1 /* 2 * QEMU Hypervisor.framework support for Apple Silicon 3 4 * Copyright 2020 Alexander Graf <agraf@csgraf.de> 5 * Copyright 2020 Google LLC 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/error-report.h" 14 15 #include "sysemu/runstate.h" 16 #include "sysemu/hvf.h" 17 #include "sysemu/hvf_int.h" 18 #include "sysemu/hw_accel.h" 19 #include "hvf_arm.h" 20 #include "cpregs.h" 21 22 #include <mach/mach_time.h> 23 24 #include "exec/address-spaces.h" 25 #include "hw/irq.h" 26 #include "qemu/main-loop.h" 27 #include "sysemu/cpus.h" 28 #include "arm-powerctl.h" 29 #include "target/arm/cpu.h" 30 #include "target/arm/internals.h" 31 #include "target/arm/multiprocessing.h" 32 #include "target/arm/gtimer.h" 33 #include "trace/trace-target_arm_hvf.h" 34 #include "migration/vmstate.h" 35 36 #include "gdbstub/enums.h" 37 38 #define MDSCR_EL1_SS_SHIFT 0 39 #define MDSCR_EL1_MDE_SHIFT 15 40 41 static const uint16_t dbgbcr_regs[] = { 42 HV_SYS_REG_DBGBCR0_EL1, 43 HV_SYS_REG_DBGBCR1_EL1, 44 HV_SYS_REG_DBGBCR2_EL1, 45 HV_SYS_REG_DBGBCR3_EL1, 46 HV_SYS_REG_DBGBCR4_EL1, 47 HV_SYS_REG_DBGBCR5_EL1, 48 HV_SYS_REG_DBGBCR6_EL1, 49 HV_SYS_REG_DBGBCR7_EL1, 50 HV_SYS_REG_DBGBCR8_EL1, 51 HV_SYS_REG_DBGBCR9_EL1, 52 HV_SYS_REG_DBGBCR10_EL1, 53 HV_SYS_REG_DBGBCR11_EL1, 54 HV_SYS_REG_DBGBCR12_EL1, 55 HV_SYS_REG_DBGBCR13_EL1, 56 HV_SYS_REG_DBGBCR14_EL1, 57 HV_SYS_REG_DBGBCR15_EL1, 58 }; 59 60 static const uint16_t dbgbvr_regs[] = { 61 HV_SYS_REG_DBGBVR0_EL1, 62 HV_SYS_REG_DBGBVR1_EL1, 63 HV_SYS_REG_DBGBVR2_EL1, 64 HV_SYS_REG_DBGBVR3_EL1, 65 HV_SYS_REG_DBGBVR4_EL1, 66 HV_SYS_REG_DBGBVR5_EL1, 67 HV_SYS_REG_DBGBVR6_EL1, 68 HV_SYS_REG_DBGBVR7_EL1, 69 HV_SYS_REG_DBGBVR8_EL1, 70 HV_SYS_REG_DBGBVR9_EL1, 71 HV_SYS_REG_DBGBVR10_EL1, 72 HV_SYS_REG_DBGBVR11_EL1, 73 HV_SYS_REG_DBGBVR12_EL1, 74 HV_SYS_REG_DBGBVR13_EL1, 75 HV_SYS_REG_DBGBVR14_EL1, 76 HV_SYS_REG_DBGBVR15_EL1, 77 }; 78 79 static const uint16_t dbgwcr_regs[] = { 80 HV_SYS_REG_DBGWCR0_EL1, 81 HV_SYS_REG_DBGWCR1_EL1, 82 HV_SYS_REG_DBGWCR2_EL1, 83 HV_SYS_REG_DBGWCR3_EL1, 84 HV_SYS_REG_DBGWCR4_EL1, 85 HV_SYS_REG_DBGWCR5_EL1, 86 HV_SYS_REG_DBGWCR6_EL1, 87 HV_SYS_REG_DBGWCR7_EL1, 88 HV_SYS_REG_DBGWCR8_EL1, 89 HV_SYS_REG_DBGWCR9_EL1, 90 HV_SYS_REG_DBGWCR10_EL1, 91 HV_SYS_REG_DBGWCR11_EL1, 92 HV_SYS_REG_DBGWCR12_EL1, 93 HV_SYS_REG_DBGWCR13_EL1, 94 HV_SYS_REG_DBGWCR14_EL1, 95 HV_SYS_REG_DBGWCR15_EL1, 96 }; 97 98 static const uint16_t dbgwvr_regs[] = { 99 HV_SYS_REG_DBGWVR0_EL1, 100 HV_SYS_REG_DBGWVR1_EL1, 101 HV_SYS_REG_DBGWVR2_EL1, 102 HV_SYS_REG_DBGWVR3_EL1, 103 HV_SYS_REG_DBGWVR4_EL1, 104 HV_SYS_REG_DBGWVR5_EL1, 105 HV_SYS_REG_DBGWVR6_EL1, 106 HV_SYS_REG_DBGWVR7_EL1, 107 HV_SYS_REG_DBGWVR8_EL1, 108 HV_SYS_REG_DBGWVR9_EL1, 109 HV_SYS_REG_DBGWVR10_EL1, 110 HV_SYS_REG_DBGWVR11_EL1, 111 HV_SYS_REG_DBGWVR12_EL1, 112 HV_SYS_REG_DBGWVR13_EL1, 113 HV_SYS_REG_DBGWVR14_EL1, 114 HV_SYS_REG_DBGWVR15_EL1, 115 }; 116 117 static inline int hvf_arm_num_brps(hv_vcpu_config_t config) 118 { 119 uint64_t val; 120 hv_return_t ret; 121 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1, 122 &val); 123 assert_hvf_ok(ret); 124 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1; 125 } 126 127 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config) 128 { 129 uint64_t val; 130 hv_return_t ret; 131 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1, 132 &val); 133 assert_hvf_ok(ret); 134 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1; 135 } 136 137 void hvf_arm_init_debug(void) 138 { 139 hv_vcpu_config_t config; 140 config = hv_vcpu_config_create(); 141 142 max_hw_bps = hvf_arm_num_brps(config); 143 hw_breakpoints = 144 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps); 145 146 max_hw_wps = hvf_arm_num_wrps(config); 147 hw_watchpoints = 148 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps); 149 } 150 151 #define HVF_SYSREG(crn, crm, op0, op1, op2) \ 152 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 153 154 #define SYSREG_OP0_SHIFT 20 155 #define SYSREG_OP0_MASK 0x3 156 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK) 157 #define SYSREG_OP1_SHIFT 14 158 #define SYSREG_OP1_MASK 0x7 159 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK) 160 #define SYSREG_CRN_SHIFT 10 161 #define SYSREG_CRN_MASK 0xf 162 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK) 163 #define SYSREG_CRM_SHIFT 1 164 #define SYSREG_CRM_MASK 0xf 165 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK) 166 #define SYSREG_OP2_SHIFT 17 167 #define SYSREG_OP2_MASK 0x7 168 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK) 169 170 #define SYSREG(op0, op1, crn, crm, op2) \ 171 ((op0 << SYSREG_OP0_SHIFT) | \ 172 (op1 << SYSREG_OP1_SHIFT) | \ 173 (crn << SYSREG_CRN_SHIFT) | \ 174 (crm << SYSREG_CRM_SHIFT) | \ 175 (op2 << SYSREG_OP2_SHIFT)) 176 #define SYSREG_MASK \ 177 SYSREG(SYSREG_OP0_MASK, \ 178 SYSREG_OP1_MASK, \ 179 SYSREG_CRN_MASK, \ 180 SYSREG_CRM_MASK, \ 181 SYSREG_OP2_MASK) 182 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4) 183 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4) 184 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4) 185 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1) 186 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0) 187 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0) 188 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1) 189 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2) 190 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2) 191 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3) 192 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4) 193 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5) 194 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6) 195 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7) 196 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0) 197 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7) 198 199 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4) 200 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5) 201 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6) 202 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7) 203 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0) 204 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1) 205 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2) 206 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3) 207 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6) 208 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3) 209 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3) 210 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4) 211 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1) 212 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1) 213 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1) 214 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2) 215 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2) 216 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0) 217 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0) 218 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6) 219 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7) 220 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0) 221 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3) 222 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7) 223 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5) 224 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5) 225 226 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2) 227 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4) 228 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5) 229 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6) 230 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7) 231 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4) 232 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5) 233 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6) 234 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7) 235 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4) 236 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5) 237 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6) 238 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7) 239 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4) 240 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5) 241 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6) 242 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7) 243 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4) 244 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5) 245 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6) 246 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7) 247 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4) 248 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5) 249 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6) 250 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7) 251 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4) 252 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5) 253 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6) 