /* Return true if extended addresses are enabled.
256  * This is always the case if our translation regime is 64 bit,
257  * but depends on TTBCR.EAE for 32 bit.
258  */
259 static inline bool extended_addresses_enabled(CPUARMState *env)
260 {
261     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
262     return arm_el_is_aa64(env, 1) ||
263            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
264 }
265 
266 /* Update a QEMU watchpoint based on the information the guest has set in the
267  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
268  */
269 void hw_watchpoint_update(ARMCPU *cpu, int n);
270 /* Update the QEMU watchpoints for every guest watchpoint. This does a
271  * complete delete-and-reinstate of the QEMU watchpoint list and so is
272  * suitable for use after migration or on reset.
273  */
274 void hw_watchpoint_update_all(ARMCPU *cpu);
275 /* Update a QEMU breakpoint based on the information the guest has set in the
276  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
277  */
278 void hw_breakpoint_update(ARMCPU *cpu, int n);
279 /* Update the QEMU breakpoints for every guest breakpoint. This does a
280  * complete delete-and-reinstate of the QEMU breakpoint list and so is
281  * suitable for use after migration or on reset.
282  */
283 void hw_breakpoint_update_all(ARMCPU *cpu);
284 
285 /* Callback function for checking if a watchpoint should trigger. */
286 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
287 
288 /* Adjust addresses (in BE32 mode) before testing against watchpoint
289  * addresses.
290  */
291 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
292 
293 /* Callback function for when a watchpoint or breakpoint triggers. */
294 void arm_debug_excp_handler(CPUState *cs);
295 
296 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
297 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
298 {
299     return false;
300 }
301 static inline void arm_handle_psci_call(ARMCPU *cpu)
302 {
303     g_assert_not_reached();
304 }
305 #else
306 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
307 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
308 /* Actually handle a PSCI call */
309 void arm_handle_psci_call(ARMCPU *cpu);
310 #endif
311 
312 /**
313  * arm_clear_exclusive: clear the exclusive monitor
314  * @env: CPU env
315  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
316  */
317 static inline void arm_clear_exclusive(CPUARMState *env)
318 {
319     env->exclusive_addr = -1;
320 }
321 
322 /**
323  * ARMFaultType: type of an ARM MMU fault
324  * This corresponds to the v8A pseudocode's Fault enumeration,
325  * with extensions for QEMU internal conditions.
326  */
327 typedef enum ARMFaultType {
328     ARMFault_None,
329     ARMFault_AccessFlag,
330     ARMFault_Alignment,
331     ARMFault_Background,
332     ARMFault_Domain,
333     ARMFault_Permission,
334     ARMFault_Translation,
335     ARMFault_AddressSize,
336     ARMFault_SyncExternal,
337     ARMFault_SyncExternalOnWalk,
338     ARMFault_SyncParity,
339     ARMFault_SyncParityOnWalk,
340     ARMFault_AsyncParity,
341     ARMFault_AsyncExternal,
342     ARMFault_Debug,
343     ARMFault_TLBConflict,
344     ARMFault_Lockdown,
345     ARMFault_Exclusive,
346     ARMFault_ICacheMaint,
347     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
348     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
349 } ARMFaultType;
350 
351 /**
352  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
353  * @type: Type of fault
354  * @level: Table walk level (for translation, access flag and permission faults)
355  * @domain: Domain of the fault address (for non-LPAE CPUs only)
356  * @s2addr: Address that caused a fault at stage 2
357  * @stage2: True if we faulted at stage 2
358  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
359  * @s1ns: True if we faulted on a non-secure IPA while in secure state
360  * @ea: True if we should set the EA (external abort type) bit in syndrome
361  */
362 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
363 struct ARMMMUFaultInfo {
364     ARMFaultType type;
365     target_ulong s2addr;
366     int level;
367     int domain;
368     bool stage2;
369     bool s1ptw;
370     bool s1ns;
371     bool ea;
372 };
373 
374 /**
375  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
376  * Compare pseudocode EncodeSDFSC(), though unlike that function
377  * we set up a whole FSR-format code including domain field and
378  * putting the high bit of the FSC into bit 10.
