1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 32 /* register banks for CPU modes */ 33 #define BANK_USRSYS 0 34 #define BANK_SVC 1 35 #define BANK_ABT 2 36 #define BANK_UND 3 37 #define BANK_IRQ 4 38 #define BANK_FIQ 5 39 #define BANK_HYP 6 40 #define BANK_MON 7 41 42 static inline bool excp_is_internal(int excp) 43 { 44 /* Return true if this exception number represents a QEMU-internal 45 * exception that will not be passed to the guest. 46 */ 47 return excp == EXCP_INTERRUPT 48 || excp == EXCP_HLT 49 || excp == EXCP_DEBUG 50 || excp == EXCP_HALTED 51 || excp == EXCP_EXCEPTION_EXIT 52 || excp == EXCP_KERNEL_TRAP 53 || excp == EXCP_SEMIHOST; 54 } 55 56 /* Scale factor for generic timers, ie number of ns per tick. 57 * This gives a 62.5MHz timer. 58 */ 59 #define GTIMER_SCALE 16 60 61 /* Bit definitions for the v7M CONTROL register */ 62 FIELD(V7M_CONTROL, NPRIV, 0, 1) 63 FIELD(V7M_CONTROL, SPSEL, 1, 1) 64 FIELD(V7M_CONTROL, FPCA, 2, 1) 65 FIELD(V7M_CONTROL, SFPA, 3, 1) 66 67 /* Bit definitions for v7M exception return payload */ 68 FIELD(V7M_EXCRET, ES, 0, 1) 69 FIELD(V7M_EXCRET, RES0, 1, 1) 70 FIELD(V7M_EXCRET, SPSEL, 2, 1) 71 FIELD(V7M_EXCRET, MODE, 3, 1) 72 FIELD(V7M_EXCRET, FTYPE, 4, 1) 73 FIELD(V7M_EXCRET, DCRS, 5, 1) 74 FIELD(V7M_EXCRET, S, 6, 1) 75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 76 77 /* Minimum value which is a magic number for exception return */ 78 #define EXC_RETURN_MIN_MAGIC 0xff000000 79 /* Minimum number which is a magic number for function or exception return 80 * when using v8M security extension 81 */ 82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 83 84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 85 FIELD(DBGWCR, E, 0, 1) 86 FIELD(DBGWCR, PAC, 1, 2) 87 FIELD(DBGWCR, LSC, 3, 2) 88 FIELD(DBGWCR, BAS, 5, 8) 89 FIELD(DBGWCR, HMC, 13, 1) 90 FIELD(DBGWCR, SSC, 14, 2) 91 FIELD(DBGWCR, LBN, 16, 4) 92 FIELD(DBGWCR, WT, 20, 1) 93 FIELD(DBGWCR, MASK, 24, 5) 94 FIELD(DBGWCR, SSCE, 29, 1) 95 96 /* We use a few fake FSR values for internal purposes in M profile. 97 * M profile cores don't have A/R format FSRs, but currently our 98 * get_phys_addr() code assumes A/R profile and reports failures via 99 * an A/R format FSR value. We then translate that into the proper 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 101 * Mostly the FSR values we use for this are those defined for v7PMSA, 102 * since we share some of that codepath. A few kinds of fault are 103 * only for M profile and have no A/R equivalent, though, so we have 104 * to pick a value from the reserved range (which we never otherwise 105 * generate) to use for these. 106 * These values will never be visible to the guest. 107 */ 108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 110 111 /** 112 * raise_exception: Raise the specified exception. 113 * Raise a guest exception with the specified value, syndrome register 114 * and target exception level. This should be called from helper functions, 115 * and never returns because we will longjump back up to the CPU main loop. 116 */ 117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 118 uint32_t syndrome, uint32_t target_el); 119 120 /* 121 * Similarly, but also use unwinding to restore cpu state. 122 */ 123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 124 uint32_t syndrome, uint32_t target_el, 125 uintptr_t ra); 126 127 /* 128 * For AArch64, map a given EL to an index in the banked_spsr array. 129 * Note that this mapping and the AArch32 mapping defined in bank_number() 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 131 * mandated mapping between each other. 132 */ 133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 134 { 135 static const unsigned int map[4] = { 136 [1] = BANK_SVC, /* EL1. */ 137 [2] = BANK_HYP, /* EL2. */ 138 [3] = BANK_MON, /* EL3. */ 139 }; 140 assert(el >= 1 && el <= 3); 141 return map[el]; 142 } 143 144 /* Map CPU modes onto saved register banks. */ 145 static inline int bank_number(int mode) 146 { 147 switch (mode) { 148 case ARM_CPU_MODE_USR: 149 case ARM_CPU_MODE_SYS: 150 return BANK_USRSYS; 151 case ARM_CPU_MODE_SVC: 152 return BANK_SVC; 153 case ARM_CPU_MODE_ABT: 154 return BANK_ABT; 155 case ARM_CPU_MODE_UND: 156 return BANK_UND; 157 case ARM_CPU_MODE_IRQ: 158 return BANK_IRQ; 159 case ARM_CPU_MODE_FIQ: 160 return BANK_FIQ; 161 case ARM_CPU_MODE_HYP: 162 return BANK_HYP; 163 case ARM_CPU_MODE_MON: 164 return BANK_MON; 165 } 166 g_assert_not_reached(); 167 } 168 169 /** 170 * r14_bank_number: Map CPU mode onto register bank for r14 171 * 172 * Given an AArch32 CPU mode, return the index into the saved register 173 * banks to use for the R14 (LR) in that mode. This is the same as 174 * bank_number(), except for the special case of Hyp mode, where 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 176 * This should be used as the index into env->banked_r14[], and 177 * bank_number() used for the index into env->banked_r13[] and 178 * env->banked_spsr[]. 179 */ 180 static inline int r14_bank_number(int mode) 181 { 182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 183 } 184 185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 186 void arm_translate_init(void); 187 188 void arm_restore_state_to_opc(CPUState *cs, 189 const TranslationBlock *tb, 190 const uint64_t *data); 191 192 #ifdef CONFIG_TCG 193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 194 #endif /* CONFIG_TCG */ 195 196 typedef enum ARMFPRounding { 197 FPROUNDING_TIEEVEN, 198 FPROUNDING_POSINF, 199 FPROUNDING_NEGINF, 200 FPROUNDING_ZERO, 201 FPROUNDING_TIEAWAY, 202 FPROUNDING_ODD 203 } ARMFPRounding; 204 205 extern const FloatRoundMode arm_rmode_to_sf_map[6]; 206 207 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) 208 { 209 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); 210 return arm_rmode_to_sf_map[rmode]; 211 } 212 213 static inline void aarch64_save_sp(CPUARMState *env, int el) 214 { 215 if (env->pstate & PSTATE_SP) { 216 env->sp_el[el] = env->xregs[31]; 217 } else { 218 env->sp_el[0] = env->xregs[31]; 219 } 220 } 221 222 static inline void aarch64_restore_sp(CPUARMState *env, int el) 223 { 224 if (env->pstate & PSTATE_SP) { 225 env->xregs[31] = env->sp_el[el]; 226 } else { 227 env->xregs[31] = env->sp_el[0]; 228 } 229 } 230 231 static inline void update_spsel(CPUARMState *env, uint32_t imm) 232 { 233 unsigned int cur_el = arm_current_el(env); 234 /* Update PSTATE SPSel bit; this requires us to update the 235 * working stack pointer in xregs[31]. 