xref: /openbmc/qemu/target/arm/internals.h (revision 10df8ff1)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /**
98  * raise_exception: Raise the specified exception.
99  * Raise a guest exception with the specified value, syndrome register
100  * and target exception level. This should be called from helper functions,
101  * and never returns because we will longjump back up to the CPU main loop.
102  */
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104                                    uint32_t syndrome, uint32_t target_el);
105 
106 /*
107  * Similarly, but also use unwinding to restore cpu state.
108  */
109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
110                                       uint32_t syndrome, uint32_t target_el,
111                                       uintptr_t ra);
112 
113 /*
114  * For AArch64, map a given EL to an index in the banked_spsr array.
115  * Note that this mapping and the AArch32 mapping defined in bank_number()
116  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117  * mandated mapping between each other.
118  */
119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
120 {
121     static const unsigned int map[4] = {
122         [1] = BANK_SVC, /* EL1.  */
123         [2] = BANK_HYP, /* EL2.  */
124         [3] = BANK_MON, /* EL3.  */
125     };
126     assert(el >= 1 && el <= 3);
127     return map[el];
128 }
129 
130 /* Map CPU modes onto saved register banks.  */
131 static inline int bank_number(int mode)
132 {
133     switch (mode) {
134     case ARM_CPU_MODE_USR:
135     case ARM_CPU_MODE_SYS:
136         return BANK_USRSYS;
137     case ARM_CPU_MODE_SVC:
138         return BANK_SVC;
139     case ARM_CPU_MODE_ABT:
140         return BANK_ABT;
141     case ARM_CPU_MODE_UND:
142         return BANK_UND;
143     case ARM_CPU_MODE_IRQ:
144         return BANK_IRQ;
145     case ARM_CPU_MODE_FIQ:
146         return BANK_FIQ;
147     case ARM_CPU_MODE_HYP:
148         return BANK_HYP;
149     case ARM_CPU_MODE_MON:
150         return BANK_MON;
151     }
152     g_assert_not_reached();
153 }
154 
155 /**
156  * r14_bank_number: Map CPU mode onto register bank for r14
157  *
158  * Given an AArch32 CPU mode, return the index into the saved register
159  * banks to use for the R14 (LR) in that mode. This is the same as
160  * bank_number(), except for the special case of Hyp mode, where
161  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162  * This should be used as the index into env->banked_r14[], and
163  * bank_number() used for the index into env->banked_r13[] and
164  * env->banked_spsr[].
165  */
166 static inline int r14_bank_number(int mode)
167 {
168     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
169 }
170 
171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
172 void arm_translate_init(void);
173 
174 enum arm_fprounding {
175     FPROUNDING_TIEEVEN,
176     FPROUNDING_POSINF,
177     FPROUNDING_NEGINF,
178     FPROUNDING_ZERO,
179     FPROUNDING_TIEAWAY,
180     FPROUNDING_ODD
181 };
182 
183 int arm_rmode_to_sf(int rmode);
184 
185 static inline void aarch64_save_sp(CPUARMState *env, int el)
186 {
187     if (env->pstate & PSTATE_SP) {
188         env->sp_el[el] = env->xregs[31];
189     } else {
190         env->sp_el[0] = env->xregs[31];
191     }
192 }
193 
194 static inline void aarch64_restore_sp(CPUARMState *env, int el)
195 {
196     if (env->pstate & PSTATE_SP) {
197         env->xregs[31] = env->sp_el[el];
198     } else {
199         env->xregs[31] = env->sp_el[0];
200     }
201 }
202 
203 static inline void update_spsel(CPUARMState *env, uint32_t imm)
204 {
205     unsigned int cur_el = arm_current_el(env);
206     /* Update PSTATE SPSel bit; this requires us to update the
207      * working stack pointer in xregs[31].
