1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "exec/page-protection.h" 17 #include "exec/mmap-lock.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/cputlb.h" 23 #include "exec/exec-all.h" 24 #include "exec/translation-block.h" 25 #include "hw/irq.h" 26 #include "system/cpu-timers.h" 27 #include "exec/icount.h" 28 #include "system/kvm.h" 29 #include "system/tcg.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "accel/tcg/probe.h" 34 #include "semihosting/common-semi.h" 35 #endif 36 #include "cpregs.h" 37 #include "target/arm/gtimer.h" 38 39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 40 41 static void switch_mode(CPUARMState *env, int mode); 42 43 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 44 { 45 assert(ri->fieldoffset); 46 if (cpreg_field_is_64bit(ri)) { 47 return CPREG_FIELD64(env, ri); 48 } else { 49 return CPREG_FIELD32(env, ri); 50 } 51 } 52 53 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 54 { 55 assert(ri->fieldoffset); 56 if (cpreg_field_is_64bit(ri)) { 57 CPREG_FIELD64(env, ri) = value; 58 } else { 59 CPREG_FIELD32(env, ri) = value; 60 } 61 } 62 63 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 return (char *)env + ri->fieldoffset; 66 } 67 68 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 69 { 70 /* Raw read of a coprocessor register (as needed for migration, etc). */ 71 if (ri->type & ARM_CP_CONST) { 72 return ri->resetvalue; 73 } else if (ri->raw_readfn) { 74 return ri->raw_readfn(env, ri); 75 } else if (ri->readfn) { 76 return ri->readfn(env, ri); 77 } else { 78 return raw_read(env, ri); 79 } 80 } 81 82 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 83 uint64_t v) 84 { 85 /* 86 * Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* 105 * Return true if the regdef would cause an assertion if you called 106 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 107 * program bug for it not to have the NO_RAW flag). 108 * NB that returning false here doesn't necessarily mean that calling 109 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 110 * read/write access functions which are safe for raw use" from "has 111 * read/write access functions which have side effects but has forgotten 112 * to provide raw access functions". 113 * The tests here line up with the conditions in read/write_raw_cp_reg() 114 * and assertions in raw_read()/raw_write(). 115 */ 116 if ((ri->type & ARM_CP_CONST) || 117 ri->fieldoffset || 118 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 119 return false; 120 } 121 return true; 122 } 123 124 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 125 { 126 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 127 int i; 128 bool ok = true; 129 130 for (i = 0; i < cpu->cpreg_array_len; i++) { 131 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 132 const ARMCPRegInfo *ri; 133 uint64_t newval; 134 135 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 136 if (!ri) { 137 ok = false; 138 continue; 139 } 140 if (ri->type & ARM_CP_NO_RAW) { 141 continue; 142 } 143 144 newval = read_raw_cp_reg(&cpu->env, ri); 145 if (kvm_sync) { 146 /* 147 * Only sync if the previous list->cpustate sync succeeded. 148 * Rather than tracking the success/failure state for every 149 * item in the list, we just recheck "does the raw write we must 150 * have made in write_list_to_cpustate() read back OK" here. 151 */ 152 uint64_t oldval = cpu->cpreg_values[i]; 153 154 if (oldval == newval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, oldval); 159 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 160 continue; 161 } 162 163 write_raw_cp_reg(&cpu->env, ri, newval); 164 } 165 cpu->cpreg_values[i] = newval; 166 } 167 return ok; 168 } 169 170 bool write_list_to_cpustate(ARMCPU *cpu) 171 { 172 int i; 173 bool ok = true; 174 175 for (i = 0; i < cpu->cpreg_array_len; i++) { 176 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 177 uint64_t v = cpu->cpreg_values[i]; 178 const ARMCPRegInfo *ri; 179 180 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 181 if (!ri) { 182 ok = false; 183 continue; 184 } 185 if (ri->type & ARM_CP_NO_RAW) { 186 continue; 187 } 188 /* 189 * Write value and confirm it reads back as written 190 * (to catch read-only registers and partially read-only 191 * registers where the incoming migration value doesn't match) 192 */ 193 write_raw_cp_reg(&cpu->env, ri, v); 194 if (read_raw_cp_reg(&cpu->env, ri) != v) { 195 ok = false; 196 } 197 } 198 return ok; 199 } 200 201 static void add_cpreg_to_list(gpointer key, gpointer opaque) 202 { 203 ARMCPU *cpu = opaque; 204 uint32_t regidx = (uintptr_t)key; 205 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 206 207 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 208 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 209 /* The value array need not be initialized at this point */ 210 cpu->cpreg_array_len++; 211 } 212 } 213 214 static void count_cpreg(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 const ARMCPRegInfo *ri; 218 219 ri = g_hash_table_lookup(cpu->cp_regs, key); 220 221 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 222 cpu->cpreg_array_len++; 223 } 224 } 225 226 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 227 { 228 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 229 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 230 231 if (aidx > bidx) { 232 return 1; 233 } 234 if (aidx < bidx) { 235 return -1; 236 } 237 return 0; 238 } 239 240 void init_cpreg_list(ARMCPU *cpu) 241 { 242 /* 243 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 244 * Note that we require cpreg_tuples[] to be sorted by key ID. 245 */ 246 GList *keys; 247 int arraylen; 248 249 keys = g_hash_table_get_keys(cpu->cp_regs); 250 keys = g_list_sort(keys, cpreg_key_compare); 251 252 cpu->cpreg_array_len = 0; 253 254 g_list_foreach(keys, count_cpreg, cpu); 255 256 arraylen = cpu->cpreg_array_len; 257 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 258 cpu->cpreg_values = g_new(uint64_t, arraylen); 259 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 260 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 261 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 262 cpu->cpreg_array_len = 0; 263 264 g_list_foreach(keys, add_cpreg_to_list, cpu); 265 266 assert(cpu->cpreg_array_len == arraylen); 267 268 g_list_free(keys); 269 } 270 271 static bool arm_pan_enabled(CPUARMState *env) 272 { 273 if (is_a64(env)) { 274 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 275 return false; 276 } 277 return env->pstate & PSTATE_PAN; 278 } else { 279 return env->uncached_cpsr & CPSR_PAN; 280 } 281 } 282 283 /* 284 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 285 */ 286 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (!is_a64(env) && arm_current_el(env) == 3 && 291 arm_is_secure_below_el3(env)) { 292 return CP_ACCESS_UNDEFINED; 293 } 294 return CP_ACCESS_OK; 295 } 296 297 /* 298 * Some secure-only AArch32 registers trap to EL3 if used from 299 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 300 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 301 * We assume that the .access field is set to PL1_RW. 302 */ 303 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 304 const ARMCPRegInfo *ri, 305 bool isread) 306 { 307 if (arm_current_el(env) == 3) { 308 return CP_ACCESS_OK; 309 } 310 if (arm_is_secure_below_el3(env)) { 311 if (env->cp15.scr_el3 & SCR_EEL2) { 312 return CP_ACCESS_TRAP_EL2; 313 } 314 return CP_ACCESS_TRAP_EL3; 315 } 316 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 317 return CP_ACCESS_UNDEFINED; 318 } 319 320 /* 321 * Check for traps to performance monitor registers, which are controlled 322 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 323 */ 324 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 325 bool isread) 326 { 327 int el = arm_current_el(env); 328 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 329 330 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 331 return CP_ACCESS_TRAP_EL2; 332 } 333 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 334 return CP_ACCESS_TRAP_EL3; 335 } 336 return CP_ACCESS_OK; 337 } 338 339 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 340 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 341 bool isread) 342 { 343 if (arm_current_el(env) == 1) { 344 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 345 if (arm_hcr_el2_eff(env) & trap) { 346 return CP_ACCESS_TRAP_EL2; 347 } 348 } 349 return CP_ACCESS_OK; 350 } 351 352 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 353 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 354 bool isread) 355 { 356 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 357 return CP_ACCESS_TRAP_EL2; 358 } 359 return CP_ACCESS_OK; 360 } 361 362 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 363 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 364 bool isread) 365 { 366 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 367 return CP_ACCESS_TRAP_EL2; 368 } 369 return CP_ACCESS_OK; 370 } 371 372 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 373 { 374 ARMCPU *cpu = env_archcpu(env); 375 376 raw_write(env, ri, value); 377 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 378 } 379 380 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 381 { 382 ARMCPU *cpu = env_archcpu(env); 383 384 if (raw_read(env, ri) != value) { 385 /* 386 * Unlike real hardware the qemu TLB uses virtual addresses, 387 * not modified virtual addresses, so this causes a TLB flush. 