xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision 3df4c288)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 #include "trace/trace-target_arm_hvf.h"
34 #include "migration/vmstate.h"
35 
36 #include "exec/gdbstub.h"
37 
38 #define MDSCR_EL1_SS_SHIFT  0
39 #define MDSCR_EL1_MDE_SHIFT 15
40 
41 static const uint16_t dbgbcr_regs[] = {
42     HV_SYS_REG_DBGBCR0_EL1,
43     HV_SYS_REG_DBGBCR1_EL1,
44     HV_SYS_REG_DBGBCR2_EL1,
45     HV_SYS_REG_DBGBCR3_EL1,
46     HV_SYS_REG_DBGBCR4_EL1,
47     HV_SYS_REG_DBGBCR5_EL1,
48     HV_SYS_REG_DBGBCR6_EL1,
49     HV_SYS_REG_DBGBCR7_EL1,
50     HV_SYS_REG_DBGBCR8_EL1,
51     HV_SYS_REG_DBGBCR9_EL1,
52     HV_SYS_REG_DBGBCR10_EL1,
53     HV_SYS_REG_DBGBCR11_EL1,
54     HV_SYS_REG_DBGBCR12_EL1,
55     HV_SYS_REG_DBGBCR13_EL1,
56     HV_SYS_REG_DBGBCR14_EL1,
57     HV_SYS_REG_DBGBCR15_EL1,
58 };
59 
60 static const uint16_t dbgbvr_regs[] = {
61     HV_SYS_REG_DBGBVR0_EL1,
62     HV_SYS_REG_DBGBVR1_EL1,
63     HV_SYS_REG_DBGBVR2_EL1,
64     HV_SYS_REG_DBGBVR3_EL1,
65     HV_SYS_REG_DBGBVR4_EL1,
66     HV_SYS_REG_DBGBVR5_EL1,
67     HV_SYS_REG_DBGBVR6_EL1,
68     HV_SYS_REG_DBGBVR7_EL1,
69     HV_SYS_REG_DBGBVR8_EL1,
70     HV_SYS_REG_DBGBVR9_EL1,
71     HV_SYS_REG_DBGBVR10_EL1,
72     HV_SYS_REG_DBGBVR11_EL1,
73     HV_SYS_REG_DBGBVR12_EL1,
74     HV_SYS_REG_DBGBVR13_EL1,
75     HV_SYS_REG_DBGBVR14_EL1,
76     HV_SYS_REG_DBGBVR15_EL1,
77 };
78 
79 static const uint16_t dbgwcr_regs[] = {
80     HV_SYS_REG_DBGWCR0_EL1,
81     HV_SYS_REG_DBGWCR1_EL1,
82     HV_SYS_REG_DBGWCR2_EL1,
83     HV_SYS_REG_DBGWCR3_EL1,
84     HV_SYS_REG_DBGWCR4_EL1,
85     HV_SYS_REG_DBGWCR5_EL1,
86     HV_SYS_REG_DBGWCR6_EL1,
87     HV_SYS_REG_DBGWCR7_EL1,
88     HV_SYS_REG_DBGWCR8_EL1,
89     HV_SYS_REG_DBGWCR9_EL1,
90     HV_SYS_REG_DBGWCR10_EL1,
91     HV_SYS_REG_DBGWCR11_EL1,
92     HV_SYS_REG_DBGWCR12_EL1,
93     HV_SYS_REG_DBGWCR13_EL1,
94     HV_SYS_REG_DBGWCR14_EL1,
95     HV_SYS_REG_DBGWCR15_EL1,
96 };
97 
98 static const uint16_t dbgwvr_regs[] = {
99     HV_SYS_REG_DBGWVR0_EL1,
100     HV_SYS_REG_DBGWVR1_EL1,
101     HV_SYS_REG_DBGWVR2_EL1,
102     HV_SYS_REG_DBGWVR3_EL1,
103     HV_SYS_REG_DBGWVR4_EL1,
104     HV_SYS_REG_DBGWVR5_EL1,
105     HV_SYS_REG_DBGWVR6_EL1,
106     HV_SYS_REG_DBGWVR7_EL1,
107     HV_SYS_REG_DBGWVR8_EL1,
108     HV_SYS_REG_DBGWVR9_EL1,
109     HV_SYS_REG_DBGWVR10_EL1,
110     HV_SYS_REG_DBGWVR11_EL1,
111     HV_SYS_REG_DBGWVR12_EL1,
112     HV_SYS_REG_DBGWVR13_EL1,
113     HV_SYS_REG_DBGWVR14_EL1,
114     HV_SYS_REG_DBGWVR15_EL1,
115 };
116 
117 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
118 {
119     uint64_t val;
120     hv_return_t ret;
121     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
122                                          &val);
123     assert_hvf_ok(ret);
124     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
125 }
126 
127 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
128 {
129     uint64_t val;
130     hv_return_t ret;
131     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
132                                          &val);
133     assert_hvf_ok(ret);
134     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
135 }
136 
137 void hvf_arm_init_debug(void)
138 {
139     hv_vcpu_config_t config;
140     config = hv_vcpu_config_create();
141 
142     max_hw_bps = hvf_arm_num_brps(config);
143     hw_breakpoints =
144         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
145 
146     max_hw_wps = hvf_arm_num_wrps(config);
147     hw_watchpoints =
148         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
149 }
150 
151 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
152         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
153 #define PL1_WRITE_MASK 0x4
154 
155 #define SYSREG_OP0_SHIFT      20
156 #define SYSREG_OP0_MASK       0x3
157 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
158 #define SYSREG_OP1_SHIFT      14
159 #define SYSREG_OP1_MASK       0x7
160 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
161 #define SYSREG_CRN_SHIFT      10
162 #define SYSREG_CRN_MASK       0xf
163 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
164 #define SYSREG_CRM_SHIFT      1
165 #define SYSREG_CRM_MASK       0xf
166 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
167 #define SYSREG_OP2_SHIFT      17
168 #define SYSREG_OP2_MASK       0x7
169 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
170 
171 #define SYSREG(op0, op1, crn, crm, op2) \
172     ((op0 << SYSREG_OP0_SHIFT) | \
173      (op1 << SYSREG_OP1_SHIFT) | \
174      (crn << SYSREG_CRN_SHIFT) | \
175      (crm << SYSREG_CRM_SHIFT) | \
176      (op2 << SYSREG_OP2_SHIFT))
177 #define SYSREG_MASK \
178     SYSREG(SYSREG_OP0_MASK, \
179            SYSREG_OP1_MASK, \
180            SYSREG_CRN_MASK, \
181            SYSREG_CRM_MASK, \
182            SYSREG_OP2_MASK)
183 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
184 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
185 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
186 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
187 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
188 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
189 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
190 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
191 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
192 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
193 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
194 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
195 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
196 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
197 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
198 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
199 
200 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
201 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
202 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
203 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
204 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
205 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
206 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
207 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
208 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
209 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
210 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
211 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
212 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
213 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
214 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
215 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
216 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
217 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
218 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
219 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
220 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
221 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
222 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
223 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
224 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
225 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
226 
227 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
228 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
229 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
230 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
231 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
232 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
233 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
234 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
235 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
236 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
237 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
238 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
239 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
240 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
241 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
242 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
243 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
244 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
245 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
246 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
247 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
248 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
249 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
250 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
251 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
252 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
253 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
254 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
255 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
256 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
257 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
258 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
259 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
260 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
261 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
262 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
263 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
264 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
265 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
266 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
267 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
268 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
269 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
270 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
271 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
272 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
273 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
274 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
275 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
276 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
277 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
278 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
279 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
280 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
281 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
282 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
283 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
284 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
285 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
286 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
287 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
288 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
289 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
290 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
291 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
292 
293 #define WFX_IS_WFE (1 << 0)
294 
295 #define TMR_CTL_ENABLE  (1 << 0)
296 #define TMR_CTL_IMASK   (1 << 1)
297 #define TMR_CTL_ISTATUS (1 << 2)
298 
299 static void hvf_wfi(CPUState *cpu);
300 
301 typedef struct HVFVTimer {
302     /* Vtimer value during migration and paused state */
303     uint64_t vtimer_val;
304 } HVFVTimer;
305 
306 static HVFVTimer vtimer;
307 
308 typedef struct ARMHostCPUFeatures {
309     ARMISARegisters isar;
310     uint64_t features;
311     uint64_t midr;
312     uint32_t reset_sctlr;
313     const char *dtb_compatible;
314 } ARMHostCPUFeatures;
315 
316 static ARMHostCPUFeatures arm_host_cpu_features;
317 
318 struct hvf_reg_match {
319     int reg;
320     uint64_t offset;
321 };
322 
323 static const struct hvf_reg_match hvf_reg_match[] = {
324     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
325     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
326     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
327     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
328     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
329     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
330     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
331     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
332     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
333     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
334     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
335     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
336     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
337     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
338     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
339     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
340     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
341     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
342     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
343     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
344     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
345     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
346     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
347     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
348     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
349     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
350     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
351     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
352     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
353     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
354     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
355     { HV_REG_PC,   offsetof(CPUARMState, pc) },
356 };
357 
358 static const struct hvf_reg_match hvf_fpreg_match[] = {
359     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
360     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
361     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
362     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
363     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
364     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
365     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
366     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
367     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
368     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
369     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
370     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
371     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
372     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
373     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
374     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
375     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
376     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
377     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
378     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
379     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
380     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
381     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
382     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
383     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
384     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
385     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
386     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
387     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
388     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
389     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
390     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
391 };
392 
393 struct hvf_sreg_match {
394     int reg;
395     uint32_t key;
396     uint32_t cp_idx;
397 };
398 
399 static struct hvf_sreg_match hvf_sreg_match[] = {
400     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
401     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
402     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
403     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
404 
405     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
406     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
407     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
408     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
409 
410     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
411     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
412     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
413     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
414 
415     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
416     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
417     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
418     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
419 
420     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
421     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
422     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
423     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
424 
425     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
426     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
427     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
428     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
429 
430     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
431     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
432     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
433     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
434 
435     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
436     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
437     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
438     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
439 
440     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
441     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
442     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
443     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
444 
445     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
446     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
447     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
448     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
449 
450     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
451     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
452     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
453     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
454 
455     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
456     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
457     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
458     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
459 
460     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
461     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
462     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
463     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
464 
465     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
466     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
467     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
468     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
469 
470     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
471     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
472     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
473     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
474 
475     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
476     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
477     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
478     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
479 
480 #ifdef SYNC_NO_RAW_REGS
481     /*
482      * The registers below are manually synced on init because they are
483      * marked as NO_RAW. We still list them to make number space sync easier.
