xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision af254a27)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu-common.h"
14 #include "qemu/error-report.h"
15 
16 #include "sysemu/runstate.h"
17 #include "sysemu/hvf.h"
18 #include "sysemu/hvf_int.h"
19 #include "sysemu/hw_accel.h"
20 #include "hvf_arm.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33 
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
37 
38 #define SYSREG(op0, op1, crn, crm, op2) \
39     ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
40 #define SYSREG_MASK           SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
41 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
42 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
43 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
44 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
45 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
46 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
47 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
48 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
49 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
50 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
51 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
52 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
53 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
54 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
55 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
56 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
57 
58 #define WFX_IS_WFE (1 << 0)
59 
60 #define TMR_CTL_ENABLE  (1 << 0)
61 #define TMR_CTL_IMASK   (1 << 1)
62 #define TMR_CTL_ISTATUS (1 << 2)
63 
64 static void hvf_wfi(CPUState *cpu);
65 
66 typedef struct HVFVTimer {
67     /* Vtimer value during migration and paused state */
68     uint64_t vtimer_val;
69 } HVFVTimer;
70 
71 static HVFVTimer vtimer;
72 
73 typedef struct ARMHostCPUFeatures {
74     ARMISARegisters isar;
75     uint64_t features;
76     uint64_t midr;
77     uint32_t reset_sctlr;
78     const char *dtb_compatible;
79 } ARMHostCPUFeatures;
80 
81 static ARMHostCPUFeatures arm_host_cpu_features;
82 
83 struct hvf_reg_match {
84     int reg;
85     uint64_t offset;
86 };
87 
88 static const struct hvf_reg_match hvf_reg_match[] = {
89     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
90     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
91     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
92     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
93     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
94     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
95     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
96     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
97     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
98     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
99     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
100     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
101     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
102     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
103     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
104     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
105     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
106     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
107     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
108     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
109     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
110     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
111     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
112     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
113     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
114     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
115     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
116     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
117     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
118     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
119     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
120     { HV_REG_PC,   offsetof(CPUARMState, pc) },
121 };
122 
123 static const struct hvf_reg_match hvf_fpreg_match[] = {
124     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
125     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
126     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
127     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
128     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
129     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
130     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
131     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
132     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
133     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
134     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
135     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
136     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
137     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
138     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
139     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
140     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
141     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
142     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
143     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
144     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
145     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
146     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
147     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
148     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
149     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
150     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
151     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
152     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
153     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
154     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
155     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
156 };
157 
158 struct hvf_sreg_match {
159     int reg;
160     uint32_t key;
161     uint32_t cp_idx;
162 };
163 
164 static struct hvf_sreg_match hvf_sreg_match[] = {
165     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
166     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
167     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
168     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
169 
170     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
171     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
172     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
173     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
174 
175     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
176     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
177     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
178     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
179 
180     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
181     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
182     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
183     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
184 
185     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
186     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
187     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
188     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
189 
190     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
191     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
192     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
193     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
194 
195     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
196     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
197     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
198     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
199 
200     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
201     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
202     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
203     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
204 
205     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
206     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
207     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
208     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
209 
210     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
211     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
212     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
213     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
214 
215     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
216     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
217     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
218     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
219 
220     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
221     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
222     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
223     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
224 
225     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
226     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
227     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
228     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
229 
230     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
231     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
232     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
233     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
234 
235     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
236     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
237     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
238     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
239 
240     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
241     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
242     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
243     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
244 
245 #ifdef SYNC_NO_RAW_REGS
246     /*
247      * The registers below are manually synced on init because they are
248      * marked as NO_RAW. We still list them to make number space sync easier.