236 */ 237 if (!((imm ^ env->pstate) & PSTATE_SP)) { 238 return; 239 } 240 aarch64_save_sp(env, cur_el); 241 env->pstate = deposit32(env->pstate, 0, 1, imm); 242 243 /* We rely on illegal updates to SPsel from EL0 to get trapped 244 * at translation time. 245 */ 246 assert(cur_el >= 1 && cur_el <= 3); 247 aarch64_restore_sp(env, cur_el); 248 } 249 250 /* 251 * arm_pamax 252 * @cpu: ARMCPU 253 * 254 * Returns the implementation defined bit-width of physical addresses. 255 * The ARMv8 reference manuals refer to this as PAMax(). 256 */ 257 unsigned int arm_pamax(ARMCPU *cpu); 258 259 /* Return true if extended addresses are enabled. 260 * This is always the case if our translation regime is 64 bit, 261 * but depends on TTBCR.EAE for 32 bit. 262 */ 263 static inline bool extended_addresses_enabled(CPUARMState *env) 264 { 265 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 266 if (arm_feature(env, ARM_FEATURE_PMSA) && 267 arm_feature(env, ARM_FEATURE_V8)) { 268 return true; 269 } 270 return arm_el_is_aa64(env, 1) || 271 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 272 } 273 274 /* Update a QEMU watchpoint based on the information the guest has set in the 275 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 276 */ 277 void hw_watchpoint_update(ARMCPU *cpu, int n); 278 /* Update the QEMU watchpoints for every guest watchpoint. This does a 279 * complete delete-and-reinstate of the QEMU watchpoint list and so is 280 * suitable for use after migration or on reset. 281 */ 282 void hw_watchpoint_update_all(ARMCPU *cpu); 283 /* Update a QEMU breakpoint based on the information the guest has set in the 284 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 285 */ 286 void hw_breakpoint_update(ARMCPU *cpu, int n); 287 /* Update the QEMU breakpoints for every guest breakpoint. This does a 288 * complete delete-and-reinstate of the QEMU breakpoint list and so is 289 * suitable for use after migration or on reset. 290 */ 291 void hw_breakpoint_update_all(ARMCPU *cpu); 292 293 /* Callback function for checking if a breakpoint should trigger. */ 294 bool arm_debug_check_breakpoint(CPUState *cs); 295 296 /* Callback function for checking if a watchpoint should trigger. */ 297 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 298 299 /* Adjust addresses (in BE32 mode) before testing against watchpoint 300 * addresses. 301 */ 302 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 303 304 /* Callback function for when a watchpoint or breakpoint triggers. */ 305 void arm_debug_excp_handler(CPUState *cs); 306 307 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 308 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 309 { 310 return false; 311 } 312 static inline void arm_handle_psci_call(ARMCPU *cpu) 313 { 314 g_assert_not_reached(); 315 } 316 #else 317 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 318 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 319 /* Actually handle a PSCI call */ 320 void arm_handle_psci_call(ARMCPU *cpu); 321 #endif 322 323 /** 324 * arm_clear_exclusive: clear the exclusive monitor 325 * @env: CPU env 326 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 327 */ 328 static inline void arm_clear_exclusive(CPUARMState *env) 329 { 330 env->exclusive_addr = -1; 331 } 332 333 /** 334 * ARMFaultType: type of an ARM MMU fault 335 * This corresponds to the v8A pseudocode's Fault enumeration, 336 * with extensions for QEMU internal conditions. 337 */ 338 typedef enum ARMFaultType { 339 ARMFault_None, 340 ARMFault_AccessFlag, 341 ARMFault_Alignment, 342 ARMFault_Background, 343 ARMFault_Domain, 344 ARMFault_Permission, 345 ARMFault_Translation, 346 ARMFault_AddressSize, 347 ARMFault_SyncExternal, 348 ARMFault_SyncExternalOnWalk, 349 ARMFault_SyncParity, 350 ARMFault_SyncParityOnWalk, 351 ARMFault_AsyncParity, 352 ARMFault_AsyncExternal, 353 ARMFault_Debug, 354 ARMFault_TLBConflict, 355 ARMFault_UnsuppAtomicUpdate, 356 ARMFault_Lockdown, 357 ARMFault_Exclusive, 358 ARMFault_ICacheMaint, 359 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 360 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 361 ARMFault_GPCFOnWalk, 362 ARMFault_GPCFOnOutput, 363 } ARMFaultType; 364 365 typedef enum ARMGPCF { 366 GPCF_None, 367 GPCF_AddressSize, 368 GPCF_Walk, 369 GPCF_EABT, 370 GPCF_Fail, 371 } ARMGPCF; 372 373 /** 374 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 375 * @type: Type of fault 376 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}. 