xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision f4152040)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33 
34 #include "exec/gdbstub.h"
35 
36 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
37         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
38 #define PL1_WRITE_MASK 0x4
39 
40 #define SYSREG_OP0_SHIFT      20
41 #define SYSREG_OP0_MASK       0x3
42 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
43 #define SYSREG_OP1_SHIFT      14
44 #define SYSREG_OP1_MASK       0x7
45 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
46 #define SYSREG_CRN_SHIFT      10
47 #define SYSREG_CRN_MASK       0xf
48 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
49 #define SYSREG_CRM_SHIFT      1
50 #define SYSREG_CRM_MASK       0xf
51 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
52 #define SYSREG_OP2_SHIFT      17
53 #define SYSREG_OP2_MASK       0x7
54 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
55 
56 #define SYSREG(op0, op1, crn, crm, op2) \
57     ((op0 << SYSREG_OP0_SHIFT) | \
58      (op1 << SYSREG_OP1_SHIFT) | \
59      (crn << SYSREG_CRN_SHIFT) | \
60      (crm << SYSREG_CRM_SHIFT) | \
61      (op2 << SYSREG_OP2_SHIFT))
62 #define SYSREG_MASK \
63     SYSREG(SYSREG_OP0_MASK, \
64            SYSREG_OP1_MASK, \
65            SYSREG_CRN_MASK, \
66            SYSREG_CRM_MASK, \
67            SYSREG_OP2_MASK)
68 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
69 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
70 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
71 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
72 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
73 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
74 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
75 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
76 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
77 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
78 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
79 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
80 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
81 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
82 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
83 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
84 
85 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
86 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
87 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
88 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
89 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
90 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
91 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
92 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
93 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
94 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
95 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
96 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
97 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
98 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
99 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
100 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
101 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
102 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
103 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
104 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
105 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
106 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
107 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
108 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
109 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
110 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
111 
112 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
113 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
114 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
115 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
116 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
117 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
118 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
119 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
120 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
121 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
122 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
123 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
124 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
125 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
126 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
127 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
128 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
129 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
130 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
131 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
132 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
133 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
134 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
135 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
136 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
137 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
138 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
139 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
140 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
141 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
142 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
143 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
144 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
145 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
146 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
147 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
148 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
149 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
150 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
151 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
152 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
153 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
154 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
155 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
156 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
157 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
158 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
159 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
160 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
161 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
162 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
163 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
164 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
165 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
166 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
167 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
168 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
169 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
170 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
171 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
172 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
173 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
174 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
175 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
176 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
177 
178 #define WFX_IS_WFE (1 << 0)
179 
180 #define TMR_CTL_ENABLE  (1 << 0)
181 #define TMR_CTL_IMASK   (1 << 1)
182 #define TMR_CTL_ISTATUS (1 << 2)
183 
184 static void hvf_wfi(CPUState *cpu);
185 
186 typedef struct HVFVTimer {
187     /* Vtimer value during migration and paused state */
188     uint64_t vtimer_val;
189 } HVFVTimer;
190 
191 static HVFVTimer vtimer;
192 
193 typedef struct ARMHostCPUFeatures {
194     ARMISARegisters isar;
195     uint64_t features;
196     uint64_t midr;
197     uint32_t reset_sctlr;
198     const char *dtb_compatible;
199 } ARMHostCPUFeatures;
200 
201 static ARMHostCPUFeatures arm_host_cpu_features;
202 
203 struct hvf_reg_match {
204     int reg;
205     uint64_t offset;
206 };
207 
208 static const struct hvf_reg_match hvf_reg_match[] = {
209     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
210     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
211     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
212     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
213     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
214     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
215     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
216     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
217     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
218     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
219     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
220     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
221     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
222     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
223     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
224     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
225     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
226     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
227     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
228     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
229     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
230     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
231     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
232     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
233     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
234     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
235     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
236     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
237     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
238     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
239     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
240     { HV_REG_PC,   offsetof(CPUARMState, pc) },
241 };
242 
243 static const struct hvf_reg_match hvf_fpreg_match[] = {
244     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
245     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
246     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
247     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
248     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
249     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
250     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
251     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
252     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
253     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
254     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
255     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
256     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
257     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
258     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
259     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
260     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
261     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
262     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
263     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
264     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
265     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
266     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
267     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
268     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
269     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
270     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
271     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
272     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
273     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
274     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
275     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
276 };
277 
278 struct hvf_sreg_match {
279     int reg;
280     uint32_t key;
281     uint32_t cp_idx;
282 };
283 
284 static struct hvf_sreg_match hvf_sreg_match[] = {
285     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
286     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
287     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
288     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
289 
290     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
291     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
292     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
293     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
294 
295     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
296     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
297     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
298     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
299 
300     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
301     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
302     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
303     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
304 
305     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
306     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
307     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
308     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
309 
310     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
311     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
312     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
313     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
314 
315     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
316     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
317     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
318     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
319 
320     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
321     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
322     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
323     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
324 
325     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
326     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
327     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
328     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
329 
330     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
331     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
332     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
333     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
334 
335     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
336     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
337     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
338     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
339 
340     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
341     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
342     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
343     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
344 
345     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
346     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
347     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
348     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
349 
350     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
351     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
352     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
353     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
354 
355     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
356     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
357     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
358     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
359 
360     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
361     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
362     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
363     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
364 
365 #ifdef SYNC_NO_RAW_REGS
366     /*
367      * The registers below are manually synced on init because they are
368      * marked as NO_RAW. We still list them to make number space sync easier.
