xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision 219c101f)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu-common.h"
14 #include "qemu/error-report.h"
15 
16 #include "sysemu/runstate.h"
17 #include "sysemu/hvf.h"
18 #include "sysemu/hvf_int.h"
19 #include "sysemu/hw_accel.h"
20 
21 #include <mach/mach_time.h>
22 
23 #include "exec/address-spaces.h"
24 #include "hw/irq.h"
25 #include "qemu/main-loop.h"
26 #include "sysemu/cpus.h"
27 #include "target/arm/cpu.h"
28 #include "target/arm/internals.h"
29 #include "trace/trace-target_arm_hvf.h"
30 #include "migration/vmstate.h"
31 
32 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
33         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
34 #define PL1_WRITE_MASK 0x4
35 
36 #define SYSREG(op0, op1, crn, crm, op2) \
37     ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
38 #define SYSREG_MASK           SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
39 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
40 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
41 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
42 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
43 
44 #define WFX_IS_WFE (1 << 0)
45 
46 #define TMR_CTL_ENABLE  (1 << 0)
47 #define TMR_CTL_IMASK   (1 << 1)
48 #define TMR_CTL_ISTATUS (1 << 2)
49 
50 typedef struct HVFVTimer {
51     /* Vtimer value during migration and paused state */
52     uint64_t vtimer_val;
53 } HVFVTimer;
54 
55 static HVFVTimer vtimer;
56 
57 struct hvf_reg_match {
58     int reg;
59     uint64_t offset;
60 };
61 
62 static const struct hvf_reg_match hvf_reg_match[] = {
63     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
64     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
65     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
66     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
67     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
68     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
69     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
70     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
71     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
72     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
73     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
74     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
75     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
76     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
77     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
78     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
79     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
80     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
81     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
82     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
83     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
84     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
85     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
86     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
87     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
88     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
89     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
90     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
91     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
92     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
93     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
94     { HV_REG_PC,   offsetof(CPUARMState, pc) },
95 };
96 
97 static const struct hvf_reg_match hvf_fpreg_match[] = {
98     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
99     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
100     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
101     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
102     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
103     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
104     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
105     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
106     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
107     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
108     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
109     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
110     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
111     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
112     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
113     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
114     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
115     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
116     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
117     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
118     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
119     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
120     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
121     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
122     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
123     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
124     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
125     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
126     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
127     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
128     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
129     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
130 };
131 
132 struct hvf_sreg_match {
133     int reg;
134     uint32_t key;
135     uint32_t cp_idx;
136 };
137 
138 static struct hvf_sreg_match hvf_sreg_match[] = {
139     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
140     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
141     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
142     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
143 
144     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
145     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
146     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
147     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
148 
149     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
150     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
151     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
152     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
153 
154     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
155     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
156     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
157     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
158 
159     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
160     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
161     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
162     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
163 
164     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
165     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
166     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
167     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
168 
169     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
170     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
171     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
172     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
173 
174     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
175     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
176     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
177     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
178 
179     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
180     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
181     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
182     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
183 
184     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
185     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
186     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
187     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
188 
189     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
190     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
191     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
192     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
193 
194     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
195     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
196     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
197     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
198 
199     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
200     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
201     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
202     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
203 
204     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
205     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
206     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
207     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
208 
209     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
210     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
211     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
212     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
213 
214     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
215     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
216     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
217     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
218 
219 #ifdef SYNC_NO_RAW_REGS
220     /*
221      * The registers below are manually synced on init because they are
222      * marked as NO_RAW. We still list them to make number space sync easier.