254 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7) 255 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4) 256 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5) 257 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6) 258 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7) 259 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4) 260 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5) 261 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6) 262 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7) 263 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4) 264 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5) 265 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6) 266 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7) 267 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4) 268 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5) 269 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6) 270 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7) 271 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4) 272 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5) 273 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6) 274 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7) 275 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4) 276 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5) 277 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6) 278 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7) 279 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4) 280 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5) 281 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6) 282 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7) 283 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4) 284 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5) 285 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6) 286 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7) 287 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4) 288 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5) 289 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6) 290 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7) 291 292 #define WFX_IS_WFE (1 << 0) 293 294 #define TMR_CTL_ENABLE (1 << 0) 295 #define TMR_CTL_IMASK (1 << 1) 296 #define TMR_CTL_ISTATUS (1 << 2) 297 298 static void hvf_wfi(CPUState *cpu); 299 300 typedef struct HVFVTimer { 301 /* Vtimer value during migration and paused state */ 302 uint64_t vtimer_val; 303 } HVFVTimer; 304 305 static HVFVTimer vtimer; 306 307 typedef struct ARMHostCPUFeatures { 308 ARMISARegisters isar; 309 uint64_t features; 310 uint64_t midr; 311 uint32_t reset_sctlr; 312 const char *dtb_compatible; 313 } ARMHostCPUFeatures; 314 315 static ARMHostCPUFeatures arm_host_cpu_features; 316 317 struct hvf_reg_match { 318 int reg; 319 uint64_t offset; 320 }; 321 322 static const struct hvf_reg_match hvf_reg_match[] = { 323 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) }, 324 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) }, 325 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) }, 326 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) }, 327 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) }, 328 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) }, 329 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) }, 330 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) }, 331 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) }, 332 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) }, 333 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) }, 334 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) }, 335 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) }, 336 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) }, 337 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) }, 338 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) }, 339 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) }, 340 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) }, 341 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) }, 342 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) }, 343 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) }, 344 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) }, 345 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) }, 346 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) }, 347 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) }, 348 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) }, 349 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) }, 350 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) }, 351 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) }, 352 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) }, 353 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) }, 354 { HV_REG_PC, offsetof(CPUARMState, pc) }, 355 }; 356 357 static const struct hvf_reg_match hvf_fpreg_match[] = { 358 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) }, 359 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) }, 360 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) }, 361 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) }, 362 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) }, 363 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) }, 364 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) }, 365 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) }, 366 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) }, 367 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) }, 368 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) }, 369 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) }, 370 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) }, 371 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) }, 372 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) }, 373 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) }, 374 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) }, 375 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) }, 376 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) }, 377 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) }, 378 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) }, 379 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) }, 380 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) }, 381 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) }, 382 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) }, 383 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) }, 384 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) }, 385 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) }, 386 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) }, 387 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) }, 388 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) }, 389 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) }, 390 }; 391 392 struct hvf_sreg_match { 393 int reg; 394 uint32_t key; 395 uint32_t cp_idx; 396 }; 397 398 static struct hvf_sreg_match hvf_sreg_match[] = { 399 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) }, 400 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) }, 401 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) }, 402 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) }, 403 404 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) }, 405 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) }, 406 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) }, 407 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) }, 408 409 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) }, 410 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) }, 411 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) }, 412 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) }, 413 414 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) }, 415 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) }, 416 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) }, 417 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) }, 418 419 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) }, 420 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) }, 421 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) }, 422 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) }, 423 424 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) }, 425 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) }, 426 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) }, 427 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) }, 428 429 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) }, 430 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) }, 431 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) }, 432 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) }, 433 434 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) }, 435 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) }, 436 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) }, 