1 /* 2 * QEMU Hypervisor.framework support for Apple Silicon 3 4 * Copyright 2020 Alexander Graf <agraf@csgraf.de> 5 * Copyright 2020 Google LLC 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/error-report.h" 14 15 #include "sysemu/runstate.h" 16 #include "sysemu/hvf.h" 17 #include "sysemu/hvf_int.h" 18 #include "sysemu/hw_accel.h" 19 #include "hvf_arm.h" 20 #include "cpregs.h" 21 22 #include <mach/mach_time.h> 23 24 #include "exec/address-spaces.h" 25 #include "hw/irq.h" 26 #include "qemu/main-loop.h" 27 #include "sysemu/cpus.h" 28 #include "arm-powerctl.h" 29 #include "target/arm/cpu.h" 30 #include "target/arm/internals.h" 31 #include "trace/trace-target_arm_hvf.h" 32 #include "migration/vmstate.h" 33 34 #include "exec/gdbstub.h" 35 36 #define MDSCR_EL1_SS_SHIFT 0 37 #define MDSCR_EL1_MDE_SHIFT 15 38 39 static uint16_t dbgbcr_regs[] = { 40 HV_SYS_REG_DBGBCR0_EL1, 41 HV_SYS_REG_DBGBCR1_EL1, 42 HV_SYS_REG_DBGBCR2_EL1, 43 HV_SYS_REG_DBGBCR3_EL1, 44 HV_SYS_REG_DBGBCR4_EL1, 45 HV_SYS_REG_DBGBCR5_EL1, 46 HV_SYS_REG_DBGBCR6_EL1, 47 HV_SYS_REG_DBGBCR7_EL1, 48 HV_SYS_REG_DBGBCR8_EL1, 49 HV_SYS_REG_DBGBCR9_EL1, 50 HV_SYS_REG_DBGBCR10_EL1, 51 HV_SYS_REG_DBGBCR11_EL1, 52 HV_SYS_REG_DBGBCR12_EL1, 53 HV_SYS_REG_DBGBCR13_EL1, 54 HV_SYS_REG_DBGBCR14_EL1, 55 HV_SYS_REG_DBGBCR15_EL1, 56 }; 57 static uint16_t dbgbvr_regs[] = { 58 HV_SYS_REG_DBGBVR0_EL1, 59 HV_SYS_REG_DBGBVR1_EL1, 60 HV_SYS_REG_DBGBVR2_EL1, 61 HV_SYS_REG_DBGBVR3_EL1, 62 HV_SYS_REG_DBGBVR4_EL1, 63 HV_SYS_REG_DBGBVR5_EL1, 64 HV_SYS_REG_DBGBVR6_EL1, 65 HV_SYS_REG_DBGBVR7_EL1, 66 HV_SYS_REG_DBGBVR8_EL1, 67 HV_SYS_REG_DBGBVR9_EL1, 68 HV_SYS_REG_DBGBVR10_EL1, 69 HV_SYS_REG_DBGBVR11_EL1, 70 HV_SYS_REG_DBGBVR12_EL1, 71 HV_SYS_REG_DBGBVR13_EL1, 72 HV_SYS_REG_DBGBVR14_EL1, 73 HV_SYS_REG_DBGBVR15_EL1, 74 }; 75 static uint16_t dbgwcr_regs[] = { 76 HV_SYS_REG_DBGWCR0_EL1, 77 HV_SYS_REG_DBGWCR1_EL1, 78 HV_SYS_REG_DBGWCR2_EL1, 79 HV_SYS_REG_DBGWCR3_EL1, 80 HV_SYS_REG_DBGWCR4_EL1, 81 HV_SYS_REG_DBGWCR5_EL1, 82 HV_SYS_REG_DBGWCR6_EL1, 83 HV_SYS_REG_DBGWCR7_EL1, 84 HV_SYS_REG_DBGWCR8_EL1, 85 HV_SYS_REG_DBGWCR9_EL1, 86 HV_SYS_REG_DBGWCR10_EL1, 87 HV_SYS_REG_DBGWCR11_EL1, 88 HV_SYS_REG_DBGWCR12_EL1, 89 HV_SYS_REG_DBGWCR13_EL1, 90 HV_SYS_REG_DBGWCR14_EL1, 91 HV_SYS_REG_DBGWCR15_EL1, 92 }; 93 static uint16_t dbgwvr_regs[] = { 94 HV_SYS_REG_DBGWVR0_EL1, 95 HV_SYS_REG_DBGWVR1_EL1, 96 HV_SYS_REG_DBGWVR2_EL1, 97 HV_SYS_REG_DBGWVR3_EL1, 98 HV_SYS_REG_DBGWVR4_EL1, 99 HV_SYS_REG_DBGWVR5_EL1, 100 HV_SYS_REG_DBGWVR6_EL1, 101 HV_SYS_REG_DBGWVR7_EL1, 102 HV_SYS_REG_DBGWVR8_EL1, 103 HV_SYS_REG_DBGWVR9_EL1, 104 HV_SYS_REG_DBGWVR10_EL1, 105 HV_SYS_REG_DBGWVR11_EL1, 106 HV_SYS_REG_DBGWVR12_EL1, 107 HV_SYS_REG_DBGWVR13_EL1, 108 HV_SYS_REG_DBGWVR14_EL1, 109 HV_SYS_REG_DBGWVR15_EL1, 110 }; 111 112 static inline int hvf_arm_num_brps(hv_vcpu_config_t config) 113 { 114 uint64_t val; 115 hv_return_t ret; 116 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1, 117 &val); 118 assert_hvf_ok(ret); 119 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1; 120 } 121 122 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config) 123 { 124 uint64_t val; 125 hv_return_t ret; 126 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1, 127 &val); 128 assert_hvf_ok(ret); 129 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1; 130 } 131 132 void hvf_arm_init_debug(void) 133 { 134 hv_vcpu_config_t config; 135 config = hv_vcpu_config_create(); 136 137 max_hw_bps = hvf_arm_num_brps(config); 138 hw_breakpoints = 139 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps); 140 141 max_hw_wps = hvf_arm_num_wrps(config); 142 hw_watchpoints = 143 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps); 144 } 145 146 #define HVF_SYSREG(crn, crm, op0, op1, op2) \ 147 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 148 #define PL1_WRITE_MASK 0x4 149 150 #define SYSREG_OP0_SHIFT 20 151 #define SYSREG_OP0_MASK 0x3 152 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK) 153 #define SYSREG_OP1_SHIFT 14 154 #define SYSREG_OP1_MASK 0x7 155 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK) 156 #define SYSREG_CRN_SHIFT 10 157 #define SYSREG_CRN_MASK 0xf 158 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK) 159 #define SYSREG_CRM_SHIFT 1 160 #define SYSREG_CRM_MASK 0xf 161 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK) 162 #define SYSREG_OP2_SHIFT 17 163 #define SYSREG_OP2_MASK 0x7 164 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK) 165 166 #define SYSREG(op0, op1, crn, crm, op2) \ 167 ((op0 << SYSREG_OP0_SHIFT) | \ 168 (op1 << SYSREG_OP1_SHIFT) | \ 169 (crn << SYSREG_CRN_SHIFT) | \ 170 (crm << SYSREG_CRM_SHIFT) | \ 171 (op2 << SYSREG_OP2_SHIFT)) 172 #define SYSREG_MASK \ 173 SYSREG(SYSREG_OP0_MASK, \ 174 SYSREG_OP1_MASK, \ 175 SYSREG_CRN_MASK, \ 176 SYSREG_CRM_MASK, \ 177 SYSREG_OP2_MASK) 178 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4) 179 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4) 180 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4) 181 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1) 182 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0) 183 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0) 184 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1) 185 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2) 186 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2) 187 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3) 188 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4) 189 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5) 190 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6) 191 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7) 192 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0) 193 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7) 194 195 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4) 196 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5) 197 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6) 198 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7) 199 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0) 200 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1) 201 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2) 202 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3) 203 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6) 204 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3) 205 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3) 206 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4) 207 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1) 208 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1) 209 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1) 210 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2) 211 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2) 212 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0) 213 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0) 214 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6) 215 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7) 216 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0) 217 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3) 218 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7) 219 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5) 220 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5) 221 222 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2) 223 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4) 224 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5) 225 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6) 226 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7) 227 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4) 228 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5) 229 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6) 230 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7) 231 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4) 232 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5) 233 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6) 234 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7) 235 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4) 236 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5) 237 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6) 238 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7) 239 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4) 240 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5) 241 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6) 242 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7) 243 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4) 244 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5) 245 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6) 246 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7) 247 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4) 248 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5) 249 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6) 250 