xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision ce799a04)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33 
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
37 
38 #define SYSREG_OP0_SHIFT      20
39 #define SYSREG_OP0_MASK       0x3
40 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
41 #define SYSREG_OP1_SHIFT      14
42 #define SYSREG_OP1_MASK       0x7
43 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
44 #define SYSREG_CRN_SHIFT      10
45 #define SYSREG_CRN_MASK       0xf
46 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
47 #define SYSREG_CRM_SHIFT      1
48 #define SYSREG_CRM_MASK       0xf
49 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
50 #define SYSREG_OP2_SHIFT      17
51 #define SYSREG_OP2_MASK       0x7
52 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
53 
54 #define SYSREG(op0, op1, crn, crm, op2) \
55     ((op0 << SYSREG_OP0_SHIFT) | \
56      (op1 << SYSREG_OP1_SHIFT) | \
57      (crn << SYSREG_CRN_SHIFT) | \
58      (crm << SYSREG_CRM_SHIFT) | \
59      (op2 << SYSREG_OP2_SHIFT))
60 #define SYSREG_MASK \
61     SYSREG(SYSREG_OP0_MASK, \
62            SYSREG_OP1_MASK, \
63            SYSREG_CRN_MASK, \
64            SYSREG_CRM_MASK, \
65            SYSREG_OP2_MASK)
66 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
67 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
68 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
69 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
70 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
71 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
72 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
73 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
74 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
75 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
76 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
77 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
78 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
79 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
80 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
81 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
82 
83 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
84 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
85 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
86 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
87 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
88 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
89 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
90 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
91 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
92 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
93 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
94 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
95 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
96 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
97 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
98 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
99 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
100 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
101 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
102 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
103 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
104 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
105 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
106 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
107 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
108 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
109 
110 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
111 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
112 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
113 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
114 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
115 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
116 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
117 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
118 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
119 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
120 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
121 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
122 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
123 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
124 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
125 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
126 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
127 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
128 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
129 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
130 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
131 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
132 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
133 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
134 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
135 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
136 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
137 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
138 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
139 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
140 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
141 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
142 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
143 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
144 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
145 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
146 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
147 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
148 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
149 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
150 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
151 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
152 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
153 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
154 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
155 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
156 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
157 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
158 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
159 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
160 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
161 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
162 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
163 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
164 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
165 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
166 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
167 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
168 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
169 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
170 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
171 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
172 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
173 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
174 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
175 
176 #define WFX_IS_WFE (1 << 0)
177 
178 #define TMR_CTL_ENABLE  (1 << 0)
179 #define TMR_CTL_IMASK   (1 << 1)
180 #define TMR_CTL_ISTATUS (1 << 2)
181 
182 static void hvf_wfi(CPUState *cpu);
183 
184 typedef struct HVFVTimer {
185     /* Vtimer value during migration and paused state */
186     uint64_t vtimer_val;
187 } HVFVTimer;
188 
189 static HVFVTimer vtimer;
190 
191 typedef struct ARMHostCPUFeatures {
192     ARMISARegisters isar;
193     uint64_t features;
194     uint64_t midr;
195     uint32_t reset_sctlr;
196     const char *dtb_compatible;
197 } ARMHostCPUFeatures;
198 
199 static ARMHostCPUFeatures arm_host_cpu_features;
200 
201 struct hvf_reg_match {
202     int reg;
203     uint64_t offset;
204 };
205 
206 static const struct hvf_reg_match hvf_reg_match[] = {
207     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
208     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
209     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
210     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
211     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
212     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
213     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
214     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
215     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
216     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
217     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
218     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
219     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
220     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
221     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
222     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
223     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
224     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
225     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
226     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
227     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
228     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
229     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
230     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
231     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
232     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
233     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
234     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
235     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
236     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
237     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
238     { HV_REG_PC,   offsetof(CPUARMState, pc) },
239 };
240 
241 static const struct hvf_reg_match hvf_fpreg_match[] = {
242     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
243     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
244     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
245     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
246     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
247     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
248     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
249     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
250     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
251     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
252     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
253     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
254     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
255     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
256     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
257     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
258     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
259     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
260     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
261     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
262     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
263     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
264     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
265     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
266     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
267     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
268     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
269     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
270     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
271     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
272     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
273     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
274 };
275 
276 struct hvf_sreg_match {
277     int reg;
278     uint32_t key;
279     uint32_t cp_idx;
280 };
281 
282 static struct hvf_sreg_match hvf_sreg_match[] = {
283     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
284     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
285     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
286     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
287 
288     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
289     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
290     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
291     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
292 
293     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
294     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
295     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
296     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
297 
298     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
299     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
300     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
301     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
302 
303     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
304     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
305     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
306     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
307 
308     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
309     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
310     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
311     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
312 
313     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
314     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
315     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
316     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
317 
318     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
319     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
320     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
321     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
322 
323     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
324     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
325     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
326     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
327 
328     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
329     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
330     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
331     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
332 
333     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
334     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
335     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
336     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
337 
338     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
339     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
340     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
341     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
342 
343     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
344     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
345     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
346     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
347 
348     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
349     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
350     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
351     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
352 
353     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
354     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
355     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
356     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
357 
358     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
359     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
360     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
361     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
362 
363 #ifdef SYNC_NO_RAW_REGS
364     /*
365      * The registers below are manually synced on init because they are
366      * marked as NO_RAW. We still list them to make number space sync easier.