437 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) }, 438 439 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) }, 440 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) }, 441 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) }, 442 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) }, 443 444 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) }, 445 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) }, 446 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) }, 447 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) }, 448 449 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) }, 450 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) }, 451 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) }, 452 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) }, 453 454 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) }, 455 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) }, 456 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) }, 457 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) }, 458 459 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) }, 460 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) }, 461 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) }, 462 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) }, 463 464 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) }, 465 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) }, 466 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) }, 467 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) }, 468 469 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) }, 470 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) }, 471 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) }, 472 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) }, 473 474 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) }, 475 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) }, 476 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) }, 477 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) }, 478 479 #ifdef SYNC_NO_RAW_REGS 480 /* 481 * The registers below are manually synced on init because they are 482 * marked as NO_RAW. We still list them to make number space sync easier. 483 */ 484 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) }, 485 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) }, 486 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) }, 487 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) }, 488 #endif 489 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) }, 490 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) }, 491 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) }, 492 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) }, 493 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) }, 494 #ifdef SYNC_NO_MMFR0 495 /* We keep the hardware MMFR0 around. HW limits are there anyway */ 496 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) }, 497 #endif 498 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) }, 499 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) }, 500 /* Add ID_AA64MMFR3_EL1 here when HVF supports it */ 501 502 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) }, 503 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) }, 504 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) }, 505 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) }, 506 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) }, 507 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) }, 508 509 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) }, 510 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) }, 511 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) }, 512 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) }, 513 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) }, 514 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) }, 515 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) }, 516 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) }, 517 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) }, 518 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) }, 519 520 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) }, 521 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) }, 522 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) }, 523 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) }, 524 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) }, 525 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) }, 526 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) }, 527 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) }, 528 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) }, 529 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) }, 530 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) }, 531 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) }, 532 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) }, 533 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) }, 534 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) }, 535 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) }, 536 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) }, 537 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) }, 538 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) }, 539 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) }, 540 }; 541 542 int hvf_get_registers(CPUState *cpu) 543 { 544 ARMCPU *arm_cpu = ARM_CPU(cpu); 545 CPUARMState *env = &arm_cpu->env; 546 hv_return_t ret; 547 uint64_t val; 548 hv_simd_fp_uchar16_t fpval; 549 int i; 550 551 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { 552 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val); 553 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val; 554 assert_hvf_ok(ret); 555 } 556 557 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { 558 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg, 559 &fpval); 560 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval)); 561 assert_hvf_ok(ret); 562 } 563 564 val = 0; 565 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val); 566 assert_hvf_ok(ret); 567 vfp_set_fpcr(env, val); 568 569 val = 0; 570 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val); 571 assert_hvf_ok(ret); 572 vfp_set_fpsr(env, val); 573 574 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val); 575 assert_hvf_ok(ret); 576 pstate_write(env, val); 577 578 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { 579 if (hvf_sreg_match[i].cp_idx == -1) { 580 continue; 581 } 582 583 if (cpu->accel->guest_debug_enabled) { 584 /* Handle debug registers */ 585 switch (hvf_sreg_match[i].reg) { 586 case HV_SYS_REG_DBGBVR0_EL1: 587 case HV_SYS_REG_DBGBCR0_EL1: 588 case HV_SYS_REG_DBGWVR0_EL1: 589 case HV_SYS_REG_DBGWCR0_EL1: 590 case HV_SYS_REG_DBGBVR1_EL1: 591 case HV_SYS_REG_DBGBCR1_EL1: 592 case HV_SYS_REG_DBGWVR1_EL1: 593 case HV_SYS_REG_DBGWCR1_EL1: 594 case HV_SYS_REG_DBGBVR2_EL1: 595 case HV_SYS_REG_DBGBCR2_EL1: 596 case HV_SYS_REG_DBGWVR2_EL1: 597 case HV_SYS_REG_DBGWCR2_EL1: 598 case HV_SYS_REG_DBGBVR3_EL1: 599 case HV_SYS_REG_DBGBCR3_EL1: 600 case HV_SYS_REG_DBGWVR3_EL1: 601 case HV_SYS_REG_DBGWCR3_EL1: 602 case HV_SYS_REG_DBGBVR4_EL1: 603 case HV_SYS_REG_DBGBCR4_EL1: 604 case HV_SYS_REG_DBGWVR4_EL1: 605 case HV_SYS_REG_DBGWCR4_EL1: 606 case HV_SYS_REG_DBGBVR5_EL1: 607 case HV_SYS_REG_DBGBCR5_EL1: 608 case HV_SYS_REG_DBGWVR5_EL1: 609 case HV_SYS_REG_DBGWCR5_EL1: 610 case HV_SYS_REG_DBGBVR6_EL1: 611 case HV_SYS_REG_DBGBCR6_EL1: 612 case HV_SYS_REG_DBGWVR6_EL1: 613 case HV_SYS_REG_DBGWCR6_EL1: 614 case HV_SYS_REG_DBGBVR7_EL1: 615 case HV_SYS_REG_DBGBCR7_EL1: 616 case HV_SYS_REG_DBGWVR7_EL1: 617 case HV_SYS_REG_DBGWCR7_EL1: 618 case HV_SYS_REG_DBGBVR8_EL1: 619 case HV_SYS_REG_DBGBCR8_EL1: 620 case HV_SYS_REG_DBGWVR8_EL1: 621 case HV_SYS_REG_DBGWCR8_EL1: 622 case HV_SYS_REG_DBGBVR9_EL1: 623 case HV_SYS_REG_DBGBCR9_EL1: 624 case HV_SYS_REG_DBGWVR9_EL1: 625 case HV_SYS_REG_DBGWCR9_EL1: 626 case HV_SYS_REG_DBGBVR10_EL1: 627 case HV_SYS_REG_DBGBCR10_EL1: 628 case HV_SYS_REG_DBGWVR10_EL1: 629 case HV_SYS_REG_DBGWCR10_EL1: 630 case HV_SYS_REG_DBGBVR11_EL1: 631 case HV_SYS_REG_DBGBCR11_EL1: 632 case HV_SYS_REG_DBGWVR11_EL1: 633 case HV_SYS_REG_DBGWCR11_EL1: 634 case HV_SYS_REG_DBGBVR12_EL1: 635 case HV_SYS_REG_DBGBCR12_EL1: 636 case HV_SYS_REG_DBGWVR12_EL1: 637 case HV_SYS_REG_DBGWCR12_EL1: 638 case HV_SYS_REG_DBGBVR13_EL1: 639 case HV_SYS_REG_DBGBCR13_EL1: 640 case HV_SYS_REG_DBGWVR13_EL1: 641 case HV_SYS_REG_DBGWCR13_EL1: 642 case HV_SYS_REG_DBGBVR14_EL1: 643 case HV_SYS_REG_DBGBCR14_EL1: 644 case HV_SYS_REG_DBGWVR14_EL1: 645 case HV_SYS_REG_DBGWCR14_EL1: 646 case HV_SYS_REG_DBGBVR15_EL1: 647 case HV_SYS_REG_DBGBCR15_EL1: 648 case HV_SYS_REG_DBGWVR15_EL1: 649 case HV_SYS_REG_DBGWCR15_EL1: { 650 /* 651 * If the guest is being debugged, the vCPU's debug registers 652 * are holding the gdbstub's view of the registers (set in 653 * hvf_arch_update_guest_debug()). 