xref: /openbmc/qemu/target/arm/internals.h (revision 10eb3721)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "syndrome.h"
32 #include "cpu-features.h"
33 
34 /* register banks for CPU modes */
35 #define BANK_USRSYS 0
36 #define BANK_SVC    1
37 #define BANK_ABT    2
38 #define BANK_UND    3
39 #define BANK_IRQ    4
40 #define BANK_FIQ    5
41 #define BANK_HYP    6
42 #define BANK_MON    7
43 
44 static inline int arm_env_mmu_index(CPUARMState *env)
45 {
46     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
47 }
48 
49 static inline bool excp_is_internal(int excp)
50 {
51     /* Return true if this exception number represents a QEMU-internal
52      * exception that will not be passed to the guest.
53      */
54     return excp == EXCP_INTERRUPT
55         || excp == EXCP_HLT
56         || excp == EXCP_DEBUG
57         || excp == EXCP_HALTED
58         || excp == EXCP_EXCEPTION_EXIT
59         || excp == EXCP_KERNEL_TRAP
60         || excp == EXCP_SEMIHOST;
61 }
62 
63 /*
64  * Default frequency for the generic timer, in Hz.
65  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
66  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
67  * which gives a 16ns tick period.
68  *
69  * We will use the back-compat value:
70  *  - for QEMU CPU types added before we standardized on 1GHz
71  *  - for versioned machine types with a version of 9.0 or earlier
72  * In any case, the machine model may override via the cntfrq property.
73  */
74 #define GTIMER_DEFAULT_HZ 1000000000
75 #define GTIMER_BACKCOMPAT_HZ 62500000
76 
77 /* Bit definitions for the v7M CONTROL register */
78 FIELD(V7M_CONTROL, NPRIV, 0, 1)
79 FIELD(V7M_CONTROL, SPSEL, 1, 1)
80 FIELD(V7M_CONTROL, FPCA, 2, 1)
81 FIELD(V7M_CONTROL, SFPA, 3, 1)
82 
83 /* Bit definitions for v7M exception return payload */
84 FIELD(V7M_EXCRET, ES, 0, 1)
85 FIELD(V7M_EXCRET, RES0, 1, 1)
86 FIELD(V7M_EXCRET, SPSEL, 2, 1)
87 FIELD(V7M_EXCRET, MODE, 3, 1)
88 FIELD(V7M_EXCRET, FTYPE, 4, 1)
89 FIELD(V7M_EXCRET, DCRS, 5, 1)
90 FIELD(V7M_EXCRET, S, 6, 1)
91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
92 
93 /* Minimum value which is a magic number for exception return */
94 #define EXC_RETURN_MIN_MAGIC 0xff000000
95 /* Minimum number which is a magic number for function or exception return
96  * when using v8M security extension
97  */
98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
99 
100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
101 FIELD(DBGWCR, E, 0, 1)
102 FIELD(DBGWCR, PAC, 1, 2)
103 FIELD(DBGWCR, LSC, 3, 2)
104 FIELD(DBGWCR, BAS, 5, 8)
105 FIELD(DBGWCR, HMC, 13, 1)
106 FIELD(DBGWCR, SSC, 14, 2)
107 FIELD(DBGWCR, LBN, 16, 4)
108 FIELD(DBGWCR, WT, 20, 1)
109 FIELD(DBGWCR, MASK, 24, 5)
110 FIELD(DBGWCR, SSCE, 29, 1)
111 
112 #define VTCR_NSW (1u << 29)
113 #define VTCR_NSA (1u << 30)
114 #define VSTCR_SW VTCR_NSW
115 #define VSTCR_SA VTCR_NSA
116 
117 /* Bit definitions for CPACR (AArch32 only) */
118 FIELD(CPACR, CP10, 20, 2)
119 FIELD(CPACR, CP11, 22, 2)
120 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
121 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
122 FIELD(CPACR, ASEDIS, 31, 1)
123 
124 /* Bit definitions for CPACR_EL1 (AArch64 only) */
125 FIELD(CPACR_EL1, ZEN, 16, 2)
126 FIELD(CPACR_EL1, FPEN, 20, 2)
127 FIELD(CPACR_EL1, SMEN, 24, 2)
128 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
129 
130 /* Bit definitions for HCPTR (AArch32 only) */
131 FIELD(HCPTR, TCP10, 10, 1)
132 FIELD(HCPTR, TCP11, 11, 1)
133 FIELD(HCPTR, TASE, 15, 1)
134 FIELD(HCPTR, TTA, 20, 1)
135 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
136 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
137 
138 /* Bit definitions for CPTR_EL2 (AArch64 only) */
139 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
140 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
141 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
142 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
143 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
144 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
145 FIELD(CPTR_EL2, TTA, 28, 1)
146 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
147 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
148 
149 /* Bit definitions for CPTR_EL3 (AArch64 only) */
150 FIELD(CPTR_EL3, EZ, 8, 1)
151 FIELD(CPTR_EL3, TFP, 10, 1)
152 FIELD(CPTR_EL3, ESM, 12, 1)
153 FIELD(CPTR_EL3, TTA, 20, 1)
154 FIELD(CPTR_EL3, TAM, 30, 1)
155 FIELD(CPTR_EL3, TCPAC, 31, 1)
156 
157 #define MDCR_MTPME    (1U << 28)
158 #define MDCR_TDCC     (1U << 27)
159 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
160 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
161 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
162 #define MDCR_EPMAD    (1U << 21)
163 #define MDCR_EDAD     (1U << 20)
164 #define MDCR_TTRF     (1U << 19)
165 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
166 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
167 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
168 #define MDCR_SDD      (1U << 16)
169 #define MDCR_SPD      (3U << 14)
170 #define MDCR_TDRA     (1U << 11)
171 #define MDCR_TDOSA    (1U << 10)
172 #define MDCR_TDA      (1U << 9)
173 #define MDCR_TDE      (1U << 8)
174 #define MDCR_HPME     (1U << 7)
175 #define MDCR_TPM      (1U << 6)
176 #define MDCR_TPMCR    (1U << 5)
177 #define MDCR_HPMN     (0x1fU)
178 
179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
181                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
182                          MDCR_STE | MDCR_SPME | MDCR_SPD)
183 
184 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
185 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
186 #define TTBCR_PD0    (1U << 4)
187 #define TTBCR_PD1    (1U << 5)
188 #define TTBCR_EPD0   (1U << 7)
189 #define TTBCR_IRGN0  (3U << 8)
190 #define TTBCR_ORGN0  (3U << 10)
191 #define TTBCR_SH0    (3U << 12)
192 #define TTBCR_T1SZ   (3U << 16)
193 #define TTBCR_A1     (1U << 22)
194 #define TTBCR_EPD1   (1U << 23)
195 #define TTBCR_IRGN1  (3U << 24)
196 #define TTBCR_ORGN1  (3U << 26)
197 #define TTBCR_SH1    (1U << 28)
198 #define TTBCR_EAE    (1U << 31)
199 
200 FIELD(VTCR, T0SZ, 0, 6)
201 FIELD(VTCR, SL0, 6, 2)
202 FIELD(VTCR, IRGN0, 8, 2)
203 FIELD(VTCR, ORGN0, 10, 2)
204 FIELD(VTCR, SH0, 12, 2)
205 FIELD(VTCR, TG0, 14, 2)
206 FIELD(VTCR, PS, 16, 3)
207 FIELD(VTCR, VS, 19, 1)
208 FIELD(VTCR, HA, 21, 1)
209 FIELD(VTCR, HD, 22, 1)
210 FIELD(VTCR, HWU59, 25, 1)
211 FIELD(VTCR, HWU60, 26, 1)
212 FIELD(VTCR, HWU61, 27, 1)
213 FIELD(VTCR, HWU62, 28, 1)
214 FIELD(VTCR, NSW, 29, 1)
215 FIELD(VTCR, NSA, 30, 1)
216 FIELD(VTCR, DS, 32, 1)
217 FIELD(VTCR, SL2, 33, 1)
218 
219 #define HCRX_ENAS0    (1ULL << 0)
220 #define HCRX_ENALS    (1ULL << 1)
221 #define HCRX_ENASR    (1ULL << 2)
222 #define HCRX_FNXS     (1ULL << 3)
223 #define HCRX_FGTNXS   (1ULL << 4)
224 #define HCRX_SMPME    (1ULL << 5)
225 #define HCRX_TALLINT  (1ULL << 6)
226 #define HCRX_VINMI    (1ULL << 7)
227 #define HCRX_VFNMI    (1ULL << 8)
228 #define HCRX_CMOW     (1ULL << 9)
229 #define HCRX_MCE2     (1ULL << 10)
230 #define HCRX_MSCEN    (1ULL << 11)
231 
232 #define HPFAR_NS      (1ULL << 63)
233 
234 #define HSTR_TTEE (1 << 16)
235 #define HSTR_TJDBX (1 << 17)
236 
237 /*
238  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
239  * have different bit definitions, and EL1PCTEN might be
240  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
241  * disambiguate if necessary.