388 */ 389 tlb_flush(CPU(cpu)); 390 raw_write(env, ri, value); 391 } 392 } 393 394 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 395 uint64_t value) 396 { 397 ARMCPU *cpu = env_archcpu(env); 398 399 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 400 && !extended_addresses_enabled(env)) { 401 /* 402 * For VMSA (when not using the LPAE long descriptor page table 403 * format) this register includes the ASID, so do a TLB flush. 404 * For PMSA it is purely a process ID and no action is needed. 405 */ 406 tlb_flush(CPU(cpu)); 407 } 408 raw_write(env, ri, value); 409 } 410 411 int alle1_tlbmask(CPUARMState *env) 412 { 413 /* 414 * Note that the 'ALL' scope must invalidate both stage 1 and 415 * stage 2 translations, whereas most other scopes only invalidate 416 * stage 1 translations. 417 * 418 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 419 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 420 */ 421 return (ARMMMUIdxBit_E10_1 | 422 ARMMMUIdxBit_E10_1_PAN | 423 ARMMMUIdxBit_E10_0 | 424 ARMMMUIdxBit_Stage2 | 425 ARMMMUIdxBit_Stage2_S); 426 } 427 428 static const ARMCPRegInfo cp_reginfo[] = { 429 /* 430 * Define the secure and non-secure FCSE identifier CP registers 431 * separately because there is no secure bank in V8 (no _EL3). This allows 432 * the secure register to be properly reset and migrated. There is also no 433 * v8 EL1 version of the register so the non-secure instance stands alone. 434 */ 435 { .name = "FCSEIDR", 436 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 437 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 438 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 439 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 440 { .name = "FCSEIDR_S", 441 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 442 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 443 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 444 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 445 /* 446 * Define the secure and non-secure context identifier CP registers 447 * separately because there is no secure bank in V8 (no _EL3). This allows 448 * the secure register to be properly reset and migrated. In the 449 * non-secure case, the 32-bit register will have reset and migration 450 * disabled during registration as it is handled by the 64-bit instance. 451 */ 452 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 453 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 454 .access = PL1_RW, .accessfn = access_tvm_trvm, 455 .fgt = FGT_CONTEXTIDR_EL1, 456 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 457 .secure = ARM_CP_SECSTATE_NS, 458 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 459 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 460 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 461 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 462 .access = PL1_RW, .accessfn = access_tvm_trvm, 463 .secure = ARM_CP_SECSTATE_S, 464 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 465 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 466 }; 467 468 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 469 /* 470 * NB: Some of these registers exist in v8 but with more precise 471 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 472 */ 473 /* MMU Domain access control / MPU write buffer control */ 474 { .name = "DACR", 475 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 476 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 477 .writefn = dacr_write, .raw_writefn = raw_write, 478 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 479 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 480 /* 481 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 482 * For v6 and v5, these mappings are overly broad. 483 */ 484 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 485 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 486 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 488 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 489 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 490 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 491 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 492 /* Cache maintenance ops; some of this space may be overridden later. */ 493 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 494 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 495 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 496 }; 497 498 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 499 /* 500 * Not all pre-v6 cores implemented this WFI, so this is slightly 501 * over-broad. 502 */ 503 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 504 .access = PL1_W, .type = ARM_CP_WFI }, 505 }; 506 507 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 508 /* 509 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 510 * is UNPREDICTABLE; we choose to NOP as most implementations do). 511 */ 512 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 513 .access = PL1_W, .type = ARM_CP_WFI }, 514 /* 515 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 516 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 517 * OMAPCP will override this space. 518 */ 519 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 520 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 521 .resetvalue = 0 }, 522 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 523 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 524 .resetvalue = 0 }, 525 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 526 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 527 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 528 .resetvalue = 0 }, 529 /* 530 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 531 * implementing it as RAZ means the "debug architecture version" bits 532 * will read as a reserved value, which should cause Linux to not try 533 * to use the debug hardware. 534 */ 535 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 536 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 537 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 538 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 539 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 540 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 541 }; 542 543 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 uint32_t mask = 0; 547 548 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 549 if (!arm_feature(env, ARM_FEATURE_V8)) { 550 /* 551 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 552 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 553 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 554 */ 555 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 556 /* VFP coprocessor: cp10 & cp11 [23:20] */ 557 mask |= R_CPACR_ASEDIS_MASK | 558 R_CPACR_D32DIS_MASK | 559 R_CPACR_CP11_MASK | 560 R_CPACR_CP10_MASK; 561 562 if (!arm_feature(env, ARM_FEATURE_NEON)) { 563 /* ASEDIS [31] bit is RAO/WI */ 564 value |= R_CPACR_ASEDIS_MASK; 565 } 566 567 /* 568 * VFPv3 and upwards with NEON implement 32 double precision 569 * registers (D0-D31). 570 */ 571 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 572 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 573 value |= R_CPACR_D32DIS_MASK; 574 } 575 } 576 value &= mask; 577 } 578 579 /* 580 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 581 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 582 */ 583 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 584 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 585 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 586 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 587 } 588 589 env->cp15.cpacr_el1 = value; 590 } 591 592 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 593 { 594 /* 595 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 596 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 597 */ 598 uint64_t value = env->cp15.cpacr_el1; 599 600 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 601 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 602 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 603 } 604 return value; 605 } 606 607 608 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 609 { 610 /* 611 * Call cpacr_write() so that we reset with the correct RAO bits set 612 * for our CPU features. 613 */ 614 cpacr_write(env, ri, 0); 615 } 616 617 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 618 bool isread) 619 { 620 if (arm_feature(env, ARM_FEATURE_V8)) { 621 /* Check if CPACR accesses are to be trapped to EL2 */ 622 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 623 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 624 return CP_ACCESS_TRAP_EL2; 625 /* Check if CPACR accesses are to be trapped to EL3 */ 626 } else if (arm_current_el(env) < 3 && 627 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 628 return CP_ACCESS_TRAP_EL3; 629 } 630 } 631 632 return CP_ACCESS_OK; 633 } 634 635 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 636 bool isread) 637 { 638 /* Check if CPTR accesses are set to trap to EL3 */ 639 if (arm_current_el(env) == 2 && 640 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 641 return CP_ACCESS_TRAP_EL3; 642 } 643 644 return CP_ACCESS_OK; 645 } 646 647 static const ARMCPRegInfo v6_cp_reginfo[] = { 648 /* prefetch by MVA in v6, NOP in v7 */ 649 { .name = "MVA_prefetch", 650 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 651 .access = PL1_W, .type = ARM_CP_NOP }, 652 /* 653 * We need to break the TB after ISB to execute self-modifying code 654 * correctly and also to take any pending interrupts immediately. 