654 * Since the environment is used to store only the guest's view 655 * of the registers, don't update it with the values from the 656 * vCPU but simply keep the values from the previous 657 * environment. 658 */ 659 const ARMCPRegInfo *ri; 660 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key); 661 val = read_raw_cp_reg(env, ri); 662 663 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; 664 continue; 665 } 666 } 667 } 668 669 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val); 670 assert_hvf_ok(ret); 671 672 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; 673 } 674 assert(write_list_to_cpustate(arm_cpu)); 675 676 aarch64_restore_sp(env, arm_current_el(env)); 677 678 return 0; 679 } 680 681 int hvf_put_registers(CPUState *cpu) 682 { 683 ARMCPU *arm_cpu = ARM_CPU(cpu); 684 CPUARMState *env = &arm_cpu->env; 685 hv_return_t ret; 686 uint64_t val; 687 hv_simd_fp_uchar16_t fpval; 688 int i; 689 690 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { 691 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset); 692 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val); 693 assert_hvf_ok(ret); 694 } 695 696 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { 697 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval)); 698 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg, 699 fpval); 700 assert_hvf_ok(ret); 701 } 702 703 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env)); 704 assert_hvf_ok(ret); 705 706 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env)); 707 assert_hvf_ok(ret); 708 709 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env)); 710 assert_hvf_ok(ret); 711 712 aarch64_save_sp(env, arm_current_el(env)); 713 714 assert(write_cpustate_to_list(arm_cpu, false)); 715 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { 716 if (hvf_sreg_match[i].cp_idx == -1) { 717 continue; 718 } 719 720 if (cpu->accel->guest_debug_enabled) { 721 /* Handle debug registers */ 722 switch (hvf_sreg_match[i].reg) { 723 case HV_SYS_REG_DBGBVR0_EL1: 724 case HV_SYS_REG_DBGBCR0_EL1: 725 case HV_SYS_REG_DBGWVR0_EL1: 726 case HV_SYS_REG_DBGWCR0_EL1: 727 case HV_SYS_REG_DBGBVR1_EL1: 728 case HV_SYS_REG_DBGBCR1_EL1: 729 case HV_SYS_REG_DBGWVR1_EL1: 730 case HV_SYS_REG_DBGWCR1_EL1: 731 case HV_SYS_REG_DBGBVR2_EL1: 732 case HV_SYS_REG_DBGBCR2_EL1: 733 case HV_SYS_REG_DBGWVR2_EL1: 734 case HV_SYS_REG_DBGWCR2_EL1: 735 case HV_SYS_REG_DBGBVR3_EL1: 736 case HV_SYS_REG_DBGBCR3_EL1: 737 case HV_SYS_REG_DBGWVR3_EL1: 738 case HV_SYS_REG_DBGWCR3_EL1: 739 case HV_SYS_REG_DBGBVR4_EL1: 740 case HV_SYS_REG_DBGBCR4_EL1: 741 case HV_SYS_REG_DBGWVR4_EL1: 742 case HV_SYS_REG_DBGWCR4_EL1: 743 case HV_SYS_REG_DBGBVR5_EL1: 744 case HV_SYS_REG_DBGBCR5_EL1: 745 case HV_SYS_REG_DBGWVR5_EL1: 746 case HV_SYS_REG_DBGWCR5_EL1: 747 case HV_SYS_REG_DBGBVR6_EL1: 748 case HV_SYS_REG_DBGBCR6_EL1: 749 case HV_SYS_REG_DBGWVR6_EL1: 750 case HV_SYS_REG_DBGWCR6_EL1: 751 case HV_SYS_REG_DBGBVR7_EL1: 752 case HV_SYS_REG_DBGBCR7_EL1: 753 case HV_SYS_REG_DBGWVR7_EL1: 754 case HV_SYS_REG_DBGWCR7_EL1: 755 case HV_SYS_REG_DBGBVR8_EL1: 756 case HV_SYS_REG_DBGBCR8_EL1: 757 case HV_SYS_REG_DBGWVR8_EL1: 758 case HV_SYS_REG_DBGWCR8_EL1: 759 case HV_SYS_REG_DBGBVR9_EL1: 760 case HV_SYS_REG_DBGBCR9_EL1: 761 case HV_SYS_REG_DBGWVR9_EL1: 762 case HV_SYS_REG_DBGWCR9_EL1: 763 case HV_SYS_REG_DBGBVR10_EL1: 764 case HV_SYS_REG_DBGBCR10_EL1: 765 case HV_SYS_REG_DBGWVR10_EL1: 766 case HV_SYS_REG_DBGWCR10_EL1: 767 case HV_SYS_REG_DBGBVR11_EL1: 768 case HV_SYS_REG_DBGBCR11_EL1: 769 case HV_SYS_REG_DBGWVR11_EL1: 770 case HV_SYS_REG_DBGWCR11_EL1: 771 case HV_SYS_REG_DBGBVR12_EL1: 772 case HV_SYS_REG_DBGBCR12_EL1: 773 case HV_SYS_REG_DBGWVR12_EL1: 774 case HV_SYS_REG_DBGWCR12_EL1: 775 case HV_SYS_REG_DBGBVR13_EL1: 776 case HV_SYS_REG_DBGBCR13_EL1: 777 case HV_SYS_REG_DBGWVR13_EL1: 778 case HV_SYS_REG_DBGWCR13_EL1: 779 case HV_SYS_REG_DBGBVR14_EL1: 780 case HV_SYS_REG_DBGBCR14_EL1: 781 case HV_SYS_REG_DBGWVR14_EL1: 782 case HV_SYS_REG_DBGWCR14_EL1: 783 case HV_SYS_REG_DBGBVR15_EL1: 784 case HV_SYS_REG_DBGBCR15_EL1: 785 case HV_SYS_REG_DBGWVR15_EL1: 786 case HV_SYS_REG_DBGWCR15_EL1: 787 /* 788 * If the guest is being debugged, the vCPU's debug registers 789 * are already holding the gdbstub's view of the registers (set 790 * in hvf_arch_update_guest_debug()). 791 */ 792 continue; 793 } 794 } 795 796 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx]; 797 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val); 798 assert_hvf_ok(ret); 799 } 800 801 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset); 802 assert_hvf_ok(ret); 803 804 return 0; 805 } 806 807 static void flush_cpu_state(CPUState *cpu) 808 { 809 if (cpu->accel->dirty) { 810 hvf_put_registers(cpu); 811 cpu->accel->dirty = false; 812 } 813 } 814 815 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val) 816 { 817 hv_return_t r; 818 819 flush_cpu_state(cpu); 820 821 if (rt < 31) { 822 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val); 823 assert_hvf_ok(r); 824 } 825 } 826 827 static uint64_t hvf_get_reg(CPUState *cpu, int rt) 828 { 829 uint64_t val = 0; 830 hv_return_t r; 831 832 flush_cpu_state(cpu); 833 834 if (rt < 31) { 835 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val); 836 assert_hvf_ok(r); 837 } 838 839 return val; 840 } 841 842 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) 843 { 844 ARMISARegisters host_isar = {}; 845 const struct isar_regs { 846 int reg; 847 uint64_t *val; 848 } regs[] = { 849 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 }, 850 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 }, 851 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 }, 852 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 }, 853 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 }, 854 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 }, 855 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */ 856 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 }, 857 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 }, 858 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 }, 859 /* Add ID_AA64MMFR3_EL1 here when HVF supports it */ 860 }; 861 hv_vcpu_t fd; 862 hv_return_t r = HV_SUCCESS; 863 hv_vcpu_exit_t *exit; 864 int i; 865 866 ahcf->dtb_compatible = "arm,arm-v8"; 867 ahcf->features = (1ULL << ARM_FEATURE_V8) | 868 (1ULL << ARM_FEATURE_NEON) | 869 (1ULL << ARM_FEATURE_AARCH64) | 870 (1ULL << ARM_FEATURE_PMU) | 871 (1ULL << ARM_FEATURE_GENERIC_TIMER); 872 873 /* We set up a small vcpu to extract host registers */ 874 875 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) { 876 return false; 877 } 878 879 for (i = 0; i < ARRAY_SIZE(regs); i++) { 880 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val); 881 } 882 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr); 883 r |= hv_vcpu_destroy(fd); 884 885 ahcf->isar = host_isar; 886 887 /* 888 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1 889 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97 890 */ 891 ahcf->reset_sctlr = 0x30100180; 892 /* 893 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility, 894 * let's disable it on boot and then allow guest software to turn it on by 895 * setting it to 0. 896 */ 897 ahcf->reset_sctlr |= 0x00800000; 898 899 /* Make sure we don't advertise AArch32 support for EL0/EL1 */ 900 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) { 901 return false; 902 } 903 904 return r == HV_SUCCESS; 905 } 906 907 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu) 908 { 909 if (!arm_host_cpu_features.dtb_compatible) { 910 if (!hvf_enabled() || 911 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) { 912 /* 913 * We can't report this error yet, so flag that we need to 914 * in arm_cpu_realizefn(). 915 */ 916 cpu->host_cpu_probe_failed = true; 917 return; 918 } 919 } 920 921 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 922 cpu->isar = arm_host_cpu_features.isar; 923 cpu->env.features = arm_host_cpu_features.features; 924 cpu->midr = arm_host_cpu_features.midr; 925 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr; 926 } 927 928 void hvf_arch_vcpu_destroy(CPUState *cpu) 929 { 930 } 931 932 int hvf_arch_init_vcpu(CPUState *cpu) 933 { 934 ARMCPU *arm_cpu = ARM_CPU(cpu); 935 CPUARMState *env = &arm_cpu->env; 936 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match); 937 uint32_t sregs_cnt = 0; 938 uint64_t pfr; 939 hv_return_t ret; 940 int i; 941 942 env->aarch64 = true; 943 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz)); 944 945 /* Allocate enough space for our sysreg sync */ 946 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes, 947 sregs_match_len); 948 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values, 949 sregs_match_len); 950 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t, 951 arm_cpu->cpreg_vmstate_indexes, 952 sregs_match_len); 953 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t, 954 arm_cpu->cpreg_vmstate_values, 955 sregs_match_len); 956 957 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t)); 958 959 /* Populate cp list for all known sysregs */ 960 for (i = 0; i < sregs_match_len; i++) { 961 const ARMCPRegInfo *ri; 962 uint32_t key = hvf_sreg_match[i].key; 963 964 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key); 965 if (ri) { 966 assert(!