208      */
209     if (!((imm ^ env->pstate) & PSTATE_SP)) {
210         return;
211     }
212     aarch64_save_sp(env, cur_el);
213     env->pstate = deposit32(env->pstate, 0, 1, imm);
214 
215     /* We rely on illegal updates to SPsel from EL0 to get trapped
216      * at translation time.
217      */
218     assert(cur_el >= 1 && cur_el <= 3);
219     aarch64_restore_sp(env, cur_el);
220 }
221 
222 /*
223  * arm_pamax
224  * @cpu: ARMCPU
225  *
226  * Returns the implementation defined bit-width of physical addresses.
227  * The ARMv8 reference manuals refer to this as PAMax().
228  */
229 static inline unsigned int arm_pamax(ARMCPU *cpu)
230 {
231     static const unsigned int pamax_map[] = {
232         [0] = 32,
233         [1] = 36,
234         [2] = 40,
235         [3] = 42,
236         [4] = 44,
237         [5] = 48,
238     };
239     unsigned int parange =
240         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
241 
242     /* id_aa64mmfr0 is a read-only register so values outside of the
243      * supported mappings can be considered an implementation error.  */
244     assert(parange < ARRAY_SIZE(pamax_map));
245     return pamax_map[parange];
246 }
247 
248 /* Return true if extended addresses are enabled.
249  * This is always the case if our translation regime is 64 bit,
250  * but depends on TTBCR.EAE for 32 bit.
251  */
252 static inline bool extended_addresses_enabled(CPUARMState *env)
253 {
254     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
255     return arm_el_is_aa64(env, 1) ||
256            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
257 }
258 
259 /* Valid Syndrome Register EC field values */
260 enum arm_exception_class {
261     EC_UNCATEGORIZED          = 0x00,
262     EC_WFX_TRAP               = 0x01,
263     EC_CP15RTTRAP             = 0x03,
264     EC_CP15RRTTRAP            = 0x04,
265     EC_CP14RTTRAP             = 0x05,
266     EC_CP14DTTRAP             = 0x06,
267     EC_ADVSIMDFPACCESSTRAP    = 0x07,
268     EC_FPIDTRAP               = 0x08,
269     EC_PACTRAP                = 0x09,
270     EC_CP14RRTTRAP            = 0x0c,
271     EC_ILLEGALSTATE           = 0x0e,
272     EC_AA32_SVC               = 0x11,
273     EC_AA32_HVC               = 0x12,
274     EC_AA32_SMC               = 0x13,
275     EC_AA64_SVC               = 0x15,
276     EC_AA64_HVC               = 0x16,
277     EC_AA64_SMC               = 0x17,
278     EC_SYSTEMREGISTERTRAP     = 0x18,
279     EC_SVEACCESSTRAP          = 0x19,
280     EC_INSNABORT              = 0x20,
281     EC_INSNABORT_SAME_EL      = 0x21,
282     EC_PCALIGNMENT            = 0x22,
283     EC_DATAABORT              = 0x24,
284     EC_DATAABORT_SAME_EL      = 0x25,
285     EC_SPALIGNMENT            = 0x26,
286     EC_AA32_FPTRAP            = 0x28,
287     EC_AA64_FPTRAP            = 0x2c,
288     EC_SERROR                 = 0x2f,
289     EC_BREAKPOINT             = 0x30,
290     EC_BREAKPOINT_SAME_EL     = 0x31,
291     EC_SOFTWARESTEP           = 0x32,
292     EC_SOFTWARESTEP_SAME_EL   = 0x33,
293     EC_WATCHPOINT             = 0x34,
294     EC_WATCHPOINT_SAME_EL     = 0x35,
295     EC_AA32_BKPT              = 0x38,
296     EC_VECTORCATCH            = 0x3a,
297     EC_AA64_BKPT              = 0x3c,
298 };
299 
300 #define ARM_EL_EC_SHIFT 26
301 #define ARM_EL_IL_SHIFT 25
302 #define ARM_EL_ISV_SHIFT 24
303 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
304 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
305 
306 static inline uint32_t syn_get_ec(uint32_t syn)
307 {
308     return syn >> ARM_EL_EC_SHIFT;
309 }
310 
311 /* Utility functions for constructing various kinds of syndrome value.