655 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 656 */ 657 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 658 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 659 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 660 .access = PL0_W, .type = ARM_CP_NOP }, 661 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 662 .access = PL0_W, .type = ARM_CP_NOP }, 663 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 664 .access = PL1_RW, .accessfn = access_tvm_trvm, 665 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 666 offsetof(CPUARMState, cp15.ifar_ns) }, 667 .resetvalue = 0, }, 668 /* 669 * Watchpoint Fault Address Register : should actually only be present 670 * for 1136, 1176, 11MPCore. 671 */ 672 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 673 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 674 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 675 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 676 .fgt = FGT_CPACR_EL1, 677 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 678 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 679 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 680 }; 681 682 typedef struct pm_event { 683 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 684 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 685 bool (*supported)(CPUARMState *); 686 /* 687 * Retrieve the current count of the underlying event. The programmed 688 * counters hold a difference from the return value from this function 689 */ 690 uint64_t (*get_count)(CPUARMState *); 691 /* 692 * Return how many nanoseconds it will take (at a minimum) for count events 693 * to occur. A negative value indicates the counter will never overflow, or 694 * that the counter has otherwise arranged for the overflow bit to be set 695 * and the PMU interrupt to be raised on overflow. 696 */ 697 int64_t (*ns_per_count)(uint64_t); 698 } pm_event; 699 700 static bool event_always_supported(CPUARMState *env) 701 { 702 return true; 703 } 704 705 static uint64_t swinc_get_count(CPUARMState *env) 706 { 707 /* 708 * SW_INCR events are written directly to the pmevcntr's by writes to 709 * PMSWINC, so there is no underlying count maintained by the PMU itself 710 */ 711 return 0; 712 } 713 714 static int64_t swinc_ns_per(uint64_t ignored) 715 { 716 return -1; 717 } 718 719 /* 720 * Return the underlying cycle count for the PMU cycle counters. If we're in 721 * usermode, simply return 0. 722 */ 723 static uint64_t cycles_get_count(CPUARMState *env) 724 { 725 #ifndef CONFIG_USER_ONLY 726 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 727 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 728 #else 729 return cpu_get_host_ticks(); 730 #endif 731 } 732 733 #ifndef CONFIG_USER_ONLY 734 static int64_t cycles_ns_per(uint64_t cycles) 735 { 736 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 737 } 738 739 static bool instructions_supported(CPUARMState *env) 740 { 741 /* Precise instruction counting */ 742 return icount_enabled() == ICOUNT_PRECISE; 743 } 744 745 static uint64_t instructions_get_count(CPUARMState *env) 746 { 747 assert(icount_enabled() == ICOUNT_PRECISE); 748 return (uint64_t)icount_get_raw(); 749 } 750 751 static int64_t instructions_ns_per(uint64_t icount) 752 { 753 assert(icount_enabled() == ICOUNT_PRECISE); 754 return icount_to_ns((int64_t)icount); 755 } 756 #endif 757 758 static bool pmuv3p1_events_supported(CPUARMState *env) 759 { 760 /* For events which are supported in any v8.1 PMU */ 761 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 762 } 763 764 static bool pmuv3p4_events_supported(CPUARMState *env) 765 { 766 /* For events which are supported in any v8.1 PMU */ 767 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 768 } 769 770 static uint64_t zero_event_get_count(CPUARMState *env) 771 { 772 /* For events which on QEMU never fire, so their count is always zero */ 773 return 0; 774 } 775 776 static int64_t zero_event_ns_per(uint64_t cycles) 777 { 778 /* An event which never fires can never overflow */ 779 return -1; 780 } 781 782 static const pm_event pm_events[] = { 783 { .number = 0x000, /* SW_INCR */ 784 .supported = event_always_supported, 785 .get_count = swinc_get_count, 786 .ns_per_count = swinc_ns_per, 787 }, 788 #ifndef CONFIG_USER_ONLY 789 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 790 .supported = instructions_supported, 791 .get_count = instructions_get_count, 792 .ns_per_count = instructions_ns_per, 793 }, 794 { .number = 0x011, /* CPU_CYCLES, Cycle */ 795 .supported = event_always_supported, 796 .get_count = cycles_get_count, 797 .ns_per_count = cycles_ns_per, 798 }, 799 #endif 800 { .number = 0x023, /* STALL_FRONTEND */ 801 .supported = pmuv3p1_events_supported, 802 .get_count = zero_event_get_count, 803 .ns_per_count = zero_event_ns_per, 804 }, 805 { .number = 0x024, /* STALL_BACKEND */ 806 .supported = pmuv3p1_events_supported, 807 .get_count = zero_event_get_count, 808 .ns_per_count = zero_event_ns_per, 809 }, 810 { .number = 0x03c, /* STALL */ 811 .supported = pmuv3p4_events_supported, 812 .get_count = zero_event_get_count, 813 .ns_per_count = zero_event_ns_per, 814 }, 815 }; 816 817 /* 818 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 819 * events (i.e. the statistical profiling extension), this implementation 820 * should first be updated to something sparse instead of the current 821 * supported_event_map[] array. 822 */ 823 #define MAX_EVENT_ID 0x3c 824 #define UNSUPPORTED_EVENT UINT16_MAX 825 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 826 827 /* 828 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 829 * of ARM event numbers to indices in our pm_events array. 830 * 831 * Note: Events in the 0x40XX range are not currently supported. 832 */ 833 void pmu_init(ARMCPU *cpu) 834 { 835 unsigned int i; 836 837 /* 838 * Empty supported_event_map and cpu->pmceid[01] before adding supported 839 * events to them 840 */ 841 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 842 supported_event_map[i] = UNSUPPORTED_EVENT; 843 } 844 cpu->pmceid0 = 0; 845 cpu->pmceid1 = 0; 846 847 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 848 const pm_event *cnt = &pm_events[i]; 849 assert(cnt->number <= MAX_EVENT_ID); 850 /* We do not currently support events in the 0x40xx range */ 851 assert(cnt->number <= 0x3f); 852 853 if (cnt->supported(&cpu->env)) { 854 supported_event_map[cnt->number] = i; 855 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 856 if (cnt->number & 0x20) { 857 cpu->pmceid1 |= event_mask; 858 } else { 859 cpu->pmceid0 |= event_mask; 860 } 861 } 862 } 863 } 864 865 /* 866 * Check at runtime whether a PMU event is supported for the current machine 867 */ 868 static bool event_supported(uint16_t number) 869 { 870 if (number > MAX_EVENT_ID) { 871 return false; 872 } 873 return supported_event_map[number] != UNSUPPORTED_EVENT; 874 } 875 876 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 877 bool isread) 878 { 879 /* 880 * Performance monitor registers user accessibility is controlled 881 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 882 * trapping to EL2 or EL3 for other accesses. 883 */ 884 int el = arm_current_el(env); 885 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 886 887 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 888 return CP_ACCESS_TRAP_EL1; 889 } 890 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 891 return CP_ACCESS_TRAP_EL2; 892 } 893 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 894 return CP_ACCESS_TRAP_EL3; 895 } 896 897 return CP_ACCESS_OK; 898 } 899 900 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 901 const ARMCPRegInfo *ri, 902 bool isread) 903 { 904 /* ER: event counter read trap control */ 905 if (arm_feature(env, ARM_FEATURE_V8) 906 && arm_current_el(env) == 0 907 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 908 && isread) { 909 return CP_ACCESS_OK; 910 } 911 912 return pmreg_access(env, ri, isread); 913 } 914 915 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 916 const ARMCPRegInfo *ri, 917 bool isread) 918 { 919 /* SW: software increment write trap control */ 920 if (arm_feature(env, ARM_FEATURE_V8) 921 && arm_current_el(env) == 0 922 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 923 && !isread) { 924 return CP_ACCESS_OK; 925 } 926 927 return pmreg_access(env, ri, isread); 928 } 929 930 static CPAccessResult pmreg_access_selr(CPUARMState *env, 931 const ARMCPRegInfo *ri, 932 bool isread) 933 { 934 /* ER: event counter read trap control */ 935 if (arm_feature(env, ARM_FEATURE_V8) 936 && arm_current_el(env) == 0 937 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 938 return CP_ACCESS_OK; 939 } 940 941 return pmreg_access(env, ri, isread); 942 } 943 944 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 945 const ARMCPRegInfo *ri, 946 bool isread) 947 { 948 /* CR: cycle counter read trap control */ 949 if (arm_feature(env, ARM_FEATURE_V8) 950 && arm_current_el(env) == 0 951 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 952 && isread) { 953 return CP_ACCESS_OK; 954 } 955 956 return pmreg_access(env, ri, isread); 957 } 958 959 /* 960 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 961 * We use these to decide whether we need to wrap a write to MDCR_EL2 962 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 963 */ 964 #define MDCR_EL2_PMU_ENABLE_BITS \ 965 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 966 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 967 968 /* 969 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 970 * the current EL, security state, and register configuration. 