1 /* 2 * QEMU Hypervisor.framework support for Apple Silicon 3 4 * Copyright 2020 Alexander Graf <agraf@csgraf.de> 5 * Copyright 2020 Google LLC 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/error-report.h" 14 15 #include "sysemu/runstate.h" 16 #include "sysemu/hvf.h" 17 #include "sysemu/hvf_int.h" 18 #include "sysemu/hw_accel.h" 19 #include "hvf_arm.h" 20 #include "cpregs.h" 21 22 #include <mach/mach_time.h> 23 24 #include "exec/address-spaces.h" 25 #include "hw/irq.h" 26 #include "qemu/main-loop.h" 27 #include "sysemu/cpus.h" 28 #include "arm-powerctl.h" 29 #include "target/arm/cpu.h" 30 #include "target/arm/internals.h" 31 #include "trace/trace-target_arm_hvf.h" 32 #include "migration/vmstate.h" 33 34 #include "exec/gdbstub.h" 35 36 #define MDSCR_EL1_SS_SHIFT 0 37 #define MDSCR_EL1_MDE_SHIFT 15 38 39 static const uint16_t dbgbcr_regs[] = { 40 HV_SYS_REG_DBGBCR0_EL1, 41 HV_SYS_REG_DBGBCR1_EL1, 42 HV_SYS_REG_DBGBCR2_EL1, 43 HV_SYS_REG_DBGBCR3_EL1, 44 HV_SYS_REG_DBGBCR4_EL1, 45 HV_SYS_REG_DBGBCR5_EL1, 46 HV_SYS_REG_DBGBCR6_EL1, 47 HV_SYS_REG_DBGBCR7_EL1, 48 HV_SYS_REG_DBGBCR8_EL1, 49 HV_SYS_REG_DBGBCR9_EL1, 50 HV_SYS_REG_DBGBCR10_EL1, 51 HV_SYS_REG_DBGBCR11_EL1, 52 HV_SYS_REG_DBGBCR12_EL1, 53 HV_SYS_REG_DBGBCR13_EL1, 54 HV_SYS_REG_DBGBCR14_EL1, 55 HV_SYS_REG_DBGBCR15_EL1, 56 }; 57 58 static const uint16_t dbgbvr_regs[] = { 59 HV_SYS_REG_DBGBVR0_EL1, 60 HV_SYS_REG_DBGBVR1_EL1, 61 HV_SYS_REG_DBGBVR2_EL1, 62 HV_SYS_REG_DBGBVR3_EL1, 63 HV_SYS_REG_DBGBVR4_EL1, 64 HV_SYS_REG_DBGBVR5_EL1, 65 HV_SYS_REG_DBGBVR6_EL1, 66 HV_SYS_REG_DBGBVR7_EL1, 67 HV_SYS_REG_DBGBVR8_EL1, 68 HV_SYS_REG_DBGBVR9_EL1, 69 HV_SYS_REG_DBGBVR10_EL1, 70 HV_SYS_REG_DBGBVR11_EL1, 71 HV_SYS_REG_DBGBVR12_EL1, 72 HV_SYS_REG_DBGBVR13_EL1, 73 HV_SYS_REG_DBGBVR14_EL1, 74 HV_SYS_REG_DBGBVR15_EL1, 75 }; 76 77 static const uint16_t dbgwcr_regs[] = { 78 HV_SYS_REG_DBGWCR0_EL1, 79 HV_SYS_REG_DBGWCR1_EL1, 80 HV_SYS_REG_DBGWCR2_EL1, 81 HV_SYS_REG_DBGWCR3_EL1, 82 HV_SYS_REG_DBGWCR4_EL1, 83 HV_SYS_REG_DBGWCR5_EL1, 84 HV_SYS_REG_DBGWCR6_EL1, 85 HV_SYS_REG_DBGWCR7_EL1, 86 HV_SYS_REG_DBGWCR8_EL1, 87 HV_SYS_REG_DBGWCR9_EL1, 88 HV_SYS_REG_DBGWCR10_EL1, 89 HV_SYS_REG_DBGWCR11_EL1, 90 HV_SYS_REG_DBGWCR12_EL1, 91 HV_SYS_REG_DBGWCR13_EL1, 92 HV_SYS_REG_DBGWCR14_EL1, 93 HV_SYS_REG_DBGWCR15_EL1, 94 }; 95 96 static const uint16_t dbgwvr_regs[] = { 97 HV_SYS_REG_DBGWVR0_EL1, 98 HV_SYS_REG_DBGWVR1_EL1, 99 HV_SYS_REG_DBGWVR2_EL1, 100 HV_SYS_REG_DBGWVR3_EL1, 101 HV_SYS_REG_DBGWVR4_EL1, 102 HV_SYS_REG_DBGWVR5_EL1, 103 HV_SYS_REG_DBGWVR6_EL1, 104 HV_SYS_REG_DBGWVR7_EL1, 105 HV_SYS_REG_DBGWVR8_EL1, 106 HV_SYS_REG_DBGWVR9_EL1, 107 HV_SYS_REG_DBGWVR10_EL1, 108 HV_SYS_REG_DBGWVR11_EL1, 109 HV_SYS_REG_DBGWVR12_EL1, 110 HV_SYS_REG_DBGWVR13_EL1, 111 HV_SYS_REG_DBGWVR14_EL1, 112 HV_SYS_REG_DBGWVR15_EL1, 113 }; 114 115 static inline int hvf_arm_num_brps(hv_vcpu_config_t config) 116 { 117 uint64_t val; 118 hv_return_t ret; 119 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1, 120 &val); 121 assert_hvf_ok(ret); 122 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1; 123 } 124 125 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config) 126 { 127 uint64_t val; 128 hv_return_t ret; 129 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1, 130 &val); 131 assert_hvf_ok(ret); 132 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1; 133 } 134 135 void hvf_arm_init_debug(void) 136 { 137 hv_vcpu_config_t config; 138 config = hv_vcpu_config_create(); 139 140 max_hw_bps = hvf_arm_num_brps(config); 141 hw_breakpoints = 142 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps); 143 144 max_hw_wps = hvf_arm_num_wrps(config); 145 hw_watchpoints = 146 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps); 147 } 148 149 #define HVF_SYSREG(crn, crm, op0, op1, op2) \ 150 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 151 #define PL1_WRITE_MASK 0x4 152 153 #define SYSREG_OP0_SHIFT 20 154 #define SYSREG_OP0_MASK 0x3 155 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK) 156 #define SYSREG_OP1_SHIFT 14 157 #define SYSREG_OP1_MASK 0x7 158 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK) 159 #define SYSREG_CRN_SHIFT 10 160 #define SYSREG_CRN_MASK 0xf 161 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK) 162 #define SYSREG_CRM_SHIFT 1 163 #define SYSREG_CRM_MASK 0xf 164 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK) 165 #define SYSREG_OP2_SHIFT 17 166 #define SYSREG_OP2_MASK 0x7 167 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK) 168 169 #define SYSREG(op0, op1, crn, crm, op2) \ 170 ((op0 << SYSREG_OP0_SHIFT) | \ 171 (op1 << SYSREG_OP1_SHIFT) | \ 172 (crn << SYSREG_CRN_SHIFT) | \ 173 (crm << SYSREG_CRM_SHIFT) | \ 174 (op2 << SYSREG_OP2_SHIFT)) 175 #define SYSREG_MASK \ 176 SYSREG(SYSREG_OP0_MASK, \ 177 SYSREG_OP1_MASK, \ 178 SYSREG_CRN_MASK, \ 179 SYSREG_CRM_MASK, \ 180 SYSREG_OP2_MASK) 181 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4) 182 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4) 183 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4) 184 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1) 185 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0) 186 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0) 187 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1) 188 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2) 189 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2) 190 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3) 191 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4) 192 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5) 193 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6) 194 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7) 195 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0) 196 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7) 197 198 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4) 199 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5) 200 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6) 201 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7) 202 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0) 203 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1) 204 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2) 205 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3) 206 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6) 207 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3) 208 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3) 209 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4) 210 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1) 211 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1) 212 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1) 213 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2) 214 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2) 215 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0) 216 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0) 217 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6) 218 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7) 219 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0) 220 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3) 221 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7) 222 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5) 223 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5) 224 225 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2) 226 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4) 227 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5) 228 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6) 229 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7) 230 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4) 231 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5) 232 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6) 233 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7) 234 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4) 235 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5) 236 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6) 237 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7) 238 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4) 239 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5) 240 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6) 241 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7) 242 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4) 243 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5) 244 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6) 245 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7) 246 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4) 247 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5) 248 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6) 249 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7) 250 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4) 251 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5) 252 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6) 253 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7) 