312  * Note that in general we follow the AArch64 syndrome values; in a
313  * few cases the value in HSR for exceptions taken to AArch32 Hyp
314  * mode differs slightly, and we fix this up when populating HSR in
315  * arm_cpu_do_interrupt_aarch32_hyp().
316  * The exception is FP/SIMD access traps -- these report extra information
317  * when taking an exception to AArch32. For those we include the extra coproc
318  * and TA fields, and mask them out when taking the exception to AArch64.
319  */
320 static inline uint32_t syn_uncategorized(void)
321 {
322     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
323 }
324 
325 static inline uint32_t syn_aa64_svc(uint32_t imm16)
326 {
327     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
328 }
329 
330 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
331 {
332     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
333 }
334 
335 static inline uint32_t syn_aa64_smc(uint32_t imm16)
336 {
337     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
338 }
339 
340 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
341 {
342     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
343         | (is_16bit ? 0 : ARM_EL_IL);
344 }
345 
346 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
347 {
348     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
349 }
350 
351 static inline uint32_t syn_aa32_smc(void)
352 {
353     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
354 }
355 
356 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
357 {
358     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
359 }
360 
361 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
362 {
363     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
364         | (is_16bit ? 0 : ARM_EL_IL);
365 }
366 
367 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
368                                            int crn, int crm, int rt,
369                                            int isread)
370 {
371     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
372         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
373         | (crm << 1) | isread;
374 }
375 
376 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
377                                         int crn, int crm, int rt, int isread,
378                                         bool is_16bit)
379 {
380     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
381         | (is_16bit ? 0 : ARM_EL_IL)
382         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
383         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
384 }
385 
386 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
387                                         int crn, int crm, int rt, int isread,
388                                         bool is_16bit)
389 {
390     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
391         | (is_16bit ? 0 : ARM_EL_IL)
392         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
393         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
394 }
395 
396 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
397                                          int rt, int rt2, int isread,
398                                          bool is_16bit)
399 {
400     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
401         | (is_16bit ? 0 : ARM_EL_IL)
402         | (cv << 24) | (cond << 20) | (opc1 << 16)
403         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
404 }
405 
406 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
407                                          int rt, int rt2, int isread,
408                                          bool is_16bit)
409 {
410     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
411         | (is_16bit ? 0 : ARM_EL_IL)
412         | (cv << 24) | (cond << 20) | (opc1 << 16)
413         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
414 }
415 
416 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
417 {
418     /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
419     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
420         | (is_16bit ? 0 : ARM_EL_IL)
421         | (cv << 24) | (cond << 20) | 0xa;
422 }
423 
424 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
425 {
426     /* AArch32 SIMD trap: TA == 1 coproc == 0 */
427     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
428         | (is_16bit ? 0 : ARM_EL_IL)
429         | (cv << 24) | (cond << 20) | (1 << 5);
430 }
431 
432 static inline uint32_t syn_sve_access_trap(void)
433 {
434     return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
435 }
436 
437 static inline uint32_t syn_pactrap(void)
438 {
439     return EC_PACTRAP << ARM_EL_EC_SHIFT;
440 }
441 
442 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
443 {
444     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
445         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
446 }
447 
448 static inline uint32_t syn_data_abort_no_iss(int same_el,
449                                              int ea, int cm, int s1ptw,
450                                              int wnr, int fsc)
451 {
452     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
453            | ARM_EL_IL
454            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
455 }
456 
457 static inline uint32_t syn_data_abort_with_iss(int same_el,
458                                                int sas, int sse, int srt,
459                                                int sf, int ar,
460                                                int ea, int cm, int s1ptw,
461                                                int wnr, int fsc,
462                                                bool is_16bit)
463 {
464     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
465            | (is_16bit ? 0 : ARM_EL_IL)
466            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
467            | (sf << 15) | (ar << 14)
468            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
469 }
470 
471 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
472 {
473     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
474         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
475 }
476 
477 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
478 {
479     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
480         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
481 }
482 
483 static inline uint32_t syn_breakpoint(int same_el)
484 {
485     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
486         | ARM_EL_IL | 0x22;
487 }
488 
489 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
490 {
491     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
492            (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
493            (cv << 24) | (cond << 20) | ti;
494 }
495 
496 /* Update a QEMU watchpoint based on the information the guest has set in the
497  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
498  */
499 void hw_watchpoint_update(ARMCPU *cpu, int n);
500 /* Update the QEMU watchpoints for every guest watchpoint. This does a
501  * complete delete-and-reinstate of the QEMU watchpoint list and so is
502  * suitable for use after migration or on reset.