369      */
370     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
371     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
372     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
373     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
374 #endif
375     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
376     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
377     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
378     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
379     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
380 #ifdef SYNC_NO_MMFR0
381     /* We keep the hardware MMFR0 around. HW limits are there anyway */
382     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
383 #endif
384     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
385     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
386 
387     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
388     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
389     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
390     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
391     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
392     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
393 
394     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
395     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
396     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
397     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
398     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
399     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
400     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
401     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
402     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
403     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
404 
405     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
406     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
407     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
408     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
409     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
410     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
411     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
412     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
413     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
414     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
415     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
416     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
417     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
418     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
419     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
420     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
421     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
422     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
423     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
424     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
425 };
426 
427 int hvf_get_registers(CPUState *cpu)
428 {
429     ARMCPU *arm_cpu = ARM_CPU(cpu);
430     CPUARMState *env = &arm_cpu->env;
431     hv_return_t ret;
432     uint64_t val;
433     hv_simd_fp_uchar16_t fpval;
434     int i;
435 
436     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
437         ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
438         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
439         assert_hvf_ok(ret);
440     }
441 
442     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
443         ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
444                                       &fpval);
445         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
446         assert_hvf_ok(ret);
447     }
448 
449     val = 0;
450     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
451     assert_hvf_ok(ret);
452     vfp_set_fpcr(env, val);
453 
454     val = 0;
455     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
456     assert_hvf_ok(ret);
457     vfp_set_fpsr(env, val);
458 
459     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
460     assert_hvf_ok(ret);
461     pstate_write(env, val);
462 
463     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
464         if (hvf_sreg_match[i].cp_idx == -1) {
465             continue;
466         }
467 
468         ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
469         assert_hvf_ok(ret);
470 
471         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
472     }
473     assert(write_list_to_cpustate(arm_cpu));
474 
475     aarch64_restore_sp(env, arm_current_el(env));
476 
477     return 0;
478 }
479 
480 int hvf_put_registers(CPUState *cpu)
481 {
482     ARMCPU *arm_cpu = ARM_CPU(cpu);
483     CPUARMState *env = &arm_cpu->env;
484     hv_return_t ret;
485     uint64_t val;
486     hv_simd_fp_uchar16_t fpval;
487     int i;
488 
489     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
490         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
491         ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
492         assert_hvf_ok(ret);
493     }
494 
495     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
496         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
497         ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
498                                       fpval);
499         assert_hvf_ok(ret);
500     }
501 
502     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
503     assert_hvf_ok(ret);
504 
505     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
506     assert_hvf_ok(ret);
507 
508     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
509     assert_hvf_ok(ret);
510 
511     aarch64_save_sp(env, arm_current_el(env));
512 
513     assert(write_cpustate_to_list(arm_cpu, false));
514     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
515         if (hvf_sreg_match[i].cp_idx == -1) {
516             continue;
517         }
518 
519         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
520         ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
521         assert_hvf_ok(ret);
522     }
523 
524     ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
525     assert_hvf_ok(ret);
526 
527     return 0;
528 }
529 
530 static void flush_cpu_state(CPUState *cpu)
531 {
532     if (cpu->vcpu_dirty) {
533         hvf_put_registers(cpu);
534         cpu->vcpu_dirty = false;
535     }
536 }
537 
538 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
539 {
540     hv_return_t r;
541 
542     flush_cpu_state(cpu);
543 
544     if (rt < 31) {
545         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
546         assert_hvf_ok(r);
547     }
548 }
549 
550 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
551 {
552     uint64_t val = 0;
553     hv_return_t r;
554 
555     flush_cpu_state(cpu);
556 
557     if (rt < 31) {
558         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
559         assert_hvf_ok(r);
560     }
561 
562     return val;
563 }
564 
565 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
566 {
567     ARMISARegisters host_isar = {};
568     const struct isar_regs {
569         int reg;
570         uint64_t *val;
571     } regs[] = {
572         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
573         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
574         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
575         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
576         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
577         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
578         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
579         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
580         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
581     };
582     hv_vcpu_t fd;
583     hv_return_t r = HV_SUCCESS;
584     hv_vcpu_exit_t *exit;
585     int i;
586 
587     ahcf->dtb_compatible = "arm,arm-v8";
588     ahcf->features = (1ULL << ARM_FEATURE_V8) |
589                      (1ULL << ARM_FEATURE_NEON) |
590                      (1ULL << ARM_FEATURE_AARCH64) |
591                      (1ULL << ARM_FEATURE_PMU) |
592                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
593 
594     /* We set up a small vcpu to extract host registers */
595 
596     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
597         return false;
598     }
599 
600     for (i = 0; i < ARRAY_SIZE(regs); i++) {
601         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
602     }
603     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
604     r |= hv_vcpu_destroy(fd);
605 
606     ahcf->isar = host_isar;
607 
608     /*
609      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
610      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
611      */
612     ahcf->reset_sctlr = 0x30100180;
613     /*
614      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
615      * let's disable it on boot and then allow guest software to turn it on by
616      * setting it to 0.
617      */
618     ahcf->reset_sctlr |= 0x00800000;
619 
620     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
621     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
622         return false;
623     }
624 
625     return r == HV_SUCCESS;
626 }
627 
628 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
629 {
630     if (!arm_host_cpu_features.dtb_compatible) {
631         if (!hvf_enabled() ||
632             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
633             /*
634              * We can't report this error yet, so flag that we need to
635              * in arm_cpu_realizefn().