971 */ 972 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 973 { 974 uint64_t filter; 975 bool e, p, u, nsk, nsu, nsh, m; 976 bool enabled, prohibited = false, filtered; 977 bool secure = arm_is_secure(env); 978 int el = arm_current_el(env); 979 uint64_t mdcr_el2; 980 uint8_t hpmn; 981 982 /* 983 * We might be called for M-profile cores where MDCR_EL2 doesn't 984 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 985 * must be before we read that value. 986 */ 987 if (!arm_feature(env, ARM_FEATURE_PMU)) { 988 return false; 989 } 990 991 mdcr_el2 = arm_mdcr_el2_eff(env); 992 hpmn = mdcr_el2 & MDCR_HPMN; 993 994 if (!arm_feature(env, ARM_FEATURE_EL2) || 995 (counter < hpmn || counter == 31)) { 996 e = env->cp15.c9_pmcr & PMCRE; 997 } else { 998 e = mdcr_el2 & MDCR_HPME; 999 } 1000 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1001 1002 /* Is event counting prohibited? */ 1003 if (el == 2 && (counter < hpmn || counter == 31)) { 1004 prohibited = mdcr_el2 & MDCR_HPMD; 1005 } 1006 if (secure) { 1007 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1008 } 1009 1010 if (counter == 31) { 1011 /* 1012 * The cycle counter defaults to running. PMCR.DP says "disable 1013 * the cycle counter when event counting is prohibited". 1014 * Some MDCR bits disable the cycle counter specifically. 1015 */ 1016 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1017 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1018 if (secure) { 1019 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1020 } 1021 if (el == 2) { 1022 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1023 } 1024 } 1025 } 1026 1027 if (counter == 31) { 1028 filter = env->cp15.pmccfiltr_el0; 1029 } else { 1030 filter = env->cp15.c14_pmevtyper[counter]; 1031 } 1032 1033 p = filter & PMXEVTYPER_P; 1034 u = filter & PMXEVTYPER_U; 1035 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1036 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1037 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1038 m = arm_el_is_aa64(env, 1) && 1039 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1040 1041 if (el == 0) { 1042 filtered = secure ? u : u != nsu; 1043 } else if (el == 1) { 1044 filtered = secure ? p : p != nsk; 1045 } else if (el == 2) { 1046 filtered = !nsh; 1047 } else { /* EL3 */ 1048 filtered = m != p; 1049 } 1050 1051 if (counter != 31) { 1052 /* 1053 * If not checking PMCCNTR, ensure the counter is setup to an event we 1054 * support 1055 */ 1056 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1057 if (!event_supported(event)) { 1058 return false; 1059 } 1060 } 1061 1062 return enabled && !prohibited && !filtered; 1063 } 1064 1065 static void pmu_update_irq(CPUARMState *env) 1066 { 1067 ARMCPU *cpu = env_archcpu(env); 1068 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1069 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1070 } 1071 1072 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1073 { 1074 /* 1075 * Return true if the clock divider is enabled and the cycle counter 1076 * is supposed to tick only once every 64 clock cycles. This is 1077 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1078 * (64-bit) cycle counter PMCR.D has no effect. 1079 */ 1080 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1081 } 1082 1083 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1084 { 1085 /* Return true if the specified event counter is configured to be 64 bit */ 1086 1087 /* This isn't intended to be used with the cycle counter */ 1088 assert(counter < 31); 1089 1090 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1091 return false; 1092 } 1093 1094 if (arm_feature(env, ARM_FEATURE_EL2)) { 1095 /* 1096 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1097 * current security state, so we don't use arm_mdcr_el2_eff() here. 1098 */ 1099 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1100 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1101 1102 if (counter >= hpmn) { 1103 return hlp; 1104 } 1105 } 1106 return env->cp15.c9_pmcr & PMCRLP; 1107 } 1108 1109 /* 1110 * Ensure c15_ccnt is the guest-visible count so that operations such as 1111 * enabling/disabling the counter or filtering, modifying the count itself, 1112 * etc. can be done logically. This is essentially a no-op if the counter is 1113 * not enabled at the time of the call. 1114 */ 1115 static void pmccntr_op_start(CPUARMState *env) 1116 { 1117 uint64_t cycles = cycles_get_count(env); 1118 1119 if (pmu_counter_enabled(env, 31)) { 1120 uint64_t eff_cycles = cycles; 1121 if (pmccntr_clockdiv_enabled(env)) { 1122 eff_cycles /= 64; 1123 } 1124 1125 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1126 1127 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1128 1ull << 63 : 1ull << 31; 1129 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1130 env->cp15.c9_pmovsr |= (1ULL << 31); 1131 pmu_update_irq(env); 1132 } 1133 1134 env->cp15.c15_ccnt = new_pmccntr; 1135 } 1136 env->cp15.c15_ccnt_delta = cycles; 1137 } 1138 1139 /* 1140 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1141 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1142 * pmccntr_op_start. 1143 */ 1144 static void pmccntr_op_finish(CPUARMState *env) 1145 { 1146 if (pmu_counter_enabled(env, 31)) { 1147 #ifndef CONFIG_USER_ONLY 1148 /* Calculate when the counter will next overflow */ 1149 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1150 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1151 remaining_cycles = (uint32_t)remaining_cycles; 1152 } 1153 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1154 1155 if (overflow_in > 0) { 1156 int64_t overflow_at; 1157 1158 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1159 overflow_in, &overflow_at)) { 1160 ARMCPU *cpu = env_archcpu(env); 1161 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1162 } 1163 } 1164 #endif 1165 1166 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1167 if (pmccntr_clockdiv_enabled(env)) { 1168 prev_cycles /= 64; 1169 } 1170 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1171 } 1172 } 1173 1174 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1175 { 1176 1177 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1178 uint64_t count = 0; 1179 if (event_supported(event)) { 1180 uint16_t event_idx = supported_event_map[event]; 1181 count = pm_events[event_idx].get_count(env); 1182 } 1183 1184 if (pmu_counter_enabled(env, counter)) { 1185 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1186 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1187 1ULL << 63 : 1ULL << 31; 1188 1189 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1190 env->cp15.c9_pmovsr |= (1 << counter); 1191 pmu_update_irq(env); 1192 } 1193 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1194 } 1195 env->cp15.c14_pmevcntr_delta[counter] = count; 1196 } 1197 1198 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1199 { 1200 if (pmu_counter_enabled(env, counter)) { 1201 #ifndef CONFIG_USER_ONLY 1202 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1203 uint16_t event_idx = supported_event_map[event]; 1204 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1205 int64_t overflow_in; 1206 1207 if (!pmevcntr_is_64_bit(env, counter)) { 1208 delta = (uint32_t)delta; 1209 } 1210 overflow_in = pm_events[event_idx].ns_per_count(delta); 1211 1212 if (overflow_in > 0) { 1213 int64_t overflow_at; 1214 1215 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1216 overflow_in, &overflow_at)) { 1217 ARMCPU *cpu = env_archcpu(env); 1218 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1219 } 1220 } 1221 #endif 1222 1223 env->cp15.c14_pmevcntr_delta[counter] -= 1224 env->cp15.c14_pmevcntr[counter]; 1225 } 1226 } 1227 1228 void pmu_op_start(CPUARMState *env) 1229 { 1230 unsigned int i; 1231 pmccntr_op_start(env); 1232 for (i = 0; i < pmu_num_counters(env); i++) { 1233 pmevcntr_op_start(env, i); 1234 } 1235 } 1236 1237 void pmu_op_finish(CPUARMState *env) 1238 { 1239 unsigned int i; 1240 pmccntr_op_finish(env); 1241 for (i = 0; i < pmu_num_counters(env); i++) { 1242 pmevcntr_op_finish(env, i); 1243 } 1244 } 1245 1246 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1247 { 1248 pmu_op_start(&cpu->env); 1249 } 1250 1251 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1252 { 1253 pmu_op_finish(&cpu->env); 1254 } 1255 1256 void arm_pmu_timer_cb(void *opaque) 1257 { 1258 ARMCPU *cpu = opaque; 1259 1260 /* 1261 * Update all the counter values based on the current underlying counts, 1262 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1263 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1264 * counter may expire. 