367      */
368     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
369     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
370     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
371     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
372 #endif
373     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
374     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
375     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
376     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
377     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
378 #ifdef SYNC_NO_MMFR0
379     /* We keep the hardware MMFR0 around. HW limits are there anyway */
380     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
381 #endif
382     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
383     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
384 
385     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
386     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
387     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
388     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
389     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
390     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
391 
392     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
393     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
394     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
395     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
396     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
397     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
398     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
399     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
400     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
401     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
402 
403     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
404     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
405     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
406     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
407     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
408     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
409     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
410     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
411     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
412     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
413     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
414     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
415     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
416     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
417     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
418     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
419     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
420     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
421     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
422     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
423 };
424 
425 int hvf_get_registers(CPUState *cpu)
426 {
427     ARMCPU *arm_cpu = ARM_CPU(cpu);
428     CPUARMState *env = &arm_cpu->env;
429     hv_return_t ret;
430     uint64_t val;
431     hv_simd_fp_uchar16_t fpval;
432     int i;
433 
434     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
435         ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
436         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
437         assert_hvf_ok(ret);
438     }
439 
440     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
441         ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
442                                       &fpval);
443         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
444         assert_hvf_ok(ret);
445     }
446 
447     val = 0;
448     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
449     assert_hvf_ok(ret);
450     vfp_set_fpcr(env, val);
451 
452     val = 0;
453     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
454     assert_hvf_ok(ret);
455     vfp_set_fpsr(env, val);
456 
457     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
458     assert_hvf_ok(ret);
459     pstate_write(env, val);
460 
461     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
462         if (hvf_sreg_match[i].cp_idx == -1) {
463             continue;
464         }
465 
466         ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
467         assert_hvf_ok(ret);
468 
469         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
470     }
471     assert(write_list_to_cpustate(arm_cpu));
472 
473     aarch64_restore_sp(env, arm_current_el(env));
474 
475     return 0;
476 }
477 
478 int hvf_put_registers(CPUState *cpu)
479 {
480     ARMCPU *arm_cpu = ARM_CPU(cpu);
481     CPUARMState *env = &arm_cpu->env;
482     hv_return_t ret;
483     uint64_t val;
484     hv_simd_fp_uchar16_t fpval;
485     int i;
486 
487     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
488         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
489         ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
490         assert_hvf_ok(ret);
491     }
492 
493     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
494         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
495         ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
496                                       fpval);
497         assert_hvf_ok(ret);
498     }
499 
500     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
501     assert_hvf_ok(ret);
502 
503     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
504     assert_hvf_ok(ret);
505 
506     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
507     assert_hvf_ok(ret);
508 
509     aarch64_save_sp(env, arm_current_el(env));
510 
511     assert(write_cpustate_to_list(arm_cpu, false));
512     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
513         if (hvf_sreg_match[i].cp_idx == -1) {
514             continue;
515         }
516 
517         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
518         ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
519         assert_hvf_ok(ret);
520     }
521 
522     ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
523     assert_hvf_ok(ret);
524 
525     return 0;
526 }
527 
528 static void flush_cpu_state(CPUState *cpu)
529 {
530     if (cpu->vcpu_dirty) {
531         hvf_put_registers(cpu);
532         cpu->vcpu_dirty = false;
533     }
534 }
535 
536 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
537 {
538     hv_return_t r;
539 
540     flush_cpu_state(cpu);
541 
542     if (rt < 31) {
543         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
544         assert_hvf_ok(r);
545     }
546 }
547 
548 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
549 {
550     uint64_t val = 0;
551     hv_return_t r;
552 
553     flush_cpu_state(cpu);
554 
555     if (rt < 31) {
556         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
557         assert_hvf_ok(r);
558     }
559 
560     return val;
561 }
562 
563 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
564 {
565     ARMISARegisters host_isar = {};
566     const struct isar_regs {
567         int reg;
568         uint64_t *val;
569     } regs[] = {
570         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
571         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
572         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
573         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
574         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
575         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
576         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
577         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
578         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
579     };
580     hv_vcpu_t fd;
581     hv_return_t r = HV_SUCCESS;
582     hv_vcpu_exit_t *exit;
583     int i;
584 
585     ahcf->dtb_compatible = "arm,arm-v8";
586     ahcf->features = (1ULL << ARM_FEATURE_V8) |
587                      (1ULL << ARM_FEATURE_NEON) |
588                      (1ULL << ARM_FEATURE_AARCH64) |
589                      (1ULL << ARM_FEATURE_PMU) |
590                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
591 
592     /* We set up a small vcpu to extract host registers */
593 
594     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
595         return false;
596     }
597 
598     for (i = 0; i < ARRAY_SIZE(regs); i++) {
599         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
600     }
601     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
602     r |= hv_vcpu_destroy(fd);
603 
604     ahcf->isar = host_isar;
605 
606     /*
607      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
608      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
609      */
610     ahcf->reset_sctlr = 0x30100180;
611     /*
612      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
613      * let's disable it on boot and then allow guest software to turn it on by
614      * setting it to 0.
615      */
616     ahcf->reset_sctlr |= 0x00800000;
617 
618     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
619     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
620         return false;
621     }
622 
623     return r == HV_SUCCESS;
624 }
625 
626 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
627 {
628     if (!arm_host_cpu_features.dtb_compatible) {
629         if (!hvf_enabled() ||
630             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
631             /*
632              * We can't report this error yet, so flag that we need to
633              * in arm_cpu_realizefn().