379  */
380 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
381 {
382     uint32_t fsc;
383 
384     switch (fi->type) {
385     case ARMFault_None:
386         return 0;
387     case ARMFault_AccessFlag:
388         fsc = fi->level == 1 ? 0x3 : 0x6;
389         break;
390     case ARMFault_Alignment:
391         fsc = 0x1;
392         break;
393     case ARMFault_Permission:
394         fsc = fi->level == 1 ? 0xd : 0xf;
395         break;
396     case ARMFault_Domain:
397         fsc = fi->level == 1 ? 0x9 : 0xb;
398         break;
399     case ARMFault_Translation:
400         fsc = fi->level == 1 ? 0x5 : 0x7;
401         break;
402     case ARMFault_SyncExternal:
403         fsc = 0x8 | (fi->ea << 12);
404         break;
405     case ARMFault_SyncExternalOnWalk:
406         fsc = fi->level == 1 ? 0xc : 0xe;
407         fsc |= (fi->ea << 12);
408         break;
409     case ARMFault_SyncParity:
410         fsc = 0x409;
411         break;
412     case ARMFault_SyncParityOnWalk:
413         fsc = fi->level == 1 ? 0x40c : 0x40e;
414         break;
415     case ARMFault_AsyncParity:
416         fsc = 0x408;
417         break;
418     case ARMFault_AsyncExternal:
419         fsc = 0x406 | (fi->ea << 12);
420         break;
421     case ARMFault_Debug:
422         fsc = 0x2;
423         break;
424     case ARMFault_TLBConflict:
425         fsc = 0x400;
426         break;
427     case ARMFault_Lockdown:
428         fsc = 0x404;
429         break;
430     case ARMFault_Exclusive:
431         fsc = 0x405;
432         break;
433     case ARMFault_ICacheMaint:
434         fsc = 0x4;
435         break;
436     case ARMFault_Background:
437         fsc = 0x0;
438         break;
439     case ARMFault_QEMU_NSCExec:
440         fsc = M_FAKE_FSR_NSC_EXEC;
441         break;
442     case ARMFault_QEMU_SFault:
443         fsc = M_FAKE_FSR_SFAULT;
444         break;
445     default:
446         /* Other faults can't occur in a context that requires a
447          * short-format status code.
448          */
449         g_assert_not_reached();
450     }
451 
452     fsc |= (fi->domain << 4);
453     return fsc;
454 }
455 
456 /**
457  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
458  * Compare pseudocode EncodeLDFSC(), though unlike that function
459  * we fill in also the LPAE bit 9 of a DFSR format.
460  */
461 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
462 {
463     uint32_t fsc;
464 
465     switch (fi->type) {
466     case ARMFault_None:
467         return 0;
468     case ARMFault_AddressSize:
469         fsc = fi->level & 3;
470         break;
471     case ARMFault_AccessFlag:
472         fsc = (fi->level & 3) | (0x2 << 2);
473         break;
474     case ARMFault_Permission:
475         fsc = (fi->level & 3) | (0x3 << 2);
476         break;
477     case ARMFault_Translation:
478         fsc = (fi->level & 3) | (0x1 << 2);
479         break;
480     case ARMFault_SyncExternal:
481         fsc = 0x10 | (fi->ea << 12);
482         break;
483     case ARMFault_SyncExternalOnWalk:
484         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
485         break;
486     case ARMFault_SyncParity:
487         fsc = 0x18;
488         break;
489     case ARMFault_SyncParityOnWalk:
490         fsc = (fi->level & 3) | (0x7 << 2);
491         break;
492     case ARMFault_AsyncParity:
493         fsc = 0x19;
494         break;
495     case ARMFault_AsyncExternal:
496         fsc = 0x11 | (fi->ea << 12);
497         break;
498     case ARMFault_Alignment:
499         fsc = 0x21;
500         break;
501     case ARMFault_Debug:
502         fsc = 0x22;
503         break;
504     case ARMFault_TLBConflict:
505         fsc = 0x30;
506         break;
507     case ARMFault_Lockdown:
508         fsc = 0x34;
509         break;
510     case ARMFault_Exclusive:
511         fsc = 0x35;
512         break;
513     default:
514         /* Other faults can't occur in a context that requires a
515          * long-format status code.