1265 */ 1266 pmu_op_start(&cpu->env); 1267 pmu_op_finish(&cpu->env); 1268 } 1269 1270 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1271 uint64_t value) 1272 { 1273 pmu_op_start(env); 1274 1275 if (value & PMCRC) { 1276 /* The counter has been reset */ 1277 env->cp15.c15_ccnt = 0; 1278 } 1279 1280 if (value & PMCRP) { 1281 unsigned int i; 1282 for (i = 0; i < pmu_num_counters(env); i++) { 1283 env->cp15.c14_pmevcntr[i] = 0; 1284 } 1285 } 1286 1287 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1288 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1289 1290 pmu_op_finish(env); 1291 } 1292 1293 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1294 { 1295 uint64_t pmcr = env->cp15.c9_pmcr; 1296 1297 /* 1298 * If EL2 is implemented and enabled for the current security state, reads 1299 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1300 */ 1301 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1302 pmcr &= ~PMCRN_MASK; 1303 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1304 } 1305 1306 return pmcr; 1307 } 1308 1309 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1310 uint64_t value) 1311 { 1312 unsigned int i; 1313 uint64_t overflow_mask, new_pmswinc; 1314 1315 for (i = 0; i < pmu_num_counters(env); i++) { 1316 /* Increment a counter's count iff: */ 1317 if ((value & (1 << i)) && /* counter's bit is set */ 1318 /* counter is enabled and not filtered */ 1319 pmu_counter_enabled(env, i) && 1320 /* counter is SW_INCR */ 1321 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1322 pmevcntr_op_start(env, i); 1323 1324 /* 1325 * Detect if this write causes an overflow since we can't predict 1326 * PMSWINC overflows like we can for other events 1327 */ 1328 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1329 1330 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1331 1ULL << 63 : 1ULL << 31; 1332 1333 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1334 env->cp15.c9_pmovsr |= (1 << i); 1335 pmu_update_irq(env); 1336 } 1337 1338 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1339 1340 pmevcntr_op_finish(env, i); 1341 } 1342 } 1343 } 1344 1345 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1346 { 1347 uint64_t ret; 1348 pmccntr_op_start(env); 1349 ret = env->cp15.c15_ccnt; 1350 pmccntr_op_finish(env); 1351 return ret; 1352 } 1353 1354 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1355 uint64_t value) 1356 { 1357 /* 1358 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1359 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1360 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1361 * accessed. 1362 */ 1363 env->cp15.c9_pmselr = value & 0x1f; 1364 } 1365 1366 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1367 uint64_t value) 1368 { 1369 pmccntr_op_start(env); 1370 env->cp15.c15_ccnt = value; 1371 pmccntr_op_finish(env); 1372 } 1373 1374 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1375 uint64_t value) 1376 { 1377 uint64_t cur_val = pmccntr_read(env, NULL); 1378 1379 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1380 } 1381 1382 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1383 uint64_t value) 1384 { 1385 pmccntr_op_start(env); 1386 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1387 pmccntr_op_finish(env); 1388 } 1389 1390 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1391 uint64_t value) 1392 { 1393 pmccntr_op_start(env); 1394 /* M is not accessible from AArch32 */ 1395 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1396 (value & PMCCFILTR); 1397 pmccntr_op_finish(env); 1398 } 1399 1400 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1401 { 1402 /* M is not visible in AArch32 */ 1403 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1404 } 1405 1406 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1407 uint64_t value) 1408 { 1409 pmu_op_start(env); 1410 value &= pmu_counter_mask(env); 1411 env->cp15.c9_pmcnten |= value; 1412 pmu_op_finish(env); 1413 } 1414 1415 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1416 uint64_t value) 1417 { 1418 pmu_op_start(env); 1419 value &= pmu_counter_mask(env); 1420 env->cp15.c9_pmcnten &= ~value; 1421 pmu_op_finish(env); 1422 } 1423 1424 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1425 uint64_t value) 1426 { 1427 value &= pmu_counter_mask(env); 1428 env->cp15.c9_pmovsr &= ~value; 1429 pmu_update_irq(env); 1430 } 1431 1432 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1433 uint64_t value) 1434 { 1435 value &= pmu_counter_mask(env); 1436 env->cp15.c9_pmovsr |= value; 1437 pmu_update_irq(env); 1438 } 1439 1440 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1441 uint64_t value, const uint8_t counter) 1442 { 1443 if (counter == 31) { 1444 pmccfiltr_write(env, ri, value); 1445 } else if (counter < pmu_num_counters(env)) { 1446 pmevcntr_op_start(env, counter); 1447 1448 /* 1449 * If this counter's event type is changing, store the current 1450 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1451 * pmevcntr_op_finish has the correct baseline when it converts back to 1452 * a delta. 1453 */ 1454 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1455 PMXEVTYPER_EVTCOUNT; 1456 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1457 if (old_event != new_event) { 1458 uint64_t count = 0; 1459 if (event_supported(new_event)) { 1460 uint16_t event_idx = supported_event_map[new_event]; 1461 count = pm_events[event_idx].get_count(env); 1462 } 1463 env->cp15.c14_pmevcntr_delta[counter] = count; 1464 } 1465 1466 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1467 pmevcntr_op_finish(env, counter); 1468 } 1469 /* 1470 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1471 * PMSELR value is equal to or greater than the number of implemented 1472 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1473 */ 1474 } 1475 1476 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1477 const uint8_t counter) 1478 { 1479 if (counter == 31) { 1480 return env->cp15.pmccfiltr_el0; 1481 } else if (counter < pmu_num_counters(env)) { 1482 return env->cp15.c14_pmevtyper[counter]; 1483 } else { 1484 /* 1485 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1486 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1487 */ 1488 return 0; 1489 } 1490 } 1491 1492 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1496 pmevtyper_write(env, ri, value, counter); 1497 } 1498 1499 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1500 uint64_t value) 1501 { 1502 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1503 env->cp15.c14_pmevtyper[counter] = value; 1504 1505 /* 1506 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1507 * pmu_op_finish calls when loading saved state for a migration. Because 1508 * we're potentially updating the type of event here, the value written to 1509 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1510 * different counter type. Therefore, we need to set this value to the 1511 * current count for the counter type we're writing so that pmu_op_finish 1512 * has the correct count for its calculation. 1513 */ 1514 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1515 if (event_supported(event)) { 1516 uint16_t event_idx = supported_event_map[event]; 1517 env->cp15.c14_pmevcntr_delta[counter] = 1518 pm_events[event_idx].get_count(env); 1519 } 1520 } 1521 1522 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1523 { 1524 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1525 return pmevtyper_read(env, ri, counter); 1526 } 1527 1528 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1529 uint64_t value) 1530 { 1531 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1532 } 1533 1534 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1535 { 1536 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1537 } 1538 1539 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value, uint8_t counter) 1541 { 1542 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1543 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1544 value &= MAKE_64BIT_MASK(0, 32); 1545 } 1546 if (counter < pmu_num_counters(env)) { 1547 pmevcntr_op_start(env, counter); 1548 env->cp15.c14_pmevcntr[counter] = value; 1549 pmevcntr_op_finish(env, counter); 1550 } 1551 /* 1552 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1553 * are CONSTRAINED UNPREDICTABLE. 1554 */ 1555 } 1556 1557 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1558 uint8_t counter) 1559 { 1560 if (counter < pmu_num_counters(env)) { 1561 uint64_t ret; 1562 pmevcntr_op_start(env, counter); 1563 ret = env->cp15.c14_pmevcntr[counter]; 1564 pmevcntr_op_finish(env, counter); 1565 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1566 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1567 ret &= MAKE_64BIT_MASK(0, 32); 1568 } 1569 return ret; 1570 } else { 1571 /* 1572 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1573 * are CONSTRAINED UNPREDICTABLE. 