377 * @level: Table walk level (for translation, access flag and permission faults) 378 * @domain: Domain of the fault address (for non-LPAE CPUs only) 379 * @s2addr: Address that caused a fault at stage 2 380 * @paddr: physical address that caused a fault for gpc 381 * @paddr_space: physical address space that caused a fault for gpc 382 * @stage2: True if we faulted at stage 2 383 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 384 * @s1ns: True if we faulted on a non-secure IPA while in secure state 385 * @ea: True if we should set the EA (external abort type) bit in syndrome 386 */ 387 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 388 struct ARMMMUFaultInfo { 389 ARMFaultType type; 390 ARMGPCF gpcf; 391 target_ulong s2addr; 392 target_ulong paddr; 393 ARMSecuritySpace paddr_space; 394 int level; 395 int domain; 396 bool stage2; 397 bool s1ptw; 398 bool s1ns; 399 bool ea; 400 }; 401 402 /** 403 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 404 * Compare pseudocode EncodeSDFSC(), though unlike that function 405 * we set up a whole FSR-format code including domain field and 406 * putting the high bit of the FSC into bit 10. 407 */ 408 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 409 { 410 uint32_t fsc; 411 412 switch (fi->type) { 413 case ARMFault_None: 414 return 0; 415 case ARMFault_AccessFlag: 416 fsc = fi->level == 1 ? 0x3 : 0x6; 417 break; 418 case ARMFault_Alignment: 419 fsc = 0x1; 420 break; 421 case ARMFault_Permission: 422 fsc = fi->level == 1 ? 0xd : 0xf; 423 break; 424 case ARMFault_Domain: 425 fsc = fi->level == 1 ? 0x9 : 0xb; 426 break; 427 case ARMFault_Translation: 428 fsc = fi->level == 1 ? 0x5 : 0x7; 429 break; 430 case ARMFault_SyncExternal: 431 fsc = 0x8 | (fi->ea << 12); 432 break; 433 case ARMFault_SyncExternalOnWalk: 434 fsc = fi->level == 1 ? 0xc : 0xe; 435 fsc |= (fi->ea << 12); 436 break; 437 case ARMFault_SyncParity: 438 fsc = 0x409; 439 break; 440 case ARMFault_SyncParityOnWalk: 441 fsc = fi->level == 1 ? 0x40c : 0x40e; 442 break; 443 case ARMFault_AsyncParity: 444 fsc = 0x408; 445 break; 446 case ARMFault_AsyncExternal: 447 fsc = 0x406 | (fi->ea << 12); 448 break; 449 case ARMFault_Debug: 450 fsc = 0x2; 451 break; 452 case ARMFault_TLBConflict: 453 fsc = 0x400; 454 break; 455 case ARMFault_Lockdown: 456 fsc = 0x404; 457 break; 458 case ARMFault_Exclusive: 459 fsc = 0x405; 460 break; 461 case ARMFault_ICacheMaint: 462 fsc = 0x4; 463 break; 464 case ARMFault_Background: 465 fsc = 0x0; 466 break; 467 case ARMFault_QEMU_NSCExec: 468 fsc = M_FAKE_FSR_NSC_EXEC; 469 break; 470 case ARMFault_QEMU_SFault: 471 fsc = M_FAKE_FSR_SFAULT; 472 break; 473 default: 474 /* Other faults can't occur in a context that requires a 475 * short-format status code. 476 */ 477 g_assert_not_reached(); 478 } 479 480 fsc |= (fi->domain << 4); 481 return fsc; 482 } 483 484 /** 485 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 486 * Compare pseudocode EncodeLDFSC(), though unlike that function 487 * we fill in also the LPAE bit 9 of a DFSR format. 488 */ 489 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 490 { 491 uint32_t fsc; 492 493 switch (fi->type) { 494 case ARMFault_None: 495 return 0; 496 case ARMFault_AddressSize: 497 assert(fi->level >= -1 && fi->level <= 3); 498 if (fi->level < 0) { 499 fsc = 0b101001; 500 } else { 501 fsc = fi->level; 502 } 503 break; 504 case ARMFault_AccessFlag: 505 assert(fi->level >= 0 && fi->level <= 3); 506 fsc = 0b001000 | fi->level; 507 break; 508 case ARMFault_Permission: 509 assert(fi->level >= 0 && fi->level <= 3); 510 fsc = 0b001100 | fi->level; 511 break; 512 case ARMFault_Translation: 513 assert(fi->level >= -1 && fi->level <= 3); 514 if (fi->level < 0) { 515 fsc = 0b101011; 516 } else { 517 fsc = 0b000100 | fi->level; 518 } 519 break; 520 case ARMFault_SyncExternal: 521 fsc = 0x10 | (fi->ea << 12); 522 break; 523 case ARMFault_SyncExternalOnWalk: 524 assert(fi->level >= -1 && fi->level <= 3); 525 if (fi->level < 0) { 526 fsc = 0b010011; 527 } else { 528 fsc = 0b010100 | fi->level; 529 } 530 fsc |= fi->ea << 12; 531 break; 532 case ARMFault_SyncParity: 533 fsc = 0x18; 534 break; 535 case ARMFault_SyncParityOnWalk: 536 assert(fi->level >= -1 && fi->level <= 3); 537 if (fi->level < 0) { 538 fsc = 0b011011; 539 } else { 540 fsc = 0b011100 | fi->level; 541 } 542 break; 543 case ARMFault_AsyncParity: 544 fsc = 0x19; 545 break; 546 case ARMFault_AsyncExternal: 547 fsc = 0x11 | (fi->ea << 12); 548 break; 549 case ARMFault_Alignment: 550 fsc = 0x21; 551 break; 552 case ARMFault_Debug: 553 fsc = 0x22; 554 break; 555 case ARMFault_TLBConflict: 556 fsc = 0x30; 557 break; 558 case ARMFault_UnsuppAtomicUpdate: 559 fsc = 0x31; 560 break; 561 case ARMFault_Lockdown: 562 fsc = 0x34; 563 break; 564 case ARMFault_Exclusive: 565 fsc = 0x35; 566 break; 567 case ARMFault_GPCFOnWalk: 568 assert(fi->level >= -1 && fi->level <= 3); 569 if (fi->level < 0) { 570 fsc = 0b100011; 571 } else { 572 fsc = 0b100100 | fi->level; 573 } 574 break; 575 case ARMFault_GPCFOnOutput: 576 fsc = 0b101000; 577 break; 578 default: 579 /* Other faults can't occur in a context that requires a 580 * long-format status code. 581 */ 582 g_assert_not_reached(); 583 } 584 585 fsc |= 1 << 9; 586 return fsc; 587 } 588 589 static inline bool arm_extabort_type(MemTxResult result) 590 { 591 /* The EA bit in syndromes and fault status registers is an 592 * IMPDEF classification of external aborts. ARM implementations 593 * usually use this to indicate AXI bus Decode error (0) or 594 * Slave error (1); in QEMU we follow that. 595 */ 596 return result != MEMTX_DECODE_ERROR; 597 } 598 599 #ifdef CONFIG_USER_ONLY 600 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 601 MMUAccessType access_type, 602 bool maperr, uintptr_t ra); 603 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 604 MMUAccessType access_type, uintptr_t ra); 605 #else 606 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 607 MMUAccessType access_type, int mmu_idx, 608 bool probe, uintptr_t retaddr); 609 #endif 610 611 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 612 { 613 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 614 } 615 616 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 617 { 618 if (arm_feature(env, ARM_FEATURE_M)) { 619 return mmu_idx | ARM_MMU_IDX_M; 620 } else { 