254 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4) 255 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5) 256 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6) 257 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7) 258 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4) 259 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5) 260 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6) 261 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7) 262 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4) 263 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5) 264 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6) 265 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7) 266 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4) 267 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5) 268 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6) 269 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7) 270 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4) 271 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5) 272 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6) 273 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7) 274 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4) 275 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5) 276 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6) 277 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7) 278 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4) 279 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5) 280 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6) 281 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7) 282 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4) 283 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5) 284 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6) 285 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7) 286 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4) 287 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5) 288 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6) 289 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7) 290 291 #define WFX_IS_WFE (1 << 0) 292 293 #define TMR_CTL_ENABLE (1 << 0) 294 #define TMR_CTL_IMASK (1 << 1) 295 #define TMR_CTL_ISTATUS (1 << 2) 296 297 static void hvf_wfi(CPUState *cpu); 298 299 typedef struct HVFVTimer { 300 /* Vtimer value during migration and paused state */ 301 uint64_t vtimer_val; 302 } HVFVTimer; 303 304 static HVFVTimer vtimer; 305 306 typedef struct ARMHostCPUFeatures { 307 ARMISARegisters isar; 308 uint64_t features; 309 uint64_t midr; 310 uint32_t reset_sctlr; 311 const char *dtb_compatible; 312 } ARMHostCPUFeatures; 313 314 static ARMHostCPUFeatures arm_host_cpu_features; 315 316 struct hvf_reg_match { 317 int reg; 318 uint64_t offset; 319 }; 320 321 static const struct hvf_reg_match hvf_reg_match[] = { 322 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) }, 323 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) }, 324 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) }, 325 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) }, 326 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) }, 327 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) }, 328 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) }, 329 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) }, 330 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) }, 331 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) }, 332 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) }, 333 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) }, 334 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) }, 335 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) }, 336 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) }, 337 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) }, 338 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) }, 339 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) }, 340 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) }, 341 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) }, 342 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) }, 343 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) }, 344 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) }, 345 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) }, 346 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) }, 347 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) }, 348 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) }, 349 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) }, 350 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) }, 351 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) }, 352 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) }, 353 { HV_REG_PC, offsetof(CPUARMState, pc) }, 354 }; 355 356 static const struct hvf_reg_match hvf_fpreg_match[] = { 357 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) }, 358 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) }, 359 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) }, 360 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) }, 361 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) }, 362 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) }, 363 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) }, 364 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) }, 365 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) }, 366 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) }, 367 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) }, 368 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) }, 369 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) }, 370 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) }, 371 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) }, 372 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) }, 373 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) }, 374 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) }, 375 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) }, 376 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) }, 377 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) }, 378 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) }, 379 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) }, 380 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) }, 381 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) }, 382 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) }, 383 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) }, 384 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) }, 385 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) }, 386 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) }, 387 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) }, 388 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) }, 389 }; 390 391 struct hvf_sreg_match { 392 int reg; 393 uint32_t key; 394 uint32_t cp_idx; 395 }; 396 397 static struct hvf_sreg_match hvf_sreg_match[] = { 398 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) }, 399 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) }, 400 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) }, 401 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) }, 402 403 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) }, 404 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) }, 405 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) }, 406 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) }, 407 408 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) }, 409 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) }, 410 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) }, 411 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) }, 412 413 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) }, 414 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) }, 415 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) }, 416 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) }, 417 418 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) }, 419 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) }, 420 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) }, 421 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) }, 422 423 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) }, 424 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) }, 425 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) }, 426 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) }, 427 428 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) }, 429 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) }, 430 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) }, 431 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) }, 432 433 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) }, 434 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) }, 435 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) }, 436 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) }, 