484      */
485     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
486     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
487     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
488     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
489 #endif
490     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
491     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
492     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
493     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
494     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
495 #ifdef SYNC_NO_MMFR0
496     /* We keep the hardware MMFR0 around. HW limits are there anyway */
497     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
498 #endif
499     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
500     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
501 
502     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
503     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
504     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
505     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
506     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
507     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
508 
509     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
510     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
511     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
512     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
513     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
514     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
515     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
516     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
517     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
518     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
519 
520     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
521     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
522     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
523     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
524     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
525     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
526     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
527     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
528     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
529     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
530     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
531     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
532     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
533     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
534     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
535     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
536     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
537     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
538     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
539     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
540 };
541 
542 int hvf_get_registers(CPUState *cpu)
543 {
544     ARMCPU *arm_cpu = ARM_CPU(cpu);
545     CPUARMState *env = &arm_cpu->env;
546     hv_return_t ret;
547     uint64_t val;
548     hv_simd_fp_uchar16_t fpval;
549     int i;
550 
551     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
552         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
553         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
554         assert_hvf_ok(ret);
555     }
556 
557     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
558         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
559                                       &fpval);
560         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
561         assert_hvf_ok(ret);
562     }
563 
564     val = 0;
565     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
566     assert_hvf_ok(ret);
567     vfp_set_fpcr(env, val);
568 
569     val = 0;
570     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
571     assert_hvf_ok(ret);
572     vfp_set_fpsr(env, val);
573 
574     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
575     assert_hvf_ok(ret);
576     pstate_write(env, val);
577 
578     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
579         if (hvf_sreg_match[i].cp_idx == -1) {
580             continue;
581         }
582 
583         if (cpu->accel->guest_debug_enabled) {
584             /* Handle debug registers */
585             switch (hvf_sreg_match[i].reg) {
586             case HV_SYS_REG_DBGBVR0_EL1:
587             case HV_SYS_REG_DBGBCR0_EL1:
588             case HV_SYS_REG_DBGWVR0_EL1:
589             case HV_SYS_REG_DBGWCR0_EL1:
590             case HV_SYS_REG_DBGBVR1_EL1:
591             case HV_SYS_REG_DBGBCR1_EL1:
592             case HV_SYS_REG_DBGWVR1_EL1:
593             case HV_SYS_REG_DBGWCR1_EL1:
594             case HV_SYS_REG_DBGBVR2_EL1:
595             case HV_SYS_REG_DBGBCR2_EL1:
596             case HV_SYS_REG_DBGWVR2_EL1:
597             case HV_SYS_REG_DBGWCR2_EL1:
598             case HV_SYS_REG_DBGBVR3_EL1:
599             case HV_SYS_REG_DBGBCR3_EL1:
600             case HV_SYS_REG_DBGWVR3_EL1:
601             case HV_SYS_REG_DBGWCR3_EL1:
602             case HV_SYS_REG_DBGBVR4_EL1:
603             case HV_SYS_REG_DBGBCR4_EL1:
604             case HV_SYS_REG_DBGWVR4_EL1:
605             case HV_SYS_REG_DBGWCR4_EL1:
606             case HV_SYS_REG_DBGBVR5_EL1:
607             case HV_SYS_REG_DBGBCR5_EL1:
608             case HV_SYS_REG_DBGWVR5_EL1:
609             case HV_SYS_REG_DBGWCR5_EL1:
610             case HV_SYS_REG_DBGBVR6_EL1:
611             case HV_SYS_REG_DBGBCR6_EL1:
612             case HV_SYS_REG_DBGWVR6_EL1:
613             case HV_SYS_REG_DBGWCR6_EL1:
614             case HV_SYS_REG_DBGBVR7_EL1:
615             case HV_SYS_REG_DBGBCR7_EL1:
616             case HV_SYS_REG_DBGWVR7_EL1:
617             case HV_SYS_REG_DBGWCR7_EL1:
618             case HV_SYS_REG_DBGBVR8_EL1:
619             case HV_SYS_REG_DBGBCR8_EL1:
620             case HV_SYS_REG_DBGWVR8_EL1:
621             case HV_SYS_REG_DBGWCR8_EL1:
622             case HV_SYS_REG_DBGBVR9_EL1:
623             case HV_SYS_REG_DBGBCR9_EL1:
624             case HV_SYS_REG_DBGWVR9_EL1:
625             case HV_SYS_REG_DBGWCR9_EL1:
626             case HV_SYS_REG_DBGBVR10_EL1:
627             case HV_SYS_REG_DBGBCR10_EL1:
628             case HV_SYS_REG_DBGWVR10_EL1:
629             case HV_SYS_REG_DBGWCR10_EL1:
630             case HV_SYS_REG_DBGBVR11_EL1:
631             case HV_SYS_REG_DBGBCR11_EL1:
632             case HV_SYS_REG_DBGWVR11_EL1:
633             case HV_SYS_REG_DBGWCR11_EL1:
634             case HV_SYS_REG_DBGBVR12_EL1:
635             case HV_SYS_REG_DBGBCR12_EL1:
636             case HV_SYS_REG_DBGWVR12_EL1:
637             case HV_SYS_REG_DBGWCR12_EL1:
638             case HV_SYS_REG_DBGBVR13_EL1:
639             case HV_SYS_REG_DBGBCR13_EL1:
640             case HV_SYS_REG_DBGWVR13_EL1:
641             case HV_SYS_REG_DBGWCR13_EL1:
642             case HV_SYS_REG_DBGBVR14_EL1:
643             case HV_SYS_REG_DBGBCR14_EL1:
644             case HV_SYS_REG_DBGWVR14_EL1:
645             case HV_SYS_REG_DBGWCR14_EL1:
646             case HV_SYS_REG_DBGBVR15_EL1:
647             case HV_SYS_REG_DBGBCR15_EL1:
648             case HV_SYS_REG_DBGWVR15_EL1:
649             case HV_SYS_REG_DBGWCR15_EL1: {
650                 /*
651                  * If the guest is being debugged, the vCPU's debug registers
652                  * are holding the gdbstub's view of the registers (set in
653                  * hvf_arch_update_guest_debug()).
654                  * Since the environment is used to store only the guest's view
655                  * of the registers, don't update it with the values from the
656                  * vCPU but simply keep the values from the previous
657                  * environment.
