xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision 25268a18)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 #include "trace/trace-target_arm_hvf.h"
34 #include "migration/vmstate.h"
35 
36 #include "gdbstub/enums.h"
37 
38 #define MDSCR_EL1_SS_SHIFT  0
39 #define MDSCR_EL1_MDE_SHIFT 15
40 
41 static const uint16_t dbgbcr_regs[] = {
42     HV_SYS_REG_DBGBCR0_EL1,
43     HV_SYS_REG_DBGBCR1_EL1,
44     HV_SYS_REG_DBGBCR2_EL1,
45     HV_SYS_REG_DBGBCR3_EL1,
46     HV_SYS_REG_DBGBCR4_EL1,
47     HV_SYS_REG_DBGBCR5_EL1,
48     HV_SYS_REG_DBGBCR6_EL1,
49     HV_SYS_REG_DBGBCR7_EL1,
50     HV_SYS_REG_DBGBCR8_EL1,
51     HV_SYS_REG_DBGBCR9_EL1,
52     HV_SYS_REG_DBGBCR10_EL1,
53     HV_SYS_REG_DBGBCR11_EL1,
54     HV_SYS_REG_DBGBCR12_EL1,
55     HV_SYS_REG_DBGBCR13_EL1,
56     HV_SYS_REG_DBGBCR14_EL1,
57     HV_SYS_REG_DBGBCR15_EL1,
58 };
59 
60 static const uint16_t dbgbvr_regs[] = {
61     HV_SYS_REG_DBGBVR0_EL1,
62     HV_SYS_REG_DBGBVR1_EL1,
63     HV_SYS_REG_DBGBVR2_EL1,
64     HV_SYS_REG_DBGBVR3_EL1,
65     HV_SYS_REG_DBGBVR4_EL1,
66     HV_SYS_REG_DBGBVR5_EL1,
67     HV_SYS_REG_DBGBVR6_EL1,
68     HV_SYS_REG_DBGBVR7_EL1,
69     HV_SYS_REG_DBGBVR8_EL1,
70     HV_SYS_REG_DBGBVR9_EL1,
71     HV_SYS_REG_DBGBVR10_EL1,
72     HV_SYS_REG_DBGBVR11_EL1,
73     HV_SYS_REG_DBGBVR12_EL1,
74     HV_SYS_REG_DBGBVR13_EL1,
75     HV_SYS_REG_DBGBVR14_EL1,
76     HV_SYS_REG_DBGBVR15_EL1,
77 };
78 
79 static const uint16_t dbgwcr_regs[] = {
80     HV_SYS_REG_DBGWCR0_EL1,
81     HV_SYS_REG_DBGWCR1_EL1,
82     HV_SYS_REG_DBGWCR2_EL1,
83     HV_SYS_REG_DBGWCR3_EL1,
84     HV_SYS_REG_DBGWCR4_EL1,
85     HV_SYS_REG_DBGWCR5_EL1,
86     HV_SYS_REG_DBGWCR6_EL1,
87     HV_SYS_REG_DBGWCR7_EL1,
88     HV_SYS_REG_DBGWCR8_EL1,
89     HV_SYS_REG_DBGWCR9_EL1,
90     HV_SYS_REG_DBGWCR10_EL1,
91     HV_SYS_REG_DBGWCR11_EL1,
92     HV_SYS_REG_DBGWCR12_EL1,
93     HV_SYS_REG_DBGWCR13_EL1,
94     HV_SYS_REG_DBGWCR14_EL1,
95     HV_SYS_REG_DBGWCR15_EL1,
96 };
97 
98 static const uint16_t dbgwvr_regs[] = {
99     HV_SYS_REG_DBGWVR0_EL1,
100     HV_SYS_REG_DBGWVR1_EL1,
101     HV_SYS_REG_DBGWVR2_EL1,
102     HV_SYS_REG_DBGWVR3_EL1,
103     HV_SYS_REG_DBGWVR4_EL1,
104     HV_SYS_REG_DBGWVR5_EL1,
105     HV_SYS_REG_DBGWVR6_EL1,
106     HV_SYS_REG_DBGWVR7_EL1,
107     HV_SYS_REG_DBGWVR8_EL1,
108     HV_SYS_REG_DBGWVR9_EL1,
109     HV_SYS_REG_DBGWVR10_EL1,
110     HV_SYS_REG_DBGWVR11_EL1,
111     HV_SYS_REG_DBGWVR12_EL1,
112     HV_SYS_REG_DBGWVR13_EL1,
113     HV_SYS_REG_DBGWVR14_EL1,
114     HV_SYS_REG_DBGWVR15_EL1,
115 };
116 
117 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
118 {
119     uint64_t val;
120     hv_return_t ret;
121     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
122                                          &val);
123     assert_hvf_ok(ret);
124     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
125 }
126 
127 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
128 {
129     uint64_t val;
130     hv_return_t ret;
131     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
132                                          &val);
133     assert_hvf_ok(ret);
134     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
135 }
136 
137 void hvf_arm_init_debug(void)
138 {
139     hv_vcpu_config_t config;
140     config = hv_vcpu_config_create();
141 
142     max_hw_bps = hvf_arm_num_brps(config);
143     hw_breakpoints =
144         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
145 
146     max_hw_wps = hvf_arm_num_wrps(config);
147     hw_watchpoints =
148         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
149 }
150 
151 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
152         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
153 
154 #define SYSREG_OP0_SHIFT      20
155 #define SYSREG_OP0_MASK       0x3
156 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
157 #define SYSREG_OP1_SHIFT      14
158 #define SYSREG_OP1_MASK       0x7
159 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
160 #define SYSREG_CRN_SHIFT      10
161 #define SYSREG_CRN_MASK       0xf
162 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
163 #define SYSREG_CRM_SHIFT      1
164 #define SYSREG_CRM_MASK       0xf
165 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
166 #define SYSREG_OP2_SHIFT      17
167 #define SYSREG_OP2_MASK       0x7
168 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
169 
170 #define SYSREG(op0, op1, crn, crm, op2) \
171     ((op0 << SYSREG_OP0_SHIFT) | \
172      (op1 << SYSREG_OP1_SHIFT) | \
173      (crn << SYSREG_CRN_SHIFT) | \
174      (crm << SYSREG_CRM_SHIFT) | \
175      (op2 << SYSREG_OP2_SHIFT))
176 #define SYSREG_MASK \
177     SYSREG(SYSREG_OP0_MASK, \
178            SYSREG_OP1_MASK, \
179            SYSREG_CRN_MASK, \
180            SYSREG_CRM_MASK, \
181            SYSREG_OP2_MASK)
182 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
183 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
184 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
185 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
186 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
187 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
188 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
189 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
190 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
191 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
192 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
193 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
194 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
195 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
196 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
197 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
198 
199 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
200 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
201 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
202 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
203 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
204 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
205 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
206 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
207 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
208 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
209 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
210 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
211 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
212 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
213 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
214 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
215 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
216 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
217 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
218 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
219 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
220 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
221 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
222 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
223 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
224 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
225 
226 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
227 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
228 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
229 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
230 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
231 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
232 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
233 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
234 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
235 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
236 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
237 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
238 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
239 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
240 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
241 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
242 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
243 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
244 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
245 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
246 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
247 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
248 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
249 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
250 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
251 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
252 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
253 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
254 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
255 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
256 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
257 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
258 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
259 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
260 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
261 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
262 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
263 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
264 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
265 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
266 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
267 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
268 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
269 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
270 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
271 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
272 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
273 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
274 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
275 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
276 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
277 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
278 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
279 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
280 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
281 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
282 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
283 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
284 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
285 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
286 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
287 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
288 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
289 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
290 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
291 
292 #define WFX_IS_WFE (1 << 0)
293 
294 #define TMR_CTL_ENABLE  (1 << 0)
295 #define TMR_CTL_IMASK   (1 << 1)
296 #define TMR_CTL_ISTATUS (1 << 2)
297 
298 static void hvf_wfi(CPUState *cpu);
299 
300 typedef struct HVFVTimer {
301     /* Vtimer value during migration and paused state */
302     uint64_t vtimer_val;
303 } HVFVTimer;
304 
305 static HVFVTimer vtimer;
306 
307 typedef struct ARMHostCPUFeatures {
308     ARMISARegisters isar;
309     uint64_t features;
310     uint64_t midr;
311     uint32_t reset_sctlr;
312     const char *dtb_compatible;
313 } ARMHostCPUFeatures;
314 
315 static ARMHostCPUFeatures arm_host_cpu_features;
316 
317 struct hvf_reg_match {
318     int reg;
319     uint64_t offset;
320 };
321 
322 static const struct hvf_reg_match hvf_reg_match[] = {
323     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
324     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
325     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
326     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
327     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
328     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
329     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
330     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
331     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
332     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
333     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
334     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
335     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
336     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
337     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
338     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
339     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
340     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
341     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
342     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
343     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
344     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
345     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
346     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
347     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
348     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
349     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
350     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
351     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
352     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
353     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
354     { HV_REG_PC,   offsetof(CPUARMState, pc) },
355 };
356 
357 static const struct hvf_reg_match hvf_fpreg_match[] = {
358     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
359     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
360     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
361     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
362     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
363     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
364     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
365     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
366     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
367     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
368     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
369     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
370     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
371     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
372     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
373     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
374     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
375     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
376     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
377     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
378     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
379     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
380     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
381     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
382     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
383     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
384     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
385     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
386     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
387     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
388     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
389     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
390 };
391 
392 struct hvf_sreg_match {
393     int reg;
394     uint32_t key;
395     uint32_t cp_idx;
396 };
397 
398 static struct hvf_sreg_match hvf_sreg_match[] = {
399     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
400     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
401     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
402     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },
403 
404     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
405     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
406     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
407     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },
408 
409     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
410     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
411     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
412     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },
413 
414     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
415     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
416     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
417     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },
418 
419     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
420     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
421     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
422     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },
423 
424     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
425     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
426     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
427     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },
428 
429     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
430     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
431     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
432     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },
433 
434     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
435     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
436     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
437     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },
438 
439     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
440     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
441     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
442     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },
443 
444     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
445     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
446     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
447     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },
448 
449     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
450     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
451     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
452     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },
453 
454     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
455     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
456     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
457     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },
458 
459     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
460     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
461     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
462     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },
463 
464     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
465     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
466     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
467     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },
468 
469     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
470     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
471     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
472     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },
473 
474     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
475     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
476     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
477     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },
478 
479 #ifdef SYNC_NO_RAW_REGS
480     /*
481      * The registers below are manually synced on init because they are
482      * marked as NO_RAW. We still list them to make number space sync easier.