634              */
635             cpu->host_cpu_probe_failed = true;
636             return;
637         }
638     }
639 
640     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
641     cpu->isar = arm_host_cpu_features.isar;
642     cpu->env.features = arm_host_cpu_features.features;
643     cpu->midr = arm_host_cpu_features.midr;
644     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
645 }
646 
647 void hvf_arch_vcpu_destroy(CPUState *cpu)
648 {
649 }
650 
651 int hvf_arch_init_vcpu(CPUState *cpu)
652 {
653     ARMCPU *arm_cpu = ARM_CPU(cpu);
654     CPUARMState *env = &arm_cpu->env;
655     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
656     uint32_t sregs_cnt = 0;
657     uint64_t pfr;
658     hv_return_t ret;
659     int i;
660 
661     env->aarch64 = true;
662     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
663 
664     /* Allocate enough space for our sysreg sync */
665     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
666                                      sregs_match_len);
667     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
668                                     sregs_match_len);
669     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
670                                              arm_cpu->cpreg_vmstate_indexes,
671                                              sregs_match_len);
672     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
673                                             arm_cpu->cpreg_vmstate_values,
674                                             sregs_match_len);
675 
676     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
677 
678     /* Populate cp list for all known sysregs */
679     for (i = 0; i < sregs_match_len; i++) {
680         const ARMCPRegInfo *ri;
681         uint32_t key = hvf_sreg_match[i].key;
682 
683         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
684         if (ri) {
685             assert(!(ri->type & ARM_CP_NO_RAW));
686             hvf_sreg_match[i].cp_idx = sregs_cnt;
687             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
688         } else {
689             hvf_sreg_match[i].cp_idx = -1;
690         }
691     }
692     arm_cpu->cpreg_array_len = sregs_cnt;
693     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
694 
695     assert(write_cpustate_to_list(arm_cpu, false));
696 
697     /* Set CP_NO_RAW system registers on init */
698     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
699                               arm_cpu->midr);
700     assert_hvf_ok(ret);
701 
702     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
703                               arm_cpu->mp_affinity);
704     assert_hvf_ok(ret);
705 
706     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
707     assert_hvf_ok(ret);
708     pfr |= env->gicv3state ? (1 << 24) : 0;
709     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
710     assert_hvf_ok(ret);
711 
712     /* We're limited to underlying hardware caps, override internal versions */
713     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
714                               &arm_cpu->isar.id_aa64mmfr0);
715     assert_hvf_ok(ret);
716 
717     return 0;
718 }
719 
720 void hvf_kick_vcpu_thread(CPUState *cpu)
721 {
722     cpus_kick_thread(cpu);
723     hv_vcpus_exit(&cpu->hvf->fd, 1);
724 }
725 
726 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
727                                 uint32_t syndrome)
728 {
729     ARMCPU *arm_cpu = ARM_CPU(cpu);
730     CPUARMState *env = &arm_cpu->env;
731 
732     cpu->exception_index = excp;
733     env->exception.target_el = 1;
734     env->exception.syndrome = syndrome;
735 
736     arm_cpu_do_interrupt(cpu);
737 }
738 
739 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
740 {
741     int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
742     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
743 }
744 
745 /*
746  * Handle a PSCI call.
747  *
748  * Returns 0 on success
749  *         -1 when the PSCI call is unknown,
750  */
751 static bool hvf_handle_psci_call(CPUState *cpu)
752 {
753     ARMCPU *arm_cpu = ARM_CPU(cpu);
754     CPUARMState *env = &arm_cpu->env;
755     uint64_t param[4] = {
756         env->xregs[0],
757         env->xregs[1],
758         env->xregs[2],
759         env->xregs[3]
760     };
761     uint64_t context_id, mpidr;
762     bool target_aarch64 = true;
763     CPUState *target_cpu_state;
764     ARMCPU *target_cpu;
765     target_ulong entry;
766     int target_el = 1;
767     int32_t ret = 0;
768 
769     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
770                         arm_cpu->mp_affinity);
771 
772     switch (param[0]) {
773     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
774         ret = QEMU_PSCI_VERSION_1_1;
775         break;
776     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
777         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
778         break;
779     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
780     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
781         mpidr = param[1];
782 
783         switch (param[2]) {
784         case 0:
785             target_cpu_state = arm_get_cpu_by_id(mpidr);
786             if (!target_cpu_state) {
787                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
788                 break;
789             }
790             target_cpu = ARM_CPU(target_cpu_state);
791 
792             ret = target_cpu->power_state;
793             break;
794         default:
795             /* Everything above affinity level 0 is always on. */
796             ret = 0;
797         }
798         break;
799     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
800         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
801         /*
802          * QEMU reset and shutdown are async requests, but PSCI
803          * mandates that we never return from the reset/shutdown