621 return mmu_idx | ARM_MMU_IDX_A; 622 } 623 } 624 625 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 626 { 627 /* AArch64 is always a-profile. */ 628 return mmu_idx | ARM_MMU_IDX_A; 629 } 630 631 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 632 633 /* Return the MMU index for a v7M CPU in the specified security state */ 634 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 635 636 /* 637 * Return true if the stage 1 translation regime is using LPAE 638 * format page tables 639 */ 640 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 641 642 /* Raise a data fault alignment exception for the specified virtual address */ 643 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 644 MMUAccessType access_type, 645 int mmu_idx, uintptr_t retaddr); 646 647 #ifndef CONFIG_USER_ONLY 648 /* arm_cpu_do_transaction_failed: handle a memory system error response 649 * (eg "no device/memory present at address") by raising an external abort 650 * exception 651 */ 652 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 653 vaddr addr, unsigned size, 654 MMUAccessType access_type, 655 int mmu_idx, MemTxAttrs attrs, 656 MemTxResult response, uintptr_t retaddr); 657 #endif 658 659 /* Call any registered EL change hooks */ 660 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 661 { 662 ARMELChangeHook *hook, *next; 663 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 664 hook->hook(cpu, hook->opaque); 665 } 666 } 667 static inline void arm_call_el_change_hook(ARMCPU *cpu) 668 { 669 ARMELChangeHook *hook, *next; 670 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 671 hook->hook(cpu, hook->opaque); 672 } 673 } 674 675 /* Return true if this address translation regime has two ranges. */ 676 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 677 { 678 switch (mmu_idx) { 679 case ARMMMUIdx_Stage1_E0: 680 case ARMMMUIdx_Stage1_E1: 681 case ARMMMUIdx_Stage1_E1_PAN: 682 case ARMMMUIdx_E10_0: 683 case ARMMMUIdx_E10_1: 684 case ARMMMUIdx_E10_1_PAN: 685 case ARMMMUIdx_E20_0: 686 case ARMMMUIdx_E20_2: 687 case ARMMMUIdx_E20_2_PAN: 688 return true; 689 default: 690 return false; 691 } 692 } 693 694 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 695 { 696 switch (mmu_idx) { 697 case ARMMMUIdx_Stage1_E1_PAN: 698 case ARMMMUIdx_E10_1_PAN: 699 case ARMMMUIdx_E20_2_PAN: 700 return true; 701 default: 702 return false; 703 } 704 } 705 706 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) 707 { 708 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 709 } 710 711 /* Return the exception level which controls this address translation regime */ 712 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 713 { 714 switch (mmu_idx) { 715 case ARMMMUIdx_E20_0: 716 case ARMMMUIdx_E20_2: 717 case ARMMMUIdx_E20_2_PAN: 718 case ARMMMUIdx_Stage2: 719 case ARMMMUIdx_Stage2_S: 720 case ARMMMUIdx_E2: 721 return 2; 722 case ARMMMUIdx_E3: 723 return 3; 724 case ARMMMUIdx_E10_0: 725 case ARMMMUIdx_Stage1_E0: 726 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 727 case ARMMMUIdx_Stage1_E1: 728 case ARMMMUIdx_Stage1_E1_PAN: 729 case ARMMMUIdx_E10_1: 730 case ARMMMUIdx_E10_1_PAN: 731 case ARMMMUIdx_MPrivNegPri: 732 case ARMMMUIdx_MUserNegPri: 733 case ARMMMUIdx_MPriv: 734 case ARMMMUIdx_MUser: 735 case ARMMMUIdx_MSPrivNegPri: 736 case ARMMMUIdx_MSUserNegPri: 737 case ARMMMUIdx_MSPriv: 738 case ARMMMUIdx_MSUser: 739 return 1; 740 default: 741 g_assert_not_reached(); 742 } 743 } 744 745 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 746 { 747 switch (mmu_idx) { 748 case ARMMMUIdx_E20_0: 749 case ARMMMUIdx_Stage1_E0: 750 case ARMMMUIdx_MUser: 751 case ARMMMUIdx_MSUser: 752 case ARMMMUIdx_MUserNegPri: 753 case ARMMMUIdx_MSUserNegPri: 754 return true; 755 default: 756 return false; 757 case ARMMMUIdx_E10_0: 758 case ARMMMUIdx_E10_1: 759 case ARMMMUIdx_E10_1_PAN: 760 g_assert_not_reached(); 761 } 762 } 763 764 /* Return the SCTLR value which controls this address translation regime */ 765 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 766 { 767 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 768 } 769 770 /* 771 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 772 * and the Non-Secure stage 2 translation regimes (and hence which are 773 * not present in VSTCR_EL2). 774 */ 775 #define VTCR_SHARED_FIELD_MASK \ 776 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 777 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 778 R_VTCR_DS_MASK) 779 780 /* Return the value of the TCR controlling this translation regime */ 781 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 782 { 783 if (mmu_idx == ARMMMUIdx_Stage2) { 784 return env->cp15.vtcr_el2; 785 } 786 if (mmu_idx == ARMMMUIdx_Stage2_S) { 787 /* 788 * Secure stage 2 shares fields from VTCR_EL2. We merge those 789 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 790 * value so the callers don't need to special case this. 791 * 792 * If a future architecture change defines bits in VSTCR_EL2 that 793 * overlap with these VTCR_EL2 fields we may need to revisit this. 794 */ 795 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 796 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 797 return v; 798 } 799 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 800 } 801 802 /* Return true if the translation regime is using LPAE format page tables */ 803 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 804 { 805 int el = regime_el(env, mmu_idx); 806 if (el == 2 || arm_el_is_aa64(env, el)) { 807 return true; 808 } 809 if (arm_feature(env, ARM_FEATURE_PMSA) && 810 arm_feature(env, ARM_FEATURE_V8)) { 811 return true; 812 } 813 if (arm_feature(env, ARM_FEATURE_LPAE) 814 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { 815 return true; 816 } 817 return false; 818 } 819 820 /** 821 * arm_num_brps: Return number of implemented breakpoints. 