223      */
224     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
225     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
226     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
227     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
228 #endif
229     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
230     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
231     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
232     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
233     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
234 #ifdef SYNC_NO_MMFR0
235     /* We keep the hardware MMFR0 around. HW limits are there anyway */
236     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
237 #endif
238     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
239     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
240 
241     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
242     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
243     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
244     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
245     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
246     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
247 
248     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
249     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
250     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
251     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
252     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
253     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
254     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
255     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
256     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
257     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
258 
259     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
260     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
261     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
262     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
263     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
264     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
265     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
266     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
267     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
268     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
269     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
270     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
271     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
272     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
273     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
274     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
275     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
276     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
277     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
278     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
279 };
280 
281 int hvf_get_registers(CPUState *cpu)
282 {
283     ARMCPU *arm_cpu = ARM_CPU(cpu);
284     CPUARMState *env = &arm_cpu->env;
285     hv_return_t ret;
286     uint64_t val;
287     hv_simd_fp_uchar16_t fpval;
288     int i;
289 
290     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
291         ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
292         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
293         assert_hvf_ok(ret);
294     }
295 
296     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
297         ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
298                                       &fpval);
299         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
300         assert_hvf_ok(ret);
301     }
302 
303     val = 0;
304     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
305     assert_hvf_ok(ret);
306     vfp_set_fpcr(env, val);
307 
308     val = 0;
309     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
310     assert_hvf_ok(ret);
311     vfp_set_fpsr(env, val);
312 
313     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
314     assert_hvf_ok(ret);
315     pstate_write(env, val);
316 
317     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
318         if (hvf_sreg_match[i].cp_idx == -1) {
319             continue;
320         }
321 
322         ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
323         assert_hvf_ok(ret);
324 
325         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
326     }
327     assert(write_list_to_cpustate(arm_cpu));
328 
329     aarch64_restore_sp(env, arm_current_el(env));
330 
331     return 0;
332 }
333 
334 int hvf_put_registers(CPUState *cpu)
335 {
336     ARMCPU *arm_cpu = ARM_CPU(cpu);
337     CPUARMState *env = &arm_cpu->env;
338     hv_return_t ret;
339     uint64_t val;
340     hv_simd_fp_uchar16_t fpval;
341     int i;
342 
343     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
344         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
345         ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
346         assert_hvf_ok(ret);
347     }
348 
349     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
350         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
351         ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
352                                       fpval);
353         assert_hvf_ok(ret);
354     }
355 
356     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
357     assert_hvf_ok(ret);
358 
359     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
360     assert_hvf_ok(ret);
361 
362     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
363     assert_hvf_ok(ret);
364 
365     aarch64_save_sp(env, arm_current_el(env));
366 
367     assert(write_cpustate_to_list(arm_cpu, false));
368     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
369         if (hvf_sreg_match[i].cp_idx == -1) {
370             continue;
371         }
372 
373         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
374         ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
375         assert_hvf_ok(ret);
376     }
377 
378     ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
379     assert_hvf_ok(ret);
380 
381     return 0;
382 }
383 
384 static void flush_cpu_state(CPUState *cpu)
385 {
386     if (cpu->vcpu_dirty) {
387         hvf_put_registers(cpu);
388         cpu->vcpu_dirty = false;
389     }
390 }
391 
392 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
393 {
394     hv_return_t r;
395 
396     flush_cpu_state(cpu);
397 
398     if (rt < 31) {
399         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
400         assert_hvf_ok(r);
401     }
402 }
403 
404 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
405 {
406     uint64_t val = 0;
407     hv_return_t r;