636              */
637             cpu->host_cpu_probe_failed = true;
638             return;
639         }
640     }
641 
642     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
643     cpu->isar = arm_host_cpu_features.isar;
644     cpu->env.features = arm_host_cpu_features.features;
645     cpu->midr = arm_host_cpu_features.midr;
646     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
647 }
648 
649 void hvf_arch_vcpu_destroy(CPUState *cpu)
650 {
651 }
652 
653 int hvf_arch_init_vcpu(CPUState *cpu)
654 {
655     ARMCPU *arm_cpu = ARM_CPU(cpu);
656     CPUARMState *env = &arm_cpu->env;
657     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
658     uint32_t sregs_cnt = 0;
659     uint64_t pfr;
660     hv_return_t ret;
661     int i;
662 
663     env->aarch64 = true;
664     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
665 
666     /* Allocate enough space for our sysreg sync */
667     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
668                                      sregs_match_len);
669     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
670                                     sregs_match_len);
671     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
672                                              arm_cpu->cpreg_vmstate_indexes,
673                                              sregs_match_len);
674     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
675                                             arm_cpu->cpreg_vmstate_values,
676                                             sregs_match_len);
677 
678     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
679 
680     /* Populate cp list for all known sysregs */
681     for (i = 0; i < sregs_match_len; i++) {
682         const ARMCPRegInfo *ri;
683         uint32_t key = hvf_sreg_match[i].key;
684 
685         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
686         if (ri) {
687             assert(!(ri->type & ARM_CP_NO_RAW));
688             hvf_sreg_match[i].cp_idx = sregs_cnt;
689             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
690         } else {
691             hvf_sreg_match[i].cp_idx = -1;
692         }
693     }
694     arm_cpu->cpreg_array_len = sregs_cnt;
695     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
696 
697     assert(write_cpustate_to_list(arm_cpu, false));
698 
699     /* Set CP_NO_RAW system registers on init */
700     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
701                               arm_cpu->midr);
702     assert_hvf_ok(ret);
703 
704     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
705                               arm_cpu->mp_affinity);
706     assert_hvf_ok(ret);
707 
708     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
709     assert_hvf_ok(ret);
710     pfr |= env->gicv3state ? (1 << 24) : 0;
711     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
712     assert_hvf_ok(ret);
713 
714     /* We're limited to underlying hardware caps, override internal versions */
715     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
716                               &arm_cpu->isar.id_aa64mmfr0);
717     assert_hvf_ok(ret);
718 
719     return 0;
720 }
721 
722 void hvf_kick_vcpu_thread(CPUState *cpu)
723 {
724     cpus_kick_thread(cpu);
725     hv_vcpus_exit(&cpu->hvf->fd, 1);
726 }
727 
728 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
729                                 uint32_t syndrome)
730 {
731     ARMCPU *arm_cpu = ARM_CPU(cpu);
732     CPUARMState *env = &arm_cpu->env;
733 
734     cpu->exception_index = excp;
735     env->exception.target_el = 1;
736     env->exception.syndrome = syndrome;
737 
738     arm_cpu_do_interrupt(cpu);
739 }
740 
741 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
742 {
743     int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
744     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
745 }
746 
747 /*
748  * Handle a PSCI call.
749  *
750  * Returns 0 on success
751  *         -1 when the PSCI call is unknown,
752  */
753 static bool hvf_handle_psci_call(CPUState *cpu)
754 {
755     ARMCPU *arm_cpu = ARM_CPU(cpu);
756     CPUARMState *env = &arm_cpu->env;
757     uint64_t param[4] = {
758         env->xregs[0],
759         env->xregs[1],
760         env->xregs[2],
761         env->xregs[3]
762     };
763     uint64_t context_id, mpidr;
764     bool target_aarch64 = true;
765     CPUState *target_cpu_state;
766     ARMCPU *target_cpu;
767     target_ulong entry;
768     int target_el = 1;
769     int32_t ret = 0;
770 
771     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
772                         arm_cpu->mp_affinity);
773 
774     switch (param[0]) {
775     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
776         ret = QEMU_PSCI_VERSION_1_1;
777         break;
778     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
779         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
780         break;
781     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
782     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
783         mpidr = param[1];
784 
785         switch (param[2]) {
786         case 0:
787             target_cpu_state = arm_get_cpu_by_id(mpidr);
788             if (!target_cpu_state) {
789                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
790                 break;
791             }
792             target_cpu = ARM_CPU(target_cpu_state);
793 
794             ret = target_cpu->power_state;
795             break;
796         default:
797             /* Everything above affinity level 0 is always on. */
798             ret = 0;
799         }
800         break;
801     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
802         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
803         /*
804          * QEMU reset and shutdown are async requests, but PSCI
805          * mandates that we never return from the reset/shutdown
806          * call, so power the CPU off now so it doesn't execute
807          * anything further.
808          */
809         hvf_psci_cpu_off(arm_cpu);
810         break;
811     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
812         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
813         hvf_psci_cpu_off(arm_cpu);
814         break;
815     case QEMU_PSCI_0_1_FN_CPU_ON:
816     case QEMU_PSCI_0_2_FN_CPU_ON:
817     case QEMU_PSCI_0_2_FN64_CPU_ON:
818         mpidr = param[1];
819         entry = param[2];
820         context_id = param[3];
821         ret = arm_set_cpu_on(mpidr, entry, context_id,
822                              target_el, target_aarch64);
823         break;
824     case QEMU_PSCI_0_1_FN_CPU_OFF:
825     case QEMU_PSCI_0_2_FN_CPU_OFF:
826         hvf_psci_cpu_off(arm_cpu);
827         break;
828     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
829     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
