xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision ab1b2ba9)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33 
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
37 
38 #define SYSREG_OP0_SHIFT      20
39 #define SYSREG_OP0_MASK       0x3
40 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
41 #define SYSREG_OP1_SHIFT      14
42 #define SYSREG_OP1_MASK       0x7
43 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
44 #define SYSREG_CRN_SHIFT      10
45 #define SYSREG_CRN_MASK       0xf
46 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
47 #define SYSREG_CRM_SHIFT      1
48 #define SYSREG_CRM_MASK       0xf
49 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
50 #define SYSREG_OP2_SHIFT      17
51 #define SYSREG_OP2_MASK       0x7
52 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
53 
54 #define SYSREG(op0, op1, crn, crm, op2) \
55     ((op0 << SYSREG_OP0_SHIFT) | \
56      (op1 << SYSREG_OP1_SHIFT) | \
57      (crn << SYSREG_CRN_SHIFT) | \
58      (crm << SYSREG_CRM_SHIFT) | \
59      (op2 << SYSREG_OP2_SHIFT))
60 #define SYSREG_MASK \
61     SYSREG(SYSREG_OP0_MASK, \
62            SYSREG_OP1_MASK, \
63            SYSREG_CRN_MASK, \
64            SYSREG_CRM_MASK, \
65            SYSREG_OP2_MASK)
66 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
67 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
68 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
69 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
70 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
71 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
72 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
73 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
74 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
75 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
76 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
77 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
78 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
79 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
80 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
81 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
82 
83 #define WFX_IS_WFE (1 << 0)
84 
85 #define TMR_CTL_ENABLE  (1 << 0)
86 #define TMR_CTL_IMASK   (1 << 1)
87 #define TMR_CTL_ISTATUS (1 << 2)
88 
89 static void hvf_wfi(CPUState *cpu);
90 
91 typedef struct HVFVTimer {
92     /* Vtimer value during migration and paused state */
93     uint64_t vtimer_val;
94 } HVFVTimer;
95 
96 static HVFVTimer vtimer;
97 
98 typedef struct ARMHostCPUFeatures {
99     ARMISARegisters isar;
100     uint64_t features;
101     uint64_t midr;
102     uint32_t reset_sctlr;
103     const char *dtb_compatible;
104 } ARMHostCPUFeatures;
105 
106 static ARMHostCPUFeatures arm_host_cpu_features;
107 
108 struct hvf_reg_match {
109     int reg;
110     uint64_t offset;
111 };
112 
113 static const struct hvf_reg_match hvf_reg_match[] = {
114     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
115     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
116     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
117     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
118     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
119     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
120     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
121     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
122     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
123     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
124     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
125     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
126     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
127     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
128     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
129     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
130     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
131     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
132     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
133     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
134     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
135     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
136     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
137     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
138     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
139     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
140     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
141     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
142     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
143     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
144     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
145     { HV_REG_PC,   offsetof(CPUARMState, pc) },
146 };
147 
148 static const struct hvf_reg_match hvf_fpreg_match[] = {
149     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
150     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
151     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
152     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
153     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
154     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
155     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
156     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
157     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
158     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
159     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
160     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
161     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
162     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
163     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
164     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
165     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
166     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
167     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
168     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
169     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
170     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
171     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
172     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
173     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
174     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
175     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
176     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
177     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
178     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
179     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
180     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
181 };
182 
183 struct hvf_sreg_match {
184     int reg;
185     uint32_t key;
186     uint32_t cp_idx;
187 };
188 
189 static struct hvf_sreg_match hvf_sreg_match[] = {
190     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
191     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
192     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
193     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
194 
195     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
196     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
197     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
198     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
199 
200     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
201     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
202     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
203     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
204 
205     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
206     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
207     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
208     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
209 
210     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
211     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
212     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
213     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
214 
215     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
216     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
217     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
218     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
219 
220     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
221     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
222     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
223     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
224 
225     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
226     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
227     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
228     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
229 
230     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
231     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
232     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
233     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
234 
235     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
236     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
237     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
238     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
239 
240     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
241     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
242     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
243     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
244 
245     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
246     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
247     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
248     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
249 
250     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
251     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
252     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
253     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
254 
255     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
256     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
257     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
258     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
259 
260     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
261     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
262     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
263     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
264 
265     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
266     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
267     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
268     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
269 
270 #ifdef SYNC_NO_RAW_REGS
271     /*
272      * The registers below are manually synced on init because they are
273      * marked as NO_RAW. We still list them to make number space sync easier.