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7) 251 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4) 252 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5) 253 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6) 254 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7) 255 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4) 256 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5) 257 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6) 258 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7) 259 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4) 260 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5) 261 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6) 262 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7) 263 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4) 264 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5) 265 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6) 266 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7) 267 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4) 268 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5) 269 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6) 270 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7) 271 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4) 272 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5) 273 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6) 274 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7) 275 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4) 276 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5) 277 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6) 278 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7) 279 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4) 280 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5) 281 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6) 282 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7) 283 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4) 284 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5) 285 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6) 286 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7) 287 288 #define WFX_IS_WFE (1 << 0) 289 290 #define TMR_CTL_ENABLE (1 << 0) 291 #define TMR_CTL_IMASK (1 << 1) 292 #define TMR_CTL_ISTATUS (1 << 2) 293 294 static void hvf_wfi(CPUState *cpu); 295 296 typedef struct HVFVTimer { 297 /* Vtimer value during migration and paused state */ 298 uint64_t vtimer_val; 299 } HVFVTimer; 300 301 static HVFVTimer vtimer; 302 303 typedef struct ARMHostCPUFeatures { 304 ARMISARegisters isar; 305 uint64_t features; 306 uint64_t midr; 307 uint32_t reset_sctlr; 308 const char *dtb_compatible; 309 } ARMHostCPUFeatures; 310 311 static ARMHostCPUFeatures arm_host_cpu_features; 312 313 struct hvf_reg_match { 314 int reg; 315 uint64_t offset; 316 }; 317 318 static const struct hvf_reg_match hvf_reg_match[] = { 319 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) }, 320 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) }, 321 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) }, 322 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) }, 323 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) }, 324 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) }, 325 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) }, 326 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) }, 327 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) }, 328 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) }, 329 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) }, 330 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) }, 331 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) }, 332 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) }, 333 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) }, 334 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) }, 335 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) }, 336 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) }, 337 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) }, 338 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) }, 339 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) }, 340 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) }, 341 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) }, 342 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) }, 343 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) }, 344 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) }, 345 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) }, 346 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) }, 347 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) }, 348 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) }, 349 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) }, 350 { HV_REG_PC, offsetof(CPUARMState, pc) }, 351 }; 352 353 static const struct hvf_reg_match hvf_fpreg_match[] = { 354 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) }, 355 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) }, 356 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) }, 357 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) }, 358 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) }, 359 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) }, 360 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) }, 361 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) }, 362 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) }, 363 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) }, 364 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) }, 365 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) }, 366 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) }, 367 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) }, 368 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) }, 369 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) }, 370 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) }, 371 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) }, 372 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) }, 373 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) }, 374 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) }, 375 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) }, 376 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) }, 377 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) }, 378 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) }, 379 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) }, 380 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) }, 381 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) }, 382 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) }, 383 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) }, 384 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) }, 385 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) }, 386 }; 387 388 struct hvf_sreg_match { 389 int reg; 390 uint32_t key; 391 uint32_t cp_idx; 392 }; 393 394 static struct hvf_sreg_match hvf_sreg_match[] = { 395 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) }, 396 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) }, 397 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) }, 398 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) }, 399 400 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) }, 401 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) }, 402 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) }, 403 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) }, 404 405 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) }, 406 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) }, 407 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) }, 408 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) }, 409 410 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) }, 411 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) }, 412 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) }, 413 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) }, 414 415 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) }, 416 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) }, 417 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) }, 418 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) }, 419 420 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) }, 421 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) }, 422 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) }, 423 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) }, 424 425 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) }, 426 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) }, 427 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) }, 428 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) }, 429 430 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) }, 431 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) }, 432 