xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision 06831001)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33 
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
37 
38 #define SYSREG_OP0_SHIFT      20
39 #define SYSREG_OP0_MASK       0x3
40 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
41 #define SYSREG_OP1_SHIFT      14
42 #define SYSREG_OP1_MASK       0x7
43 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
44 #define SYSREG_CRN_SHIFT      10
45 #define SYSREG_CRN_MASK       0xf
46 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
47 #define SYSREG_CRM_SHIFT      1
48 #define SYSREG_CRM_MASK       0xf
49 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
50 #define SYSREG_OP2_SHIFT      17
51 #define SYSREG_OP2_MASK       0x7
52 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
53 
54 #define SYSREG(op0, op1, crn, crm, op2) \
55     ((op0 << SYSREG_OP0_SHIFT) | \
56      (op1 << SYSREG_OP1_SHIFT) | \
57      (crn << SYSREG_CRN_SHIFT) | \
58      (crm << SYSREG_CRM_SHIFT) | \
59      (op2 << SYSREG_OP2_SHIFT))
60 #define SYSREG_MASK \
61     SYSREG(SYSREG_OP0_MASK, \
62            SYSREG_OP1_MASK, \
63            SYSREG_CRN_MASK, \
64            SYSREG_CRM_MASK, \
65            SYSREG_OP2_MASK)
66 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
67 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
68 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
69 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
70 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
71 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
72 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
73 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
74 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
75 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
76 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
77 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
78 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
79 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
80 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
81 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
82 
83 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
84 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
85 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
86 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
87 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
88 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
89 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
90 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
91 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
92 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
93 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
94 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
95 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
96 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
97 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
98 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
99 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
100 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
101 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
102 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
103 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
104 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
105 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
106 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
107 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
108 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
109 
110 #define WFX_IS_WFE (1 << 0)
111 
112 #define TMR_CTL_ENABLE  (1 << 0)
113 #define TMR_CTL_IMASK   (1 << 1)
114 #define TMR_CTL_ISTATUS (1 << 2)
115 
116 static void hvf_wfi(CPUState *cpu);
117 
118 typedef struct HVFVTimer {
119     /* Vtimer value during migration and paused state */
120     uint64_t vtimer_val;
121 } HVFVTimer;
122 
123 static HVFVTimer vtimer;
124 
125 typedef struct ARMHostCPUFeatures {
126     ARMISARegisters isar;
127     uint64_t features;
128     uint64_t midr;
129     uint32_t reset_sctlr;
130     const char *dtb_compatible;
131 } ARMHostCPUFeatures;
132 
133 static ARMHostCPUFeatures arm_host_cpu_features;
134 
135 struct hvf_reg_match {
136     int reg;
137     uint64_t offset;
138 };
139 
140 static const struct hvf_reg_match hvf_reg_match[] = {
141     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
142     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
143     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
144     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
145     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
146     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
147     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
148     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
149     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
150     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
151     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
152     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
153     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
154     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
155     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
156     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
157     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
158     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
159     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
160     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
161     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
162     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
163     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
164     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
165     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
166     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
167     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
168     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
169     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
170     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
171     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
172     { HV_REG_PC,   offsetof(CPUARMState, pc) },
173 };
174 
175 static const struct hvf_reg_match hvf_fpreg_match[] = {
176     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
177     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
178     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
179     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
180     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
181     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
182     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
183     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
184     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
185     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
186     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
187     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
188     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
189     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
190     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
191     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
192     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
193     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
194     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
195     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
196     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
197     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
198     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
199     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
200     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
201     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
202     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
203     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
204     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
205     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
206     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
207     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
208 };
209 
210 struct hvf_sreg_match {
211     int reg;
212     uint32_t key;
213     uint32_t cp_idx;
214 };
215 
216 static struct hvf_sreg_match hvf_sreg_match[] = {
217     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
218     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
219     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
220     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
221 
222     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
223     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
224     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
225     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
226 
227     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
228     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
229     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
230     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
231 
232     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
233     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
234     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
235     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
236 
237     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
238     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
239     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
240     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
241 
242     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
243     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
244     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
245     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
246 
247     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
248     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
249     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
250     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
251 
252     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
253     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
254     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
255     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
256 
257     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
258     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
259     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
260     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
261 
262     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
263     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
264     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
265     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
266 
267     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
268     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
269     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
270     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
271 
272     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
273     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
274     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
275     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
276 
277     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
278     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
279     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
280     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
281 
282     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
283     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
284     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
285     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
286 
287     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
288     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
289     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
290     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
291 
292     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
293     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
294     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
295     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
296 
297 #ifdef SYNC_NO_RAW_REGS
298     /*
299      * The registers below are manually synced on init because they are
300      * marked as NO_RAW. We still list them to make number space sync easier.