(ri->type & ARM_CP_NO_RAW)); 967 hvf_sreg_match[i].cp_idx = sregs_cnt; 968 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key); 969 } else { 970 hvf_sreg_match[i].cp_idx = -1; 971 } 972 } 973 arm_cpu->cpreg_array_len = sregs_cnt; 974 arm_cpu->cpreg_vmstate_array_len = sregs_cnt; 975 976 assert(write_cpustate_to_list(arm_cpu, false)); 977 978 /* Set CP_NO_RAW system registers on init */ 979 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1, 980 arm_cpu->midr); 981 assert_hvf_ok(ret); 982 983 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1, 984 arm_cpu->mp_affinity); 985 assert_hvf_ok(ret); 986 987 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr); 988 assert_hvf_ok(ret); 989 pfr |= env->gicv3state ? (1 << 24) : 0; 990 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr); 991 assert_hvf_ok(ret); 992 993 /* We're limited to underlying hardware caps, override internal versions */ 994 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1, 995 &arm_cpu->isar.id_aa64mmfr0); 996 assert_hvf_ok(ret); 997 998 return 0; 999 } 1000 1001 void hvf_kick_vcpu_thread(CPUState *cpu) 1002 { 1003 cpus_kick_thread(cpu); 1004 hv_vcpus_exit(&cpu->accel->fd, 1); 1005 } 1006 1007 static void hvf_raise_exception(CPUState *cpu, uint32_t excp, 1008 uint32_t syndrome) 1009 { 1010 ARMCPU *arm_cpu = ARM_CPU(cpu); 1011 CPUARMState *env = &arm_cpu->env; 1012 1013 cpu->exception_index = excp; 1014 env->exception.target_el = 1; 1015 env->exception.syndrome = syndrome; 1016 1017 arm_cpu_do_interrupt(cpu); 1018 } 1019 1020 static void hvf_psci_cpu_off(ARMCPU *arm_cpu) 1021 { 1022 int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu)); 1023 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS); 1024 } 1025 1026 /* 1027 * Handle a PSCI call. 1028 * 1029 * Returns 0 on success 1030 * -1 when the PSCI call is unknown, 1031 */ 1032 static bool hvf_handle_psci_call(CPUState *cpu) 1033 { 1034 ARMCPU *arm_cpu = ARM_CPU(cpu); 1035 CPUARMState *env = &arm_cpu->env; 1036 uint64_t param[4] = { 1037 env->xregs[0], 1038 env->xregs[1], 1039 env->xregs[2], 1040 env->xregs[3] 1041 }; 1042 uint64_t context_id, mpidr; 1043 bool target_aarch64 = true; 1044 CPUState *target_cpu_state; 1045 ARMCPU *target_cpu; 1046 target_ulong entry; 1047 int target_el = 1; 1048 int32_t ret = 0; 1049 1050 trace_hvf_psci_call(param[0], param[1], param[2], param[3], 1051 arm_cpu_mp_affinity(arm_cpu)); 1052 1053 switch (param[0]) { 1054 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 1055 ret = QEMU_PSCI_VERSION_1_1; 1056 break; 1057 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 1058 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */ 1059 break; 1060 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 1061 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 1062 mpidr = param[1]; 1063 1064 switch (param[2]) { 1065 case 0: 1066 target_cpu_state = arm_get_cpu_by_id(mpidr); 1067 if (!target_cpu_state) { 1068 ret = QEMU_PSCI_RET_INVALID_PARAMS; 1069 break; 1070 } 1071 target_cpu = ARM_CPU(target_cpu_state); 1072 1073 ret = target_cpu->power_state; 1074 break; 1075 default: 1076 /* Everything above affinity level 0 is always on. */ 1077 ret = 0; 1078 } 1079 break; 1080 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 1081 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1082 /* 1083 * QEMU reset and shutdown are async requests, but PSCI 1084 * mandates that we never return from the reset/shutdown 1085 * call, so power the CPU off now so it doesn't execute 1086 * anything further. 1087 */ 1088 hvf_psci_cpu_off(arm_cpu); 1089 break; 1090 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 1091 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1092 hvf_psci_cpu_off(arm_cpu); 1093 break; 1094 case QEMU_PSCI_0_1_FN_CPU_ON: 1095 case QEMU_PSCI_0_2_FN_CPU_ON: 1096 case QEMU_PSCI_0_2_FN64_CPU_ON: 1097 mpidr = param[1]; 1098 entry = param[2]; 1099 context_id = param[3]; 1100 ret = arm_set_cpu_on(mpidr, entry, context_id, 1101 target_el, target_aarch64); 1102 break; 1103 case QEMU_PSCI_0_1_FN_CPU_OFF: 1104 case QEMU_PSCI_0_2_FN_CPU_OFF: 1105 hvf_psci_cpu_off(arm_cpu); 1106 break; 1107 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 1108 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 1109 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 1110 /* Affinity levels are not supported in QEMU */ 1111 if (param[1] & 0xfffe0000) { 1112 ret = QEMU_PSCI_RET_INVALID_PARAMS; 1113 break; 1114 } 1115 /* Powerdown is not supported, we always go into WFI */ 1116 env->xregs[0] = 0; 1117 hvf_wfi(cpu); 1118 break; 1119 case QEMU_PSCI_0_1_FN_MIGRATE: 1120 case QEMU_PSCI_0_2_FN_MIGRATE: 1121 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 1122 break; 1123 case QEMU_PSCI_1_0_FN_PSCI_FEATURES: 1124 switch (param[1]) { 1125 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 1126 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 1127 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 1128 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 1129 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 1130 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 1131 case QEMU_PSCI_0_1_FN_CPU_ON: 1132 case QEMU_PSCI_0_2_FN_CPU_ON: 1133 case QEMU_PSCI_0_2_FN64_CPU_ON: 1134 case QEMU_PSCI_0_1_FN_CPU_OFF: 1135 case QEMU_PSCI_0_2_FN_CPU_OFF: 1136 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 1137 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 1138 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 1139 case QEMU_PSCI_1_0_FN_PSCI_FEATURES: 1140 ret = 0; 1141 break; 1142 case QEMU_PSCI_0_1_FN_MIGRATE: 1143 case QEMU_PSCI_0_2_FN_MIGRATE: 1144 default: 1145 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 1146 } 1147 break; 1148 default: 1149 return false; 1150 } 1151 1152 env->xregs[0] = ret; 1153 return true; 1154 } 1155 1156 static bool is_id_sysreg(uint32_t reg) 1157 { 1158 return SYSREG_OP0(reg) == 3 && 1159 SYSREG_OP1(reg) == 0 && 1160 SYSREG_CRN(reg) == 0 && 1161 SYSREG_CRM(reg) >= 1 && 1162 SYSREG_CRM(reg) < 8; 1163 } 1164 1165 static uint32_t hvf_reg2cp_reg(uint32_t reg) 1166 { 1167 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1168 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK, 1169 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK, 1170 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK, 1171 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK, 1172 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK); 1173 } 1174 1175 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val) 1176 { 1177 ARMCPU *arm_cpu = ARM_CPU(cpu); 1178 CPUARMState *env = &arm_cpu->env; 1179 const ARMCPRegInfo *ri; 1180 1181 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); 1182 if (ri) { 1183 if (ri->accessfn) { 1184 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) { 1185 return false; 1186 } 1187 } 1188 if (ri->type & ARM_CP_CONST) { 1189 *val = ri->resetvalue; 1190 } else if (ri->readfn) { 1191 *val = ri->readfn(env, ri); 1192 } else { 1193 *val = CPREG_FIELD64(env, ri); 1194 } 1195 trace_hvf_vgic_read(ri->name, *val); 1196 return true; 1197 } 1198 1199 return false; 1200 } 1201 1202 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint64_t *val) 1203 { 1204 ARMCPU *arm_cpu = ARM_CPU(cpu); 1205 CPUARMState *env = &arm_cpu->env; 1206 1207 if (arm_feature(env, ARM_FEATURE_PMU)) { 1208 switch (reg) { 1209 case SYSREG_PMCR_EL0: 1210 *val = env->cp15.c9_pmcr; 1211 return 0; 1212 case SYSREG_PMCCNTR_EL0: 1213 pmu_op_start(env); 1214 *val = env->cp15.c15_ccnt; 1215 pmu_op_finish(env); 1216 return 0; 1217 case SYSREG_PMCNTENCLR_EL0: 1218 *val = env->cp15.c9_pmcnten; 1219 return 0; 1220 case SYSREG_PMOVSCLR_EL0: 1221 *val = env->cp15.c9_pmovsr; 1222 return 0; 1223 case SYSREG_PMSELR_EL0: 1224 *val = env->cp15.c9_pmselr; 1225 return 0; 1226 case SYSREG_PMINTENCLR_EL1: 1227 *val = env->cp15.c9_pminten; 1228 return 0; 1229 case SYSREG_PMCCFILTR_EL0: 1230 *val = env->cp15.pmccfiltr_el0; 1231 return 0; 1232 case SYSREG_PMCNTENSET_EL0: 1233 *val = env->cp15.c9_pmcnten; 1234 return 0; 1235 case SYSREG_PMUSERENR_EL0: 1236 *val = env->cp15.c9_pmuserenr; 1237 return 0; 1238 case SYSREG_PMCEID0_EL0: 1239 case SYSREG_PMCEID1_EL0: 1240 /* We can't really count anything yet, declare all events invalid */ 1241 *val = 0; 1242 return 0; 1243 } 1244 } 1245 1246 switch (reg) { 1247 case SYSREG_CNTPCT_EL0: 1248 *val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 1249 gt_cntfrq_period_ns(arm_cpu); 1250 return 0; 1251 case SYSREG_OSLSR_EL1: 1252 *val = env->cp15.oslsr_el1; 1253 return 0; 1254 case SYSREG_OSDLR_EL1: 1255 /* Dummy register */ 1256 return 0; 1257 case SYSREG_ICC_AP0R0_EL1: 1258 case SYSREG_ICC_AP0R1_EL1: 1259 case SYSREG_ICC_AP0R2_EL1: 1260 case SYSREG_ICC_AP0R3_EL1: 1261 case SYSREG_ICC_AP1R0_EL1: 1262 case SYSREG_ICC_AP1R1_EL1: 1263 case SYSREG_ICC_AP1R2_EL1: 1264 case SYSREG_ICC_AP1R3_EL1: 1265 case SYSREG_ICC_ASGI1R_EL1: 1266 case SYSREG_ICC_BPR0_EL1: 1267 