830     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
831         /* Affinity levels are not supported in QEMU */
832         if (param[1] & 0xfffe0000) {
833             ret = QEMU_PSCI_RET_INVALID_PARAMS;
834             break;
835         }
836         /* Powerdown is not supported, we always go into WFI */
837         env->xregs[0] = 0;
838         hvf_wfi(cpu);
839         break;
840     case QEMU_PSCI_0_1_FN_MIGRATE:
841     case QEMU_PSCI_0_2_FN_MIGRATE:
842         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
843         break;
844     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
845         switch (param[1]) {
846         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
847         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
848         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
849         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
850         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
851         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
852         case QEMU_PSCI_0_1_FN_CPU_ON:
853         case QEMU_PSCI_0_2_FN_CPU_ON:
854         case QEMU_PSCI_0_2_FN64_CPU_ON:
855         case QEMU_PSCI_0_1_FN_CPU_OFF:
856         case QEMU_PSCI_0_2_FN_CPU_OFF:
857         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
858         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
859         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
860         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
861             ret = 0;
862             break;
863         case QEMU_PSCI_0_1_FN_MIGRATE:
864         case QEMU_PSCI_0_2_FN_MIGRATE:
865         default:
866             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
867         }
868         break;
869     default:
870         return false;
871     }
872 
873     env->xregs[0] = ret;
874     return true;
875 }
876 
877 static bool is_id_sysreg(uint32_t reg)
878 {
879     return SYSREG_OP0(reg) == 3 &&
880            SYSREG_OP1(reg) == 0 &&
881            SYSREG_CRN(reg) == 0 &&
882            SYSREG_CRM(reg) >= 1 &&
883            SYSREG_CRM(reg) < 8;
884 }
885 
886 static uint32_t hvf_reg2cp_reg(uint32_t reg)
887 {
888     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
889                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
890                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
891                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
892                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
893                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
894 }
895 
896 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
897 {
898     ARMCPU *arm_cpu = ARM_CPU(cpu);
899     CPUARMState *env = &arm_cpu->env;
900     const ARMCPRegInfo *ri;
901 
902     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
903     if (ri) {
904         if (ri->accessfn) {
905             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
906                 return false;
907             }
908         }
909         if (ri->type & ARM_CP_CONST) {
910             *val = ri->resetvalue;
911         } else if (ri->readfn) {
912             *val = ri->readfn(env, ri);
913         } else {
914             *val = CPREG_FIELD64(env, ri);
915         }
916         trace_hvf_vgic_read(ri->name, *val);
917         return true;
918     }
919 
920     return false;
921 }
922 
923 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
924 {
925     ARMCPU *arm_cpu = ARM_CPU(cpu);
926     CPUARMState *env = &arm_cpu->env;
927     uint64_t val = 0;
928 
929     switch (reg) {
930     case SYSREG_CNTPCT_EL0:
931         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
932               gt_cntfrq_period_ns(arm_cpu);
933         break;
934     case SYSREG_PMCR_EL0:
935         val = env->cp15.c9_pmcr;
936         break;
937     case SYSREG_PMCCNTR_EL0:
938         pmu_op_start(env);
939         val = env->cp15.c15_ccnt;
940         pmu_op_finish(env);
941         break;
942     case SYSREG_PMCNTENCLR_EL0:
943         val = env->cp15.c9_pmcnten;
944         break;
945     case SYSREG_PMOVSCLR_EL0:
946         val = env->cp15.c9_pmovsr;
947         break;
948     case SYSREG_PMSELR_EL0:
949         val = env->cp15.c9_pmselr;
950         break;
951     case SYSREG_PMINTENCLR_EL1:
952         val = env->cp15.c9_pminten;
953         break;
954     case SYSREG_PMCCFILTR_EL0:
955         val = env->cp15.pmccfiltr_el0;
956         break;
957     case SYSREG_PMCNTENSET_EL0:
958         val = env->cp15.c9_pmcnten;
959         break;
960     case SYSREG_PMUSERENR_EL0:
961         val = env->cp15.c9_pmuserenr;
962         break;
963     case SYSREG_PMCEID0_EL0:
964     case SYSREG_PMCEID1_EL0:
965         /* We can't really count anything yet, declare all events invalid */
966         val = 0;
967         break;
968     case SYSREG_OSLSR_EL1:
969         val = env->cp15.oslsr_el1;
970         break;
971     case SYSREG_OSDLR_EL1:
972         /* Dummy register */
973         break;
974     case SYSREG_ICC_AP0R0_EL1:
975     case SYSREG_ICC_AP0R1_EL1:
976     case SYSREG_ICC_AP0R2_EL1:
977     case SYSREG_ICC_AP0R3_EL1:
978     case SYSREG_ICC_AP1R0_EL1:
979     case SYSREG_ICC_AP1R1_EL1:
980     case SYSREG_ICC_AP1R2_EL1:
981     case SYSREG_ICC_AP1R3_EL1:
982     case SYSREG_ICC_ASGI1R_EL1:
983     case SYSREG_ICC_BPR0_EL1:
984     case SYSREG_ICC_BPR1_EL1:
985     case SYSREG_ICC_DIR_EL1:
986     case SYSREG_ICC_EOIR0_EL1:
987     case SYSREG_ICC_EOIR1_EL1:
988     case SYSREG_ICC_HPPIR0_EL1:
989     case SYSREG_ICC_HPPIR1_EL1:
990     case SYSREG_ICC_IAR0_EL1:
991     case SYSREG_ICC_IAR1_EL1:
992     case SYSREG_ICC_IGRPEN0_EL1:
993     case SYSREG_ICC_IGRPEN1_EL1:
994     case SYSREG_ICC_PMR_EL1:
995     case SYSREG_ICC_SGI0R_EL1:
996     case SYSREG_ICC_SGI1R_EL1:
997     case SYSREG_ICC_SRE_EL1:
998     case SYSREG_ICC_CTLR_EL1:
999         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1000         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1001             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1002         }
1003         break;
1004     case SYSREG_DBGBVR0_EL1:
1005     case SYSREG_DBGBVR1_EL1:
1006     case SYSREG_DBGBVR2_EL1:
1007     case SYSREG_DBGBVR3_EL1:
1008     case SYSREG_DBGBVR4_EL1:
1009     case SYSREG_DBGBVR5_EL1:
1010     case SYSREG_DBGBVR6_EL1:
1011     case SYSREG_DBGBVR7_EL1:
1012     case SYSREG_DBGBVR8_EL1:
1013     case SYSREG_DBGBVR9_EL1:
1014     case SYSREG_DBGBVR10_EL1:
1015     case SYSREG_DBGBVR11_EL1:
1016     case SYSREG_DBGBVR12_EL1:
1017     case SYSREG_DBGBVR13_EL1:
1018     case SYSREG_DBGBVR14_EL1:
1019     case SYSREG_DBGBVR15_EL1:
1020         val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1021         break;
1022     case SYSREG_DBGBCR0_EL1:
1023     case SYSREG_DBGBCR1_EL1:
1024     case SYSREG_DBGBCR2_EL1:
1025     case SYSREG_DBGBCR3_EL1:
1026     case SYSREG_DBGBCR4_EL1:
1027     case SYSREG_DBGBCR5_EL1:
1028     case SYSREG_DBGBCR6_EL1:
1029     case SYSREG_DBGBCR7_EL1:
1030     case SYSREG_DBGBCR8_EL1:
1031     case SYSREG_DBGBCR9_EL1:
1032     case SYSREG_DBGBCR10_EL1:
1033     case SYSREG_DBGBCR11_EL1:
1034     case SYSREG_DBGBCR12_EL1:
1035     case SYSREG_DBGBCR13_EL1:
1036     case SYSREG_DBGBCR14_EL1:
1037     case SYSREG_DBGBCR15_EL1:
1038         val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1039         break;
1040     case SYSREG_DBGWVR0_EL1:
1041     case SYSREG_DBGWVR1_EL1:
1042     case SYSREG_DBGWVR2_EL1:
1043     case SYSREG_DBGWVR3_EL1:
1044     case SYSREG_DBGWVR4_EL1:
1045     case SYSREG_DBGWVR5_EL1:
1046     case SYSREG_DBGWVR6_EL1:
1047     case SYSREG_DBGWVR7_EL1:
1048     case SYSREG_DBGWVR8_EL1:
1049     case SYSREG_DBGWVR9_EL1:
1050     case SYSREG_DBGWVR10_EL1:
1051     case SYSREG_DBGWVR11_EL1:
1052     case SYSREG_DBGWVR12_EL1:
1053     case SYSREG_DBGWVR13_EL1:
1054     case SYSREG_DBGWVR14_EL1:
1055     case SYSREG_DBGWVR15_EL1:
1056         val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1057         break;
1058     case SYSREG_DBGWCR0_EL1:
1059     case SYSREG_DBGWCR1_EL1:
1060     case SYSREG_DBGWCR2_EL1:
1061     case SYSREG_DBGWCR3_EL1:
1062     case SYSREG_DBGWCR4_EL1:
1063     case SYSREG_DBGWCR5_EL1:
1064     case SYSREG_DBGWCR6_EL1:
1065     case SYSREG_DBGWCR7_EL1:
1066     case SYSREG_DBGWCR8_EL1:
1067     case SYSREG_DBGWCR9_EL1:
1068     case SYSREG_DBGWCR10_EL1:
1069     case SYSREG_DBGWCR11_EL1:
1070     case SYSREG_DBGWCR12_EL1:
1071     case SYSREG_DBGWCR13_EL1:
1072     case SYSREG_DBGWCR14_EL1:
1073     case SYSREG_DBGWCR15_EL1:
1074         val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1075         break;
1076     default:
1077         if (is_id_sysreg(reg)) {
1078             /* ID system registers read as RES0 */
1079             val = 0;
1080             break;
1081         }
1082         cpu_synchronize_state(cpu);
1083         trace_hvf_unhandled_sysreg_read(env->pc, reg,
1084                                         SYSREG_OP0(reg),
1085                                         SYSREG_OP1(reg),
1086                                         SYSREG_CRN(reg),
1087                                         SYSREG_CRM(reg),
1088                                         SYSREG_OP2(reg));
1089         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1090         return 1;
1091     }
1092 
1093     trace_hvf_sysreg_read(reg,
1094                           SYSREG_OP0(reg),
1095                           SYSREG_OP1(reg),
1096                           SYSREG_CRN(reg),
1097                           SYSREG_CRM(reg),
1098                           SYSREG_OP2(reg),
1099                           val);
1100     hvf_set_reg(cpu, rt, val);
1101 
1102     return 0;
1103 }
1104 
1105 static void pmu_update_irq(CPUARMState *env)
1106 {
1107     ARMCPU *cpu = env_archcpu(env);
1108     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1109             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1110 }
1111 
1112 static bool pmu_event_supported(uint16_t number)
1113 {
1114     return false;
1115 }
1116 
1117 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1118  * the current EL, security state, and register configuration.
1119  */
1120 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1121 {
1122     uint64_t filter;
1123     bool enabled, filtered = true;
1124     int el = arm_current_el(env);
1125 
1126     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1127               (env->cp15.c9_pmcnten & (1 << counter));
1128 
1129     if (counter == 31) {
1130         filter = env->cp15.pmccfiltr_el0;
1131     } else {
1132         filter = env->cp15.c14_pmevtyper[counter];
1133     }
1134 
1135     if (el == 0) {
1136         filtered = filter & PMXEVTYPER_U;
1137     } else if (el == 1) {
1138         filtered = filter & PMXEVTYPER_P;
1139     }
1140 
1141     if (counter != 31) {
1142         /*
1143          * If not checking PMCCNTR, ensure the counter is setup to an event we
1144          * support
1145          */
1146         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1147         if (!pmu_event_supported(event)) {
1148             return false;
1149         }
1150     }
1151 
1152     return enabled && !filtered;
1153 }
1154 
1155 static void pmswinc_write(CPUARMState *env, uint64_t value)
1156 {
1157     unsigned int i;
1158     for (i = 0; i < pmu_num_counters(env); i++) {
1159         /* Increment a counter's count iff: */
1160         if ((value & (1 << i)) && /* counter's bit is set */
1161                 /* counter is enabled and not filtered */
1162                 pmu_counter_enabled(env, i) &&
1163                 /* counter is SW_INCR */
1164                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1165             /*
1166              * Detect if this write causes an overflow since we can't predict
1167              * PMSWINC overflows like we can for other events
1168              */
1169             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1170 
1171             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1172                 env->cp15.c9_pmovsr |= (1 << i);
1173                 pmu_update_irq(env);
1174             }
1175 
1176             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1177         }
1178     }
1179 }
1180 
1181 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1182 {
1183     ARMCPU *arm_cpu = ARM_CPU(cpu);
1184     CPUARMState *env = &arm_cpu->env;
1185     const ARMCPRegInfo *ri;
1186 
1187     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1188 
1189     if (ri) {
1190         if (ri->accessfn) {
1191             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1192                 return false;
1193             }
1194         }
1195         if (ri->writefn) {
1196             ri->writefn(env, ri, val);
1197         } else {
1198             CPREG_FIELD64(env, ri) = val;
1199         }
1200 
1201         trace_hvf_vgic_write(ri->name, val);
1202         return true;
1203     }
1204 
1205     return false;
1206 }
1207 
1208 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1209 {
1210     ARMCPU *arm_cpu = ARM_CPU(cpu);
1211     CPUARMState *env = &arm_cpu->env;
1212 
1213     trace_hvf_sysreg_write(reg,
1214                            SYSREG_OP0(reg),
1215                            SYSREG_OP1(reg),
1216                            SYSREG_CRN(reg),
1217                            SYSREG_CRM(reg),
1218                            SYSREG_OP2(reg),
1219                            val);
1220 
1221     switch (reg) {
1222     case SYSREG_PMCCNTR_EL0:
1223         pmu_op_start(env);
1224         env->cp15.c15_ccnt = val;
1225         pmu_op_finish(env);
1226         break;
1227     case SYSREG_PMCR_EL0:
1228         pmu_op_start(env);
1229 