301      */
302     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
303     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
304     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
305     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
306 #endif
307     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
308     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
309     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
310     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
311     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
312 #ifdef SYNC_NO_MMFR0
313     /* We keep the hardware MMFR0 around. HW limits are there anyway */
314     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
315 #endif
316     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
317     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
318 
319     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
320     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
321     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
322     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
323     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
324     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
325 
326     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
327     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
328     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
329     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
330     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
331     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
332     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
333     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
334     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
335     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
336 
337     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
338     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
339     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
340     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
341     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
342     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
343     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
344     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
345     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
346     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
347     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
348     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
349     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
350     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
351     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
352     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
353     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
354     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
355     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
356     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
357 };
358 
359 int hvf_get_registers(CPUState *cpu)
360 {
361     ARMCPU *arm_cpu = ARM_CPU(cpu);
362     CPUARMState *env = &arm_cpu->env;
363     hv_return_t ret;
364     uint64_t val;
365     hv_simd_fp_uchar16_t fpval;
366     int i;
367 
368     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
369         ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
370         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
371         assert_hvf_ok(ret);
372     }
373 
374     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
375         ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
376                                       &fpval);
377         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
378         assert_hvf_ok(ret);
379     }
380 
381     val = 0;
382     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
383     assert_hvf_ok(ret);
384     vfp_set_fpcr(env, val);
385 
386     val = 0;
387     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
388     assert_hvf_ok(ret);
389     vfp_set_fpsr(env, val);
390 
391     ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
392     assert_hvf_ok(ret);
393     pstate_write(env, val);
394 
395     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
396         if (hvf_sreg_match[i].cp_idx == -1) {
397             continue;
398         }
399 
400         ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
401         assert_hvf_ok(ret);
402 
403         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
404     }
405     assert(write_list_to_cpustate(arm_cpu));
406 
407     aarch64_restore_sp(env, arm_current_el(env));
408 
409     return 0;
410 }
411 
412 int hvf_put_registers(CPUState *cpu)
413 {
414     ARMCPU *arm_cpu = ARM_CPU(cpu);
415     CPUARMState *env = &arm_cpu->env;
416     hv_return_t ret;
417     uint64_t val;
418     hv_simd_fp_uchar16_t fpval;
419     int i;
420 
421     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
422         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
423         ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
424         assert_hvf_ok(ret);
425     }
426 
427     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
428         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
429         ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
430                                       fpval);
431         assert_hvf_ok(ret);
432     }
433 
434     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
435     assert_hvf_ok(ret);
436 
437     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
438     assert_hvf_ok(ret);
439 
440     ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
441     assert_hvf_ok(ret);
442 
443     aarch64_save_sp(env, arm_current_el(env));
444 
445     assert(write_cpustate_to_list(arm_cpu, false));
446     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
447         if (hvf_sreg_match[i].cp_idx == -1) {
448             continue;
449         }
450 
451         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
452         ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
453         assert_hvf_ok(ret);
454     }
455 
456     ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
457     assert_hvf_ok(ret);
458 
459     return 0;
460 }
461 
462 static void flush_cpu_state(CPUState *cpu)
463 {
464     if (cpu->vcpu_dirty) {
465         hvf_put_registers(cpu);
466         cpu->vcpu_dirty = false;
467     }
468 }
469 
470 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
471 {
472     hv_return_t r;
473 
474     flush_cpu_state(cpu);
475 
476     if (rt < 31) {
477         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
478         assert_hvf_ok(r);
479     }
480 }
481 
482 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
483 {
484     uint64_t val = 0;
485     hv_return_t r;
486 
487     flush_cpu_state(cpu);
488 
489     if (rt < 31) {
490         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
491         assert_hvf_ok(r);
492     }
493 
494     return val;
495 }
496 
497 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
498 {
499     ARMISARegisters host_isar = {};
500     const struct isar_regs {
501         int reg;
502         uint64_t *val;
503     } regs[] = {
504         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
505         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
506         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
507         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
508         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
509         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
510         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
511         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
512         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
513     };
514     hv_vcpu_t fd;
515     hv_return_t r = HV_SUCCESS;
516     hv_vcpu_exit_t *exit;
517     int i;
518 
519     ahcf->dtb_compatible = "arm,arm-v8";
520     ahcf->features = (1ULL << ARM_FEATURE_V8) |
521                      (1ULL << ARM_FEATURE_NEON) |
522                      (1ULL << ARM_FEATURE_AARCH64) |
523                      (1ULL << ARM_FEATURE_PMU) |
524                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
525 
526     /* We set up a small vcpu to extract host registers */
527 
528     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
529         return false;
530     }
531 
532     for (i = 0; i < ARRAY_SIZE(regs); i++) {
533         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
534     }
535     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
536     r |= hv_vcpu_destroy(fd);
537 
538     ahcf->isar = host_isar;
539 
540     /*
541      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
542      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
543      */
544     ahcf->reset_sctlr = 0x30100180;
545     /*
546      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
547      * let's disable it on boot and then allow guest software to turn it on by
548      * setting it to 0.