804          * call, so power the CPU off now so it doesn't execute
805          * anything further.
806          */
807         hvf_psci_cpu_off(arm_cpu);
808         break;
809     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
810         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
811         hvf_psci_cpu_off(arm_cpu);
812         break;
813     case QEMU_PSCI_0_1_FN_CPU_ON:
814     case QEMU_PSCI_0_2_FN_CPU_ON:
815     case QEMU_PSCI_0_2_FN64_CPU_ON:
816         mpidr = param[1];
817         entry = param[2];
818         context_id = param[3];
819         ret = arm_set_cpu_on(mpidr, entry, context_id,
820                              target_el, target_aarch64);
821         break;
822     case QEMU_PSCI_0_1_FN_CPU_OFF:
823     case QEMU_PSCI_0_2_FN_CPU_OFF:
824         hvf_psci_cpu_off(arm_cpu);
825         break;
826     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
827     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
828     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
829         /* Affinity levels are not supported in QEMU */
830         if (param[1] & 0xfffe0000) {
831             ret = QEMU_PSCI_RET_INVALID_PARAMS;
832             break;
833         }
834         /* Powerdown is not supported, we always go into WFI */
835         env->xregs[0] = 0;
836         hvf_wfi(cpu);
837         break;
838     case QEMU_PSCI_0_1_FN_MIGRATE:
839     case QEMU_PSCI_0_2_FN_MIGRATE:
840         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
841         break;
842     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
843         switch (param[1]) {
844         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
845         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
846         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
847         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
848         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
849         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
850         case QEMU_PSCI_0_1_FN_CPU_ON:
851         case QEMU_PSCI_0_2_FN_CPU_ON:
852         case QEMU_PSCI_0_2_FN64_CPU_ON:
853         case QEMU_PSCI_0_1_FN_CPU_OFF:
854         case QEMU_PSCI_0_2_FN_CPU_OFF:
855         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
856         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
857         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
858         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
859             ret = 0;
860             break;
861         case QEMU_PSCI_0_1_FN_MIGRATE:
862         case QEMU_PSCI_0_2_FN_MIGRATE:
863         default:
864             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
865         }
866         break;
867     default:
868         return false;
869     }
870 
871     env->xregs[0] = ret;
872     return true;
873 }
874 
875 static bool is_id_sysreg(uint32_t reg)
876 {
877     return SYSREG_OP0(reg) == 3 &&
878            SYSREG_OP1(reg) == 0 &&
879            SYSREG_CRN(reg) == 0 &&
880            SYSREG_CRM(reg) >= 1 &&
881            SYSREG_CRM(reg) < 8;
882 }
883 
884 static uint32_t hvf_reg2cp_reg(uint32_t reg)
885 {
886     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
887                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
888                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
889                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
890                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
891                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
892 }
893 
894 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
895 {
896     ARMCPU *arm_cpu = ARM_CPU(cpu);
897     CPUARMState *env = &arm_cpu->env;
898     const ARMCPRegInfo *ri;
899 
900     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
901     if (ri) {
902         if (ri->accessfn) {
903             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
904                 return false;
905             }
906         }
907         if (ri->type & ARM_CP_CONST) {
908             *val = ri->resetvalue;
909         } else if (ri->readfn) {
910             *val = ri->readfn(env, ri);
911         } else {
912             *val = CPREG_FIELD64(env, ri);
913         }
914         trace_hvf_vgic_read(ri->name, *val);
915         return true;
916     }
917 
918     return false;
919 }
920 
921 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
922 {
923     ARMCPU *arm_cpu = ARM_CPU(cpu);
924     CPUARMState *env = &arm_cpu->env;
925     uint64_t val = 0;
926 
927     switch (reg) {
928     case SYSREG_CNTPCT_EL0:
929         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
930               gt_cntfrq_period_ns(arm_cpu);
931         break;
932     case SYSREG_PMCR_EL0:
933         val = env->cp15.c9_pmcr;
934         break;
935     case SYSREG_PMCCNTR_EL0:
936         pmu_op_start(env);
937         val = env->cp15.c15_ccnt;
938         pmu_op_finish(env);
939         break;
940     case SYSREG_PMCNTENCLR_EL0:
941         val = env->cp15.c9_pmcnten;
942         break;
943     case SYSREG_PMOVSCLR_EL0:
944         val = env->cp15.c9_pmovsr;
945         break;
946     case SYSREG_PMSELR_EL0:
947         val = env->cp15.c9_pmselr;
948         break;
949     case SYSREG_PMINTENCLR_EL1:
950         val = env->cp15.c9_pminten;
951         break;
952     case SYSREG_PMCCFILTR_EL0:
953         val = env->cp15.pmccfiltr_el0;
954         break;
955     case SYSREG_PMCNTENSET_EL0:
956         val = env->cp15.c9_pmcnten;
957         break;
958     case SYSREG_PMUSERENR_EL0:
959         val = env->cp15.c9_pmuserenr;
960         break;
961     case SYSREG_PMCEID0_EL0:
962     case SYSREG_PMCEID1_EL0:
963         /* We can't really count anything yet, declare all events invalid */
964         val = 0;
965         break;
966     case SYSREG_OSLSR_EL1:
967         val = env->cp15.oslsr_el1;
968         break;
969     case SYSREG_OSDLR_EL1:
970         /* Dummy register */
971         break;
972     case SYSREG_ICC_AP0R0_EL1:
973     case SYSREG_ICC_AP0R1_EL1:
974     case SYSREG_ICC_AP0R2_EL1:
975     case SYSREG_ICC_AP0R3_EL1:
976     case SYSREG_ICC_AP1R0_EL1:
977     case SYSREG_ICC_AP1R1_EL1:
978     case SYSREG_ICC_AP1R2_EL1:
979     case SYSREG_ICC_AP1R3_EL1:
980     case SYSREG_ICC_ASGI1R_EL1:
981     case SYSREG_ICC_BPR0_EL1:
982     case SYSREG_ICC_BPR1_EL1:
983     case SYSREG_ICC_DIR_EL1:
984     case SYSREG_ICC_EOIR0_EL1:
985     case SYSREG_ICC_EOIR1_EL1:
986     case SYSREG_ICC_HPPIR0_EL1:
987     case SYSREG_ICC_HPPIR1_EL1:
988     case SYSREG_ICC_IAR0_EL1:
989     case SYSREG_ICC_IAR1_EL1:
990     case SYSREG_ICC_IGRPEN0_EL1:
991     case SYSREG_ICC_IGRPEN1_EL1:
992     case SYSREG_ICC_PMR_EL1:
993     case SYSREG_ICC_SGI0R_EL1:
994     case SYSREG_ICC_SGI1R_EL1:
995     case SYSREG_ICC_SRE_EL1:
996     case SYSREG_ICC_CTLR_EL1:
997         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
998         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
999             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1000         }
1001         break;
1002     case SYSREG_DBGBVR0_EL1:
1003     case SYSREG_DBGBVR1_EL1:
1004     case SYSREG_DBGBVR2_EL1:
1005     case SYSREG_DBGBVR3_EL1:
1006     case SYSREG_DBGBVR4_EL1:
1007     case SYSREG_DBGBVR5_EL1:
1008     case SYSREG_DBGBVR6_EL1:
1009     case SYSREG_DBGBVR7_EL1:
1010     case SYSREG_DBGBVR8_EL1:
1011     case SYSREG_DBGBVR9_EL1:
1012     case SYSREG_DBGBVR10_EL1:
1013     case SYSREG_DBGBVR11_EL1:
1014     case SYSREG_DBGBVR12_EL1:
1015     case SYSREG_DBGBVR13_EL1:
1016     case SYSREG_DBGBVR14_EL1:
1017     case SYSREG_DBGBVR15_EL1:
1018         val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1019         break;
1020     case SYSREG_DBGBCR0_EL1:
1021     case SYSREG_DBGBCR1_EL1:
1022     case SYSREG_DBGBCR2_EL1:
1023     case SYSREG_DBGBCR3_EL1:
1024     case SYSREG_DBGBCR4_EL1:
1025     case SYSREG_DBGBCR5_EL1:
1026     case SYSREG_DBGBCR6_EL1:
1027     case SYSREG_DBGBCR7_EL1:
1028     case SYSREG_DBGBCR8_EL1:
1029     case SYSREG_DBGBCR9_EL1:
1030     case SYSREG_DBGBCR10_EL1:
1031     case SYSREG_DBGBCR11_EL1:
1032     case SYSREG_DBGBCR12_EL1:
1033     case SYSREG_DBGBCR13_EL1:
1034     case SYSREG_DBGBCR14_EL1:
1035     case SYSREG_DBGBCR15_EL1:
1036         val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1037         break;
1038     case SYSREG_DBGWVR0_EL1:
1039     case SYSREG_DBGWVR1_EL1:
1040     case SYSREG_DBGWVR2_EL1:
1041     case SYSREG_DBGWVR3_EL1:
1042     case SYSREG_DBGWVR4_EL1:
1043     case SYSREG_DBGWVR5_EL1:
1044     case SYSREG_DBGWVR6_EL1:
1045     case SYSREG_DBGWVR7_EL1:
1046     case SYSREG_DBGWVR8_EL1:
1047     case SYSREG_DBGWVR9_EL1:
1048     case SYSREG_DBGWVR10_EL1:
1049     case SYSREG_DBGWVR11_EL1:
1050     case SYSREG_DBGWVR12_EL1:
1051     case SYSREG_DBGWVR13_EL1:
1052     case SYSREG_DBGWVR14_EL1:
1053     case SYSREG_DBGWVR15_EL1:
1054         val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1055         break;
1056     case SYSREG_DBGWCR0_EL1:
1057     case SYSREG_DBGWCR1_EL1:
1058     case SYSREG_DBGWCR2_EL1:
1059     case SYSREG_DBGWCR3_EL1:
1060     case SYSREG_DBGWCR4_EL1:
1061     case SYSREG_DBGWCR5_EL1:
1062     case SYSREG_DBGWCR6_EL1:
1063     case SYSREG_DBGWCR7_EL1:
1064     case SYSREG_DBGWCR8_EL1:
1065     case SYSREG_DBGWCR9_EL1:
1066     case SYSREG_DBGWCR10_EL1:
1067     case SYSREG_DBGWCR11_EL1:
1068     case SYSREG_DBGWCR12_EL1:
1069     case SYSREG_DBGWCR13_EL1:
1070     case SYSREG_DBGWCR14_EL1:
1071     case SYSREG_DBGWCR15_EL1:
1072         val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1073         break;
1074     default:
1075         if (is_id_sysreg(reg)) {
1076             /* ID system registers read as RES0 */
1077             val = 0;
1078             break;
1079         }
1080         cpu_synchronize_state(cpu);
1081         trace_hvf_unhandled_sysreg_read(env->pc, reg,
1082                                         SYSREG_OP0(reg),
1083                                         SYSREG_OP1(reg),
1084                                         SYSREG_CRN(reg),
1085                                         SYSREG_CRM(reg),
1086                                         SYSREG_OP2(reg));
1087         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1088         return 1;
1089     }
1090 
1091     trace_hvf_sysreg_read(reg,
1092                           SYSREG_OP0(reg),
1093                           SYSREG_OP1(reg),
1094                           SYSREG_CRN(reg),
1095                           SYSREG_CRM(reg),
1096                           SYSREG_OP2(reg),
1097                           val);
1098     hvf_set_reg(cpu, rt, val);
1099 
1100     return 0;
1101 }
1102 
1103 static void pmu_update_irq(CPUARMState *env)
1104 {
1105     ARMCPU *cpu = env_archcpu(env);
1106     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1107             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1108 }
1109 
1110 static bool pmu_event_supported(uint16_t number)
1111 {
1112     return false;
1113 }
1114 
1115 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1116  * the current EL, security state, and register configuration.
1117  */
1118 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1119 {
1120     uint64_t filter;
1121     bool enabled, filtered = true;
1122     int el = arm_current_el(env);
1123 
1124     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1125               (env->cp15.c9_pmcnten & (1 << counter));
1126 
1127     if (counter == 31) {
1128         filter = env->cp15.pmccfiltr_el0;
1129     } else {
1130         filter = env->cp15.c14_pmevtyper[counter];
1131     }
1132 
1133     if (el == 0) {
1134         filtered = filter & PMXEVTYPER_U;
1135     } else if (el == 1) {
1136         filtered = filter & PMXEVTYPER_P;
1137     }
1138 
1139     if (counter != 31) {
1140         /*
1141          * If not checking PMCCNTR, ensure the counter is setup to an event we