1230         if (val & PMCRC) {
1231             /* The counter has been reset */
1232             env->cp15.c15_ccnt = 0;
1233         }
1234 
1235         if (val & PMCRP) {
1236             unsigned int i;
1237             for (i = 0; i < pmu_num_counters(env); i++) {
1238                 env->cp15.c14_pmevcntr[i] = 0;
1239             }
1240         }
1241 
1242         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1243         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1244 
1245         pmu_op_finish(env);
1246         break;
1247     case SYSREG_PMUSERENR_EL0:
1248         env->cp15.c9_pmuserenr = val & 0xf;
1249         break;
1250     case SYSREG_PMCNTENSET_EL0:
1251         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1252         break;
1253     case SYSREG_PMCNTENCLR_EL0:
1254         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1255         break;
1256     case SYSREG_PMINTENCLR_EL1:
1257         pmu_op_start(env);
1258         env->cp15.c9_pminten |= val;
1259         pmu_op_finish(env);
1260         break;
1261     case SYSREG_PMOVSCLR_EL0:
1262         pmu_op_start(env);
1263         env->cp15.c9_pmovsr &= ~val;
1264         pmu_op_finish(env);
1265         break;
1266     case SYSREG_PMSWINC_EL0:
1267         pmu_op_start(env);
1268         pmswinc_write(env, val);
1269         pmu_op_finish(env);
1270         break;
1271     case SYSREG_PMSELR_EL0:
1272         env->cp15.c9_pmselr = val & 0x1f;
1273         break;
1274     case SYSREG_PMCCFILTR_EL0:
1275         pmu_op_start(env);
1276         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1277         pmu_op_finish(env);
1278         break;
1279     case SYSREG_OSLAR_EL1:
1280         env->cp15.oslsr_el1 = val & 1;
1281         break;
1282     case SYSREG_OSDLR_EL1:
1283         /* Dummy register */
1284         break;
1285     case SYSREG_ICC_AP0R0_EL1:
1286     case SYSREG_ICC_AP0R1_EL1:
1287     case SYSREG_ICC_AP0R2_EL1:
1288     case SYSREG_ICC_AP0R3_EL1:
1289     case SYSREG_ICC_AP1R0_EL1:
1290     case SYSREG_ICC_AP1R1_EL1:
1291     case SYSREG_ICC_AP1R2_EL1:
1292     case SYSREG_ICC_AP1R3_EL1:
1293     case SYSREG_ICC_ASGI1R_EL1:
1294     case SYSREG_ICC_BPR0_EL1:
1295     case SYSREG_ICC_BPR1_EL1:
1296     case SYSREG_ICC_CTLR_EL1:
1297     case SYSREG_ICC_DIR_EL1:
1298     case SYSREG_ICC_EOIR0_EL1:
1299     case SYSREG_ICC_EOIR1_EL1:
1300     case SYSREG_ICC_HPPIR0_EL1:
1301     case SYSREG_ICC_HPPIR1_EL1:
1302     case SYSREG_ICC_IAR0_EL1:
1303     case SYSREG_ICC_IAR1_EL1:
1304     case SYSREG_ICC_IGRPEN0_EL1:
1305     case SYSREG_ICC_IGRPEN1_EL1:
1306     case SYSREG_ICC_PMR_EL1:
1307     case SYSREG_ICC_SGI0R_EL1:
1308     case SYSREG_ICC_SGI1R_EL1:
1309     case SYSREG_ICC_SRE_EL1:
1310         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1311         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1312             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1313         }
1314         break;
1315     case SYSREG_MDSCR_EL1:
1316         env->cp15.mdscr_el1 = val;
1317         break;
1318     case SYSREG_DBGBVR0_EL1:
1319     case SYSREG_DBGBVR1_EL1:
1320     case SYSREG_DBGBVR2_EL1:
1321     case SYSREG_DBGBVR3_EL1:
1322     case SYSREG_DBGBVR4_EL1:
1323     case SYSREG_DBGBVR5_EL1:
1324     case SYSREG_DBGBVR6_EL1:
1325     case SYSREG_DBGBVR7_EL1:
1326     case SYSREG_DBGBVR8_EL1:
1327     case SYSREG_DBGBVR9_EL1:
1328     case SYSREG_DBGBVR10_EL1:
1329     case SYSREG_DBGBVR11_EL1:
1330     case SYSREG_DBGBVR12_EL1:
1331     case SYSREG_DBGBVR13_EL1:
1332     case SYSREG_DBGBVR14_EL1:
1333     case SYSREG_DBGBVR15_EL1:
1334         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1335         break;
1336     case SYSREG_DBGBCR0_EL1:
1337     case SYSREG_DBGBCR1_EL1:
1338     case SYSREG_DBGBCR2_EL1:
1339     case SYSREG_DBGBCR3_EL1:
1340     case SYSREG_DBGBCR4_EL1:
1341     case SYSREG_DBGBCR5_EL1:
1342     case SYSREG_DBGBCR6_EL1:
1343     case SYSREG_DBGBCR7_EL1:
1344     case SYSREG_DBGBCR8_EL1:
1345     case SYSREG_DBGBCR9_EL1:
1346     case SYSREG_DBGBCR10_EL1:
1347     case SYSREG_DBGBCR11_EL1:
1348     case SYSREG_DBGBCR12_EL1:
1349     case SYSREG_DBGBCR13_EL1:
1350     case SYSREG_DBGBCR14_EL1:
1351     case SYSREG_DBGBCR15_EL1:
1352         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1353         break;
1354     case SYSREG_DBGWVR0_EL1:
1355     case SYSREG_DBGWVR1_EL1:
1356     case SYSREG_DBGWVR2_EL1:
1357     case SYSREG_DBGWVR3_EL1:
1358     case SYSREG_DBGWVR4_EL1:
1359     case SYSREG_DBGWVR5_EL1:
1360     case SYSREG_DBGWVR6_EL1:
1361     case SYSREG_DBGWVR7_EL1:
1362     case SYSREG_DBGWVR8_EL1:
1363     case SYSREG_DBGWVR9_EL1:
1364     case SYSREG_DBGWVR10_EL1:
1365     case SYSREG_DBGWVR11_EL1:
1366     case SYSREG_DBGWVR12_EL1:
1367     case SYSREG_DBGWVR13_EL1:
1368     case SYSREG_DBGWVR14_EL1:
1369     case SYSREG_DBGWVR15_EL1:
1370         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1371         break;
1372     case SYSREG_DBGWCR0_EL1:
1373     case SYSREG_DBGWCR1_EL1:
1374     case SYSREG_DBGWCR2_EL1:
1375     case SYSREG_DBGWCR3_EL1:
1376     case SYSREG_DBGWCR4_EL1:
1377     case SYSREG_DBGWCR5_EL1:
1378     case SYSREG_DBGWCR6_EL1:
1379     case SYSREG_DBGWCR7_EL1:
1380     case SYSREG_DBGWCR8_EL1:
1381     case SYSREG_DBGWCR9_EL1:
1382     case SYSREG_DBGWCR10_EL1:
1383     case SYSREG_DBGWCR11_EL1:
1384     case SYSREG_DBGWCR12_EL1:
1385     case SYSREG_DBGWCR13_EL1:
1386     case SYSREG_DBGWCR14_EL1:
1387     case SYSREG_DBGWCR15_EL1:
1388         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1389         break;
1390     default:
1391         cpu_synchronize_state(cpu);
1392         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1393                                          SYSREG_OP0(reg),
1394                                          SYSREG_OP1(reg),
1395                                          SYSREG_CRN(reg),
1396                                          SYSREG_CRM(reg),
1397                                          SYSREG_OP2(reg));
1398         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1399         return 1;
1400     }
1401 
1402     return 0;
1403 }
1404 
1405 static int hvf_inject_interrupts(CPUState *cpu)
1406 {
1407     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1408         trace_hvf_inject_fiq();
1409         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1410                                       true);
1411     }
1412 
1413     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1414         trace_hvf_inject_irq();
1415         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1416                                       true);
1417     }
1418 
1419     return 0;
1420 }
1421 
1422 static uint64_t hvf_vtimer_val_raw(void)
1423 {
1424     /*
1425      * mach_absolute_time() returns the vtimer value without the VM
1426      * offset that we define. Add our own offset on top.