549      */
550     ahcf->reset_sctlr |= 0x00800000;
551 
552     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
553     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
554         return false;
555     }
556 
557     return r == HV_SUCCESS;
558 }
559 
560 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
561 {
562     if (!arm_host_cpu_features.dtb_compatible) {
563         if (!hvf_enabled() ||
564             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
565             /*
566              * We can't report this error yet, so flag that we need to
567              * in arm_cpu_realizefn().
568              */
569             cpu->host_cpu_probe_failed = true;
570             return;
571         }
572     }
573 
574     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
575     cpu->isar = arm_host_cpu_features.isar;
576     cpu->env.features = arm_host_cpu_features.features;
577     cpu->midr = arm_host_cpu_features.midr;
578     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
579 }
580 
581 void hvf_arch_vcpu_destroy(CPUState *cpu)
582 {
583 }
584 
585 int hvf_arch_init_vcpu(CPUState *cpu)
586 {
587     ARMCPU *arm_cpu = ARM_CPU(cpu);
588     CPUARMState *env = &arm_cpu->env;
589     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
590     uint32_t sregs_cnt = 0;
591     uint64_t pfr;
592     hv_return_t ret;
593     int i;
594 
595     env->aarch64 = true;
596     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
597 
598     /* Allocate enough space for our sysreg sync */
599     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
600                                      sregs_match_len);
601     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
602                                     sregs_match_len);
603     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
604                                              arm_cpu->cpreg_vmstate_indexes,
605                                              sregs_match_len);
606     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
607                                             arm_cpu->cpreg_vmstate_values,
608                                             sregs_match_len);
609 
610     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
611 
612     /* Populate cp list for all known sysregs */
613     for (i = 0; i < sregs_match_len; i++) {
614         const ARMCPRegInfo *ri;
615         uint32_t key = hvf_sreg_match[i].key;
616 
617         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
618         if (ri) {
619             assert(!(ri->type & ARM_CP_NO_RAW));
620             hvf_sreg_match[i].cp_idx = sregs_cnt;
621             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
622         } else {
623             hvf_sreg_match[i].cp_idx = -1;
624         }
625     }
626     arm_cpu->cpreg_array_len = sregs_cnt;
627     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
628 
629     assert(write_cpustate_to_list(arm_cpu, false));
630 
631     /* Set CP_NO_RAW system registers on init */
632     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
633                               arm_cpu->midr);
634     assert_hvf_ok(ret);
635 
636     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
637                               arm_cpu->mp_affinity);
638     assert_hvf_ok(ret);
639 
640     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
641     assert_hvf_ok(ret);
642     pfr |= env->gicv3state ? (1 << 24) : 0;
643     ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
644     assert_hvf_ok(ret);
645 
646     /* We're limited to underlying hardware caps, override internal versions */
647     ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
648                               &arm_cpu->isar.id_aa64mmfr0);
649     assert_hvf_ok(ret);
650 
651     return 0;
652 }
653 
654 void hvf_kick_vcpu_thread(CPUState *cpu)
655 {
656     cpus_kick_thread(cpu);
657     hv_vcpus_exit(&cpu->hvf->fd, 1);
658 }
659 
660 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
661                                 uint32_t syndrome)
662 {
663     ARMCPU *arm_cpu = ARM_CPU(cpu);
664     CPUARMState *env = &arm_cpu->env;
665 
666     cpu->exception_index = excp;
667     env->exception.target_el = 1;
668     env->exception.syndrome = syndrome;
669 
670     arm_cpu_do_interrupt(cpu);
671 }
672 
673 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
674 {
675     int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
676     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
677 }
678 
679 /*
680  * Handle a PSCI call.
681  *
682  * Returns 0 on success
683  *         -1 when the PSCI call is unknown,
684  */
685 static bool hvf_handle_psci_call(CPUState *cpu)
686 {
687     ARMCPU *arm_cpu = ARM_CPU(cpu);
688     CPUARMState *env = &arm_cpu->env;
689     uint64_t param[4] = {
690         env->xregs[0],
691         env->xregs[1],
692         env->xregs[2],
693         env->xregs[3]
694     };
695     uint64_t context_id, mpidr;
696     bool target_aarch64 = true;
697     CPUState *target_cpu_state;
698     ARMCPU *target_cpu;
699     target_ulong entry;
700     int target_el = 1;
701     int32_t ret = 0;
702 
703     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
704                         arm_cpu->mp_affinity);
705 
706     switch (param[0]) {
707     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
708         ret = QEMU_PSCI_VERSION_1_1;
709         break;
710     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
711         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
712         break;
713     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
714     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
715         mpidr = param[1];
716 
717         switch (param[2]) {
718         case 0:
719             target_cpu_state = arm_get_cpu_by_id(mpidr);
720             if (!target_cpu_state) {
721                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
722                 break;
723             }
724             target_cpu = ARM_CPU(target_cpu_state);
725 
726             ret = target_cpu->power_state;
727             break;
728         default:
729             /* Everything above affinity level 0 is always on. */
730             ret = 0;
731         }
732         break;
733     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
734         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
735         /*
736          * QEMU reset and shutdown are async requests, but PSCI
737          * mandates that we never return from the reset/shutdown
738          * call, so power the CPU off now so it doesn't execute
739          * anything further.