658                  */
659                 const ARMCPRegInfo *ri;
660                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
661                 val = read_raw_cp_reg(env, ri);
662 
663                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
664                 continue;
665             }
666             }
667         }
668 
669         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
670         assert_hvf_ok(ret);
671 
672         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
673     }
674     assert(write_list_to_cpustate(arm_cpu));
675 
676     aarch64_restore_sp(env, arm_current_el(env));
677 
678     return 0;
679 }
680 
681 int hvf_put_registers(CPUState *cpu)
682 {
683     ARMCPU *arm_cpu = ARM_CPU(cpu);
684     CPUARMState *env = &arm_cpu->env;
685     hv_return_t ret;
686     uint64_t val;
687     hv_simd_fp_uchar16_t fpval;
688     int i;
689 
690     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
691         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
692         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
693         assert_hvf_ok(ret);
694     }
695 
696     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
697         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
698         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
699                                       fpval);
700         assert_hvf_ok(ret);
701     }
702 
703     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
704     assert_hvf_ok(ret);
705 
706     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
707     assert_hvf_ok(ret);
708 
709     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
710     assert_hvf_ok(ret);
711 
712     aarch64_save_sp(env, arm_current_el(env));
713 
714     assert(write_cpustate_to_list(arm_cpu, false));
715     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
716         if (hvf_sreg_match[i].cp_idx == -1) {
717             continue;
718         }
719 
720         if (cpu->accel->guest_debug_enabled) {
721             /* Handle debug registers */
722             switch (hvf_sreg_match[i].reg) {
723             case HV_SYS_REG_DBGBVR0_EL1:
724             case HV_SYS_REG_DBGBCR0_EL1:
725             case HV_SYS_REG_DBGWVR0_EL1:
726             case HV_SYS_REG_DBGWCR0_EL1:
727             case HV_SYS_REG_DBGBVR1_EL1:
728             case HV_SYS_REG_DBGBCR1_EL1:
729             case HV_SYS_REG_DBGWVR1_EL1:
730             case HV_SYS_REG_DBGWCR1_EL1:
731             case HV_SYS_REG_DBGBVR2_EL1:
732             case HV_SYS_REG_DBGBCR2_EL1:
733             case HV_SYS_REG_DBGWVR2_EL1:
734             case HV_SYS_REG_DBGWCR2_EL1:
735             case HV_SYS_REG_DBGBVR3_EL1:
736             case HV_SYS_REG_DBGBCR3_EL1:
737             case HV_SYS_REG_DBGWVR3_EL1:
738             case HV_SYS_REG_DBGWCR3_EL1:
739             case HV_SYS_REG_DBGBVR4_EL1:
740             case HV_SYS_REG_DBGBCR4_EL1:
741             case HV_SYS_REG_DBGWVR4_EL1:
742             case HV_SYS_REG_DBGWCR4_EL1:
743             case HV_SYS_REG_DBGBVR5_EL1:
744             case HV_SYS_REG_DBGBCR5_EL1:
745             case HV_SYS_REG_DBGWVR5_EL1:
746             case HV_SYS_REG_DBGWCR5_EL1:
747             case HV_SYS_REG_DBGBVR6_EL1:
748             case HV_SYS_REG_DBGBCR6_EL1:
749             case HV_SYS_REG_DBGWVR6_EL1:
750             case HV_SYS_REG_DBGWCR6_EL1:
751             case HV_SYS_REG_DBGBVR7_EL1:
752             case HV_SYS_REG_DBGBCR7_EL1:
753             case HV_SYS_REG_DBGWVR7_EL1:
754             case HV_SYS_REG_DBGWCR7_EL1:
755             case HV_SYS_REG_DBGBVR8_EL1:
756             case HV_SYS_REG_DBGBCR8_EL1:
757             case HV_SYS_REG_DBGWVR8_EL1:
758             case HV_SYS_REG_DBGWCR8_EL1:
759             case HV_SYS_REG_DBGBVR9_EL1:
760             case HV_SYS_REG_DBGBCR9_EL1:
761             case HV_SYS_REG_DBGWVR9_EL1:
762             case HV_SYS_REG_DBGWCR9_EL1:
763             case HV_SYS_REG_DBGBVR10_EL1:
764             case HV_SYS_REG_DBGBCR10_EL1:
765             case HV_SYS_REG_DBGWVR10_EL1:
766             case HV_SYS_REG_DBGWCR10_EL1:
767             case HV_SYS_REG_DBGBVR11_EL1:
768             case HV_SYS_REG_DBGBCR11_EL1:
769             case HV_SYS_REG_DBGWVR11_EL1:
770             case HV_SYS_REG_DBGWCR11_EL1:
771             case HV_SYS_REG_DBGBVR12_EL1:
772             case HV_SYS_REG_DBGBCR12_EL1:
773             case HV_SYS_REG_DBGWVR12_EL1:
774             case HV_SYS_REG_DBGWCR12_EL1:
775             case HV_SYS_REG_DBGBVR13_EL1:
776             case HV_SYS_REG_DBGBCR13_EL1:
777             case HV_SYS_REG_DBGWVR13_EL1:
778             case HV_SYS_REG_DBGWCR13_EL1:
779             case HV_SYS_REG_DBGBVR14_EL1:
780             case HV_SYS_REG_DBGBCR14_EL1:
781             case HV_SYS_REG_DBGWVR14_EL1:
782             case HV_SYS_REG_DBGWCR14_EL1:
783             case HV_SYS_REG_DBGBVR15_EL1:
784             case HV_SYS_REG_DBGBCR15_EL1:
785             case HV_SYS_REG_DBGWVR15_EL1:
786             case HV_SYS_REG_DBGWCR15_EL1:
787                 /*
788                  * If the guest is being debugged, the vCPU's debug registers
789                  * are already holding the gdbstub's view of the registers (set
790                  * in hvf_arch_update_guest_debug()).
791                  */
792                 continue;
793             }
794         }
795 
796         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
797         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
798         assert_hvf_ok(ret);
799     }
800 
801     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
802     assert_hvf_ok(ret);
803 
804     return 0;
805 }
806 
807 static void flush_cpu_state(CPUState *cpu)
808 {
809     if (cpu->vcpu_dirty) {
810         hvf_put_registers(cpu);
811         cpu->vcpu_dirty = false;
812     }
813 }
814 
815 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
816 {
817     hv_return_t r;
818 
819     flush_cpu_state(cpu);
820 
821     if (rt < 31) {
822         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
823         assert_hvf_ok(r);
824     }
825 }
826 
827 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
828 {
829     uint64_t val = 0;
830     hv_return_t r;
831 
832     flush_cpu_state(cpu);
833 
834     if (rt < 31) {
835         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
836         assert_hvf_ok(r);
837     }
838 
839     return val;
840 }
841 
842 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
843 {
844     ARMISARegisters host_isar = {};
845     const struct isar_regs {
846         int reg;
847         uint64_t *val;
848     } regs[] = {
849         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
850         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
851         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
852         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
853         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
854         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
855         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
856         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
857         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
858         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
859     };
860     hv_vcpu_t fd;
861     hv_return_t r = HV_SUCCESS;
862     hv_vcpu_exit_t *exit;
863     int i;
864 
865     ahcf->dtb_compatible = "arm,arm-v8";
866     ahcf->features = (1ULL << ARM_FEATURE_V8) |
867                      (1ULL << ARM_FEATURE_NEON) |
868                      (1ULL << ARM_FEATURE_AARCH64) |
869                      (1ULL << ARM_FEATURE_PMU) |
870                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
871 
872     /* We set up a small vcpu to extract host registers */
873 
874     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
875         return false;
876     }
877 
878     for (i = 0; i < ARRAY_SIZE(regs); i++) {
879         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
880     }
881     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
882     r |= hv_vcpu_destroy(fd);
883 
884     ahcf->isar = host_isar;
885 
886     /*
887      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
888      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
889      */
890     ahcf->reset_sctlr = 0x30100180;
891     /*
892      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
893      * let's disable it on boot and then allow guest software to turn it on by
894      * setting it to 0.
895      */
896     ahcf->reset_sctlr |= 0x00800000;
897 
898     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
899     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
900         return false;
901     }
902 
903     return r == HV_SUCCESS;
904 }
905 
906 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
907 {
908     if (!arm_host_cpu_features.dtb_compatible) {
909         if (!hvf_enabled() ||
910             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
911             /*
912              * We can't report this error yet, so flag that we need to
913              * in arm_cpu_realizefn().