274      */
275     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
276     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
277     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
278     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
279 #endif
280     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
281     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
282     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
283     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
284     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
285 #ifdef SYNC_NO_MMFR0
286     /* We keep the hardware MMFR0 around. HW limits are there anyway */
287     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
288 #endif
289     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
290     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
291 
292     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
293     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
294     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
295     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
296     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
297     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
298 
299     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
300     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
301     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
302     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
303     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
304     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
305     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
306     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
307     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
308     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
309 
310     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
311     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
312     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
313     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
314     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
315     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
316     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
317     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
318     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
319     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
320     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
321     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
322     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
323     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
324     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
325     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
326     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
327     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
328     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
329     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
330 };
331 
332 int hvf_get_registers(CPUState *cpu)
333 {
334     ARMCPU *arm_cpu = ARM_CPU(cpu);
335     CPUARMState *env = &arm_cpu->env;
336     hv_return_t ret;
337     uint64_t val;
338     hv_simd_fp_uchar16_t fpval;
339     int i;
340 
341     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
342         ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
343         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
344         assert_hvf_ok(ret);
345     }
346 
347     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
348         ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
349                                       &fpval);
350         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
351         assert_hvf_ok(ret);
352     }
353 
354     val = 0;
355     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
356     assert_hvf_ok(ret);
357     vfp_set_fpcr(env, val);
358 
359     val = 0;
360     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
361     assert_hvf_ok(ret);
362     vfp_set_fpsr(env, val);
363 
364     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
365     assert_hvf_ok(ret);
366     pstate_write(env, val);
367 
368     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
369         if (hvf_sreg_match[i].cp_idx == -1) {
370             continue;
371         }
372 
373         ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
374         assert_hvf_ok(ret);
375 
376         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
377     }
378     assert(write_list_to_cpustate(arm_cpu));
379 
380     aarch64_restore_sp(env, arm_current_el(env));
381 
382     return 0;
383 }
384 
385 int hvf_put_registers(CPUState *cpu)
386 {
387     ARMCPU *arm_cpu = ARM_CPU(cpu);
388     CPUARMState *env = &arm_cpu->env;
389     hv_return_t ret;
390     uint64_t val;
391     hv_simd_fp_uchar16_t fpval;
392     int i;
393 
394     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
395         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
396         ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
397         assert_hvf_ok(ret);
398     }
399 
400     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
401         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
402         ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
403                                       fpval);
404         assert_hvf_ok(ret);
405     }
406 
407     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
408     assert_hvf_ok(ret);
409 
410     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
411     assert_hvf_ok(ret);
412 
413     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
414     assert_hvf_ok(ret);
415 
416     aarch64_save_sp(env, arm_current_el(env));
417 
418     assert(write_cpustate_to_list(arm_cpu, false));
419     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
420         if (hvf_sreg_match[i].cp_idx == -1) {
421             continue;
422         }
423 
424         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
425         ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
426         assert_hvf_ok(ret);
427     }
428 
429     ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
430     assert_hvf_ok(ret);
431 
432     return 0;
433 }
434 
435 static void flush_cpu_state(CPUState *cpu)
436 {
437     if (cpu->vcpu_dirty) {
438         hvf_put_registers(cpu);
439         cpu->vcpu_dirty = false;
440     }
441 }
442 
443 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
444 {
445     hv_return_t r;
446 
447     flush_cpu_state(cpu);
448 
449     if (rt < 31) {
450         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
451         assert_hvf_ok(r);
452     }
453 }
454 
455 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
456 {
457     uint64_t val = 0;
458     hv_return_t r;
459 
460     flush_cpu_state(cpu);
461 
462     if (rt < 31) {
463         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
464         assert_hvf_ok(r);
465     }
466 
467     return val;
468 }
469 
470 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
471 {
472     ARMISARegisters host_isar = {};
473     const struct isar_regs {
474         int reg;
475         uint64_t *val;
476     } regs[] = {
477         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
478         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
479         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
480         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
481         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
482         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
483         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
484         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
485         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
486     };
487     hv_vcpu_t fd;
488     hv_return_t r = HV_SUCCESS;
489     hv_vcpu_exit_t *exit;
490     int i;
491 
492     ahcf->dtb_compatible = "arm,arm-v8";
493     ahcf->features = (1ULL << ARM_FEATURE_V8) |
494                      (1ULL << ARM_FEATURE_NEON) |
495                      (1ULL << ARM_FEATURE_AARCH64) |
496                      (1ULL << ARM_FEATURE_PMU) |
497                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
498 
499     /* We set up a small vcpu to extract host registers */
500 
501     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
502         return false;
503     }
504 
505     for (i = 0; i < ARRAY_SIZE(regs); i++) {
506         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
507     }
508     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
509     r |= hv_vcpu_destroy(fd);
510 
511     ahcf->isar = host_isar;
512 
513     /*
514      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
515      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
516      */
517     ahcf->reset_sctlr = 0x30100180;
518     /*
519      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
520      * let's disable it on boot and then allow guest software to turn it on by
521      * setting it to 0.