516          */
517         g_assert_not_reached();
518     }
519 
520     fsc |= 1 << 9;
521     return fsc;
522 }
523 
524 static inline bool arm_extabort_type(MemTxResult result)
525 {
526     /* The EA bit in syndromes and fault status registers is an
527      * IMPDEF classification of external aborts. ARM implementations
528      * usually use this to indicate AXI bus Decode error (0) or
529      * Slave error (1); in QEMU we follow that.
530      */
531     return result != MEMTX_DECODE_ERROR;
532 }
533 
534 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
535                       MMUAccessType access_type, int mmu_idx,
536                       bool probe, uintptr_t retaddr);
537 
538 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
539 {
540     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
541 }
542 
543 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
544 {
545     if (arm_feature(env, ARM_FEATURE_M)) {
546         return mmu_idx | ARM_MMU_IDX_M;
547     } else {
548         return mmu_idx | ARM_MMU_IDX_A;
549     }
550 }
551 
552 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
553 {
554     /* AArch64 is always a-profile. */
555     return mmu_idx | ARM_MMU_IDX_A;
556 }
557 
558 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
559 
560 /*
561  * Return the MMU index for a v7M CPU with all relevant information
562  * manually specified.
563  */
564 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
565                               bool secstate, bool priv, bool negpri);
566 
567 /*
568  * Return the MMU index for a v7M CPU in the specified security and
569  * privilege state.
570  */
571 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
572                                                 bool secstate, bool priv);
573 
574 /* Return the MMU index for a v7M CPU in the specified security state */
575 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
576 
577 /* Return true if the stage 1 translation regime is using LPAE format page
578  * tables */
579 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
580 
581 /* Raise a data fault alignment exception for the specified virtual address */
582 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
583                                  MMUAccessType access_type,
584                                  int mmu_idx, uintptr_t retaddr);
585 
586 /* arm_cpu_do_transaction_failed: handle a memory system error response
587  * (eg "no device/memory present at address") by raising an external abort
588  * exception
589  */
590 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
591                                    vaddr addr, unsigned size,
592                                    MMUAccessType access_type,
593                                    int mmu_idx, MemTxAttrs attrs,
594                                    MemTxResult response, uintptr_t retaddr);
595 
596 /* Call any registered EL change hooks */
597 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
598 {
599     ARMELChangeHook *hook, *next;
600     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
601         hook->hook(cpu, hook->opaque);
602     }
603 }
604 static inline void arm_call_el_change_hook(ARMCPU *cpu)
605 {
606     ARMELChangeHook *hook, *next;
607     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
608         hook->hook(cpu, hook->opaque);
609     }
610 }
611 
612 /* Return true if this address translation regime has two ranges.  */
613 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
614 {
615     switch (mmu_idx) {
616     case ARMMMUIdx_Stage1_E0:
617     case ARMMMUIdx_Stage1_E1:
618     case ARMMMUIdx_Stage1_E1_PAN:
619     case ARMMMUIdx_Stage1_SE0:
620     case ARMMMUIdx_Stage1_SE1:
621     case ARMMMUIdx_Stage1_SE1_PAN:
622     case ARMMMUIdx_E10_0:
623     case ARMMMUIdx_E10_1:
624     case ARMMMUIdx_E10_1_PAN:
625     case ARMMMUIdx_E20_0:
626     case ARMMMUIdx_E20_2:
627     case ARMMMUIdx_E20_2_PAN:
628     case ARMMMUIdx_SE10_0:
629     case ARMMMUIdx_SE10_1:
630     case ARMMMUIdx_SE10_1_PAN:
631     case ARMMMUIdx_SE20_0:
632     case ARMMMUIdx_SE20_2:
633     case ARMMMUIdx_SE20_2_PAN:
634         return true;
635     default:
636         return false;
637     }
638 }
639 
640 /* Return true if this address translation regime is secure */
641 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
642 {
643     switch (mmu_idx) {
644     case ARMMMUIdx_E10_0:
645     case ARMMMUIdx_E10_1:
646     case ARMMMUIdx_E10_1_PAN:
647     case ARMMMUIdx_E20_0:
648     case ARMMMUIdx_E20_2:
649     case ARMMMUIdx_E20_2_PAN:
650     case ARMMMUIdx_Stage1_E0:
651     case ARMMMUIdx_Stage1_E1:
652     case ARMMMUIdx_Stage1_E1_PAN:
653     case ARMMMUIdx_E2:
654     case ARMMMUIdx_Stage2:
655     case ARMMMUIdx_MPrivNegPri:
656     case ARMMMUIdx_MUserNegPri:
657     case ARMMMUIdx_MPriv:
658     case ARMMMUIdx_MUser:
659         return false;
660     case ARMMMUIdx_SE3:
661     case ARMMMUIdx_SE10_0:
662     case ARMMMUIdx_SE10_1:
663     case ARMMMUIdx_SE10_1_PAN:
664     case ARMMMUIdx_SE20_0:
665     case ARMMMUIdx_SE20_2:
666     case ARMMMUIdx_SE20_2_PAN:
667     case ARMMMUIdx_Stage1_SE0:
668     case ARMMMUIdx_Stage1_SE1:
669     case ARMMMUIdx_Stage1_SE1_PAN:
670     case ARMMMUIdx_SE2:
671     case ARMMMUIdx_Stage2_S:
672     case ARMMMUIdx_MSPrivNegPri:
673     case ARMMMUIdx_MSUserNegPri:
674     case ARMMMUIdx_MSPriv:
675     case ARMMMUIdx_MSUser:
676         return true;
677     default:
678         g_assert_not_reached();
679     }
680 }
681 
682 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
683 {
684     switch (mmu_idx) {
685     case ARMMMUIdx_Stage1_E1_PAN:
686     case ARMMMUIdx_Stage1_SE1_PAN:
687     case ARMMMUIdx_E10_1_PAN:
688     case ARMMMUIdx_E20_2_PAN:
689     case ARMMMUIdx_SE10_1_PAN:
690     case ARMMMUIdx_SE20_2_PAN:
691         return true;
692     default:
693         return false;
694     }
695 }
696 
697 /* Return the exception level which controls this address translation regime */
698 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
699 {
700     switch (mmu_idx) {
701     case ARMMMUIdx_SE20_0:
702     case ARMMMUIdx_SE20_2:
703     case ARMMMUIdx_SE20_2_PAN:
704     case ARMMMUIdx_E20_0:
705     case ARMMMUIdx_E20_2:
706     case ARMMMUIdx_E20_2_PAN:
707     case ARMMMUIdx_Stage2:
708     case ARMMMUIdx_Stage2_S:
709     case ARMMMUIdx_SE2:
710     case ARMMMUIdx_E2:
711         return 2;
712     case ARMMMUIdx_SE3:
713         return 3;
714     case ARMMMUIdx_SE10_0:
715     case ARMMMUIdx_Stage1_SE0:
716         return arm_el_is_aa64(env, 3) ? 1 : 3;
717     case ARMMMUIdx_SE10_1:
718     case ARMMMUIdx_SE10_1_PAN:
719     case ARMMMUIdx_Stage1_E0:
720     case ARMMMUIdx_Stage1_E1:
721     case ARMMMUIdx_Stage1_E1_PAN:
722     case ARMMMUIdx_Stage1_SE1:
723     case ARMMMUIdx_Stage1_SE1_PAN:
724     case ARMMMUIdx_E10_0:
725     case ARMMMUIdx_E10_1:
726     case ARMMMUIdx_E10_1_PAN:
727     case ARMMMUIdx_MPrivNegPri:
728     case ARMMMUIdx_MUserNegPri:
729     case ARMMMUIdx_MPriv:
730     case ARMMMUIdx_MUser:
731     case ARMMMUIdx_MSPrivNegPri:
732     case ARMMMUIdx_MSUserNegPri:
733     case ARMMMUIdx_MSPriv:
734     case ARMMMUIdx_MSUser:
735         return 1;
736     default:
737         g_assert_not_reached();
738     }
739 }
740 
741 /* Return the TCR controlling this translation regime */
742 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
743 {
744     if (mmu_idx == ARMMMUIdx_Stage2) {
745         return &env->cp15.vtcr_el2;
746     }
747     if (mmu_idx == ARMMMUIdx_Stage2_S) {
748         /*
749          * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
750          * those are not currently used by QEMU, so just return VSTCR_EL2.