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) }, 433 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) }, 434 435 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) }, 436 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) }, 437 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) }, 438 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) }, 439 440 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) }, 441 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) }, 442 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) }, 443 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) }, 444 445 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) }, 446 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) }, 447 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) }, 448 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) }, 449 450 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) }, 451 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) }, 452 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) }, 453 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) }, 454 455 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) }, 456 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) }, 457 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) }, 458 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) }, 459 460 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) }, 461 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) }, 462 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) }, 463 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) }, 464 465 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) }, 466 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) }, 467 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) }, 468 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) }, 469 470 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) }, 471 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) }, 472 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) }, 473 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) }, 474 475 #ifdef SYNC_NO_RAW_REGS 476 /* 477 * The registers below are manually synced on init because they are 478 * marked as NO_RAW. We still list them to make number space sync easier. 479 */ 480 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) }, 481 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) }, 482 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) }, 483 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) }, 484 #endif 485 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) }, 486 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) }, 487 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) }, 488 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) }, 489 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) }, 490 #ifdef SYNC_NO_MMFR0 491 /* We keep the hardware MMFR0 around. HW limits are there anyway */ 492 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) }, 493 #endif 494 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) }, 495 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) }, 496 497 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) }, 498 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) }, 499 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) }, 500 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) }, 501 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) }, 502 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) }, 503 504 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) }, 505 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) }, 506 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) }, 507 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) }, 508 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) }, 509 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) }, 510 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) }, 511 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) }, 512 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) }, 513 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) }, 514 515 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) }, 516 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) }, 517 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) }, 518 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) }, 519 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) }, 520 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) }, 521 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) }, 522 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) }, 523 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) }, 524 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) }, 525 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) }, 526 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) }, 527 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) }, 528 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) }, 529 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) }, 530 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) }, 531 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) }, 532 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) }, 533 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) }, 534 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) }, 535 }; 536 537 int hvf_get_registers(CPUState *cpu) 538 { 539 ARMCPU *arm_cpu = ARM_CPU(cpu); 540 CPUARMState *env = &arm_cpu->env; 541 hv_return_t ret; 542 uint64_t val; 543 hv_simd_fp_uchar16_t fpval; 544 int i; 545 546 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { 547 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val); 548 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val; 549 assert_hvf_ok(ret); 550 } 551 552 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { 553 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg, 554 &fpval); 555 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval)); 556 assert_hvf_ok(ret); 557 } 558 559 val = 0; 560 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val); 561 assert_hvf_ok(ret); 562 vfp_set_fpcr(env, val); 563 564 val = 0; 565 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val); 566 assert_hvf_ok(ret); 567 vfp_set_fpsr(env, val); 568 569 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val); 570 assert_hvf_ok(ret); 571 pstate_write(env, val); 572 573 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { 574 if (hvf_sreg_match[i].cp_idx == -1) { 575 continue; 576 } 577 578 if (cpu->accel->guest_debug_enabled) { 579 /* Handle debug registers */ 580 switch (hvf_sreg_match[i].reg) { 581 case HV_SYS_REG_DBGBVR0_EL1: 582 case HV_SYS_REG_DBGBCR0_EL1: 583 case HV_SYS_REG_DBGWVR0_EL1: 584 case HV_SYS_REG_DBGWCR0_EL1: 585 case HV_SYS_REG_DBGBVR1_EL1: 586 case HV_SYS_REG_DBGBCR1_EL1: 587 case HV_SYS_REG_DBGWVR1_EL1: 588 case HV_SYS_REG_DBGWCR1_EL1: 589 case HV_SYS_REG_DBGBVR2_EL1: 590 case HV_SYS_REG_DBGBCR2_EL1: 591 case HV_SYS_REG_DBGWVR2_EL1: 592 case HV_SYS_REG_DBGWCR2_EL1: 593 case HV_SYS_REG_DBGBVR3_EL1: 594 case HV_SYS_REG_DBGBCR3_EL1: 595 case HV_SYS_REG_DBGWVR3_EL1: 596 case HV_SYS_REG_DBGWCR3_EL1: 597 case HV_SYS_REG_DBGBVR4_EL1: 598 case HV_SYS_REG_DBGBCR4_EL1: 599 case HV_SYS_REG_DBGWVR4_EL1: 600 case HV_SYS_REG_DBGWCR4_EL1: 601 case HV_SYS_REG_DBGBVR5_EL1: 602 case HV_SYS_REG_DBGBCR5_EL1: 603 case HV_SYS_REG_DBGWVR5_EL1: 604 case HV_SYS_REG_DBGWCR5_EL1: 605 case HV_SYS_REG_DBGBVR6_EL1: 606 case HV_SYS_REG_DBGBCR6_EL1: 607 case HV_SYS_REG_DBGWVR6_EL1: 608 case HV_SYS_REG_DBGWCR6_EL1: 609 case HV_SYS_REG_DBGBVR7_EL1: 610 case HV_SYS_REG_DBGBCR7_EL1: 611 case HV_SYS_REG_DBGWVR7_EL1: 612 case HV_SYS_REG_DBGWCR7_EL1: 613 case HV_SYS_REG_DBGBVR8_EL1: 614 case HV_SYS_REG_DBGBCR8_EL1: 615 case HV_SYS_REG_DBGWVR8_EL1: 616 case HV_SYS_REG_DBGWCR8_EL1: 617 case HV_SYS_REG_DBGBVR9_EL1: 618 case HV_SYS_REG_DBGBCR9_EL1: 619 case HV_SYS_REG_DBGWVR9_EL1: 620 case HV_SYS_REG_DBGWCR9_EL1: 621 case HV_SYS_REG_DBGBVR10_EL1: 622 case HV_SYS_REG_DBGBCR10_EL1: 623 case HV_SYS_REG_DBGWVR10_EL1: 624 case HV_SYS_REG_DBGWCR10_EL1: 625 case HV_SYS_REG_DBGBVR11_EL1: 626 case HV_SYS_REG_DBGBCR11_EL1: 627 case HV_SYS_REG_DBGWVR11_EL1: 628 case HV_SYS_REG_DBGWCR11_EL1: 629 case HV_SYS_REG_DBGBVR12_EL1: 630 case HV_SYS_REG_DBGBCR12_EL1: 631 case HV_SYS_REG_DBGWVR12_EL1: 632 case HV_SYS_REG_DBGWCR12_EL1: 633 case HV_SYS_REG_DBGBVR13_EL1: 634 case HV_SYS_REG_DBGBCR13_EL1: 635 case HV_SYS_REG_DBGWVR13_EL1: 636 case HV_SYS_REG_DBGWCR13_EL1: 637 case HV_SYS_REG_DBGBVR14_EL1: 638 case HV_SYS_REG_DBGBCR14_EL1: 639 case HV_SYS_REG_DBGWVR14_EL1: 640 case HV_SYS_REG_DBGWCR14_EL1: 641 case HV_SYS_REG_DBGBVR15_EL1: 642 case HV_SYS_REG_DBGBCR15_EL1: 643 case HV_SYS_REG_DBGWVR15_EL1: 644 case HV_SYS_REG_DBGWCR15_EL1: { 645 /* 646 * If the guest is being debugged, the vCPU's debug registers 647 * are holding the gdbstub's view of the registers (set in 648 * hvf_arch_update_guest_debug()). 