249      */
250     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
251     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
252     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
253     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
254 #endif
255     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
256     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
257     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
258     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
259     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
260 #ifdef SYNC_NO_MMFR0
261     /* We keep the hardware MMFR0 around. HW limits are there anyway */
262     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
263 #endif
264     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
265     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
266 
267     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
268     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
269     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
270     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
271     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
272     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
273 
274     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
275     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
276     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
277     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
278     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
279     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
280     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
281     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
282     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
283     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
284 
285     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
286     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
287     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
288     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
289     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
290     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
291     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
292     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
293     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
294     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
295     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
296     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
297     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
298     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
299     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
300     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
301     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
302     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
303     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
304     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
305 };
306 
307 int hvf_get_registers(CPUState *cpu)
308 {
309     ARMCPU *arm_cpu = ARM_CPU(cpu);
310     CPUARMState *env = &arm_cpu->env;
311     hv_return_t ret;
312     uint64_t val;
313     hv_simd_fp_uchar16_t fpval;
314     int i;
315 
316     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
317         ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
318         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
319         assert_hvf_ok(ret);
320     }
321 
322     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
323         ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
324                                       &fpval);
325         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
326         assert_hvf_ok(ret);
327     }
328 
329     val = 0;
330     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
331     assert_hvf_ok(ret);
332     vfp_set_fpcr(env, val);
333 
334     val = 0;
335     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
336     assert_hvf_ok(ret);
337     vfp_set_fpsr(env, val);
338 
339     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
340     assert_hvf_ok(ret);
341     pstate_write(env, val);
342 
343     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
344         if (hvf_sreg_match[i].cp_idx == -1) {
345             continue;
346         }
347 
348         ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
349         assert_hvf_ok(ret);
350 
351         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
352     }
353     assert(write_list_to_cpustate(arm_cpu));
354 
355     aarch64_restore_sp(env, arm_current_el(env));
356 
357     return 0;
358 }
359 
360 int hvf_put_registers(CPUState *cpu)
361 {
362     ARMCPU *arm_cpu = ARM_CPU(cpu);
363     CPUARMState *env = &arm_cpu->env;
364     hv_return_t ret;
365     uint64_t val;
366     hv_simd_fp_uchar16_t fpval;
367     int i;
368 
369     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
370         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
371         ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
372         assert_hvf_ok(ret);
373     }
374 
375     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
376         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
377         ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
378                                       fpval);
379         assert_hvf_ok(ret);
380     }
381 
382     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
383     assert_hvf_ok(ret);
384 
385     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
386     assert_hvf_ok(ret);
387 
388     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
389     assert_hvf_ok(ret);
390 
391     aarch64_save_sp(env, arm_current_el(env));
392 
393     assert(write_cpustate_to_list(arm_cpu, false));
394     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
395         if (hvf_sreg_match[i].cp_idx == -1) {
396             continue;
397         }
398 
399         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
400         ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
401         assert_hvf_ok(ret);
402     }
403 
404     ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
405     assert_hvf_ok(ret);
406 
407     return 0;
408 }
409 
410 static void flush_cpu_state(CPUState *cpu)
411 {
412     if (cpu->vcpu_dirty) {
413         hvf_put_registers(cpu);
414         cpu->vcpu_dirty = false;
415     }
416 }
417 
418 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
419 {
420     hv_return_t r;
421 
422     flush_cpu_state(cpu);
423 
424     if (rt < 31) {
425         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
426         assert_hvf_ok(r);
427     }
428 }
429 
430 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
431 {
432     uint64_t val = 0;
433     hv_return_t r;
434 
435     flush_cpu_state(cpu);
436 
437     if (rt < 31) {
438         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
439         assert_hvf_ok(r);
440     }
441 
442     return val;
443 }
444 
445 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
446 {
447     ARMISARegisters host_isar = {};
448     const struct isar_regs {
449         int reg;
450         uint64_t *val;
451     } regs[] = {
452         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
453         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
454         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
455         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
456         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
457         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
458         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
459         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
460         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
461     };
462     hv_vcpu_t fd;
463     hv_return_t r = HV_SUCCESS;
464     hv_vcpu_exit_t *exit;
465     int i;
466 
467     ahcf->dtb_compatible = "arm,arm-v8";
468     ahcf->features = (1ULL << ARM_FEATURE_V8) |
469                      (1ULL << ARM_FEATURE_NEON) |
470                      (1ULL << ARM_FEATURE_AARCH64) |
471                      (1ULL << ARM_FEATURE_PMU) |
472                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
473 
474     /* We set up a small vcpu to extract host registers */
475 
476     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
477         return false;
478     }
479 
480     for (i = 0; i < ARRAY_SIZE(regs); i++) {
481         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
482     }
483     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
484     r |= hv_vcpu_destroy(fd);
485 
486     ahcf->isar = host_isar;
487 
488     /*
489      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
490      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
491      */
492     ahcf->reset_sctlr = 0x30100180;
493     /*
494      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
495      * let's disable it on boot and then allow guest software to turn it on by
496      * setting it to 0.