740          */
741         hvf_psci_cpu_off(arm_cpu);
742         break;
743     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
744         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
745         hvf_psci_cpu_off(arm_cpu);
746         break;
747     case QEMU_PSCI_0_1_FN_CPU_ON:
748     case QEMU_PSCI_0_2_FN_CPU_ON:
749     case QEMU_PSCI_0_2_FN64_CPU_ON:
750         mpidr = param[1];
751         entry = param[2];
752         context_id = param[3];
753         ret = arm_set_cpu_on(mpidr, entry, context_id,
754                              target_el, target_aarch64);
755         break;
756     case QEMU_PSCI_0_1_FN_CPU_OFF:
757     case QEMU_PSCI_0_2_FN_CPU_OFF:
758         hvf_psci_cpu_off(arm_cpu);
759         break;
760     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
761     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
762     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
763         /* Affinity levels are not supported in QEMU */
764         if (param[1] & 0xfffe0000) {
765             ret = QEMU_PSCI_RET_INVALID_PARAMS;
766             break;
767         }
768         /* Powerdown is not supported, we always go into WFI */
769         env->xregs[0] = 0;
770         hvf_wfi(cpu);
771         break;
772     case QEMU_PSCI_0_1_FN_MIGRATE:
773     case QEMU_PSCI_0_2_FN_MIGRATE:
774         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
775         break;
776     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
777         switch (param[1]) {
778         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
779         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
780         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
781         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
782         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
783         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
784         case QEMU_PSCI_0_1_FN_CPU_ON:
785         case QEMU_PSCI_0_2_FN_CPU_ON:
786         case QEMU_PSCI_0_2_FN64_CPU_ON:
787         case QEMU_PSCI_0_1_FN_CPU_OFF:
788         case QEMU_PSCI_0_2_FN_CPU_OFF:
789         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
790         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
791         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
792         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
793             ret = 0;
794             break;
795         case QEMU_PSCI_0_1_FN_MIGRATE:
796         case QEMU_PSCI_0_2_FN_MIGRATE:
797         default:
798             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
799         }
800         break;
801     default:
802         return false;
803     }
804 
805     env->xregs[0] = ret;
806     return true;
807 }
808 
809 static bool is_id_sysreg(uint32_t reg)
810 {
811     return SYSREG_OP0(reg) == 3 &&
812            SYSREG_OP1(reg) == 0 &&
813            SYSREG_CRN(reg) == 0 &&
814            SYSREG_CRM(reg) >= 1 &&
815            SYSREG_CRM(reg) < 8;
816 }
817 
818 static uint32_t hvf_reg2cp_reg(uint32_t reg)
819 {
820     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
821                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
822                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
823                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
824                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
825                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
826 }
827 
828 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
829 {
830     ARMCPU *arm_cpu = ARM_CPU(cpu);
831     CPUARMState *env = &arm_cpu->env;
832     const ARMCPRegInfo *ri;
833 
834     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
835     if (ri) {
836         if (ri->accessfn) {
837             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
838                 return false;
839             }
840         }
841         if (ri->type & ARM_CP_CONST) {
842             *val = ri->resetvalue;
843         } else if (ri->readfn) {
844             *val = ri->readfn(env, ri);
845         } else {
846             *val = CPREG_FIELD64(env, ri);
847         }
848         trace_hvf_vgic_read(ri->name, *val);
849         return true;
850     }
851 
852     return false;
853 }
854 
855 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
856 {
857     ARMCPU *arm_cpu = ARM_CPU(cpu);
858     CPUARMState *env = &arm_cpu->env;
859     uint64_t val = 0;
860 
861     switch (reg) {
862     case SYSREG_CNTPCT_EL0:
863         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
864               gt_cntfrq_period_ns(arm_cpu);
865         break;
866     case SYSREG_PMCR_EL0:
867         val = env->cp15.c9_pmcr;
868         break;
869     case SYSREG_PMCCNTR_EL0:
870         pmu_op_start(env);
871         val = env->cp15.c15_ccnt;
872         pmu_op_finish(env);
873         break;
874     case SYSREG_PMCNTENCLR_EL0:
875         val = env->cp15.c9_pmcnten;
876         break;
877     case SYSREG_PMOVSCLR_EL0:
878         val = env->cp15.c9_pmovsr;
879         break;
880     case SYSREG_PMSELR_EL0:
881         val = env->cp15.c9_pmselr;
882         break;
883     case SYSREG_PMINTENCLR_EL1:
884         val = env->cp15.c9_pminten;
885         break;
886     case SYSREG_PMCCFILTR_EL0:
887         val = env->cp15.pmccfiltr_el0;
888         break;
889     case SYSREG_PMCNTENSET_EL0:
890         val = env->cp15.c9_pmcnten;
891         break;