649 * Since the environment is used to store only the guest's view 650 * of the registers, don't update it with the values from the 651 * vCPU but simply keep the values from the previous 652 * environment. 653 */ 654 const ARMCPRegInfo *ri; 655 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key); 656 val = read_raw_cp_reg(env, ri); 657 658 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; 659 continue; 660 } 661 } 662 } 663 664 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val); 665 assert_hvf_ok(ret); 666 667 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; 668 } 669 assert(write_list_to_cpustate(arm_cpu)); 670 671 aarch64_restore_sp(env, arm_current_el(env)); 672 673 return 0; 674 } 675 676 int hvf_put_registers(CPUState *cpu) 677 { 678 ARMCPU *arm_cpu = ARM_CPU(cpu); 679 CPUARMState *env = &arm_cpu->env; 680 hv_return_t ret; 681 uint64_t val; 682 hv_simd_fp_uchar16_t fpval; 683 int i; 684 685 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { 686 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset); 687 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val); 688 assert_hvf_ok(ret); 689 } 690 691 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { 692 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval)); 693 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg, 694 fpval); 695 assert_hvf_ok(ret); 696 } 697 698 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env)); 699 assert_hvf_ok(ret); 700 701 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env)); 702 assert_hvf_ok(ret); 703 704 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env)); 705 assert_hvf_ok(ret); 706 707 aarch64_save_sp(env, arm_current_el(env)); 708 709 assert(write_cpustate_to_list(arm_cpu, false)); 710 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { 711 if (hvf_sreg_match[i].cp_idx == -1) { 712 continue; 713 } 714 715 if (cpu->accel->guest_debug_enabled) { 716 /* Handle debug registers */ 717 switch (hvf_sreg_match[i].reg) { 718 case HV_SYS_REG_DBGBVR0_EL1: 719 case HV_SYS_REG_DBGBCR0_EL1: 720 case HV_SYS_REG_DBGWVR0_EL1: 721 case HV_SYS_REG_DBGWCR0_EL1: 722 case HV_SYS_REG_DBGBVR1_EL1: 723 case HV_SYS_REG_DBGBCR1_EL1: 724 case HV_SYS_REG_DBGWVR1_EL1: 725 case HV_SYS_REG_DBGWCR1_EL1: 726 case HV_SYS_REG_DBGBVR2_EL1: 727 case HV_SYS_REG_DBGBCR2_EL1: 728 case HV_SYS_REG_DBGWVR2_EL1: 729 case HV_SYS_REG_DBGWCR2_EL1: 730 case HV_SYS_REG_DBGBVR3_EL1: 731 case HV_SYS_REG_DBGBCR3_EL1: 732 case HV_SYS_REG_DBGWVR3_EL1: 733 case HV_SYS_REG_DBGWCR3_EL1: 734 case HV_SYS_REG_DBGBVR4_EL1: 735 case HV_SYS_REG_DBGBCR4_EL1: 736 case HV_SYS_REG_DBGWVR4_EL1: 737 case HV_SYS_REG_DBGWCR4_EL1: 738 case HV_SYS_REG_DBGBVR5_EL1: 739 case HV_SYS_REG_DBGBCR5_EL1: 740 case HV_SYS_REG_DBGWVR5_EL1: 741 case HV_SYS_REG_DBGWCR5_EL1: 742 case HV_SYS_REG_DBGBVR6_EL1: 743 case HV_SYS_REG_DBGBCR6_EL1: 744 case HV_SYS_REG_DBGWVR6_EL1: 745 case HV_SYS_REG_DBGWCR6_EL1: 746 case HV_SYS_REG_DBGBVR7_EL1: 747 case HV_SYS_REG_DBGBCR7_EL1: 748 case HV_SYS_REG_DBGWVR7_EL1: 749 case HV_SYS_REG_DBGWCR7_EL1: 750 case HV_SYS_REG_DBGBVR8_EL1: 751 case HV_SYS_REG_DBGBCR8_EL1: 752 case HV_SYS_REG_DBGWVR8_EL1: 753 case HV_SYS_REG_DBGWCR8_EL1: 754 case HV_SYS_REG_DBGBVR9_EL1: 755 case HV_SYS_REG_DBGBCR9_EL1: 756 case HV_SYS_REG_DBGWVR9_EL1: 757 case HV_SYS_REG_DBGWCR9_EL1: 758 case HV_SYS_REG_DBGBVR10_EL1: 759 case HV_SYS_REG_DBGBCR10_EL1: 760 case HV_SYS_REG_DBGWVR10_EL1: 761 case HV_SYS_REG_DBGWCR10_EL1: 762 case HV_SYS_REG_DBGBVR11_EL1: 763 case HV_SYS_REG_DBGBCR11_EL1: 764 case HV_SYS_REG_DBGWVR11_EL1: 765 case HV_SYS_REG_DBGWCR11_EL1: 766 case HV_SYS_REG_DBGBVR12_EL1: 767 case HV_SYS_REG_DBGBCR12_EL1: 768 case HV_SYS_REG_DBGWVR12_EL1: 769 case HV_SYS_REG_DBGWCR12_EL1: 770 case HV_SYS_REG_DBGBVR13_EL1: 771 case HV_SYS_REG_DBGBCR13_EL1: 772 case HV_SYS_REG_DBGWVR13_EL1: 773 case HV_SYS_REG_DBGWCR13_EL1: 774 case HV_SYS_REG_DBGBVR14_EL1: 775 case HV_SYS_REG_DBGBCR14_EL1: 776 case HV_SYS_REG_DBGWVR14_EL1: 777 case HV_SYS_REG_DBGWCR14_EL1: 778 case HV_SYS_REG_DBGBVR15_EL1: 779 case HV_SYS_REG_DBGBCR15_EL1: 780 case HV_SYS_REG_DBGWVR15_EL1: 781 case HV_SYS_REG_DBGWCR15_EL1: 782 /* 783 * If the guest is being debugged, the vCPU's debug registers 784 * are already holding the gdbstub's view of the registers (set 785 * in hvf_arch_update_guest_debug()). 786 */ 787 continue; 788 } 789 } 790 791 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx]; 792 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val); 793 assert_hvf_ok(ret); 794 } 795 796 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset); 797 assert_hvf_ok(ret); 798 799 return 0; 800 } 801 802 static void flush_cpu_state(CPUState *cpu) 803 { 804 if (cpu->vcpu_dirty) { 805 hvf_put_registers(cpu); 806 cpu->vcpu_dirty = false; 807 } 808 } 809 810 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val) 811 { 812 hv_return_t r; 813 814 flush_cpu_state(cpu); 815 816 if (rt < 31) { 817 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val); 818 assert_hvf_ok(r); 819 } 820 } 821 822 static uint64_t hvf_get_reg(CPUState *cpu, int rt) 823 { 824 uint64_t val = 0; 825 hv_return_t r; 826 827 flush_cpu_state(cpu); 828 829 if (rt < 31) { 830 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val); 831 assert_hvf_ok(r); 832 } 833 834 return val; 835 } 836 837 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) 838 { 839 ARMISARegisters host_isar = {}; 840 const struct isar_regs { 841 int reg; 842 uint64_t *val; 843 } regs[] = { 844 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 }, 845 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 }, 846 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 }, 847 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 }, 848 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 }, 849 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 }, 850 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */ 851 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 }, 852 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 }, 853 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 }, 854 }; 855 hv_vcpu_t fd; 856 hv_return_t r = HV_SUCCESS; 857 hv_vcpu_exit_t *exit; 858 int i; 859 860 ahcf->dtb_compatible = "arm,arm-v8"; 861 ahcf->features = (1ULL << ARM_FEATURE_V8) | 862 (1ULL << ARM_FEATURE_NEON) | 863 (1ULL << ARM_FEATURE_AARCH64) | 864 (1ULL << ARM_FEATURE_PMU) | 865 (1ULL << ARM_FEATURE_GENERIC_TIMER); 866 867 /* We set up a small vcpu to extract host registers */ 868 869 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) { 870 return false; 871 } 872 873 for (i = 0; i < ARRAY_SIZE(regs); i++) { 874 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val); 875 } 876 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr); 877 r |= hv_vcpu_destroy(fd); 878 879 ahcf->isar = host_isar; 880 881 /* 882 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1 883 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97 884 */ 885 ahcf->reset_sctlr = 0x30100180; 886 /* 887 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility, 888 * let's disable it on boot and then allow guest software to turn it on by 889 * setting it to 0. 890 */ 891 ahcf->reset_sctlr |= 0x00800000; 892 893 /* Make sure we don't advertise AArch32 support for EL0/EL1 */ 894 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) { 895 return false; 896 } 897 898 return r == HV_SUCCESS; 899 } 900 901 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu) 902 { 903 if (!arm_host_cpu_features.dtb_compatible) { 904 if (!hvf_enabled() || 905 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) { 906 /* 907 * We can't report this error yet, so flag that we need to 908 * in arm_cpu_realizefn(). 909 */ 910 cpu->host_cpu_probe_failed = true; 911 return; 912 } 913 } 914 915 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 916 cpu->isar = arm_host_cpu_features.isar; 917 cpu->env.features = arm_host_cpu_features.features; 918 cpu->midr = arm_host_cpu_features.midr; 919 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr; 920 } 921 922 void hvf_arch_vcpu_destroy(CPUState *cpu) 923 { 924 } 925 926 int hvf_arch_init_vcpu(CPUState *cpu) 927 { 928 ARMCPU *arm_cpu = ARM_CPU(cpu); 929 CPUARMState *env = &arm_cpu->env; 930 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match); 931 uint32_t sregs_cnt = 0; 932 uint64_t pfr; 933 hv_return_t ret; 934 int i; 935 936 env->aarch64 = true; 937 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz)); 938 939 /* Allocate enough space for our sysreg sync */ 940 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes, 941 sregs_match_len); 942 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values, 943 sregs_match_len); 944 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t, 945 arm_cpu->cpreg_vmstate_indexes, 946 sregs_match_len); 947 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t, 948 arm_cpu->cpreg_vmstate_values, 949 sregs_match_len); 950 951 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t)); 952 953 /* Populate cp list for all known sysregs */ 954 for (i = 0; i < sregs_match_len; i++) { 955 const ARMCPRegInfo *ri; 956 uint32_t key = hvf_sreg_match[i].key; 957 958 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key); 959 if (ri) { 960 assert(!