case SYSREG_ICC_BPR1_EL1: 1268 case SYSREG_ICC_DIR_EL1: 1269 case SYSREG_ICC_EOIR0_EL1: 1270 case SYSREG_ICC_EOIR1_EL1: 1271 case SYSREG_ICC_HPPIR0_EL1: 1272 case SYSREG_ICC_HPPIR1_EL1: 1273 case SYSREG_ICC_IAR0_EL1: 1274 case SYSREG_ICC_IAR1_EL1: 1275 case SYSREG_ICC_IGRPEN0_EL1: 1276 case SYSREG_ICC_IGRPEN1_EL1: 1277 case SYSREG_ICC_PMR_EL1: 1278 case SYSREG_ICC_SGI0R_EL1: 1279 case SYSREG_ICC_SGI1R_EL1: 1280 case SYSREG_ICC_SRE_EL1: 1281 case SYSREG_ICC_CTLR_EL1: 1282 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ 1283 if (hvf_sysreg_read_cp(cpu, reg, val)) { 1284 return 0; 1285 } 1286 break; 1287 case SYSREG_DBGBVR0_EL1: 1288 case SYSREG_DBGBVR1_EL1: 1289 case SYSREG_DBGBVR2_EL1: 1290 case SYSREG_DBGBVR3_EL1: 1291 case SYSREG_DBGBVR4_EL1: 1292 case SYSREG_DBGBVR5_EL1: 1293 case SYSREG_DBGBVR6_EL1: 1294 case SYSREG_DBGBVR7_EL1: 1295 case SYSREG_DBGBVR8_EL1: 1296 case SYSREG_DBGBVR9_EL1: 1297 case SYSREG_DBGBVR10_EL1: 1298 case SYSREG_DBGBVR11_EL1: 1299 case SYSREG_DBGBVR12_EL1: 1300 case SYSREG_DBGBVR13_EL1: 1301 case SYSREG_DBGBVR14_EL1: 1302 case SYSREG_DBGBVR15_EL1: 1303 *val = env->cp15.dbgbvr[SYSREG_CRM(reg)]; 1304 return 0; 1305 case SYSREG_DBGBCR0_EL1: 1306 case SYSREG_DBGBCR1_EL1: 1307 case SYSREG_DBGBCR2_EL1: 1308 case SYSREG_DBGBCR3_EL1: 1309 case SYSREG_DBGBCR4_EL1: 1310 case SYSREG_DBGBCR5_EL1: 1311 case SYSREG_DBGBCR6_EL1: 1312 case SYSREG_DBGBCR7_EL1: 1313 case SYSREG_DBGBCR8_EL1: 1314 case SYSREG_DBGBCR9_EL1: 1315 case SYSREG_DBGBCR10_EL1: 1316 case SYSREG_DBGBCR11_EL1: 1317 case SYSREG_DBGBCR12_EL1: 1318 case SYSREG_DBGBCR13_EL1: 1319 case SYSREG_DBGBCR14_EL1: 1320 case SYSREG_DBGBCR15_EL1: 1321 *val = env->cp15.dbgbcr[SYSREG_CRM(reg)]; 1322 return 0; 1323 case SYSREG_DBGWVR0_EL1: 1324 case SYSREG_DBGWVR1_EL1: 1325 case SYSREG_DBGWVR2_EL1: 1326 case SYSREG_DBGWVR3_EL1: 1327 case SYSREG_DBGWVR4_EL1: 1328 case SYSREG_DBGWVR5_EL1: 1329 case SYSREG_DBGWVR6_EL1: 1330 case SYSREG_DBGWVR7_EL1: 1331 case SYSREG_DBGWVR8_EL1: 1332 case SYSREG_DBGWVR9_EL1: 1333 case SYSREG_DBGWVR10_EL1: 1334 case SYSREG_DBGWVR11_EL1: 1335 case SYSREG_DBGWVR12_EL1: 1336 case SYSREG_DBGWVR13_EL1: 1337 case SYSREG_DBGWVR14_EL1: 1338 case SYSREG_DBGWVR15_EL1: 1339 *val = env->cp15.dbgwvr[SYSREG_CRM(reg)]; 1340 return 0; 1341 case SYSREG_DBGWCR0_EL1: 1342 case SYSREG_DBGWCR1_EL1: 1343 case SYSREG_DBGWCR2_EL1: 1344 case SYSREG_DBGWCR3_EL1: 1345 case SYSREG_DBGWCR4_EL1: 1346 case SYSREG_DBGWCR5_EL1: 1347 case SYSREG_DBGWCR6_EL1: 1348 case SYSREG_DBGWCR7_EL1: 1349 case SYSREG_DBGWCR8_EL1: 1350 case SYSREG_DBGWCR9_EL1: 1351 case SYSREG_DBGWCR10_EL1: 1352 case SYSREG_DBGWCR11_EL1: 1353 case SYSREG_DBGWCR12_EL1: 1354 case SYSREG_DBGWCR13_EL1: 1355 case SYSREG_DBGWCR14_EL1: 1356 case SYSREG_DBGWCR15_EL1: 1357 *val = env->cp15.dbgwcr[SYSREG_CRM(reg)]; 1358 return 0; 1359 default: 1360 if (is_id_sysreg(reg)) { 1361 /* ID system registers read as RES0 */ 1362 *val = 0; 1363 return 0; 1364 } 1365 } 1366 1367 cpu_synchronize_state(cpu); 1368 trace_hvf_unhandled_sysreg_read(env->pc, reg, 1369 SYSREG_OP0(reg), 1370 SYSREG_OP1(reg), 1371 SYSREG_CRN(reg), 1372 SYSREG_CRM(reg), 1373 SYSREG_OP2(reg)); 1374 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1375 return 1; 1376 } 1377 1378 static void pmu_update_irq(CPUARMState *env) 1379 { 1380 ARMCPU *cpu = env_archcpu(env); 1381 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1382 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1383 } 1384 1385 static bool pmu_event_supported(uint16_t number) 1386 { 1387 return false; 1388 } 1389 1390 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1391 * the current EL, security state, and register configuration. 1392 */ 1393 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1394 { 1395 uint64_t filter; 1396 bool enabled, filtered = true; 1397 int el = arm_current_el(env); 1398 1399 enabled = (env->cp15.c9_pmcr & PMCRE) && 1400 (env->cp15.c9_pmcnten & (1 << counter)); 1401 1402 if (counter == 31) { 1403 filter = env->cp15.pmccfiltr_el0; 1404 } else { 1405 filter = env->cp15.c14_pmevtyper[counter]; 1406 } 1407 1408 if (el == 0) { 1409 filtered = filter & PMXEVTYPER_U; 1410 } else if (el == 1) { 1411 filtered = filter & PMXEVTYPER_P; 1412 } 1413 1414 if (counter != 31) { 1415 /* 1416 * If not checking PMCCNTR, ensure the counter is setup to an event we 1417 * support 1418 */ 1419 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1420 if (!pmu_event_supported(event)) { 1421 return false; 1422 } 1423 } 1424 1425 return enabled && !filtered; 1426 } 1427 1428 static void pmswinc_write(CPUARMState *env, uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 /* 1439 * Detect if this write causes an overflow since we can't predict 1440 * PMSWINC overflows like we can for other events 1441 */ 1442 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1443 1444 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1445 env->cp15.c9_pmovsr |= (1 << i); 1446 pmu_update_irq(env); 1447 } 1448 1449 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1450 } 1451 } 1452 } 1453 1454 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val) 1455 { 1456 ARMCPU *arm_cpu = ARM_CPU(cpu); 1457 CPUARMState *env = &arm_cpu->env; 1458 const ARMCPRegInfo *ri; 1459 1460 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); 1461 1462 if (ri) { 1463 if (ri->accessfn) { 1464 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) { 1465 return false; 1466 } 1467 } 1468 if (ri->writefn) { 1469 ri->writefn(env, ri, val); 1470 } else { 1471 CPREG_FIELD64(env, ri) = val; 1472 } 1473 1474 trace_hvf_vgic_write(ri->name, val); 1475 return true; 1476 } 1477 1478 return false; 1479 } 1480 1481 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val) 1482 { 1483 ARMCPU *arm_cpu = ARM_CPU(cpu); 1484 CPUARMState *env = &arm_cpu->env; 1485 1486 trace_hvf_sysreg_write(reg, 1487 SYSREG_OP0(reg), 1488 SYSREG_OP1(reg), 1489 SYSREG_CRN(reg), 1490 SYSREG_CRM(reg), 1491 SYSREG_OP2(reg), 1492 val); 1493 1494 if (arm_feature(env, ARM_FEATURE_PMU)) { 1495 switch (reg) { 1496 case SYSREG_PMCCNTR_EL0: 1497 pmu_op_start(env); 1498 env->cp15.c15_ccnt = val; 1499 pmu_op_finish(env); 1500 return 0; 1501 case SYSREG_PMCR_EL0: 1502 pmu_op_start(env); 1503 1504 if (val & PMCRC) { 1505 /* The counter has been reset */ 1506 env->cp15.c15_ccnt = 0; 1507 } 1508 1509 if (val & PMCRP) { 1510 unsigned int i; 1511 for (i = 0; i < pmu_num_counters(env); i++) { 1512 env->cp15.c14_pmevcntr[i] = 0; 1513 } 1514 } 1515 1516 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1517 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK); 1518 1519 pmu_op_finish(env); 1520 return 0; 1521 case SYSREG_PMUSERENR_EL0: 1522 env->cp15.c9_pmuserenr = val & 0xf; 1523 return 0; 1524 case SYSREG_PMCNTENSET_EL0: 1525 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env)); 1526 return 0; 1527 case SYSREG_PMCNTENCLR_EL0: 1528 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env)); 1529 return 0; 1530 case SYSREG_PMINTENCLR_EL1: 1531 pmu_op_start(env); 1532 env->cp15.c9_pminten |= val; 1533 pmu_op_finish(env); 1534 return 0; 1535 case SYSREG_PMOVSCLR_EL0: 1536 pmu_op_start(env); 1537 env->cp15.c9_pmovsr &= ~val; 1538 pmu_op_finish(env); 1539 return 0; 1540 case SYSREG_PMSWINC_EL0: 1541 pmu_op_start(env); 1542 pmswinc_write(env, val); 1543 pmu_op_finish(env); 1544 return 0; 1545 case SYSREG_PMSELR_EL0: 1546 env->cp15.c9_pmselr = val & 0x1f; 1547 return 0; 1548 case SYSREG_PMCCFILTR_EL0: 1549 pmu_op_start(env); 1550 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0; 1551 pmu_op_finish(env); 1552 return 0; 1553 } 1554 } 1555 1556 switch (reg) { 1557 case SYSREG_OSLAR_EL1: 1558 env->cp15.oslsr_el1 = val & 1; 1559 return 0; 1560 case SYSREG_OSDLR_EL1: 1561 /* Dummy register */ 1562 return 0; 1563 case SYSREG_ICC_AP0R0_EL1: 1564 case SYSREG_ICC_AP0R1_EL1: 1565 case SYSREG_ICC_AP0R2_EL1: 1566 case SYSREG_ICC_AP0R3_EL1: 1567 case SYSREG_ICC_AP1R0_EL1: 1568 case SYSREG_ICC_AP1R1_EL1: 1569 case SYSREG_ICC_AP1R2_EL1: 1570 case SYSREG_ICC_AP1R3_EL1: 1571 case SYSREG_ICC_ASGI1R_EL1: 1572 case SYSREG_ICC_BPR0_EL1: 1573 case SYSREG_ICC_BPR1_EL1: 1574 case SYSREG_ICC_CTLR_EL1: 1575 case SYSREG_ICC_DIR_EL1: 1576 case SYSREG_ICC_EOIR0_EL1: 1577 case SYSREG_ICC_EOIR1_EL1: 1578 case SYSREG_ICC_HPPIR0_EL1: 1579 case SYSREG_ICC_HPPIR1_EL1: 1580 case SYSREG_ICC_IAR0_EL1: 1581 case SYSREG_ICC_IAR1_EL1: 1582 case SYSREG_ICC_IGRPEN0_EL1: 1583 case SYSREG_ICC_IGRPEN1_EL1: 1584 case SYSREG_ICC_PMR_EL1: 1585 case SYSREG_ICC_SGI0R_EL1: 1586 case SYSREG_ICC_SGI1R_EL1: 1587 case SYSREG_ICC_SRE_EL1: 1588 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ 1589 if (hvf_sysreg_write_cp(cpu, reg, val)) { 1590 return 0; 1591 } 1592 break; 1593 case SYSREG_MDSCR_EL1: 1594 env->cp15.mdscr_el1 = val; 1595 return 0; 1596 case SYSREG_DBGBVR0_EL1: 1597 case SYSREG_DBGBVR1_EL1: 1598 case SYSREG_DBGBVR2_EL1: 1599 case SYSREG_DBGBVR3_EL1: 1600 case SYSREG_DBGBVR4_EL1: 1601 case SYSREG_DBGBVR5_EL1: 1602 case SYSREG_DBGBVR6_EL1: 1603 case SYSREG_DBGBVR7_EL1: 1604 case SYSREG_DBGBVR8_EL1: 1605 case SYSREG_DBGBVR9_EL1: 1606 case SYSREG_DBGBVR10_EL1: 1607 case