483      */
484     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
485     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
486     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
487     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
488 #endif
489     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
490     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
491     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
492     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
493     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
494 #ifdef SYNC_NO_MMFR0
495     /* We keep the hardware MMFR0 around. HW limits are there anyway */
496     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
497 #endif
498     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
499     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
500     /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
501 
502     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
503     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
504     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
505     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
506     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
507     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
508 
509     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
510     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
511     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
512     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
513     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
514     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
515     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
516     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
517     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
518     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
519 
520     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
521     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
522     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
523     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
524     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
525     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
526     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
527     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
528     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
529     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
530     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
531     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
532     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
533     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
534     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
535     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
536     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
537     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
538     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
539     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
540 };
541 
542 int hvf_get_registers(CPUState *cpu)
543 {
544     ARMCPU *arm_cpu = ARM_CPU(cpu);
545     CPUARMState *env = &arm_cpu->env;
546     hv_return_t ret;
547     uint64_t val;
548     hv_simd_fp_uchar16_t fpval;
549     int i;
550 
551     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
552         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
553         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
554         assert_hvf_ok(ret);
555     }
556 
557     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
558         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
559                                       &fpval);
560         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
561         assert_hvf_ok(ret);
562     }
563 
564     val = 0;
565     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
566     assert_hvf_ok(ret);
567     vfp_set_fpcr(env, val);
568 
569     val = 0;
570     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
571     assert_hvf_ok(ret);
572     vfp_set_fpsr(env, val);
573 
574     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
575     assert_hvf_ok(ret);
576     pstate_write(env, val);
577 
578     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
579         if (hvf_sreg_match[i].cp_idx == -1) {
580             continue;
581         }
582 
583         if (cpu->accel->guest_debug_enabled) {
584             /* Handle debug registers */
585             switch (hvf_sreg_match[i].reg) {
586             case HV_SYS_REG_DBGBVR0_EL1:
587             case HV_SYS_REG_DBGBCR0_EL1:
588             case HV_SYS_REG_DBGWVR0_EL1:
589             case HV_SYS_REG_DBGWCR0_EL1:
590             case HV_SYS_REG_DBGBVR1_EL1:
591             case HV_SYS_REG_DBGBCR1_EL1:
592             case HV_SYS_REG_DBGWVR1_EL1:
593             case HV_SYS_REG_DBGWCR1_EL1:
594             case HV_SYS_REG_DBGBVR2_EL1:
595             case HV_SYS_REG_DBGBCR2_EL1:
596             case HV_SYS_REG_DBGWVR2_EL1:
597             case HV_SYS_REG_DBGWCR2_EL1:
598             case HV_SYS_REG_DBGBVR3_EL1:
599             case HV_SYS_REG_DBGBCR3_EL1:
600             case HV_SYS_REG_DBGWVR3_EL1:
601             case HV_SYS_REG_DBGWCR3_EL1:
602             case HV_SYS_REG_DBGBVR4_EL1:
603             case HV_SYS_REG_DBGBCR4_EL1:
604             case HV_SYS_REG_DBGWVR4_EL1:
605             case HV_SYS_REG_DBGWCR4_EL1:
606             case HV_SYS_REG_DBGBVR5_EL1:
607             case HV_SYS_REG_DBGBCR5_EL1:
608             case HV_SYS_REG_DBGWVR5_EL1:
609             case HV_SYS_REG_DBGWCR5_EL1:
610             case HV_SYS_REG_DBGBVR6_EL1:
611             case HV_SYS_REG_DBGBCR6_EL1:
612             case HV_SYS_REG_DBGWVR6_EL1:
613             case HV_SYS_REG_DBGWCR6_EL1:
614             case HV_SYS_REG_DBGBVR7_EL1:
615             case HV_SYS_REG_DBGBCR7_EL1:
616             case HV_SYS_REG_DBGWVR7_EL1:
617             case HV_SYS_REG_DBGWCR7_EL1:
618             case HV_SYS_REG_DBGBVR8_EL1:
619             case HV_SYS_REG_DBGBCR8_EL1:
620             case HV_SYS_REG_DBGWVR8_EL1:
621             case HV_SYS_REG_DBGWCR8_EL1:
622             case HV_SYS_REG_DBGBVR9_EL1:
623             case HV_SYS_REG_DBGBCR9_EL1:
624             case HV_SYS_REG_DBGWVR9_EL1:
625             case HV_SYS_REG_DBGWCR9_EL1:
626             case HV_SYS_REG_DBGBVR10_EL1:
627             case HV_SYS_REG_DBGBCR10_EL1:
628             case HV_SYS_REG_DBGWVR10_EL1:
629             case HV_SYS_REG_DBGWCR10_EL1:
630             case HV_SYS_REG_DBGBVR11_EL1:
631             case HV_SYS_REG_DBGBCR11_EL1:
632             case HV_SYS_REG_DBGWVR11_EL1:
633             case HV_SYS_REG_DBGWCR11_EL1:
634             case HV_SYS_REG_DBGBVR12_EL1:
635             case HV_SYS_REG_DBGBCR12_EL1:
636             case HV_SYS_REG_DBGWVR12_EL1:
637             case HV_SYS_REG_DBGWCR12_EL1:
638             case HV_SYS_REG_DBGBVR13_EL1:
639             case HV_SYS_REG_DBGBCR13_EL1:
640             case HV_SYS_REG_DBGWVR13_EL1:
641             case HV_SYS_REG_DBGWCR13_EL1:
642             case HV_SYS_REG_DBGBVR14_EL1:
643             case HV_SYS_REG_DBGBCR14_EL1:
644             case HV_SYS_REG_DBGWVR14_EL1:
645             case HV_SYS_REG_DBGWCR14_EL1:
646             case HV_SYS_REG_DBGBVR15_EL1:
647             case HV_SYS_REG_DBGBCR15_EL1:
648             case HV_SYS_REG_DBGWVR15_EL1:
649             case HV_SYS_REG_DBGWCR15_EL1: {
650                 /*
651                  * If the guest is being debugged, the vCPU's debug registers
652                  * are holding the gdbstub's view of the registers (set in
653                  * hvf_arch_update_guest_debug()).
654                  * Since the environment is used to store only the guest's view
655                  * of the registers, don't update it with the values from the
656                  * vCPU but simply keep the values from the previous
657                  * environment.