1427      */
1428     return mach_absolute_time() - hvf_state->vtimer_offset;
1429 }
1430 
1431 static uint64_t hvf_vtimer_val(void)
1432 {
1433     if (!runstate_is_running()) {
1434         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1435         return vtimer.vtimer_val;
1436     }
1437 
1438     return hvf_vtimer_val_raw();
1439 }
1440 
1441 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1442 {
1443     /*
1444      * Use pselect to sleep so that other threads can IPI us while we're
1445      * sleeping.
1446      */
1447     qatomic_mb_set(&cpu->thread_kicked, false);
1448     qemu_mutex_unlock_iothread();
1449     pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1450     qemu_mutex_lock_iothread();
1451 }
1452 
1453 static void hvf_wfi(CPUState *cpu)
1454 {
1455     ARMCPU *arm_cpu = ARM_CPU(cpu);
1456     struct timespec ts;
1457     hv_return_t r;
1458     uint64_t ctl;
1459     uint64_t cval;
1460     int64_t ticks_to_sleep;
1461     uint64_t seconds;
1462     uint64_t nanos;
1463     uint32_t cntfrq;
1464 
1465     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1466         /* Interrupt pending, no need to wait */
1467         return;
1468     }
1469 
1470     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1471     assert_hvf_ok(r);
1472 
1473     if (!(ctl & 1) || (ctl & 2)) {
1474         /* Timer disabled or masked, just wait for an IPI. */
1475         hvf_wait_for_ipi(cpu, NULL);
1476         return;
1477     }
1478 
1479     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1480     assert_hvf_ok(r);
1481 
1482     ticks_to_sleep = cval - hvf_vtimer_val();
1483     if (ticks_to_sleep < 0) {
1484         return;
1485     }
1486 
1487     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1488     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1489     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1490     nanos = ticks_to_sleep * cntfrq;
1491 
1492     /*
1493      * Don't sleep for less than the time a context switch would take,
1494      * so that we can satisfy fast timer requests on the same CPU.
1495      * Measurements on M1 show the sweet spot to be ~2ms.
1496      */
1497     if (!seconds && nanos < (2 * SCALE_MS)) {
1498         return;
1499     }
1500 
1501     ts = (struct timespec) { seconds, nanos };
1502     hvf_wait_for_ipi(cpu, &ts);
1503 }
1504 
1505 static void hvf_sync_vtimer(CPUState *cpu)
1506 {
1507     ARMCPU *arm_cpu = ARM_CPU(cpu);
1508     hv_return_t r;
1509     uint64_t ctl;
1510     bool irq_state;
1511 
1512     if (!cpu->hvf->vtimer_masked) {
1513         /* We will get notified on vtimer changes by hvf, nothing to do */
1514         return;
1515     }
1516 
1517     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1518     assert_hvf_ok(r);
1519 
1520     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1521                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1522     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1523 
1524     if (!irq_state) {
1525         /* Timer no longer asserting, we can unmask it */
1526         hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1527         cpu->hvf->vtimer_masked = false;
1528     }
1529 }
1530 
1531 int hvf_vcpu_exec(CPUState *cpu)
1532 {
1533     ARMCPU *arm_cpu = ARM_CPU(cpu);
1534     CPUARMState *env = &arm_cpu->env;
1535     hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1536     hv_return_t r;
1537     bool advance_pc = false;
1538 
1539     if (hvf_inject_interrupts(cpu)) {
1540         return EXCP_INTERRUPT;
1541     }
1542 
1543     if (cpu->halted) {
1544         return EXCP_HLT;
1545     }
1546 
1547     flush_cpu_state(cpu);
1548 
1549     qemu_mutex_unlock_iothread();
1550     assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1551 
1552     /* handle VMEXIT */
1553     uint64_t exit_reason = hvf_exit->reason;
1554     uint64_t syndrome = hvf_exit->exception.syndrome;
1555     uint32_t ec = syn_get_ec(syndrome);
1556 
1557     qemu_mutex_lock_iothread();
1558     switch (exit_reason) {
1559     case HV_EXIT_REASON_EXCEPTION:
1560         /* This is the main one, handle below. */
1561         break;
1562     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1563         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1564         cpu->hvf->vtimer_masked = true;
1565         return 0;
1566     case HV_EXIT_REASON_CANCELED:
1567         /* we got kicked, no exit to process */
1568         return 0;
1569     default:
1570         g_assert_not_reached();
1571     }
1572 
1573     hvf_sync_vtimer(cpu);
1574 
1575     switch (ec) {
1576     case EC_DATAABORT: {
1577         bool isv = syndrome & ARM_EL_ISV;
1578         bool iswrite = (syndrome >> 6) & 1;
1579         bool s1ptw = (syndrome >> 7) & 1;
1580         uint32_t sas = (syndrome >> 22) & 3;
1581         uint32_t len = 1 << sas;
1582         uint32_t srt = (syndrome >> 16) & 0x1f;
1583         uint32_t cm = (syndrome >> 8) & 0x1;
1584         uint64_t val = 0;
1585 
1586         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1587                              hvf_exit->exception.physical_address, isv,
1588                              iswrite, s1ptw, len, srt);
1589 
1590         if (cm) {
1591             /* We don't cache MMIO regions */
1592             advance_pc = true;
1593             break;
1594         }
1595 
1596         assert(isv);
1597 
1598         if (iswrite) {
1599             val = hvf_get_reg(cpu, srt);
1600             address_space_write(&address_space_memory,
1601                                 hvf_exit->exception.physical_address,