437 438 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) }, 439 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) }, 440 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) }, 441 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) }, 442 443 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) }, 444 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) }, 445 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) }, 446 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) }, 447 448 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) }, 449 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) }, 450 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) }, 451 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) }, 452 453 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) }, 454 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) }, 455 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) }, 456 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) }, 457 458 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) }, 459 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) }, 460 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) }, 461 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) }, 462 463 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) }, 464 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) }, 465 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) }, 466 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) }, 467 468 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) }, 469 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) }, 470 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) }, 471 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) }, 472 473 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) }, 474 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) }, 475 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) }, 476 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) }, 477 478 #ifdef SYNC_NO_RAW_REGS 479 /* 480 * The registers below are manually synced on init because they are 481 * marked as NO_RAW. We still list them to make number space sync easier. 482 */ 483 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) }, 484 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) }, 485 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) }, 486 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) }, 487 #endif 488 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) }, 489 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) }, 490 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) }, 491 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) }, 492 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) }, 493 #ifdef SYNC_NO_MMFR0 494 /* We keep the hardware MMFR0 around. HW limits are there anyway */ 495 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) }, 496 #endif 497 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) }, 498 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) }, 499 500 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) }, 501 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) }, 502 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) }, 503 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) }, 504 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) }, 505 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) }, 506 507 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) }, 508 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) }, 509 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) }, 510 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) }, 511 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) }, 512 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) }, 513 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) }, 514 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) }, 515 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) }, 516 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) }, 517 518 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) }, 519 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) }, 520 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) }, 521 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) }, 522 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) }, 523 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) }, 524 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) }, 525 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) }, 526 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) }, 527 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) }, 528 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) }, 529 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) }, 530 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) }, 531 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) }, 532 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) }, 533 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) }, 534 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) }, 535 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) }, 536 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) }, 537 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) }, 538 }; 539 540 int hvf_get_registers(CPUState *cpu) 541 { 542 ARMCPU *arm_cpu = ARM_CPU(cpu); 543 CPUARMState *env = &arm_cpu->env; 544 hv_return_t ret; 545 uint64_t val; 546 hv_simd_fp_uchar16_t fpval; 547 int i; 548 549 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { 550 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val); 551 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val; 552 assert_hvf_ok(ret); 553 } 554 555 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { 556 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg, 557 &fpval); 558 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval)); 559 assert_hvf_ok(ret); 560 } 561 562 val = 0; 563 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val); 564 assert_hvf_ok(ret); 565 vfp_set_fpcr(env, val); 566 567 val = 0; 568 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val); 569 assert_hvf_ok(ret); 570 vfp_set_fpsr(env, val); 571 572 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val); 573 assert_hvf_ok(ret); 574 pstate_write(env, val); 575 576 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { 577 if (hvf_sreg_match[i].cp_idx == -1) { 578 continue; 579 } 580 581 if (cpu->accel->guest_debug_enabled) { 582 /* Handle debug registers */ 583 switch (hvf_sreg_match[i].reg) { 584 case HV_SYS_REG_DBGBVR0_EL1: 585 case HV_SYS_REG_DBGBCR0_EL1: 586 case HV_SYS_REG_DBGWVR0_EL1: 587 case HV_SYS_REG_DBGWCR0_EL1: 588 case HV_SYS_REG_DBGBVR1_EL1: 589 case HV_SYS_REG_DBGBCR1_EL1: 590 case HV_SYS_REG_DBGWVR1_EL1: 591 case HV_SYS_REG_DBGWCR1_EL1: 592 case HV_SYS_REG_DBGBVR2_EL1: 593 case HV_SYS_REG_DBGBCR2_EL1: 594 case HV_SYS_REG_DBGWVR2_EL1: 595 case HV_SYS_REG_DBGWCR2_EL1: 596 case HV_SYS_REG_DBGBVR3_EL1: 597 case HV_SYS_REG_DBGBCR3_EL1: 598 case HV_SYS_REG_DBGWVR3_EL1: 599 case HV_SYS_REG_DBGWCR3_EL1: 600 case HV_SYS_REG_DBGBVR4_EL1: 601 case HV_SYS_REG_DBGBCR4_EL1: 602 case HV_SYS_REG_DBGWVR4_EL1: 603 case HV_SYS_REG_DBGWCR4_EL1: 604 case HV_SYS_REG_DBGBVR5_EL1: 605 case HV_SYS_REG_DBGBCR5_EL1: 606 case HV_SYS_REG_DBGWVR5_EL1: 607 case HV_SYS_REG_DBGWCR5_EL1: 608 case HV_SYS_REG_DBGBVR6_EL1: 609 case HV_SYS_REG_DBGBCR6_EL1: 610 case HV_SYS_REG_DBGWVR6_EL1: 611 case HV_SYS_REG_DBGWCR6_EL1: 612 case HV_SYS_REG_DBGBVR7_EL1: 613 case HV_SYS_REG_DBGBCR7_EL1: 614 case HV_SYS_REG_DBGWVR7_EL1: 615 case HV_SYS_REG_DBGWCR7_EL1: 616 case HV_SYS_REG_DBGBVR8_EL1: 617 case HV_SYS_REG_DBGBCR8_EL1: 618 case HV_SYS_REG_DBGWVR8_EL1: 619 case HV_SYS_REG_DBGWCR8_EL1: 620 case HV_SYS_REG_DBGBVR9_EL1: 621 case HV_SYS_REG_DBGBCR9_EL1: 622 case HV_SYS_REG_DBGWVR9_EL1: 623 case HV_SYS_REG_DBGWCR9_EL1: 624 case HV_SYS_REG_DBGBVR10_EL1: 625 case HV_SYS_REG_DBGBCR10_EL1: 626 case HV_SYS_REG_DBGWVR10_EL1: 627 case HV_SYS_REG_DBGWCR10_EL1: 628 case HV_SYS_REG_DBGBVR11_EL1: 629 case HV_SYS_REG_DBGBCR11_EL1: 630 case HV_SYS_REG_DBGWVR11_EL1: 631 case HV_SYS_REG_DBGWCR11_EL1: 632 case HV_SYS_REG_DBGBVR12_EL1: 633 case HV_SYS_REG_DBGBCR12_EL1: 634 case HV_SYS_REG_DBGWVR12_EL1: 635 case HV_SYS_REG_DBGWCR12_EL1: 636 case HV_SYS_REG_DBGBVR13_EL1: 637 case HV_SYS_REG_DBGBCR13_EL1: 638 case HV_SYS_REG_DBGWVR13_EL1: 639 case HV_SYS_REG_DBGWCR13_EL1: 640 case HV_SYS_REG_DBGBVR14_EL1: 641 case HV_SYS_REG_DBGBCR14_EL1: 642 case HV_SYS_REG_DBGWVR14_EL1: 643 case HV_SYS_REG_DBGWCR14_EL1: 644 case HV_SYS_REG_DBGBVR15_EL1: 645 case HV_SYS_REG_DBGBCR15_EL1: 646 case HV_SYS_REG_DBGWVR15_EL1: 647 case HV_SYS_REG_DBGWCR15_EL1: { 648 /* 649 * If the guest is being debugged, the vCPU's debug registers 650 * are holding the gdbstub's view of the registers (set in 651 * hvf_arch_update_guest_debug()). 652 * Since the environment is used to store only the guest's view 653 * of the registers, don't update it with the values from the 654 * vCPU but simply keep the values from the previous 655 * environment. 