522      */
523     ahcf->reset_sctlr |= 0x00800000;
524 
525     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
526     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
527         return false;
528     }
529 
530     return r == HV_SUCCESS;
531 }
532 
533 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
534 {
535     if (!arm_host_cpu_features.dtb_compatible) {
536         if (!hvf_enabled() ||
537             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
538             /*
539              * We can't report this error yet, so flag that we need to
540              * in arm_cpu_realizefn().
541              */
542             cpu->host_cpu_probe_failed = true;
543             return;
544         }
545     }
546 
547     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
548     cpu->isar = arm_host_cpu_features.isar;
549     cpu->env.features = arm_host_cpu_features.features;
550     cpu->midr = arm_host_cpu_features.midr;
551     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
552 }
553 
554 void hvf_arch_vcpu_destroy(CPUState *cpu)
555 {
556 }
557 
558 int hvf_arch_init_vcpu(CPUState *cpu)
559 {
560     ARMCPU *arm_cpu = ARM_CPU(cpu);
561     CPUARMState *env = &arm_cpu->env;
562     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
563     uint32_t sregs_cnt = 0;
564     uint64_t pfr;
565     hv_return_t ret;
566     int i;
567 
568     env->aarch64 = true;
569     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
570 
571     /* Allocate enough space for our sysreg sync */
572     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
573                                      sregs_match_len);
574     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
575                                     sregs_match_len);
576     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
577                                              arm_cpu->cpreg_vmstate_indexes,
578                                              sregs_match_len);
579     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
580                                             arm_cpu->cpreg_vmstate_values,
581                                             sregs_match_len);
582 
583     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
584 
585     /* Populate cp list for all known sysregs */
586     for (i = 0; i < sregs_match_len; i++) {
587         const ARMCPRegInfo *ri;
588         uint32_t key = hvf_sreg_match[i].key;
589 
590         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
591         if (ri) {
592             assert(!(ri->type & ARM_CP_NO_RAW));
593             hvf_sreg_match[i].cp_idx = sregs_cnt;
594             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
595         } else {
596             hvf_sreg_match[i].cp_idx = -1;
597         }
598     }
599     arm_cpu->cpreg_array_len = sregs_cnt;
600     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
601 
602     assert(write_cpustate_to_list(arm_cpu, false));
603 
604     /* Set CP_NO_RAW system registers on init */
605     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
606                               arm_cpu->midr);
607     assert_hvf_ok(ret);
608 
609     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
610                               arm_cpu->mp_affinity);
611     assert_hvf_ok(ret);
612 
613     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
614     assert_hvf_ok(ret);
615     pfr |= env->gicv3state ? (1 << 24) : 0;
616     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
617     assert_hvf_ok(ret);
618 
619     /* We're limited to underlying hardware caps, override internal versions */
620     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
621                               &arm_cpu->isar.id_aa64mmfr0);
622     assert_hvf_ok(ret);
623 
624     return 0;
625 }
626 
627 void hvf_kick_vcpu_thread(CPUState *cpu)
628 {
629     cpus_kick_thread(cpu);
630     hv_vcpus_exit(&cpu->hvf->fd, 1);
631 }
632 
633 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
634                                 uint32_t syndrome)
635 {
636     ARMCPU *arm_cpu = ARM_CPU(cpu);
637     CPUARMState *env = &arm_cpu->env;
638 
639     cpu->exception_index = excp;
640     env->exception.target_el = 1;
641     env->exception.syndrome = syndrome;
642 
643     arm_cpu_do_interrupt(cpu);
644 }
645 
646 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
647 {
648     int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
649     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
650 }
651 
652 /*
653  * Handle a PSCI call.