497      */
498     ahcf->reset_sctlr |= 0x00800000;
499 
500     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
501     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
502         return false;
503     }
504 
505     return r == HV_SUCCESS;
506 }
507 
508 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
509 {
510     if (!arm_host_cpu_features.dtb_compatible) {
511         if (!hvf_enabled() ||
512             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
513             /*
514              * We can't report this error yet, so flag that we need to
515              * in arm_cpu_realizefn().
516              */
517             cpu->host_cpu_probe_failed = true;
518             return;
519         }
520     }
521 
522     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
523     cpu->isar = arm_host_cpu_features.isar;
524     cpu->env.features = arm_host_cpu_features.features;
525     cpu->midr = arm_host_cpu_features.midr;
526     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
527 }
528 
529 void hvf_arch_vcpu_destroy(CPUState *cpu)
530 {
531 }
532 
533 int hvf_arch_init_vcpu(CPUState *cpu)
534 {
535     ARMCPU *arm_cpu = ARM_CPU(cpu);
536     CPUARMState *env = &arm_cpu->env;
537     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
538     uint32_t sregs_cnt = 0;
539     uint64_t pfr;
540     hv_return_t ret;
541     int i;
542 
543     env->aarch64 = 1;
544     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
545 
546     /* Allocate enough space for our sysreg sync */
547     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
548                                      sregs_match_len);
549     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
550                                     sregs_match_len);
551     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
552                                              arm_cpu->cpreg_vmstate_indexes,
553                                              sregs_match_len);
554     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
555                                             arm_cpu->cpreg_vmstate_values,
556                                             sregs_match_len);
557 
558     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
559 
560     /* Populate cp list for all known sysregs */
561     for (i = 0; i < sregs_match_len; i++) {
562         const ARMCPRegInfo *ri;
563         uint32_t key = hvf_sreg_match[i].key;
564 
565         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
566         if (ri) {
567             assert(!(ri->type & ARM_CP_NO_RAW));
568             hvf_sreg_match[i].cp_idx = sregs_cnt;
569             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
570         } else {
571             hvf_sreg_match[i].cp_idx = -1;
572         }
573     }
574     arm_cpu->cpreg_array_len = sregs_cnt;
575     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
576 
577     assert(write_cpustate_to_list(arm_cpu, false));
578 
579     /* Set CP_NO_RAW system registers on init */
580     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
581                               arm_cpu->midr);
582     assert_hvf_ok(ret);
583 
584     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
585                               arm_cpu->mp_affinity);
586     assert_hvf_ok(ret);
587 
588     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
589     assert_hvf_ok(ret);
590     pfr |= env->gicv3state ? (1 << 24) : 0;
591     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
592     assert_hvf_ok(ret);
593 
594     /* We're limited to underlying hardware caps, override internal versions */
595     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
596                               &arm_cpu->isar.id_aa64mmfr0);
597     assert_hvf_ok(ret);
598 
599     return 0;
600 }
601 
602 void hvf_kick_vcpu_thread(CPUState *cpu)
603 {
604     cpus_kick_thread(cpu);
605     hv_vcpus_exit(&cpu->hvf->fd, 1);
606 }
607 
608 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
609                                 uint32_t syndrome)
610 {
611     ARMCPU *arm_cpu = ARM_CPU(cpu);
612     CPUARMState *env = &arm_cpu->env;
613 
614     cpu->exception_index = excp;
615     env->exception.target_el = 1;
616     env->exception.syndrome = syndrome;
617 
618     arm_cpu_do_interrupt(cpu);
619 }
620 
621 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
622 {
623     int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
624     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
625 }
626 
627 /*
628  * Handle a PSCI call.