751          */
752         return &env->cp15.vstcr_el2;
753     }
754     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
755 }
756 
757 /* Return the FSR value for a debug exception (watchpoint, hardware
758  * breakpoint or BKPT insn) targeting the specified exception level.
759  */
760 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
761 {
762     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
763     int target_el = arm_debug_target_el(env);
764     bool using_lpae = false;
765 
766     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
767         using_lpae = true;
768     } else {
769         if (arm_feature(env, ARM_FEATURE_LPAE) &&
770             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
771             using_lpae = true;
772         }
773     }
774 
775     if (using_lpae) {
776         return arm_fi_to_lfsc(&fi);
777     } else {
778         return arm_fi_to_sfsc(&fi);
779     }
780 }
781 
782 /**
783  * arm_num_brps: Return number of implemented breakpoints.
784  * Note that the ID register BRPS field is "number of bps - 1",
785  * and we return the actual number of breakpoints.
786  */
787 static inline int arm_num_brps(ARMCPU *cpu)
788 {
789     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
790         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
791     } else {
792         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
793     }
794 }
795 
796 /**
797  * arm_num_wrps: Return number of implemented watchpoints.
798  * Note that the ID register WRPS field is "number of wps - 1",
799  * and we return the actual number of watchpoints.
800  */
801 static inline int arm_num_wrps(ARMCPU *cpu)
802 {
803     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
804         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
805     } else {
806         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
807     }
808 }
809 
810 /**
811  * arm_num_ctx_cmps: Return number of implemented context comparators.
812  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
813  * and we return the actual number of comparators.
814  */
815 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
816 {
817     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
818         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
819     } else {
820         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
821     }
822 }
823 
824 /**
825  * v7m_using_psp: Return true if using process stack pointer
826  * Return true if the CPU is currently using the process stack
827  * pointer, or false if it is using the main stack pointer.
828  */
829 static inline bool v7m_using_psp(CPUARMState *env)
830 {
831     /* Handler mode always uses the main stack; for thread mode
832      * the CONTROL.SPSEL bit determines the answer.
833      * Note that in v7M it is not possible to be in Handler mode with
834      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
835      */
836     return !arm_v7m_is_handler_mode(env) &&
837         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
838 }
839 
840 /**
841  * v7m_sp_limit: Return SP limit for current CPU state
842  * Return the SP limit value for the current CPU security state
843  * and stack pointer.
844  */
845 static inline uint32_t v7m_sp_limit(CPUARMState *env)
846 {
847     if (v7m_using_psp(env)) {
848         return env->v7m.psplim[env->v7m.secure];
849     } else {
850         return env->v7m.msplim[env->v7m.secure];
851     }
852 }
853 
854 /**
855  * v7m_cpacr_pass:
856  * Return true if the v7M CPACR permits access to the FPU for the specified
857  * security state and privilege level.
858  */
859 static inline bool v7m_cpacr_pass(CPUARMState *env,
860                                   bool is_secure, bool is_priv)
861 {
862     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
863     case 0:
864     case 2: /* UNPREDICTABLE: we treat like 0 */
865         return false;
866     case 1:
867         return is_priv;
868     case 3:
869         return true;
870     default:
871         g_assert_not_reached();
872     }
873 }
874 
875 /**
876  * aarch32_mode_name(): Return name of the AArch32 CPU mode
877  * @psr: Program Status Register indicating CPU mode
878  *
879  * Returns, for debug logging purposes, a printable representation
880  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
881  * the low bits of the specified PSR.
882  */
883 static inline const char *aarch32_mode_name(uint32_t psr)
884 {
885     static const char cpu_mode_names[16][4] = {
886         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
887         "???", "???", "hyp", "und", "???", "???", "???", "sys"
888     };
889 
890     return cpu_mode_names[psr & 0xf];
891 }
892 
893 /**
894  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
895  *
896  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
897  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
898  * Must be called with the iothread lock held.
899  */
900 void arm_cpu_update_virq(ARMCPU *cpu);
901 
902 /**
903  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
904  *
905  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
906  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
907  * Must be called with the iothread lock held.
908  */
909 void arm_cpu_update_vfiq(ARMCPU *cpu);
910 
911 /**
912  * arm_mmu_idx_el:
913  * @env: The cpu environment
914  * @el: The EL to use.