656 */ 657 const ARMCPRegInfo *ri; 658 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key); 659 val = read_raw_cp_reg(env, ri); 660 661 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; 662 continue; 663 } 664 } 665 } 666 667 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val); 668 assert_hvf_ok(ret); 669 670 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; 671 } 672 assert(write_list_to_cpustate(arm_cpu)); 673 674 aarch64_restore_sp(env, arm_current_el(env)); 675 676 return 0; 677 } 678 679 int hvf_put_registers(CPUState *cpu) 680 { 681 ARMCPU *arm_cpu = ARM_CPU(cpu); 682 CPUARMState *env = &arm_cpu->env; 683 hv_return_t ret; 684 uint64_t val; 685 hv_simd_fp_uchar16_t fpval; 686 int i; 687 688 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { 689 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset); 690 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val); 691 assert_hvf_ok(ret); 692 } 693 694 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { 695 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval)); 696 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg, 697 fpval); 698 assert_hvf_ok(ret); 699 } 700 701 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env)); 702 assert_hvf_ok(ret); 703 704 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env)); 705 assert_hvf_ok(ret); 706 707 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env)); 708 assert_hvf_ok(ret); 709 710 aarch64_save_sp(env, arm_current_el(env)); 711 712 assert(write_cpustate_to_list(arm_cpu, false)); 713 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { 714 if (hvf_sreg_match[i].cp_idx == -1) { 715 continue; 716 } 717 718 if (cpu->accel->guest_debug_enabled) { 719 /* Handle debug registers */ 720 switch (hvf_sreg_match[i].reg) { 721 case HV_SYS_REG_DBGBVR0_EL1: 722 case HV_SYS_REG_DBGBCR0_EL1: 723 case HV_SYS_REG_DBGWVR0_EL1: 724 case HV_SYS_REG_DBGWCR0_EL1: 725 case HV_SYS_REG_DBGBVR1_EL1: 726 case HV_SYS_REG_DBGBCR1_EL1: 727 case HV_SYS_REG_DBGWVR1_EL1: 728 case HV_SYS_REG_DBGWCR1_EL1: 729 case HV_SYS_REG_DBGBVR2_EL1: 730 case HV_SYS_REG_DBGBCR2_EL1: 731 case HV_SYS_REG_DBGWVR2_EL1: 732 case HV_SYS_REG_DBGWCR2_EL1: 733 case HV_SYS_REG_DBGBVR3_EL1: 734 case HV_SYS_REG_DBGBCR3_EL1: 735 case HV_SYS_REG_DBGWVR3_EL1: 736 case HV_SYS_REG_DBGWCR3_EL1: 737 case HV_SYS_REG_DBGBVR4_EL1: 738 case HV_SYS_REG_DBGBCR4_EL1: 739 case HV_SYS_REG_DBGWVR4_EL1: 740 case HV_SYS_REG_DBGWCR4_EL1: 741 case HV_SYS_REG_DBGBVR5_EL1: 742 case HV_SYS_REG_DBGBCR5_EL1: 743 case HV_SYS_REG_DBGWVR5_EL1: 744 case HV_SYS_REG_DBGWCR5_EL1: 745 case HV_SYS_REG_DBGBVR6_EL1: 746 case HV_SYS_REG_DBGBCR6_EL1: 747 case HV_SYS_REG_DBGWVR6_EL1: 748 case HV_SYS_REG_DBGWCR6_EL1: 749 case HV_SYS_REG_DBGBVR7_EL1: 750 case HV_SYS_REG_DBGBCR7_EL1: 751 case HV_SYS_REG_DBGWVR7_EL1: 752 case HV_SYS_REG_DBGWCR7_EL1: 753 case HV_SYS_REG_DBGBVR8_EL1: 754 case HV_SYS_REG_DBGBCR8_EL1: 755 case HV_SYS_REG_DBGWVR8_EL1: 756 case HV_SYS_REG_DBGWCR8_EL1: 757 case HV_SYS_REG_DBGBVR9_EL1: 758 case HV_SYS_REG_DBGBCR9_EL1: 759 case HV_SYS_REG_DBGWVR9_EL1: 760 case HV_SYS_REG_DBGWCR9_EL1: 761 case HV_SYS_REG_DBGBVR10_EL1: 762 case HV_SYS_REG_DBGBCR10_EL1: 763 case HV_SYS_REG_DBGWVR10_EL1: 764 case HV_SYS_REG_DBGWCR10_EL1: 765 case HV_SYS_REG_DBGBVR11_EL1: 766 case HV_SYS_REG_DBGBCR11_EL1: 767 case HV_SYS_REG_DBGWVR11_EL1: 768 case HV_SYS_REG_DBGWCR11_EL1: 769 case HV_SYS_REG_DBGBVR12_EL1: 770 case HV_SYS_REG_DBGBCR12_EL1: 771 case HV_SYS_REG_DBGWVR12_EL1: 772 case HV_SYS_REG_DBGWCR12_EL1: 773 case HV_SYS_REG_DBGBVR13_EL1: 774 case HV_SYS_REG_DBGBCR13_EL1: 775 case HV_SYS_REG_DBGWVR13_EL1: 776 case HV_SYS_REG_DBGWCR13_EL1: 777 case HV_SYS_REG_DBGBVR14_EL1: 778 case HV_SYS_REG_DBGBCR14_EL1: 779 case HV_SYS_REG_DBGWVR14_EL1: 780 case HV_SYS_REG_DBGWCR14_EL1: 781 case HV_SYS_REG_DBGBVR15_EL1: 782 case HV_SYS_REG_DBGBCR15_EL1: 783 case HV_SYS_REG_DBGWVR15_EL1: 784 case HV_SYS_REG_DBGWCR15_EL1: 785 /* 786 * If the guest is being debugged, the vCPU's debug registers 787 * are already holding the gdbstub's view of the registers (set 788 * in hvf_arch_update_guest_debug()). 789 */ 790 continue; 791 } 792 } 793 794 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx]; 795 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val); 796 assert_hvf_ok(ret); 797 } 798 799 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset); 800 assert_hvf_ok(ret); 801 802 return 0; 803 } 804 805 static void flush_cpu_state(CPUState *cpu) 806 { 807 if (cpu->vcpu_dirty) { 808 hvf_put_registers(cpu); 809 cpu->vcpu_dirty = false; 810 } 811 } 812 813 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val) 814 { 815 hv_return_t r; 816 817 flush_cpu_state(cpu); 818 819 if (rt < 31) { 820 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val); 821 assert_hvf_ok(r); 822 } 823 } 824 825 static uint64_t hvf_get_reg(CPUState *cpu, int rt) 826 { 827 uint64_t val = 0; 828 hv_return_t r; 829 830 flush_cpu_state(cpu); 831 832 if (rt < 31) { 833 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val); 834 assert_hvf_ok(r); 835 } 836 837 return val; 838 } 839 840 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) 841 { 842 ARMISARegisters host_isar = {}; 843 const struct isar_regs { 844 int reg; 845 uint64_t *val; 846 } regs[] = { 847 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 }, 848 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 }, 849 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 }, 850 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 }, 851 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 }, 852 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 }, 853 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */ 854 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 }, 855 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 }, 856 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 }, 857 }; 858 hv_vcpu_t fd; 859 hv_return_t r = HV_SUCCESS; 860 hv_vcpu_exit_t *exit; 861 int i; 862 863 ahcf->dtb_compatible = "arm,arm-v8"; 864 ahcf->features = (1ULL << ARM_FEATURE_V8) | 865 (1ULL << ARM_FEATURE_NEON) | 866 (1ULL << ARM_FEATURE_AARCH64) | 867 (1ULL << ARM_FEATURE_PMU) | 868 (1ULL << ARM_FEATURE_GENERIC_TIMER); 869 870 /* We set up a small vcpu to extract host registers */ 871 872 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) { 873 return false; 874 } 875 876 for (i = 0; i < ARRAY_SIZE(regs); i++) { 877 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val); 878 } 879 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr); 880 r |= hv_vcpu_destroy(fd); 881 882 ahcf->isar = host_isar; 883 884 /* 885 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1 886 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97 887 */ 888 ahcf->reset_sctlr = 0x30100180; 889 /* 890 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility, 891 * let's disable it on boot and then allow guest software to turn it on by 892 * setting it to 0. 893 */ 894 ahcf->reset_sctlr |= 0x00800000; 895 896 /* Make sure we don't advertise AArch32 support for EL0/EL1 */ 897 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) { 898 return false; 899 } 900 901 return r == HV_SUCCESS; 902 } 903 904 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu) 905 { 906 if (!arm_host_cpu_features.dtb_compatible) { 907 if (!hvf_enabled() || 908 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) { 909 /* 910 * We can't report this error yet, so flag that we need to 911 * in arm_cpu_realizefn(). 912 */ 913 cpu->host_cpu_probe_failed = true; 914 return; 915 } 916 } 917 918 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 919 cpu->isar = arm_host_cpu_features.isar; 920 cpu->env.features = arm_host_cpu_features.features; 921 cpu->midr = arm_host_cpu_features.midr; 922 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr; 923 } 924 925 void hvf_arch_vcpu_destroy(CPUState *cpu) 926 { 927 } 928 929 int hvf_arch_init_vcpu(CPUState *cpu) 930 { 931 ARMCPU *arm_cpu = ARM_CPU(cpu); 932 CPUARMState *env = &arm_cpu->env; 933 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match); 934 uint32_t sregs_cnt = 0; 935 uint64_t pfr; 936 hv_return_t ret; 937 int i; 938 939 env->aarch64 = true; 940 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz)); 941 942 /* Allocate enough space for our sysreg sync */ 943 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes, 944 sregs_match_len); 945 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values, 946 sregs_match_len); 947 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t, 948 arm_cpu->cpreg_vmstate_indexes, 949 sregs_match_len); 950 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t, 951 arm_cpu->cpreg_vmstate_values, 952 sregs_match_len); 953 954 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t)); 955 956 /* Populate cp list for all known sysregs */ 957 for (i = 0; i < sregs_match_len; i++) { 958 const ARMCPRegInfo *ri; 959 uint32_t key = hvf_sreg_match[i].key; 960 961 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key); 962 if (ri) { 963 assert(!