242  */
243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
247 FIELD(CNTHCTL, EVNTEN, 2, 1)
248 FIELD(CNTHCTL, EVNTDIR, 3, 1)
249 FIELD(CNTHCTL, EVNTI, 4, 4)
250 FIELD(CNTHCTL, EL0VTEN, 8, 1)
251 FIELD(CNTHCTL, EL0PTEN, 9, 1)
252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
253 FIELD(CNTHCTL, EL1PTEN, 11, 1)
254 FIELD(CNTHCTL, ECV, 12, 1)
255 FIELD(CNTHCTL, EL1TVT, 13, 1)
256 FIELD(CNTHCTL, EL1TVCT, 14, 1)
257 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
258 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
259 FIELD(CNTHCTL, EVNTIS, 17, 1)
260 FIELD(CNTHCTL, CNTVMASK, 18, 1)
261 FIELD(CNTHCTL, CNTPMASK, 19, 1)
262 
263 /* We use a few fake FSR values for internal purposes in M profile.
264  * M profile cores don't have A/R format FSRs, but currently our
265  * get_phys_addr() code assumes A/R profile and reports failures via
266  * an A/R format FSR value. We then translate that into the proper
267  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
268  * Mostly the FSR values we use for this are those defined for v7PMSA,
269  * since we share some of that codepath. A few kinds of fault are
270  * only for M profile and have no A/R equivalent, though, so we have
271  * to pick a value from the reserved range (which we never otherwise
272  * generate) to use for these.
273  * These values will never be visible to the guest.
274  */
275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
277 
278 /**
279  * arm_aa32_secure_pl1_0(): Return true if in Secure PL1&0 regime
280  *
281  * Return true if the CPU is in the Secure PL1&0 translation regime.
282  * This requires that EL3 exists and is AArch32 and we are currently
283  * Secure. If this is the case then the ARMMMUIdx_E10* apply and
284  * mean we are in EL3, not EL1.
285  */
286 static inline bool arm_aa32_secure_pl1_0(CPUARMState *env)
287 {
288     return arm_feature(env, ARM_FEATURE_EL3) &&
289         !arm_el_is_aa64(env, 3) && arm_is_secure(env);
290 }
291 
292 /**
293  * raise_exception: Raise the specified exception.
294  * Raise a guest exception with the specified value, syndrome register
295  * and target exception level. This should be called from helper functions,
296  * and never returns because we will longjump back up to the CPU main loop.
297  */
298 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
299                                 uint32_t syndrome, uint32_t target_el);
300 
301 /*
302  * Similarly, but also use unwinding to restore cpu state.
303  */
304 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
305                                       uint32_t syndrome, uint32_t target_el,
306                                       uintptr_t ra);
307 
308 /*
309  * For AArch64, map a given EL to an index in the banked_spsr array.
310  * Note that this mapping and the AArch32 mapping defined in bank_number()
311  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
312  * mandated mapping between each other.
313  */
314 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
315 {
316     static const unsigned int map[4] = {
317         [1] = BANK_SVC, /* EL1.  */
318         [2] = BANK_HYP, /* EL2.  */
319         [3] = BANK_MON, /* EL3.  */
320     };
321     assert(el >= 1 && el <= 3);
322     return map[el];
323 }
324 
325 /* Map CPU modes onto saved register banks.  */
326 static inline int bank_number(int mode)
327 {
328     switch (mode) {
329     case ARM_CPU_MODE_USR:
330     case ARM_CPU_MODE_SYS:
331         return BANK_USRSYS;
332     case ARM_CPU_MODE_SVC:
333         return BANK_SVC;
334     case ARM_CPU_MODE_ABT:
335         return BANK_ABT;
336     case ARM_CPU_MODE_UND:
337         return BANK_UND;
338     case ARM_CPU_MODE_IRQ:
339         return BANK_IRQ;
340     case ARM_CPU_MODE_FIQ:
341         return BANK_FIQ;
342     case ARM_CPU_MODE_HYP:
343         return BANK_HYP;
344     case ARM_CPU_MODE_MON:
345         return BANK_MON;
346     }
347     g_assert_not_reached();
348 }
349 
350 /**
351  * r14_bank_number: Map CPU mode onto register bank for r14
352  *
353  * Given an AArch32 CPU mode, return the index into the saved register
354  * banks to use for the R14 (LR) in that mode. This is the same as
355  * bank_number(), except for the special case of Hyp mode, where
356  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
357  * This should be used as the index into env->banked_r14[], and
358  * bank_number() used for the index into env->banked_r13[] and
359  * env->banked_spsr[].