654  *
655  * Returns 0 on success
656  *         -1 when the PSCI call is unknown,
657  */
658 static bool hvf_handle_psci_call(CPUState *cpu)
659 {
660     ARMCPU *arm_cpu = ARM_CPU(cpu);
661     CPUARMState *env = &arm_cpu->env;
662     uint64_t param[4] = {
663         env->xregs[0],
664         env->xregs[1],
665         env->xregs[2],
666         env->xregs[3]
667     };
668     uint64_t context_id, mpidr;
669     bool target_aarch64 = true;
670     CPUState *target_cpu_state;
671     ARMCPU *target_cpu;
672     target_ulong entry;
673     int target_el = 1;
674     int32_t ret = 0;
675 
676     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
677                         arm_cpu->mp_affinity);
678 
679     switch (param[0]) {
680     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
681         ret = QEMU_PSCI_VERSION_1_1;
682         break;
683     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
684         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
685         break;
686     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
687     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
688         mpidr = param[1];
689 
690         switch (param[2]) {
691         case 0:
692             target_cpu_state = arm_get_cpu_by_id(mpidr);
693             if (!target_cpu_state) {
694                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
695                 break;
696             }
697             target_cpu = ARM_CPU(target_cpu_state);
698 
699             ret = target_cpu->power_state;
700             break;
701         default:
702             /* Everything above affinity level 0 is always on. */
703             ret = 0;
704         }
705         break;
706     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
707         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
708         /*
709          * QEMU reset and shutdown are async requests, but PSCI
710          * mandates that we never return from the reset/shutdown
711          * call, so power the CPU off now so it doesn't execute
712          * anything further.
713          */
714         hvf_psci_cpu_off(arm_cpu);
715         break;
716     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
717         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
718         hvf_psci_cpu_off(arm_cpu);
719         break;
720     case QEMU_PSCI_0_1_FN_CPU_ON:
721     case QEMU_PSCI_0_2_FN_CPU_ON:
722     case QEMU_PSCI_0_2_FN64_CPU_ON:
723         mpidr = param[1];
724         entry = param[2];
725         context_id = param[3];
726         ret = arm_set_cpu_on(mpidr, entry, context_id,
727                              target_el, target_aarch64);
728         break;
729     case QEMU_PSCI_0_1_FN_CPU_OFF:
730     case QEMU_PSCI_0_2_FN_CPU_OFF:
731         hvf_psci_cpu_off(arm_cpu);
732         break;
733     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
734     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
735     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
736         /* Affinity levels are not supported in QEMU */
737         if (param[1] & 0xfffe0000) {
738             ret = QEMU_PSCI_RET_INVALID_PARAMS;
739             break;
740         }
741         /* Powerdown is not supported, we always go into WFI */
742         env->xregs[0] = 0;
743         hvf_wfi(cpu);
744         break;
745     case QEMU_PSCI_0_1_FN_MIGRATE:
746     case QEMU_PSCI_0_2_FN_MIGRATE:
747         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
748         break;
749     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
750         switch (param[1]) {
751         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
752         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
753         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
754         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
755         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
756         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
757         case QEMU_PSCI_0_1_FN_CPU_ON:
758         case QEMU_PSCI_0_2_FN_CPU_ON:
759         case QEMU_PSCI_0_2_FN64_CPU_ON:
760         case QEMU_PSCI_0_1_FN_CPU_OFF:
761         case QEMU_PSCI_0_2_FN_CPU_OFF:
762         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
763         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
764         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
765         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
766             ret = 0;
767             break;
768         case QEMU_PSCI_0_1_FN_MIGRATE:
769         case QEMU_PSCI_0_2_FN_MIGRATE:
770         default:
771             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
772         }
773         break;
774     default:
775         return false;
776     }
777 
778     env->xregs[0] = ret;
779     return true;
780 }
781 
782 static bool is_id_sysreg(uint32_t reg)
783 {
784     return SYSREG_OP0(reg) == 3 &&
785            SYSREG_OP1(reg) == 0 &&
786            SYSREG_CRN(reg) == 0 &&
787            SYSREG_CRM(reg) >= 1 &&
788            SYSREG_CRM(reg) < 8;
789 }
790 
791 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
792 {
793     ARMCPU *arm_cpu = ARM_CPU(cpu);
794     CPUARMState *env = &arm_cpu->env;
795     uint64_t val = 0;
796 
797     switch (reg) {
798     case SYSREG_CNTPCT_EL0:
799         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
800               gt_cntfrq_period_ns(arm_cpu);
801         break;
802     case SYSREG_PMCR_EL0:
803         val = env->cp15.c9_pmcr;
804         break;
805     case SYSREG_PMCCNTR_EL0:
806         pmu_op_start(env);
807         val = env->cp15.c15_ccnt;
808         pmu_op_finish(env);
809         break;
810     case SYSREG_PMCNTENCLR_EL0:
811         val = env->cp15.c9_pmcnten;
812         break;
813     case SYSREG_PMOVSCLR_EL0:
814         val = env->cp15.c9_pmovsr;
815         break;
816     case SYSREG_PMSELR_EL0:
817         val = env->cp15.c9_pmselr;
818         break;
819     case SYSREG_PMINTENCLR_EL1:
820         val = env->cp15.c9_pminten;
821         break;
822     case SYSREG_PMCCFILTR_EL0:
823         val = env->cp15.pmccfiltr_el0;
824         break;
825     case SYSREG_PMCNTENSET_EL0:
826         val = env->cp15.c9_pmcnten;
827         break;
828     case SYSREG_PMUSERENR_EL0:
829         val = env->cp15.c9_pmuserenr;
830         break;
831     case SYSREG_PMCEID0_EL0:
832     case SYSREG_PMCEID1_EL0:
833         /* We can't really count anything yet, declare all events invalid */
834         val = 0;
835         break;
836     case SYSREG_OSLSR_EL1:
837         val = env->cp15.oslsr_el1;
838         break;
839     case SYSREG_OSDLR_EL1:
840         /* Dummy register */
841         break;
842     default:
843         if (is_id_sysreg(reg)) {
844             /* ID system registers read as RES0 */
845             val = 0;
846             break;
847         }
848         cpu_synchronize_state(cpu);
849         trace_hvf_unhandled_sysreg_read(env->pc, reg,
850                                         SYSREG_OP0(reg),
851                                         SYSREG_OP1(reg),
852                                         SYSREG_CRN(reg),
853                                         SYSREG_CRM(reg),
854                                         SYSREG_OP2(reg));
855         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
856         return 1;
857     }
858 
859     trace_hvf_sysreg_read(reg,
860                           SYSREG_OP0(reg),
861                           SYSREG_OP1(reg),
862                           SYSREG_CRN(reg),
863                           SYSREG_CRM(reg),
864                           SYSREG_OP2(reg),
865                           val);
866     hvf_set_reg(cpu, rt, val);
867 
868     return 0;
869 }
870 
871 static void pmu_update_irq(CPUARMState *env)
872 {
873     ARMCPU *cpu = env_archcpu(env);
874     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
875             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
876 }
877 
878 static bool pmu_event_supported(uint16_t number)
879 {
880     return false;
881 }
882 
883 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
884  * the current EL, security state, and register configuration.