(ri->type & ARM_CP_NO_RAW)); 964 hvf_sreg_match[i].cp_idx = sregs_cnt; 965 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key); 966 } else { 967 hvf_sreg_match[i].cp_idx = -1; 968 } 969 } 970 arm_cpu->cpreg_array_len = sregs_cnt; 971 arm_cpu->cpreg_vmstate_array_len = sregs_cnt; 972 973 assert(write_cpustate_to_list(arm_cpu, false)); 974 975 /* Set CP_NO_RAW system registers on init */ 976 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1, 977 arm_cpu->midr); 978 assert_hvf_ok(ret); 979 980 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1, 981 arm_cpu->mp_affinity); 982 assert_hvf_ok(ret); 983 984 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr); 985 assert_hvf_ok(ret); 986 pfr |= env->gicv3state ? (1 << 24) : 0; 987 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr); 988 assert_hvf_ok(ret); 989 990 /* We're limited to underlying hardware caps, override internal versions */ 991 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1, 992 &arm_cpu->isar.id_aa64mmfr0); 993 assert_hvf_ok(ret); 994 995 return 0; 996 } 997 998 void hvf_kick_vcpu_thread(CPUState *cpu) 999 { 1000 cpus_kick_thread(cpu); 1001 hv_vcpus_exit(&cpu->accel->fd, 1); 1002 } 1003 1004 static void hvf_raise_exception(CPUState *cpu, uint32_t excp, 1005 uint32_t syndrome) 1006 { 1007 ARMCPU *arm_cpu = ARM_CPU(cpu); 1008 CPUARMState *env = &arm_cpu->env; 1009 1010 cpu->exception_index = excp; 1011 env->exception.target_el = 1; 1012 env->exception.syndrome = syndrome; 1013 1014 arm_cpu_do_interrupt(cpu); 1015 } 1016 1017 static void hvf_psci_cpu_off(ARMCPU *arm_cpu) 1018 { 1019 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity); 1020 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS); 1021 } 1022 1023 /* 1024 * Handle a PSCI call. 1025 * 1026 * Returns 0 on success 1027 * -1 when the PSCI call is unknown, 1028 */ 1029 static bool hvf_handle_psci_call(CPUState *cpu) 1030 { 1031 ARMCPU *arm_cpu = ARM_CPU(cpu); 1032 CPUARMState *env = &arm_cpu->env; 1033 uint64_t param[4] = { 1034 env->xregs[0], 1035 env->xregs[1], 1036 env->xregs[2], 1037 env->xregs[3] 1038 }; 1039 uint64_t context_id, mpidr; 1040 bool target_aarch64 = true; 1041 CPUState *target_cpu_state; 1042 ARMCPU *target_cpu; 1043 target_ulong entry; 1044 int target_el = 1; 1045 int32_t ret = 0; 1046 1047 trace_hvf_psci_call(param[0], param[1], param[2], param[3], 1048 arm_cpu->mp_affinity); 1049 1050 switch (param[0]) { 1051 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 1052 ret = QEMU_PSCI_VERSION_1_1; 1053 break; 1054 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 1055 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */ 1056 break; 1057 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 1058 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 1059 mpidr = param[1]; 1060 1061 switch (param[2]) { 1062 case 0: 1063 target_cpu_state = arm_get_cpu_by_id(mpidr); 1064 if (!target_cpu_state) { 1065 ret = QEMU_PSCI_RET_INVALID_PARAMS; 1066 break; 1067 } 1068 target_cpu = ARM_CPU(target_cpu_state); 1069 1070 ret = target_cpu->power_state; 1071 break; 1072 default: 1073 /* Everything above affinity level 0 is always on. */ 1074 ret = 0; 1075 } 1076 break; 1077 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 1078 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1079 /* 1080 * QEMU reset and shutdown are async requests, but PSCI 1081 * mandates that we never return from the reset/shutdown 1082 * call, so power the CPU off now so it doesn't execute 1083 * anything further. 1084 */ 1085 hvf_psci_cpu_off(arm_cpu); 1086 break; 1087 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 1088 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1089 hvf_psci_cpu_off(arm_cpu); 1090 break; 1091 case QEMU_PSCI_0_1_FN_CPU_ON: 1092 case QEMU_PSCI_0_2_FN_CPU_ON: 1093 case QEMU_PSCI_0_2_FN64_CPU_ON: 1094 mpidr = param[1]; 1095 entry = param[2]; 1096 context_id = param[3]; 1097 ret = arm_set_cpu_on(mpidr, entry, context_id, 1098 target_el, target_aarch64); 1099 break; 1100 case QEMU_PSCI_0_1_FN_CPU_OFF: 1101 case QEMU_PSCI_0_2_FN_CPU_OFF: 1102 hvf_psci_cpu_off(arm_cpu); 1103 break; 1104 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 1105 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 1106 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 1107 /* Affinity levels are not supported in QEMU */ 1108 if (param[1] & 0xfffe0000) { 1109 ret = QEMU_PSCI_RET_INVALID_PARAMS; 1110 break; 1111 } 1112 /* Powerdown is not supported, we always go into WFI */ 1113 env->xregs[0] = 0; 1114 hvf_wfi(cpu); 1115 break; 1116 case QEMU_PSCI_0_1_FN_MIGRATE: 1117 case QEMU_PSCI_0_2_FN_MIGRATE: 1118 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 1119 break; 1120 case QEMU_PSCI_1_0_FN_PSCI_FEATURES: 1121 switch (param[1]) { 1122 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 1123 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 1124 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 1125 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 1126 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 1127 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 1128 case QEMU_PSCI_0_1_FN_CPU_ON: 1129 case QEMU_PSCI_0_2_FN_CPU_ON: 1130 case QEMU_PSCI_0_2_FN64_CPU_ON: 1131 case QEMU_PSCI_0_1_FN_CPU_OFF: 1132 case QEMU_PSCI_0_2_FN_CPU_OFF: 1133 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 1134 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 1135 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 1136 case QEMU_PSCI_1_0_FN_PSCI_FEATURES: 1137 ret = 0; 1138 break; 1139 case QEMU_PSCI_0_1_FN_MIGRATE: 1140 case QEMU_PSCI_0_2_FN_MIGRATE: 1141 default: 1142 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 1143 } 1144 break; 1145 default: 1146 return false; 1147 } 1148 1149 env->xregs[0] = ret; 1150 return true; 1151 } 1152 1153 static bool is_id_sysreg(uint32_t reg) 1154 { 1155 return SYSREG_OP0(reg) == 3 && 1156 SYSREG_OP1(reg) == 0 && 1157 SYSREG_CRN(reg) == 0 && 1158 SYSREG_CRM(reg) >= 1 && 1159 SYSREG_CRM(reg) < 8; 1160 } 1161 1162 static uint32_t hvf_reg2cp_reg(uint32_t reg) 1163 { 1164 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1165 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK, 1166 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK, 1167 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK, 1168 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK, 1169 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK); 1170 } 1171 1172 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val) 1173 { 1174 ARMCPU *arm_cpu = ARM_CPU(cpu); 1175 CPUARMState *env = &arm_cpu->env; 1176 const ARMCPRegInfo *ri; 1177 1178 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); 1179 if (ri) { 1180 if (ri->accessfn) { 1181 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) { 1182 return false; 1183 } 1184 } 1185 if (ri->type & ARM_CP_CONST) { 1186 *val = ri->resetvalue; 1187 } else if (ri->readfn) { 1188 *val = ri->readfn(env, ri); 1189 } else { 1190 *val = CPREG_FIELD64(env, ri); 1191 } 1192 trace_hvf_vgic_read(ri->name, *val); 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 1199 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt) 1200 { 1201 ARMCPU *arm_cpu = ARM_CPU(cpu); 1202 CPUARMState *env = &arm_cpu->env; 1203 uint64_t val = 0; 1204 1205 switch (reg) { 1206 case SYSREG_CNTPCT_EL0: 1207 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 1208 gt_cntfrq_period_ns(arm_cpu); 1209 break; 1210 case SYSREG_PMCR_EL0: 1211 val = env->cp15.c9_pmcr; 1212 break; 1213 case SYSREG_PMCCNTR_EL0: 1214 pmu_op_start(env); 1215 val = env->cp15.c15_ccnt; 1216 pmu_op_finish(env); 1217 break; 1218 case SYSREG_PMCNTENCLR_EL0: 1219 val = env->cp15.c9_pmcnten; 1220 break; 1221 case SYSREG_PMOVSCLR_EL0: 1222 val = env->cp15.c9_pmovsr; 1223 break; 1224 case SYSREG_PMSELR_EL0: 1225 val = env->cp15.c9_pmselr; 1226 break; 1227 case SYSREG_PMINTENCLR_EL1: 1228 val = env->cp15.c9_pminten; 1229 break; 1230 case SYSREG_PMCCFILTR_EL0: 1231 val = env->cp15.pmccfiltr_el0; 1232 break; 1233 case SYSREG_PMCNTENSET_EL0: 1234 val = env->cp15.c9_pmcnten; 1235 break; 1236 case SYSREG_PMUSERENR_EL0: 1237 val = env->cp15.c9_pmuserenr; 1238 break; 1239 case SYSREG_PMCEID0_EL0: 1240 case SYSREG_PMCEID1_EL0: 1241 /* We can't really count anything yet, declare all events invalid */ 1242 val = 0; 1243 break; 1244 case SYSREG_OSLSR_EL1: 1245 val = env->cp15.oslsr_el1; 1246 break; 1247 case SYSREG_OSDLR_EL1: 1248 /* Dummy register */ 1249 break; 1250 case SYSREG_ICC_AP0R0_EL1: 1251 case SYSREG_ICC_AP0R1_EL1: 1252 case SYSREG_ICC_AP0R2_EL1: 1253 case SYSREG_ICC_AP0R3_EL1: 1254 case SYSREG_ICC_AP1R0_EL1: 1255 case SYSREG_ICC_AP1R1_EL1: 1256 case SYSREG_ICC_AP1R2_EL1: 1257 case SYSREG_ICC_AP1R3_EL1: 1258 case SYSREG_ICC_ASGI1R_EL1: 1259 case SYSREG_ICC_BPR0_EL1: 1260 case SYSREG_ICC_BPR1_EL1: 1261 case SYSREG_ICC_DIR_EL1: 1262 case SYSREG_ICC_EOIR0_EL1: 1263 case SYSREG_ICC_EOIR1_EL1: 1264 case SYSREG_ICC_HPPIR0_EL1: 1265 case SYSREG_ICC_HPPIR1_EL1: 1266 case SYSREG_ICC_IAR0_EL1: 1267 case SYSREG_ICC_IAR1_EL1: 1268 case SYSREG_ICC_IGRPEN0_EL1: 1269 case SYSREG_ICC_IGRPEN1_EL1: 1270 case