892     case SYSREG_PMUSERENR_EL0:
893         val = env->cp15.c9_pmuserenr;
894         break;
895     case SYSREG_PMCEID0_EL0:
896     case SYSREG_PMCEID1_EL0:
897         /* We can't really count anything yet, declare all events invalid */
898         val = 0;
899         break;
900     case SYSREG_OSLSR_EL1:
901         val = env->cp15.oslsr_el1;
902         break;
903     case SYSREG_OSDLR_EL1:
904         /* Dummy register */
905         break;
906     case SYSREG_ICC_AP0R0_EL1:
907     case SYSREG_ICC_AP0R1_EL1:
908     case SYSREG_ICC_AP0R2_EL1:
909     case SYSREG_ICC_AP0R3_EL1:
910     case SYSREG_ICC_AP1R0_EL1:
911     case SYSREG_ICC_AP1R1_EL1:
912     case SYSREG_ICC_AP1R2_EL1:
913     case SYSREG_ICC_AP1R3_EL1:
914     case SYSREG_ICC_ASGI1R_EL1:
915     case SYSREG_ICC_BPR0_EL1:
916     case SYSREG_ICC_BPR1_EL1:
917     case SYSREG_ICC_DIR_EL1:
918     case SYSREG_ICC_EOIR0_EL1:
919     case SYSREG_ICC_EOIR1_EL1:
920     case SYSREG_ICC_HPPIR0_EL1:
921     case SYSREG_ICC_HPPIR1_EL1:
922     case SYSREG_ICC_IAR0_EL1:
923     case SYSREG_ICC_IAR1_EL1:
924     case SYSREG_ICC_IGRPEN0_EL1:
925     case SYSREG_ICC_IGRPEN1_EL1:
926     case SYSREG_ICC_PMR_EL1:
927     case SYSREG_ICC_SGI0R_EL1:
928     case SYSREG_ICC_SGI1R_EL1:
929     case SYSREG_ICC_SRE_EL1:
930     case SYSREG_ICC_CTLR_EL1:
931         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
932         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
933             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
934         }
935         break;
936     default:
937         if (is_id_sysreg(reg)) {
938             /* ID system registers read as RES0 */
939             val = 0;
940             break;
941         }
942         cpu_synchronize_state(cpu);
943         trace_hvf_unhandled_sysreg_read(env->pc, reg,
944                                         SYSREG_OP0(reg),
945                                         SYSREG_OP1(reg),
946                                         SYSREG_CRN(reg),
947                                         SYSREG_CRM(reg),
948                                         SYSREG_OP2(reg));
949         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
950         return 1;
951     }
952 
953     trace_hvf_sysreg_read(reg,
954                           SYSREG_OP0(reg),
955                           SYSREG_OP1(reg),
956                           SYSREG_CRN(reg),
957                           SYSREG_CRM(reg),
958                           SYSREG_OP2(reg),
959                           val);
960     hvf_set_reg(cpu, rt, val);
961 
962     return 0;
963 }
964 
965 static void pmu_update_irq(CPUARMState *env)
966 {
967     ARMCPU *cpu = env_archcpu(env);
968     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
969             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
970 }
971 
972 static bool pmu_event_supported(uint16_t number)
973 {
974     return false;
975 }
976 
977 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
978  * the current EL, security state, and register configuration.
979  */
980 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
981 {
982     uint64_t filter;
983     bool enabled, filtered = true;
984     int el = arm_current_el(env);
985 
986     enabled = (env->cp15.c9_pmcr & PMCRE) &&
987               (env->cp15.c9_pmcnten & (1 << counter));
988 
989     if (counter == 31) {
990         filter = env->cp15.pmccfiltr_el0;
991     } else {
992         filter = env->cp15.c14_pmevtyper[counter];
993     }
994 
995     if (el == 0) {
996         filtered = filter & PMXEVTYPER_U;
997     } else if (el == 1) {
998         filtered = filter & PMXEVTYPER_P;
999     }
1000 
1001     if (counter != 31) {
1002         /*
1003          * If not checking PMCCNTR, ensure the counter is setup to an event we
1004          * support
1005          */
1006         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1007         if (!pmu_event_supported(event)) {
1008             return false;
1009         }
1010     }
1011 
1012     return enabled && !filtered;
1013 }
1014 
1015 static void pmswinc_write(CPUARMState *env, uint64_t value)
1016 {
1017     unsigned int i;
1018     for (i = 0; i < pmu_num_counters(env); i++) {
1019         /* Increment a counter's count iff: */
1020         if ((value & (1 << i)) && /* counter's bit is set */
1021                 /* counter is enabled and not filtered */
1022                 pmu_counter_enabled(env, i) &&
1023                 /* counter is SW_INCR */
1024                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1025             /*
1026              * Detect if this write causes an overflow since we can't predict
1027              * PMSWINC overflows like we can for other events
1028              */
1029             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1030 
1031             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1032                 env->cp15.c9_pmovsr |= (1 << i);
1033                 pmu_update_irq(env);
1034             }
1035 
1036             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1037         }
1038     }
1039 }
1040 
1041 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1042 {
1043     ARMCPU *arm_cpu = ARM_CPU(cpu);
1044     CPUARMState *env = &arm_cpu->env;
1045     const ARMCPRegInfo *ri;
1046 
1047     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1048 
1049     if (ri) {
1050         if (ri->accessfn) {