1574 */ 1575 return 0; 1576 } 1577 } 1578 1579 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1580 uint64_t value) 1581 { 1582 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1583 pmevcntr_write(env, ri, value, counter); 1584 } 1585 1586 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1587 { 1588 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1589 return pmevcntr_read(env, ri, counter); 1590 } 1591 1592 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1596 assert(counter < pmu_num_counters(env)); 1597 env->cp15.c14_pmevcntr[counter] = value; 1598 pmevcntr_write(env, ri, value, counter); 1599 } 1600 1601 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1602 { 1603 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1604 assert(counter < pmu_num_counters(env)); 1605 return env->cp15.c14_pmevcntr[counter]; 1606 } 1607 1608 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value) 1610 { 1611 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1612 } 1613 1614 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1615 { 1616 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1617 } 1618 1619 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1620 uint64_t value) 1621 { 1622 if (arm_feature(env, ARM_FEATURE_V8)) { 1623 env->cp15.c9_pmuserenr = value & 0xf; 1624 } else { 1625 env->cp15.c9_pmuserenr = value & 1; 1626 } 1627 } 1628 1629 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1630 uint64_t value) 1631 { 1632 /* We have no event counters so only the C bit can be changed */ 1633 value &= pmu_counter_mask(env); 1634 env->cp15.c9_pminten |= value; 1635 pmu_update_irq(env); 1636 } 1637 1638 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1639 uint64_t value) 1640 { 1641 value &= pmu_counter_mask(env); 1642 env->cp15.c9_pminten &= ~value; 1643 pmu_update_irq(env); 1644 } 1645 1646 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value) 1648 { 1649 /* 1650 * Note that even though the AArch64 view of this register has bits 1651 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1652 * architectural requirements for bits which are RES0 only in some 1653 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1654 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1655 */ 1656 raw_write(env, ri, value & ~0x1FULL); 1657 } 1658 1659 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1660 { 1661 /* Begin with base v8.0 state. */ 1662 uint64_t valid_mask = 0x3fff; 1663 ARMCPU *cpu = env_archcpu(env); 1664 uint64_t changed; 1665 1666 /* 1667 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1668 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1669 * Instead, choose the format based on the mode of EL3. 1670 */ 1671 if (arm_el_is_aa64(env, 3)) { 1672 value |= SCR_FW | SCR_AW; /* RES1 */ 1673 valid_mask &= ~SCR_NET; /* RES0 */ 1674 1675 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1676 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1677 value |= SCR_RW; /* RAO/WI */ 1678 } 1679 if (cpu_isar_feature(aa64_ras, cpu)) { 1680 valid_mask |= SCR_TERR; 1681 } 1682 if (cpu_isar_feature(aa64_lor, cpu)) { 1683 valid_mask |= SCR_TLOR; 1684 } 1685 if (cpu_isar_feature(aa64_pauth, cpu)) { 1686 valid_mask |= SCR_API | SCR_APK; 1687 } 1688 if (cpu_isar_feature(aa64_sel2, cpu)) { 1689 valid_mask |= SCR_EEL2; 1690 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1691 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1692 value |= SCR_NS; 1693 } 1694 if (cpu_isar_feature(aa64_mte, cpu)) { 1695 valid_mask |= SCR_ATA; 1696 } 1697 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1698 valid_mask |= SCR_ENSCXT; 1699 } 1700 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1701 valid_mask |= SCR_EASE | SCR_NMEA; 1702 } 1703 if (cpu_isar_feature(aa64_sme, cpu)) { 1704 valid_mask |= SCR_ENTP2; 1705 } 1706 if (cpu_isar_feature(aa64_hcx, cpu)) { 1707 valid_mask |= SCR_HXEN; 1708 } 1709 if (cpu_isar_feature(aa64_fgt, cpu)) { 1710 valid_mask |= SCR_FGTEN; 1711 } 1712 if (cpu_isar_feature(aa64_rme, cpu)) { 1713 valid_mask |= SCR_NSE | SCR_GPF; 1714 } 1715 if (cpu_isar_feature(aa64_ecv, cpu)) { 1716 valid_mask |= SCR_ECVEN; 1717 } 1718 } else { 1719 valid_mask &= ~(SCR_RW | SCR_ST); 1720 if (cpu_isar_feature(aa32_ras, cpu)) { 1721 valid_mask |= SCR_TERR; 1722 } 1723 } 1724 1725 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1726 valid_mask &= ~SCR_HCE; 1727 1728 /* 1729 * On ARMv7, SMD (or SCD as it is called in v7) is only 1730 * supported if EL2 exists. The bit is UNK/SBZP when 1731 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1732 * when EL2 is unavailable. 1733 * On ARMv8, this bit is always available. 1734 */ 1735 if (arm_feature(env, ARM_FEATURE_V7) && 1736 !arm_feature(env, ARM_FEATURE_V8)) { 1737 valid_mask &= ~SCR_SMD; 1738 } 1739 } 1740 1741 /* Clear all-context RES0 bits. */ 1742 value &= valid_mask; 1743 changed = env->cp15.scr_el3 ^ value; 1744 env->cp15.scr_el3 = value; 1745 1746 /* 1747 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1748 * we must invalidate all TLBs below EL3. 1749 */ 1750 if (changed & (SCR_NS | SCR_NSE)) { 1751 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1752 ARMMMUIdxBit_E20_0 | 1753 ARMMMUIdxBit_E10_1 | 1754 ARMMMUIdxBit_E20_2 | 1755 ARMMMUIdxBit_E10_1_PAN | 1756 ARMMMUIdxBit_E20_2_PAN | 1757 ARMMMUIdxBit_E2)); 1758 } 1759 } 1760 1761 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1762 { 1763 /* 1764 * scr_write will set the RES1 bits on an AArch64-only CPU. 1765 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1766 */ 1767 scr_write(env, ri, 0); 1768 } 1769 1770 static CPAccessResult access_tid4(CPUARMState *env, 1771 const ARMCPRegInfo *ri, 1772 bool isread) 1773 { 1774 if (arm_current_el(env) == 1 && 1775 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1776 return CP_ACCESS_TRAP_EL2; 1777 } 1778 1779 return CP_ACCESS_OK; 1780 } 1781 1782 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 ARMCPU *cpu = env_archcpu(env); 1785 1786 /* 1787 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1788 * bank 1789 */ 1790 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1791 ri->secure & ARM_CP_SECSTATE_S); 1792 1793 return cpu->ccsidr[index]; 1794 } 1795 1796 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1797 uint64_t value) 1798 { 1799 raw_write(env, ri, value & 0xf); 1800 } 1801 1802 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 CPUState *cs = env_cpu(env); 1805 bool el1 = arm_current_el(env) == 1; 1806 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1807 uint64_t ret = 0; 1808 1809 if (hcr_el2 & HCR_IMO) { 1810 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1811 ret |= CPSR_I; 1812 } 1813 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 1814 ret |= ISR_IS; 1815 ret |= CPSR_I; 1816 } 1817 } else { 1818 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1819 ret |= CPSR_I; 1820 } 1821 1822 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 1823 ret |= ISR_IS; 1824 ret |= CPSR_I; 1825 } 1826 } 1827 1828 if (hcr_el2 & HCR_FMO) { 1829 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1830 ret |= CPSR_F; 1831 } 1832 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 1833 ret |= ISR_FS; 1834 ret |= CPSR_F; 1835 } 1836 } else { 1837 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1838 ret |= CPSR_F; 1839 } 1840 } 1841 1842 if (hcr_el2 & HCR_AMO) { 1843 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1844 ret |= CPSR_A; 1845 } 1846 } 1847 1848 return ret; 1849 } 1850 1851 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1852 bool isread) 1853 { 1854 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1855 return CP_ACCESS_TRAP_EL2; 1856 } 1857 1858 return CP_ACCESS_OK; 1859 } 1860 1861 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1862 bool isread) 1863 { 1864 if (arm_feature(env, ARM_FEATURE_V8)) { 1865 return access_aa64_tid1(env, ri, isread); 1866 } 1867 1868 return CP_ACCESS_OK; 1869 } 1870 1871 static const ARMCPRegInfo v7_cp_reginfo[] = { 1872 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1873 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1874 .access = PL1_W, .type = ARM_CP_NOP }, 1875 /* 1876 * Performance monitors are implementation defined in v7, 1877 * but with an ARM recommended set of registers, which we 1878 * follow. 1879 * 1880 * Performance registers fall into three categories: 1881 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1882 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1883 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1884 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1885 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1886 */ 1887 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1888 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1889 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1890 .writefn = pmcntenset_write, 1891 .accessfn = pmreg_access, 1892 .fgt = FGT_PMCNTEN, 1893 .raw_writefn = raw_write }, 1894 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1895 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1896 .access = PL0_RW, .accessfn = pmreg_access, 1897 .fgt = FGT_PMCNTEN, 1898 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1899 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1900 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1901 .access = PL0_RW, 1902 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1903 .accessfn = pmreg_access, 1904 .fgt = FGT_PMCNTEN, 1905 .writefn = pmcntenclr_write, 1906 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1907 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1908 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1909 .access = PL0_RW, .accessfn = pmreg_access, 1910 .fgt = FGT_PMCNTEN, 1911 .type = ARM_CP_ALIAS | ARM_CP_IO, 1912 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1913 .writefn = pmcntenclr_write }, 1914 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1915 .access = PL0_RW, .type = ARM_CP_IO, 1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1917 .accessfn = pmreg_access, 1918 .fgt = FGT_PMOVS, 1919 .writefn = pmovsr_write, 1920 .raw_writefn = raw_write }, 1921 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1922 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1923 .access = PL0_RW, .accessfn = pmreg_access, 1924 .fgt = FGT_PMOVS, 1925 .type = ARM_CP_ALIAS | ARM_CP_IO, 1926 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1927 .writefn = pmovsr_write, 1928 .raw_writefn = raw_write }, 1929 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1930 .access = PL0_W, .accessfn = pmreg_access_swinc, 1931 .fgt = FGT_PMSWINC_EL0, 1932 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1933 .writefn = pmswinc_write }, 1934 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1935 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1936 .access = PL0_W, .accessfn = pmreg_access_swinc, 1937 .fgt = FGT_PMSWINC_EL0, 1938 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1939 .writefn = pmswinc_write }, 1940 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1941 .access = PL0_RW, .type = ARM_CP_ALIAS, 1942 .fgt = FGT_PMSELR_EL0, 1943 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1944 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1945 .raw_writefn = raw_write}, 1946 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1947 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1948 .access = PL0_RW, .accessfn = pmreg_access_selr, 1949 .fgt = FGT_PMSELR_EL0, 1950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1951 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1952 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1953 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1954 .fgt = FGT_PMCCNTR_EL0, 1955 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1956 .accessfn = pmreg_access_ccntr }, 1957 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1958 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1959 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1960 .fgt = FGT_PMCCNTR_EL0, 1961 .type = ARM_CP_IO, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1963 .readfn = pmccntr_read, .writefn = pmccntr_write, 1964 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1965 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1966 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1967 .access = PL0_RW, .accessfn = pmreg_access, 1968 .fgt = FGT_PMCCFILTR_EL0, 1969 .type = ARM_CP_ALIAS | ARM_CP_IO, 1970 .resetvalue = 0, }, 1971 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1972 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1973 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1974 .access = PL0_RW, .accessfn = pmreg_access, 1975 .fgt = FGT_PMCCFILTR_EL0, 1976 .type = ARM_CP_IO, 1977 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1978 .resetvalue = 0, }, 1979 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1980 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1981 .accessfn = pmreg_access, 1982 .fgt = FGT_PMEVTYPERN_EL0, 1983 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1984 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1986 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1987 .accessfn = pmreg_access, 1988 .fgt = FGT_PMEVTYPERN_EL0, 1989 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1990 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1991 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1992 .accessfn = pmreg_access_xevcntr, 1993 .fgt = FGT_PMEVCNTRN_EL0, 1994 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1995 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .fgt = FGT_PMEVCNTRN_EL0, 2000 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2001 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2002 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2003 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2004 .resetvalue = 0, 2005 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2006 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2008 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2009 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2010 .resetvalue = 0, 2011 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2012 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2013 .access = PL1_RW, .accessfn = access_tpm, 2014 .fgt = FGT_PMINTEN, 2015 .type = ARM_CP_ALIAS | ARM_CP_IO, 2016 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2017 .resetvalue = 0, 2018 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2019 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2020 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2021 .access = PL1_RW, .accessfn = access_tpm, 2022 .fgt = FGT_PMINTEN, 2023 .type = ARM_CP_IO, 2024 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2025 .writefn = pmintenset_write, .raw_writefn = raw_write, 2026 .resetvalue = 0x0 }, 2027 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2028 .access = PL1_RW, .accessfn = access_tpm, 2029 .fgt = FGT_PMINTEN, 2030 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2031 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2032 .writefn = pmintenclr_write, }, 2033 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2034 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2035 .access = PL1_RW, .accessfn = access_tpm, 2036 .fgt = FGT_PMINTEN, 2037 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2039 .writefn = pmintenclr_write }, 2040 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2042 .access = PL1_R, 2043 .accessfn = access_tid4, 2044 .fgt = FGT_CCSIDR_EL1, 2045 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2046 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2047 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2048 .access = PL1_RW, 2049 .accessfn = access_tid4, 2050 .fgt = FGT_CSSELR_EL1, 2051 .writefn = csselr_write, .resetvalue = 0, 2052 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2053 offsetof(CPUARMState, cp15.csselr_ns) } }, 2054 /* 2055 * Auxiliary ID register: this actually has an IMPDEF value but for now 2056 * just RAZ for all cores: 2057 */ 2058 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2059 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2060 .access = PL1_R, .type = ARM_CP_CONST, 2061 .accessfn = access_aa64_tid1, 2062 .fgt = FGT_AIDR_EL1, 2063 .resetvalue = 0 }, 2064 /* 2065 * Auxiliary fault status registers: these also are IMPDEF, and we 2066 * choose to RAZ/WI for all cores. 2067 */ 2068 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2069 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2070 .access = PL1_RW, .accessfn = access_tvm_trvm, 2071 .fgt = FGT_AFSR0_EL1, 2072 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2073 .type = ARM_CP_CONST, .resetvalue = 0 }, 2074 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2075 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .fgt = FGT_AFSR1_EL1, 2078 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2079 .type = ARM_CP_CONST, .resetvalue = 0 }, 2080 /* 2081 * MAIR can just read-as-written because we don't implement caches 2082 * and so don't need to care about memory attributes. 2083 */ 2084 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2085 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2086 .access = PL1_RW, .accessfn = access_tvm_trvm, 2087 .fgt = FGT_MAIR_EL1, 2088 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2089 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2090 .resetvalue = 0 }, 2091 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2092 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2093 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2094 .resetvalue = 0 }, 2095 /* 2096 * For non-long-descriptor page tables these are PRRR and NMRR; 2097 * regardless they still act as reads-as-written for QEMU. 2098 */ 2099 /* 2100 * MAIR0/1 are defined separately from their 64-bit counterpart which 2101 * allows them to assign the correct fieldoffset based on the endianness 2102 * handled in the field definitions. 2103 */ 2104 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2105 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2106 .access = PL1_RW, .accessfn = access_tvm_trvm, 2107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2108 offsetof(CPUARMState, cp15.mair0_ns) }, 2109 .resetfn = arm_cp_reset_ignore }, 2110 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2111 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2112 .access = PL1_RW, .accessfn = access_tvm_trvm, 2113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2114 offsetof(CPUARMState, cp15.mair1_ns) }, 2115 .resetfn = arm_cp_reset_ignore }, 2116 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2117 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2118 .fgt = FGT_ISR_EL1, 2119 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2120 }; 2121 2122 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2123 /* PMOVSSET is not implemented in v7 before v7ve */ 2124 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2125 .access = PL0_RW, .accessfn = pmreg_access, 2126 .fgt = FGT_PMOVS, 2127 .type = ARM_CP_ALIAS | ARM_CP_IO, 2128 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2129 .writefn = pmovsset_write, 2130 .raw_writefn = raw_write }, 2131 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2132 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2133 .access = PL0_RW, .accessfn = pmreg_access, 2134 .fgt = FGT_PMOVS, 2135 .type = ARM_CP_ALIAS | ARM_CP_IO, 2136 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2137 .writefn = pmovsset_write, 2138 .raw_writefn = raw_write }, 2139 }; 2140 2141 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2142 