629  *
630  * Returns 0 on success
631  *         -1 when the PSCI call is unknown,
632  */
633 static bool hvf_handle_psci_call(CPUState *cpu)
634 {
635     ARMCPU *arm_cpu = ARM_CPU(cpu);
636     CPUARMState *env = &arm_cpu->env;
637     uint64_t param[4] = {
638         env->xregs[0],
639         env->xregs[1],
640         env->xregs[2],
641         env->xregs[3]
642     };
643     uint64_t context_id, mpidr;
644     bool target_aarch64 = true;
645     CPUState *target_cpu_state;
646     ARMCPU *target_cpu;
647     target_ulong entry;
648     int target_el = 1;
649     int32_t ret = 0;
650 
651     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
652                         arm_cpu->mp_affinity);
653 
654     switch (param[0]) {
655     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
656         ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
657         break;
658     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
659         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
660         break;
661     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
662     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
663         mpidr = param[1];
664 
665         switch (param[2]) {
666         case 0:
667             target_cpu_state = arm_get_cpu_by_id(mpidr);
668             if (!target_cpu_state) {
669                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
670                 break;
671             }
672             target_cpu = ARM_CPU(target_cpu_state);
673 
674             ret = target_cpu->power_state;
675             break;
676         default:
677             /* Everything above affinity level 0 is always on. */
678             ret = 0;
679         }
680         break;
681     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
682         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
683         /*
684          * QEMU reset and shutdown are async requests, but PSCI
685          * mandates that we never return from the reset/shutdown
686          * call, so power the CPU off now so it doesn't execute
687          * anything further.
688          */
689         hvf_psci_cpu_off(arm_cpu);
690         break;
691     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
692         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
693         hvf_psci_cpu_off(arm_cpu);
694         break;
695     case QEMU_PSCI_0_1_FN_CPU_ON:
696     case QEMU_PSCI_0_2_FN_CPU_ON:
697     case QEMU_PSCI_0_2_FN64_CPU_ON:
698         mpidr = param[1];
699         entry = param[2];
700         context_id = param[3];
701         ret = arm_set_cpu_on(mpidr, entry, context_id,
702                              target_el, target_aarch64);
703         break;
704     case QEMU_PSCI_0_1_FN_CPU_OFF:
705     case QEMU_PSCI_0_2_FN_CPU_OFF:
706         hvf_psci_cpu_off(arm_cpu);
707         break;
708     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
709     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
710     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
711         /* Affinity levels are not supported in QEMU */
712         if (param[1] & 0xfffe0000) {
713             ret = QEMU_PSCI_RET_INVALID_PARAMS;
714             break;
715         }
716         /* Powerdown is not supported, we always go into WFI */
717         env->xregs[0] = 0;
718         hvf_wfi(cpu);
719         break;
720     case QEMU_PSCI_0_1_FN_MIGRATE:
721     case QEMU_PSCI_0_2_FN_MIGRATE:
722         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
723         break;
724     default:
725         return false;
726     }
727 
728     env->xregs[0] = ret;
729     return true;
730 }
731 
732 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
733 {
734     ARMCPU *arm_cpu = ARM_CPU(cpu);
735     CPUARMState *env = &arm_cpu->env;
736     uint64_t val = 0;
737 
738     switch (reg) {
739     case SYSREG_CNTPCT_EL0:
740         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
741               gt_cntfrq_period_ns(arm_cpu);
742         break;
743     case SYSREG_PMCR_EL0:
744         val = env->cp15.c9_pmcr;
745         break;
746     case SYSREG_PMCCNTR_EL0:
747         pmu_op_start(env);
748         val = env->cp15.c15_ccnt;
749         pmu_op_finish(env);
750         break;
751     case SYSREG_PMCNTENCLR_EL0:
752         val = env->cp15.c9_pmcnten;