1602                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1603         } else {
1604             address_space_read(&address_space_memory,
1605                                hvf_exit->exception.physical_address,
1606                                MEMTXATTRS_UNSPECIFIED, &val, len);
1607             hvf_set_reg(cpu, srt, val);
1608         }
1609 
1610         advance_pc = true;
1611         break;
1612     }
1613     case EC_SYSTEMREGISTERTRAP: {
1614         bool isread = (syndrome >> 0) & 1;
1615         uint32_t rt = (syndrome >> 5) & 0x1f;
1616         uint32_t reg = syndrome & SYSREG_MASK;
1617         uint64_t val;
1618         int ret = 0;
1619 
1620         if (isread) {
1621             ret = hvf_sysreg_read(cpu, reg, rt);
1622         } else {
1623             val = hvf_get_reg(cpu, rt);
1624             ret = hvf_sysreg_write(cpu, reg, val);
1625         }
1626 
1627         advance_pc = !ret;
1628         break;
1629     }
1630     case EC_WFX_TRAP:
1631         advance_pc = true;
1632         if (!(syndrome & WFX_IS_WFE)) {
1633             hvf_wfi(cpu);
1634         }
1635         break;
1636     case EC_AA64_HVC:
1637         cpu_synchronize_state(cpu);
1638         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1639             if (!hvf_handle_psci_call(cpu)) {
1640                 trace_hvf_unknown_hvc(env->xregs[0]);
1641                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1642                 env->xregs[0] = -1;
1643             }
1644         } else {
1645             trace_hvf_unknown_hvc(env->xregs[0]);
1646             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1647         }
1648         break;
1649     case EC_AA64_SMC:
1650         cpu_synchronize_state(cpu);
1651         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1652             advance_pc = true;
1653 
1654             if (!hvf_handle_psci_call(cpu)) {
1655                 trace_hvf_unknown_smc(env->xregs[0]);
1656                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1657                 env->xregs[0] = -1;
1658             }
1659         } else {
1660             trace_hvf_unknown_smc(env->xregs[0]);
1661             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1662         }
1663         break;
1664     default:
1665         cpu_synchronize_state(cpu);
1666         trace_hvf_exit(syndrome, ec, env->pc);
1667         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1668     }
1669 
1670     if (advance_pc) {
1671         uint64_t pc;
1672 
1673         flush_cpu_state(cpu);
1674 
1675         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1676         assert_hvf_ok(r);
1677         pc += 4;
1678         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1679         assert_hvf_ok(r);
1680     }
1681 
1682     return 0;
1683 }
1684 
1685 static const VMStateDescription vmstate_hvf_vtimer = {
1686     .name = "hvf-vtimer",
1687     .version_id = 1,
1688     .minimum_version_id = 1,
1689     .fields = (VMStateField[]) {
1690         VMSTATE_UINT64(vtimer_val, HVFVTimer),
1691         VMSTATE_END_OF_LIST()
1692     },
1693 };
1694 
1695 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1696 {
1697     HVFVTimer *s = opaque;
1698 
1699     if (running) {
1700         /* Update vtimer offset on all CPUs */
1701         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1702         cpu_synchronize_all_states();
1703     } else {
1704         /* Remember vtimer value on every pause */
1705         s->vtimer_val = hvf_vtimer_val_raw();
1706     }
1707 }
1708 
1709 int hvf_arch_init(void)
1710 {
1711     hvf_state->vtimer_offset = mach_absolute_time();
1712     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1713     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1714     return 0;
1715 }
1716 
1717 static const uint32_t brk_insn = 0xd4200000;
1718 
1719 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
1720 {
1721     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1722         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1723         return -EINVAL;
1724     }
1725     return 0;
1726 }
1727 
1728 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
1729 {
1730     static uint32_t brk;
1731 
1732     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
1733         brk != brk_insn ||
1734         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1735         return -EINVAL;
1736     }
1737     return 0;
1738 }
1739 
1740 int hvf_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type)
1741 {
1742     switch (type) {
1743     case GDB_BREAKPOINT_HW:
1744         return insert_hw_breakpoint(addr);
1745     case GDB_WATCHPOINT_READ:
1746     case GDB_WATCHPOINT_WRITE:
1747     case GDB_WATCHPOINT_ACCESS:
1748         return insert_hw_watchpoint(addr, len, type);
1749     default:
1750         return -ENOSYS;
1751     }
1752 }
1753 
1754 int hvf_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type)
1755 {
1756     switch (type) {
1757     case GDB_BREAKPOINT_HW:
1758         return delete_hw_breakpoint(addr);
1759     case GDB_WATCHPOINT_READ:
1760     case GDB_WATCHPOINT_WRITE:
1761     case GDB_WATCHPOINT_ACCESS:
1762         return delete_hw_watchpoint(addr, len, type);
1763     default:
1764         return -ENOSYS;
1765     }
1766 }
1767 
1768 void hvf_arch_remove_all_hw_breakpoints(void)
1769 {
1770     if (cur_hw_wps > 0) {
1771         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1772     }
1773     if (cur_hw_bps > 0) {
1774         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1775     }
1776 }
1777