1051             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1052                 return false;
1053             }
1054         }
1055         if (ri->writefn) {
1056             ri->writefn(env, ri, val);
1057         } else {
1058             CPREG_FIELD64(env, ri) = val;
1059         }
1060 
1061         trace_hvf_vgic_write(ri->name, val);
1062         return true;
1063     }
1064 
1065     return false;
1066 }
1067 
1068 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1069 {
1070     ARMCPU *arm_cpu = ARM_CPU(cpu);
1071     CPUARMState *env = &arm_cpu->env;
1072 
1073     trace_hvf_sysreg_write(reg,
1074                            SYSREG_OP0(reg),
1075                            SYSREG_OP1(reg),
1076                            SYSREG_CRN(reg),
1077                            SYSREG_CRM(reg),
1078                            SYSREG_OP2(reg),
1079                            val);
1080 
1081     switch (reg) {
1082     case SYSREG_PMCCNTR_EL0:
1083         pmu_op_start(env);
1084         env->cp15.c15_ccnt = val;
1085         pmu_op_finish(env);
1086         break;
1087     case SYSREG_PMCR_EL0:
1088         pmu_op_start(env);
1089 
1090         if (val & PMCRC) {
1091             /* The counter has been reset */
1092             env->cp15.c15_ccnt = 0;
1093         }
1094 
1095         if (val & PMCRP) {
1096             unsigned int i;
1097             for (i = 0; i < pmu_num_counters(env); i++) {
1098                 env->cp15.c14_pmevcntr[i] = 0;
1099             }
1100         }
1101 
1102         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1103         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1104 
1105         pmu_op_finish(env);
1106         break;
1107     case SYSREG_PMUSERENR_EL0:
1108         env->cp15.c9_pmuserenr = val & 0xf;
1109         break;
1110     case SYSREG_PMCNTENSET_EL0:
1111         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1112         break;
1113     case SYSREG_PMCNTENCLR_EL0:
1114         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1115         break;
1116     case SYSREG_PMINTENCLR_EL1:
1117         pmu_op_start(env);
1118         env->cp15.c9_pminten |= val;
1119         pmu_op_finish(env);
1120         break;
1121     case SYSREG_PMOVSCLR_EL0:
1122         pmu_op_start(env);
1123         env->cp15.c9_pmovsr &= ~val;
1124         pmu_op_finish(env);
1125         break;
1126     case SYSREG_PMSWINC_EL0:
1127         pmu_op_start(env);
1128         pmswinc_write(env, val);
1129         pmu_op_finish(env);
1130         break;
1131     case SYSREG_PMSELR_EL0:
1132         env->cp15.c9_pmselr = val & 0x1f;
1133         break;
1134     case SYSREG_PMCCFILTR_EL0:
1135         pmu_op_start(env);
1136         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1137         pmu_op_finish(env);
1138         break;
1139     case SYSREG_OSLAR_EL1:
1140         env->cp15.oslsr_el1 = val & 1;
1141         break;
1142     case SYSREG_OSDLR_EL1:
1143         /* Dummy register */
1144         break;
1145     case SYSREG_ICC_AP0R0_EL1:
1146     case SYSREG_ICC_AP0R1_EL1:
1147     case SYSREG_ICC_AP0R2_EL1:
1148     case SYSREG_ICC_AP0R3_EL1:
1149     case SYSREG_ICC_AP1R0_EL1:
1150     case SYSREG_ICC_AP1R1_EL1:
1151     case SYSREG_ICC_AP1R2_EL1:
1152     case SYSREG_ICC_AP1R3_EL1:
1153     case SYSREG_ICC_ASGI1R_EL1:
1154     case SYSREG_ICC_BPR0_EL1:
1155     case SYSREG_ICC_BPR1_EL1:
1156     case SYSREG_ICC_CTLR_EL1:
1157     case SYSREG_ICC_DIR_EL1:
1158     case SYSREG_ICC_EOIR0_EL1:
1159     case SYSREG_ICC_EOIR1_EL1:
1160     case SYSREG_ICC_HPPIR0_EL1:
1161     case SYSREG_ICC_HPPIR1_EL1:
1162     case SYSREG_ICC_IAR0_EL1:
1163     case SYSREG_ICC_IAR1_EL1:
1164     case SYSREG_ICC_IGRPEN0_EL1:
1165     case SYSREG_ICC_IGRPEN1_EL1:
1166     case SYSREG_ICC_PMR_EL1:
1167     case SYSREG_ICC_SGI0R_EL1:
1168     case SYSREG_ICC_SGI1R_EL1:
1169     case SYSREG_ICC_SRE_EL1:
1170         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1171         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1172             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1173         }
1174         break;
1175     default:
1176         cpu_synchronize_state(cpu);
1177         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1178                                          SYSREG_OP0(reg),
1179                                          SYSREG_OP1(reg),
1180                                          SYSREG_CRN(reg),
1181                                          SYSREG_CRM(reg),
1182                                          SYSREG_OP2(reg));
1183         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1184         return 1;
1185     }
1186 
1187     return 0;
1188 }
1189 
1190 static int hvf_inject_interrupts(CPUState *cpu)
1191 {
1192     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1193         trace_hvf_inject_fiq();
1194         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1195                                       true);
1196     }
1197 
1198     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1199         trace_hvf_inject_irq();
1200         hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1201                                       true);
1202     }
1203 
1204     return 0;
1205 }
1206 
1207 static uint64_t hvf_vtimer_val_raw(void)
1208 {
1209     /*
1210      * mach_absolute_time() returns the vtimer value without the VM
1211      * offset that we define. Add our own offset on top.