885  */
886 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
887 {
888     uint64_t filter;
889     bool enabled, filtered = true;
890     int el = arm_current_el(env);
891 
892     enabled = (env->cp15.c9_pmcr & PMCRE) &&
893               (env->cp15.c9_pmcnten & (1 << counter));
894 
895     if (counter == 31) {
896         filter = env->cp15.pmccfiltr_el0;
897     } else {
898         filter = env->cp15.c14_pmevtyper[counter];
899     }
900 
901     if (el == 0) {
902         filtered = filter & PMXEVTYPER_U;
903     } else if (el == 1) {
904         filtered = filter & PMXEVTYPER_P;
905     }
906 
907     if (counter != 31) {
908         /*
909          * If not checking PMCCNTR, ensure the counter is setup to an event we
910          * support
911          */
912         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
913         if (!pmu_event_supported(event)) {
914             return false;
915         }
916     }
917 
918     return enabled && !filtered;
919 }
920 
921 static void pmswinc_write(CPUARMState *env, uint64_t value)
922 {
923     unsigned int i;
924     for (i = 0; i < pmu_num_counters(env); i++) {
925         /* Increment a counter's count iff: */
926         if ((value & (1 << i)) && /* counter's bit is set */
927                 /* counter is enabled and not filtered */
928                 pmu_counter_enabled(env, i) &&
929                 /* counter is SW_INCR */
930                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
931             /*
932              * Detect if this write causes an overflow since we can't predict
933              * PMSWINC overflows like we can for other events
934              */
935             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
936 
937             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
938                 env->cp15.c9_pmovsr |= (1 << i);
939                 pmu_update_irq(env);
940             }
941 
942             env->cp15.c14_pmevcntr[i] = new_pmswinc;
943         }
944     }
945 }
946 
947 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
948 {
949     ARMCPU *arm_cpu = ARM_CPU(cpu);
950     CPUARMState *env = &arm_cpu->env;
951 
952     trace_hvf_sysreg_write(reg,
953                            SYSREG_OP0(reg),
954                            SYSREG_OP1(reg),
955                            SYSREG_CRN(reg),
956                            SYSREG_CRM(reg),
957                            SYSREG_OP2(reg),
958                            val);
959 
960     switch (reg) {
961     case SYSREG_PMCCNTR_EL0:
962         pmu_op_start(env);
963         env->cp15.c15_ccnt = val;
964         pmu_op_finish(env);
965         break;
966     case SYSREG_PMCR_EL0:
967         pmu_op_start(env);
968 
969         if (val & PMCRC) {
970             /* The counter has been reset */
971             env->cp15.c15_ccnt = 0;
972         }
973 
974         if (val & PMCRP) {
975             unsigned int i;
976             for (i = 0; i < pmu_num_counters(env); i++) {
977                 env->cp15.c14_pmevcntr[i] = 0;
978             }
979         }
980 
981         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
982         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
983 
984         pmu_op_finish(env);
985         break;
986     case SYSREG_PMUSERENR_EL0:
987         env->cp15.c9_pmuserenr = val & 0xf;
988         break;
989     case SYSREG_PMCNTENSET_EL0:
990         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
991         break;
992     case SYSREG_PMCNTENCLR_EL0:
993         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
994         break;
995     case SYSREG_PMINTENCLR_EL1:
996         pmu_op_start(env);
997         env->cp15.c9_pminten |= val;
998         pmu_op_finish(env);
999         break;
1000     case SYSREG_PMOVSCLR_EL0:
1001         pmu_op_start(env);
1002         env->cp15.c9_pmovsr &= ~val;
1003         pmu_op_finish(env);
1004         break;
1005     case SYSREG_PMSWINC_EL0:
1006         pmu_op_start(env);
1007         pmswinc_write(env, val);
1008         pmu_op_finish(env);
1009         break;
1010     case SYSREG_PMSELR_EL0:
1011         env->cp15.c9_pmselr = val & 0x1f;
1012         break;
1013     case SYSREG_PMCCFILTR_EL0:
1014         pmu_op_start(env);
1015         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1016         pmu_op_finish(env);
1017         break;
1018     case SYSREG_OSLAR_EL1:
1019         env->cp15.oslsr_el1 = val & 1;
1020         break;
1021     case SYSREG_OSDLR_EL1:
1022         /* Dummy register */
1023         break;
1024     default:
1025         cpu_synchronize_state(cpu);
1026         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1027                                          SYSREG_OP0(reg),
1028                                          SYSREG_OP1(reg),
1029                                          SYSREG_CRN(reg),
1030                                          SYSREG_CRM(reg),
1031                                          SYSREG_OP2(reg));
1032         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1033         return 1;
1034     }
1035 
1036     return 0;
1037 }
1038 
1039 static int hvf_inject_interrupts(CPUState *cpu)
1040 {
1041     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1042         trace_hvf_inject_fiq();
1043         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1044                                       true);
1045     }
1046 
1047     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1048         trace_hvf_inject_irq();
1049         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1050                                       true);
1051     }
1052 
1053     return 0;
1054 }
1055 
1056 static uint64_t hvf_vtimer_val_raw(void)
1057 {
1058     /*
1059      * mach_absolute_time() returns the vtimer value without the VM
1060      * offset that we define. Add our own offset on top.
1061      */
1062     return mach_absolute_time() - hvf_state->vtimer_offset;
1063 }
1064 
1065 static uint64_t hvf_vtimer_val(void)
1066 {
1067     if (!runstate_is_running()) {
1068         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1069         return vtimer.vtimer_val;
1070     }
1071 
1072     return hvf_vtimer_val_raw();
1073 }
1074 
1075 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1076 {
1077     /*
1078      * Use pselect to sleep so that other threads can IPI us while we're
1079      * sleeping.