658                  */
659                 const ARMCPRegInfo *ri;
660                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
661                 val = read_raw_cp_reg(env, ri);
662 
663                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
664                 continue;
665             }
666             }
667         }
668 
669         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
670         assert_hvf_ok(ret);
671 
672         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
673     }
674     assert(write_list_to_cpustate(arm_cpu));
675 
676     aarch64_restore_sp(env, arm_current_el(env));
677 
678     return 0;
679 }
680 
681 int hvf_put_registers(CPUState *cpu)
682 {
683     ARMCPU *arm_cpu = ARM_CPU(cpu);
684     CPUARMState *env = &arm_cpu->env;
685     hv_return_t ret;
686     uint64_t val;
687     hv_simd_fp_uchar16_t fpval;
688     int i;
689 
690     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
691         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
692         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
693         assert_hvf_ok(ret);
694     }
695 
696     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
697         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
698         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
699                                       fpval);
700         assert_hvf_ok(ret);
701     }
702 
703     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
704     assert_hvf_ok(ret);
705 
706     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
707     assert_hvf_ok(ret);
708 
709     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
710     assert_hvf_ok(ret);
711 
712     aarch64_save_sp(env, arm_current_el(env));
713 
714     assert(write_cpustate_to_list(arm_cpu, false));
715     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
716         if (hvf_sreg_match[i].cp_idx == -1) {
717             continue;
718         }
719 
720         if (cpu->accel->guest_debug_enabled) {
721             /* Handle debug registers */
722             switch (hvf_sreg_match[i].reg) {
723             case HV_SYS_REG_DBGBVR0_EL1:
724             case HV_SYS_REG_DBGBCR0_EL1:
725             case HV_SYS_REG_DBGWVR0_EL1:
726             case HV_SYS_REG_DBGWCR0_EL1:
727             case HV_SYS_REG_DBGBVR1_EL1:
728             case HV_SYS_REG_DBGBCR1_EL1:
729             case HV_SYS_REG_DBGWVR1_EL1:
730             case HV_SYS_REG_DBGWCR1_EL1:
731             case HV_SYS_REG_DBGBVR2_EL1:
732             case HV_SYS_REG_DBGBCR2_EL1:
733             case HV_SYS_REG_DBGWVR2_EL1:
734             case HV_SYS_REG_DBGWCR2_EL1:
735             case HV_SYS_REG_DBGBVR3_EL1:
736             case HV_SYS_REG_DBGBCR3_EL1:
737             case HV_SYS_REG_DBGWVR3_EL1:
738             case HV_SYS_REG_DBGWCR3_EL1:
739             case HV_SYS_REG_DBGBVR4_EL1:
740             case HV_SYS_REG_DBGBCR4_EL1:
741             case HV_SYS_REG_DBGWVR4_EL1:
742             case HV_SYS_REG_DBGWCR4_EL1:
743             case HV_SYS_REG_DBGBVR5_EL1:
744             case HV_SYS_REG_DBGBCR5_EL1:
745             case HV_SYS_REG_DBGWVR5_EL1:
746             case HV_SYS_REG_DBGWCR5_EL1:
747             case HV_SYS_REG_DBGBVR6_EL1:
748             case HV_SYS_REG_DBGBCR6_EL1:
749             case HV_SYS_REG_DBGWVR6_EL1:
750             case HV_SYS_REG_DBGWCR6_EL1:
751             case HV_SYS_REG_DBGBVR7_EL1:
752             case HV_SYS_REG_DBGBCR7_EL1:
753             case HV_SYS_REG_DBGWVR7_EL1:
754             case HV_SYS_REG_DBGWCR7_EL1:
755             case HV_SYS_REG_DBGBVR8_EL1:
756             case HV_SYS_REG_DBGBCR8_EL1:
757             case HV_SYS_REG_DBGWVR8_EL1:
758             case HV_SYS_REG_DBGWCR8_EL1:
759             case HV_SYS_REG_DBGBVR9_EL1:
760             case HV_SYS_REG_DBGBCR9_EL1:
761             case HV_SYS_REG_DBGWVR9_EL1:
762             case HV_SYS_REG_DBGWCR9_EL1:
763             case HV_SYS_REG_DBGBVR10_EL1:
764             case HV_SYS_REG_DBGBCR10_EL1:
765             case HV_SYS_REG_DBGWVR10_EL1:
766             case HV_SYS_REG_DBGWCR10_EL1:
767             case HV_SYS_REG_DBGBVR11_EL1:
768             case HV_SYS_REG_DBGBCR11_EL1:
769             case HV_SYS_REG_DBGWVR11_EL1:
770             case HV_SYS_REG_DBGWCR11_EL1:
771             case HV_SYS_REG_DBGBVR12_EL1:
772             case HV_SYS_REG_DBGBCR12_EL1:
773             case HV_SYS_REG_DBGWVR12_EL1:
774             case HV_SYS_REG_DBGWCR12_EL1:
775             case HV_SYS_REG_DBGBVR13_EL1:
776             case HV_SYS_REG_DBGBCR13_EL1:
777             case HV_SYS_REG_DBGWVR13_EL1:
778             case HV_SYS_REG_DBGWCR13_EL1:
779             case HV_SYS_REG_DBGBVR14_EL1:
780             case HV_SYS_REG_DBGBCR14_EL1:
781             case HV_SYS_REG_DBGWVR14_EL1:
782             case HV_SYS_REG_DBGWCR14_EL1:
783             case HV_SYS_REG_DBGBVR15_EL1:
784             case HV_SYS_REG_DBGBCR15_EL1:
785             case HV_SYS_REG_DBGWVR15_EL1:
786             case HV_SYS_REG_DBGWCR15_EL1:
787                 /*
788                  * If the guest is being debugged, the vCPU's debug registers
789                  * are already holding the gdbstub's view of the registers (set
790                  * in hvf_arch_update_guest_debug()).
791                  */
792                 continue;
793             }
794         }
795 
796         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
797         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
798         assert_hvf_ok(ret);
799     }
800 
801     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
802     assert_hvf_ok(ret);
803 
804     return 0;
805 }
806 
807 static void flush_cpu_state(CPUState *cpu)
808 {
809     if (cpu->accel->dirty) {
810         hvf_put_registers(cpu);
811         cpu->accel->dirty = false;
812     }
813 }
814 
815 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
816 {
817     hv_return_t r;
818 
819     flush_cpu_state(cpu);
820 
821     if (rt < 31) {
822         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
823         assert_hvf_ok(r);
824     }
825 }
826 
827 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
828 {
829     uint64_t val = 0;
830     hv_return_t r;
831 
832     flush_cpu_state(cpu);
833 
834     if (rt < 31) {
835         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
836         assert_hvf_ok(r);
837     }
838 
839     return val;
840 }
841 
842 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
843 {
844     ARMISARegisters host_isar = {};
845     const struct isar_regs {
846         int reg;
847         uint64_t *val;
848     } regs[] = {
849         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
850         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
851         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
852         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
853         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
854         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
855         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
856         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
857         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
858         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
859         /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
860     };
861     hv_vcpu_t fd;
862     hv_return_t r = HV_SUCCESS;
863     hv_vcpu_exit_t *exit;
864     int i;
865 
866     ahcf->dtb_compatible = "arm,arm-v8";
867     ahcf->features = (1ULL << ARM_FEATURE_V8) |
868                      (1ULL << ARM_FEATURE_NEON) |
869                      (1ULL << ARM_FEATURE_AARCH64) |
870                      (1ULL << ARM_FEATURE_PMU) |
871                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
872 
873     /* We set up a small vcpu to extract host registers */
874 
875     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
876         return false;
877     }
878 
879     for (i = 0; i < ARRAY_SIZE(regs); i++) {
880         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
881     }
882     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
883     r |= hv_vcpu_destroy(fd);
884 
885     ahcf->isar = host_isar;
886 
887     /*
888      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
889      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
890      */
891     ahcf->reset_sctlr = 0x30100180;
892     /*
893      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
894      * let's disable it on boot and then allow guest software to turn it on by
895      * setting it to 0.
896      */
897     ahcf->reset_sctlr |= 0x00800000;
898 
899     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
900     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
901         return false;
902     }
903 
904     return r == HV_SUCCESS;
905 }
906 
907 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
908 {
909     if (!arm_host_cpu_features.dtb_compatible) {
910         if (!hvf_enabled() ||
911             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
912             /*
913              * We can't report this error yet, so flag that we need to
914              * in arm_cpu_realizefn().