753         break;
754     case SYSREG_PMOVSCLR_EL0:
755         val = env->cp15.c9_pmovsr;
756         break;
757     case SYSREG_PMSELR_EL0:
758         val = env->cp15.c9_pmselr;
759         break;
760     case SYSREG_PMINTENCLR_EL1:
761         val = env->cp15.c9_pminten;
762         break;
763     case SYSREG_PMCCFILTR_EL0:
764         val = env->cp15.pmccfiltr_el0;
765         break;
766     case SYSREG_PMCNTENSET_EL0:
767         val = env->cp15.c9_pmcnten;
768         break;
769     case SYSREG_PMUSERENR_EL0:
770         val = env->cp15.c9_pmuserenr;
771         break;
772     case SYSREG_PMCEID0_EL0:
773     case SYSREG_PMCEID1_EL0:
774         /* We can't really count anything yet, declare all events invalid */
775         val = 0;
776         break;
777     case SYSREG_OSLSR_EL1:
778         val = env->cp15.oslsr_el1;
779         break;
780     case SYSREG_OSDLR_EL1:
781         /* Dummy register */
782         break;
783     default:
784         cpu_synchronize_state(cpu);
785         trace_hvf_unhandled_sysreg_read(env->pc, reg,
786                                         (reg >> 20) & 0x3,
787                                         (reg >> 14) & 0x7,
788                                         (reg >> 10) & 0xf,
789                                         (reg >> 1) & 0xf,
790                                         (reg >> 17) & 0x7);
791         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
792         return 1;
793     }
794 
795     trace_hvf_sysreg_read(reg,
796                           (reg >> 20) & 0x3,
797                           (reg >> 14) & 0x7,
798                           (reg >> 10) & 0xf,
799                           (reg >> 1) & 0xf,
800                           (reg >> 17) & 0x7,
801                           val);
802     hvf_set_reg(cpu, rt, val);
803 
804     return 0;
805 }
806 
807 static void pmu_update_irq(CPUARMState *env)
808 {
809     ARMCPU *cpu = env_archcpu(env);
810     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
811             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
812 }
813 
814 static bool pmu_event_supported(uint16_t number)
815 {
816     return false;
817 }
818 
819 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
820  * the current EL, security state, and register configuration.
821  */
822 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
823 {
824     uint64_t filter;
825     bool enabled, filtered = true;
826     int el = arm_current_el(env);
827 
828     enabled = (env->cp15.c9_pmcr & PMCRE) &&
829               (env->cp15.c9_pmcnten & (1 << counter));
830 
831     if (counter == 31) {
832         filter = env->cp15.pmccfiltr_el0;
833     } else {
834         filter = env->cp15.c14_pmevtyper[counter];
835     }
836 
837     if (el == 0) {
838         filtered = filter & PMXEVTYPER_U;
839     } else if (el == 1) {
840         filtered = filter & PMXEVTYPER_P;
841     }
842 
843     if (counter != 31) {
844         /*
845          * If not checking PMCCNTR, ensure the counter is setup to an event we
846          * support
847          */
848         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
849         if (!pmu_event_supported(event)) {
850             return false;
851         }
852     }
853 
854     return enabled && !filtered;
855 }
856 
857 static void pmswinc_write(CPUARMState *env, uint64_t value)
858 {
859     unsigned int i;
860     for (i = 0; i < pmu_num_counters(env); i++) {
861         /* Increment a counter's count iff: */
862         if ((value & (1 << i)) && /* counter's bit is set */
863                 /* counter is enabled and not filtered */
864                 pmu_counter_enabled(env, i) &&
865                 /* counter is SW_INCR */
866                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
867             /*
868              * Detect if this write causes an overflow since we can't predict
869              * PMSWINC overflows like we can for other events
870              */
871             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
872 
873             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
874                 env->cp15.c9_pmovsr |= (1 << i);
875                 pmu_update_irq(env);
876             }
877 
878             env->cp15.c14_pmevcntr[i] = new_pmswinc;
879         }
880     }
881 }
882 