915  *
916  * Return the full ARMMMUIdx for the translation regime for EL.
917  */
918 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
919 
920 /**
921  * arm_mmu_idx:
922  * @env: The cpu environment
923  *
924  * Return the full ARMMMUIdx for the current translation regime.
925  */
926 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
927 
928 /**
929  * arm_stage1_mmu_idx:
930  * @env: The cpu environment
931  *
932  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
933  */
934 #ifdef CONFIG_USER_ONLY
935 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
936 {
937     return ARMMMUIdx_Stage1_E0;
938 }
939 #else
940 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
941 #endif
942 
943 /**
944  * arm_mmu_idx_is_stage1_of_2:
945  * @mmu_idx: The ARMMMUIdx to test
946  *
947  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
948  * first stage of a two stage regime.
949  */
950 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
951 {
952     switch (mmu_idx) {
953     case ARMMMUIdx_Stage1_E0:
954     case ARMMMUIdx_Stage1_E1:
955     case ARMMMUIdx_Stage1_E1_PAN:
956     case ARMMMUIdx_Stage1_SE0:
957     case ARMMMUIdx_Stage1_SE1:
958     case ARMMMUIdx_Stage1_SE1_PAN:
959         return true;
960     default:
961         return false;
962     }
963 }
964 
965 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
966                                                const ARMISARegisters *id)
967 {
968     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
969 
970     if ((features >> ARM_FEATURE_V4T) & 1) {
971         valid |= CPSR_T;
972     }
973     if ((features >> ARM_FEATURE_V5) & 1) {
974         valid |= CPSR_Q; /* V5TE in reality*/
975     }
976     if ((features >> ARM_FEATURE_V6) & 1) {
977         valid |= CPSR_E | CPSR_GE;
978     }
979     if ((features >> ARM_FEATURE_THUMB2) & 1) {
980         valid |= CPSR_IT;
981     }
982     if (isar_feature_aa32_jazelle(id)) {
983         valid |= CPSR_J;
984     }
985     if (isar_feature_aa32_pan(id)) {
986         valid |= CPSR_PAN;
987     }
988     if (isar_feature_aa32_dit(id)) {
989         valid |= CPSR_DIT;
990     }
991     if (isar_feature_aa32_ssbs(id)) {
992         valid |= CPSR_SSBS;
993     }
994 
995     return valid;
996 }
997 
998 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
999 {
1000     uint32_t valid;
1001 
1002     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1003     if (isar_feature_aa64_bti(id)) {
1004         valid |= PSTATE_BTYPE;
1005     }
1006     if (isar_feature_aa64_pan(id)) {
1007         valid |= PSTATE_PAN;
1008     }
1009     if (isar_feature_aa64_uao(id)) {
1010         valid |= PSTATE_UAO;
1011     }
1012     if (isar_feature_aa64_dit(id)) {
1013         valid |= PSTATE_DIT;
1014     }
1015     if (isar_feature_aa64_ssbs(id)) {
1016         valid |= PSTATE_SSBS;
1017     }
1018     if (isar_feature_aa64_mte(id)) {
1019         valid |= PSTATE_TCO;
1020     }
1021 
1022     return valid;
1023 }
1024 
1025 /*
1026  * Parameters of a given virtual address, as extracted from the
1027  * translation control register (TCR) for a given regime.
1028  */
1029 typedef struct ARMVAParameters {
1030     unsigned tsz    : 8;
1031     unsigned select : 1;
1032     bool tbi        : 1;
1033     bool epd        : 1;
1034     bool hpd        : 1;
1035     bool using16k   : 1;
1036     bool using64k   : 1;
1037 } ARMVAParameters;
1038 
1039 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1040                                    ARMMMUIdx mmu_idx, bool data);
1041 
1042 static inline int exception_target_el(CPUARMState *env)
1043 {
1044     int target_el = MAX(1, arm_current_el(env));
1045 
1046     /*
1047      * No such thing as secure EL1 if EL3 is aarch32,
1048      * so update the target EL to EL3 in this case.