503  */
504 void hw_watchpoint_update_all(ARMCPU *cpu);
505 /* Update a QEMU breakpoint based on the information the guest has set in the
506  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
507  */
508 void hw_breakpoint_update(ARMCPU *cpu, int n);
509 /* Update the QEMU breakpoints for every guest breakpoint. This does a
510  * complete delete-and-reinstate of the QEMU breakpoint list and so is
511  * suitable for use after migration or on reset.
512  */
513 void hw_breakpoint_update_all(ARMCPU *cpu);
514 
515 /* Callback function for checking if a watchpoint should trigger. */
516 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
517 
518 /* Adjust addresses (in BE32 mode) before testing against watchpoint
519  * addresses.
520  */
521 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
522 
523 /* Callback function for when a watchpoint or breakpoint triggers. */
524 void arm_debug_excp_handler(CPUState *cs);
525 
526 #ifdef CONFIG_USER_ONLY
527 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
528 {
529     return false;
530 }
531 #else
532 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
533 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
534 /* Actually handle a PSCI call */
535 void arm_handle_psci_call(ARMCPU *cpu);
536 #endif
537 
538 /**
539  * arm_clear_exclusive: clear the exclusive monitor
540  * @env: CPU env
541  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
542  */
543 static inline void arm_clear_exclusive(CPUARMState *env)
544 {
545     env->exclusive_addr = -1;
546 }
547 
548 /**
549  * ARMFaultType: type of an ARM MMU fault
550  * This corresponds to the v8A pseudocode's Fault enumeration,
551  * with extensions for QEMU internal conditions.
552  */
553 typedef enum ARMFaultType {
554     ARMFault_None,
555     ARMFault_AccessFlag,
556     ARMFault_Alignment,
557     ARMFault_Background,
558     ARMFault_Domain,
559     ARMFault_Permission,
560     ARMFault_Translation,
561     ARMFault_AddressSize,
562     ARMFault_SyncExternal,
563     ARMFault_SyncExternalOnWalk,
564     ARMFault_SyncParity,
565     ARMFault_SyncParityOnWalk,
566     ARMFault_AsyncParity,
567     ARMFault_AsyncExternal,
568     ARMFault_Debug,
569     ARMFault_TLBConflict,
570     ARMFault_Lockdown,
571     ARMFault_Exclusive,
572     ARMFault_ICacheMaint,
573     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
574     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
575 } ARMFaultType;
576 
577 /**
578  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
579  * @type: Type of fault
580  * @level: Table walk level (for translation, access flag and permission faults)
581  * @domain: Domain of the fault address (for non-LPAE CPUs only)
582  * @s2addr: Address that caused a fault at stage 2
583  * @stage2: True if we faulted at stage 2
584  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
585  * @ea: True if we should set the EA (external abort type) bit in syndrome
586  */
587 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
588 struct ARMMMUFaultInfo {
589     ARMFaultType type;
590     target_ulong s2addr;
591     int level;
592     int domain;
593     bool stage2;
594     bool s1ptw;
595     bool ea;
596 };
597 
598 /**
599  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
600  * Compare pseudocode EncodeSDFSC(), though unlike that function
601  * we set up a whole FSR-format code including domain field and
602  * putting the high bit of the FSC into bit 10.