360  */
361 static inline int r14_bank_number(int mode)
362 {
363     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
364 }
365 
366 void arm_cpu_register(const ARMCPUInfo *info);
367 void aarch64_cpu_register(const ARMCPUInfo *info);
368 
369 void register_cp_regs_for_features(ARMCPU *cpu);
370 void init_cpreg_list(ARMCPU *cpu);
371 
372 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
373 void arm_translate_init(void);
374 
375 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
376 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
377                                        GPtrArray *, GPtrArray *);
378 
379 void arm_restore_state_to_opc(CPUState *cs,
380                               const TranslationBlock *tb,
381                               const uint64_t *data);
382 
383 #ifdef CONFIG_TCG
384 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
385 
386 /* Our implementation of TCGCPUOps::cpu_exec_halt */
387 bool arm_cpu_exec_halt(CPUState *cs);
388 #endif /* CONFIG_TCG */
389 
390 typedef enum ARMFPRounding {
391     FPROUNDING_TIEEVEN,
392     FPROUNDING_POSINF,
393     FPROUNDING_NEGINF,
394     FPROUNDING_ZERO,
395     FPROUNDING_TIEAWAY,
396     FPROUNDING_ODD
397 } ARMFPRounding;
398 
399 extern const FloatRoundMode arm_rmode_to_sf_map[6];
400 
401 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
402 {
403     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
404     return arm_rmode_to_sf_map[rmode];
405 }
406 
407 static inline void aarch64_save_sp(CPUARMState *env, int el)
408 {
409     if (env->pstate & PSTATE_SP) {
410         env->sp_el[el] = env->xregs[31];
411     } else {
412         env->sp_el[0] = env->xregs[31];
413     }
414 }
415 
416 static inline void aarch64_restore_sp(CPUARMState *env, int el)
417 {
418     if (env->pstate & PSTATE_SP) {
419         env->xregs[31] = env->sp_el[el];
420     } else {
421         env->xregs[31] = env->sp_el[0];
422     }
423 }
424 
425 static inline void update_spsel(CPUARMState *env, uint32_t imm)
426 {
427     unsigned int cur_el = arm_current_el(env);
428     /* Update PSTATE SPSel bit; this requires us to update the
429      * working stack pointer in xregs[31].
430      */
431     if (!((imm ^ env->pstate) & PSTATE_SP)) {
432         return;
433     }
434     aarch64_save_sp(env, cur_el);
435     env->pstate = deposit32(env->pstate, 0, 1, imm);
436 
437     /* We rely on illegal updates to SPsel from EL0 to get trapped
438      * at translation time.
439      */
440     assert(cur_el >= 1 && cur_el <= 3);
441     aarch64_restore_sp(env, cur_el);
442 }
443 
444 /*
445  * arm_pamax
446  * @cpu: ARMCPU
447  *
448  * Returns the implementation defined bit-width of physical addresses.
449  * The ARMv8 reference manuals refer to this as PAMax().
450  */
451 unsigned int arm_pamax(ARMCPU *cpu);
452 
453 /* Return true if extended addresses are enabled.
454  * This is always the case if our translation regime is 64 bit,
455  * but depends on TTBCR.EAE for 32 bit.
456  */
457 static inline bool extended_addresses_enabled(CPUARMState *env)
458 {
459     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
460     if (arm_feature(env, ARM_FEATURE_PMSA) &&
461         arm_feature(env, ARM_FEATURE_V8)) {
462         return true;
463     }
464     return arm_el_is_aa64(env, 1) ||
465            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
466 }
467 
468 /* Update a QEMU watchpoint based on the information the guest has set in the
469  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
470  */
471 void hw_watchpoint_update(ARMCPU *cpu, int n);
472 /* Update the QEMU watchpoints for every guest watchpoint. This does a
473  * complete delete-and-reinstate of the QEMU watchpoint list and so is
474  * suitable for use after migration or on reset.
475  */
476 void hw_watchpoint_update_all(ARMCPU *cpu);
477 /* Update a QEMU breakpoint based on the information the guest has set in the
478  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
479  */
480 void hw_breakpoint_update(ARMCPU *cpu, int n);
481 /* Update the QEMU breakpoints for every guest breakpoint. This does a
482  * complete delete-and-reinstate of the QEMU breakpoint list and so is
483  * suitable for use after migration or on reset.
484  */
485 void hw_breakpoint_update_all(ARMCPU *cpu);
486 
487 /* Callback function for checking if a breakpoint should trigger. */
488 bool arm_debug_check_breakpoint(CPUState *cs);
489 
490 /* Callback function for checking if a watchpoint should trigger. */
491 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
492 
493 /* Adjust addresses (in BE32 mode) before testing against watchpoint
494  * addresses.
495  */
496 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
497 
498 /* Callback function for when a watchpoint or breakpoint triggers. */
499 void arm_debug_excp_handler(CPUState *cs);
500 
501 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
502 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
503 {
504     return false;
505 }
506 static inline void arm_handle_psci_call(ARMCPU *cpu)
507 {
508     g_assert_not_reached();
509 }
510 #else
511 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
512 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
513 /* Actually handle a PSCI call */
514 void arm_handle_psci_call(ARMCPU *cpu);
515 #endif
516 
517 /**
518  * arm_clear_exclusive: clear the exclusive monitor
519  * @env: CPU env
520  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
521  */
522 static inline void arm_clear_exclusive(CPUARMState *env)
523 {
524     env->exclusive_addr = -1;
525 }
526 
527 /**
528  * ARMFaultType: type of an ARM MMU fault
529  * This corresponds to the v8A pseudocode's Fault enumeration,
530  * with extensions for QEMU internal conditions.
531  */
532 typedef enum ARMFaultType {
533     ARMFault_None,
534     ARMFault_AccessFlag,
535     ARMFault_Alignment,
536     ARMFault_Background,
537     ARMFault_Domain,
538     ARMFault_Permission,
539     ARMFault_Translation,
540     ARMFault_AddressSize,
541     ARMFault_SyncExternal,
542     ARMFault_SyncExternalOnWalk,
543     ARMFault_SyncParity,
544     ARMFault_SyncParityOnWalk,
545     ARMFault_AsyncParity,
546     ARMFault_AsyncExternal,
547     ARMFault_Debug,
548     ARMFault_TLBConflict,
549     ARMFault_UnsuppAtomicUpdate,
550     ARMFault_Lockdown,
551     ARMFault_Exclusive,
552     ARMFault_ICacheMaint,
553     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
554     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
555     ARMFault_GPCFOnWalk,
556     ARMFault_GPCFOnOutput,
557 } ARMFaultType;
558 
559 typedef enum ARMGPCF {
560     GPCF_None,
561     GPCF_AddressSize,
562     GPCF_Walk,
563     GPCF_EABT,
564     GPCF_Fail,
565 } ARMGPCF;
566 
567 /**
568  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
569  * @type: Type of fault
570  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
571  * @level: Table walk level (for translation, access flag and permission faults)
572  * @domain: Domain of the fault address (for non-LPAE CPUs only)
573  * @s2addr: Address that caused a fault at stage 2
574  * @paddr: physical address that caused a fault for gpc
575  * @paddr_space: physical address space that caused a fault for gpc
576  * @stage2: True if we faulted at stage 2
577  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
578  * @s1ns: True if we faulted on a non-secure IPA while in secure state
579  * @ea: True if we should set the EA (external abort type) bit in syndrome
580  */
581 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
582 struct ARMMMUFaultInfo {
583     ARMFaultType type;
584     ARMGPCF gpcf;
585     target_ulong s2addr;
586     target_ulong paddr;
587     ARMSecuritySpace paddr_space;
588     int level;
589     int domain;
590     bool stage2;
591     bool s1ptw;
592     bool s1ns;
593     bool ea;
594 };
595 
596 /**
597  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
598  * Compare pseudocode EncodeSDFSC(), though unlike that function
599  * we set up a whole FSR-format code including domain field and
600  * putting the high bit of the FSC into bit 10.