1049      */
1050     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1051         target_el = 3;
1052     }
1053 
1054     return target_el;
1055 }
1056 
1057 /* Determine if allocation tags are available.  */
1058 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1059                                                  uint64_t sctlr)
1060 {
1061     if (el < 3
1062         && arm_feature(env, ARM_FEATURE_EL3)
1063         && !(env->cp15.scr_el3 & SCR_ATA)) {
1064         return false;
1065     }
1066     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1067         uint64_t hcr = arm_hcr_el2_eff(env);
1068         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1069             return false;
1070         }
1071     }
1072     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1073     return sctlr != 0;
1074 }
1075 
1076 #ifndef CONFIG_USER_ONLY
1077 
1078 /* Security attributes for an address, as returned by v8m_security_lookup. */
1079 typedef struct V8M_SAttributes {
1080     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1081     bool ns;
1082     bool nsc;
1083     uint8_t sregion;
1084     bool srvalid;
1085     uint8_t iregion;
1086     bool irvalid;
1087 } V8M_SAttributes;
1088 
1089 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1090                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1091                          V8M_SAttributes *sattrs);
1092 
1093 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1094                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1095                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1096                        int *prot, bool *is_subpage,
1097                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1098 
1099 /* Cacheability and shareability attributes for a memory access */
1100 typedef struct ARMCacheAttrs {
1101     unsigned int attrs:8; /* as in the MAIR register encoding */
1102     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1103 } ARMCacheAttrs;
1104 
1105 bool get_phys_addr(CPUARMState *env, target_ulong address,
1106                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1107                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1108                    target_ulong *page_size,
1109                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1110     __attribute__((nonnull));
1111 
1112 void arm_log_exception(int idx);
1113 
1114 #endif /* !CONFIG_USER_ONLY */
1115 
1116 /*
1117  * The log2 of the words in the tag block, for GMID_EL1.BS.
1118  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1119  */
1120 #define GMID_EL1_BS  6
1121 
1122 /* We associate one allocation tag per 16 bytes, the minimum.  */
1123 #define LOG2_TAG_GRANULE 4
1124 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1125 
1126 /*
1127  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1128  * the same simd_desc() encoding due to restrictions on size.
1129  * Use these instead.
1130  */
1131 FIELD(PREDDESC, OPRSZ, 0, 6)
1132 FIELD(PREDDESC, ESZ, 6, 2)
1133 FIELD(PREDDESC, DATA, 8, 24)
1134 
1135 /*
1136  * The SVE simd_data field, for memory ops, contains either
1137  * rd (5 bits) or a shift count (2 bits).
1138  */
1139 #define SVE_MTEDESC_SHIFT 5
1140 
1141 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1142 FIELD(MTEDESC, MIDX,  0, 4)
1143 FIELD(MTEDESC, TBI,   4, 2)
1144 FIELD(MTEDESC, TCMA,  6, 2)
1145 FIELD(MTEDESC, WRITE, 8, 1)
1146 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1147 
1148 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1149 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1150 
1151 static inline int allocation_tag_from_addr(uint64_t ptr)
1152 {
1153     return extract64(ptr, 56, 4);
1154 }
1155 
1156 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1157 {
1158     return deposit64(ptr, 56, 4, rtag);
1159 }
1160 
1161 /* Return true if tbi bits mean that the access is checked.  */
1162 static inline bool tbi_check(uint32_t desc, int bit55)
1163 {
1164     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1165 }
1166 
1167 /* Return true if tcma bits mean that the access is unchecked.  */
1168 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1169 {
1170     /*
1171      * We had extracted bit55 and ptr_tag for other reasons, so fold
1172      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1173      */
1174     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1175     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1176     return tcma && match;
1177 }
1178 
1179 /*
1180  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1181  * for the tag to be present in the FAR_ELx register.  But for user-only
1182  * mode, we do not have a TLB with which to implement this, so we must
1183  * remove the top byte.
1184  */
1185 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1186 {
1187 #ifdef CONFIG_USER_ONLY
1188     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1189     ptr &= sextract64(ptr, 0, 56);
1190 #endif
1191     return ptr;
1192 }
1193 
1194 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1195 {
1196 #ifdef CONFIG_USER_ONLY
1197     int64_t clean_ptr = sextract64(ptr, 0, 56);
1198     if (tbi_check(desc, clean_ptr < 0)) {
1199         ptr = clean_ptr;
1200     }
1201 #endif
1202     return ptr;
1203 }
1204 
1205 #endif
1206