603  */
604 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
605 {
606     uint32_t fsc;
607 
608     switch (fi->type) {
609     case ARMFault_None:
610         return 0;
611     case ARMFault_AccessFlag:
612         fsc = fi->level == 1 ? 0x3 : 0x6;
613         break;
614     case ARMFault_Alignment:
615         fsc = 0x1;
616         break;
617     case ARMFault_Permission:
618         fsc = fi->level == 1 ? 0xd : 0xf;
619         break;
620     case ARMFault_Domain:
621         fsc = fi->level == 1 ? 0x9 : 0xb;
622         break;
623     case ARMFault_Translation:
624         fsc = fi->level == 1 ? 0x5 : 0x7;
625         break;
626     case ARMFault_SyncExternal:
627         fsc = 0x8 | (fi->ea << 12);
628         break;
629     case ARMFault_SyncExternalOnWalk:
630         fsc = fi->level == 1 ? 0xc : 0xe;
631         fsc |= (fi->ea << 12);
632         break;
633     case ARMFault_SyncParity:
634         fsc = 0x409;
635         break;
636     case ARMFault_SyncParityOnWalk:
637         fsc = fi->level == 1 ? 0x40c : 0x40e;
638         break;
639     case ARMFault_AsyncParity:
640         fsc = 0x408;
641         break;
642     case ARMFault_AsyncExternal:
643         fsc = 0x406 | (fi->ea << 12);
644         break;
645     case ARMFault_Debug:
646         fsc = 0x2;
647         break;
648     case ARMFault_TLBConflict:
649         fsc = 0x400;
650         break;
651     case ARMFault_Lockdown:
652         fsc = 0x404;
653         break;
654     case ARMFault_Exclusive:
655         fsc = 0x405;
656         break;
657     case ARMFault_ICacheMaint:
658         fsc = 0x4;
659         break;
660     case ARMFault_Background:
661         fsc = 0x0;
662         break;
663     case ARMFault_QEMU_NSCExec:
664         fsc = M_FAKE_FSR_NSC_EXEC;
665         break;
666     case ARMFault_QEMU_SFault:
667         fsc = M_FAKE_FSR_SFAULT;
668         break;
669     default:
670         /* Other faults can't occur in a context that requires a
671          * short-format status code.
672          */
673         g_assert_not_reached();
674     }
675 
676     fsc |= (fi->domain << 4);
677     return fsc;
678 }
679 
680 /**
681  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
682  * Compare pseudocode EncodeLDFSC(), though unlike that function
683  * we fill in also the LPAE bit 9 of a DFSR format.
684  */
685 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
686 {
687     uint32_t fsc;
688 
689     switch (fi->type) {
690     case ARMFault_None:
691         return 0;
692     case ARMFault_AddressSize:
693         fsc = fi->level & 3;
694         break;
695     case ARMFault_AccessFlag:
696         fsc = (fi->level & 3) | (0x2 << 2);
697         break;
698     case ARMFault_Permission:
699         fsc = (fi->level & 3) | (0x3 << 2);
700         break;
701     case ARMFault_Translation:
702         fsc = (fi->level & 3) | (0x1 << 2);
703         break;
704     case ARMFault_SyncExternal:
705         fsc = 0x10 | (fi->ea << 12);
706         break;
707     case ARMFault_SyncExternalOnWalk:
708         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
709         break;
710     case ARMFault_SyncParity:
711         fsc = 0x18;
712         break;
713     case ARMFault_SyncParityOnWalk:
714         fsc = (fi->level & 3) | (0x7 << 2);
715         break;
716     case ARMFault_AsyncParity:
717         fsc = 0x19;
718         break;
719     case ARMFault_AsyncExternal:
720         fsc = 0x11 | (fi->ea << 12);
721         break;
722     case ARMFault_Alignment:
723         fsc = 0x21;
724         break;
725     case ARMFault_Debug:
726         fsc = 0x22;
727         break;
728     case ARMFault_TLBConflict:
729         fsc = 0x30;
730         break;
731     case ARMFault_Lockdown:
732         fsc = 0x34;
733         break;
734     case ARMFault_Exclusive:
735         fsc = 0x35;
736         break;
737     default:
738         /* Other faults can't occur in a context that requires a
739          * long-format status code.