1080      */
1081     qatomic_mb_set(&cpu->thread_kicked, false);
1082     qemu_mutex_unlock_iothread();
1083     pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1084     qemu_mutex_lock_iothread();
1085 }
1086 
1087 static void hvf_wfi(CPUState *cpu)
1088 {
1089     ARMCPU *arm_cpu = ARM_CPU(cpu);
1090     struct timespec ts;
1091     hv_return_t r;
1092     uint64_t ctl;
1093     uint64_t cval;
1094     int64_t ticks_to_sleep;
1095     uint64_t seconds;
1096     uint64_t nanos;
1097     uint32_t cntfrq;
1098 
1099     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1100         /* Interrupt pending, no need to wait */
1101         return;
1102     }
1103 
1104     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1105     assert_hvf_ok(r);
1106 
1107     if (!(ctl & 1) || (ctl & 2)) {
1108         /* Timer disabled or masked, just wait for an IPI. */
1109         hvf_wait_for_ipi(cpu, NULL);
1110         return;
1111     }
1112 
1113     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1114     assert_hvf_ok(r);
1115 
1116     ticks_to_sleep = cval - hvf_vtimer_val();
1117     if (ticks_to_sleep < 0) {
1118         return;
1119     }
1120 
1121     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1122     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1123     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1124     nanos = ticks_to_sleep * cntfrq;
1125 
1126     /*
1127      * Don't sleep for less than the time a context switch would take,
1128      * so that we can satisfy fast timer requests on the same CPU.
1129      * Measurements on M1 show the sweet spot to be ~2ms.
1130      */
1131     if (!seconds && nanos < (2 * SCALE_MS)) {
1132         return;
1133     }
1134 
1135     ts = (struct timespec) { seconds, nanos };
1136     hvf_wait_for_ipi(cpu, &ts);
1137 }
1138 
1139 static void hvf_sync_vtimer(CPUState *cpu)
1140 {
1141     ARMCPU *arm_cpu = ARM_CPU(cpu);
1142     hv_return_t r;
1143     uint64_t ctl;
1144     bool irq_state;
1145 
1146     if (!cpu->hvf->vtimer_masked) {
1147         /* We will get notified on vtimer changes by hvf, nothing to do */
1148         return;
1149     }
1150 
1151     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1152     assert_hvf_ok(r);
1153 
1154     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1155                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1156     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1157 
1158     if (!irq_state) {
1159         /* Timer no longer asserting, we can unmask it */
1160         hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1161         cpu->hvf->vtimer_masked = false;
1162     }
1163 }
1164 
1165 int hvf_vcpu_exec(CPUState *cpu)
1166 {
1167     ARMCPU *arm_cpu = ARM_CPU(cpu);
1168     CPUARMState *env = &arm_cpu->env;
1169     hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1170     hv_return_t r;
1171     bool advance_pc = false;
1172 
1173     if (hvf_inject_interrupts(cpu)) {
1174         return EXCP_INTERRUPT;
1175     }
1176 
1177     if (cpu->halted) {
1178         return EXCP_HLT;
1179     }
1180 
1181     flush_cpu_state(cpu);
1182 
1183     qemu_mutex_unlock_iothread();
1184     assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1185 
1186     /* handle VMEXIT */
1187     uint64_t exit_reason = hvf_exit->reason;
1188     uint64_t syndrome = hvf_exit->exception.syndrome;
1189     uint32_t ec = syn_get_ec(syndrome);
1190 
1191     qemu_mutex_lock_iothread();
1192     switch (exit_reason) {
1193     case HV_EXIT_REASON_EXCEPTION:
1194         /* This is the main one, handle below. */
1195         break;
1196     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1197         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1198         cpu->hvf->vtimer_masked = true;
1199         return 0;
1200     case HV_EXIT_REASON_CANCELED:
1201         /* we got kicked, no exit to process */
1202         return 0;
1203     default:
1204         g_assert_not_reached();
1205     }
1206 
1207     hvf_sync_vtimer(cpu);
1208 
1209     switch (ec) {
1210     case EC_DATAABORT: {
1211         bool isv = syndrome & ARM_EL_ISV;
1212         bool iswrite = (syndrome >> 6) & 1;
1213         bool s1ptw = (syndrome >> 7) & 1;
1214         uint32_t sas = (syndrome >> 22) & 3;
1215         uint32_t len = 1 << sas;
1216         uint32_t srt = (syndrome >> 16) & 0x1f;
1217         uint32_t cm = (syndrome >> 8) & 0x1;
1218         uint64_t val = 0;