SYSREG_ICC_PMR_EL1: 1271 case SYSREG_ICC_SGI0R_EL1: 1272 case SYSREG_ICC_SGI1R_EL1: 1273 case SYSREG_ICC_SRE_EL1: 1274 case SYSREG_ICC_CTLR_EL1: 1275 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ 1276 if (!hvf_sysreg_read_cp(cpu, reg, &val)) { 1277 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1278 } 1279 break; 1280 case SYSREG_DBGBVR0_EL1: 1281 case SYSREG_DBGBVR1_EL1: 1282 case SYSREG_DBGBVR2_EL1: 1283 case SYSREG_DBGBVR3_EL1: 1284 case SYSREG_DBGBVR4_EL1: 1285 case SYSREG_DBGBVR5_EL1: 1286 case SYSREG_DBGBVR6_EL1: 1287 case SYSREG_DBGBVR7_EL1: 1288 case SYSREG_DBGBVR8_EL1: 1289 case SYSREG_DBGBVR9_EL1: 1290 case SYSREG_DBGBVR10_EL1: 1291 case SYSREG_DBGBVR11_EL1: 1292 case SYSREG_DBGBVR12_EL1: 1293 case SYSREG_DBGBVR13_EL1: 1294 case SYSREG_DBGBVR14_EL1: 1295 case SYSREG_DBGBVR15_EL1: 1296 val = env->cp15.dbgbvr[SYSREG_CRM(reg)]; 1297 break; 1298 case SYSREG_DBGBCR0_EL1: 1299 case SYSREG_DBGBCR1_EL1: 1300 case SYSREG_DBGBCR2_EL1: 1301 case SYSREG_DBGBCR3_EL1: 1302 case SYSREG_DBGBCR4_EL1: 1303 case SYSREG_DBGBCR5_EL1: 1304 case SYSREG_DBGBCR6_EL1: 1305 case SYSREG_DBGBCR7_EL1: 1306 case SYSREG_DBGBCR8_EL1: 1307 case SYSREG_DBGBCR9_EL1: 1308 case SYSREG_DBGBCR10_EL1: 1309 case SYSREG_DBGBCR11_EL1: 1310 case SYSREG_DBGBCR12_EL1: 1311 case SYSREG_DBGBCR13_EL1: 1312 case SYSREG_DBGBCR14_EL1: 1313 case SYSREG_DBGBCR15_EL1: 1314 val = env->cp15.dbgbcr[SYSREG_CRM(reg)]; 1315 break; 1316 case SYSREG_DBGWVR0_EL1: 1317 case SYSREG_DBGWVR1_EL1: 1318 case SYSREG_DBGWVR2_EL1: 1319 case SYSREG_DBGWVR3_EL1: 1320 case SYSREG_DBGWVR4_EL1: 1321 case SYSREG_DBGWVR5_EL1: 1322 case SYSREG_DBGWVR6_EL1: 1323 case SYSREG_DBGWVR7_EL1: 1324 case SYSREG_DBGWVR8_EL1: 1325 case SYSREG_DBGWVR9_EL1: 1326 case SYSREG_DBGWVR10_EL1: 1327 case SYSREG_DBGWVR11_EL1: 1328 case SYSREG_DBGWVR12_EL1: 1329 case SYSREG_DBGWVR13_EL1: 1330 case SYSREG_DBGWVR14_EL1: 1331 case SYSREG_DBGWVR15_EL1: 1332 val = env->cp15.dbgwvr[SYSREG_CRM(reg)]; 1333 break; 1334 case SYSREG_DBGWCR0_EL1: 1335 case SYSREG_DBGWCR1_EL1: 1336 case SYSREG_DBGWCR2_EL1: 1337 case SYSREG_DBGWCR3_EL1: 1338 case SYSREG_DBGWCR4_EL1: 1339 case SYSREG_DBGWCR5_EL1: 1340 case SYSREG_DBGWCR6_EL1: 1341 case SYSREG_DBGWCR7_EL1: 1342 case SYSREG_DBGWCR8_EL1: 1343 case SYSREG_DBGWCR9_EL1: 1344 case SYSREG_DBGWCR10_EL1: 1345 case SYSREG_DBGWCR11_EL1: 1346 case SYSREG_DBGWCR12_EL1: 1347 case SYSREG_DBGWCR13_EL1: 1348 case SYSREG_DBGWCR14_EL1: 1349 case SYSREG_DBGWCR15_EL1: 1350 val = env->cp15.dbgwcr[SYSREG_CRM(reg)]; 1351 break; 1352 default: 1353 if (is_id_sysreg(reg)) { 1354 /* ID system registers read as RES0 */ 1355 val = 0; 1356 break; 1357 } 1358 cpu_synchronize_state(cpu); 1359 trace_hvf_unhandled_sysreg_read(env->pc, reg, 1360 SYSREG_OP0(reg), 1361 SYSREG_OP1(reg), 1362 SYSREG_CRN(reg), 1363 SYSREG_CRM(reg), 1364 SYSREG_OP2(reg)); 1365 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1366 return 1; 1367 } 1368 1369 trace_hvf_sysreg_read(reg, 1370 SYSREG_OP0(reg), 1371 SYSREG_OP1(reg), 1372 SYSREG_CRN(reg), 1373 SYSREG_CRM(reg), 1374 SYSREG_OP2(reg), 1375 val); 1376 hvf_set_reg(cpu, rt, val); 1377 1378 return 0; 1379 } 1380 1381 static void pmu_update_irq(CPUARMState *env) 1382 { 1383 ARMCPU *cpu = env_archcpu(env); 1384 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1385 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1386 } 1387 1388 static bool pmu_event_supported(uint16_t number) 1389 { 1390 return false; 1391 } 1392 1393 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1394 * the current EL, security state, and register configuration. 1395 */ 1396 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1397 { 1398 uint64_t filter; 1399 bool enabled, filtered = true; 1400 int el = arm_current_el(env); 1401 1402 enabled = (env->cp15.c9_pmcr & PMCRE) && 1403 (env->cp15.c9_pmcnten & (1 << counter)); 1404 1405 if (counter == 31) { 1406 filter = env->cp15.pmccfiltr_el0; 1407 } else { 1408 filter = env->cp15.c14_pmevtyper[counter]; 1409 } 1410 1411 if (el == 0) { 1412 filtered = filter & PMXEVTYPER_U; 1413 } else if (el == 1) { 1414 filtered = filter & PMXEVTYPER_P; 1415 } 1416 1417 if (counter != 31) { 1418 /* 1419 * If not checking PMCCNTR, ensure the counter is setup to an event we 1420 * support 1421 */ 1422 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1423 if (!pmu_event_supported(event)) { 1424 return false; 1425 } 1426 } 1427 1428 return enabled && !filtered; 1429 } 1430 1431 static void pmswinc_write(CPUARMState *env, uint64_t value) 1432 { 1433 unsigned int i; 1434 for (i = 0; i < pmu_num_counters(env); i++) { 1435 /* Increment a counter's count iff: */ 1436 if ((value & (1 << i)) && /* counter's bit is set */ 1437 /* counter is enabled and not filtered */ 1438 pmu_counter_enabled(env, i) && 1439 /* counter is SW_INCR */ 1440 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1441 /* 1442 * Detect if this write causes an overflow since we can't predict 1443 * PMSWINC overflows like we can for other events 1444 */ 1445 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1446 1447 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1448 env->cp15.c9_pmovsr |= (1 << i); 1449 pmu_update_irq(env); 1450 } 1451 1452 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1453 } 1454 } 1455 } 1456 1457 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val) 1458 { 1459 ARMCPU *arm_cpu = ARM_CPU(cpu); 1460 CPUARMState *env = &arm_cpu->env; 1461 const ARMCPRegInfo *ri; 1462 1463 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); 1464 1465 if (ri) { 1466 if (ri->accessfn) { 1467 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) { 1468 return false; 1469 } 1470 } 1471 if (ri->writefn) { 1472 ri->writefn(env, ri, val); 1473 } else { 1474 CPREG_FIELD64(env, ri) = val; 1475 } 1476 1477 trace_hvf_vgic_write(ri->name, val); 1478 return true; 1479 } 1480 1481 return false; 1482 } 1483 1484 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val) 1485 { 1486 ARMCPU *arm_cpu = ARM_CPU(cpu); 1487 CPUARMState *env = &arm_cpu->env; 1488 1489 trace_hvf_sysreg_write(reg, 1490 SYSREG_OP0(reg), 1491 SYSREG_OP1(reg), 1492 SYSREG_CRN(reg), 1493 SYSREG_CRM(reg), 1494 SYSREG_OP2(reg), 1495 val); 1496 1497 switch (reg) { 1498 case SYSREG_PMCCNTR_EL0: 1499 pmu_op_start(env); 1500 env->cp15.c15_ccnt = val; 1501 pmu_op_finish(env); 1502 break; 1503 case SYSREG_PMCR_EL0: 1504 pmu_op_start(env); 1505 1506 if (val & PMCRC) { 1507 /* The counter has been reset */ 1508 env->cp15.c15_ccnt = 0; 1509 } 1510 1511 if (val & PMCRP) { 1512 unsigned int i; 1513 for (i = 0; i < pmu_num_counters(env); i++) { 1514 env->cp15.c14_pmevcntr[i] = 0; 1515 } 1516 } 1517 1518 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1519 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK); 1520 1521 pmu_op_finish(env); 1522 break; 1523 case SYSREG_PMUSERENR_EL0: 1524 env->cp15.c9_pmuserenr = val & 0xf; 1525 break; 1526 case SYSREG_PMCNTENSET_EL0: 1527 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env)); 1528 break; 1529 case SYSREG_PMCNTENCLR_EL0: 1530 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env)); 1531 break; 1532 case SYSREG_PMINTENCLR_EL1: 1533 pmu_op_start(env); 1534 env->cp15.c9_pminten |= val; 1535 pmu_op_finish(env); 1536 break; 1537 case SYSREG_PMOVSCLR_EL0: 1538 pmu_op_start(env); 1539 env->cp15.c9_pmovsr &= ~val; 1540 pmu_op_finish(env); 1541 break; 1542 case SYSREG_PMSWINC_EL0: 1543 pmu_op_start(env); 1544 pmswinc_write(env, val); 1545 pmu_op_finish(env); 1546 break; 1547 case SYSREG_PMSELR_EL0: 1548 env->cp15.c9_pmselr = val & 0x1f; 1549 break; 1550 case SYSREG_PMCCFILTR_EL0: 1551 pmu_op_start(env); 1552 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0; 1553 pmu_op_finish(env); 1554 break; 1555 case SYSREG_OSLAR_EL1: 1556 env->cp15.oslsr_el1 = val & 1; 1557 break; 1558 case SYSREG_OSDLR_EL1: 1559 /* Dummy register */ 1560 break; 1561 case SYSREG_ICC_AP0R0_EL1: 1562 case SYSREG_ICC_AP0R1_EL1: 1563 case SYSREG_ICC_AP0R2_EL1: 1564 case SYSREG_ICC_AP0R3_EL1: 1565 case SYSREG_ICC_AP1R0_EL1: 1566 case SYSREG_ICC_AP1R1_EL1: 1567 case SYSREG_ICC_AP1R2_EL1: 1568 case SYSREG_ICC_AP1R3_EL1: 1569 case SYSREG_ICC_ASGI1R_EL1: 1570 case SYSREG_ICC_BPR0_EL1: 1571 case SYSREG_ICC_BPR1_EL1: 1572 case SYSREG_ICC_CTLR_EL1: 1573 case SYSREG_ICC_DIR_EL1: 1574 case SYSREG_ICC_EOIR0_EL1: 1575 case SYSREG_ICC_EOIR1_EL1: 1576 case SYSREG_ICC_HPPIR0_EL1: 1577 case SYSREG_ICC_HPPIR1_EL1: 1578 case SYSREG_ICC_IAR0_EL1: 1579 case SYSREG_ICC_IAR1_EL1: 1580 case SYSREG_ICC_IGRPEN0_EL1: 1581 case SYSREG_ICC_IGRPEN1_EL1: 1582 case SYSREG_ICC_PMR_EL1: 1583 case SYSREG_ICC_SGI0R_EL1: 1584 case SYSREG_ICC_SGI1R_EL1: 1585 case SYSREG_ICC_SRE_EL1: 1586 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ 1587 if (!hvf_sysreg_write_cp(cpu, reg, val)) { 1588 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1589 } 1590 break; 1591 case SYSREG_MDSCR_EL1: 1592 env->cp15.mdscr_el1 = val; 1593 break; 1594 case SYSREG_DBGBVR0_EL1: 1595 case SYSREG_DBGBVR1_EL1: 1596 case SYSREG_DBGBVR2_EL1: 1597 case SYSREG_DBGBVR3_EL1: 1598 case SYSREG_DBGBVR4_EL1: 1599 case SYSREG_DBGBVR5_EL1: 1600 case SYSREG_DBGBVR6_EL1: 1601 