915              */
916             cpu->host_cpu_probe_failed = true;
917             return;
918         }
919     }
920 
921     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
922     cpu->isar = arm_host_cpu_features.isar;
923     cpu->env.features = arm_host_cpu_features.features;
924     cpu->midr = arm_host_cpu_features.midr;
925     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
926 }
927 
928 void hvf_arch_vcpu_destroy(CPUState *cpu)
929 {
930 }
931 
932 int hvf_arch_init_vcpu(CPUState *cpu)
933 {
934     ARMCPU *arm_cpu = ARM_CPU(cpu);
935     CPUARMState *env = &arm_cpu->env;
936     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
937     uint32_t sregs_cnt = 0;
938     uint64_t pfr;
939     hv_return_t ret;
940     int i;
941 
942     env->aarch64 = true;
943     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
944 
945     /* Allocate enough space for our sysreg sync */
946     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
947                                      sregs_match_len);
948     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
949                                     sregs_match_len);
950     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
951                                              arm_cpu->cpreg_vmstate_indexes,
952                                              sregs_match_len);
953     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
954                                             arm_cpu->cpreg_vmstate_values,
955                                             sregs_match_len);
956 
957     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
958 
959     /* Populate cp list for all known sysregs */
960     for (i = 0; i < sregs_match_len; i++) {
961         const ARMCPRegInfo *ri;
962         uint32_t key = hvf_sreg_match[i].key;
963 
964         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
965         if (ri) {
966             assert(!(ri->type & ARM_CP_NO_RAW));
967             hvf_sreg_match[i].cp_idx = sregs_cnt;
968             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
969         } else {
970             hvf_sreg_match[i].cp_idx = -1;
971         }
972     }
973     arm_cpu->cpreg_array_len = sregs_cnt;
974     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
975 
976     assert(write_cpustate_to_list(arm_cpu, false));
977 
978     /* Set CP_NO_RAW system registers on init */
979     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
980                               arm_cpu->midr);
981     assert_hvf_ok(ret);
982 
983     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
984                               arm_cpu->mp_affinity);
985     assert_hvf_ok(ret);
986 
987     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
988     assert_hvf_ok(ret);
989     pfr |= env->gicv3state ? (1 << 24) : 0;
990     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
991     assert_hvf_ok(ret);
992 
993     /* We're limited to underlying hardware caps, override internal versions */
994     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
995                               &arm_cpu->isar.id_aa64mmfr0);
996     assert_hvf_ok(ret);
997 
998     return 0;
999 }
1000 
1001 void hvf_kick_vcpu_thread(CPUState *cpu)
1002 {
1003     cpus_kick_thread(cpu);
1004     hv_vcpus_exit(&cpu->accel->fd, 1);
1005 }
1006 
1007 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1008                                 uint32_t syndrome)
1009 {
1010     ARMCPU *arm_cpu = ARM_CPU(cpu);
1011     CPUARMState *env = &arm_cpu->env;
1012 
1013     cpu->exception_index = excp;
1014     env->exception.target_el = 1;
1015     env->exception.syndrome = syndrome;
1016 
1017     arm_cpu_do_interrupt(cpu);
1018 }
1019 
1020 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1021 {
1022     int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1023     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1024 }
1025 
1026 /*
1027  * Handle a PSCI call.
1028  *
1029  * Returns 0 on success
1030  *         -1 when the PSCI call is unknown,
1031  */
1032 static bool hvf_handle_psci_call(CPUState *cpu)
1033 {
1034     ARMCPU *arm_cpu = ARM_CPU(cpu);
1035     CPUARMState *env = &arm_cpu->env;
1036     uint64_t param[4] = {
1037         env->xregs[0],
1038         env->xregs[1],
1039         env->xregs[2],
1040         env->xregs[3]
1041     };
1042     uint64_t context_id, mpidr;
1043     bool target_aarch64 = true;
1044     CPUState *target_cpu_state;
1045     ARMCPU *target_cpu;
1046     target_ulong entry;
1047     int target_el = 1;
1048     int32_t ret = 0;
1049 
1050     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1051                         arm_cpu_mp_affinity(arm_cpu));
1052 
1053     switch (param[0]) {
1054     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1055         ret = QEMU_PSCI_VERSION_1_1;
1056         break;
1057     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1058         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1059         break;
1060     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1061     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1062         mpidr = param[1];
1063 
1064         switch (param[2]) {
1065         case 0:
1066             target_cpu_state = arm_get_cpu_by_id(mpidr);
1067             if (!target_cpu_state) {
1068                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1069                 break;
1070             }
1071             target_cpu = ARM_CPU(target_cpu_state);
1072 
1073             ret = target_cpu->power_state;
1074             break;
1075         default:
1076             /* Everything above affinity level 0 is always on. */
1077             ret = 0;
1078         }
1079         break;
1080     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1081         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1082         /*
1083          * QEMU reset and shutdown are async requests, but PSCI
1084          * mandates that we never return from the reset/shutdown
1085          * call, so power the CPU off now so it doesn't execute
1086          * anything further.
1087          */
1088         hvf_psci_cpu_off(arm_cpu);
1089         break;
1090     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1091         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1092         hvf_psci_cpu_off(arm_cpu);
1093         break;
1094     case QEMU_PSCI_0_1_FN_CPU_ON:
1095     case QEMU_PSCI_0_2_FN_CPU_ON:
1096     case QEMU_PSCI_0_2_FN64_CPU_ON:
1097         mpidr = param[1];
1098         entry = param[2];
1099         context_id = param[3];
1100         ret = arm_set_cpu_on(mpidr, entry, context_id,
1101                              target_el, target_aarch64);
1102         break;
1103     case QEMU_PSCI_0_1_FN_CPU_OFF:
1104     case QEMU_PSCI_0_2_FN_CPU_OFF:
1105         hvf_psci_cpu_off(arm_cpu);
1106         break;
1107     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1108     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1109     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1110         /* Affinity levels are not supported in QEMU */
1111         if (param[1] & 0xfffe0000) {
1112             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1113             break;
1114         }
1115         /* Powerdown is not supported, we always go into WFI */
1116         env->xregs[0] = 0;
1117         hvf_wfi(cpu);
1118         break;
1119     case QEMU_PSCI_0_1_FN_MIGRATE:
1120     case QEMU_PSCI_0_2_FN_MIGRATE:
1121         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1122         break;
1123     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1124         switch (param[1]) {
1125         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1126         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1127         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1128         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1129         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1130         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1131         case QEMU_PSCI_0_1_FN_CPU_ON:
1132         case QEMU_PSCI_0_2_FN_CPU_ON:
1133         case QEMU_PSCI_0_2_FN64_CPU_ON:
1134         case QEMU_PSCI_0_1_FN_CPU_OFF:
1135         case QEMU_PSCI_0_2_FN_CPU_OFF:
1136         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1137         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1138         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1139         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1140             ret = 0;
1141             break;
1142         case QEMU_PSCI_0_1_FN_MIGRATE:
1143         case QEMU_PSCI_0_2_FN_MIGRATE:
1144         default:
1145             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1146         }
1147         break;
1148     default:
1149         return false;
1150     }
1151 
1152     env->xregs[0] = ret;
1153     return true;
1154 }
1155 
1156 static bool is_id_sysreg(uint32_t reg)
1157 {
1158     return SYSREG_OP0(reg) == 3 &&
1159            SYSREG_OP1(reg) == 0 &&
1160            SYSREG_CRN(reg) == 0 &&
1161            SYSREG_CRM(reg) >= 1 &&
1162            SYSREG_CRM(reg) < 8;
1163 }
1164 
1165 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1166 {
1167     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1168                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1169                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1170                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1171                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1172                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1173 }
1174 
1175 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1176 {
1177     ARMCPU *arm_cpu = ARM_CPU(cpu);
1178     CPUARMState *env = &arm_cpu->env;
1179     const ARMCPRegInfo *ri;
1180 
1181     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1182     if (ri) {
1183         if (ri->accessfn) {
1184             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1185                 return false;
1186             }
1187         }
1188         if (ri->type & ARM_CP_CONST) {
1189             *val = ri->resetvalue;
1190         } else if (ri->readfn) {
1191             *val = ri->readfn(env, ri);
1192         } else {
1193             *val = CPREG_FIELD64(env, ri);
1194         }
1195         trace_hvf_vgic_read(ri->name, *val);
1196         return true;
1197     }
1198 
1199     return false;
1200 }
1201 
1202 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1203 {
1204     ARMCPU *arm_cpu = ARM_CPU(cpu);
1205     CPUARMState *env = &arm_cpu->env;
1206     uint64_t val = 0;
1207 
1208     switch (reg) {
1209     case SYSREG_CNTPCT_EL0:
1210         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1211               gt_cntfrq_period_ns(arm_cpu);
1212         break;
1213     case SYSREG_PMCR_EL0:
1214         val = env->cp15.c9_pmcr;
1215         break;
1216     case SYSREG_PMCCNTR_EL0:
1217         pmu_op_start(env);
1218         val = env->cp15.c15_ccnt;
1219         pmu_op_finish(env);
1220         break;
1221     case SYSREG_PMCNTENCLR_EL0:
1222         val = env->cp15.c9_pmcnten;
1223         break;
1224     case SYSREG_PMOVSCLR_EL0:
1225         val = env->cp15.c9_pmovsr;
1226         break;
1227     case SYSREG_PMSELR_EL0:
1228         val = env->cp15.c9_pmselr;
1229         break;
1230     case SYSREG_PMINTENCLR_EL1:
1231         val = env->cp15.c9_pminten;
1232         break;
1233     case SYSREG_PMCCFILTR_EL0:
1234         val = env->cp15.pmccfiltr_el0;
1235         break;
1236     case SYSREG_PMCNTENSET_EL0:
1237         val = env->cp15.c9_pmcnten;
1238         break;
1239     case SYSREG_PMUSERENR_EL0:
1240         val = env->cp15.c9_pmuserenr;
1241         break;
1242     case SYSREG_PMCEID0_EL0:
1243     case SYSREG_PMCEID1_EL0:
1244         /* We can't really count anything yet, declare all events invalid */
1245         val = 0;
1246         break;
1247     case SYSREG_OSLSR_EL1:
1248         val = env->cp15.oslsr_el1;
1249         break;
1250     case SYSREG_OSDLR_EL1:
1251         /* Dummy register */
1252         break;
1253     case SYSREG_ICC_AP0R0_EL1:
1254     case SYSREG_ICC_AP0R1_EL1:
1255     case SYSREG_ICC_AP0R2_EL1:
1256     case SYSREG_ICC_AP0R3_EL1:
1257     case SYSREG_ICC_AP1R0_EL1:
1258     case SYSREG_ICC_AP1R1_EL1:
1259     case SYSREG_ICC_AP1R2_EL1:
1260     case SYSREG_ICC_AP1R3_EL1:
1261     case SYSREG_ICC_ASGI1R_EL1:
1262     case SYSREG_ICC_BPR0_EL1:
1263     case SYSREG_ICC_BPR1_EL1:
1264     case SYSREG_ICC_DIR_EL1:
1265     case SYSREG_ICC_EOIR0_EL1:
1266     case SYSREG_ICC_EOIR1_EL1:
1267     case SYSREG_ICC_HPPIR0_EL1:
1268     case SYSREG_ICC_HPPIR1_EL1:
1269     case SYSREG_ICC_IAR0_EL1:
1270     case SYSREG_ICC_IAR1_EL1:
1271     case SYSREG_ICC_IGRPEN0_EL1:
1272     case SYSREG_ICC_IGRPEN1_EL1:
1273     case SYSREG_ICC_PMR_EL1:
1274     case SYSREG_ICC_SGI0R_EL1:
1275     case SYSREG_ICC_SGI1R_EL1:
1276     case SYSREG_ICC_SRE_EL1:
1277     case SYSREG_ICC_CTLR_EL1:
1278         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1279         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1280             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1281             return 1;
1282         }
1283         break;
1284     case SYSREG_DBGBVR0_EL1:
1285     case SYSREG_DBGBVR1_EL1:
1286     case SYSREG_DBGBVR2_EL1:
1287     case SYSREG_DBGBVR3_EL1:
1288     case SYSREG_DBGBVR4_EL1:
1289     case SYSREG_DBGBVR5_EL1:
1290     case SYSREG_DBGBVR6_EL1:
1291     case SYSREG_DBGBVR7_EL1:
1292     case SYSREG_DBGBVR8_EL1:
1293     case SYSREG_DBGBVR9_EL1:
1294     case SYSREG_DBGBVR10_EL1:
1295     case SYSREG_DBGBVR11_EL1:
1296     case SYSREG_DBGBVR12_EL1:
1297     case SYSREG_DBGBVR13_EL1:
1298     case SYSREG_DBGBVR14_EL1:
1299     case SYSREG_DBGBVR15_EL1:
1300         val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1301         break;
1302     case SYSREG_DBGBCR0_EL1:
1303     case SYSREG_DBGBCR1_EL1:
1304     case SYSREG_DBGBCR2_EL1:
1305     case SYSREG_DBGBCR3_EL1:
1306     case SYSREG_DBGBCR4_EL1:
1307     case SYSREG_DBGBCR5_EL1:
1308     case SYSREG_DBGBCR6_EL1:
1309     case SYSREG_DBGBCR7_EL1:
1310     case SYSREG_DBGBCR8_EL1:
1311     case SYSREG_DBGBCR9_EL1:
1312     case SYSREG_DBGBCR10_EL1:
1313     case SYSREG_DBGBCR11_EL1:
1314     case SYSREG_DBGBCR12_EL1:
1315     case SYSREG_DBGBCR13_EL1:
1316     case SYSREG_DBGBCR14_EL1:
1317     case SYSREG_DBGBCR15_EL1:
1318         val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1319         break;
1320     case SYSREG_DBGWVR0_EL1:
1321     case SYSREG_DBGWVR1_EL1:
1322     case SYSREG_DBGWVR2_EL1:
1323     case SYSREG_DBGWVR3_EL1:
1324     case SYSREG_DBGWVR4_EL1:
1325     case SYSREG_DBGWVR5_EL1:
1326     case SYSREG_DBGWVR6_EL1:
1327     case SYSREG_DBGWVR7_EL1:
1328     case SYSREG_DBGWVR8_EL1:
1329     case SYSREG_DBGWVR9_EL1:
1330     case SYSREG_DBGWVR10_EL1:
1331     case SYSREG_DBGWVR11_EL1:
1332     case SYSREG_DBGWVR12_EL1:
1333     case SYSREG_DBGWVR13_EL1:
1334     case SYSREG_DBGWVR14_EL1:
1335     case SYSREG_DBGWVR15_EL1:
1336         val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1337         break;
1338     case SYSREG_DBGWCR0_EL1:
1339     case SYSREG_DBGWCR1_EL1:
1340     case SYSREG_DBGWCR2_EL1:
1341     case SYSREG_DBGWCR3_EL1:
1342     case SYSREG_DBGWCR4_EL1:
1343     case SYSREG_DBGWCR5_EL1:
1344     case SYSREG_DBGWCR6_EL1:
1345     case SYSREG_DBGWCR7_EL1:
1346     case SYSREG_DBGWCR8_EL1:
1347     case SYSREG_DBGWCR9_EL1:
1348     case SYSREG_DBGWCR10_EL1:
1349     case SYSREG_DBGWCR11_EL1:
1350     case SYSREG_DBGWCR12_EL1:
1351     case SYSREG_DBGWCR13_EL1:
1352     case SYSREG_DBGWCR14_EL1:
1353     case SYSREG_DBGWCR15_EL1:
1354         val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1355         break;
1356     default:
1357         if (is_id_sysreg(reg)) {
1358             /* ID system registers read as RES0 */
1359             val = 0;
1360             break;
1361         }
1362         cpu_synchronize_state(cpu);
1363         trace_hvf_unhandled_sysreg_read(env->pc, reg,
1364                                         SYSREG_OP0(reg),
1365                                         SYSREG_OP1(reg),
1366                                         SYSREG_CRN(reg),
1367                                         SYSREG_CRM(reg),
1368                                         SYSREG_OP2(reg));
1369         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1370         return 1;
1371     }
1372 
1373     trace_hvf_sysreg_read(reg,
1374                           SYSREG_OP0(reg),
1375                           SYSREG_OP1(reg),
1376                           SYSREG_CRN(reg),
1377                           SYSREG_CRM(reg),
1378                           SYSREG_OP2(reg),
1379                           val);
1380     hvf_set_reg(cpu, rt, val);
1381 
1382     return 0;
1383 }
1384 
1385 static void pmu_update_irq(CPUARMState *env)
1386 {
1387     ARMCPU *cpu = env_archcpu(env);
1388     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1389             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1390 }
1391 
1392 static bool pmu_event_supported(uint16_t number)
1393 {
1394     return false;
1395 }
1396 
1397 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1398  * the current EL, security state, and register configuration.