(ri->type & ARM_CP_NO_RAW)); 961 hvf_sreg_match[i].cp_idx = sregs_cnt; 962 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key); 963 } else { 964 hvf_sreg_match[i].cp_idx = -1; 965 } 966 } 967 arm_cpu->cpreg_array_len = sregs_cnt; 968 arm_cpu->cpreg_vmstate_array_len = sregs_cnt; 969 970 assert(write_cpustate_to_list(arm_cpu, false)); 971 972 /* Set CP_NO_RAW system registers on init */ 973 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1, 974 arm_cpu->midr); 975 assert_hvf_ok(ret); 976 977 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1, 978 arm_cpu->mp_affinity); 979 assert_hvf_ok(ret); 980 981 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr); 982 assert_hvf_ok(ret); 983 pfr |= env->gicv3state ? (1 << 24) : 0; 984 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr); 985 assert_hvf_ok(ret); 986 987 /* We're limited to underlying hardware caps, override internal versions */ 988 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1, 989 &arm_cpu->isar.id_aa64mmfr0); 990 assert_hvf_ok(ret); 991 992 return 0; 993 } 994 995 void hvf_kick_vcpu_thread(CPUState *cpu) 996 { 997 cpus_kick_thread(cpu); 998 hv_vcpus_exit(&cpu->accel->fd, 1); 999 } 1000 1001 static void hvf_raise_exception(CPUState *cpu, uint32_t excp, 1002 uint32_t syndrome) 1003 { 1004 ARMCPU *arm_cpu = ARM_CPU(cpu); 1005 CPUARMState *env = &arm_cpu->env; 1006 1007 cpu->exception_index = excp; 1008 env->exception.target_el = 1; 1009 env->exception.syndrome = syndrome; 1010 1011 arm_cpu_do_interrupt(cpu); 1012 } 1013 1014 static void hvf_psci_cpu_off(ARMCPU *arm_cpu) 1015 { 1016 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity); 1017 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS); 1018 } 1019 1020 /* 1021 * Handle a PSCI call. 1022 * 1023 * Returns 0 on success 1024 * -1 when the PSCI call is unknown, 1025 */ 1026 static bool hvf_handle_psci_call(CPUState *cpu) 1027 { 1028 ARMCPU *arm_cpu = ARM_CPU(cpu); 1029 CPUARMState *env = &arm_cpu->env; 1030 uint64_t param[4] = { 1031 env->xregs[0], 1032 env->xregs[1], 1033 env->xregs[2], 1034 env->xregs[3] 1035 }; 1036 uint64_t context_id, mpidr; 1037 bool target_aarch64 = true; 1038 CPUState *target_cpu_state; 1039 ARMCPU *target_cpu; 1040 target_ulong entry; 1041 int target_el = 1; 1042 int32_t ret = 0; 1043 1044 trace_hvf_psci_call(param[0], param[1], param[2], param[3], 1045 arm_cpu->mp_affinity); 1046 1047 switch (param[0]) { 1048 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 1049 ret = QEMU_PSCI_VERSION_1_1; 1050 break; 1051 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 1052 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */ 1053 break; 1054 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 1055 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 1056 mpidr = param[1]; 1057 1058 switch (param[2]) { 1059 case 0: 1060 target_cpu_state = arm_get_cpu_by_id(mpidr); 1061 if (!target_cpu_state) { 1062 ret = QEMU_PSCI_RET_INVALID_PARAMS; 1063 break; 1064 } 1065 target_cpu = ARM_CPU(target_cpu_state); 1066 1067 ret = target_cpu->power_state; 1068 break; 1069 default: 1070 /* Everything above affinity level 0 is always on. */ 1071 ret = 0; 1072 } 1073 break; 1074 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 1075 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1076 /* 1077 * QEMU reset and shutdown are async requests, but PSCI 1078 * mandates that we never return from the reset/shutdown 1079 * call, so power the CPU off now so it doesn't execute 1080 * anything further. 1081 */ 1082 hvf_psci_cpu_off(arm_cpu); 1083 break; 1084 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 1085 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1086 hvf_psci_cpu_off(arm_cpu); 1087 break; 1088 case QEMU_PSCI_0_1_FN_CPU_ON: 1089 case QEMU_PSCI_0_2_FN_CPU_ON: 1090 case QEMU_PSCI_0_2_FN64_CPU_ON: 1091 mpidr = param[1]; 1092 entry = param[2]; 1093 context_id = param[3]; 1094 ret = arm_set_cpu_on(mpidr, entry, context_id, 1095 target_el, target_aarch64); 1096 break; 1097 case QEMU_PSCI_0_1_FN_CPU_OFF: 1098 case QEMU_PSCI_0_2_FN_CPU_OFF: 1099 hvf_psci_cpu_off(arm_cpu); 1100 break; 1101 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 1102 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 1103 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 1104 /* Affinity levels are not supported in QEMU */ 1105 if (param[1] & 0xfffe0000) { 1106 ret = QEMU_PSCI_RET_INVALID_PARAMS; 1107 break; 1108 } 1109 /* Powerdown is not supported, we always go into WFI */ 1110 env->xregs[0] = 0; 1111 hvf_wfi(cpu); 1112 break; 1113 case QEMU_PSCI_0_1_FN_MIGRATE: 1114 case QEMU_PSCI_0_2_FN_MIGRATE: 1115 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 1116 break; 1117 case QEMU_PSCI_1_0_FN_PSCI_FEATURES: 1118 switch (param[1]) { 1119 case QEMU_PSCI_0_2_FN_PSCI_VERSION: 1120 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: 1121 case QEMU_PSCI_0_2_FN_AFFINITY_INFO: 1122 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: 1123 case QEMU_PSCI_0_2_FN_SYSTEM_RESET: 1124 case QEMU_PSCI_0_2_FN_SYSTEM_OFF: 1125 case QEMU_PSCI_0_1_FN_CPU_ON: 1126 case QEMU_PSCI_0_2_FN_CPU_ON: 1127 case QEMU_PSCI_0_2_FN64_CPU_ON: 1128 case QEMU_PSCI_0_1_FN_CPU_OFF: 1129 case QEMU_PSCI_0_2_FN_CPU_OFF: 1130 case QEMU_PSCI_0_1_FN_CPU_SUSPEND: 1131 case QEMU_PSCI_0_2_FN_CPU_SUSPEND: 1132 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: 1133 case QEMU_PSCI_1_0_FN_PSCI_FEATURES: 1134 ret = 0; 1135 break; 1136 case QEMU_PSCI_0_1_FN_MIGRATE: 1137 case QEMU_PSCI_0_2_FN_MIGRATE: 1138 default: 1139 ret = QEMU_PSCI_RET_NOT_SUPPORTED; 1140 } 1141 break; 1142 default: 1143 return false; 1144 } 1145 1146 env->xregs[0] = ret; 1147 return true; 1148 } 1149 1150 static bool is_id_sysreg(uint32_t reg) 1151 { 1152 return SYSREG_OP0(reg) == 3 && 1153 SYSREG_OP1(reg) == 0 && 1154 SYSREG_CRN(reg) == 0 && 1155 SYSREG_CRM(reg) >= 1 && 1156 SYSREG_CRM(reg) < 8; 1157 } 1158 1159 static uint32_t hvf_reg2cp_reg(uint32_t reg) 1160 { 1161 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1162 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK, 1163 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK, 1164 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK, 1165 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK, 1166 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK); 1167 } 1168 1169 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val) 1170 { 1171 ARMCPU *arm_cpu = ARM_CPU(cpu); 1172 CPUARMState *env = &arm_cpu->env; 1173 const ARMCPRegInfo *ri; 1174 1175 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); 1176 if (ri) { 1177 if (ri->accessfn) { 1178 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) { 1179 return false; 1180 } 1181 } 1182 if (ri->type & ARM_CP_CONST) { 1183 *val = ri->resetvalue; 1184 } else if (ri->readfn) { 1185 *val = ri->readfn(env, ri); 1186 } else { 1187 *val = CPREG_FIELD64(env, ri); 1188 } 1189 trace_hvf_vgic_read(ri->name, *val); 1190 return true; 1191 } 1192 1193 return false; 1194 } 1195 1196 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt) 1197 { 1198 ARMCPU *arm_cpu = ARM_CPU(cpu); 1199 CPUARMState *env = &arm_cpu->env; 1200 uint64_t val = 0; 1201 1202 switch (reg) { 1203 case SYSREG_CNTPCT_EL0: 1204 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 1205 gt_cntfrq_period_ns(arm_cpu); 1206 break; 1207 case SYSREG_PMCR_EL0: 1208 val = env->cp15.c9_pmcr; 1209 break; 1210 case SYSREG_PMCCNTR_EL0: 1211 pmu_op_start(env); 1212 val = env->cp15.c15_ccnt; 1213 pmu_op_finish(env); 1214 break; 1215 case SYSREG_PMCNTENCLR_EL0: 1216 val = env->cp15.c9_pmcnten; 1217 break; 1218 case SYSREG_PMOVSCLR_EL0: 1219 val = env->cp15.c9_pmovsr; 1220 break; 1221 case SYSREG_PMSELR_EL0: 1222 val = env->cp15.c9_pmselr; 1223 break; 1224 case SYSREG_PMINTENCLR_EL1: 1225 val = env->cp15.c9_pminten; 1226 break; 1227 case SYSREG_PMCCFILTR_EL0: 1228 val = env->cp15.pmccfiltr_el0; 1229 break; 1230 case SYSREG_PMCNTENSET_EL0: 1231 val = env->cp15.c9_pmcnten; 1232 break; 1233 case SYSREG_PMUSERENR_EL0: 1234 val = env->cp15.c9_pmuserenr; 1235 break; 1236 case SYSREG_PMCEID0_EL0: 1237 case SYSREG_PMCEID1_EL0: 1238 /* We can't really count anything yet, declare all events invalid */ 1239 val = 0; 1240 break; 1241 case SYSREG_OSLSR_EL1: 1242 val = env->cp15.oslsr_el1; 1243 break; 1244 case SYSREG_OSDLR_EL1: 1245 /* Dummy register */ 1246 break; 1247 case SYSREG_ICC_AP0R0_EL1: 1248 case SYSREG_ICC_AP0R1_EL1: 1249 case SYSREG_ICC_AP0R2_EL1: 1250 case SYSREG_ICC_AP0R3_EL1: 1251 case SYSREG_ICC_AP1R0_EL1: 1252 case SYSREG_ICC_AP1R1_EL1: 1253 case SYSREG_ICC_AP1R2_EL1: 1254 case SYSREG_ICC_AP1R3_EL1: 1255 case SYSREG_ICC_ASGI1R_EL1: 1256 case SYSREG_ICC_BPR0_EL1: 1257 case SYSREG_ICC_BPR1_EL1: 1258 case SYSREG_ICC_DIR_EL1: 1259 case SYSREG_ICC_EOIR0_EL1: 1260 case SYSREG_ICC_EOIR1_EL1: 1261 case SYSREG_ICC_HPPIR0_EL1: 1262 case