SYSREG_DBGBVR11_EL1: 1608 case SYSREG_DBGBVR12_EL1: 1609 case SYSREG_DBGBVR13_EL1: 1610 case SYSREG_DBGBVR14_EL1: 1611 case SYSREG_DBGBVR15_EL1: 1612 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val; 1613 return 0; 1614 case SYSREG_DBGBCR0_EL1: 1615 case SYSREG_DBGBCR1_EL1: 1616 case SYSREG_DBGBCR2_EL1: 1617 case SYSREG_DBGBCR3_EL1: 1618 case SYSREG_DBGBCR4_EL1: 1619 case SYSREG_DBGBCR5_EL1: 1620 case SYSREG_DBGBCR6_EL1: 1621 case SYSREG_DBGBCR7_EL1: 1622 case SYSREG_DBGBCR8_EL1: 1623 case SYSREG_DBGBCR9_EL1: 1624 case SYSREG_DBGBCR10_EL1: 1625 case SYSREG_DBGBCR11_EL1: 1626 case SYSREG_DBGBCR12_EL1: 1627 case SYSREG_DBGBCR13_EL1: 1628 case SYSREG_DBGBCR14_EL1: 1629 case SYSREG_DBGBCR15_EL1: 1630 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val; 1631 return 0; 1632 case SYSREG_DBGWVR0_EL1: 1633 case SYSREG_DBGWVR1_EL1: 1634 case SYSREG_DBGWVR2_EL1: 1635 case SYSREG_DBGWVR3_EL1: 1636 case SYSREG_DBGWVR4_EL1: 1637 case SYSREG_DBGWVR5_EL1: 1638 case SYSREG_DBGWVR6_EL1: 1639 case SYSREG_DBGWVR7_EL1: 1640 case SYSREG_DBGWVR8_EL1: 1641 case SYSREG_DBGWVR9_EL1: 1642 case SYSREG_DBGWVR10_EL1: 1643 case SYSREG_DBGWVR11_EL1: 1644 case SYSREG_DBGWVR12_EL1: 1645 case SYSREG_DBGWVR13_EL1: 1646 case SYSREG_DBGWVR14_EL1: 1647 case SYSREG_DBGWVR15_EL1: 1648 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val; 1649 return 0; 1650 case SYSREG_DBGWCR0_EL1: 1651 case SYSREG_DBGWCR1_EL1: 1652 case SYSREG_DBGWCR2_EL1: 1653 case SYSREG_DBGWCR3_EL1: 1654 case SYSREG_DBGWCR4_EL1: 1655 case SYSREG_DBGWCR5_EL1: 1656 case SYSREG_DBGWCR6_EL1: 1657 case SYSREG_DBGWCR7_EL1: 1658 case SYSREG_DBGWCR8_EL1: 1659 case SYSREG_DBGWCR9_EL1: 1660 case SYSREG_DBGWCR10_EL1: 1661 case SYSREG_DBGWCR11_EL1: 1662 case SYSREG_DBGWCR12_EL1: 1663 case SYSREG_DBGWCR13_EL1: 1664 case SYSREG_DBGWCR14_EL1: 1665 case SYSREG_DBGWCR15_EL1: 1666 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val; 1667 return 0; 1668 } 1669 1670 cpu_synchronize_state(cpu); 1671 trace_hvf_unhandled_sysreg_write(env->pc, reg, 1672 SYSREG_OP0(reg), 1673 SYSREG_OP1(reg), 1674 SYSREG_CRN(reg), 1675 SYSREG_CRM(reg), 1676 SYSREG_OP2(reg)); 1677 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1678 return 1; 1679 } 1680 1681 static int hvf_inject_interrupts(CPUState *cpu) 1682 { 1683 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) { 1684 trace_hvf_inject_fiq(); 1685 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ, 1686 true); 1687 } 1688 1689 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) { 1690 trace_hvf_inject_irq(); 1691 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ, 1692 true); 1693 } 1694 1695 return 0; 1696 } 1697 1698 static uint64_t hvf_vtimer_val_raw(void) 1699 { 1700 /* 1701 * mach_absolute_time() returns the vtimer value without the VM 1702 * offset that we define. Add our own offset on top. 1703 */ 1704 return mach_absolute_time() - hvf_state->vtimer_offset; 1705 } 1706 1707 static uint64_t hvf_vtimer_val(void) 1708 { 1709 if (!runstate_is_running()) { 1710 /* VM is paused, the vtimer value is in vtimer.vtimer_val */ 1711 return vtimer.vtimer_val; 1712 } 1713 1714 return hvf_vtimer_val_raw(); 1715 } 1716 1717 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts) 1718 { 1719 /* 1720 * Use pselect to sleep so that other threads can IPI us while we're 1721 * sleeping. 1722 */ 1723 qatomic_set_mb(&cpu->thread_kicked, false); 1724 bql_unlock(); 1725 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask); 1726 bql_lock(); 1727 } 1728 1729 static void hvf_wfi(CPUState *cpu) 1730 { 1731 ARMCPU *arm_cpu = ARM_CPU(cpu); 1732 struct timespec ts; 1733 hv_return_t r; 1734 uint64_t ctl; 1735 uint64_t cval; 1736 int64_t ticks_to_sleep; 1737 uint64_t seconds; 1738 uint64_t nanos; 1739 uint32_t cntfrq; 1740 1741 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) { 1742 /* Interrupt pending, no need to wait */ 1743 return; 1744 } 1745 1746 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); 1747 assert_hvf_ok(r); 1748 1749 if (!(ctl & 1) || (ctl & 2)) { 1750 /* Timer disabled or masked, just wait for an IPI. */ 1751 hvf_wait_for_ipi(cpu, NULL); 1752 return; 1753 } 1754 1755 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval); 1756 assert_hvf_ok(r); 1757 1758 ticks_to_sleep = cval - hvf_vtimer_val(); 1759 if (ticks_to_sleep < 0) { 1760 return; 1761 } 1762 1763 cntfrq = gt_cntfrq_period_ns(arm_cpu); 1764 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND); 1765 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq); 1766 nanos = ticks_to_sleep * cntfrq; 1767 1768 /* 1769 * Don't sleep for less than the time a context switch would take, 1770 * so that we can satisfy fast timer requests on the same CPU. 1771 * Measurements on M1 show the sweet spot to be ~2ms. 1772 */ 1773 if (!seconds && nanos < (2 * SCALE_MS)) { 1774 return; 1775 } 1776 1777 ts = (struct timespec) { seconds, nanos }; 1778 hvf_wait_for_ipi(cpu, &ts); 1779 } 1780 1781 static void hvf_sync_vtimer(CPUState *cpu) 1782 { 1783 ARMCPU *arm_cpu = ARM_CPU(cpu); 1784 hv_return_t r; 1785 uint64_t ctl; 1786 bool irq_state; 1787 1788 if (!cpu->accel->vtimer_masked) { 1789 /* We will get notified on vtimer changes by hvf, nothing to do */ 1790 return; 1791 } 1792 1793 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); 1794 assert_hvf_ok(r); 1795 1796 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) == 1797 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS); 1798 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state); 1799 1800 if (!irq_state) { 1801 /* Timer no longer asserting, we can unmask it */ 1802 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false); 1803 cpu->accel->vtimer_masked = false; 1804 } 1805 } 1806 1807 int hvf_vcpu_exec(CPUState *cpu) 1808 { 1809 ARMCPU *arm_cpu = ARM_CPU(cpu); 1810 CPUARMState *env = &arm_cpu->env; 1811 int ret; 1812 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit; 1813 hv_return_t r; 1814 bool advance_pc = false; 1815 1816 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) && 1817 hvf_inject_interrupts(cpu)) { 1818 return EXCP_INTERRUPT; 1819 } 1820 1821 if (cpu->halted) { 1822 return EXCP_HLT; 1823 } 1824 1825 flush_cpu_state(cpu); 1826 1827 bql_unlock(); 1828 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd)); 1829 1830 /* handle VMEXIT */ 1831 uint64_t exit_reason = hvf_exit->reason; 1832 uint64_t syndrome = hvf_exit->exception.syndrome; 1833 uint32_t ec = syn_get_ec(syndrome); 1834 1835 ret = 0; 1836 bql_lock(); 1837 switch (exit_reason) { 1838 case HV_EXIT_REASON_EXCEPTION: 1839 /* This is the main one, handle below. */ 1840 break; 1841 case HV_EXIT_REASON_VTIMER_ACTIVATED: 1842 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1); 1843 cpu->accel->vtimer_masked = true; 1844 return 0; 1845 case HV_EXIT_REASON_CANCELED: 1846 /* we got kicked, no exit to process */ 1847 return 0; 1848 default: 1849 g_assert_not_reached(); 1850 } 1851 1852 hvf_sync_vtimer(cpu); 1853 1854 switch (ec) { 1855 case EC_SOFTWARESTEP: { 1856 ret = EXCP_DEBUG; 1857 1858 if (!cpu->singlestep_enabled) { 1859 error_report("EC_SOFTWARESTEP but single-stepping not enabled"); 1860 } 1861 break; 1862 } 1863 case EC_AA64_BKPT: { 1864 ret = EXCP_DEBUG; 1865 1866 cpu_synchronize_state(cpu); 1867 1868 if (!hvf_find_sw_breakpoint(cpu, env->pc)) { 1869 /* Re-inject into the guest */ 1870 ret = 0; 1871 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0)); 1872 } 1873 break; 1874 } 1875 case EC_BREAKPOINT: { 1876 ret = EXCP_DEBUG; 1877 1878 cpu_synchronize_state(cpu); 1879 1880 if (!find_hw_breakpoint(cpu, env->pc)) { 1881 error_report("EC_BREAKPOINT but unknown hw breakpoint"); 1882 } 1883 break; 1884 } 1885 case EC_WATCHPOINT: { 1886 ret = EXCP_DEBUG; 1887 1888 cpu_synchronize_state(cpu); 1889 1890 CPUWatchpoint *wp = 1891 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address); 1892 if (!wp) { 1893 error_report("EXCP_DEBUG but unknown hw watchpoint"); 1894 } 1895 cpu->watchpoint_hit = wp; 1896 break; 1897 } 1898 case EC_DATAABORT: { 1899 bool isv = syndrome & ARM_EL_ISV; 1900 bool iswrite = (syndrome >> 6) & 1; 1901 bool s1ptw = (syndrome >> 7) & 1; 1902 uint32_t sas = (syndrome >> 22) & 3; 1903 uint32_t len = 1 << sas; 1904 uint32_t srt = (syndrome >> 16) & 0x1f; 1905 uint32_t cm = (syndrome >> 8) & 0x1; 1906 uint64_t val = 0; 1907 1908 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address, 1909 hvf_exit->exception.physical_address, isv, 1910 iswrite, s1ptw, len, srt); 1911 1912 if (cm) { 1913 /* We don't cache MMIO regions */ 1914 advance_pc = true; 1915 break; 1916 } 1917 1918 assert(isv); 1919 1920 if (iswrite) { 1921 val = hvf_get_reg(cpu, srt); 1922 address_space_write(&address_space_memory, 1923 hvf_exit->exception.physical_address, 1924 MEMTXATTRS_UNSPECIFIED, &val, len); 1925 } else { 1926 address_space_read(&address_space_memory, 1927 hvf_exit->exception.physical_address, 1928 MEMTXATTRS_UNSPECIFIED, &val, len); 1929 hvf_set_reg(cpu, srt, val); 1930 } 1931 1932 advance_pc = true; 1933 break; 1934 } 1935 case EC_SYSTEMREGISTERTRAP: { 1936 bool isread = (syndrome >> 0) & 1; 1937 uint32_t rt = (syndrome >> 5) & 0x1f; 1938 uint32_t reg = syndrome & SYSREG_MASK; 1939 uint64_t val; 1940 int sysreg_ret = 0; 1941 1942 if (isread) { 1943 sysreg_ret = hvf_sysreg_read(cpu, reg, &val); 1944 if (!sysreg_ret) { 1945 trace_hvf_sysreg_read(reg, 1946 SYSREG_OP0(reg), 1947 SYSREG_OP1(reg), 1948 SYSREG_CRN(reg), 1949 SYSREG_CRM(reg), 1950 SYSREG_OP2(reg), 1951 val); 1952 hvf_set_reg(cpu, rt, val); 1953 } 1954 } else { 1955 val = hvf_get_reg(cpu, rt); 1956 sysreg_ret = hvf_sysreg_write(cpu, reg, val); 1957 } 1958 1959 advance_pc = !sysreg_ret; 1960 break; 1961 } 1962 case EC_WFX_TRAP: 1963 advance_pc = true; 1964 if (!