1399  */
1400 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1401 {
1402     uint64_t filter;
1403     bool enabled, filtered = true;
1404     int el = arm_current_el(env);
1405 
1406     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1407               (env->cp15.c9_pmcnten & (1 << counter));
1408 
1409     if (counter == 31) {
1410         filter = env->cp15.pmccfiltr_el0;
1411     } else {
1412         filter = env->cp15.c14_pmevtyper[counter];
1413     }
1414 
1415     if (el == 0) {
1416         filtered = filter & PMXEVTYPER_U;
1417     } else if (el == 1) {
1418         filtered = filter & PMXEVTYPER_P;
1419     }
1420 
1421     if (counter != 31) {
1422         /*
1423          * If not checking PMCCNTR, ensure the counter is setup to an event we
1424          * support
1425          */
1426         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1427         if (!pmu_event_supported(event)) {
1428             return false;
1429         }
1430     }
1431 
1432     return enabled && !filtered;
1433 }
1434 
1435 static void pmswinc_write(CPUARMState *env, uint64_t value)
1436 {
1437     unsigned int i;
1438     for (i = 0; i < pmu_num_counters(env); i++) {
1439         /* Increment a counter's count iff: */
1440         if ((value & (1 << i)) && /* counter's bit is set */
1441                 /* counter is enabled and not filtered */
1442                 pmu_counter_enabled(env, i) &&
1443                 /* counter is SW_INCR */
1444                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1445             /*
1446              * Detect if this write causes an overflow since we can't predict
1447              * PMSWINC overflows like we can for other events
1448              */
1449             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1450 
1451             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1452                 env->cp15.c9_pmovsr |= (1 << i);
1453                 pmu_update_irq(env);
1454             }
1455 
1456             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1457         }
1458     }
1459 }
1460 
1461 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1462 {
1463     ARMCPU *arm_cpu = ARM_CPU(cpu);
1464     CPUARMState *env = &arm_cpu->env;
1465     const ARMCPRegInfo *ri;
1466 
1467     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1468 
1469     if (ri) {
1470         if (ri->accessfn) {
1471             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1472                 return false;
1473             }
1474         }
1475         if (ri->writefn) {
1476             ri->writefn(env, ri, val);
1477         } else {
1478             CPREG_FIELD64(env, ri) = val;
1479         }
1480 
1481         trace_hvf_vgic_write(ri->name, val);
1482         return true;
1483     }
1484 
1485     return false;
1486 }
1487 
1488 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1489 {
1490     ARMCPU *arm_cpu = ARM_CPU(cpu);
1491     CPUARMState *env = &arm_cpu->env;
1492 
1493     trace_hvf_sysreg_write(reg,
1494                            SYSREG_OP0(reg),
1495                            SYSREG_OP1(reg),
1496                            SYSREG_CRN(reg),
1497                            SYSREG_CRM(reg),
1498                            SYSREG_OP2(reg),
1499                            val);
1500 
1501     switch (reg) {
1502     case SYSREG_PMCCNTR_EL0:
1503         pmu_op_start(env);
1504         env->cp15.c15_ccnt = val;
1505         pmu_op_finish(env);
1506         break;
1507     case SYSREG_PMCR_EL0:
1508         pmu_op_start(env);
1509 
1510         if (val & PMCRC) {
1511             /* The counter has been reset */
1512             env->cp15.c15_ccnt = 0;
1513         }
1514 
1515         if (val & PMCRP) {
1516             unsigned int i;
1517             for (i = 0; i < pmu_num_counters(env); i++) {
1518                 env->cp15.c14_pmevcntr[i] = 0;
1519             }
1520         }
1521 
1522         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1523         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1524 
1525         pmu_op_finish(env);
1526         break;
1527     case SYSREG_PMUSERENR_EL0:
1528         env->cp15.c9_pmuserenr = val & 0xf;
1529         break;
1530     case SYSREG_PMCNTENSET_EL0:
1531         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1532         break;
1533     case SYSREG_PMCNTENCLR_EL0:
1534         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1535         break;
1536     case SYSREG_PMINTENCLR_EL1:
1537         pmu_op_start(env);
1538         env->cp15.c9_pminten |= val;
1539         pmu_op_finish(env);
1540         break;
1541     case SYSREG_PMOVSCLR_EL0:
1542         pmu_op_start(env);
1543         env->cp15.c9_pmovsr &= ~val;
1544         pmu_op_finish(env);
1545         break;
1546     case SYSREG_PMSWINC_EL0:
1547         pmu_op_start(env);
1548         pmswinc_write(env, val);
1549         pmu_op_finish(env);
1550         break;
1551     case SYSREG_PMSELR_EL0:
1552         env->cp15.c9_pmselr = val & 0x1f;
1553         break;
1554     case SYSREG_PMCCFILTR_EL0:
1555         pmu_op_start(env);
1556         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1557         pmu_op_finish(env);
1558         break;
1559     case SYSREG_OSLAR_EL1:
1560         env->cp15.oslsr_el1 = val & 1;
1561         break;
1562     case SYSREG_OSDLR_EL1:
1563         /* Dummy register */
1564         break;
1565     case SYSREG_ICC_AP0R0_EL1:
1566     case SYSREG_ICC_AP0R1_EL1:
1567     case SYSREG_ICC_AP0R2_EL1:
1568     case SYSREG_ICC_AP0R3_EL1:
1569     case SYSREG_ICC_AP1R0_EL1:
1570     case SYSREG_ICC_AP1R1_EL1:
1571     case SYSREG_ICC_AP1R2_EL1:
1572     case SYSREG_ICC_AP1R3_EL1:
1573     case SYSREG_ICC_ASGI1R_EL1:
1574     case SYSREG_ICC_BPR0_EL1:
1575     case SYSREG_ICC_BPR1_EL1:
1576     case SYSREG_ICC_CTLR_EL1:
1577     case SYSREG_ICC_DIR_EL1:
1578     case SYSREG_ICC_EOIR0_EL1:
1579     case SYSREG_ICC_EOIR1_EL1:
1580     case SYSREG_ICC_HPPIR0_EL1:
1581     case SYSREG_ICC_HPPIR1_EL1:
1582     case SYSREG_ICC_IAR0_EL1:
1583     case SYSREG_ICC_IAR1_EL1:
1584     case SYSREG_ICC_IGRPEN0_EL1:
1585     case SYSREG_ICC_IGRPEN1_EL1:
1586     case SYSREG_ICC_PMR_EL1:
1587     case SYSREG_ICC_SGI0R_EL1:
1588     case SYSREG_ICC_SGI1R_EL1:
1589     case SYSREG_ICC_SRE_EL1:
1590         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1591         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1592             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1593         }
1594         break;
1595     case SYSREG_MDSCR_EL1:
1596         env->cp15.mdscr_el1 = val;
1597         break;
1598     case SYSREG_DBGBVR0_EL1:
1599     case SYSREG_DBGBVR1_EL1:
1600     case SYSREG_DBGBVR2_EL1:
1601     case SYSREG_DBGBVR3_EL1:
1602     case SYSREG_DBGBVR4_EL1:
1603     case SYSREG_DBGBVR5_EL1:
1604     case SYSREG_DBGBVR6_EL1:
1605     case SYSREG_DBGBVR7_EL1:
1606     case SYSREG_DBGBVR8_EL1:
1607     case SYSREG_DBGBVR9_EL1:
1608     case SYSREG_DBGBVR10_EL1:
1609     case SYSREG_DBGBVR11_EL1:
1610     case SYSREG_DBGBVR12_EL1:
1611     case SYSREG_DBGBVR13_EL1:
1612     case SYSREG_DBGBVR14_EL1:
1613     case SYSREG_DBGBVR15_EL1:
1614         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1615         break;
1616     case SYSREG_DBGBCR0_EL1:
1617     case SYSREG_DBGBCR1_EL1:
1618     case SYSREG_DBGBCR2_EL1:
1619     case SYSREG_DBGBCR3_EL1:
1620     case SYSREG_DBGBCR4_EL1:
1621     case SYSREG_DBGBCR5_EL1:
1622     case SYSREG_DBGBCR6_EL1:
1623     case SYSREG_DBGBCR7_EL1:
1624     case SYSREG_DBGBCR8_EL1:
1625     case SYSREG_DBGBCR9_EL1:
1626     case SYSREG_DBGBCR10_EL1:
1627     case SYSREG_DBGBCR11_EL1:
1628     case SYSREG_DBGBCR12_EL1:
1629     case SYSREG_DBGBCR13_EL1:
1630     case SYSREG_DBGBCR14_EL1:
1631     case SYSREG_DBGBCR15_EL1:
1632         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1633         break;
1634     case SYSREG_DBGWVR0_EL1:
1635     case SYSREG_DBGWVR1_EL1:
1636     case SYSREG_DBGWVR2_EL1:
1637     case SYSREG_DBGWVR3_EL1:
1638     case SYSREG_DBGWVR4_EL1:
1639     case SYSREG_DBGWVR5_EL1:
1640     case SYSREG_DBGWVR6_EL1:
1641     case SYSREG_DBGWVR7_EL1:
1642     case SYSREG_DBGWVR8_EL1:
1643     case SYSREG_DBGWVR9_EL1:
1644     case SYSREG_DBGWVR10_EL1:
1645     case SYSREG_DBGWVR11_EL1:
1646     case SYSREG_DBGWVR12_EL1:
1647     case SYSREG_DBGWVR13_EL1:
1648     case SYSREG_DBGWVR14_EL1:
1649     case SYSREG_DBGWVR15_EL1:
1650         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1651         break;
1652     case SYSREG_DBGWCR0_EL1:
1653     case SYSREG_DBGWCR1_EL1:
1654     case SYSREG_DBGWCR2_EL1:
1655     case SYSREG_DBGWCR3_EL1:
1656     case SYSREG_DBGWCR4_EL1:
1657     case SYSREG_DBGWCR5_EL1:
1658     case SYSREG_DBGWCR6_EL1:
1659     case SYSREG_DBGWCR7_EL1:
1660     case SYSREG_DBGWCR8_EL1:
1661     case SYSREG_DBGWCR9_EL1:
1662     case SYSREG_DBGWCR10_EL1:
1663     case SYSREG_DBGWCR11_EL1:
1664     case SYSREG_DBGWCR12_EL1:
1665     case SYSREG_DBGWCR13_EL1:
1666     case SYSREG_DBGWCR14_EL1:
1667     case SYSREG_DBGWCR15_EL1:
1668         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1669         break;
1670     default:
1671         cpu_synchronize_state(cpu);
1672         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1673                                          SYSREG_OP0(reg),
1674                                          SYSREG_OP1(reg),
1675                                          SYSREG_CRN(reg),
1676                                          SYSREG_CRM(reg),
1677                                          SYSREG_OP2(reg));
1678         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1679         return 1;
1680     }
1681 
1682     return 0;
1683 }
1684 
1685 static int hvf_inject_interrupts(CPUState *cpu)
1686 {
1687     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1688         trace_hvf_inject_fiq();
1689         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1690                                       true);
1691     }
1692 
1693     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1694         trace_hvf_inject_irq();
1695         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1696                                       true);
1697     }
1698 
1699     return 0;
1700 }
1701 
1702 static uint64_t hvf_vtimer_val_raw(void)
1703 {
1704     /*
1705      * mach_absolute_time() returns the vtimer value without the VM
1706      * offset that we define. Add our own offset on top.