914              */
915             cpu->host_cpu_probe_failed = true;
916             return;
917         }
918     }
919 
920     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
921     cpu->isar = arm_host_cpu_features.isar;
922     cpu->env.features = arm_host_cpu_features.features;
923     cpu->midr = arm_host_cpu_features.midr;
924     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
925 }
926 
927 void hvf_arch_vcpu_destroy(CPUState *cpu)
928 {
929 }
930 
931 int hvf_arch_init_vcpu(CPUState *cpu)
932 {
933     ARMCPU *arm_cpu = ARM_CPU(cpu);
934     CPUARMState *env = &arm_cpu->env;
935     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
936     uint32_t sregs_cnt = 0;
937     uint64_t pfr;
938     hv_return_t ret;
939     int i;
940 
941     env->aarch64 = true;
942     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
943 
944     /* Allocate enough space for our sysreg sync */
945     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
946                                      sregs_match_len);
947     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
948                                     sregs_match_len);
949     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
950                                              arm_cpu->cpreg_vmstate_indexes,
951                                              sregs_match_len);
952     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
953                                             arm_cpu->cpreg_vmstate_values,
954                                             sregs_match_len);
955 
956     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
957 
958     /* Populate cp list for all known sysregs */
959     for (i = 0; i < sregs_match_len; i++) {
960         const ARMCPRegInfo *ri;
961         uint32_t key = hvf_sreg_match[i].key;
962 
963         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
964         if (ri) {
965             assert(!(ri->type & ARM_CP_NO_RAW));
966             hvf_sreg_match[i].cp_idx = sregs_cnt;
967             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
968         } else {
969             hvf_sreg_match[i].cp_idx = -1;
970         }
971     }
972     arm_cpu->cpreg_array_len = sregs_cnt;
973     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
974 
975     assert(write_cpustate_to_list(arm_cpu, false));
976 
977     /* Set CP_NO_RAW system registers on init */
978     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
979                               arm_cpu->midr);
980     assert_hvf_ok(ret);
981 
982     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
983                               arm_cpu->mp_affinity);
984     assert_hvf_ok(ret);
985 
986     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
987     assert_hvf_ok(ret);
988     pfr |= env->gicv3state ? (1 << 24) : 0;
989     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
990     assert_hvf_ok(ret);
991 
992     /* We're limited to underlying hardware caps, override internal versions */
993     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
994                               &arm_cpu->isar.id_aa64mmfr0);
995     assert_hvf_ok(ret);
996 
997     return 0;
998 }
999 
1000 void hvf_kick_vcpu_thread(CPUState *cpu)
1001 {
1002     cpus_kick_thread(cpu);
1003     hv_vcpus_exit(&cpu->accel->fd, 1);
1004 }
1005 
1006 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1007                                 uint32_t syndrome)
1008 {
1009     ARMCPU *arm_cpu = ARM_CPU(cpu);
1010     CPUARMState *env = &arm_cpu->env;
1011 
1012     cpu->exception_index = excp;
1013     env->exception.target_el = 1;
1014     env->exception.syndrome = syndrome;
1015 
1016     arm_cpu_do_interrupt(cpu);
1017 }
1018 
1019 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1020 {
1021     int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1022     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1023 }
1024 
1025 /*
1026  * Handle a PSCI call.
1027  *
1028  * Returns 0 on success
1029  *         -1 when the PSCI call is unknown,
1030  */
1031 static bool hvf_handle_psci_call(CPUState *cpu)
1032 {
1033     ARMCPU *arm_cpu = ARM_CPU(cpu);
1034     CPUARMState *env = &arm_cpu->env;
1035     uint64_t param[4] = {
1036         env->xregs[0],
1037         env->xregs[1],
1038         env->xregs[2],
1039         env->xregs[3]
1040     };
1041     uint64_t context_id, mpidr;
1042     bool target_aarch64 = true;
1043     CPUState *target_cpu_state;
1044     ARMCPU *target_cpu;
1045     target_ulong entry;
1046     int target_el = 1;
1047     int32_t ret = 0;
1048 
1049     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1050                         arm_cpu_mp_affinity(arm_cpu));
1051 
1052     switch (param[0]) {
1053     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1054         ret = QEMU_PSCI_VERSION_1_1;
1055         break;
1056     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1057         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1058         break;
1059     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1060     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1061         mpidr = param[1];
1062 
1063         switch (param[2]) {
1064         case 0:
1065             target_cpu_state = arm_get_cpu_by_id(mpidr);
1066             if (!target_cpu_state) {
1067                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1068                 break;
1069             }
1070             target_cpu = ARM_CPU(target_cpu_state);
1071 
1072             ret = target_cpu->power_state;
1073             break;
1074         default:
1075             /* Everything above affinity level 0 is always on. */
1076             ret = 0;
1077         }
1078         break;
1079     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1080         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1081         /*
1082          * QEMU reset and shutdown are async requests, but PSCI
1083          * mandates that we never return from the reset/shutdown
1084          * call, so power the CPU off now so it doesn't execute
1085          * anything further.
1086          */
1087         hvf_psci_cpu_off(arm_cpu);
1088         break;
1089     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1090         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1091         hvf_psci_cpu_off(arm_cpu);
1092         break;
1093     case QEMU_PSCI_0_1_FN_CPU_ON:
1094     case QEMU_PSCI_0_2_FN_CPU_ON:
1095     case QEMU_PSCI_0_2_FN64_CPU_ON:
1096         mpidr = param[1];
1097         entry = param[2];
1098         context_id = param[3];
1099         ret = arm_set_cpu_on(mpidr, entry, context_id,
1100                              target_el, target_aarch64);
1101         break;
1102     case QEMU_PSCI_0_1_FN_CPU_OFF:
1103     case QEMU_PSCI_0_2_FN_CPU_OFF:
1104         hvf_psci_cpu_off(arm_cpu);
1105         break;
1106     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1107     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1108     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1109         /* Affinity levels are not supported in QEMU */
1110         if (param[1] & 0xfffe0000) {
1111             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1112             break;
1113         }
1114         /* Powerdown is not supported, we always go into WFI */
1115         env->xregs[0] = 0;
1116         hvf_wfi(cpu);
1117         break;
1118     case QEMU_PSCI_0_1_FN_MIGRATE:
1119     case QEMU_PSCI_0_2_FN_MIGRATE:
1120         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1121         break;
1122     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1123         switch (param[1]) {
1124         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1125         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1126         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1127         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1128         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1129         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1130         case QEMU_PSCI_0_1_FN_CPU_ON:
1131         case QEMU_PSCI_0_2_FN_CPU_ON:
1132         case QEMU_PSCI_0_2_FN64_CPU_ON:
1133         case QEMU_PSCI_0_1_FN_CPU_OFF:
1134         case QEMU_PSCI_0_2_FN_CPU_OFF:
1135         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1136         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1137         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1138         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1139             ret = 0;
1140             break;
1141         case QEMU_PSCI_0_1_FN_MIGRATE:
1142         case QEMU_PSCI_0_2_FN_MIGRATE:
1143         default:
1144             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1145         }
1146         break;
1147     default:
1148         return false;
1149     }
1150 
1151     env->xregs[0] = ret;
1152     return true;
1153 }
1154 
1155 static bool is_id_sysreg(uint32_t reg)
1156 {
1157     return SYSREG_OP0(reg) == 3 &&
1158            SYSREG_OP1(reg) == 0 &&
1159            SYSREG_CRN(reg) == 0 &&
1160            SYSREG_CRM(reg) >= 1 &&
1161            SYSREG_CRM(reg) < 8;
1162 }
1163 
1164 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1165 {
1166     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1167                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1168                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1169                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1170                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1171                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1172 }
1173 
1174 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1175 {
1176     ARMCPU *arm_cpu = ARM_CPU(cpu);
1177     CPUARMState *env = &arm_cpu->env;
1178     const ARMCPRegInfo *ri;
1179 
1180     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1181     if (ri) {
1182         if (ri->accessfn) {
1183             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1184                 return false;
1185             }
1186         }
1187         if (ri->type & ARM_CP_CONST) {
1188             *val = ri->resetvalue;
1189         } else if (ri->readfn) {
1190             *val = ri->readfn(env, ri);
1191         } else {
1192             *val = CPREG_FIELD64(env, ri);
1193         }
1194         trace_hvf_vgic_read(ri->name, *val);
1195         return true;
1196     }
1197 
1198     return false;
1199 }
1200 
1201 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1202 {
1203     ARMCPU *arm_cpu = ARM_CPU(cpu);
1204     CPUARMState *env = &arm_cpu->env;
1205     uint64_t val = 0;
1206 
1207     switch (reg) {
1208     case SYSREG_CNTPCT_EL0:
1209         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1210               gt_cntfrq_period_ns(arm_cpu);
1211         break;
1212     case SYSREG_PMCR_EL0:
1213         val = env->cp15.c9_pmcr;
1214         break;
1215     case SYSREG_PMCCNTR_EL0:
1216         pmu_op_start(env);
1217         val = env->cp15.c15_ccnt;
1218         pmu_op_finish(env);
1219         break;
1220     case SYSREG_PMCNTENCLR_EL0:
1221         val = env->cp15.c9_pmcnten;
1222         break;
1223     case SYSREG_PMOVSCLR_EL0:
1224         val = env->cp15.c9_pmovsr;
1225         break;
1226     case SYSREG_PMSELR_EL0:
1227         val = env->cp15.c9_pmselr;
1228         break;
1229     case SYSREG_PMINTENCLR_EL1:
1230         val = env->cp15.c9_pminten;
1231         break;
1232     case SYSREG_PMCCFILTR_EL0:
1233         val = env->cp15.pmccfiltr_el0;
1234         break;
1235     case SYSREG_PMCNTENSET_EL0:
1236         val = env->cp15.c9_pmcnten;
1237         break;
1238     case SYSREG_PMUSERENR_EL0:
1239         val = env->cp15.c9_pmuserenr;
1240         break;
1241     case SYSREG_PMCEID0_EL0:
1242     case SYSREG_PMCEID1_EL0:
1243         /* We can't really count anything yet, declare all events invalid */
1244         val = 0;
1245         break;
1246     case SYSREG_OSLSR_EL1:
1247         val = env->cp15.oslsr_el1;
1248         break;
1249     case SYSREG_OSDLR_EL1:
1250         /* Dummy register */
1251         break;
1252     case SYSREG_ICC_AP0R0_EL1:
1253     case SYSREG_ICC_AP0R1_EL1:
1254     case SYSREG_ICC_AP0R2_EL1:
1255     case SYSREG_ICC_AP0R3_EL1:
1256     case SYSREG_ICC_AP1R0_EL1:
1257     case SYSREG_ICC_AP1R1_EL1:
1258     case SYSREG_ICC_AP1R2_EL1:
1259     case SYSREG_ICC_AP1R3_EL1:
1260     case SYSREG_ICC_ASGI1R_EL1:
1261     case SYSREG_ICC_BPR0_EL1:
1262     case SYSREG_ICC_BPR1_EL1:
1263     case SYSREG_ICC_DIR_EL1:
1264     case SYSREG_ICC_EOIR0_EL1:
1265     case SYSREG_ICC_EOIR1_EL1:
1266     case SYSREG_ICC_HPPIR0_EL1:
1267     case SYSREG_ICC_HPPIR1_EL1:
1268     case SYSREG_ICC_IAR0_EL1:
1269     case SYSREG_ICC_IAR1_EL1:
1270     case SYSREG_ICC_IGRPEN0_EL1:
1271     case SYSREG_ICC_IGRPEN1_EL1:
1272     case SYSREG_ICC_PMR_EL1:
1273     case SYSREG_ICC_SGI0R_EL1:
1274     case SYSREG_ICC_SGI1R_EL1:
1275     case SYSREG_ICC_SRE_EL1:
1276     case SYSREG_ICC_CTLR_EL1:
1277         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1278         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1279             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1280         }
1281         break;
1282     case SYSREG_DBGBVR0_EL1:
1283     case SYSREG_DBGBVR1_EL1:
1284     case SYSREG_DBGBVR2_EL1:
1285     case SYSREG_DBGBVR3_EL1:
1286     case SYSREG_DBGBVR4_EL1:
1287     case SYSREG_DBGBVR5_EL1:
1288     case SYSREG_DBGBVR6_EL1:
1289     case SYSREG_DBGBVR7_EL1:
1290     case SYSREG_DBGBVR8_EL1:
1291     case SYSREG_DBGBVR9_EL1:
1292     case SYSREG_DBGBVR10_EL1:
1293     case SYSREG_DBGBVR11_EL1:
1294     case SYSREG_DBGBVR12_EL1:
1295     case SYSREG_DBGBVR13_EL1:
1296     case SYSREG_DBGBVR14_EL1:
1297     case SYSREG_DBGBVR15_EL1:
1298         val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1299         break;
1300     case SYSREG_DBGBCR0_EL1:
1301     case SYSREG_DBGBCR1_EL1:
1302     case SYSREG_DBGBCR2_EL1:
1303     case SYSREG_DBGBCR3_EL1:
1304     case SYSREG_DBGBCR4_EL1:
1305     case SYSREG_DBGBCR5_EL1:
1306     case SYSREG_DBGBCR6_EL1:
1307     case SYSREG_DBGBCR7_EL1:
1308     case SYSREG_DBGBCR8_EL1:
1309     case SYSREG_DBGBCR9_EL1:
1310     case SYSREG_DBGBCR10_EL1:
1311     case SYSREG_DBGBCR11_EL1:
1312     case SYSREG_DBGBCR12_EL1:
1313     case SYSREG_DBGBCR13_EL1:
1314     case SYSREG_DBGBCR14_EL1:
1315     case SYSREG_DBGBCR15_EL1:
1316         val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1317         break;
1318     case SYSREG_DBGWVR0_EL1:
1319     case SYSREG_DBGWVR1_EL1:
1320     case SYSREG_DBGWVR2_EL1:
1321     case SYSREG_DBGWVR3_EL1:
1322     case SYSREG_DBGWVR4_EL1:
1323     case SYSREG_DBGWVR5_EL1:
1324     case SYSREG_DBGWVR6_EL1:
1325     case SYSREG_DBGWVR7_EL1:
1326     case SYSREG_DBGWVR8_EL1:
1327     case SYSREG_DBGWVR9_EL1:
1328     case SYSREG_DBGWVR10_EL1:
1329     case SYSREG_DBGWVR11_EL1:
1330     case SYSREG_DBGWVR12_EL1:
1331     case SYSREG_DBGWVR13_EL1:
1332     case SYSREG_DBGWVR14_EL1:
1333     case SYSREG_DBGWVR15_EL1:
1334         val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1335         break;
1336     case SYSREG_DBGWCR0_EL1:
1337     case SYSREG_DBGWCR1_EL1:
1338     case SYSREG_DBGWCR2_EL1:
1339     case SYSREG_DBGWCR3_EL1:
1340     case SYSREG_DBGWCR4_EL1:
1341     case SYSREG_DBGWCR5_EL1:
1342     case SYSREG_DBGWCR6_EL1:
1343     case SYSREG_DBGWCR7_EL1:
1344     case SYSREG_DBGWCR8_EL1:
1345     case SYSREG_DBGWCR9_EL1:
1346     case SYSREG_DBGWCR10_EL1:
1347     case SYSREG_DBGWCR11_EL1:
1348     case SYSREG_DBGWCR12_EL1:
1349     case SYSREG_DBGWCR13_EL1:
1350     case SYSREG_DBGWCR14_EL1:
1351     case SYSREG_DBGWCR15_EL1:
1352         val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1353         break;
1354     default:
1355         if (is_id_sysreg(reg)) {
1356             /* ID system registers read as RES0 */
1357             val = 0;
1358             break;
1359         }
1360         cpu_synchronize_state(cpu);
1361         trace_hvf_unhandled_sysreg_read(env->pc, reg,
1362                                         SYSREG_OP0(reg),
1363                                         SYSREG_OP1(reg),
1364                                         SYSREG_CRN(reg),
1365                                         SYSREG_CRM(reg),
1366                                         SYSREG_OP2(reg));
1367         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1368         return 1;
1369     }
1370 
1371     trace_hvf_sysreg_read(reg,
1372                           SYSREG_OP0(reg),
1373                           SYSREG_OP1(reg),
1374                           SYSREG_CRN(reg),
1375                           SYSREG_CRM(reg),
1376                           SYSREG_OP2(reg),
1377                           val);
1378     hvf_set_reg(cpu, rt, val);
1379 
1380     return 0;
1381 }
1382 
1383 static void pmu_update_irq(CPUARMState *env)
1384 {
1385     ARMCPU *cpu = env_archcpu(env);
1386     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1387             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1388 }
1389 
1390 static bool pmu_event_supported(uint16_t number)
1391 {
1392     return false;
1393 }
1394 
1395 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1396  * the current EL, security state, and register configuration.