(syndrome & WFX_IS_WFE)) { 1965 hvf_wfi(cpu); 1966 } 1967 break; 1968 case EC_AA64_HVC: 1969 cpu_synchronize_state(cpu); 1970 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) { 1971 if (!hvf_handle_psci_call(cpu)) { 1972 trace_hvf_unknown_hvc(env->xregs[0]); 1973 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ 1974 env->xregs[0] = -1; 1975 } 1976 } else { 1977 trace_hvf_unknown_hvc(env->xregs[0]); 1978 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1979 } 1980 break; 1981 case EC_AA64_SMC: 1982 cpu_synchronize_state(cpu); 1983 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) { 1984 advance_pc = true; 1985 1986 if (!hvf_handle_psci_call(cpu)) { 1987 trace_hvf_unknown_smc(env->xregs[0]); 1988 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ 1989 env->xregs[0] = -1; 1990 } 1991 } else { 1992 trace_hvf_unknown_smc(env->xregs[0]); 1993 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1994 } 1995 break; 1996 default: 1997 cpu_synchronize_state(cpu); 1998 trace_hvf_exit(syndrome, ec, env->pc); 1999 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec); 2000 } 2001 2002 if (advance_pc) { 2003 uint64_t pc; 2004 2005 flush_cpu_state(cpu); 2006 2007 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc); 2008 assert_hvf_ok(r); 2009 pc += 4; 2010 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc); 2011 assert_hvf_ok(r); 2012 2013 /* Handle single-stepping over instructions which trigger a VM exit */ 2014 if (cpu->singlestep_enabled) { 2015 ret = EXCP_DEBUG; 2016 } 2017 } 2018 2019 return ret; 2020 } 2021 2022 static const VMStateDescription vmstate_hvf_vtimer = { 2023 .name = "hvf-vtimer", 2024 .version_id = 1, 2025 .minimum_version_id = 1, 2026 .fields = (const VMStateField[]) { 2027 VMSTATE_UINT64(vtimer_val, HVFVTimer), 2028 VMSTATE_END_OF_LIST() 2029 }, 2030 }; 2031 2032 static void hvf_vm_state_change(void *opaque, bool running, RunState state) 2033 { 2034 HVFVTimer *s = opaque; 2035 2036 if (running) { 2037 /* Update vtimer offset on all CPUs */ 2038 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val; 2039 cpu_synchronize_all_states(); 2040 } else { 2041 /* Remember vtimer value on every pause */ 2042 s->vtimer_val = hvf_vtimer_val_raw(); 2043 } 2044 } 2045 2046 int hvf_arch_init(void) 2047 { 2048 hvf_state->vtimer_offset = mach_absolute_time(); 2049 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer); 2050 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer); 2051 2052 hvf_arm_init_debug(); 2053 2054 return 0; 2055 } 2056 2057 static const uint32_t brk_insn = 0xd4200000; 2058 2059 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 2060 { 2061 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || 2062 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { 2063 return -EINVAL; 2064 } 2065 return 0; 2066 } 2067 2068 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 2069 { 2070 static uint32_t brk; 2071 2072 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) || 2073 brk != brk_insn || 2074 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { 2075 return -EINVAL; 2076 } 2077 return 0; 2078 } 2079 2080 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 2081 { 2082 switch (type) { 2083 case GDB_BREAKPOINT_HW: 2084 return insert_hw_breakpoint(addr); 2085 case GDB_WATCHPOINT_READ: 2086 case GDB_WATCHPOINT_WRITE: 2087 case GDB_WATCHPOINT_ACCESS: 2088 return insert_hw_watchpoint(addr, len, type); 2089 default: 2090 return -ENOSYS; 2091 } 2092 } 2093 2094 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 2095 { 2096 switch (type) { 2097 case GDB_BREAKPOINT_HW: 2098 return delete_hw_breakpoint(addr); 2099 case GDB_WATCHPOINT_READ: 2100 case GDB_WATCHPOINT_WRITE: 2101 case GDB_WATCHPOINT_ACCESS: 2102 return delete_hw_watchpoint(addr, len, type); 2103 default: 2104 return -ENOSYS; 2105 } 2106 } 2107 2108 void hvf_arch_remove_all_hw_breakpoints(void) 2109 { 2110 if (cur_hw_wps > 0) { 2111 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); 2112 } 2113 if (cur_hw_bps > 0) { 2114 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); 2115 } 2116 } 2117 2118 /* 2119 * Update the vCPU with the gdbstub's view of debug registers. This view 2120 * consists of all hardware breakpoints and watchpoints inserted so far while 2121 * debugging the guest. 2122 */ 2123 static void hvf_put_gdbstub_debug_registers(CPUState *cpu) 2124 { 2125 hv_return_t r = HV_SUCCESS; 2126 int i; 2127 2128 for (i = 0; i < cur_hw_bps; i++) { 2129 HWBreakpoint *bp = get_hw_bp(i); 2130 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr); 2131 assert_hvf_ok(r); 2132 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr); 2133 assert_hvf_ok(r); 2134 } 2135 for (i = cur_hw_bps; i < max_hw_bps; i++) { 2136 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0); 2137 assert_hvf_ok(r); 2138 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0); 2139 assert_hvf_ok(r); 2140 } 2141 2142 for (i = 0; i < cur_hw_wps; i++) { 2143 HWWatchpoint *wp = get_hw_wp(i); 2144 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr); 2145 assert_hvf_ok(r); 2146 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr); 2147 assert_hvf_ok(r); 2148 } 2149 for (i = cur_hw_wps; i < max_hw_wps; i++) { 2150 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0); 2151 assert_hvf_ok(r); 2152 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0); 2153 assert_hvf_ok(r); 2154 } 2155 } 2156 2157 /* 2158 * Update the vCPU with the guest's view of debug registers. This view is kept 2159 * in the environment at all times. 2160 */ 2161 static void hvf_put_guest_debug_registers(CPUState *cpu) 2162 { 2163 ARMCPU *arm_cpu = ARM_CPU(cpu); 2164 CPUARMState *env = &arm_cpu->env; 2165 hv_return_t r = HV_SUCCESS; 2166 int i; 2167 2168 for (i = 0; i < max_hw_bps; i++) { 2169 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 2170 env->cp15.dbgbcr[i]); 2171 assert_hvf_ok(r); 2172 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 2173 env->cp15.dbgbvr[i]); 2174 assert_hvf_ok(r); 2175 } 2176 2177 for (i = 0; i < max_hw_wps; i++) { 2178 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 2179 env->cp15.dbgwcr[i]); 2180 assert_hvf_ok(r); 2181 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 2182 env->cp15.dbgwvr[i]); 2183 assert_hvf_ok(r); 2184 } 2185 } 2186 2187 static inline bool hvf_arm_hw_debug_active(CPUState *cpu) 2188 { 2189 return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); 2190 } 2191 2192 static void hvf_arch_set_traps(void) 2193 { 2194 CPUState *cpu; 2195 bool should_enable_traps = false; 2196 hv_return_t r = HV_SUCCESS; 2197 2198 /* Check whether guest debugging is enabled for at least one vCPU; if it 2199 * is, enable exiting the guest on all vCPUs */ 2200 CPU_FOREACH(cpu) { 2201 should_enable_traps |= cpu->accel->guest_debug_enabled; 2202 } 2203 CPU_FOREACH(cpu) { 2204 /* Set whether debug exceptions exit the guest */ 2205 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd, 2206 should_enable_traps); 2207 assert_hvf_ok(r); 2208 2209 /* Set whether accesses to debug registers exit the guest */ 2210 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd, 2211 should_enable_traps); 2212 assert_hvf_ok(r); 2213 } 2214 } 2215 2216 void hvf_arch_update_guest_debug(CPUState *cpu) 2217 { 2218 ARMCPU *arm_cpu = ARM_CPU(cpu); 2219 CPUARMState *env = &arm_cpu->env; 2220 2221 /* Check whether guest debugging is enabled */ 2222 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled || 2223 hvf_sw_breakpoints_active(cpu) || 2224 hvf_arm_hw_debug_active(cpu); 2225 2226 /* Update debug registers */ 2227 if (cpu->accel->guest_debug_enabled) { 2228 hvf_put_gdbstub_debug_registers(cpu); 2229 } else { 2230 hvf_put_guest_debug_registers(cpu); 2231 } 2232 2233 cpu_synchronize_state(cpu); 2234 2235 /* Enable/disable single-stepping */ 2236 if (cpu->singlestep_enabled) { 2237 env->cp15.mdscr_el1 = 2238 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1); 2239 pstate_write(env, pstate_read(env) | PSTATE_SS); 2240 } else { 2241 env->cp15.mdscr_el1 = 2242 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0); 2243 } 2244 2245 /* Enable/disable Breakpoint exceptions */ 2246 if (hvf_arm_hw_debug_active(cpu)) { 2247 env->cp15.mdscr_el1 = 2248 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1); 2249 } else { 2250 env->cp15.mdscr_el1 = 2251 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0); 2252 } 2253 2254 hvf_arch_set_traps(); 2255 } 2256 2257 bool hvf_arch_supports_guest_debug(void) 2258 { 2259 return true; 2260 } 2261