408 
409     flush_cpu_state(cpu);
410 
411     if (rt < 31) {
412         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
413         assert_hvf_ok(r);
414     }
415 
416     return val;
417 }
418 
419 void hvf_arch_vcpu_destroy(CPUState *cpu)
420 {
421 }
422 
423 int hvf_arch_init_vcpu(CPUState *cpu)
424 {
425     ARMCPU *arm_cpu = ARM_CPU(cpu);
426     CPUARMState *env = &arm_cpu->env;
427     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
428     uint32_t sregs_cnt = 0;
429     uint64_t pfr;
430     hv_return_t ret;
431     int i;
432 
433     env->aarch64 = 1;
434     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
435 
436     /* Allocate enough space for our sysreg sync */
437     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
438                                      sregs_match_len);
439     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
440                                     sregs_match_len);
441     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
442                                              arm_cpu->cpreg_vmstate_indexes,
443                                              sregs_match_len);
444     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
445                                             arm_cpu->cpreg_vmstate_values,
446                                             sregs_match_len);
447 
448     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
449 
450     /* Populate cp list for all known sysregs */
451     for (i = 0; i < sregs_match_len; i++) {
452         const ARMCPRegInfo *ri;
453         uint32_t key = hvf_sreg_match[i].key;
454 
455         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
456         if (ri) {
457             assert(!(ri->type & ARM_CP_NO_RAW));
458             hvf_sreg_match[i].cp_idx = sregs_cnt;
459             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
460         } else {
461             hvf_sreg_match[i].cp_idx = -1;
462         }
463     }
464     arm_cpu->cpreg_array_len = sregs_cnt;
465     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
466 
467     assert(write_cpustate_to_list(arm_cpu, false));
468 
469     /* Set CP_NO_RAW system registers on init */
470     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
471                               arm_cpu->midr);
472     assert_hvf_ok(ret);
473 
474     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
475                               arm_cpu->mp_affinity);
476     assert_hvf_ok(ret);
477 
478     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
479     assert_hvf_ok(ret);
480     pfr |= env->gicv3state ? (1 << 24) : 0;
481     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
482     assert_hvf_ok(ret);
483 
484     /* We're limited to underlying hardware caps, override internal versions */
485     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
486                               &arm_cpu->isar.id_aa64mmfr0);
487     assert_hvf_ok(ret);
488 
489     return 0;
490 }
491 
492 void hvf_kick_vcpu_thread(CPUState *cpu)
493 {
494     cpus_kick_thread(cpu);
495     hv_vcpus_exit(&cpu->hvf->fd, 1);
496 }
497 
498 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
499                                 uint32_t syndrome)
500 {
501     ARMCPU *arm_cpu = ARM_CPU(cpu);
502     CPUARMState *env = &arm_cpu->env;
503 
504     cpu->exception_index = excp;
505     env->exception.target_el = 1;
506     env->exception.syndrome = syndrome;
507 
508     arm_cpu_do_interrupt(cpu);
509 }
510 
511 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
512 {
513     ARMCPU *arm_cpu = ARM_CPU(cpu);
514     CPUARMState *env = &arm_cpu->env;
515     uint64_t val = 0;
516 
517     switch (reg) {
518     case SYSREG_CNTPCT_EL0:
519         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
520               gt_cntfrq_period_ns(arm_cpu);
521         break;
522     case SYSREG_OSLSR_EL1:
523         val = env->cp15.oslsr_el1;
524         break;
525     case SYSREG_OSDLR_EL1:
526         /* Dummy register */
527         break;
528     default:
529         cpu_synchronize_state(cpu);
530         trace_hvf_unhandled_sysreg_read(env->pc, reg,
531                                         (reg >> 20) & 0x3,
532                                         (reg >> 14) & 0x7,
533                                         (reg >> 10) & 0xf,
534                                         (reg >> 1) & 0xf,
535                                         (reg >> 17) & 0x7);
536         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
537         return 1;
538     }
539 
540     trace_hvf_sysreg_read(reg,
541                           (reg >> 20) & 0x3,
542                           (reg >> 14) & 0x7,
543                           (reg >> 10) & 0xf,
544                           (reg >> 1) & 0xf,
545                           (reg >> 17) & 0x7,
546                           val);
547     hvf_set_reg(cpu, rt, val);
548 
549     return 0;
550 }
551 
552 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
553 {
554     ARMCPU *arm_cpu = ARM_CPU(cpu);
555     CPUARMState *env = &arm_cpu->env;
556 
557     trace_hvf_sysreg_write(reg,
558                            (reg >> 20) & 0x3,
559                            (reg >> 14) & 0x7,
560                            (reg >> 10) & 0xf,
561                            (reg >> 1) & 0xf,
562                            (reg >> 17) & 0x7,
563                            val);
564 
565     switch (reg) {
566     case SYSREG_OSLAR_EL1:
567         env->cp15.oslsr_el1 = val & 1;
568         break;
569     case SYSREG_OSDLR_EL1:
570         /* Dummy register */
571         break;
572     default:
573         cpu_synchronize_state(cpu);
574         trace_hvf_unhandled_sysreg_write(env->pc, reg,
575                                          (reg >> 20) & 0x3,
576                                          (reg >> 14) & 0x7,
577                                          (reg >> 10) & 0xf,
578                                          (reg >> 1) & 0xf,
579                                          (reg >> 17) & 0x7);
580         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
581         return 1;
582     }
583 
584     return 0;
585 }
586 
587 static int hvf_inject_interrupts(CPUState *cpu)
588 {
589     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
590         trace_hvf_inject_fiq();
591         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
592                                       true);
593     }
594 
595     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
596         trace_hvf_inject_irq();
597         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
598                                       true);
599     }
600 
601     return 0;
602 }
603 
604 static uint64_t hvf_vtimer_val_raw(void)
605 {
606     /*
607      * mach_absolute_time() returns the vtimer value without the VM
608      * offset that we define. Add our own offset on top.