1397  */
1398 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1399 {
1400     uint64_t filter;
1401     bool enabled, filtered = true;
1402     int el = arm_current_el(env);
1403 
1404     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1405               (env->cp15.c9_pmcnten & (1 << counter));
1406 
1407     if (counter == 31) {
1408         filter = env->cp15.pmccfiltr_el0;
1409     } else {
1410         filter = env->cp15.c14_pmevtyper[counter];
1411     }
1412 
1413     if (el == 0) {
1414         filtered = filter & PMXEVTYPER_U;
1415     } else if (el == 1) {
1416         filtered = filter & PMXEVTYPER_P;
1417     }
1418 
1419     if (counter != 31) {
1420         /*
1421          * If not checking PMCCNTR, ensure the counter is setup to an event we
1422          * support
1423          */
1424         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1425         if (!pmu_event_supported(event)) {
1426             return false;
1427         }
1428     }
1429 
1430     return enabled && !filtered;
1431 }
1432 
1433 static void pmswinc_write(CPUARMState *env, uint64_t value)
1434 {
1435     unsigned int i;
1436     for (i = 0; i < pmu_num_counters(env); i++) {
1437         /* Increment a counter's count iff: */
1438         if ((value & (1 << i)) && /* counter's bit is set */
1439                 /* counter is enabled and not filtered */
1440                 pmu_counter_enabled(env, i) &&
1441                 /* counter is SW_INCR */
1442                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1443             /*
1444              * Detect if this write causes an overflow since we can't predict
1445              * PMSWINC overflows like we can for other events
1446              */
1447             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1448 
1449             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1450                 env->cp15.c9_pmovsr |= (1 << i);
1451                 pmu_update_irq(env);
1452             }
1453 
1454             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1455         }
1456     }
1457 }
1458 
1459 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1460 {
1461     ARMCPU *arm_cpu = ARM_CPU(cpu);
1462     CPUARMState *env = &arm_cpu->env;
1463     const ARMCPRegInfo *ri;
1464 
1465     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1466 
1467     if (ri) {
1468         if (ri->accessfn) {
1469             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1470                 return false;
1471             }
1472         }
1473         if (ri->writefn) {
1474             ri->writefn(env, ri, val);
1475         } else {
1476             CPREG_FIELD64(env, ri) = val;
1477         }
1478 
1479         trace_hvf_vgic_write(ri->name, val);
1480         return true;
1481     }
1482 
1483     return false;
1484 }
1485 
1486 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1487 {
1488     ARMCPU *arm_cpu = ARM_CPU(cpu);
1489     CPUARMState *env = &arm_cpu->env;
1490 
1491     trace_hvf_sysreg_write(reg,
1492                            SYSREG_OP0(reg),
1493                            SYSREG_OP1(reg),
1494                            SYSREG_CRN(reg),
1495                            SYSREG_CRM(reg),
1496                            SYSREG_OP2(reg),
1497                            val);
1498 
1499     switch (reg) {
1500     case SYSREG_PMCCNTR_EL0:
1501         pmu_op_start(env);
1502         env->cp15.c15_ccnt = val;
1503         pmu_op_finish(env);
1504         break;
1505     case SYSREG_PMCR_EL0:
1506         pmu_op_start(env);
1507 
1508         if (val & PMCRC) {
1509             /* The counter has been reset */
1510             env->cp15.c15_ccnt = 0;
1511         }
1512 
1513         if (val & PMCRP) {
1514             unsigned int i;
1515             for (i = 0; i < pmu_num_counters(env); i++) {
1516                 env->cp15.c14_pmevcntr[i] = 0;
1517             }
1518         }
1519 
1520         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1521         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1522 
1523         pmu_op_finish(env);
1524         break;
1525     case SYSREG_PMUSERENR_EL0:
1526         env->cp15.c9_pmuserenr = val & 0xf;
1527         break;
1528     case SYSREG_PMCNTENSET_EL0:
1529         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1530         break;
1531     case SYSREG_PMCNTENCLR_EL0:
1532         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1533         break;
1534     case SYSREG_PMINTENCLR_EL1:
1535         pmu_op_start(env);
1536         env->cp15.c9_pminten |= val;
1537         pmu_op_finish(env);
1538         break;
1539     case SYSREG_PMOVSCLR_EL0:
1540         pmu_op_start(env);
1541         env->cp15.c9_pmovsr &= ~val;
1542         pmu_op_finish(env);
1543         break;
1544     case SYSREG_PMSWINC_EL0:
1545         pmu_op_start(env);
1546         pmswinc_write(env, val);
1547         pmu_op_finish(env);
1548         break;
1549     case SYSREG_PMSELR_EL0:
1550         env->cp15.c9_pmselr = val & 0x1f;
1551         break;
1552     case SYSREG_PMCCFILTR_EL0:
1553         pmu_op_start(env);
1554         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1555         pmu_op_finish(env);
1556         break;
1557     case SYSREG_OSLAR_EL1:
1558         env->cp15.oslsr_el1 = val & 1;
1559         break;
1560     case SYSREG_OSDLR_EL1:
1561         /* Dummy register */
1562         break;
1563     case SYSREG_ICC_AP0R0_EL1:
1564     case SYSREG_ICC_AP0R1_EL1:
1565     case SYSREG_ICC_AP0R2_EL1:
1566     case SYSREG_ICC_AP0R3_EL1:
1567     case SYSREG_ICC_AP1R0_EL1:
1568     case SYSREG_ICC_AP1R1_EL1:
1569     case SYSREG_ICC_AP1R2_EL1:
1570     case SYSREG_ICC_AP1R3_EL1:
1571     case SYSREG_ICC_ASGI1R_EL1:
1572     case SYSREG_ICC_BPR0_EL1:
1573     case SYSREG_ICC_BPR1_EL1:
1574     case SYSREG_ICC_CTLR_EL1:
1575     case SYSREG_ICC_DIR_EL1:
1576     case SYSREG_ICC_EOIR0_EL1:
1577     case SYSREG_ICC_EOIR1_EL1:
1578     case SYSREG_ICC_HPPIR0_EL1:
1579     case SYSREG_ICC_HPPIR1_EL1:
1580     case SYSREG_ICC_IAR0_EL1:
1581     case SYSREG_ICC_IAR1_EL1:
1582     case SYSREG_ICC_IGRPEN0_EL1:
1583     case SYSREG_ICC_IGRPEN1_EL1:
1584     case SYSREG_ICC_PMR_EL1:
1585     case SYSREG_ICC_SGI0R_EL1:
1586     case SYSREG_ICC_SGI1R_EL1:
1587     case SYSREG_ICC_SRE_EL1:
1588         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1589         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1590             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1591         }
1592         break;
1593     case SYSREG_MDSCR_EL1:
1594         env->cp15.mdscr_el1 = val;
1595         break;
1596     case SYSREG_DBGBVR0_EL1:
1597     case SYSREG_DBGBVR1_EL1:
1598     case SYSREG_DBGBVR2_EL1:
1599     case SYSREG_DBGBVR3_EL1:
1600     case SYSREG_DBGBVR4_EL1:
1601     case SYSREG_DBGBVR5_EL1:
1602     case SYSREG_DBGBVR6_EL1:
1603     case SYSREG_DBGBVR7_EL1:
1604     case SYSREG_DBGBVR8_EL1:
1605     case SYSREG_DBGBVR9_EL1:
1606     case SYSREG_DBGBVR10_EL1:
1607     case SYSREG_DBGBVR11_EL1:
1608     case SYSREG_DBGBVR12_EL1:
1609     case SYSREG_DBGBVR13_EL1:
1610     case SYSREG_DBGBVR14_EL1:
1611     case SYSREG_DBGBVR15_EL1:
1612         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1613         break;
1614     case SYSREG_DBGBCR0_EL1:
1615     case SYSREG_DBGBCR1_EL1:
1616     case SYSREG_DBGBCR2_EL1:
1617     case SYSREG_DBGBCR3_EL1:
1618     case SYSREG_DBGBCR4_EL1:
1619     case SYSREG_DBGBCR5_EL1:
1620     case SYSREG_DBGBCR6_EL1:
1621     case SYSREG_DBGBCR7_EL1:
1622     case SYSREG_DBGBCR8_EL1:
1623     case SYSREG_DBGBCR9_EL1:
1624     case SYSREG_DBGBCR10_EL1:
1625     case SYSREG_DBGBCR11_EL1:
1626     case SYSREG_DBGBCR12_EL1:
1627     case SYSREG_DBGBCR13_EL1:
1628     case SYSREG_DBGBCR14_EL1:
1629     case SYSREG_DBGBCR15_EL1:
1630         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1631         break;
1632     case SYSREG_DBGWVR0_EL1:
1633     case SYSREG_DBGWVR1_EL1:
1634     case SYSREG_DBGWVR2_EL1:
1635     case SYSREG_DBGWVR3_EL1:
1636     case SYSREG_DBGWVR4_EL1:
1637     case SYSREG_DBGWVR5_EL1:
1638     case SYSREG_DBGWVR6_EL1:
1639     case SYSREG_DBGWVR7_EL1:
1640     case SYSREG_DBGWVR8_EL1:
1641     case SYSREG_DBGWVR9_EL1:
1642     case SYSREG_DBGWVR10_EL1:
1643     case SYSREG_DBGWVR11_EL1:
1644     case SYSREG_DBGWVR12_EL1:
1645     case SYSREG_DBGWVR13_EL1:
1646     case SYSREG_DBGWVR14_EL1:
1647     case SYSREG_DBGWVR15_EL1:
1648         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1649         break;
1650     case SYSREG_DBGWCR0_EL1:
1651     case SYSREG_DBGWCR1_EL1:
1652     case SYSREG_DBGWCR2_EL1:
1653     case SYSREG_DBGWCR3_EL1:
1654     case SYSREG_DBGWCR4_EL1:
1655     case SYSREG_DBGWCR5_EL1:
1656     case SYSREG_DBGWCR6_EL1:
1657     case SYSREG_DBGWCR7_EL1:
1658     case SYSREG_DBGWCR8_EL1:
1659     case SYSREG_DBGWCR9_EL1:
1660     case SYSREG_DBGWCR10_EL1:
1661     case SYSREG_DBGWCR11_EL1:
1662     case SYSREG_DBGWCR12_EL1:
1663     case SYSREG_DBGWCR13_EL1:
1664     case SYSREG_DBGWCR14_EL1:
1665     case SYSREG_DBGWCR15_EL1:
1666         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1667         break;
1668     default:
1669         cpu_synchronize_state(cpu);
1670         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1671                                          SYSREG_OP0(reg),
1672                                          SYSREG_OP1(reg),
1673                                          SYSREG_CRN(reg),
1674                                          SYSREG_CRM(reg),
1675                                          SYSREG_OP2(reg));
1676         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1677         return 1;
1678     }
1679 
1680     return 0;
1681 }
1682 
1683 static int hvf_inject_interrupts(CPUState *cpu)
1684 {
1685     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1686         trace_hvf_inject_fiq();
1687         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1688                                       true);
1689     }
1690 
1691     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1692         trace_hvf_inject_irq();
1693         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1694                                       true);
1695     }
1696 
1697     return 0;
1698 }
1699 
1700 static uint64_t hvf_vtimer_val_raw(void)
1701 {
1702     /*
1703      * mach_absolute_time() returns the vtimer value without the VM
1704      * offset that we define. Add our own offset on top.