601  */
602 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
603 {
604     uint32_t fsc;
605 
606     switch (fi->type) {
607     case ARMFault_None:
608         return 0;
609     case ARMFault_AccessFlag:
610         fsc = fi->level == 1 ? 0x3 : 0x6;
611         break;
612     case ARMFault_Alignment:
613         fsc = 0x1;
614         break;
615     case ARMFault_Permission:
616         fsc = fi->level == 1 ? 0xd : 0xf;
617         break;
618     case ARMFault_Domain:
619         fsc = fi->level == 1 ? 0x9 : 0xb;
620         break;
621     case ARMFault_Translation:
622         fsc = fi->level == 1 ? 0x5 : 0x7;
623         break;
624     case ARMFault_SyncExternal:
625         fsc = 0x8 | (fi->ea << 12);
626         break;
627     case ARMFault_SyncExternalOnWalk:
628         fsc = fi->level == 1 ? 0xc : 0xe;
629         fsc |= (fi->ea << 12);
630         break;
631     case ARMFault_SyncParity:
632         fsc = 0x409;
633         break;
634     case ARMFault_SyncParityOnWalk:
635         fsc = fi->level == 1 ? 0x40c : 0x40e;
636         break;
637     case ARMFault_AsyncParity:
638         fsc = 0x408;
639         break;
640     case ARMFault_AsyncExternal:
641         fsc = 0x406 | (fi->ea << 12);
642         break;
643     case ARMFault_Debug:
644         fsc = 0x2;
645         break;
646     case ARMFault_TLBConflict:
647         fsc = 0x400;
648         break;
649     case ARMFault_Lockdown:
650         fsc = 0x404;
651         break;
652     case ARMFault_Exclusive:
653         fsc = 0x405;
654         break;
655     case ARMFault_ICacheMaint:
656         fsc = 0x4;
657         break;
658     case ARMFault_Background:
659         fsc = 0x0;
660         break;
661     case ARMFault_QEMU_NSCExec:
662         fsc = M_FAKE_FSR_NSC_EXEC;
663         break;
664     case ARMFault_QEMU_SFault:
665         fsc = M_FAKE_FSR_SFAULT;
666         break;
667     default:
668         /* Other faults can't occur in a context that requires a
669          * short-format status code.
670          */
671         g_assert_not_reached();
672     }
673 
674     fsc |= (fi->domain << 4);
675     return fsc;
676 }
677 
678 /**
679  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
680  * Compare pseudocode EncodeLDFSC(), though unlike that function
681  * we fill in also the LPAE bit 9 of a DFSR format.
682  */
683 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
684 {
685     uint32_t fsc;
686 
687     switch (fi->type) {
688     case ARMFault_None:
689         return 0;
690     case ARMFault_AddressSize:
691         assert(fi->level >= -1 && fi->level <= 3);
692         if (fi->level < 0) {
693             fsc = 0b101001;
694         } else {
695             fsc = fi->level;
696         }
697         break;
698     case ARMFault_AccessFlag:
699         assert(fi->level >= 0 && fi->level <= 3);
700         fsc = 0b001000 | fi->level;
701         break;
702     case ARMFault_Permission:
703         assert(fi->level >= 0 && fi->level <= 3);
704         fsc = 0b001100 | fi->level;
705         break;
706     case ARMFault_Translation:
707         assert(fi->level >= -1 && fi->level <= 3);
708         if (fi->level < 0) {
709             fsc = 0b101011;
710         } else {
711             fsc = 0b000100 | fi->level;
712         }
713         break;
714     case ARMFault_SyncExternal:
715         fsc = 0x10 | (fi->ea << 12);
716         break;
717     case ARMFault_SyncExternalOnWalk:
718         assert(fi->level >= -1 && fi->level <= 3);
719         if (fi->level < 0) {
720             fsc = 0b010011;
721         } else {
722             fsc = 0b010100 | fi->level;
723         }
724         fsc |= fi->ea << 12;
725         break;
726     case ARMFault_SyncParity:
727         fsc = 0x18;
728         break;
729     case ARMFault_SyncParityOnWalk:
730         assert(fi->level >= -1 && fi->level <= 3);
731         if (fi->level < 0) {
732             fsc = 0b011011;
733         } else {
734             fsc = 0b011100 | fi->level;
735         }
736         break;
737     case ARMFault_AsyncParity:
738         fsc = 0x19;
739         break;
740     case ARMFault_AsyncExternal:
741         fsc = 0x11 | (fi->ea << 12);
742         break;
743     case ARMFault_Alignment:
744         fsc = 0x21;
745         break;
746     case ARMFault_Debug:
747         fsc = 0x22;
748         break;
749     case ARMFault_TLBConflict:
750         fsc = 0x30;
751         break;
752     case ARMFault_UnsuppAtomicUpdate:
753         fsc = 0x31;
754         break;
755     case ARMFault_Lockdown:
756         fsc = 0x34;
757         break;
758     case ARMFault_Exclusive:
759         fsc = 0x35;
760         break;
761     case ARMFault_GPCFOnWalk:
762         assert(fi->level >= -1 && fi->level <= 3);
763         if (fi->level < 0) {
764             fsc = 0b100011;
765         } else {
766             fsc = 0b100100 | fi->level;
767         }
768         break;
769     case ARMFault_GPCFOnOutput:
770         fsc = 0b101000;
771         break;
772     default:
773         /* Other faults can't occur in a context that requires a
774          * long-format status code.
775          */
776         g_assert_not_reached();
777     }
778 
779     fsc |= 1 << 9;
780     return fsc;
781 }
782 
783 static inline bool arm_extabort_type(MemTxResult result)
784 {
785     /* The EA bit in syndromes and fault status registers is an
786      * IMPDEF classification of external aborts. ARM implementations
787      * usually use this to indicate AXI bus Decode error (0) or
788      * Slave error (1); in QEMU we follow that.
789      */
790     return result != MEMTX_DECODE_ERROR;
791 }
792 
793 #ifdef CONFIG_USER_ONLY
794 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
795                             MMUAccessType access_type,
796                             bool maperr, uintptr_t ra);
797 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
798                            MMUAccessType access_type, uintptr_t ra);
799 #else
800 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
801                       MMUAccessType access_type, int mmu_idx,
802                       bool probe, uintptr_t retaddr);
803 #endif
804 
805 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
806 {
807     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
808 }
809 
810 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
811 {
812     if (arm_feature(env, ARM_FEATURE_M)) {
813         return mmu_idx | ARM_MMU_IDX_M;
814     } else {
815         return mmu_idx | ARM_MMU_IDX_A;
816     }
817 }
818 
819 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
820 {
821     /* AArch64 is always a-profile. */
822     return mmu_idx | ARM_MMU_IDX_A;
823 }
824 
825 /**
826  * Return the exception level we're running at if our current MMU index
827  * is @mmu_idx. @s_pl1_0 should be true if this is the AArch32
828  * Secure PL1&0 translation regime.