SYSREG_ICC_HPPIR1_EL1: 1263 case SYSREG_ICC_IAR0_EL1: 1264 case SYSREG_ICC_IAR1_EL1: 1265 case SYSREG_ICC_IGRPEN0_EL1: 1266 case SYSREG_ICC_IGRPEN1_EL1: 1267 case SYSREG_ICC_PMR_EL1: 1268 case SYSREG_ICC_SGI0R_EL1: 1269 case SYSREG_ICC_SGI1R_EL1: 1270 case SYSREG_ICC_SRE_EL1: 1271 case SYSREG_ICC_CTLR_EL1: 1272 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ 1273 if (!hvf_sysreg_read_cp(cpu, reg, &val)) { 1274 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1275 } 1276 break; 1277 case SYSREG_DBGBVR0_EL1: 1278 case SYSREG_DBGBVR1_EL1: 1279 case SYSREG_DBGBVR2_EL1: 1280 case SYSREG_DBGBVR3_EL1: 1281 case SYSREG_DBGBVR4_EL1: 1282 case SYSREG_DBGBVR5_EL1: 1283 case SYSREG_DBGBVR6_EL1: 1284 case SYSREG_DBGBVR7_EL1: 1285 case SYSREG_DBGBVR8_EL1: 1286 case SYSREG_DBGBVR9_EL1: 1287 case SYSREG_DBGBVR10_EL1: 1288 case SYSREG_DBGBVR11_EL1: 1289 case SYSREG_DBGBVR12_EL1: 1290 case SYSREG_DBGBVR13_EL1: 1291 case SYSREG_DBGBVR14_EL1: 1292 case SYSREG_DBGBVR15_EL1: 1293 val = env->cp15.dbgbvr[SYSREG_CRM(reg)]; 1294 break; 1295 case SYSREG_DBGBCR0_EL1: 1296 case SYSREG_DBGBCR1_EL1: 1297 case SYSREG_DBGBCR2_EL1: 1298 case SYSREG_DBGBCR3_EL1: 1299 case SYSREG_DBGBCR4_EL1: 1300 case SYSREG_DBGBCR5_EL1: 1301 case SYSREG_DBGBCR6_EL1: 1302 case SYSREG_DBGBCR7_EL1: 1303 case SYSREG_DBGBCR8_EL1: 1304 case SYSREG_DBGBCR9_EL1: 1305 case SYSREG_DBGBCR10_EL1: 1306 case SYSREG_DBGBCR11_EL1: 1307 case SYSREG_DBGBCR12_EL1: 1308 case SYSREG_DBGBCR13_EL1: 1309 case SYSREG_DBGBCR14_EL1: 1310 case SYSREG_DBGBCR15_EL1: 1311 val = env->cp15.dbgbcr[SYSREG_CRM(reg)]; 1312 break; 1313 case SYSREG_DBGWVR0_EL1: 1314 case SYSREG_DBGWVR1_EL1: 1315 case SYSREG_DBGWVR2_EL1: 1316 case SYSREG_DBGWVR3_EL1: 1317 case SYSREG_DBGWVR4_EL1: 1318 case SYSREG_DBGWVR5_EL1: 1319 case SYSREG_DBGWVR6_EL1: 1320 case SYSREG_DBGWVR7_EL1: 1321 case SYSREG_DBGWVR8_EL1: 1322 case SYSREG_DBGWVR9_EL1: 1323 case SYSREG_DBGWVR10_EL1: 1324 case SYSREG_DBGWVR11_EL1: 1325 case SYSREG_DBGWVR12_EL1: 1326 case SYSREG_DBGWVR13_EL1: 1327 case SYSREG_DBGWVR14_EL1: 1328 case SYSREG_DBGWVR15_EL1: 1329 val = env->cp15.dbgwvr[SYSREG_CRM(reg)]; 1330 break; 1331 case SYSREG_DBGWCR0_EL1: 1332 case SYSREG_DBGWCR1_EL1: 1333 case SYSREG_DBGWCR2_EL1: 1334 case SYSREG_DBGWCR3_EL1: 1335 case SYSREG_DBGWCR4_EL1: 1336 case SYSREG_DBGWCR5_EL1: 1337 case SYSREG_DBGWCR6_EL1: 1338 case SYSREG_DBGWCR7_EL1: 1339 case SYSREG_DBGWCR8_EL1: 1340 case SYSREG_DBGWCR9_EL1: 1341 case SYSREG_DBGWCR10_EL1: 1342 case SYSREG_DBGWCR11_EL1: 1343 case SYSREG_DBGWCR12_EL1: 1344 case SYSREG_DBGWCR13_EL1: 1345 case SYSREG_DBGWCR14_EL1: 1346 case SYSREG_DBGWCR15_EL1: 1347 val = env->cp15.dbgwcr[SYSREG_CRM(reg)]; 1348 break; 1349 default: 1350 if (is_id_sysreg(reg)) { 1351 /* ID system registers read as RES0 */ 1352 val = 0; 1353 break; 1354 } 1355 cpu_synchronize_state(cpu); 1356 trace_hvf_unhandled_sysreg_read(env->pc, reg, 1357 SYSREG_OP0(reg), 1358 SYSREG_OP1(reg), 1359 SYSREG_CRN(reg), 1360 SYSREG_CRM(reg), 1361 SYSREG_OP2(reg)); 1362 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1363 return 1; 1364 } 1365 1366 trace_hvf_sysreg_read(reg, 1367 SYSREG_OP0(reg), 1368 SYSREG_OP1(reg), 1369 SYSREG_CRN(reg), 1370 SYSREG_CRM(reg), 1371 SYSREG_OP2(reg), 1372 val); 1373 hvf_set_reg(cpu, rt, val); 1374 1375 return 0; 1376 } 1377 1378 static void pmu_update_irq(CPUARMState *env) 1379 { 1380 ARMCPU *cpu = env_archcpu(env); 1381 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1382 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1383 } 1384 1385 static bool pmu_event_supported(uint16_t number) 1386 { 1387 return false; 1388 } 1389 1390 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1391 * the current EL, security state, and register configuration. 1392 */ 1393 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1394 { 1395 uint64_t filter; 1396 bool enabled, filtered = true; 1397 int el = arm_current_el(env); 1398 1399 enabled = (env->cp15.c9_pmcr & PMCRE) && 1400 (env->cp15.c9_pmcnten & (1 << counter)); 1401 1402 if (counter == 31) { 1403 filter = env->cp15.pmccfiltr_el0; 1404 } else { 1405 filter = env->cp15.c14_pmevtyper[counter]; 1406 } 1407 1408 if (el == 0) { 1409 filtered = filter & PMXEVTYPER_U; 1410 } else if (el == 1) { 1411 filtered = filter & PMXEVTYPER_P; 1412 } 1413 1414 if (counter != 31) { 1415 /* 1416 * If not checking PMCCNTR, ensure the counter is setup to an event we 1417 * support 1418 */ 1419 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1420 if (!pmu_event_supported(event)) { 1421 return false; 1422 } 1423 } 1424 1425 return enabled && !filtered; 1426 } 1427 1428 static void pmswinc_write(CPUARMState *env, uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 /* 1439 * Detect if this write causes an overflow since we can't predict 1440 * PMSWINC overflows like we can for other events 1441 */ 1442 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1443 1444 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1445 env->cp15.c9_pmovsr |= (1 << i); 1446 pmu_update_irq(env); 1447 } 1448 1449 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1450 } 1451 } 1452 } 1453 1454 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val) 1455 { 1456 ARMCPU *arm_cpu = ARM_CPU(cpu); 1457 CPUARMState *env = &arm_cpu->env; 1458 const ARMCPRegInfo *ri; 1459 1460 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); 1461 1462 if (ri) { 1463 if (ri->accessfn) { 1464 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) { 1465 return false; 1466 } 1467 } 1468 if (ri->writefn) { 1469 ri->writefn(env, ri, val); 1470 } else { 1471 CPREG_FIELD64(env, ri) = val; 1472 } 1473 1474 trace_hvf_vgic_write(ri->name, val); 1475 return true; 1476 } 1477 1478 return false; 1479 } 1480 1481 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val) 1482 { 1483 ARMCPU *arm_cpu = ARM_CPU(cpu); 1484 CPUARMState *env = &arm_cpu->env; 1485 1486 trace_hvf_sysreg_write(reg, 1487 SYSREG_OP0(reg), 1488 SYSREG_OP1(reg), 1489 SYSREG_CRN(reg), 1490 SYSREG_CRM(reg), 1491 SYSREG_OP2(reg), 1492 val); 1493 1494 switch (reg) { 1495 case SYSREG_PMCCNTR_EL0: 1496 pmu_op_start(env); 1497 env->cp15.c15_ccnt = val; 1498 pmu_op_finish(env); 1499 break; 1500 case SYSREG_PMCR_EL0: 1501 pmu_op_start(env); 1502 1503 if (val & PMCRC) { 1504 /* The counter has been reset */ 1505 env->cp15.c15_ccnt = 0; 1506 } 1507 1508 if (val & PMCRP) { 1509 unsigned int i; 1510 for (i = 0; i < pmu_num_counters(env); i++) { 1511 env->cp15.c14_pmevcntr[i] = 0; 1512 } 1513 } 1514 1515 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1516 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK); 1517 1518 pmu_op_finish(env); 1519 break; 1520 case SYSREG_PMUSERENR_EL0: 1521 env->cp15.c9_pmuserenr = val & 0xf; 1522 break; 1523 case SYSREG_PMCNTENSET_EL0: 1524 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env)); 1525 break; 1526 case SYSREG_PMCNTENCLR_EL0: 1527 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env)); 1528 break; 1529 case SYSREG_PMINTENCLR_EL1: 1530 pmu_op_start(env); 1531 env->cp15.c9_pminten |= val; 1532 pmu_op_finish(env); 1533 break; 1534 case SYSREG_PMOVSCLR_EL0: 1535 pmu_op_start(env); 1536 env->cp15.c9_pmovsr &= ~val; 1537 pmu_op_finish(env); 1538 break; 1539 case SYSREG_PMSWINC_EL0: 1540 pmu_op_start(env); 1541 pmswinc_write(env, val); 1542 pmu_op_finish(env); 1543 break; 1544 case SYSREG_PMSELR_EL0: 1545 env->cp15.c9_pmselr = val & 0x1f; 1546 break; 1547 case SYSREG_PMCCFILTR_EL0: 1548 pmu_op_start(env); 1549 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0; 1550 pmu_op_finish(env); 1551 break; 1552 case SYSREG_OSLAR_EL1: 1553 env->cp15.oslsr_el1 = val & 1; 1554 break; 1555 case SYSREG_OSDLR_EL1: 1556 /* Dummy register */ 1557 break; 1558 case SYSREG_ICC_AP0R0_EL1: 1559 case SYSREG_ICC_AP0R1_EL1: 1560 case SYSREG_ICC_AP0R2_EL1: 1561 case SYSREG_ICC_AP0R3_EL1: 1562 case SYSREG_ICC_AP1R0_EL1: 1563 case SYSREG_ICC_AP1R1_EL1: 1564 case SYSREG_ICC_AP1R2_EL1: 1565 case SYSREG_ICC_AP1R3_EL1: 1566 case SYSREG_ICC_ASGI1R_EL1: 1567 case SYSREG_ICC_BPR0_EL1: 1568 case SYSREG_ICC_BPR1_EL1: 1569 case SYSREG_ICC_CTLR_EL1: 1570 case SYSREG_ICC_DIR_EL1: 1571 case SYSREG_ICC_EOIR0_EL1: 1572 case SYSREG_ICC_EOIR1_EL1: 1573 case SYSREG_ICC_HPPIR0_EL1: 1574 case SYSREG_ICC_HPPIR1_EL1: 1575 case SYSREG_ICC_IAR0_EL1: 1576 case SYSREG_ICC_IAR1_EL1: 1577 case SYSREG_ICC_IGRPEN0_EL1: 1578 case SYSREG_ICC_IGRPEN1_EL1: 1579 case SYSREG_ICC_PMR_EL1: 1580 case SYSREG_ICC_SGI0R_EL1: 1581 case SYSREG_ICC_SGI1R_EL1: 1582 case SYSREG_ICC_SRE_EL1: 1583 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ 1584 if (!hvf_sysreg_write_cp(cpu, reg, val)) { 1585 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1586 } 1587 break; 1588 case SYSREG_MDSCR_EL1: 1589 env->cp15.mdscr_el1 = val; 1590 break; 1591 case SYSREG_DBGBVR0_EL1: 1592 case SYSREG_DBGBVR1_EL1: 1593 case SYSREG_DBGBVR2_EL1: 1594 case SYSREG_DBGBVR3_EL1: 1595 case SYSREG_DBGBVR4_EL1: 1596 case SYSREG_DBGBVR5_EL1: 1597 case SYSREG_DBGBVR6_EL1: 1598 case SYSREG_DBGBVR7_EL1: 1599 case SYSREG_DBGBVR8_EL1: 1600 case SYSREG_DBGBVR9_EL1: 1601 case