1705      */
1706     return mach_absolute_time() - hvf_state->vtimer_offset;
1707 }
1708 
1709 static uint64_t hvf_vtimer_val(void)
1710 {
1711     if (!runstate_is_running()) {
1712         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1713         return vtimer.vtimer_val;
1714     }
1715 
1716     return hvf_vtimer_val_raw();
1717 }
1718 
1719 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1720 {
1721     /*
1722      * Use pselect to sleep so that other threads can IPI us while we're
1723      * sleeping.
1724      */
1725     qatomic_set_mb(&cpu->thread_kicked, false);
1726     bql_unlock();
1727     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1728     bql_lock();
1729 }
1730 
1731 static void hvf_wfi(CPUState *cpu)
1732 {
1733     ARMCPU *arm_cpu = ARM_CPU(cpu);
1734     struct timespec ts;
1735     hv_return_t r;
1736     uint64_t ctl;
1737     uint64_t cval;
1738     int64_t ticks_to_sleep;
1739     uint64_t seconds;
1740     uint64_t nanos;
1741     uint32_t cntfrq;
1742 
1743     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1744         /* Interrupt pending, no need to wait */
1745         return;
1746     }
1747 
1748     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1749     assert_hvf_ok(r);
1750 
1751     if (!(ctl & 1) || (ctl & 2)) {
1752         /* Timer disabled or masked, just wait for an IPI. */
1753         hvf_wait_for_ipi(cpu, NULL);
1754         return;
1755     }
1756 
1757     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1758     assert_hvf_ok(r);
1759 
1760     ticks_to_sleep = cval - hvf_vtimer_val();
1761     if (ticks_to_sleep < 0) {
1762         return;
1763     }
1764 
1765     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1766     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1767     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1768     nanos = ticks_to_sleep * cntfrq;
1769 
1770     /*
1771      * Don't sleep for less than the time a context switch would take,
1772      * so that we can satisfy fast timer requests on the same CPU.
1773      * Measurements on M1 show the sweet spot to be ~2ms.
1774      */
1775     if (!seconds && nanos < (2 * SCALE_MS)) {
1776         return;
1777     }
1778 
1779     ts = (struct timespec) { seconds, nanos };
1780     hvf_wait_for_ipi(cpu, &ts);
1781 }
1782 
1783 static void hvf_sync_vtimer(CPUState *cpu)
1784 {
1785     ARMCPU *arm_cpu = ARM_CPU(cpu);
1786     hv_return_t r;
1787     uint64_t ctl;
1788     bool irq_state;
1789 
1790     if (!cpu->accel->vtimer_masked) {
1791         /* We will get notified on vtimer changes by hvf, nothing to do */
1792         return;
1793     }
1794 
1795     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1796     assert_hvf_ok(r);
1797 
1798     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1799                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1800     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1801 
1802     if (!irq_state) {
1803         /* Timer no longer asserting, we can unmask it */
1804         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1805         cpu->accel->vtimer_masked = false;
1806     }
1807 }
1808 
1809 int hvf_vcpu_exec(CPUState *cpu)
1810 {
1811     ARMCPU *arm_cpu = ARM_CPU(cpu);
1812     CPUARMState *env = &arm_cpu->env;
1813     int ret;
1814     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1815     hv_return_t r;
1816     bool advance_pc = false;
1817 
1818     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1819         hvf_inject_interrupts(cpu)) {
1820         return EXCP_INTERRUPT;
1821     }
1822 
1823     if (cpu->halted) {
1824         return EXCP_HLT;
1825     }
1826 
1827     flush_cpu_state(cpu);
1828 
1829     bql_unlock();
1830     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1831 
1832     /* handle VMEXIT */
1833     uint64_t exit_reason = hvf_exit->reason;
1834     uint64_t syndrome = hvf_exit->exception.syndrome;
1835     uint32_t ec = syn_get_ec(syndrome);
1836 
1837     ret = 0;
1838     bql_lock();
1839     switch (exit_reason) {
1840     case HV_EXIT_REASON_EXCEPTION:
1841         /* This is the main one, handle below. */
1842         break;
1843     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1844         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1845         cpu->accel->vtimer_masked = true;
1846         return 0;
1847     case HV_EXIT_REASON_CANCELED:
1848         /* we got kicked, no exit to process */
1849         return 0;
1850     default:
1851         g_assert_not_reached();
1852     }
1853 
1854     hvf_sync_vtimer(cpu);
1855 
1856     switch (ec) {
1857     case EC_SOFTWARESTEP: {
1858         ret = EXCP_DEBUG;
1859 
1860         if (!cpu->singlestep_enabled) {
1861             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1862         }
1863         break;
1864     }
1865     case EC_AA64_BKPT: {
1866         ret = EXCP_DEBUG;
1867 
1868         cpu_synchronize_state(cpu);
1869 
1870         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1871             /* Re-inject into the guest */
1872             ret = 0;
1873             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1874         }
1875         break;
1876     }
1877     case EC_BREAKPOINT: {
1878         ret = EXCP_DEBUG;
1879 
1880         cpu_synchronize_state(cpu);
1881 
1882         if (!find_hw_breakpoint(cpu, env->pc)) {
1883             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1884         }
1885         break;
1886     }
1887     case EC_WATCHPOINT: {
1888         ret = EXCP_DEBUG;
1889 
1890         cpu_synchronize_state(cpu);
1891 
1892         CPUWatchpoint *wp =
1893             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1894         if (!wp) {
1895             error_report("EXCP_DEBUG but unknown hw watchpoint");
1896         }
1897         cpu->watchpoint_hit = wp;
1898         break;
1899     }
1900     case EC_DATAABORT: {
1901         bool isv = syndrome & ARM_EL_ISV;
1902         bool iswrite = (syndrome >> 6) & 1;
1903         bool s1ptw = (syndrome >> 7) & 1;
1904         uint32_t sas = (syndrome >> 22) & 3;
1905         uint32_t len = 1 << sas;
1906         uint32_t srt = (syndrome >> 16) & 0x1f;
1907         uint32_t cm = (syndrome >> 8) & 0x1;
1908         uint64_t val = 0;
1909 
1910         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1911                              hvf_exit->exception.physical_address, isv,
1912                              iswrite, s1ptw, len, srt);
1913 
1914         if (cm) {
1915             /* We don't cache MMIO regions */
1916             advance_pc = true;
1917             break;
1918         }
1919 
1920         assert(isv);
1921 
1922         if (iswrite) {
1923             val = hvf_get_reg(cpu, srt);
1924             address_space_write(&address_space_memory,
1925                                 hvf_exit->exception.physical_address,
1926                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1927         } else {
1928             address_space_read(&address_space_memory,
1929                                hvf_exit->exception.physical_address,
1930                                MEMTXATTRS_UNSPECIFIED, &val, len);
1931             hvf_set_reg(cpu, srt, val);
1932         }
1933 
1934         advance_pc = true;
1935         break;
1936     }
1937     case EC_SYSTEMREGISTERTRAP: {
1938         bool isread = (syndrome >> 0) & 1;
1939         uint32_t rt = (syndrome >> 5) & 0x1f;
1940         uint32_t reg = syndrome & SYSREG_MASK;
1941         uint64_t val;
1942         int sysreg_ret = 0;
1943 
1944         if (isread) {
1945             sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1946         } else {
1947             val = hvf_get_reg(cpu, rt);
1948             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1949         }
1950 
1951         advance_pc = !sysreg_ret;
1952         break;
1953     }
1954     case EC_WFX_TRAP:
1955         advance_pc = true;
1956         if (!(syndrome & WFX_IS_WFE)) {
1957             hvf_wfi(cpu);
1958         }
1959         break;
1960     case EC_AA64_HVC:
1961         cpu_synchronize_state(cpu);
1962         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1963             if (!hvf_handle_psci_call(cpu)) {
1964                 trace_hvf_unknown_hvc(env->xregs[0]);
1965                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1966                 env->xregs[0] = -1;
1967             }
1968         } else {
1969             trace_hvf_unknown_hvc(env->xregs[0]);
1970             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1971         }
1972         break;
1973     case EC_AA64_SMC:
1974         cpu_synchronize_state(cpu);
1975         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1976             advance_pc = true;
1977 
1978             if (!hvf_handle_psci_call(cpu)) {
1979                 trace_hvf_unknown_smc(env->xregs[0]);
1980                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1981                 env->xregs[0] = -1;