829  */
830 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0);
831 
832 /* Return the MMU index for a v7M CPU in the specified security state */
833 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
834 
835 /*
836  * Return true if the stage 1 translation regime is using LPAE
837  * format page tables
838  */
839 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
840 
841 /* Raise a data fault alignment exception for the specified virtual address */
842 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
843                                             MMUAccessType access_type,
844                                             int mmu_idx, uintptr_t retaddr);
845 
846 #ifndef CONFIG_USER_ONLY
847 /* arm_cpu_do_transaction_failed: handle a memory system error response
848  * (eg "no device/memory present at address") by raising an external abort
849  * exception
850  */
851 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
852                                    vaddr addr, unsigned size,
853                                    MMUAccessType access_type,
854                                    int mmu_idx, MemTxAttrs attrs,
855                                    MemTxResult response, uintptr_t retaddr);
856 #endif
857 
858 /* Call any registered EL change hooks */
859 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
860 {
861     ARMELChangeHook *hook, *next;
862     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
863         hook->hook(cpu, hook->opaque);
864     }
865 }
866 static inline void arm_call_el_change_hook(ARMCPU *cpu)
867 {
868     ARMELChangeHook *hook, *next;
869     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
870         hook->hook(cpu, hook->opaque);
871     }
872 }
873 
874 /* Return true if this address translation regime has two ranges.  */
875 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
876 {
877     switch (mmu_idx) {
878     case ARMMMUIdx_Stage1_E0:
879     case ARMMMUIdx_Stage1_E1:
880     case ARMMMUIdx_Stage1_E1_PAN:
881     case ARMMMUIdx_E10_0:
882     case ARMMMUIdx_E10_1:
883     case ARMMMUIdx_E10_1_PAN:
884     case ARMMMUIdx_E20_0:
885     case ARMMMUIdx_E20_2:
886     case ARMMMUIdx_E20_2_PAN:
887         return true;
888     default:
889         return false;
890     }
891 }
892 
893 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
894 {
895     switch (mmu_idx) {
896     case ARMMMUIdx_Stage1_E1_PAN:
897     case ARMMMUIdx_E10_1_PAN:
898     case ARMMMUIdx_E20_2_PAN:
899         return true;
900     default:
901         return false;
902     }
903 }
904 
905 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
906 {
907     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
908 }
909 
910 /* Return the exception level which controls this address translation regime */
911 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
912 {
913     switch (mmu_idx) {
914     case ARMMMUIdx_E20_0:
915     case ARMMMUIdx_E20_2:
916     case ARMMMUIdx_E20_2_PAN:
917     case ARMMMUIdx_Stage2:
918     case ARMMMUIdx_Stage2_S:
919     case ARMMMUIdx_E2:
920         return 2;
921     case ARMMMUIdx_E3:
922         return 3;
923     case ARMMMUIdx_E10_0:
924     case ARMMMUIdx_Stage1_E0:
925     case ARMMMUIdx_E10_1:
926     case ARMMMUIdx_E10_1_PAN:
927     case ARMMMUIdx_Stage1_E1:
928     case ARMMMUIdx_Stage1_E1_PAN:
929         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
930     case ARMMMUIdx_MPrivNegPri:
931     case ARMMMUIdx_MUserNegPri:
932     case ARMMMUIdx_MPriv:
933     case ARMMMUIdx_MUser:
934     case ARMMMUIdx_MSPrivNegPri:
935     case ARMMMUIdx_MSUserNegPri:
936     case ARMMMUIdx_MSPriv:
937     case ARMMMUIdx_MSUser:
938         return 1;
939     default:
940         g_assert_not_reached();
941     }
942 }
943 
944 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
945 {
946     switch (mmu_idx) {
947     case ARMMMUIdx_E10_0:
948     case ARMMMUIdx_E20_0:
949     case ARMMMUIdx_Stage1_E0:
950     case ARMMMUIdx_MUser:
951     case ARMMMUIdx_MSUser:
952     case ARMMMUIdx_MUserNegPri:
953     case ARMMMUIdx_MSUserNegPri:
954         return true;
955     default:
956         return false;
957     }
958 }
959 
960 /* Return the SCTLR value which controls this address translation regime */
961 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
962 {
963     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
964 }
965 
966 /*
967  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
968  * and the Non-Secure stage 2 translation regimes (and hence which are
969  * not present in VSTCR_EL2).
970  */
971 #define VTCR_SHARED_FIELD_MASK \
972     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
973      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
974      R_VTCR_DS_MASK)
975 
976 /* Return the value of the TCR controlling this translation regime */
977 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
978 {
979     if (mmu_idx == ARMMMUIdx_Stage2) {
980         return env->cp15.vtcr_el2;
981     }
982     if (mmu_idx == ARMMMUIdx_Stage2_S) {
983         /*
984          * Secure stage 2 shares fields from VTCR_EL2. We merge those
985          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
986          * value so the callers don't need to special case this.
987          *
988          * If a future architecture change defines bits in VSTCR_EL2 that
989          * overlap with these VTCR_EL2 fields we may need to revisit this.
990          */
991         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
992         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
993         return v;
994     }
995     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
996 }
997 
998 /* Return true if the translation regime is using LPAE format page tables */
999 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
1000 {
1001     int el = regime_el(env, mmu_idx);
1002     if (el == 2 || arm_el_is_aa64(env, el)) {
1003         return true;
1004     }
1005     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1006         arm_feature(env, ARM_FEATURE_V8)) {
1007         return true;
1008     }
1009     if (arm_feature(env, ARM_FEATURE_LPAE)
1010         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
1011         return true;
1012     }
1013     return false;
1014 }
1015 
1016 /**
1017  * arm_num_brps: Return number of implemented breakpoints.
1018  * Note that the ID register BRPS field is "number of bps - 1",
1019  * and we return the actual number of breakpoints.
1020  */
1021 static inline int arm_num_brps(ARMCPU *cpu)
1022 {
1023     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1024         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1025     } else {
1026         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1027     }
1028 }
1029 
1030 /**
1031  * arm_num_wrps: Return number of implemented watchpoints.
1032  * Note that the ID register WRPS field is "number of wps - 1",
1033  * and we return the actual number of watchpoints.
1034  */
1035 static inline int arm_num_wrps(ARMCPU *cpu)
1036 {
1037     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1038         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1039     } else {
1040         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1041     }
1042 }
1043 
1044 /**
1045  * arm_num_ctx_cmps: Return number of implemented context comparators.
1046  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1047  * and we return the actual number of comparators.
1048  */
1049 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1050 {
1051     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1052         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1053     } else {
1054         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1055     }
1056 }
1057 
1058 /**
1059  * v7m_using_psp: Return true if using process stack pointer
1060  * Return true if the CPU is currently using the process stack
1061  * pointer, or false if it is using the main stack pointer.
1062  */
1063 static inline bool v7m_using_psp(CPUARMState *env)
1064 {
1065     /* Handler mode always uses the main stack; for thread mode
1066      * the CONTROL.SPSEL bit determines the answer.
1067      * Note that in v7M it is not possible to be in Handler mode with
1068      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1069      */
1070     return !arm_v7m_is_handler_mode(env) &&
1071         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1072 }
1073 
1074 /**
1075  * v7m_sp_limit: Return SP limit for current CPU state
1076  * Return the SP limit value for the current CPU security state
1077  * and stack pointer.
1078  */
1079 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1080 {
1081     if (v7m_using_psp(env)) {
1082         return env->v7m.psplim[env->v7m.secure];
1083     } else {
1084         return env->v7m.msplim[env->v7m.secure];
1085     }
1086 }
1087 
1088 /**
1089  * v7m_cpacr_pass:
1090  * Return true if the v7M CPACR permits access to the FPU for the specified
1091  * security state and privilege level.