1142          * support
1143          */
1144         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1145         if (!pmu_event_supported(event)) {
1146             return false;
1147         }
1148     }
1149 
1150     return enabled && !filtered;
1151 }
1152 
1153 static void pmswinc_write(CPUARMState *env, uint64_t value)
1154 {
1155     unsigned int i;
1156     for (i = 0; i < pmu_num_counters(env); i++) {
1157         /* Increment a counter's count iff: */
1158         if ((value & (1 << i)) && /* counter's bit is set */
1159                 /* counter is enabled and not filtered */
1160                 pmu_counter_enabled(env, i) &&
1161                 /* counter is SW_INCR */
1162                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1163             /*
1164              * Detect if this write causes an overflow since we can't predict
1165              * PMSWINC overflows like we can for other events
1166              */
1167             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1168 
1169             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1170                 env->cp15.c9_pmovsr |= (1 << i);
1171                 pmu_update_irq(env);
1172             }
1173 
1174             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1175         }
1176     }
1177 }
1178 
1179 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1180 {
1181     ARMCPU *arm_cpu = ARM_CPU(cpu);
1182     CPUARMState *env = &arm_cpu->env;
1183     const ARMCPRegInfo *ri;
1184 
1185     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1186 
1187     if (ri) {
1188         if (ri->accessfn) {
1189             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1190                 return false;
1191             }
1192         }
1193         if (ri->writefn) {
1194             ri->writefn(env, ri, val);
1195         } else {
1196             CPREG_FIELD64(env, ri) = val;
1197         }
1198 
1199         trace_hvf_vgic_write(ri->name, val);
1200         return true;
1201     }
1202 
1203     return false;
1204 }
1205 
1206 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1207 {
1208     ARMCPU *arm_cpu = ARM_CPU(cpu);
1209     CPUARMState *env = &arm_cpu->env;
1210 
1211     trace_hvf_sysreg_write(reg,
1212                            SYSREG_OP0(reg),
1213                            SYSREG_OP1(reg),
1214                            SYSREG_CRN(reg),
1215                            SYSREG_CRM(reg),
1216                            SYSREG_OP2(reg),
1217                            val);
1218 
1219     switch (reg) {
1220     case SYSREG_PMCCNTR_EL0:
1221         pmu_op_start(env);
1222         env->cp15.c15_ccnt = val;
1223         pmu_op_finish(env);
1224         break;
1225     case SYSREG_PMCR_EL0:
1226         pmu_op_start(env);
1227 
1228         if (val & PMCRC) {
1229             /* The counter has been reset */
1230             env->cp15.c15_ccnt = 0;
1231         }
1232 
1233         if (val & PMCRP) {
1234             unsigned int i;
1235             for (i = 0; i < pmu_num_counters(env); i++) {
1236                 env->cp15.c14_pmevcntr[i] = 0;
1237             }
1238         }
1239 
1240         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1241         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1242 
1243         pmu_op_finish(env);
1244         break;
1245     case SYSREG_PMUSERENR_EL0:
1246         env->cp15.c9_pmuserenr = val & 0xf;
1247         break;
1248     case SYSREG_PMCNTENSET_EL0:
1249         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1250         break;
1251     case SYSREG_PMCNTENCLR_EL0:
1252         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1253         break;
1254     case SYSREG_PMINTENCLR_EL1:
1255         pmu_op_start(env);
1256         env->cp15.c9_pminten |= val;
1257         pmu_op_finish(env);
1258         break;
1259     case SYSREG_PMOVSCLR_EL0:
1260         pmu_op_start(env);
1261         env->cp15.c9_pmovsr &= ~val;
1262         pmu_op_finish(env);
1263         break;
1264     case SYSREG_PMSWINC_EL0:
1265         pmu_op_start(env);
1266         pmswinc_write(env, val);
1267         pmu_op_finish(env);
1268         break;
1269     case SYSREG_PMSELR_EL0:
1270         env->cp15.c9_pmselr = val & 0x1f;
1271         break;
1272     case SYSREG_PMCCFILTR_EL0:
1273         pmu_op_start(env);
1274         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1275         pmu_op_finish(env);
1276         break;
1277     case SYSREG_OSLAR_EL1:
1278         env->cp15.oslsr_el1 = val & 1;
1279         break;
1280     case SYSREG_OSDLR_EL1:
1281         /* Dummy register */
1282         break;
1283     case SYSREG_ICC_AP0R0_EL1:
1284     case SYSREG_ICC_AP0R1_EL1:
1285     case SYSREG_ICC_AP0R2_EL1:
1286     case SYSREG_ICC_AP0R3_EL1:
1287     case SYSREG_ICC_AP1R0_EL1:
1288     case SYSREG_ICC_AP1R1_EL1:
1289     case SYSREG_ICC_AP1R2_EL1:
1290     case SYSREG_ICC_AP1R3_EL1:
1291     case SYSREG_ICC_ASGI1R_EL1:
1292     case SYSREG_ICC_BPR0_EL1:
1293     case SYSREG_ICC_BPR1_EL1:
1294     case SYSREG_ICC_CTLR_EL1:
1295     case SYSREG_ICC_DIR_EL1:
1296     case SYSREG_ICC_EOIR0_EL1:
1297     case SYSREG_ICC_EOIR1_EL1:
1298     case SYSREG_ICC_HPPIR0_EL1:
1299     case SYSREG_ICC_HPPIR1_EL1:
1300     case SYSREG_ICC_IAR0_EL1:
1301     case SYSREG_ICC_IAR1_EL1:
1302     case SYSREG_ICC_IGRPEN0_EL1:
1303     case SYSREG_ICC_IGRPEN1_EL1:
1304     case SYSREG_ICC_PMR_EL1:
1305     case SYSREG_ICC_SGI0R_EL1:
1306     case SYSREG_ICC_SGI1R_EL1:
1307     case SYSREG_ICC_SRE_EL1:
1308         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1309         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1310             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1311         }
1312         break;
1313     case SYSREG_MDSCR_EL1:
1314         env->cp15.mdscr_el1 = val;
1315         break;
1316     case SYSREG_DBGBVR0_EL1:
1317     case SYSREG_DBGBVR1_EL1:
1318     case SYSREG_DBGBVR2_EL1:
1319     case SYSREG_DBGBVR3_EL1:
1320     case SYSREG_DBGBVR4_EL1:
1321     case SYSREG_DBGBVR5_EL1:
1322     case SYSREG_DBGBVR6_EL1:
1323     case SYSREG_DBGBVR7_EL1:
1324     case SYSREG_DBGBVR8_EL1:
1325     case SYSREG_DBGBVR9_EL1:
1326     case SYSREG_DBGBVR10_EL1:
1327     case SYSREG_DBGBVR11_EL1:
1328     case SYSREG_DBGBVR12_EL1:
1329     case SYSREG_DBGBVR13_EL1:
1330     case SYSREG_DBGBVR14_EL1:
1331     case SYSREG_DBGBVR15_EL1:
1332         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1333         break;
1334     case SYSREG_DBGBCR0_EL1:
1335     case SYSREG_DBGBCR1_EL1:
1336     case SYSREG_DBGBCR2_EL1:
1337     case SYSREG_DBGBCR3_EL1:
1338     case SYSREG_DBGBCR4_EL1:
1339     case SYSREG_DBGBCR5_EL1:
1340     case SYSREG_DBGBCR6_EL1:
1341     case SYSREG_DBGBCR7_EL1:
1342     case SYSREG_DBGBCR8_EL1:
1343     case SYSREG_DBGBCR9_EL1:
1344     case SYSREG_DBGBCR10_EL1:
1345     case SYSREG_DBGBCR11_EL1:
1346     case SYSREG_DBGBCR12_EL1:
1347     case SYSREG_DBGBCR13_EL1:
1348     case SYSREG_DBGBCR14_EL1:
1349     case SYSREG_DBGBCR15_EL1:
1350         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1351         break;
1352     case SYSREG_DBGWVR0_EL1:
1353     case SYSREG_DBGWVR1_EL1:
1354     case SYSREG_DBGWVR2_EL1:
1355     case SYSREG_DBGWVR3_EL1:
1356     case SYSREG_DBGWVR4_EL1:
1357     case SYSREG_DBGWVR5_EL1:
1358     case SYSREG_DBGWVR6_EL1:
1359     case SYSREG_DBGWVR7_EL1:
1360     case SYSREG_DBGWVR8_EL1:
1361     case SYSREG_DBGWVR9_EL1:
1362     case SYSREG_DBGWVR10_EL1:
1363     case SYSREG_DBGWVR11_EL1:
1364     case SYSREG_DBGWVR12_EL1:
1365     case SYSREG_DBGWVR13_EL1:
1366     case SYSREG_DBGWVR14_EL1:
1367     case SYSREG_DBGWVR15_EL1:
1368         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1369         break;
1370     case SYSREG_DBGWCR0_EL1:
1371     case SYSREG_DBGWCR1_EL1:
1372     case SYSREG_DBGWCR2_EL1:
1373     case SYSREG_DBGWCR3_EL1:
1374     case SYSREG_DBGWCR4_EL1:
1375     case SYSREG_DBGWCR5_EL1:
1376     case SYSREG_DBGWCR6_EL1:
1377     case SYSREG_DBGWCR7_EL1:
1378     case SYSREG_DBGWCR8_EL1:
1379     case SYSREG_DBGWCR9_EL1:
1380     case SYSREG_DBGWCR10_EL1:
1381     case SYSREG_DBGWCR11_EL1:
1382     case SYSREG_DBGWCR12_EL1:
1383     case SYSREG_DBGWCR13_EL1:
1384     case SYSREG_DBGWCR14_EL1:
1385     case SYSREG_DBGWCR15_EL1:
1386         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1387         break;
1388     default:
1389         cpu_synchronize_state(cpu);
1390         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1391                                          SYSREG_OP0(reg),
1392                                          SYSREG_OP1(reg),
1393                                          SYSREG_CRN(reg),
1394                                          SYSREG_CRM(reg),
1395                                          SYSREG_OP2(reg));
1396         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1397         return 1;
1398     }
1399 
1400     return 0;
1401 }
1402 
1403 static int hvf_inject_interrupts(CPUState *cpu)
1404 {
1405     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1406         trace_hvf_inject_fiq();
1407         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1408                                       true);
1409     }
1410 
1411     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1412         trace_hvf_inject_irq();
1413         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1414                                       true);
1415     }
1416 
1417     return 0;
1418 }
1419 
1420 static uint64_t hvf_vtimer_val_raw(void)
1421 {
1422     /*
1423      * mach_absolute_time() returns the vtimer value without the VM
1424      * offset that we define. Add our own offset on top.
1425      */
1426     return mach_absolute_time() - hvf_state->vtimer_offset;
1427 }
1428 
1429 static uint64_t hvf_vtimer_val(void)
1430 {
1431     if (!runstate_is_running()) {
1432         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1433         return vtimer.vtimer_val;
1434     }
1435 
1436     return hvf_vtimer_val_raw();
1437 }
1438 
1439 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1440 {
1441     /*
1442      * Use pselect to sleep so that other threads can IPI us while we're
1443      * sleeping.
1444      */
1445     qatomic_mb_set(&cpu->thread_kicked, false);
1446     qemu_mutex_unlock_iothread();
1447     pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1448     qemu_mutex_lock_iothread();
1449 }
1450 
1451 static void hvf_wfi(CPUState *cpu)
1452 {
1453     ARMCPU *arm_cpu = ARM_CPU(cpu);
1454     struct timespec ts;
1455     hv_return_t r;
1456     uint64_t ctl;
1457     uint64_t cval;
1458     int64_t ticks_to_sleep;
1459     uint64_t seconds;
1460     uint64_t nanos;
1461     uint32_t cntfrq;
1462 
1463     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1464         /* Interrupt pending, no need to wait */
1465         return;
1466     }
1467 
1468     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1469     assert_hvf_ok(r);
1470 
1471     if (!(ctl & 1) || (ctl & 2)) {
1472         /* Timer disabled or masked, just wait for an IPI. */
1473         hvf_wait_for_ipi(cpu, NULL);
1474         return;
1475     }
1476 
1477     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1478     assert_hvf_ok(r);
1479 
1480     ticks_to_sleep = cval - hvf_vtimer_val();
1481     if (ticks_to_sleep < 0) {
1482         return;
1483     }
1484 
1485     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1486     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1487     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1488     nanos = ticks_to_sleep * cntfrq;
1489 
1490     /*
1491      * Don't sleep for less than the time a context switch would take,
1492      * so that we can satisfy fast timer requests on the same CPU.
1493      * Measurements on M1 show the sweet spot to be ~2ms.