740          */
741         g_assert_not_reached();
742     }
743 
744     fsc |= 1 << 9;
745     return fsc;
746 }
747 
748 static inline bool arm_extabort_type(MemTxResult result)
749 {
750     /* The EA bit in syndromes and fault status registers is an
751      * IMPDEF classification of external aborts. ARM implementations
752      * usually use this to indicate AXI bus Decode error (0) or
753      * Slave error (1); in QEMU we follow that.
754      */
755     return result != MEMTX_DECODE_ERROR;
756 }
757 
758 /* Do a page table walk and add page to TLB if possible */
759 bool arm_tlb_fill(CPUState *cpu, vaddr address,
760                   MMUAccessType access_type, int mmu_idx,
761                   ARMMMUFaultInfo *fi);
762 
763 /* Return true if the stage 1 translation regime is using LPAE format page
764  * tables */
765 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
766 
767 /* Raise a data fault alignment exception for the specified virtual address */
768 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
769                                  MMUAccessType access_type,
770                                  int mmu_idx, uintptr_t retaddr);
771 
772 /* arm_cpu_do_transaction_failed: handle a memory system error response
773  * (eg "no device/memory present at address") by raising an external abort
774  * exception
775  */
776 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
777                                    vaddr addr, unsigned size,
778                                    MMUAccessType access_type,
779                                    int mmu_idx, MemTxAttrs attrs,
780                                    MemTxResult response, uintptr_t retaddr);
781 
782 /* Call any registered EL change hooks */
783 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
784 {
785     ARMELChangeHook *hook, *next;
786     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
787         hook->hook(cpu, hook->opaque);
788     }
789 }
790 static inline void arm_call_el_change_hook(ARMCPU *cpu)
791 {
792     ARMELChangeHook *hook, *next;
793     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
794         hook->hook(cpu, hook->opaque);
795     }
796 }
797 
798 /* Return true if this address translation regime is secure */
799 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
800 {
801     switch (mmu_idx) {
802     case ARMMMUIdx_S12NSE0:
803     case ARMMMUIdx_S12NSE1:
804     case ARMMMUIdx_S1NSE0:
805     case ARMMMUIdx_S1NSE1:
806     case ARMMMUIdx_S1E2:
807     case ARMMMUIdx_S2NS:
808     case ARMMMUIdx_MPrivNegPri:
809     case ARMMMUIdx_MUserNegPri:
810     case ARMMMUIdx_MPriv:
811     case ARMMMUIdx_MUser:
812         return false;
813     case ARMMMUIdx_S1E3:
814     case ARMMMUIdx_S1SE0:
815     case ARMMMUIdx_S1SE1:
816     case ARMMMUIdx_MSPrivNegPri:
817     case ARMMMUIdx_MSUserNegPri:
818     case ARMMMUIdx_MSPriv:
819     case ARMMMUIdx_MSUser:
820         return true;
821     default:
822         g_assert_not_reached();
823     }
824 }
825 
826 /* Return the FSR value for a debug exception (watchpoint, hardware
827  * breakpoint or BKPT insn) targeting the specified exception level.
828  */
829 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
830 {
831     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
832     int target_el = arm_debug_target_el(env);
833     bool using_lpae = false;
834 
835     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
836         using_lpae = true;
837     } else {
838         if (arm_feature(env, ARM_FEATURE_LPAE) &&
839             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
840             using_lpae = true;
841         }
842     }
843 
844     if (using_lpae) {
845         return arm_fi_to_lfsc(&fi);
846     } else {
847         return arm_fi_to_sfsc(&fi);
848     }
849 }
850 
851 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
852  * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
853  */
854 #define MEMOPIDX_SHIFT  8
855 
856 /**
857  * v7m_using_psp: Return true if using process stack pointer
858  * Return true if the CPU is currently using the process stack
859  * pointer, or false if it is using the main stack pointer.