1092  */
1093 static inline bool v7m_cpacr_pass(CPUARMState *env,
1094                                   bool is_secure, bool is_priv)
1095 {
1096     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1097     case 0:
1098     case 2: /* UNPREDICTABLE: we treat like 0 */
1099         return false;
1100     case 1:
1101         return is_priv;
1102     case 3:
1103         return true;
1104     default:
1105         g_assert_not_reached();
1106     }
1107 }
1108 
1109 /**
1110  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1111  * @psr: Program Status Register indicating CPU mode
1112  *
1113  * Returns, for debug logging purposes, a printable representation
1114  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1115  * the low bits of the specified PSR.
1116  */
1117 static inline const char *aarch32_mode_name(uint32_t psr)
1118 {
1119     static const char cpu_mode_names[16][4] = {
1120         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1121         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1122     };
1123 
1124     return cpu_mode_names[psr & 0xf];
1125 }
1126 
1127 /**
1128  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1129  *
1130  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1131  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1132  * Must be called with the BQL held.
1133  */
1134 void arm_cpu_update_virq(ARMCPU *cpu);
1135 
1136 /**
1137  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1138  *
1139  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1140  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1141  * Must be called with the BQL held.
1142  */
1143 void arm_cpu_update_vfiq(ARMCPU *cpu);
1144 
1145 /**
1146  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1147  *
1148  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1149  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1150  * Must be called with the BQL held.
1151  */
1152 void arm_cpu_update_vinmi(ARMCPU *cpu);
1153 
1154 /**
1155  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1156  *
1157  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1158  * a change to the HCRX_EL2.VFNMI.
1159  * Must be called with the BQL held.
1160  */
1161 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1162 
1163 /**
1164  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1165  *
1166  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1167  * following a change to the HCR_EL2.VSE bit.
1168  */
1169 void arm_cpu_update_vserr(ARMCPU *cpu);
1170 
1171 /**
1172  * arm_mmu_idx_el:
1173  * @env: The cpu environment
1174  * @el: The EL to use.
1175  *
1176  * Return the full ARMMMUIdx for the translation regime for EL.
1177  */
1178 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1179 
1180 /**
1181  * arm_mmu_idx:
1182  * @env: The cpu environment
1183  *
1184  * Return the full ARMMMUIdx for the current translation regime.
1185  */
1186 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1187 
1188 /**
1189  * arm_stage1_mmu_idx:
1190  * @env: The cpu environment
1191  *
1192  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1193  */
1194 #ifdef CONFIG_USER_ONLY
1195 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1196 {
1197     return ARMMMUIdx_Stage1_E0;
1198 }
1199 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1200 {
1201     return ARMMMUIdx_Stage1_E0;
1202 }
1203 #else
1204 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1205 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1206 #endif
1207 
1208 /**
1209  * arm_mmu_idx_is_stage1_of_2:
1210  * @mmu_idx: The ARMMMUIdx to test
1211  *
1212  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1213  * first stage of a two stage regime.
1214  */
1215 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1216 {
1217     switch (mmu_idx) {
1218     case ARMMMUIdx_Stage1_E0:
1219     case ARMMMUIdx_Stage1_E1:
1220     case ARMMMUIdx_Stage1_E1_PAN:
1221         return true;
1222     default:
1223         return false;
1224     }
1225 }
1226 
1227 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1228                                                const ARMISARegisters *id)
1229 {
1230     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1231 
1232     if ((features >> ARM_FEATURE_V4T) & 1) {
1233         valid |= CPSR_T;
1234     }
1235     if ((features >> ARM_FEATURE_V5) & 1) {
1236         valid |= CPSR_Q; /* V5TE in reality*/
1237     }
1238     if ((features >> ARM_FEATURE_V6) & 1) {
1239         valid |= CPSR_E | CPSR_GE;
1240     }
1241     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1242         valid |= CPSR_IT;
1243     }
1244     if (isar_feature_aa32_jazelle(id)) {
1245         valid |= CPSR_J;
1246     }
1247     if (isar_feature_aa32_pan(id)) {
1248         valid |= CPSR_PAN;
1249     }
1250     if (isar_feature_aa32_dit(id)) {
1251         valid |= CPSR_DIT;
1252     }
1253     if (isar_feature_aa32_ssbs(id)) {
1254         valid |= CPSR_SSBS;
1255     }
1256 
1257     return valid;
1258 }
1259 
1260 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1261 {
1262     uint32_t valid;
1263 
1264     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1265     if (isar_feature_aa64_bti(id)) {
1266         valid |= PSTATE_BTYPE;
1267     }
1268     if (isar_feature_aa64_pan(id)) {
1269         valid |= PSTATE_PAN;
1270     }
1271     if (isar_feature_aa64_uao(id)) {
1272         valid |= PSTATE_UAO;
1273     }
1274     if (isar_feature_aa64_dit(id)) {
1275         valid |= PSTATE_DIT;
1276     }
1277     if (isar_feature_aa64_ssbs(id)) {
1278         valid |= PSTATE_SSBS;
1279     }
1280     if (isar_feature_aa64_mte(id)) {
1281         valid |= PSTATE_TCO;
1282     }
1283     if (isar_feature_aa64_nmi(id)) {
1284         valid |= PSTATE_ALLINT;
1285     }
1286 
1287     return valid;
1288 }
1289 
1290 /* Granule size (i.e. page size) */
1291 typedef enum ARMGranuleSize {
1292     /* Same order as TG0 encoding */
1293     Gran4K,
1294     Gran64K,
1295     Gran16K,
1296     GranInvalid,
1297 } ARMGranuleSize;
1298 
1299 /**
1300  * arm_granule_bits: Return address size of the granule in bits
1301  *
1302  * Return the address size of the granule in bits. This corresponds
1303  * to the pseudocode TGxGranuleBits().
1304  */
1305 static inline int arm_granule_bits(ARMGranuleSize gran)
1306 {
1307     switch (gran) {
1308     case Gran64K:
1309         return 16;
1310     case Gran16K:
1311         return 14;
1312     case Gran4K:
1313         return 12;
1314     default:
1315         g_assert_not_reached();
1316     }
1317 }
1318 
1319 /*
1320  * Parameters of a given virtual address, as extracted from the
1321  * translation control register (TCR) for a given regime.