1707      */
1708     return mach_absolute_time() - hvf_state->vtimer_offset;
1709 }
1710 
1711 static uint64_t hvf_vtimer_val(void)
1712 {
1713     if (!runstate_is_running()) {
1714         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1715         return vtimer.vtimer_val;
1716     }
1717 
1718     return hvf_vtimer_val_raw();
1719 }
1720 
1721 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1722 {
1723     /*
1724      * Use pselect to sleep so that other threads can IPI us while we're
1725      * sleeping.
1726      */
1727     qatomic_set_mb(&cpu->thread_kicked, false);
1728     bql_unlock();
1729     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1730     bql_lock();
1731 }
1732 
1733 static void hvf_wfi(CPUState *cpu)
1734 {
1735     ARMCPU *arm_cpu = ARM_CPU(cpu);
1736     struct timespec ts;
1737     hv_return_t r;
1738     uint64_t ctl;
1739     uint64_t cval;
1740     int64_t ticks_to_sleep;
1741     uint64_t seconds;
1742     uint64_t nanos;
1743     uint32_t cntfrq;
1744 
1745     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1746         /* Interrupt pending, no need to wait */
1747         return;
1748     }
1749 
1750     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1751     assert_hvf_ok(r);
1752 
1753     if (!(ctl & 1) || (ctl & 2)) {
1754         /* Timer disabled or masked, just wait for an IPI. */
1755         hvf_wait_for_ipi(cpu, NULL);
1756         return;
1757     }
1758 
1759     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1760     assert_hvf_ok(r);
1761 
1762     ticks_to_sleep = cval - hvf_vtimer_val();
1763     if (ticks_to_sleep < 0) {
1764         return;
1765     }
1766 
1767     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1768     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1769     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1770     nanos = ticks_to_sleep * cntfrq;
1771 
1772     /*
1773      * Don't sleep for less than the time a context switch would take,
1774      * so that we can satisfy fast timer requests on the same CPU.
1775      * Measurements on M1 show the sweet spot to be ~2ms.
1776      */
1777     if (!seconds && nanos < (2 * SCALE_MS)) {
1778         return;
1779     }
1780 
1781     ts = (struct timespec) { seconds, nanos };
1782     hvf_wait_for_ipi(cpu, &ts);
1783 }
1784 
1785 static void hvf_sync_vtimer(CPUState *cpu)
1786 {
1787     ARMCPU *arm_cpu = ARM_CPU(cpu);
1788     hv_return_t r;
1789     uint64_t ctl;
1790     bool irq_state;
1791 
1792     if (!cpu->accel->vtimer_masked) {
1793         /* We will get notified on vtimer changes by hvf, nothing to do */
1794         return;
1795     }
1796 
1797     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1798     assert_hvf_ok(r);
1799 
1800     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1801                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1802     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1803 
1804     if (!irq_state) {
1805         /* Timer no longer asserting, we can unmask it */
1806         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1807         cpu->accel->vtimer_masked = false;
1808     }
1809 }
1810 
1811 int hvf_vcpu_exec(CPUState *cpu)
1812 {
1813     ARMCPU *arm_cpu = ARM_CPU(cpu);
1814     CPUARMState *env = &arm_cpu->env;
1815     int ret;
1816     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1817     hv_return_t r;
1818     bool advance_pc = false;
1819 
1820     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1821         hvf_inject_interrupts(cpu)) {
1822         return EXCP_INTERRUPT;
1823     }
1824 
1825     if (cpu->halted) {
1826         return EXCP_HLT;
1827     }
1828 
1829     flush_cpu_state(cpu);
1830 
1831     bql_unlock();
1832     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1833 
1834     /* handle VMEXIT */
1835     uint64_t exit_reason = hvf_exit->reason;
1836     uint64_t syndrome = hvf_exit->exception.syndrome;
1837     uint32_t ec = syn_get_ec(syndrome);
1838 
1839     ret = 0;
1840     bql_lock();
1841     switch (exit_reason) {
1842     case HV_EXIT_REASON_EXCEPTION:
1843         /* This is the main one, handle below. */
1844         break;
1845     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1846         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1847         cpu->accel->vtimer_masked = true;
1848         return 0;
1849     case HV_EXIT_REASON_CANCELED:
1850         /* we got kicked, no exit to process */
1851         return 0;
1852     default:
1853         g_assert_not_reached();
1854     }
1855 
1856     hvf_sync_vtimer(cpu);
1857 
1858     switch (ec) {
1859     case EC_SOFTWARESTEP: {
1860         ret = EXCP_DEBUG;
1861 
1862         if (!cpu->singlestep_enabled) {
1863             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1864         }
1865         break;
1866     }
1867     case EC_AA64_BKPT: {
1868         ret = EXCP_DEBUG;
1869 
1870         cpu_synchronize_state(cpu);
1871 
1872         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1873             /* Re-inject into the guest */
1874             ret = 0;
1875             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1876         }
1877         break;
1878     }
1879     case EC_BREAKPOINT: {
1880         ret = EXCP_DEBUG;
1881 
1882         cpu_synchronize_state(cpu);
1883 
1884         if (!find_hw_breakpoint(cpu, env->pc)) {
1885             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1886         }
1887         break;
1888     }
1889     case EC_WATCHPOINT: {
1890         ret = EXCP_DEBUG;
1891 
1892         cpu_synchronize_state(cpu);
1893 
1894         CPUWatchpoint *wp =
1895             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1896         if (!wp) {
1897             error_report("EXCP_DEBUG but unknown hw watchpoint");
1898         }
1899         cpu->watchpoint_hit = wp;
1900         break;
1901     }
1902     case EC_DATAABORT: {
1903         bool isv = syndrome & ARM_EL_ISV;
1904         bool iswrite = (syndrome >> 6) & 1;
1905         bool s1ptw = (syndrome >> 7) & 1;
1906         uint32_t sas = (syndrome >> 22) & 3;
1907         uint32_t len = 1 << sas;
1908         uint32_t srt = (syndrome >> 16) & 0x1f;
1909         uint32_t cm = (syndrome >> 8) & 0x1;
1910         uint64_t val = 0;
1911 
1912         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1913                              hvf_exit->exception.physical_address, isv,
1914                              iswrite, s1ptw, len, srt);
1915 
1916         if (cm) {
1917             /* We don't cache MMIO regions */
1918             advance_pc = true;
1919             break;
1920         }
1921 
1922         assert(isv);
1923 
1924         if (iswrite) {
1925             val = hvf_get_reg(cpu, srt);
1926             address_space_write(&address_space_memory,
1927                                 hvf_exit->exception.physical_address,
1928                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1929         } else {
1930             address_space_read(&address_space_memory,
1931                                hvf_exit->exception.physical_address,
1932                                MEMTXATTRS_UNSPECIFIED, &val, len);
1933             hvf_set_reg(cpu, srt, val);
1934         }
1935 
1936         advance_pc = true;
1937         break;
1938     }
1939     case EC_SYSTEMREGISTERTRAP: {
1940         bool isread = (syndrome >> 0) & 1;
1941         uint32_t rt = (syndrome >> 5) & 0x1f;
1942         uint32_t reg = syndrome & SYSREG_MASK;
1943         uint64_t val;
1944         int sysreg_ret = 0;
1945 
1946         if (isread) {
1947             sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1948         } else {
1949             val = hvf_get_reg(cpu, rt);
1950             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1951         }
1952 
1953         advance_pc = !sysreg_ret;
1954         break;
1955     }
1956     case EC_WFX_TRAP:
1957         advance_pc = true;
1958         if (!(syndrome & WFX_IS_WFE)) {
1959             hvf_wfi(cpu);
1960         }
1961         break;
1962     case EC_AA64_HVC:
1963         cpu_synchronize_state(cpu);
1964         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1965             if (!hvf_handle_psci_call(cpu)) {
1966                 trace_hvf_unknown_hvc(env->xregs[0]);
1967                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1968                 env->xregs[0] = -1;
1969             }
1970         } else {
1971             trace_hvf_unknown_hvc(env->xregs[0]);
1972             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1973         }
1974         break;
1975     case EC_AA64_SMC:
1976         cpu_synchronize_state(cpu);
1977         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1978             advance_pc = true;
1979 
1980             if (!hvf_handle_psci_call(cpu)) {
1981                 trace_hvf_unknown_smc(env->xregs[0]);
1982                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1983                 env->xregs[0] = -1;