860  */
861 static inline bool v7m_using_psp(CPUARMState *env)
862 {
863     /* Handler mode always uses the main stack; for thread mode
864      * the CONTROL.SPSEL bit determines the answer.
865      * Note that in v7M it is not possible to be in Handler mode with
866      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
867      */
868     return !arm_v7m_is_handler_mode(env) &&
869         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
870 }
871 
872 /**
873  * v7m_sp_limit: Return SP limit for current CPU state
874  * Return the SP limit value for the current CPU security state
875  * and stack pointer.
876  */
877 static inline uint32_t v7m_sp_limit(CPUARMState *env)
878 {
879     if (v7m_using_psp(env)) {
880         return env->v7m.psplim[env->v7m.secure];
881     } else {
882         return env->v7m.msplim[env->v7m.secure];
883     }
884 }
885 
886 /**
887  * aarch32_mode_name(): Return name of the AArch32 CPU mode
888  * @psr: Program Status Register indicating CPU mode
889  *
890  * Returns, for debug logging purposes, a printable representation
891  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
892  * the low bits of the specified PSR.
893  */
894 static inline const char *aarch32_mode_name(uint32_t psr)
895 {
896     static const char cpu_mode_names[16][4] = {
897         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
898         "???", "???", "hyp", "und", "???", "???", "???", "sys"
899     };
900 
901     return cpu_mode_names[psr & 0xf];
902 }
903 
904 /**
905  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
906  *
907  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
908  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
909  * Must be called with the iothread lock held.
910  */
911 void arm_cpu_update_virq(ARMCPU *cpu);
912 
913 /**
914  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
915  *
916  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
917  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
918  * Must be called with the iothread lock held.
919  */
920 void arm_cpu_update_vfiq(ARMCPU *cpu);
921 
922 /**
923  * arm_mmu_idx:
924  * @env: The cpu environment
925  *
926  * Return the full ARMMMUIdx for the current translation regime.
927  */
928 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
929 
930 /**
931  * arm_stage1_mmu_idx:
932  * @env: The cpu environment
933  *
934  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
935  */
936 #ifdef CONFIG_USER_ONLY
937 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
938 {
939     return ARMMMUIdx_S1NSE0;
940 }
941 #else
942 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
943 #endif
944 
945 /*
946  * Parameters of a given virtual address, as extracted from the
947  * translation control register (TCR) for a given regime.
948  */
949 typedef struct ARMVAParameters {
950     unsigned tsz    : 8;
951     unsigned select : 1;
952     bool tbi        : 1;
953     bool tbid       : 1;
954     bool epd        : 1;
955     bool hpd        : 1;
956     bool using16k   : 1;
957     bool using64k   : 1;
958 } ARMVAParameters;
959 
960 #ifdef CONFIG_USER_ONLY
961 static inline ARMVAParameters aa64_va_parameters_both(CPUARMState *env,
962                                                       uint64_t va,
963                                                       ARMMMUIdx mmu_idx)
964 {
965     return (ARMVAParameters) {
966         /* 48-bit address space */
967         .tsz = 16,
968         /* We can't handle tagged addresses properly in user-only mode */
969         .tbi = false,
970     };
971 }
972 
973 static inline ARMVAParameters aa64_va_parameters(CPUARMState *env,
974                                                  uint64_t va,
975                                                  ARMMMUIdx mmu_idx, bool data)
976 {
977     return aa64_va_parameters_both(env, va, mmu_idx);
978 }
979 #else
980 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
981                                         ARMMMUIdx mmu_idx);
982 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
983                                    ARMMMUIdx mmu_idx, bool data);
984 #endif
985 
986 #endif
987