case SYSREG_DBGBVR7_EL1: 1602 case SYSREG_DBGBVR8_EL1: 1603 case SYSREG_DBGBVR9_EL1: 1604 case SYSREG_DBGBVR10_EL1: 1605 case SYSREG_DBGBVR11_EL1: 1606 case SYSREG_DBGBVR12_EL1: 1607 case SYSREG_DBGBVR13_EL1: 1608 case SYSREG_DBGBVR14_EL1: 1609 case SYSREG_DBGBVR15_EL1: 1610 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val; 1611 break; 1612 case SYSREG_DBGBCR0_EL1: 1613 case SYSREG_DBGBCR1_EL1: 1614 case SYSREG_DBGBCR2_EL1: 1615 case SYSREG_DBGBCR3_EL1: 1616 case SYSREG_DBGBCR4_EL1: 1617 case SYSREG_DBGBCR5_EL1: 1618 case SYSREG_DBGBCR6_EL1: 1619 case SYSREG_DBGBCR7_EL1: 1620 case SYSREG_DBGBCR8_EL1: 1621 case SYSREG_DBGBCR9_EL1: 1622 case SYSREG_DBGBCR10_EL1: 1623 case SYSREG_DBGBCR11_EL1: 1624 case SYSREG_DBGBCR12_EL1: 1625 case SYSREG_DBGBCR13_EL1: 1626 case SYSREG_DBGBCR14_EL1: 1627 case SYSREG_DBGBCR15_EL1: 1628 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val; 1629 break; 1630 case SYSREG_DBGWVR0_EL1: 1631 case SYSREG_DBGWVR1_EL1: 1632 case SYSREG_DBGWVR2_EL1: 1633 case SYSREG_DBGWVR3_EL1: 1634 case SYSREG_DBGWVR4_EL1: 1635 case SYSREG_DBGWVR5_EL1: 1636 case SYSREG_DBGWVR6_EL1: 1637 case SYSREG_DBGWVR7_EL1: 1638 case SYSREG_DBGWVR8_EL1: 1639 case SYSREG_DBGWVR9_EL1: 1640 case SYSREG_DBGWVR10_EL1: 1641 case SYSREG_DBGWVR11_EL1: 1642 case SYSREG_DBGWVR12_EL1: 1643 case SYSREG_DBGWVR13_EL1: 1644 case SYSREG_DBGWVR14_EL1: 1645 case SYSREG_DBGWVR15_EL1: 1646 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val; 1647 break; 1648 case SYSREG_DBGWCR0_EL1: 1649 case SYSREG_DBGWCR1_EL1: 1650 case SYSREG_DBGWCR2_EL1: 1651 case SYSREG_DBGWCR3_EL1: 1652 case SYSREG_DBGWCR4_EL1: 1653 case SYSREG_DBGWCR5_EL1: 1654 case SYSREG_DBGWCR6_EL1: 1655 case SYSREG_DBGWCR7_EL1: 1656 case SYSREG_DBGWCR8_EL1: 1657 case SYSREG_DBGWCR9_EL1: 1658 case SYSREG_DBGWCR10_EL1: 1659 case SYSREG_DBGWCR11_EL1: 1660 case SYSREG_DBGWCR12_EL1: 1661 case SYSREG_DBGWCR13_EL1: 1662 case SYSREG_DBGWCR14_EL1: 1663 case SYSREG_DBGWCR15_EL1: 1664 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val; 1665 break; 1666 default: 1667 cpu_synchronize_state(cpu); 1668 trace_hvf_unhandled_sysreg_write(env->pc, reg, 1669 SYSREG_OP0(reg), 1670 SYSREG_OP1(reg), 1671 SYSREG_CRN(reg), 1672 SYSREG_CRM(reg), 1673 SYSREG_OP2(reg)); 1674 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1675 return 1; 1676 } 1677 1678 return 0; 1679 } 1680 1681 static int hvf_inject_interrupts(CPUState *cpu) 1682 { 1683 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) { 1684 trace_hvf_inject_fiq(); 1685 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ, 1686 true); 1687 } 1688 1689 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) { 1690 trace_hvf_inject_irq(); 1691 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ, 1692 true); 1693 } 1694 1695 return 0; 1696 } 1697 1698 static uint64_t hvf_vtimer_val_raw(void) 1699 { 1700 /* 1701 * mach_absolute_time() returns the vtimer value without the VM 1702 * offset that we define. Add our own offset on top. 1703 */ 1704 return mach_absolute_time() - hvf_state->vtimer_offset; 1705 } 1706 1707 static uint64_t hvf_vtimer_val(void) 1708 { 1709 if (!runstate_is_running()) { 1710 /* VM is paused, the vtimer value is in vtimer.vtimer_val */ 1711 return vtimer.vtimer_val; 1712 } 1713 1714 return hvf_vtimer_val_raw(); 1715 } 1716 1717 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts) 1718 { 1719 /* 1720 * Use pselect to sleep so that other threads can IPI us while we're 1721 * sleeping. 1722 */ 1723 qatomic_set_mb(&cpu->thread_kicked, false); 1724 qemu_mutex_unlock_iothread(); 1725 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask); 1726 qemu_mutex_lock_iothread(); 1727 } 1728 1729 static void hvf_wfi(CPUState *cpu) 1730 { 1731 ARMCPU *arm_cpu = ARM_CPU(cpu); 1732 struct timespec ts; 1733 hv_return_t r; 1734 uint64_t ctl; 1735 uint64_t cval; 1736 int64_t ticks_to_sleep; 1737 uint64_t seconds; 1738 uint64_t nanos; 1739 uint32_t cntfrq; 1740 1741 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) { 1742 /* Interrupt pending, no need to wait */ 1743 return; 1744 } 1745 1746 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); 1747 assert_hvf_ok(r); 1748 1749 if (!(ctl & 1) || (ctl & 2)) { 1750 /* Timer disabled or masked, just wait for an IPI. */ 1751 hvf_wait_for_ipi(cpu, NULL); 1752 return; 1753 } 1754 1755 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval); 1756 assert_hvf_ok(r); 1757 1758 ticks_to_sleep = cval - hvf_vtimer_val(); 1759 if (ticks_to_sleep < 0) { 1760 return; 1761 } 1762 1763 cntfrq = gt_cntfrq_period_ns(arm_cpu); 1764 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND); 1765 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq); 1766 nanos = ticks_to_sleep * cntfrq; 1767 1768 /* 1769 * Don't sleep for less than the time a context switch would take, 1770 * so that we can satisfy fast timer requests on the same CPU. 1771 * Measurements on M1 show the sweet spot to be ~2ms. 1772 */ 1773 if (!seconds && nanos < (2 * SCALE_MS)) { 1774 return; 1775 } 1776 1777 ts = (struct timespec) { seconds, nanos }; 1778 hvf_wait_for_ipi(cpu, &ts); 1779 } 1780 1781 static void hvf_sync_vtimer(CPUState *cpu) 1782 { 1783 ARMCPU *arm_cpu = ARM_CPU(cpu); 1784 hv_return_t r; 1785 uint64_t ctl; 1786 bool irq_state; 1787 1788 if (!cpu->accel->vtimer_masked) { 1789 /* We will get notified on vtimer changes by hvf, nothing to do */ 1790 return; 1791 } 1792 1793 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); 1794 assert_hvf_ok(r); 1795 1796 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) == 1797 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS); 1798 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state); 1799 1800 if (!irq_state) { 1801 /* Timer no longer asserting, we can unmask it */ 1802 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false); 1803 cpu->accel->vtimer_masked = false; 1804 } 1805 } 1806 1807 int hvf_vcpu_exec(CPUState *cpu) 1808 { 1809 ARMCPU *arm_cpu = ARM_CPU(cpu); 1810 CPUARMState *env = &arm_cpu->env; 1811 int ret; 1812 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit; 1813 hv_return_t r; 1814 bool advance_pc = false; 1815 1816 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) && 1817 hvf_inject_interrupts(cpu)) { 1818 return EXCP_INTERRUPT; 1819 } 1820 1821 if (cpu->halted) { 1822 return EXCP_HLT; 1823 } 1824 1825 flush_cpu_state(cpu); 1826 1827 qemu_mutex_unlock_iothread(); 1828 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd)); 1829 1830 /* handle VMEXIT */ 1831 uint64_t exit_reason = hvf_exit->reason; 1832 uint64_t syndrome = hvf_exit->exception.syndrome; 1833 uint32_t ec = syn_get_ec(syndrome); 1834 1835 ret = 0; 1836 qemu_mutex_lock_iothread(); 1837 switch (exit_reason) { 1838 case HV_EXIT_REASON_EXCEPTION: 1839 /* This is the main one, handle below. */ 1840 break; 1841 case HV_EXIT_REASON_VTIMER_ACTIVATED: 1842 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1); 1843 cpu->accel->vtimer_masked = true; 1844 return 0; 1845 case HV_EXIT_REASON_CANCELED: 1846 /* we got kicked, no exit to process */ 1847 return 0; 1848 default: 1849 g_assert_not_reached(); 1850 } 1851 1852 hvf_sync_vtimer(cpu); 1853 1854 switch (ec) { 1855 case EC_SOFTWARESTEP: { 1856 ret = EXCP_DEBUG; 1857 1858 if (!cpu->singlestep_enabled) { 1859 error_report("EC_SOFTWARESTEP but single-stepping not enabled"); 1860 } 1861 break; 1862 } 1863 case EC_AA64_BKPT: { 1864 ret = EXCP_DEBUG; 1865 1866 cpu_synchronize_state(cpu); 1867 1868 if (!hvf_find_sw_breakpoint(cpu, env->pc)) { 1869 /* Re-inject into the guest */ 1870 ret = 0; 1871 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0)); 1872 } 1873 break; 1874 } 1875 case EC_BREAKPOINT: { 1876 ret = EXCP_DEBUG; 1877 1878 cpu_synchronize_state(cpu); 1879 1880 if (!find_hw_breakpoint(cpu, env->pc)) { 1881 error_report("EC_BREAKPOINT but unknown hw breakpoint"); 1882 } 1883 break; 1884 } 1885 case EC_WATCHPOINT: { 1886 ret = EXCP_DEBUG; 1887 1888 cpu_synchronize_state(cpu); 1889 1890 CPUWatchpoint *wp = 1891 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address); 1892 if (!wp) { 1893 error_report("EXCP_DEBUG but unknown hw watchpoint"); 1894 } 1895 cpu->watchpoint_hit = wp; 1896 break; 1897 } 1898 case EC_DATAABORT: { 1899 bool isv = syndrome & ARM_EL_ISV; 1900 bool iswrite = (syndrome >> 6) & 1; 1901 bool s1ptw = (syndrome >> 7) & 1; 1902 uint32_t sas = (syndrome >> 22) & 3; 1903 uint32_t len = 1 << sas; 1904 uint32_t srt = (syndrome >> 16) & 0x1f; 1905 uint32_t cm = (syndrome >> 8) & 0x1; 1906 uint64_t val = 0; 1907 1908 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address, 1909 hvf_exit->exception.physical_address, isv, 1910 iswrite, s1ptw, len, srt); 1911 1912 if (cm) { 1913 /* We don't cache MMIO regions */ 1914 advance_pc = true; 1915 break; 1916 } 1917 1918 assert(isv); 1919 1920 if (iswrite) { 1921 val = hvf_get_reg(cpu, srt); 1922 address_space_write(&address_space_memory, 1923 hvf_exit->exception.physical_address, 1924 MEMTXATTRS_UNSPECIFIED, &val, len); 1925 } else { 1926 address_space_read(&address_space_memory, 1927 hvf_exit->exception.physical_address, 1928 MEMTXATTRS_UNSPECIFIED, &val, len); 1929 hvf_set_reg(cpu, srt, val); 1930 } 1931 1932 advance_pc = true; 1933 break; 1934 } 1935 case EC_SYSTEMREGISTERTRAP: { 1936 bool isread = (syndrome >> 0) & 1; 1937 uint32_t rt = (syndrome >> 5) & 0x1f; 1938 uint32_t reg = syndrome & SYSREG_MASK; 1939 uint64_t val; 1940 int sysreg_ret = 0; 1941 1942 if (isread) { 1943 sysreg_ret = hvf_sysreg_read(cpu, reg, rt); 1944 } else { 1945 val = hvf_get_reg(cpu, rt); 1946 sysreg_ret = hvf_sysreg_write(cpu, reg, val); 1947 } 1948 1949 advance_pc = !sysreg_ret; 1950 break; 1951 } 1952 case EC_WFX_TRAP: 1953 advance_pc = true; 1954 if (!