1212      */
1213     return mach_absolute_time() - hvf_state->vtimer_offset;
1214 }
1215 
1216 static uint64_t hvf_vtimer_val(void)
1217 {
1218     if (!runstate_is_running()) {
1219         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1220         return vtimer.vtimer_val;
1221     }
1222 
1223     return hvf_vtimer_val_raw();
1224 }
1225 
1226 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1227 {
1228     /*
1229      * Use pselect to sleep so that other threads can IPI us while we're
1230      * sleeping.
1231      */
1232     qatomic_set_mb(&cpu->thread_kicked, false);
1233     qemu_mutex_unlock_iothread();
1234     pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1235     qemu_mutex_lock_iothread();
1236 }
1237 
1238 static void hvf_wfi(CPUState *cpu)
1239 {
1240     ARMCPU *arm_cpu = ARM_CPU(cpu);
1241     struct timespec ts;
1242     hv_return_t r;
1243     uint64_t ctl;
1244     uint64_t cval;
1245     int64_t ticks_to_sleep;
1246     uint64_t seconds;
1247     uint64_t nanos;
1248     uint32_t cntfrq;
1249 
1250     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1251         /* Interrupt pending, no need to wait */
1252         return;
1253     }
1254 
1255     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1256     assert_hvf_ok(r);
1257 
1258     if (!(ctl & 1) || (ctl & 2)) {
1259         /* Timer disabled or masked, just wait for an IPI. */
1260         hvf_wait_for_ipi(cpu, NULL);
1261         return;
1262     }
1263 
1264     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1265     assert_hvf_ok(r);
1266 
1267     ticks_to_sleep = cval - hvf_vtimer_val();
1268     if (ticks_to_sleep < 0) {
1269         return;
1270     }
1271 
1272     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1273     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1274     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1275     nanos = ticks_to_sleep * cntfrq;
1276 
1277     /*
1278      * Don't sleep for less than the time a context switch would take,
1279      * so that we can satisfy fast timer requests on the same CPU.
1280      * Measurements on M1 show the sweet spot to be ~2ms.
1281      */
1282     if (!seconds && nanos < (2 * SCALE_MS)) {
1283         return;
1284     }
1285 
1286     ts = (struct timespec) { seconds, nanos };
1287     hvf_wait_for_ipi(cpu, &ts);
1288 }
1289 
1290 static void hvf_sync_vtimer(CPUState *cpu)
1291 {
1292     ARMCPU *arm_cpu = ARM_CPU(cpu);
1293     hv_return_t r;
1294     uint64_t ctl;
1295     bool irq_state;
1296 
1297     if (!cpu->hvf->vtimer_masked) {
1298         /* We will get notified on vtimer changes by hvf, nothing to do */
1299         return;
1300     }
1301 
1302     r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1303     assert_hvf_ok(r);
1304 
1305     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1306                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1307     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1308 
1309     if (!irq_state) {
1310         /* Timer no longer asserting, we can unmask it */
1311         hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1312         cpu->hvf->vtimer_masked = false;
1313     }
1314 }
1315 
1316 int hvf_vcpu_exec(CPUState *cpu)
1317 {
1318     ARMCPU *arm_cpu = ARM_CPU(cpu);
1319     CPUARMState *env = &arm_cpu->env;
1320     hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1321     hv_return_t r;
1322     bool advance_pc = false;
1323 
1324     if (hvf_inject_interrupts(cpu)) {
1325         return EXCP_INTERRUPT;
1326     }
1327 
1328     if (cpu->halted) {
1329         return EXCP_HLT;
1330     }
1331 
1332     flush_cpu_state(cpu);
1333 
1334     qemu_mutex_unlock_iothread();
1335     assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1336 
1337     /* handle VMEXIT */
1338     uint64_t exit_reason = hvf_exit->reason;
1339     uint64_t syndrome = hvf_exit->exception.syndrome;
1340     uint32_t ec = syn_get_ec(syndrome);
1341 
1342     qemu_mutex_lock_iothread();
1343     switch (exit_reason) {
1344     case HV_EXIT_REASON_EXCEPTION:
1345         /* This is the main one, handle below. */
1346         break;
1347     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1348         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1349         cpu->hvf->vtimer_masked = true;
1350         return 0;
1351     case HV_EXIT_REASON_CANCELED:
1352         /* we got kicked, no exit to process */
1353         return 0;
1354     default:
1355         g_assert_not_reached();
1356     }
1357 
1358     hvf_sync_vtimer(cpu);
1359 
1360     switch (ec) {
1361     case EC_DATAABORT: {
1362         bool isv = syndrome & ARM_EL_ISV;
1363         bool iswrite = (syndrome >> 6) & 1;