1322  */
1323 typedef struct ARMVAParameters {
1324     unsigned tsz    : 8;
1325     unsigned ps     : 3;
1326     unsigned sh     : 2;
1327     unsigned select : 1;
1328     bool tbi        : 1;
1329     bool epd        : 1;
1330     bool hpd        : 1;
1331     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1332     bool ds         : 1;
1333     bool ha         : 1;
1334     bool hd         : 1;
1335     ARMGranuleSize gran : 2;
1336 } ARMVAParameters;
1337 
1338 /**
1339  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1340  * @env: CPU
1341  * @va: virtual address to look up
1342  * @mmu_idx: determines translation regime to use
1343  * @data: true if this is a data access
1344  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1345  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1346  */
1347 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1348                                    ARMMMUIdx mmu_idx, bool data,
1349                                    bool el1_is_aa32);
1350 
1351 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1352 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1353 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1354 
1355 /* Determine if allocation tags are available.  */
1356 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1357                                                  uint64_t sctlr)
1358 {
1359     if (el < 3
1360         && arm_feature(env, ARM_FEATURE_EL3)
1361         && !(env->cp15.scr_el3 & SCR_ATA)) {
1362         return false;
1363     }
1364     if (el < 2 && arm_is_el2_enabled(env)) {
1365         uint64_t hcr = arm_hcr_el2_eff(env);
1366         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1367             return false;
1368         }
1369     }
1370     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1371     return sctlr != 0;
1372 }
1373 
1374 #ifndef CONFIG_USER_ONLY
1375 
1376 /* Security attributes for an address, as returned by v8m_security_lookup. */
1377 typedef struct V8M_SAttributes {
1378     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1379     bool ns;
1380     bool nsc;
1381     uint8_t sregion;
1382     bool srvalid;
1383     uint8_t iregion;
1384     bool irvalid;
1385 } V8M_SAttributes;
1386 
1387 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1388                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1389                          bool secure, V8M_SAttributes *sattrs);
1390 
1391 /* Cacheability and shareability attributes for a memory access */
1392 typedef struct ARMCacheAttrs {
1393     /*
1394      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1395      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1396      */
1397     unsigned int attrs:8;
1398     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1399     bool is_s2_format:1;
1400 } ARMCacheAttrs;
1401 
1402 /* Fields that are valid upon success. */
1403 typedef struct GetPhysAddrResult {
1404     CPUTLBEntryFull f;
1405     ARMCacheAttrs cacheattrs;
1406 } GetPhysAddrResult;
1407 
1408 /**
1409  * get_phys_addr: get the physical address for a virtual address
1410  * @env: CPUARMState
1411  * @address: virtual address to get physical address for
1412  * @access_type: 0 for read, 1 for write, 2 for execute
1413  * @mmu_idx: MMU index indicating required translation regime
1414  * @result: set on translation success.
1415  * @fi: set to fault info if the translation fails
1416  *
1417  * Find the physical address corresponding to the given virtual address,
1418  * by doing a translation table walk on MMU based systems or using the
1419  * MPU state on MPU based systems.
1420  *
1421  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1422  * prot and page_size may not be filled in, and the populated fsr value provides
1423  * information on why the translation aborted, in the format of a
1424  * DFSR/IFSR fault register, with the following caveats:
1425  *  * we honour the short vs long DFSR format differences.
1426  *  * the WnR bit is never set (the caller must do this).
1427  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1428  *    value.
1429  */
1430 bool get_phys_addr(CPUARMState *env, vaddr address,
1431                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1432                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1433     __attribute__((nonnull));
1434 
1435 /**
1436  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1437  *                                 address
1438  * @env: CPUARMState
1439  * @address: virtual address to get physical address for
1440  * @access_type: 0 for read, 1 for write, 2 for execute
1441  * @mmu_idx: MMU index indicating required translation regime
1442  * @space: security space for the access
1443  * @result: set on translation success.
1444  * @fi: set to fault info if the translation fails
1445  *
1446  * Similar to get_phys_addr, but use the given security space and don't perform
1447  * a Granule Protection Check on the resulting address.
1448  */
1449 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
1450                                     MMUAccessType access_type,
1451                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1452                                     GetPhysAddrResult *result,
1453                                     ARMMMUFaultInfo *fi)
1454     __attribute__((nonnull));
1455 
1456 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1457                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1458                        bool is_secure, GetPhysAddrResult *result,
1459                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1460 
1461 void arm_log_exception(CPUState *cs);
1462 
1463 #endif /* !CONFIG_USER_ONLY */
1464 
1465 /*
1466  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1467  * the same simd_desc() encoding due to restrictions on size.
1468  * Use these instead.
1469  */
1470 FIELD(PREDDESC, OPRSZ, 0, 6)
1471 FIELD(PREDDESC, ESZ, 6, 2)
1472 FIELD(PREDDESC, DATA, 8, 24)
1473 
1474 /*
1475  * The SVE simd_data field, for memory ops, contains either
1476  * rd (5 bits) or a shift count (2 bits).
1477  */
1478 #define SVE_MTEDESC_SHIFT 5
1479 
1480 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1481 FIELD(MTEDESC, MIDX,  0, 4)
1482 FIELD(MTEDESC, TBI,   4, 2)
1483 FIELD(MTEDESC, TCMA,  6, 2)
1484 FIELD(MTEDESC, WRITE, 8, 1)
1485 FIELD(MTEDESC, ALIGN, 9, 3)
1486 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1487 
1488 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1489 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1490 
1491 /**
1492  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1493  * @env: CPU env
1494  * @ptr: start address of memory region (dirty pointer)
1495  * @size: length of region (guaranteed not to cross a page boundary)
1496  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1497  * Returns: the size of the region that can be copied without hitting
1498  *          an MTE tag failure
1499  *
1500  * Note that we assume that the caller has already checked the TBI
1501  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1502  * required.
1503  */
1504 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1505                         uint32_t desc);
1506 
1507 /**
1508  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1509  *                     operation going in the reverse direction
1510  * @env: CPU env
1511  * @ptr: *end* address of memory region (dirty pointer)
1512  * @size: length of region (guaranteed not to cross a page boundary)
1513  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1514  * Returns: the size of the region that can be copied without hitting
1515  *          an MTE tag failure
1516  *
1517  * Note that we assume that the caller has already checked the TBI
1518  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1519  * required.
1520  */
1521 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1522                             uint32_t desc);
1523 
1524 /**
1525  * mte_check_fail: Record an MTE tag check failure
1526  * @env: CPU env
1527  * @desc: MTEDESC descriptor word
1528  * @dirty_ptr: Failing dirty address
1529  * @ra: TCG retaddr
1530  *
1531  * This may never return (if the MTE tag checks are configured to fault).
1532  */
1533 void mte_check_fail(CPUARMState *env, uint32_t desc,
1534                     uint64_t dirty_ptr, uintptr_t ra);
1535 
1536 /**
1537  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1538  * @env: CPU env
1539  * @dirty_ptr: Start address of memory region (dirty pointer)
1540  * @size: length of region (guaranteed not to cross page boundary)
1541  * @desc: MTEDESC descriptor word
1542  */
1543 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1544                        uint32_t desc);
1545 
1546 static inline int allocation_tag_from_addr(uint64_t ptr)
1547 {
1548     return extract64(ptr, 56, 4);
1549 }
1550 
1551 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1552 {
1553     return deposit64(ptr, 56, 4, rtag);
1554 }
1555 
1556 /* Return true if tbi bits mean that the access is checked.  */
1557 static inline bool tbi_check(uint32_t desc, int bit55)
1558 {
1559     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1560 }
1561 
1562 /* Return true if tcma bits mean that the access is unchecked.  */
1563 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1564 {
1565     /*
1566      * We had extracted bit55 and ptr_tag for other reasons, so fold
1567      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1568      */
1569     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1570     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1571     return tcma && match;
1572 }
1573 
1574 /*
1575  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1576  * for the tag to be present in the FAR_ELx register.  But for user-only
1577  * mode, we do not have a TLB with which to implement this, so we must
1578  * remove the top byte.