(syndrome & WFX_IS_WFE)) { 1955 hvf_wfi(cpu); 1956 } 1957 break; 1958 case EC_AA64_HVC: 1959 cpu_synchronize_state(cpu); 1960 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) { 1961 if (!hvf_handle_psci_call(cpu)) { 1962 trace_hvf_unknown_hvc(env->xregs[0]); 1963 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ 1964 env->xregs[0] = -1; 1965 } 1966 } else { 1967 trace_hvf_unknown_hvc(env->xregs[0]); 1968 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1969 } 1970 break; 1971 case EC_AA64_SMC: 1972 cpu_synchronize_state(cpu); 1973 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) { 1974 advance_pc = true; 1975 1976 if (!hvf_handle_psci_call(cpu)) { 1977 trace_hvf_unknown_smc(env->xregs[0]); 1978 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ 1979 env->xregs[0] = -1; 1980 } 1981 } else { 1982 trace_hvf_unknown_smc(env->xregs[0]); 1983 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1984 } 1985 break; 1986 default: 1987 cpu_synchronize_state(cpu); 1988 trace_hvf_exit(syndrome, ec, env->pc); 1989 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec); 1990 } 1991 1992 if (advance_pc) { 1993 uint64_t pc; 1994 1995 flush_cpu_state(cpu); 1996 1997 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc); 1998 assert_hvf_ok(r); 1999 pc += 4; 2000 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc); 2001 assert_hvf_ok(r); 2002 2003 /* Handle single-stepping over instructions which trigger a VM exit */ 2004 if (cpu->singlestep_enabled) { 2005 ret = EXCP_DEBUG; 2006 } 2007 } 2008 2009 return ret; 2010 } 2011 2012 static const VMStateDescription vmstate_hvf_vtimer = { 2013 .name = "hvf-vtimer", 2014 .version_id = 1, 2015 .minimum_version_id = 1, 2016 .fields = (const VMStateField[]) { 2017 VMSTATE_UINT64(vtimer_val, HVFVTimer), 2018 VMSTATE_END_OF_LIST() 2019 }, 2020 }; 2021 2022 static void hvf_vm_state_change(void *opaque, bool running, RunState state) 2023 { 2024 HVFVTimer *s = opaque; 2025 2026 if (running) { 2027 /* Update vtimer offset on all CPUs */ 2028 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val; 2029 cpu_synchronize_all_states(); 2030 } else { 2031 /* Remember vtimer value on every pause */ 2032 s->vtimer_val = hvf_vtimer_val_raw(); 2033 } 2034 } 2035 2036 int hvf_arch_init(void) 2037 { 2038 hvf_state->vtimer_offset = mach_absolute_time(); 2039 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer); 2040 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer); 2041 2042 hvf_arm_init_debug(); 2043 2044 return 0; 2045 } 2046 2047 static const uint32_t brk_insn = 0xd4200000; 2048 2049 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 2050 { 2051 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || 2052 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { 2053 return -EINVAL; 2054 } 2055 return 0; 2056 } 2057 2058 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 2059 { 2060 static uint32_t brk; 2061 2062 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) || 2063 brk != brk_insn || 2064 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { 2065 return -EINVAL; 2066 } 2067 return 0; 2068 } 2069 2070 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 2071 { 2072 switch (type) { 2073 case GDB_BREAKPOINT_HW: 2074 return insert_hw_breakpoint(addr); 2075 case GDB_WATCHPOINT_READ: 2076 case GDB_WATCHPOINT_WRITE: 2077 case GDB_WATCHPOINT_ACCESS: 2078 return insert_hw_watchpoint(addr, len, type); 2079 default: 2080 return -ENOSYS; 2081 } 2082 } 2083 2084 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 2085 { 2086 switch (type) { 2087 case GDB_BREAKPOINT_HW: 2088 return delete_hw_breakpoint(addr); 2089 case GDB_WATCHPOINT_READ: 2090 case GDB_WATCHPOINT_WRITE: 2091 case GDB_WATCHPOINT_ACCESS: 2092 return delete_hw_watchpoint(addr, len, type); 2093 default: 2094 return -ENOSYS; 2095 } 2096 } 2097 2098 void hvf_arch_remove_all_hw_breakpoints(void) 2099 { 2100 if (cur_hw_wps > 0) { 2101 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); 2102 } 2103 if (cur_hw_bps > 0) { 2104 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); 2105 } 2106 } 2107 2108 /* 2109 * Update the vCPU with the gdbstub's view of debug registers. This view 2110 * consists of all hardware breakpoints and watchpoints inserted so far while 2111 * debugging the guest. 2112 */ 2113 static void hvf_put_gdbstub_debug_registers(CPUState *cpu) 2114 { 2115 hv_return_t r = HV_SUCCESS; 2116 int i; 2117 2118 for (i = 0; i < cur_hw_bps; i++) { 2119 HWBreakpoint *bp = get_hw_bp(i); 2120 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr); 2121 assert_hvf_ok(r); 2122 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr); 2123 assert_hvf_ok(r); 2124 } 2125 for (i = cur_hw_bps; i < max_hw_bps; i++) { 2126 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0); 2127 assert_hvf_ok(r); 2128 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0); 2129 assert_hvf_ok(r); 2130 } 2131 2132 for (i = 0; i < cur_hw_wps; i++) { 2133 HWWatchpoint *wp = get_hw_wp(i); 2134 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr); 2135 assert_hvf_ok(r); 2136 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr); 2137 assert_hvf_ok(r); 2138 } 2139 for (i = cur_hw_wps; i < max_hw_wps; i++) { 2140 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0); 2141 assert_hvf_ok(r); 2142 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0); 2143 assert_hvf_ok(r); 2144 } 2145 } 2146 2147 /* 2148 * Update the vCPU with the guest's view of debug registers. This view is kept 2149 * in the environment at all times. 2150 */ 2151 static void hvf_put_guest_debug_registers(CPUState *cpu) 2152 { 2153 ARMCPU *arm_cpu = ARM_CPU(cpu); 2154 CPUARMState *env = &arm_cpu->env; 2155 hv_return_t r = HV_SUCCESS; 2156 int i; 2157 2158 for (i = 0; i < max_hw_bps; i++) { 2159 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 2160 env->cp15.dbgbcr[i]); 2161 assert_hvf_ok(r); 2162 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 2163 env->cp15.dbgbvr[i]); 2164 assert_hvf_ok(r); 2165 } 2166 2167 for (i = 0; i < max_hw_wps; i++) { 2168 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 2169 env->cp15.dbgwcr[i]); 2170 assert_hvf_ok(r); 2171 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 2172 env->cp15.dbgwvr[i]); 2173 assert_hvf_ok(r); 2174 } 2175 } 2176 2177 static inline bool hvf_arm_hw_debug_active(CPUState *cpu) 2178 { 2179 return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); 2180 } 2181 2182 static void hvf_arch_set_traps(void) 2183 { 2184 CPUState *cpu; 2185 bool should_enable_traps = false; 2186 hv_return_t r = HV_SUCCESS; 2187 2188 /* Check whether guest debugging is enabled for at least one vCPU; if it 2189 * is, enable exiting the guest on all vCPUs */ 2190 CPU_FOREACH(cpu) { 2191 should_enable_traps |= cpu->accel->guest_debug_enabled; 2192 } 2193 CPU_FOREACH(cpu) { 2194 /* Set whether debug exceptions exit the guest */ 2195 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd, 2196 should_enable_traps); 2197 assert_hvf_ok(r); 2198 2199 /* Set whether accesses to debug registers exit the guest */ 2200 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd, 2201 should_enable_traps); 2202 assert_hvf_ok(r); 2203 } 2204 } 2205 2206 void hvf_arch_update_guest_debug(CPUState *cpu) 2207 { 2208 ARMCPU *arm_cpu = ARM_CPU(cpu); 2209 CPUARMState *env = &arm_cpu->env; 2210 2211 /* Check whether guest debugging is enabled */ 2212 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled || 2213 hvf_sw_breakpoints_active(cpu) || 2214 hvf_arm_hw_debug_active(cpu); 2215 2216 /* Update debug registers */ 2217 if (cpu->accel->guest_debug_enabled) { 2218 hvf_put_gdbstub_debug_registers(cpu); 2219 } else { 2220 hvf_put_guest_debug_registers(cpu); 2221 } 2222 2223 cpu_synchronize_state(cpu); 2224 2225 /* Enable/disable single-stepping */ 2226 if (cpu->singlestep_enabled) { 2227 env->cp15.mdscr_el1 = 2228 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1); 2229 pstate_write(env, pstate_read(env) | PSTATE_SS); 2230 } else { 2231 env->cp15.mdscr_el1 = 2232 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0); 2233 } 2234 2235 /* Enable/disable Breakpoint exceptions */ 2236 if (hvf_arm_hw_debug_active(cpu)) { 2237 env->cp15.mdscr_el1 = 2238 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1); 2239 } else { 2240 env->cp15.mdscr_el1 = 2241 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0); 2242 } 2243 2244 hvf_arch_set_traps(); 2245 } 2246 2247 inline bool hvf_arch_supports_guest_debug(void) 2248 { 2249 return true; 2250 } 2251