1494      */
1495     if (!seconds && nanos < (2 * SCALE_MS)) {
1496         return;
1497     }
1498 
1499     ts = (struct timespec) { seconds, nanos };
1500     hvf_wait_for_ipi(cpu, &ts);
1501 }
1502 
1503 static void hvf_sync_vtimer(CPUState *cpu)
1504 {
1505     ARMCPU *arm_cpu = ARM_CPU(cpu);
1506     hv_return_t r;
1507     uint64_t ctl;
1508     bool irq_state;
1509 
1510     if (!cpu->hvf->vtimer_masked) {
1511         /* We will get notified on vtimer changes by hvf, nothing to do */
1512         return;
1513     }
1514 
1515     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1516     assert_hvf_ok(r);
1517 
1518     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1519                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1520     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1521 
1522     if (!irq_state) {
1523         /* Timer no longer asserting, we can unmask it */
1524         hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1525         cpu->hvf->vtimer_masked = false;
1526     }
1527 }
1528 
1529 int hvf_vcpu_exec(CPUState *cpu)
1530 {
1531     ARMCPU *arm_cpu = ARM_CPU(cpu);
1532     CPUARMState *env = &arm_cpu->env;
1533     hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1534     hv_return_t r;
1535     bool advance_pc = false;
1536 
1537     if (hvf_inject_interrupts(cpu)) {
1538         return EXCP_INTERRUPT;
1539     }
1540 
1541     if (cpu->halted) {
1542         return EXCP_HLT;
1543     }
1544 
1545     flush_cpu_state(cpu);
1546 
1547     qemu_mutex_unlock_iothread();
1548     assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1549 
1550     /* handle VMEXIT */
1551     uint64_t exit_reason = hvf_exit->reason;
1552     uint64_t syndrome = hvf_exit->exception.syndrome;
1553     uint32_t ec = syn_get_ec(syndrome);
1554 
1555     qemu_mutex_lock_iothread();
1556     switch (exit_reason) {
1557     case HV_EXIT_REASON_EXCEPTION:
1558         /* This is the main one, handle below. */
1559         break;
1560     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1561         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1562         cpu->hvf->vtimer_masked = true;
1563         return 0;
1564     case HV_EXIT_REASON_CANCELED:
1565         /* we got kicked, no exit to process */
1566         return 0;
1567     default:
1568         g_assert_not_reached();
1569     }
1570 
1571     hvf_sync_vtimer(cpu);
1572 
1573     switch (ec) {
1574     case EC_DATAABORT: {
1575         bool isv = syndrome & ARM_EL_ISV;
1576         bool iswrite = (syndrome >> 6) & 1;
1577         bool s1ptw = (syndrome >> 7) & 1;
1578         uint32_t sas = (syndrome >> 22) & 3;
1579         uint32_t len = 1 << sas;
1580         uint32_t srt = (syndrome >> 16) & 0x1f;
1581         uint32_t cm = (syndrome >> 8) & 0x1;
1582         uint64_t val = 0;
1583 
1584         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1585                              hvf_exit->exception.physical_address, isv,
1586                              iswrite, s1ptw, len, srt);
1587 
1588         if (cm) {
1589             /* We don't cache MMIO regions */
1590             advance_pc = true;
1591             break;
1592         }
1593 
1594         assert(isv);
1595 
1596         if (iswrite) {
1597             val = hvf_get_reg(cpu, srt);
1598             address_space_write(&address_space_memory,
1599                                 hvf_exit->exception.physical_address,
1600                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1601         } else {
1602             address_space_read(&address_space_memory,
1603                                hvf_exit->exception.physical_address,
1604                                MEMTXATTRS_UNSPECIFIED, &val, len);
1605             hvf_set_reg(cpu, srt, val);
1606         }
1607 
1608         advance_pc = true;
1609         break;
1610     }
1611     case EC_SYSTEMREGISTERTRAP: {
1612         bool isread = (syndrome >> 0) & 1;
1613         uint32_t rt = (syndrome >> 5) & 0x1f;
1614         uint32_t reg = syndrome & SYSREG_MASK;
1615         uint64_t val;
1616         int ret = 0;
1617 
1618         if (isread) {
1619             ret = hvf_sysreg_read(cpu, reg, rt);
1620         } else {
1621             val = hvf_get_reg(cpu, rt);
1622             ret = hvf_sysreg_write(cpu, reg, val);
1623         }
1624 
1625         advance_pc = !ret;
1626         break;
1627     }
1628     case EC_WFX_TRAP:
1629         advance_pc = true;
1630         if (!(syndrome & WFX_IS_WFE)) {
1631             hvf_wfi(cpu);
1632         }
1633         break;
1634     case EC_AA64_HVC:
1635         cpu_synchronize_state(cpu);
1636         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1637             if (!hvf_handle_psci_call(cpu)) {
1638                 trace_hvf_unknown_hvc(env->xregs[0]);
1639                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1640                 env->xregs[0] = -1;
1641             }
1642         } else {
1643             trace_hvf_unknown_hvc(env->xregs[0]);
1644             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1645         }
1646         break;
1647     case EC_AA64_SMC:
1648         cpu_synchronize_state(cpu);
1649         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1650             advance_pc = true;
1651 
1652             if (!hvf_handle_psci_call(cpu)) {
1653                 trace_hvf_unknown_smc(env->xregs[0]);
1654                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1655                 env->xregs[0] = -1;
1656             }
1657         } else {
1658             trace_hvf_unknown_smc(env->xregs[0]);
1659             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1660         }
1661         break;
1662     default:
1663         cpu_synchronize_state(cpu);
1664         trace_hvf_exit(syndrome, ec, env->pc);
1665         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1666     }
1667 
1668     if (advance_pc) {
1669         uint64_t pc;
1670 
1671         flush_cpu_state(cpu);
1672 
1673         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1674         assert_hvf_ok(r);
1675         pc += 4;
1676         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1677         assert_hvf_ok(r);
1678     }
1679 
1680     return 0;
1681 }
1682 
1683 static const VMStateDescription vmstate_hvf_vtimer = {
1684     .name = "hvf-vtimer",
1685     .version_id = 1,
1686     .minimum_version_id = 1,
1687     .fields = (VMStateField[]) {
1688         VMSTATE_UINT64(vtimer_val, HVFVTimer),
1689         VMSTATE_END_OF_LIST()
1690     },
1691 };
1692 
1693 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1694 {
1695     HVFVTimer *s = opaque;
1696 
1697     if (running) {
1698         /* Update vtimer offset on all CPUs */
1699         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1700         cpu_synchronize_all_states();
1701     } else {
1702         /* Remember vtimer value on every pause */
1703         s->vtimer_val = hvf_vtimer_val_raw();
1704     }
1705 }
1706 
1707 int hvf_arch_init(void)
1708 {
1709     hvf_state->vtimer_offset = mach_absolute_time();
1710     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1711     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1712     return 0;
1713 }
1714