883 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
884 {
885     ARMCPU *arm_cpu = ARM_CPU(cpu);
886     CPUARMState *env = &arm_cpu->env;
887 
888     trace_hvf_sysreg_write(reg,
889                            (reg >> 20) & 0x3,
890                            (reg >> 14) & 0x7,
891                            (reg >> 10) & 0xf,
892                            (reg >> 1) & 0xf,
893                            (reg >> 17) & 0x7,
894                            val);
895 
896     switch (reg) {
897     case SYSREG_PMCCNTR_EL0:
898         pmu_op_start(env);
899         env->cp15.c15_ccnt = val;
900         pmu_op_finish(env);
901         break;
902     case SYSREG_PMCR_EL0:
903         pmu_op_start(env);
904 
905         if (val & PMCRC) {
906             /* The counter has been reset */
907             env->cp15.c15_ccnt = 0;
908         }
909 
910         if (val & PMCRP) {
911             unsigned int i;
912             for (i = 0; i < pmu_num_counters(env); i++) {
913                 env->cp15.c14_pmevcntr[i] = 0;
914             }
915         }
916 
917         env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
918         env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
919 
920         pmu_op_finish(env);
921         break;
922     case SYSREG_PMUSERENR_EL0:
923         env->cp15.c9_pmuserenr = val & 0xf;
924         break;
925     case SYSREG_PMCNTENSET_EL0:
926         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
927         break;
928     case SYSREG_PMCNTENCLR_EL0:
929         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
930         break;
931     case SYSREG_PMINTENCLR_EL1:
932         pmu_op_start(env);
933         env->cp15.c9_pminten |= val;
934         pmu_op_finish(env);
935         break;
936     case SYSREG_PMOVSCLR_EL0:
937         pmu_op_start(env);
938         env->cp15.c9_pmovsr &= ~val;
939         pmu_op_finish(env);
940         break;
941     case SYSREG_PMSWINC_EL0:
942         pmu_op_start(env);
943         pmswinc_write(env, val);
944         pmu_op_finish(env);
945         break;
946     case SYSREG_PMSELR_EL0:
947         env->cp15.c9_pmselr = val & 0x1f;
948         break;
949     case SYSREG_PMCCFILTR_EL0:
950         pmu_op_start(env);
951         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
952         pmu_op_finish(env);
953         break;
954     case SYSREG_OSLAR_EL1:
955         env->cp15.oslsr_el1 = val & 1;
956         break;
957     case SYSREG_OSDLR_EL1:
958         /* Dummy register */
959         break;
960     default:
961         cpu_synchronize_state(cpu);
962         trace_hvf_unhandled_sysreg_write(env->pc, reg,
963                                          (reg >> 20) & 0x3,
964                                          (reg >> 14) & 0x7,
965                                          (reg >> 10) & 0xf,
966                                          (reg >> 1) & 0xf,
967                                          (reg >> 17) & 0x7);
968         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
969         return 1;
970     }
971 
972     return 0;
973 }
974 
975 static int hvf_inject_interrupts(CPUState *cpu)
976 {
977     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
978         trace_hvf_inject_fiq();
979         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
980                                       true);
981     }
982 
983     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
984         trace_hvf_inject_irq();
985         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
986                                       true);
987     }
988 
989     return 0;
990 }
991 
992 static uint64_t hvf_vtimer_val_raw(void)
993 {
994     /*
995      * mach_absolute_time() returns the vtimer value without the VM
996      * offset that we define. Add our own offset on top.
997      */
998     return mach_absolute_time() - hvf_state->vtimer_offset;
999 }
1000 
1001 static uint64_t hvf_vtimer_val(void)
1002 {
1003     if (!runstate_is_running()) {
1004         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1005         return vtimer.vtimer_val;
1006     }
1007 
1008     return hvf_vtimer_val_raw();
1009 }
1010 
1011 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1012 {
1013     /*
1014      * Use pselect to sleep so that other threads can IPI us while we're
1015      * sleeping.