1982             }
1983         } else {
1984             trace_hvf_unknown_smc(env->xregs[0]);
1985             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1986         }
1987         break;
1988     default:
1989         cpu_synchronize_state(cpu);
1990         trace_hvf_exit(syndrome, ec, env->pc);
1991         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1992     }
1993 
1994     if (advance_pc) {
1995         uint64_t pc;
1996 
1997         flush_cpu_state(cpu);
1998 
1999         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2000         assert_hvf_ok(r);
2001         pc += 4;
2002         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2003         assert_hvf_ok(r);
2004 
2005         /* Handle single-stepping over instructions which trigger a VM exit */
2006         if (cpu->singlestep_enabled) {
2007             ret = EXCP_DEBUG;
2008         }
2009     }
2010 
2011     return ret;
2012 }
2013 
2014 static const VMStateDescription vmstate_hvf_vtimer = {
2015     .name = "hvf-vtimer",
2016     .version_id = 1,
2017     .minimum_version_id = 1,
2018     .fields = (const VMStateField[]) {
2019         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2020         VMSTATE_END_OF_LIST()
2021     },
2022 };
2023 
2024 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2025 {
2026     HVFVTimer *s = opaque;
2027 
2028     if (running) {
2029         /* Update vtimer offset on all CPUs */
2030         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2031         cpu_synchronize_all_states();
2032     } else {
2033         /* Remember vtimer value on every pause */
2034         s->vtimer_val = hvf_vtimer_val_raw();
2035     }
2036 }
2037 
2038 int hvf_arch_init(void)
2039 {
2040     hvf_state->vtimer_offset = mach_absolute_time();
2041     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2042     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2043 
2044     hvf_arm_init_debug();
2045 
2046     return 0;
2047 }
2048 
2049 static const uint32_t brk_insn = 0xd4200000;
2050 
2051 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2052 {
2053     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2054         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2055         return -EINVAL;
2056     }
2057     return 0;
2058 }
2059 
2060 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2061 {
2062     static uint32_t brk;
2063 
2064     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2065         brk != brk_insn ||
2066         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2067         return -EINVAL;
2068     }
2069     return 0;
2070 }
2071 
2072 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2073 {
2074     switch (type) {
2075     case GDB_BREAKPOINT_HW:
2076         return insert_hw_breakpoint(addr);
2077     case GDB_WATCHPOINT_READ:
2078     case GDB_WATCHPOINT_WRITE:
2079     case GDB_WATCHPOINT_ACCESS:
2080         return insert_hw_watchpoint(addr, len, type);
2081     default:
2082         return -ENOSYS;
2083     }
2084 }
2085 
2086 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2087 {
2088     switch (type) {
2089     case GDB_BREAKPOINT_HW:
2090         return delete_hw_breakpoint(addr);
2091     case GDB_WATCHPOINT_READ:
2092     case GDB_WATCHPOINT_WRITE:
2093     case GDB_WATCHPOINT_ACCESS:
2094         return delete_hw_watchpoint(addr, len, type);
2095     default:
2096         return -ENOSYS;
2097     }
2098 }
2099 
2100 void hvf_arch_remove_all_hw_breakpoints(void)
2101 {
2102     if (cur_hw_wps > 0) {
2103         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2104     }
2105     if (cur_hw_bps > 0) {
2106         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2107     }
2108 }
2109 
2110 /*
2111  * Update the vCPU with the gdbstub's view of debug registers. This view
2112  * consists of all hardware breakpoints and watchpoints inserted so far while
2113  * debugging the guest.
2114  */
2115 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2116 {
2117     hv_return_t r = HV_SUCCESS;
2118     int i;
2119 
2120     for (i = 0; i < cur_hw_bps; i++) {
2121         HWBreakpoint *bp = get_hw_bp(i);
2122         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2123         assert_hvf_ok(r);
2124         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2125         assert_hvf_ok(r);
2126     }
2127     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2128         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2129         assert_hvf_ok(r);
2130         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2131         assert_hvf_ok(r);
2132     }
2133 
2134     for (i = 0; i < cur_hw_wps; i++) {
2135         HWWatchpoint *wp = get_hw_wp(i);
2136         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2137         assert_hvf_ok(r);
2138         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2139         assert_hvf_ok(r);
2140     }
2141     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2142         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2143         assert_hvf_ok(r);
2144         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2145         assert_hvf_ok(r);
2146     }
2147 }
2148 
2149 /*
2150  * Update the vCPU with the guest's view of debug registers. This view is kept
2151  * in the environment at all times.
2152  */
2153 static void hvf_put_guest_debug_registers(CPUState *cpu)
2154 {
2155     ARMCPU *arm_cpu = ARM_CPU(cpu);
2156     CPUARMState *env = &arm_cpu->env;
2157     hv_return_t r = HV_SUCCESS;
2158     int i;
2159 
2160     for (i = 0; i < max_hw_bps; i++) {
2161         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2162                                 env->cp15.dbgbcr[i]);
2163         assert_hvf_ok(r);
2164         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2165                                 env->cp15.dbgbvr[i]);
2166         assert_hvf_ok(r);
2167     }
2168 
2169     for (i = 0; i < max_hw_wps; i++) {
2170         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2171                                 env->cp15.dbgwcr[i]);
2172         assert_hvf_ok(r);
2173         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2174                                 env->cp15.dbgwvr[i]);
2175         assert_hvf_ok(r);
2176     }
2177 }
2178 
2179 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2180 {
2181     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2182 }
2183 
2184 static void hvf_arch_set_traps(void)
2185 {
2186     CPUState *cpu;
2187     bool should_enable_traps = false;
2188     hv_return_t r = HV_SUCCESS;
2189 
2190     /* Check whether guest debugging is enabled for at least one vCPU; if it
2191      * is, enable exiting the guest on all vCPUs */
2192     CPU_FOREACH(cpu) {
2193         should_enable_traps |= cpu->accel->guest_debug_enabled;
2194     }
2195     CPU_FOREACH(cpu) {
2196         /* Set whether debug exceptions exit the guest */
2197         r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2198                                               should_enable_traps);
2199         assert_hvf_ok(r);
2200 
2201         /* Set whether accesses to debug registers exit the guest */
2202         r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2203                                                 should_enable_traps);
2204         assert_hvf_ok(r);
2205     }
2206 }
2207 
2208 void hvf_arch_update_guest_debug(CPUState *cpu)
2209 {
2210     ARMCPU *arm_cpu = ARM_CPU(cpu);
2211     CPUARMState *env = &arm_cpu->env;
2212 
2213     /* Check whether guest debugging is enabled */
2214     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2215                                     hvf_sw_breakpoints_active(cpu) ||
2216                                     hvf_arm_hw_debug_active(cpu);
2217 
2218     /* Update debug registers */
2219     if (cpu->accel->guest_debug_enabled) {
2220         hvf_put_gdbstub_debug_registers(cpu);
2221     } else {
2222         hvf_put_guest_debug_registers(cpu);
2223     }
2224 
2225     cpu_synchronize_state(cpu);
2226 
2227     /* Enable/disable single-stepping */
2228     if (cpu->singlestep_enabled) {
2229         env->cp15.mdscr_el1 =
2230             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2231         pstate_write(env, pstate_read(env) | PSTATE_SS);
2232     } else {
2233         env->cp15.mdscr_el1 =
2234             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2235     }
2236 
2237     /* Enable/disable Breakpoint exceptions */
2238     if (hvf_arm_hw_debug_active(cpu)) {
2239         env->cp15.mdscr_el1 =
2240             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2241     } else {
2242         env->cp15.mdscr_el1 =
2243             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2244     }
2245 
2246     hvf_arch_set_traps();
2247 }
2248 
2249 bool hvf_arch_supports_guest_debug(void)
2250 {
2251     return true;
2252 }
2253