609      */
610     return mach_absolute_time() - hvf_state->vtimer_offset;
611 }
612 
613 static uint64_t hvf_vtimer_val(void)
614 {
615     if (!runstate_is_running()) {
616         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
617         return vtimer.vtimer_val;
618     }
619 
620     return hvf_vtimer_val_raw();
621 }
622 
623 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
624 {
625     /*
626      * Use pselect to sleep so that other threads can IPI us while we're
627      * sleeping.
628      */
629     qatomic_mb_set(&cpu->thread_kicked, false);
630     qemu_mutex_unlock_iothread();
631     pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
632     qemu_mutex_lock_iothread();
633 }
634 
635 static void hvf_wfi(CPUState *cpu)
636 {
637     ARMCPU *arm_cpu = ARM_CPU(cpu);
638     struct timespec ts;
639     hv_return_t r;
640     uint64_t ctl;
641     uint64_t cval;
642     int64_t ticks_to_sleep;
643     uint64_t seconds;
644     uint64_t nanos;
645     uint32_t cntfrq;
646 
647     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
648         /* Interrupt pending, no need to wait */
649         return;
650     }
651 
652     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
653     assert_hvf_ok(r);
654 
655     if (!(ctl & 1) || (ctl & 2)) {
656         /* Timer disabled or masked, just wait for an IPI. */
657         hvf_wait_for_ipi(cpu, NULL);
658         return;
659     }
660 
661     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
662     assert_hvf_ok(r);
663 
664     ticks_to_sleep = cval - hvf_vtimer_val();
665     if (ticks_to_sleep < 0) {
666         return;
667     }
668 
669     cntfrq = gt_cntfrq_period_ns(arm_cpu);
670     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
671     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
672     nanos = ticks_to_sleep * cntfrq;
673 
674     /*
675      * Don't sleep for less than the time a context switch would take,
676      * so that we can satisfy fast timer requests on the same CPU.
677      * Measurements on M1 show the sweet spot to be ~2ms.
678      */
679     if (!seconds && nanos < (2 * SCALE_MS)) {
680         return;
681     }
682 
683     ts = (struct timespec) { seconds, nanos };
684     hvf_wait_for_ipi(cpu, &ts);
685 }
686 
687 static void hvf_sync_vtimer(CPUState *cpu)
688 {
689     ARMCPU *arm_cpu = ARM_CPU(cpu);
690     hv_return_t r;
691     uint64_t ctl;
692     bool irq_state;
693 
694     if (!cpu->hvf->vtimer_masked) {
695         /* We will get notified on vtimer changes by hvf, nothing to do */
696         return;
697     }
698 
699     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
700     assert_hvf_ok(r);
701 
702     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
703                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
704     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
705 
706     if (!irq_state) {
707         /* Timer no longer asserting, we can unmask it */
708         hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
709         cpu->hvf->vtimer_masked = false;
710     }
711 }
712 
713 int hvf_vcpu_exec(CPUState *cpu)
714 {
715     ARMCPU *arm_cpu = ARM_CPU(cpu);
716     CPUARMState *env = &arm_cpu->env;
717     hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
718     hv_return_t r;
719     bool advance_pc = false;
720 
721     if (hvf_inject_interrupts(cpu)) {
722         return EXCP_INTERRUPT;
723     }
724 
725     if (cpu->halted) {
726         return EXCP_HLT;
727     }
728 
729     flush_cpu_state(cpu);
730 
731     qemu_mutex_unlock_iothread();
732     assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
733 
734     /* handle VMEXIT */
735     uint64_t exit_reason = hvf_exit->reason;
736     uint64_t syndrome = hvf_exit->exception.syndrome;
737     uint32_t ec = syn_get_ec(syndrome);
738 
739     qemu_mutex_lock_iothread();
740     switch (exit_reason) {
741     case HV_EXIT_REASON_EXCEPTION:
742         /* This is the main one, handle below. */
743         break;
744     case HV_EXIT_REASON_VTIMER_ACTIVATED:
745         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