822 * Note that the ID register BRPS field is "number of bps - 1", 823 * and we return the actual number of breakpoints. 824 */ 825 static inline int arm_num_brps(ARMCPU *cpu) 826 { 827 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 828 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 829 } else { 830 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 831 } 832 } 833 834 /** 835 * arm_num_wrps: Return number of implemented watchpoints. 836 * Note that the ID register WRPS field is "number of wps - 1", 837 * and we return the actual number of watchpoints. 838 */ 839 static inline int arm_num_wrps(ARMCPU *cpu) 840 { 841 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 842 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 843 } else { 844 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 845 } 846 } 847 848 /** 849 * arm_num_ctx_cmps: Return number of implemented context comparators. 850 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 851 * and we return the actual number of comparators. 852 */ 853 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 854 { 855 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 856 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 857 } else { 858 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 859 } 860 } 861 862 /** 863 * v7m_using_psp: Return true if using process stack pointer 864 * Return true if the CPU is currently using the process stack 865 * pointer, or false if it is using the main stack pointer. 866 */ 867 static inline bool v7m_using_psp(CPUARMState *env) 868 { 869 /* Handler mode always uses the main stack; for thread mode 870 * the CONTROL.SPSEL bit determines the answer. 871 * Note that in v7M it is not possible to be in Handler mode with 872 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 873 */ 874 return !arm_v7m_is_handler_mode(env) && 875 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 876 } 877 878 /** 879 * v7m_sp_limit: Return SP limit for current CPU state 880 * Return the SP limit value for the current CPU security state 881 * and stack pointer. 882 */ 883 static inline uint32_t v7m_sp_limit(CPUARMState *env) 884 { 885 if (v7m_using_psp(env)) { 886 return env->v7m.psplim[env->v7m.secure]; 887 } else { 888 return env->v7m.msplim[env->v7m.secure]; 889 } 890 } 891 892 /** 893 * v7m_cpacr_pass: 894 * Return true if the v7M CPACR permits access to the FPU for the specified 895 * security state and privilege level. 896 */ 897 static inline bool v7m_cpacr_pass(CPUARMState *env, 898 bool is_secure, bool is_priv) 899 { 900 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 901 case 0: 902 case 2: /* UNPREDICTABLE: we treat like 0 */ 903 return false; 904 case 1: 905 return is_priv; 906 case 3: 907 return true; 908 default: 909 g_assert_not_reached(); 910 } 911 } 912 913 /** 914 * aarch32_mode_name(): Return name of the AArch32 CPU mode 915 * @psr: Program Status Register indicating CPU mode 916 * 917 * Returns, for debug logging purposes, a printable representation 918 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 919 * the low bits of the specified PSR. 920 */ 921 static inline const char *aarch32_mode_name(uint32_t psr) 922 { 923 static const char cpu_mode_names[16][4] = { 924 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 925 "???", "???", "hyp", "und", "???", "???", "???", "sys" 926 }; 927 928 return cpu_mode_names[psr & 0xf]; 929 } 930 931 /** 932 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 933 * 934 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 935 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 936 * Must be called with the iothread lock held. 937 */ 938 void arm_cpu_update_virq(ARMCPU *cpu); 939 940 /** 941 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 942 * 943 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 944 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 945 * Must be called with the iothread lock held. 946 */ 947 void arm_cpu_update_vfiq(ARMCPU *cpu); 948 949 /** 950 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 951 * 952 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 953 * following a change to the HCR_EL2.VSE bit. 954 */ 955 void arm_cpu_update_vserr(ARMCPU *cpu); 956 957 /** 958 * arm_mmu_idx_el: 959 * @env: The cpu environment 960 * @el: The EL to use. 961 * 962 * Return the full ARMMMUIdx for the translation regime for EL. 963 */ 964 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 965 966 /** 967 * arm_mmu_idx: 968 * @env: The cpu environment 969 * 970 * Return the full ARMMMUIdx for the current translation regime. 971 */ 972 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 973 974 /** 975 * arm_stage1_mmu_idx: 976 * @env: The cpu environment 977 * 978 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 979 */ 980 #ifdef CONFIG_USER_ONLY 981 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 982 { 983 return ARMMMUIdx_Stage1_E0; 984 } 985 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 986 { 987 return ARMMMUIdx_Stage1_E0; 988 } 989 #else 990 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 991 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 992 #endif 993 994 /** 995 * arm_mmu_idx_is_stage1_of_2: 996 * @mmu_idx: The ARMMMUIdx to test 997 * 998 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 999 * first stage of a two stage regime. 