SYSREG_DBGBVR10_EL1: 1602 case SYSREG_DBGBVR11_EL1: 1603 case SYSREG_DBGBVR12_EL1: 1604 case SYSREG_DBGBVR13_EL1: 1605 case SYSREG_DBGBVR14_EL1: 1606 case SYSREG_DBGBVR15_EL1: 1607 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val; 1608 break; 1609 case SYSREG_DBGBCR0_EL1: 1610 case SYSREG_DBGBCR1_EL1: 1611 case SYSREG_DBGBCR2_EL1: 1612 case SYSREG_DBGBCR3_EL1: 1613 case SYSREG_DBGBCR4_EL1: 1614 case SYSREG_DBGBCR5_EL1: 1615 case SYSREG_DBGBCR6_EL1: 1616 case SYSREG_DBGBCR7_EL1: 1617 case SYSREG_DBGBCR8_EL1: 1618 case SYSREG_DBGBCR9_EL1: 1619 case SYSREG_DBGBCR10_EL1: 1620 case SYSREG_DBGBCR11_EL1: 1621 case SYSREG_DBGBCR12_EL1: 1622 case SYSREG_DBGBCR13_EL1: 1623 case SYSREG_DBGBCR14_EL1: 1624 case SYSREG_DBGBCR15_EL1: 1625 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val; 1626 break; 1627 case SYSREG_DBGWVR0_EL1: 1628 case SYSREG_DBGWVR1_EL1: 1629 case SYSREG_DBGWVR2_EL1: 1630 case SYSREG_DBGWVR3_EL1: 1631 case SYSREG_DBGWVR4_EL1: 1632 case SYSREG_DBGWVR5_EL1: 1633 case SYSREG_DBGWVR6_EL1: 1634 case SYSREG_DBGWVR7_EL1: 1635 case SYSREG_DBGWVR8_EL1: 1636 case SYSREG_DBGWVR9_EL1: 1637 case SYSREG_DBGWVR10_EL1: 1638 case SYSREG_DBGWVR11_EL1: 1639 case SYSREG_DBGWVR12_EL1: 1640 case SYSREG_DBGWVR13_EL1: 1641 case SYSREG_DBGWVR14_EL1: 1642 case SYSREG_DBGWVR15_EL1: 1643 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val; 1644 break; 1645 case SYSREG_DBGWCR0_EL1: 1646 case SYSREG_DBGWCR1_EL1: 1647 case SYSREG_DBGWCR2_EL1: 1648 case SYSREG_DBGWCR3_EL1: 1649 case SYSREG_DBGWCR4_EL1: 1650 case SYSREG_DBGWCR5_EL1: 1651 case SYSREG_DBGWCR6_EL1: 1652 case SYSREG_DBGWCR7_EL1: 1653 case SYSREG_DBGWCR8_EL1: 1654 case SYSREG_DBGWCR9_EL1: 1655 case SYSREG_DBGWCR10_EL1: 1656 case SYSREG_DBGWCR11_EL1: 1657 case SYSREG_DBGWCR12_EL1: 1658 case SYSREG_DBGWCR13_EL1: 1659 case SYSREG_DBGWCR14_EL1: 1660 case SYSREG_DBGWCR15_EL1: 1661 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val; 1662 break; 1663 default: 1664 cpu_synchronize_state(cpu); 1665 trace_hvf_unhandled_sysreg_write(env->pc, reg, 1666 SYSREG_OP0(reg), 1667 SYSREG_OP1(reg), 1668 SYSREG_CRN(reg), 1669 SYSREG_CRM(reg), 1670 SYSREG_OP2(reg)); 1671 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1672 return 1; 1673 } 1674 1675 return 0; 1676 } 1677 1678 static int hvf_inject_interrupts(CPUState *cpu) 1679 { 1680 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) { 1681 trace_hvf_inject_fiq(); 1682 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ, 1683 true); 1684 } 1685 1686 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) { 1687 trace_hvf_inject_irq(); 1688 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ, 1689 true); 1690 } 1691 1692 return 0; 1693 } 1694 1695 static uint64_t hvf_vtimer_val_raw(void) 1696 { 1697 /* 1698 * mach_absolute_time() returns the vtimer value without the VM 1699 * offset that we define. Add our own offset on top. 1700 */ 1701 return mach_absolute_time() - hvf_state->vtimer_offset; 1702 } 1703 1704 static uint64_t hvf_vtimer_val(void) 1705 { 1706 if (!runstate_is_running()) { 1707 /* VM is paused, the vtimer value is in vtimer.vtimer_val */ 1708 return vtimer.vtimer_val; 1709 } 1710 1711 return hvf_vtimer_val_raw(); 1712 } 1713 1714 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts) 1715 { 1716 /* 1717 * Use pselect to sleep so that other threads can IPI us while we're 1718 * sleeping. 1719 */ 1720 qatomic_set_mb(&cpu->thread_kicked, false); 1721 qemu_mutex_unlock_iothread(); 1722 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask); 1723 qemu_mutex_lock_iothread(); 1724 } 1725 1726 static void hvf_wfi(CPUState *cpu) 1727 { 1728 ARMCPU *arm_cpu = ARM_CPU(cpu); 1729 struct timespec ts; 1730 hv_return_t r; 1731 uint64_t ctl; 1732 uint64_t cval; 1733 int64_t ticks_to_sleep; 1734 uint64_t seconds; 1735 uint64_t nanos; 1736 uint32_t cntfrq; 1737 1738 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) { 1739 /* Interrupt pending, no need to wait */ 1740 return; 1741 } 1742 1743 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); 1744 assert_hvf_ok(r); 1745 1746 if (!(ctl & 1) || (ctl & 2)) { 1747 /* Timer disabled or masked, just wait for an IPI. */ 1748 hvf_wait_for_ipi(cpu, NULL); 1749 return; 1750 } 1751 1752 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval); 1753 assert_hvf_ok(r); 1754 1755 ticks_to_sleep = cval - hvf_vtimer_val(); 1756 if (ticks_to_sleep < 0) { 1757 return; 1758 } 1759 1760 cntfrq = gt_cntfrq_period_ns(arm_cpu); 1761 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND); 1762 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq); 1763 nanos = ticks_to_sleep * cntfrq; 1764 1765 /* 1766 * Don't sleep for less than the time a context switch would take, 1767 * so that we can satisfy fast timer requests on the same CPU. 1768 * Measurements on M1 show the sweet spot to be ~2ms. 1769 */ 1770 if (!seconds && nanos < (2 * SCALE_MS)) { 1771 return; 1772 } 1773 1774 ts = (struct timespec) { seconds, nanos }; 1775 hvf_wait_for_ipi(cpu, &ts); 1776 } 1777 1778 static void hvf_sync_vtimer(CPUState *cpu) 1779 { 1780 ARMCPU *arm_cpu = ARM_CPU(cpu); 1781 hv_return_t r; 1782 uint64_t ctl; 1783 bool irq_state; 1784 1785 if (!cpu->accel->vtimer_masked) { 1786 /* We will get notified on vtimer changes by hvf, nothing to do */ 1787 return; 1788 } 1789 1790 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); 1791 assert_hvf_ok(r); 1792 1793 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) == 1794 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS); 1795 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state); 1796 1797 if (!irq_state) { 1798 /* Timer no longer asserting, we can unmask it */ 1799 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false); 1800 cpu->accel->vtimer_masked = false; 1801 } 1802 } 1803 1804 int hvf_vcpu_exec(CPUState *cpu) 1805 { 1806 ARMCPU *arm_cpu = ARM_CPU(cpu); 1807 CPUARMState *env = &arm_cpu->env; 1808 int ret; 1809 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit; 1810 hv_return_t r; 1811 bool advance_pc = false; 1812 1813 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) && 1814 hvf_inject_interrupts(cpu)) { 1815 return EXCP_INTERRUPT; 1816 } 1817 1818 if (cpu->halted) { 1819 return EXCP_HLT; 1820 } 1821 1822 flush_cpu_state(cpu); 1823 1824 qemu_mutex_unlock_iothread(); 1825 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd)); 1826 1827 /* handle VMEXIT */ 1828 uint64_t exit_reason = hvf_exit->reason; 1829 uint64_t syndrome = hvf_exit->exception.syndrome; 1830 uint32_t ec = syn_get_ec(syndrome); 1831 1832 ret = 0; 1833 qemu_mutex_lock_iothread(); 1834 switch (exit_reason) { 1835 case HV_EXIT_REASON_EXCEPTION: 1836 /* This is the main one, handle below. */ 1837 break; 1838 case HV_EXIT_REASON_VTIMER_ACTIVATED: 1839 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1); 1840 cpu->accel->vtimer_masked = true; 1841 return 0; 1842 case HV_EXIT_REASON_CANCELED: 1843 /* we got kicked, no exit to process */ 1844 return 0; 1845 default: 1846 g_assert_not_reached(); 1847 } 1848 1849 hvf_sync_vtimer(cpu); 1850 1851 switch (ec) { 1852 case EC_SOFTWARESTEP: { 1853 ret = EXCP_DEBUG; 1854 1855 if (!cpu->singlestep_enabled) { 1856 error_report("EC_SOFTWARESTEP but single-stepping not enabled"); 1857 } 1858 break; 1859 } 1860 case EC_AA64_BKPT: { 1861 ret = EXCP_DEBUG; 1862 1863 cpu_synchronize_state(cpu); 1864 1865 if (!hvf_find_sw_breakpoint(cpu, env->pc)) { 1866 /* Re-inject into the guest */ 1867 ret = 0; 1868 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0)); 1869 } 1870 break; 1871 } 1872 case EC_BREAKPOINT: { 1873 ret = EXCP_DEBUG; 1874 1875 cpu_synchronize_state(cpu); 1876 1877 if (!find_hw_breakpoint(cpu, env->pc)) { 1878 error_report("EC_BREAKPOINT but unknown hw breakpoint"); 1879 } 1880 break; 1881 } 1882 case EC_WATCHPOINT: { 1883 ret = EXCP_DEBUG; 1884 1885 cpu_synchronize_state(cpu); 1886 1887 CPUWatchpoint *wp = 1888 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address); 1889 if (!wp) { 1890 error_report("EXCP_DEBUG but unknown hw watchpoint"); 1891 } 1892 cpu->watchpoint_hit = wp; 1893 break; 1894 } 1895 case EC_DATAABORT: { 1896 bool isv = syndrome & ARM_EL_ISV; 1897 bool iswrite = (syndrome >> 6) & 1; 1898 bool s1ptw = (syndrome >> 7) & 1; 1899 uint32_t sas = (syndrome >> 22) & 3; 1900 uint32_t len = 1 << sas; 1901 uint32_t srt = (syndrome >> 16) & 0x1f; 1902 uint32_t cm = (syndrome >> 8) & 0x1; 1903 uint64_t val = 0; 1904 1905 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address, 1906 hvf_exit->exception.physical_address, isv, 1907 iswrite, s1ptw, len, srt); 1908 1909 if (cm) { 1910 /* We don't cache MMIO regions */ 1911 advance_pc = true; 1912 break; 1913 } 1914 1915 assert(isv); 1916 1917 if (iswrite) { 1918 val = hvf_get_reg(cpu, srt); 1919 address_space_write(&address_space_memory, 1920 hvf_exit->exception.physical_address, 1921 MEMTXATTRS_UNSPECIFIED, &val, len); 1922 } else { 1923 address_space_read(&address_space_memory, 1924 hvf_exit->exception.physical_address, 1925 MEMTXATTRS_UNSPECIFIED, &val, len); 1926 hvf_set_reg(cpu, srt, val); 1927 } 1928 1929 advance_pc = true; 1930 break; 1931 } 1932 case EC_SYSTEMREGISTERTRAP: { 1933 bool isread = (syndrome >> 0) & 1; 1934 uint32_t rt = (syndrome >> 5) & 0x1f; 1935 uint32_t reg = syndrome & SYSREG_MASK; 1936 uint64_t val; 1937 int ret = 0; 1938 1939 if (isread) { 1940 ret = hvf_sysreg_read(cpu, reg, rt); 1941 } else { 1942 val = hvf_get_reg(cpu, rt); 1943 ret = hvf_sysreg_write(cpu, reg, val); 1944 } 1945 1946 advance_pc = !ret; 1947 break; 1948 } 1949 case EC_WFX_TRAP: 1950 advance_pc = true; 1951 if (!