746         cpu->hvf->vtimer_masked = true;
747         return 0;
748     case HV_EXIT_REASON_CANCELED:
749         /* we got kicked, no exit to process */
750         return 0;
751     default:
752         assert(0);
753     }
754 
755     hvf_sync_vtimer(cpu);
756 
757     switch (ec) {
758     case EC_DATAABORT: {
759         bool isv = syndrome & ARM_EL_ISV;
760         bool iswrite = (syndrome >> 6) & 1;
761         bool s1ptw = (syndrome >> 7) & 1;
762         uint32_t sas = (syndrome >> 22) & 3;
763         uint32_t len = 1 << sas;
764         uint32_t srt = (syndrome >> 16) & 0x1f;
765         uint64_t val = 0;
766 
767         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
768                              hvf_exit->exception.physical_address, isv,
769                              iswrite, s1ptw, len, srt);
770 
771         assert(isv);
772 
773         if (iswrite) {
774             val = hvf_get_reg(cpu, srt);
775             address_space_write(&address_space_memory,
776                                 hvf_exit->exception.physical_address,
777                                 MEMTXATTRS_UNSPECIFIED, &val, len);
778         } else {
779             address_space_read(&address_space_memory,
780                                hvf_exit->exception.physical_address,
781                                MEMTXATTRS_UNSPECIFIED, &val, len);
782             hvf_set_reg(cpu, srt, val);
783         }
784 
785         advance_pc = true;
786         break;
787     }
788     case EC_SYSTEMREGISTERTRAP: {
789         bool isread = (syndrome >> 0) & 1;
790         uint32_t rt = (syndrome >> 5) & 0x1f;
791         uint32_t reg = syndrome & SYSREG_MASK;
792         uint64_t val;
793         int ret = 0;
794 
795         if (isread) {
796             ret = hvf_sysreg_read(cpu, reg, rt);
797         } else {
798             val = hvf_get_reg(cpu, rt);
799             ret = hvf_sysreg_write(cpu, reg, val);
800         }
801 
802         advance_pc = !ret;
803         break;
804     }
805     case EC_WFX_TRAP:
806         advance_pc = true;
807         if (!(syndrome & WFX_IS_WFE)) {
808             hvf_wfi(cpu);
809         }
810         break;
811     case EC_AA64_HVC:
812         cpu_synchronize_state(cpu);
813         trace_hvf_unknown_hvc(env->xregs[0]);
814         /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
815         env->xregs[0] = -1;
816         break;
817     case EC_AA64_SMC:
818         cpu_synchronize_state(cpu);
819         trace_hvf_unknown_smc(env->xregs[0]);
820         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
821         break;
822     default:
823         cpu_synchronize_state(cpu);
824         trace_hvf_exit(syndrome, ec, env->pc);
825         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
826     }
827 
828     if (advance_pc) {
829         uint64_t pc;
830 
831         flush_cpu_state(cpu);
832 
833         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
834         assert_hvf_ok(r);
835         pc += 4;
836         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
837         assert_hvf_ok(r);
838     }
839 
840     return 0;
841 }
842 
843 static const VMStateDescription vmstate_hvf_vtimer = {
844     .name = "hvf-vtimer",
845     .version_id = 1,
846     .minimum_version_id = 1,
847     .fields = (VMStateField[]) {
848         VMSTATE_UINT64(vtimer_val, HVFVTimer),
849         VMSTATE_END_OF_LIST()
850     },
851 };
852 
853 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
854 {
855     HVFVTimer *s = opaque;
856 
857     if (running) {
858         /* Update vtimer offset on all CPUs */
859         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
860         cpu_synchronize_all_states();
861     } else {
862         /* Remember vtimer value on every pause */
863         s->vtimer_val = hvf_vtimer_val_raw();
864     }
865 }
866 
867 int hvf_arch_init(void)
868 {
869     hvf_state->vtimer_offset = mach_absolute_time();
870     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
871     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
872     return 0;
873 }
874