1219 
1220         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1221                              hvf_exit->exception.physical_address, isv,
1222                              iswrite, s1ptw, len, srt);
1223 
1224         if (cm) {
1225             /* We don't cache MMIO regions */
1226             advance_pc = true;
1227             break;
1228         }
1229 
1230         assert(isv);
1231 
1232         if (iswrite) {
1233             val = hvf_get_reg(cpu, srt);
1234             address_space_write(&address_space_memory,
1235                                 hvf_exit->exception.physical_address,
1236                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1237         } else {
1238             address_space_read(&address_space_memory,
1239                                hvf_exit->exception.physical_address,
1240                                MEMTXATTRS_UNSPECIFIED, &val, len);
1241             hvf_set_reg(cpu, srt, val);
1242         }
1243 
1244         advance_pc = true;
1245         break;
1246     }
1247     case EC_SYSTEMREGISTERTRAP: {
1248         bool isread = (syndrome >> 0) & 1;
1249         uint32_t rt = (syndrome >> 5) & 0x1f;
1250         uint32_t reg = syndrome & SYSREG_MASK;
1251         uint64_t val;
1252         int ret = 0;
1253 
1254         if (isread) {
1255             ret = hvf_sysreg_read(cpu, reg, rt);
1256         } else {
1257             val = hvf_get_reg(cpu, rt);
1258             ret = hvf_sysreg_write(cpu, reg, val);
1259         }
1260 
1261         advance_pc = !ret;
1262         break;
1263     }
1264     case EC_WFX_TRAP:
1265         advance_pc = true;
1266         if (!(syndrome & WFX_IS_WFE)) {
1267             hvf_wfi(cpu);
1268         }
1269         break;
1270     case EC_AA64_HVC:
1271         cpu_synchronize_state(cpu);
1272         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1273             if (!hvf_handle_psci_call(cpu)) {
1274                 trace_hvf_unknown_hvc(env->xregs[0]);
1275                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1276                 env->xregs[0] = -1;
1277             }
1278         } else {
1279             trace_hvf_unknown_hvc(env->xregs[0]);
1280             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1281         }
1282         break;
1283     case EC_AA64_SMC:
1284         cpu_synchronize_state(cpu);
1285         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1286             advance_pc = true;
1287 
1288             if (!hvf_handle_psci_call(cpu)) {
1289                 trace_hvf_unknown_smc(env->xregs[0]);
1290                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1291                 env->xregs[0] = -1;
1292             }
1293         } else {
1294             trace_hvf_unknown_smc(env->xregs[0]);
1295             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1296         }
1297         break;
1298     default:
1299         cpu_synchronize_state(cpu);
1300         trace_hvf_exit(syndrome, ec, env->pc);
1301         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1302     }
1303 
1304     if (advance_pc) {
1305         uint64_t pc;
1306 
1307         flush_cpu_state(cpu);
1308 
1309         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1310         assert_hvf_ok(r);
1311         pc += 4;
1312         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1313         assert_hvf_ok(r);
1314     }
1315 
1316     return 0;
1317 }
1318 
1319 static const VMStateDescription vmstate_hvf_vtimer = {
1320     .name = "hvf-vtimer",
1321     .version_id = 1,
1322     .minimum_version_id = 1,
1323     .fields = (VMStateField[]) {
1324         VMSTATE_UINT64(vtimer_val, HVFVTimer),
1325         VMSTATE_END_OF_LIST()
1326     },
1327 };
1328 
1329 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1330 {
1331     HVFVTimer *s = opaque;
1332 
1333     if (running) {
1334         /* Update vtimer offset on all CPUs */
1335         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1336         cpu_synchronize_all_states();
1337     } else {
1338         /* Remember vtimer value on every pause */
1339         s->vtimer_val = hvf_vtimer_val_raw();
1340     }
1341 }
1342 
1343 int hvf_arch_init(void)
1344 {
1345     hvf_state->vtimer_offset = mach_absolute_time();
1346     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1347     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1348     return 0;
1349 }
1350