1000 */ 1001 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 1002 { 1003 switch (mmu_idx) { 1004 case ARMMMUIdx_Stage1_E0: 1005 case ARMMMUIdx_Stage1_E1: 1006 case ARMMMUIdx_Stage1_E1_PAN: 1007 return true; 1008 default: 1009 return false; 1010 } 1011 } 1012 1013 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1014 const ARMISARegisters *id) 1015 { 1016 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1017 1018 if ((features >> ARM_FEATURE_V4T) & 1) { 1019 valid |= CPSR_T; 1020 } 1021 if ((features >> ARM_FEATURE_V5) & 1) { 1022 valid |= CPSR_Q; /* V5TE in reality*/ 1023 } 1024 if ((features >> ARM_FEATURE_V6) & 1) { 1025 valid |= CPSR_E | CPSR_GE; 1026 } 1027 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1028 valid |= CPSR_IT; 1029 } 1030 if (isar_feature_aa32_jazelle(id)) { 1031 valid |= CPSR_J; 1032 } 1033 if (isar_feature_aa32_pan(id)) { 1034 valid |= CPSR_PAN; 1035 } 1036 if (isar_feature_aa32_dit(id)) { 1037 valid |= CPSR_DIT; 1038 } 1039 if (isar_feature_aa32_ssbs(id)) { 1040 valid |= CPSR_SSBS; 1041 } 1042 1043 return valid; 1044 } 1045 1046 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1047 { 1048 uint32_t valid; 1049 1050 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1051 if (isar_feature_aa64_bti(id)) { 1052 valid |= PSTATE_BTYPE; 1053 } 1054 if (isar_feature_aa64_pan(id)) { 1055 valid |= PSTATE_PAN; 1056 } 1057 if (isar_feature_aa64_uao(id)) { 1058 valid |= PSTATE_UAO; 1059 } 1060 if (isar_feature_aa64_dit(id)) { 1061 valid |= PSTATE_DIT; 1062 } 1063 if (isar_feature_aa64_ssbs(id)) { 1064 valid |= PSTATE_SSBS; 1065 } 1066 if (isar_feature_aa64_mte(id)) { 1067 valid |= PSTATE_TCO; 1068 } 1069 1070 return valid; 1071 } 1072 1073 /* Granule size (i.e. page size) */ 1074 typedef enum ARMGranuleSize { 1075 /* Same order as TG0 encoding */ 1076 Gran4K, 1077 Gran64K, 1078 Gran16K, 1079 GranInvalid, 1080 } ARMGranuleSize; 1081 1082 /** 1083 * arm_granule_bits: Return address size of the granule in bits 1084 * 1085 * Return the address size of the granule in bits. This corresponds 1086 * to the pseudocode TGxGranuleBits(). 1087 */ 1088 static inline int arm_granule_bits(ARMGranuleSize gran) 1089 { 1090 switch (gran) { 1091 case Gran64K: 1092 return 16; 1093 case Gran16K: 1094 return 14; 1095 case Gran4K: 1096 return 12; 1097 default: 1098 g_assert_not_reached(); 1099 } 1100 } 1101 1102 /* 1103 * Parameters of a given virtual address, as extracted from the 1104 * translation control register (TCR) for a given regime. 1105 */ 1106 typedef struct ARMVAParameters { 1107 unsigned tsz : 8; 1108 unsigned ps : 3; 1109 unsigned sh : 2; 1110 unsigned select : 1; 1111 bool tbi : 1; 1112 bool epd : 1; 1113 bool hpd : 1; 1114 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1115 bool ds : 1; 1116 bool ha : 1; 1117 bool hd : 1; 1118 ARMGranuleSize gran : 2; 1119 } ARMVAParameters; 1120 1121 /** 1122 * aa64_va_parameters: Return parameters for an AArch64 virtual address 1123 * @env: CPU 1124 * @va: virtual address to look up 1125 * @mmu_idx: determines translation regime to use 1126 * @data: true if this is a data access 1127 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 1128 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) 1129 */ 1130 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1131 ARMMMUIdx mmu_idx, bool data, 1132 bool el1_is_aa32); 1133 1134 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1135 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1136 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); 1137 1138 /* Determine if allocation tags are available. */ 1139 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1140 uint64_t sctlr) 1141 { 1142 if (el < 3 1143 && arm_feature(env, ARM_FEATURE_EL3) 1144 && !(env->cp15.scr_el3 & SCR_ATA)) { 1145 return false; 1146 } 1147 if (el < 2 && arm_is_el2_enabled(env)) { 1148 uint64_t hcr = arm_hcr_el2_eff(env); 1149 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1150 return false; 1151 } 1152 } 1153 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1154 return sctlr != 0; 1155 } 1156 1157 #ifndef CONFIG_USER_ONLY 1158 1159 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1160 typedef struct V8M_SAttributes { 1161 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1162 bool ns; 1163 bool nsc; 1164 uint8_t sregion; 1165 bool srvalid; 1166 uint8_t iregion; 1167 bool irvalid; 1168 } V8M_SAttributes; 1169 1170 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1171 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1172 bool secure, V8M_SAttributes *sattrs); 1173 1174 /* Cacheability and shareability attributes for a memory access */ 1175 typedef struct ARMCacheAttrs { 1176 /* 1177 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1178 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1179 */ 1180 unsigned int attrs:8; 1181 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1182 bool is_s2_format:1; 1183 bool guarded:1; /* guarded bit of the v8-64 PTE */ 1184 } ARMCacheAttrs; 1185 1186 /* Fields that are valid upon success. */ 1187 typedef struct GetPhysAddrResult { 1188 CPUTLBEntryFull f; 1189 ARMCacheAttrs cacheattrs; 1190 } GetPhysAddrResult; 1191 1192 /** 1193 * get_phys_addr: get the physical address for a virtual address 1194 * @env: CPUARMState 1195 * @address: virtual address to get physical address for 1196 * @access_type: 0 for read, 1 for write, 2 for execute 1197 * @mmu_idx: MMU index indicating required translation regime 1198 * @result: set on translation success. 1199 * @fi: set to fault info if the translation fails 1200 * 1201 * Find the physical address corresponding to the given virtual address, 1202 * by doing a translation table walk on MMU based systems or using the 1203 * MPU state on MPU based systems. 1204 * 1205 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1206 * prot and page_size may not be filled in, and the populated fsr value provides 1207 * information on why the translation aborted, in the format of a 1208 * DFSR/IFSR fault register, with the following caveats: 1209 * * we honour the short vs long DFSR format differences. 