1364         bool s1ptw = (syndrome >> 7) & 1;
1365         uint32_t sas = (syndrome >> 22) & 3;
1366         uint32_t len = 1 << sas;
1367         uint32_t srt = (syndrome >> 16) & 0x1f;
1368         uint32_t cm = (syndrome >> 8) & 0x1;
1369         uint64_t val = 0;
1370 
1371         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1372                              hvf_exit->exception.physical_address, isv,
1373                              iswrite, s1ptw, len, srt);
1374 
1375         if (cm) {
1376             /* We don't cache MMIO regions */
1377             advance_pc = true;
1378             break;
1379         }
1380 
1381         assert(isv);
1382 
1383         if (iswrite) {
1384             val = hvf_get_reg(cpu, srt);
1385             address_space_write(&address_space_memory,
1386                                 hvf_exit->exception.physical_address,
1387                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1388         } else {
1389             address_space_read(&address_space_memory,
1390                                hvf_exit->exception.physical_address,
1391                                MEMTXATTRS_UNSPECIFIED, &val, len);
1392             hvf_set_reg(cpu, srt, val);
1393         }
1394 
1395         advance_pc = true;
1396         break;
1397     }
1398     case EC_SYSTEMREGISTERTRAP: {
1399         bool isread = (syndrome >> 0) & 1;
1400         uint32_t rt = (syndrome >> 5) & 0x1f;
1401         uint32_t reg = syndrome & SYSREG_MASK;
1402         uint64_t val;
1403         int ret = 0;
1404 
1405         if (isread) {
1406             ret = hvf_sysreg_read(cpu, reg, rt);
1407         } else {
1408             val = hvf_get_reg(cpu, rt);
1409             ret = hvf_sysreg_write(cpu, reg, val);
1410         }
1411 
1412         advance_pc = !ret;
1413         break;
1414     }
1415     case EC_WFX_TRAP:
1416         advance_pc = true;
1417         if (!(syndrome & WFX_IS_WFE)) {
1418             hvf_wfi(cpu);
1419         }
1420         break;
1421     case EC_AA64_HVC:
1422         cpu_synchronize_state(cpu);
1423         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1424             if (!hvf_handle_psci_call(cpu)) {
1425                 trace_hvf_unknown_hvc(env->xregs[0]);
1426                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1427                 env->xregs[0] = -1;
1428             }
1429         } else {
1430             trace_hvf_unknown_hvc(env->xregs[0]);
1431             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1432         }
1433         break;
1434     case EC_AA64_SMC:
1435         cpu_synchronize_state(cpu);
1436         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1437             advance_pc = true;
1438 
1439             if (!hvf_handle_psci_call(cpu)) {
1440                 trace_hvf_unknown_smc(env->xregs[0]);
1441                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1442                 env->xregs[0] = -1;
1443             }
1444         } else {
1445             trace_hvf_unknown_smc(env->xregs[0]);
1446             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1447         }
1448         break;
1449     default:
1450         cpu_synchronize_state(cpu);
1451         trace_hvf_exit(syndrome, ec, env->pc);
1452         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1453     }
1454 
1455     if (advance_pc) {
1456         uint64_t pc;
1457 
1458         flush_cpu_state(cpu);
1459 
1460         r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1461         assert_hvf_ok(r);
1462         pc += 4;
1463         r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1464         assert_hvf_ok(r);
1465     }
1466 
1467     return 0;
1468 }
1469 
1470 static const VMStateDescription vmstate_hvf_vtimer = {
1471     .name = "hvf-vtimer",
1472     .version_id = 1,
1473     .minimum_version_id = 1,
1474     .fields = (VMStateField[]) {
1475         VMSTATE_UINT64(vtimer_val, HVFVTimer),
1476         VMSTATE_END_OF_LIST()
1477     },
1478 };
1479 
1480 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1481 {
1482     HVFVTimer *s = opaque;
1483 
1484     if (running) {
1485         /* Update vtimer offset on all CPUs */
1486         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1487         cpu_synchronize_all_states();
1488     } else {
1489         /* Remember vtimer value on every pause */
1490         s->vtimer_val = hvf_vtimer_val_raw();
1491     }
1492 }
1493 
1494 int hvf_arch_init(void)
1495 {
1496     hvf_state->vtimer_offset = mach_absolute_time();
1497     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1498     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1499     return 0;
1500 }
1501