1984             }
1985         } else {
1986             trace_hvf_unknown_smc(env->xregs[0]);
1987             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1988         }
1989         break;
1990     default:
1991         cpu_synchronize_state(cpu);
1992         trace_hvf_exit(syndrome, ec, env->pc);
1993         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1994     }
1995 
1996     if (advance_pc) {
1997         uint64_t pc;
1998 
1999         flush_cpu_state(cpu);
2000 
2001         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2002         assert_hvf_ok(r);
2003         pc += 4;
2004         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2005         assert_hvf_ok(r);
2006 
2007         /* Handle single-stepping over instructions which trigger a VM exit */
2008         if (cpu->singlestep_enabled) {
2009             ret = EXCP_DEBUG;
2010         }
2011     }
2012 
2013     return ret;
2014 }
2015 
2016 static const VMStateDescription vmstate_hvf_vtimer = {
2017     .name = "hvf-vtimer",
2018     .version_id = 1,
2019     .minimum_version_id = 1,
2020     .fields = (const VMStateField[]) {
2021         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2022         VMSTATE_END_OF_LIST()
2023     },
2024 };
2025 
2026 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2027 {
2028     HVFVTimer *s = opaque;
2029 
2030     if (running) {
2031         /* Update vtimer offset on all CPUs */
2032         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2033         cpu_synchronize_all_states();
2034     } else {
2035         /* Remember vtimer value on every pause */
2036         s->vtimer_val = hvf_vtimer_val_raw();
2037     }
2038 }
2039 
2040 int hvf_arch_init(void)
2041 {
2042     hvf_state->vtimer_offset = mach_absolute_time();
2043     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2044     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2045 
2046     hvf_arm_init_debug();
2047 
2048     return 0;
2049 }
2050 
2051 static const uint32_t brk_insn = 0xd4200000;
2052 
2053 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2054 {
2055     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2056         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2057         return -EINVAL;
2058     }
2059     return 0;
2060 }
2061 
2062 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2063 {
2064     static uint32_t brk;
2065 
2066     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2067         brk != brk_insn ||
2068         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2069         return -EINVAL;
2070     }
2071     return 0;
2072 }
2073 
2074 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2075 {
2076     switch (type) {
2077     case GDB_BREAKPOINT_HW:
2078         return insert_hw_breakpoint(addr);
2079     case GDB_WATCHPOINT_READ:
2080     case GDB_WATCHPOINT_WRITE:
2081     case GDB_WATCHPOINT_ACCESS:
2082         return insert_hw_watchpoint(addr, len, type);
2083     default:
2084         return -ENOSYS;
2085     }
2086 }
2087 
2088 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2089 {
2090     switch (type) {
2091     case GDB_BREAKPOINT_HW:
2092         return delete_hw_breakpoint(addr);
2093     case GDB_WATCHPOINT_READ:
2094     case GDB_WATCHPOINT_WRITE:
2095     case GDB_WATCHPOINT_ACCESS:
2096         return delete_hw_watchpoint(addr, len, type);
2097     default:
2098         return -ENOSYS;
2099     }
2100 }
2101 
2102 void hvf_arch_remove_all_hw_breakpoints(void)
2103 {
2104     if (cur_hw_wps > 0) {
2105         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2106     }
2107     if (cur_hw_bps > 0) {
2108         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2109     }
2110 }
2111 
2112 /*
2113  * Update the vCPU with the gdbstub's view of debug registers. This view
2114  * consists of all hardware breakpoints and watchpoints inserted so far while
2115  * debugging the guest.
2116  */
2117 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2118 {
2119     hv_return_t r = HV_SUCCESS;
2120     int i;
2121 
2122     for (i = 0; i < cur_hw_bps; i++) {
2123         HWBreakpoint *bp = get_hw_bp(i);
2124         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2125         assert_hvf_ok(r);
2126         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2127         assert_hvf_ok(r);
2128     }
2129     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2130         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2131         assert_hvf_ok(r);
2132         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2133         assert_hvf_ok(r);
2134     }
2135 
2136     for (i = 0; i < cur_hw_wps; i++) {
2137         HWWatchpoint *wp = get_hw_wp(i);
2138         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2139         assert_hvf_ok(r);
2140         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2141         assert_hvf_ok(r);
2142     }
2143     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2144         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2145         assert_hvf_ok(r);
2146         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2147         assert_hvf_ok(r);
2148     }
2149 }
2150 
2151 /*
2152  * Update the vCPU with the guest's view of debug registers. This view is kept
2153  * in the environment at all times.
2154  */
2155 static void hvf_put_guest_debug_registers(CPUState *cpu)
2156 {
2157     ARMCPU *arm_cpu = ARM_CPU(cpu);
2158     CPUARMState *env = &arm_cpu->env;
2159     hv_return_t r = HV_SUCCESS;
2160     int i;
2161 
2162     for (i = 0; i < max_hw_bps; i++) {
2163         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2164                                 env->cp15.dbgbcr[i]);
2165         assert_hvf_ok(r);
2166         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2167                                 env->cp15.dbgbvr[i]);
2168         assert_hvf_ok(r);
2169     }
2170 
2171     for (i = 0; i < max_hw_wps; i++) {
2172         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2173                                 env->cp15.dbgwcr[i]);
2174         assert_hvf_ok(r);
2175         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2176                                 env->cp15.dbgwvr[i]);
2177         assert_hvf_ok(r);
2178     }
2179 }
2180 
2181 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2182 {
2183     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2184 }
2185 
2186 static void hvf_arch_set_traps(void)
2187 {
2188     CPUState *cpu;
2189     bool should_enable_traps = false;
2190     hv_return_t r = HV_SUCCESS;
2191 
2192     /* Check whether guest debugging is enabled for at least one vCPU; if it
2193      * is, enable exiting the guest on all vCPUs */
2194     CPU_FOREACH(cpu) {
2195         should_enable_traps |= cpu->accel->guest_debug_enabled;
2196     }
2197     CPU_FOREACH(cpu) {
2198         /* Set whether debug exceptions exit the guest */
2199         r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2200                                               should_enable_traps);
2201         assert_hvf_ok(r);
2202 
2203         /* Set whether accesses to debug registers exit the guest */
2204         r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2205                                                 should_enable_traps);
2206         assert_hvf_ok(r);
2207     }
2208 }
2209 
2210 void hvf_arch_update_guest_debug(CPUState *cpu)
2211 {
2212     ARMCPU *arm_cpu = ARM_CPU(cpu);
2213     CPUARMState *env = &arm_cpu->env;
2214 
2215     /* Check whether guest debugging is enabled */
2216     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2217                                     hvf_sw_breakpoints_active(cpu) ||
2218                                     hvf_arm_hw_debug_active(cpu);
2219 
2220     /* Update debug registers */
2221     if (cpu->accel->guest_debug_enabled) {
2222         hvf_put_gdbstub_debug_registers(cpu);
2223     } else {
2224         hvf_put_guest_debug_registers(cpu);
2225     }
2226 
2227     cpu_synchronize_state(cpu);
2228 
2229     /* Enable/disable single-stepping */
2230     if (cpu->singlestep_enabled) {
2231         env->cp15.mdscr_el1 =
2232             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2233         pstate_write(env, pstate_read(env) | PSTATE_SS);
2234     } else {
2235         env->cp15.mdscr_el1 =
2236             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2237     }
2238 
2239     /* Enable/disable Breakpoint exceptions */
2240     if (hvf_arm_hw_debug_active(cpu)) {
2241         env->cp15.mdscr_el1 =
2242             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2243     } else {
2244         env->cp15.mdscr_el1 =
2245             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2246     }
2247 
2248     hvf_arch_set_traps();
2249 }
2250 
2251 bool hvf_arch_supports_guest_debug(void)
2252 {
2253     return true;
2254 }
2255