1210 * * the WnR bit is never set (the caller must do this). 1211 * * for PSMAv5 based systems we don't bother to return a full FSR format 1212 * value. 1213 */ 1214 bool get_phys_addr(CPUARMState *env, target_ulong address, 1215 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1216 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1217 __attribute__((nonnull)); 1218 1219 /** 1220 * get_phys_addr_with_space_nogpc: get the physical address for a virtual 1221 * address 1222 * @env: CPUARMState 1223 * @address: virtual address to get physical address for 1224 * @access_type: 0 for read, 1 for write, 2 for execute 1225 * @mmu_idx: MMU index indicating required translation regime 1226 * @space: security space for the access 1227 * @result: set on translation success. 1228 * @fi: set to fault info if the translation fails 1229 * 1230 * Similar to get_phys_addr, but use the given security space and don't perform 1231 * a Granule Protection Check on the resulting address. 1232 */ 1233 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, 1234 MMUAccessType access_type, 1235 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 1236 GetPhysAddrResult *result, 1237 ARMMMUFaultInfo *fi) 1238 __attribute__((nonnull)); 1239 1240 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1241 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1242 bool is_secure, GetPhysAddrResult *result, 1243 ARMMMUFaultInfo *fi, uint32_t *mregion); 1244 1245 void arm_log_exception(CPUState *cs); 1246 1247 #endif /* !CONFIG_USER_ONLY */ 1248 1249 /* 1250 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1251 * the same simd_desc() encoding due to restrictions on size. 1252 * Use these instead. 1253 */ 1254 FIELD(PREDDESC, OPRSZ, 0, 6) 1255 FIELD(PREDDESC, ESZ, 6, 2) 1256 FIELD(PREDDESC, DATA, 8, 24) 1257 1258 /* 1259 * The SVE simd_data field, for memory ops, contains either 1260 * rd (5 bits) or a shift count (2 bits). 1261 */ 1262 #define SVE_MTEDESC_SHIFT 5 1263 1264 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1265 FIELD(MTEDESC, MIDX, 0, 4) 1266 FIELD(MTEDESC, TBI, 4, 2) 1267 FIELD(MTEDESC, TCMA, 6, 2) 1268 FIELD(MTEDESC, WRITE, 8, 1) 1269 FIELD(MTEDESC, ALIGN, 9, 3) 1270 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */ 1271 1272 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1273 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1274 1275 static inline int allocation_tag_from_addr(uint64_t ptr) 1276 { 1277 return extract64(ptr, 56, 4); 1278 } 1279 1280 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1281 { 1282 return deposit64(ptr, 56, 4, rtag); 1283 } 1284 1285 /* Return true if tbi bits mean that the access is checked. */ 1286 static inline bool tbi_check(uint32_t desc, int bit55) 1287 { 1288 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1289 } 1290 1291 /* Return true if tcma bits mean that the access is unchecked. */ 1292 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1293 { 1294 /* 1295 * We had extracted bit55 and ptr_tag for other reasons, so fold 1296 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1297 */ 1298 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1299 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1300 return tcma && match; 1301 } 1302 1303 /* 1304 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1305 * for the tag to be present in the FAR_ELx register. But for user-only 1306 * mode, we do not have a TLB with which to implement this, so we must 1307 * remove the top byte. 1308 */ 1309 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1310 { 1311 #ifdef CONFIG_USER_ONLY 1312 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1313 ptr &= sextract64(ptr, 0, 56); 1314 #endif 1315 return ptr; 1316 } 1317 1318 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1319 { 1320 #ifdef CONFIG_USER_ONLY 1321 int64_t clean_ptr = sextract64(ptr, 0, 56); 1322 if (tbi_check(desc, clean_ptr < 0)) { 1323 ptr = clean_ptr; 1324 } 1325 #endif 1326 return ptr; 1327 } 1328 1329 /* Values for M-profile PSR.ECI for MVE insns */ 1330 enum MVEECIState { 1331 ECI_NONE = 0, /* No completed beats */ 1332 ECI_A0 = 1, /* Completed: A0 */ 1333 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1334 /* 3 is reserved */ 1335 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1336 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1337 /* All other values reserved */ 1338 }; 1339 1340 /* Definitions for the PMU registers */ 1341 #define PMCRN_MASK 0xf800 1342 #define PMCRN_SHIFT 11 1343 #define PMCRLP 0x80 1344 #define PMCRLC 0x40 1345 #define PMCRDP 0x20 1346 #define PMCRX 0x10 1347 #define PMCRD 0x8 1348 #define PMCRC 0x4 1349 #define PMCRP 0x2 1350 #define PMCRE 0x1 1351 /* 1352 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1353 * which can be written as 1 to trigger behaviour but which stay RAZ). 1354 */ 1355 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1356 1357 #define PMXEVTYPER_P 0x80000000 1358 #define PMXEVTYPER_U 0x40000000 1359 #define PMXEVTYPER_NSK 0x20000000 1360 #define PMXEVTYPER_NSU 0x10000000 1361 #define PMXEVTYPER_NSH 0x08000000 1362 #define PMXEVTYPER_M 0x04000000 1363 #define PMXEVTYPER_MT 0x02000000 1364 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1365 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1366 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1367 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1368 PMXEVTYPER_EVTCOUNT) 1369 1370 #define PMCCFILTR 0xf8000000 1371 #define PMCCFILTR_M PMXEVTYPER_M 1372 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1373 1374 static inline uint32_t pmu_num_counters(CPUARMState *env) 1375 { 1376 ARMCPU *cpu = env_archcpu(env); 1377 1378 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1379 } 1380 1381 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1382 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1383 { 1384 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1385 } 1386 1387 #ifdef TARGET_AARCH64 1388 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1389 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg); 1390 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg); 1391 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg); 1392 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg); 1393 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg); 1394 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg); 1395 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1396 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1397 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1398 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1399 void aarch64_max_tcg_initfn(Object *obj); 1400 void aarch64_add_pauth_properties(Object *obj); 1401 void aarch64_add_sve_properties(Object *obj); 1402 void aarch64_add_sme_properties(Object *obj); 1403 #endif 1404 1405 /* Read the CONTROL register as the MRS instruction would. */ 1406 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); 1407 1408 /* 1409 * Return a pointer to the location where we currently store the 1410 * stack pointer for the requested security state and thread mode. 1411 * This pointer will become invalid if the CPU state is updated 1412 * such that the stack pointers are switched around (eg changing 1413 * the SPSEL control bit). 1414 */ 1415 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, 1416 bool threadmode, bool spsel); 1417 1418 bool el_is_in_host(CPUARMState *env, int el); 1419 1420 void aa32_max_features(ARMCPU *cpu); 1421 int exception_target_el(CPUARMState *env); 1422 bool arm_singlestep_active(CPUARMState *env); 1423 bool arm_generate_debug_exceptions(CPUARMState *env); 1424 1425 /** 1426 * pauth_ptr_mask: 1427 * @param: parameters defining the MMU setup 1428 * 1429 * Return a mask of the address bits that contain the authentication code, 1430 * given the MMU config defined by @param. 1431 */ 1432 static inline uint64_t pauth_ptr_mask(ARMVAParameters param) 1433 { 1434 int bot_pac_bit = 64 - param.tsz; 1435 int top_pac_bit = 64 - 8 * param.tbi; 1436 1437 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); 1438 } 1439 1440 /* Add the cpreg definitions for debug related system registers */ 1441 void define_debug_regs(ARMCPU *cpu); 1442 1443 /* Effective value of MDCR_EL2 */ 1444 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1445 { 1446 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1447 } 1448 1449 /* Powers of 2 for sve_vq_map et al. */ 1450 #define SVE_VQ_POW2_MAP \ 1451 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1452 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1453 1454 /* 1455 * Return true if it is possible to take a fine-grained-trap to EL2. 1456 */ 1457 static inline bool arm_fgt_active(CPUARMState *env, int el) 1458 { 1459 /* 1460 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps 1461 * that can affect EL0, but it is harmless to do the test also for 1462 * traps on registers that are only accessible at EL1 because if the test 1463 * returns true then we can't be executing at EL1 anyway. 1464 * FGT traps only happen when EL2 is enabled and EL1 is AArch64; 1465 * traps from AArch32 only happen for the EL0 is AArch32 case. 1466 */ 1467 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && 1468 el < 2 && arm_is_el2_enabled(env) && 1469 arm_el_is_aa64(env, 1) && 1470 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && 1471 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); 1472 } 1473 1474 void assert_hflags_rebuild_correctly(CPUARMState *env); 1475 1476 /* 1477 * Although the ARM implementation of hardware assisted debugging 1478 * allows for different breakpoints per-core, the current GDB 1479 * interface treats them as a global pool of registers (which seems to 1480 * be the case for x86, ppc and s390). As a result we store one copy 1481 * of registers which is used for all active cores. 1482 * 1483 * Write access is serialised by virtue of the GDB protocol which 1484 * updates things. Read access (i.e. when the values are copied to the 1485 * vCPU) is also gated by GDB's run control. 1486 * 1487 * This is not unreasonable as most of the time debugging kernels you 1488 * never know which core will eventually execute your function. 1489 */ 1490 1491 typedef struct { 1492 uint64_t bcr; 1493 uint64_t bvr; 1494 } HWBreakpoint; 1495 1496 /* 1497 * The watchpoint registers can cover more area than the requested 1498 * watchpoint so we need to store the additional information 1499 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub 1500 * when the watchpoint is hit. 1501 */ 1502 typedef struct { 1503 uint64_t wcr; 1504 uint64_t wvr; 1505 CPUWatchpoint details; 1506 } HWWatchpoint; 1507 1508 /* Maximum and current break/watch point counts */ 1509 extern int max_hw_bps, max_hw_wps; 1510 extern GArray *hw_breakpoints, *hw_watchpoints; 1511 1512 #define cur_hw_wps (hw_watchpoints->len) 1513 #define cur_hw_bps (hw_breakpoints->len) 1514 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) 1515 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) 1516 1517 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); 1518 int insert_hw_breakpoint(target_ulong pc); 1519 int delete_hw_breakpoint(target_ulong pc); 1520 1521 bool check_watchpoint_in_range(int i, target_ulong addr); 1522 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); 1523 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1524 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1525 #endif 1526