1579  */
1580 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1581 {
1582 #ifdef CONFIG_USER_ONLY
1583     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1584     ptr &= sextract64(ptr, 0, 56);
1585 #endif
1586     return ptr;
1587 }
1588 
1589 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1590 {
1591 #ifdef CONFIG_USER_ONLY
1592     int64_t clean_ptr = sextract64(ptr, 0, 56);
1593     if (tbi_check(desc, clean_ptr < 0)) {
1594         ptr = clean_ptr;
1595     }
1596 #endif
1597     return ptr;
1598 }
1599 
1600 /* Values for M-profile PSR.ECI for MVE insns */
1601 enum MVEECIState {
1602     ECI_NONE = 0, /* No completed beats */
1603     ECI_A0 = 1, /* Completed: A0 */
1604     ECI_A0A1 = 2, /* Completed: A0, A1 */
1605     /* 3 is reserved */
1606     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1607     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1608     /* All other values reserved */
1609 };
1610 
1611 /* Definitions for the PMU registers */
1612 #define PMCRN_MASK  0xf800
1613 #define PMCRN_SHIFT 11
1614 #define PMCRLP  0x80
1615 #define PMCRLC  0x40
1616 #define PMCRDP  0x20
1617 #define PMCRX   0x10
1618 #define PMCRD   0x8
1619 #define PMCRC   0x4
1620 #define PMCRP   0x2
1621 #define PMCRE   0x1
1622 /*
1623  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1624  * which can be written as 1 to trigger behaviour but which stay RAZ).
1625  */
1626 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1627 
1628 #define PMXEVTYPER_P          0x80000000
1629 #define PMXEVTYPER_U          0x40000000
1630 #define PMXEVTYPER_NSK        0x20000000
1631 #define PMXEVTYPER_NSU        0x10000000
1632 #define PMXEVTYPER_NSH        0x08000000
1633 #define PMXEVTYPER_M          0x04000000
1634 #define PMXEVTYPER_MT         0x02000000
1635 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1636 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1637                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1638                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1639                                PMXEVTYPER_EVTCOUNT)
1640 
1641 #define PMCCFILTR             0xf8000000
1642 #define PMCCFILTR_M           PMXEVTYPER_M
1643 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1644 
1645 static inline uint32_t pmu_num_counters(CPUARMState *env)
1646 {
1647     ARMCPU *cpu = env_archcpu(env);
1648 
1649     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1650 }
1651 
1652 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1653 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1654 {
1655   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1656 }
1657 
1658 #ifdef TARGET_AARCH64
1659 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1660 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1661 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1662 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1663 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1664 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1665 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1666 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1667 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1668 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1669 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1670 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1671 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1672 void aarch64_max_tcg_initfn(Object *obj);
1673 void aarch64_add_pauth_properties(Object *obj);
1674 void aarch64_add_sve_properties(Object *obj);
1675 void aarch64_add_sme_properties(Object *obj);
1676 #endif
1677 
1678 /* Read the CONTROL register as the MRS instruction would. */
1679 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1680 
1681 /*
1682  * Return a pointer to the location where we currently store the
1683  * stack pointer for the requested security state and thread mode.
1684  * This pointer will become invalid if the CPU state is updated
1685  * such that the stack pointers are switched around (eg changing
1686  * the SPSEL control bit).
1687  */
1688 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1689                              bool threadmode, bool spsel);
1690 
1691 bool el_is_in_host(CPUARMState *env, int el);
1692 
1693 void aa32_max_features(ARMCPU *cpu);
1694 int exception_target_el(CPUARMState *env);
1695 bool arm_singlestep_active(CPUARMState *env);
1696 bool arm_generate_debug_exceptions(CPUARMState *env);
1697 
1698 /**
1699  * pauth_ptr_mask:
1700  * @param: parameters defining the MMU setup
1701  *
1702  * Return a mask of the address bits that contain the authentication code,
1703  * given the MMU config defined by @param.
1704  */
1705 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1706 {
1707     int bot_pac_bit = 64 - param.tsz;
1708     int top_pac_bit = 64 - 8 * param.tbi;
1709 
1710     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1711 }
1712 
1713 /* Add the cpreg definitions for debug related system registers */
1714 void define_debug_regs(ARMCPU *cpu);
1715 
1716 /* Effective value of MDCR_EL2 */
1717 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1718 {
1719     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1720 }
1721 
1722 /* Powers of 2 for sve_vq_map et al. */
1723 #define SVE_VQ_POW2_MAP                                 \
1724     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1725      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1726 
1727 /*
1728  * Return true if it is possible to take a fine-grained-trap to EL2.
1729  */
1730 static inline bool arm_fgt_active(CPUARMState *env, int el)
1731 {
1732     /*
1733      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1734      * that can affect EL0, but it is harmless to do the test also for
1735      * traps on registers that are only accessible at EL1 because if the test
1736      * returns true then we can't be executing at EL1 anyway.
1737      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1738      * traps from AArch32 only happen for the EL0 is AArch32 case.
1739      */
1740     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1741         el < 2 && arm_is_el2_enabled(env) &&
1742         arm_el_is_aa64(env, 1) &&
1743         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1744         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1745 }
1746 
1747 void assert_hflags_rebuild_correctly(CPUARMState *env);
1748 
1749 /*
1750  * Although the ARM implementation of hardware assisted debugging
1751  * allows for different breakpoints per-core, the current GDB
1752  * interface treats them as a global pool of registers (which seems to
1753  * be the case for x86, ppc and s390). As a result we store one copy
1754  * of registers which is used for all active cores.
1755  *
1756  * Write access is serialised by virtue of the GDB protocol which
1757  * updates things. Read access (i.e. when the values are copied to the
1758  * vCPU) is also gated by GDB's run control.
1759  *
1760  * This is not unreasonable as most of the time debugging kernels you
1761  * never know which core will eventually execute your function.
1762  */
1763 
1764 typedef struct {
1765     uint64_t bcr;
1766     uint64_t bvr;
1767 } HWBreakpoint;
1768 
1769 /*
1770  * The watchpoint registers can cover more area than the requested
1771  * watchpoint so we need to store the additional information
1772  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1773  * when the watchpoint is hit.
1774  */
1775 typedef struct {
1776     uint64_t wcr;
1777     uint64_t wvr;
1778     CPUWatchpoint details;
1779 } HWWatchpoint;
1780 
1781 /* Maximum and current break/watch point counts */
1782 extern int max_hw_bps, max_hw_wps;
1783 extern GArray *hw_breakpoints, *hw_watchpoints;
1784 
1785 #define cur_hw_wps      (hw_watchpoints->len)
1786 #define cur_hw_bps      (hw_breakpoints->len)
1787 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1788 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1789 
1790 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1791 int insert_hw_breakpoint(target_ulong pc);
1792 int delete_hw_breakpoint(target_ulong pc);
1793 
1794 bool check_watchpoint_in_range(int i, target_ulong addr);
1795 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1796 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1797 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1798 
1799 /* Return the current value of the system counter in ticks */
1800 uint64_t gt_get_countervalue(CPUARMState *env);
1801 /*
1802  * Return the currently applicable offset between the system counter
1803  * and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2).
1804  */
1805 uint64_t gt_virt_cnt_offset(CPUARMState *env);
1806 #endif
1807