(syndrome & WFX_IS_WFE)) { 1952 hvf_wfi(cpu); 1953 } 1954 break; 1955 case EC_AA64_HVC: 1956 cpu_synchronize_state(cpu); 1957 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) { 1958 if (!hvf_handle_psci_call(cpu)) { 1959 trace_hvf_unknown_hvc(env->xregs[0]); 1960 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ 1961 env->xregs[0] = -1; 1962 } 1963 } else { 1964 trace_hvf_unknown_hvc(env->xregs[0]); 1965 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1966 } 1967 break; 1968 case EC_AA64_SMC: 1969 cpu_synchronize_state(cpu); 1970 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) { 1971 advance_pc = true; 1972 1973 if (!hvf_handle_psci_call(cpu)) { 1974 trace_hvf_unknown_smc(env->xregs[0]); 1975 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ 1976 env->xregs[0] = -1; 1977 } 1978 } else { 1979 trace_hvf_unknown_smc(env->xregs[0]); 1980 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); 1981 } 1982 break; 1983 default: 1984 cpu_synchronize_state(cpu); 1985 trace_hvf_exit(syndrome, ec, env->pc); 1986 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec); 1987 } 1988 1989 if (advance_pc) { 1990 uint64_t pc; 1991 1992 flush_cpu_state(cpu); 1993 1994 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc); 1995 assert_hvf_ok(r); 1996 pc += 4; 1997 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc); 1998 assert_hvf_ok(r); 1999 2000 /* Handle single-stepping over instructions which trigger a VM exit */ 2001 if (cpu->singlestep_enabled) { 2002 ret = EXCP_DEBUG; 2003 } 2004 } 2005 2006 return ret; 2007 } 2008 2009 static const VMStateDescription vmstate_hvf_vtimer = { 2010 .name = "hvf-vtimer", 2011 .version_id = 1, 2012 .minimum_version_id = 1, 2013 .fields = (VMStateField[]) { 2014 VMSTATE_UINT64(vtimer_val, HVFVTimer), 2015 VMSTATE_END_OF_LIST() 2016 }, 2017 }; 2018 2019 static void hvf_vm_state_change(void *opaque, bool running, RunState state) 2020 { 2021 HVFVTimer *s = opaque; 2022 2023 if (running) { 2024 /* Update vtimer offset on all CPUs */ 2025 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val; 2026 cpu_synchronize_all_states(); 2027 } else { 2028 /* Remember vtimer value on every pause */ 2029 s->vtimer_val = hvf_vtimer_val_raw(); 2030 } 2031 } 2032 2033 int hvf_arch_init(void) 2034 { 2035 hvf_state->vtimer_offset = mach_absolute_time(); 2036 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer); 2037 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer); 2038 2039 hvf_arm_init_debug(); 2040 2041 return 0; 2042 } 2043 2044 static const uint32_t brk_insn = 0xd4200000; 2045 2046 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 2047 { 2048 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || 2049 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { 2050 return -EINVAL; 2051 } 2052 return 0; 2053 } 2054 2055 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 2056 { 2057 static uint32_t brk; 2058 2059 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) || 2060 brk != brk_insn || 2061 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { 2062 return -EINVAL; 2063 } 2064 return 0; 2065 } 2066 2067 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 2068 { 2069 switch (type) { 2070 case GDB_BREAKPOINT_HW: 2071 return insert_hw_breakpoint(addr); 2072 case GDB_WATCHPOINT_READ: 2073 case GDB_WATCHPOINT_WRITE: 2074 case GDB_WATCHPOINT_ACCESS: 2075 return insert_hw_watchpoint(addr, len, type); 2076 default: 2077 return -ENOSYS; 2078 } 2079 } 2080 2081 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 2082 { 2083 switch (type) { 2084 case GDB_BREAKPOINT_HW: 2085 return delete_hw_breakpoint(addr); 2086 case GDB_WATCHPOINT_READ: 2087 case GDB_WATCHPOINT_WRITE: 2088 case GDB_WATCHPOINT_ACCESS: 2089 return delete_hw_watchpoint(addr, len, type); 2090 default: 2091 return -ENOSYS; 2092 } 2093 } 2094 2095 void hvf_arch_remove_all_hw_breakpoints(void) 2096 { 2097 if (cur_hw_wps > 0) { 2098 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); 2099 } 2100 if (cur_hw_bps > 0) { 2101 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); 2102 } 2103 } 2104 2105 /* 2106 * Update the vCPU with the gdbstub's view of debug registers. This view 2107 * consists of all hardware breakpoints and watchpoints inserted so far while 2108 * debugging the guest. 2109 */ 2110 static void hvf_put_gdbstub_debug_registers(CPUState *cpu) 2111 { 2112 hv_return_t r = HV_SUCCESS; 2113 int i; 2114 2115 for (i = 0; i < cur_hw_bps; i++) { 2116 HWBreakpoint *bp = get_hw_bp(i); 2117 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr); 2118 assert_hvf_ok(r); 2119 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr); 2120 assert_hvf_ok(r); 2121 } 2122 for (i = cur_hw_bps; i < max_hw_bps; i++) { 2123 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0); 2124 assert_hvf_ok(r); 2125 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0); 2126 assert_hvf_ok(r); 2127 } 2128 2129 for (i = 0; i < cur_hw_wps; i++) { 2130 HWWatchpoint *wp = get_hw_wp(i); 2131 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr); 2132 assert_hvf_ok(r); 2133 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr); 2134 assert_hvf_ok(r); 2135 } 2136 for (i = cur_hw_wps; i < max_hw_wps; i++) { 2137 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0); 2138 assert_hvf_ok(r); 2139 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0); 2140 assert_hvf_ok(r); 2141 } 2142 } 2143 2144 /* 2145 * Update the vCPU with the guest's view of debug registers. This view is kept 2146 * in the environment at all times. 2147 */ 2148 static void hvf_put_guest_debug_registers(CPUState *cpu) 2149 { 2150 ARMCPU *arm_cpu = ARM_CPU(cpu); 2151 CPUARMState *env = &arm_cpu->env; 2152 hv_return_t r = HV_SUCCESS; 2153 int i; 2154 2155 for (i = 0; i < max_hw_bps; i++) { 2156 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 2157 env->cp15.dbgbcr[i]); 2158 assert_hvf_ok(r); 2159 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 2160 env->cp15.dbgbvr[i]); 2161 assert_hvf_ok(r); 2162 } 2163 2164 for (i = 0; i < max_hw_wps; i++) { 2165 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 2166 env->cp15.dbgwcr[i]); 2167 assert_hvf_ok(r); 2168 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 2169 env->cp15.dbgwvr[i]); 2170 assert_hvf_ok(r); 2171 } 2172 } 2173 2174 static inline bool hvf_arm_hw_debug_active(CPUState *cpu) 2175 { 2176 return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); 2177 } 2178 2179 static void hvf_arch_set_traps(void) 2180 { 2181 CPUState *cpu; 2182 bool should_enable_traps = false; 2183 hv_return_t r = HV_SUCCESS; 2184 2185 /* Check whether guest debugging is enabled for at least one vCPU; if it 2186 * is, enable exiting the guest on all vCPUs */ 2187 CPU_FOREACH(cpu) { 2188 should_enable_traps |= cpu->accel->guest_debug_enabled; 2189 } 2190 CPU_FOREACH(cpu) { 2191 /* Set whether debug exceptions exit the guest */ 2192 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd, 2193 should_enable_traps); 2194 assert_hvf_ok(r); 2195 2196 /* Set whether accesses to debug registers exit the guest */ 2197 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd, 2198 should_enable_traps); 2199 assert_hvf_ok(r); 2200 } 2201 } 2202 2203 void hvf_arch_update_guest_debug(CPUState *cpu) 2204 { 2205 ARMCPU *arm_cpu = ARM_CPU(cpu); 2206 CPUARMState *env = &arm_cpu->env; 2207 2208 /* Check whether guest debugging is enabled */ 2209 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled || 2210 hvf_sw_breakpoints_active(cpu) || 2211 hvf_arm_hw_debug_active(cpu); 2212 2213 /* Update debug registers */ 2214 if (cpu->accel->guest_debug_enabled) { 2215 hvf_put_gdbstub_debug_registers(cpu); 2216 } else { 2217 hvf_put_guest_debug_registers(cpu); 2218 } 2219 2220 cpu_synchronize_state(cpu); 2221 2222 /* Enable/disable single-stepping */ 2223 if (cpu->singlestep_enabled) { 2224 env->cp15.mdscr_el1 = 2225 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1); 2226 pstate_write(env, pstate_read(env) | PSTATE_SS); 2227 } else { 2228 env->cp15.mdscr_el1 = 2229 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0); 2230 } 2231 2232 /* Enable/disable Breakpoint exceptions */ 2233 if (hvf_arm_hw_debug_active(cpu)) { 2234 env->cp15.mdscr_el1 = 2235 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1); 2236 } else { 2237 env->cp15.mdscr_el1 = 2238 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0); 2239 } 2240 2241 hvf_arch_set_traps(); 2242 } 2243 2244 inline bool hvf_arch_supports_guest_debug(void) 2245 { 2246 return true; 2247 } 2248