1016      */
1017     qatomic_mb_set(&cpu->thread_kicked, false);
1018     qemu_mutex_unlock_iothread();
1019     pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1020     qemu_mutex_lock_iothread();
1021 }
1022 
1023 static void hvf_wfi(CPUState *cpu)
1024 {
1025     ARMCPU *arm_cpu = ARM_CPU(cpu);
1026     struct timespec ts;
1027     hv_return_t r;
1028     uint64_t ctl;
1029     uint64_t cval;
1030     int64_t ticks_to_sleep;
1031     uint64_t seconds;
1032     uint64_t nanos;
1033     uint32_t cntfrq;
1034 
1035     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1036         /* Interrupt pending, no need to wait */
1037         return;
1038     }
1039 
1040     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1041     assert_hvf_ok(r);
1042 
1043     if (!(ctl & 1) || (ctl & 2)) {
1044         /* Timer disabled or masked, just wait for an IPI. */
1045         hvf_wait_for_ipi(cpu, NULL);
1046         return;
1047     }
1048 
1049     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1050     assert_hvf_ok(r);
1051 
1052     ticks_to_sleep = cval - hvf_vtimer_val();
1053     if (ticks_to_sleep < 0) {
1054         return;
1055     }
1056 
1057     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1058     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1059     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1060     nanos = ticks_to_sleep * cntfrq;
1061 
1062     /*
1063      * Don't sleep for less than the time a context switch would take,
1064      * so that we can satisfy fast timer requests on the same CPU.
1065      * Measurements on M1 show the sweet spot to be ~2ms.
1066      */
1067     if (!seconds && nanos < (2 * SCALE_MS)) {
1068         return;
1069     }
1070 
1071     ts = (struct timespec) { seconds, nanos };
1072     hvf_wait_for_ipi(cpu, &ts);
1073 }
1074 
1075 static void hvf_sync_vtimer(CPUState *cpu)
1076 {
1077     ARMCPU *arm_cpu = ARM_CPU(cpu);
1078     hv_return_t r;
1079     uint64_t ctl;
1080     bool irq_state;
1081 
1082     if (!cpu->hvf->vtimer_masked) {
1083         /* We will get notified on vtimer changes by hvf, nothing to do */
1084         return;
1085     }
1086 
1087     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1088     assert_hvf_ok(r);
1089 
1090     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1091                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1092     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1093 
1094     if (!irq_state) {
1095         /* Timer no longer asserting, we can unmask it */
1096         hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1097         cpu->hvf->vtimer_masked = false;
1098     }
1099 }
1100 
1101 int hvf_vcpu_exec(CPUState *cpu)
1102 {
1103     ARMCPU *arm_cpu = ARM_CPU(cpu);
1104     CPUARMState *env = &arm_cpu->env;
1105     hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1106     hv_return_t r;
1107     bool advance_pc = false;
1108 
1109     if (hvf_inject_interrupts(cpu)) {
1110         return EXCP_INTERRUPT;
1111     }
1112 
1113     if (cpu->halted) {
1114         return EXCP_HLT;
1115     }
1116 
1117     flush_cpu_state(cpu);
1118 
1119     qemu_mutex_unlock_iothread();
1120     assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1121 
1122     /* handle VMEXIT */
1123     uint64_t exit_reason = hvf_exit->reason;
1124     uint64_t syndrome = hvf_exit->exception.syndrome;
1125     uint32_t ec = syn_get_ec(syndrome);
1126 
1127     qemu_mutex_lock_iothread();
1128     switch (exit_reason) {
1129     case HV_EXIT_REASON_EXCEPTION:
1130         /* This is the main one, handle below. */
1131         break;
1132     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1133         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1134         cpu->hvf->vtimer_masked = true;
1135         return 0;
1136     case HV_EXIT_REASON_CANCELED:
1137         /* we got kicked, no exit to process */
1138         return 0;
1139     default:
1140         assert(0);
1141     }
1142 
1143     hvf_sync_vtimer(cpu);
1144 
1145     switch (ec) {
1146     case EC_DATAABORT: {
1147         bool isv = syndrome & ARM_EL_ISV;
1148         bool iswrite = (syndrome >> 6) & 1;
1149         bool s1ptw = (syndrome >> 7) & 1;
1150         uint32_t sas = (syndrome >> 22) & 3;
1151         uint32_t len = 1 << sas;
1152         uint32_t srt = (syndrome >> 16) & 0x1f;
1153         uint32_t cm = (syndrome >> 8) & 0x1;
1154         uint64_t val = 0;
1155 
1156         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1157                              hvf_exit->exception.physical_address, isv,
1158                              iswrite, s1ptw, len, srt);
1159 
1160         if (cm) {
1161             /* We don't cache MMIO regions */
1162             advance_pc = true;
1163             break;
1164         }
1165 
1166         assert(isv);
1167 
1168         if (iswrite) {
1169             val = hvf_get_reg(cpu, srt);
1170             address_space_write(&address_space_memory,
1171                                 hvf_exit->exception.physical_address,
1172                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1173         } else {
1174             address_space_read(&address_space_memory,
1175                                hvf_exit->exception.physical_address,
1176                                MEMTXATTRS_UNSPECIFIED, &val, len);
1177             hvf_set_reg(cpu, srt, val);
1178         }
1179 
1180         advance_pc = true;
1181         break;
1182     }
1183     case EC_SYSTEMREGISTERTRAP: {
1184         bool isread = (syndrome >> 0) & 1;
1185         uint32_t rt = (syndrome >> 5) & 0x1f;
1186         uint32_t reg = syndrome & SYSREG_MASK;
1187         uint64_t val;
1188         int ret = 0;
1189 
1190         if (isread) {
1191             ret = hvf_sysreg_read(cpu, reg, rt);
1192         } else {
1193             val = hvf_get_reg(cpu, rt);
1194             ret = hvf_sysreg_write(cpu, reg, val);
1195         }
1196 
1197         advance_pc = !ret;
1198         break;
1199     }
1200     case EC_WFX_TRAP:
1201         advance_pc = true;
1202         if (!(syndrome & WFX_IS_WFE)) {
1203             hvf_wfi(cpu);
1204         }
1205         break;
1206     case EC_AA64_HVC:
1207         cpu_synchronize_state(cpu);
1208         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1209             if (!hvf_handle_psci_call(cpu)) {
1210                 trace_hvf_unknown_hvc(env->xregs[0]);
1211                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1212                 env->xregs[0] = -1;
1213             }
1214         } else {
1215             trace_hvf_unknown_hvc(env->xregs[0]);
1216             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1217         }
1218         break;
1219     case EC_AA64_SMC:
1220         cpu_synchronize_state(cpu);
1221         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1222             advance_pc = true;
1223 
1224             if (!hvf_handle_psci_call(cpu)) {
1225                 trace_hvf_unknown_smc(env->xregs[0]);
1226                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1227                 env->xregs[0] = -1;
1228             }
1229         } else {
1230             trace_hvf_unknown_smc(env->xregs[0]);
1231             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1232         }
1233         break;
1234     default:
1235         cpu_synchronize_state(cpu);
1236         trace_hvf_exit(syndrome, ec, env->pc);
1237         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1238     }
1239 
1240     if (advance_pc) {
1241         uint64_t pc;
1242 
1243         flush_cpu_state(cpu);
1244 
1245         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1246         assert_hvf_ok(r);
1247         pc += 4;
1248         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1249         assert_hvf_ok(r);
1250     }
1251 
1252     return 0;
1253 }
1254 
1255 static const VMStateDescription vmstate_hvf_vtimer = {
1256     .name = "hvf-vtimer",
1257     .version_id = 1,
1258     .minimum_version_id = 1,
1259     .fields = (VMStateField[]) {
1260         VMSTATE_UINT64(vtimer_val, HVFVTimer),
1261         VMSTATE_END_OF_LIST()
1262     },
1263 };
1264 
1265 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1266 {
1267     HVFVTimer *s = opaque;
1268 
1269     if (running) {
1270         /* Update vtimer offset on all CPUs */
1271         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1272         cpu_synchronize_all_states();
1273     } else {
1274         /* Remember vtimer value on every pause */
1275         s->vtimer_val = hvf_vtimer_val_raw();
1276     }
1277 }
1278 
1279 int hvf_arch_init(void)
1280 {
1281     hvf_state->vtimer_offset = mach_absolute_time();
1282     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1283     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1284     return 0;
1285 }
1286