uint64_t value) 2143 { 2144 value &= 1; 2145 env->teecr = value; 2146 } 2147 2148 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2149 bool isread) 2150 { 2151 /* 2152 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2153 * at all, so we don't need to check whether we're v8A. 2154 */ 2155 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2156 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2157 return CP_ACCESS_TRAP_EL2; 2158 } 2159 return CP_ACCESS_OK; 2160 } 2161 2162 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2163 bool isread) 2164 { 2165 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2166 return CP_ACCESS_TRAP_EL1; 2167 } 2168 return teecr_access(env, ri, isread); 2169 } 2170 2171 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2172 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2173 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2174 .resetvalue = 0, 2175 .writefn = teecr_write, .accessfn = teecr_access }, 2176 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2177 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2178 .accessfn = teehbr_access, .resetvalue = 0 }, 2179 }; 2180 2181 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2182 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2184 .access = PL0_RW, 2185 .fgt = FGT_TPIDR_EL0, 2186 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2187 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2188 .access = PL0_RW, 2189 .fgt = FGT_TPIDR_EL0, 2190 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2191 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2192 .resetfn = arm_cp_reset_ignore }, 2193 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2194 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2195 .access = PL0_R | PL1_W, 2196 .fgt = FGT_TPIDRRO_EL0, 2197 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2198 .resetvalue = 0}, 2199 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2200 .access = PL0_R | PL1_W, 2201 .fgt = FGT_TPIDRRO_EL0, 2202 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2203 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2204 .resetfn = arm_cp_reset_ignore }, 2205 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2206 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2207 .access = PL1_RW, 2208 .fgt = FGT_TPIDR_EL1, 2209 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2210 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2211 .access = PL1_RW, 2212 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2213 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2214 .resetvalue = 0 }, 2215 }; 2216 2217 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2218 { 2219 ARMCPU *cpu = env_archcpu(env); 2220 2221 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2222 } 2223 2224 #ifndef CONFIG_USER_ONLY 2225 2226 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2227 bool isread) 2228 { 2229 /* 2230 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2231 * Writable only at the highest implemented exception level. 2232 */ 2233 int el = arm_current_el(env); 2234 uint64_t hcr; 2235 uint32_t cntkctl; 2236 2237 switch (el) { 2238 case 0: 2239 hcr = arm_hcr_el2_eff(env); 2240 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2241 cntkctl = env->cp15.cnthctl_el2; 2242 } else { 2243 cntkctl = env->cp15.c14_cntkctl; 2244 } 2245 if (!extract32(cntkctl, 0, 2)) { 2246 return CP_ACCESS_TRAP_EL1; 2247 } 2248 break; 2249 case 1: 2250 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2251 arm_is_secure_below_el3(env)) { 2252 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2253 return CP_ACCESS_UNDEFINED; 2254 } 2255 break; 2256 case 2: 2257 case 3: 2258 break; 2259 } 2260 2261 if (!isread && el < arm_highest_el(env)) { 2262 return CP_ACCESS_UNDEFINED; 2263 } 2264 2265 return CP_ACCESS_OK; 2266 } 2267 2268 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2269 bool isread) 2270 { 2271 unsigned int cur_el = arm_current_el(env); 2272 bool has_el2 = arm_is_el2_enabled(env); 2273 uint64_t hcr = arm_hcr_el2_eff(env); 2274 2275 switch (cur_el) { 2276 case 0: 2277 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2278 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2279 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2280 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2281 } 2282 2283 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2284 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2285 return CP_ACCESS_TRAP_EL1; 2286 } 2287 /* fall through */ 2288 case 1: 2289 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2290 if (has_el2 && timeridx == GTIMER_PHYS && 2291 (hcr & HCR_E2H 2292 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2293 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2294 return CP_ACCESS_TRAP_EL2; 2295 } 2296 if (has_el2 && timeridx == GTIMER_VIRT) { 2297 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2298 return CP_ACCESS_TRAP_EL2; 2299 } 2300 } 2301 break; 2302 } 2303 return CP_ACCESS_OK; 2304 } 2305 2306 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2307 bool isread) 2308 { 2309 unsigned int cur_el = arm_current_el(env); 2310 bool has_el2 = arm_is_el2_enabled(env); 2311 uint64_t hcr = arm_hcr_el2_eff(env); 2312 2313 switch (cur_el) { 2314 case 0: 2315 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2316 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2317 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2318 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2319 } 2320 2321 /* 2322 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2323 * EL0 if EL0[PV]TEN is zero. 2324 */ 2325 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2326 return CP_ACCESS_TRAP_EL1; 2327 } 2328 /* fall through */ 2329 2330 case 1: 2331 if (has_el2 && timeridx == GTIMER_PHYS) { 2332 if (hcr & HCR_E2H) { 2333 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2334 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2335 return CP_ACCESS_TRAP_EL2; 2336 } 2337 } else { 2338 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2339 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2340 return CP_ACCESS_TRAP_EL2; 2341 } 2342 } 2343 } 2344 if (has_el2 && timeridx == GTIMER_VIRT) { 2345 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2346 return CP_ACCESS_TRAP_EL2; 2347 } 2348 } 2349 break; 2350 } 2351 return CP_ACCESS_OK; 2352 } 2353 2354 static CPAccessResult gt_pct_access(CPUARMState *env, 2355 const ARMCPRegInfo *ri, 2356 bool isread) 2357 { 2358 return gt_counter_access(env, GTIMER_PHYS, isread); 2359 } 2360 2361 static CPAccessResult gt_vct_access(CPUARMState *env, 2362 const ARMCPRegInfo *ri, 2363 bool isread) 2364 { 2365 return gt_counter_access(env, GTIMER_VIRT, isread); 2366 } 2367 2368 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2369 bool isread) 2370 { 2371 return gt_timer_access(env, GTIMER_PHYS, isread); 2372 } 2373 2374 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2375 bool isread) 2376 { 2377 return gt_timer_access(env, GTIMER_VIRT, isread); 2378 } 2379 2380 static CPAccessResult gt_stimer_access(CPUARMState *env, 2381 const ARMCPRegInfo *ri, 2382 bool isread) 2383 { 2384 /* 2385 * The AArch64 register view of the secure physical timer is 2386 * always accessible from EL3, and configurably accessible from 2387 * Secure EL1. 2388 */ 2389 switch (arm_current_el(env)) { 2390 case 1: 2391 if (!arm_is_secure(env)) { 2392 return CP_ACCESS_UNDEFINED; 2393 } 2394 if (arm_is_el2_enabled(env)) { 2395 return CP_ACCESS_UNDEFINED; 2396 } 2397 if (!(env->cp15.scr_el3 & SCR_ST)) { 2398 return CP_ACCESS_TRAP_EL3; 2399 } 2400 return CP_ACCESS_OK; 2401 case 0: 2402 case 2: 2403 return CP_ACCESS_UNDEFINED; 2404 case 3: 2405 return CP_ACCESS_OK; 2406 default: 2407 g_assert_not_reached(); 2408 } 2409 } 2410 2411 static CPAccessResult gt_sel2timer_access(CPUARMState *env, 2412 const ARMCPRegInfo *ri, 2413 bool isread) 2414 { 2415 /* 2416 * The AArch64 register view of the secure EL2 timers are mostly 2417 * accessible from EL3 and EL2 although can also be trapped to EL2 2418 * from EL1 depending on nested virt config. 2419 */ 2420 switch (arm_current_el(env)) { 2421 case 0: /* UNDEFINED */ 2422 return CP_ACCESS_UNDEFINED; 2423 case 1: 2424 if (!arm_is_secure(env)) { 2425 /* UNDEFINED */ 2426 return CP_ACCESS_UNDEFINED; 2427 } else if (arm_hcr_el2_eff(env) & HCR_NV) { 2428 /* Aarch64.SystemAccessTrap(EL2, 0x18) */ 2429 return CP_ACCESS_TRAP_EL2; 2430 } 2431 /* UNDEFINED */ 2432 return CP_ACCESS_UNDEFINED; 2433 case 2: 2434 if (!arm_is_secure(env)) { 2435 /* UNDEFINED */ 2436 return CP_ACCESS_UNDEFINED; 2437 } 2438 return CP_ACCESS_OK; 2439 case 3: 2440 if (env->cp15.scr_el3 & SCR_EEL2) { 2441 return CP_ACCESS_OK; 2442 } else { 2443 return CP_ACCESS_UNDEFINED; 2444 } 2445 default: 2446 g_assert_not_reached(); 2447 } 2448 } 2449 2450 uint64_t gt_get_countervalue(CPUARMState *env) 2451 { 2452 ARMCPU *cpu = env_archcpu(env); 2453 2454 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2455 } 2456 2457 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2458 { 2459 CPUARMState *env = &cpu->env; 2460 uint64_t cnthctl = env->cp15.cnthctl_el2; 2461 ARMSecuritySpace ss = arm_security_space(env); 2462 /* ISTATUS && !IMASK */ 2463 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2464 2465 /* 2466 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2467 * It is RES0 in Secure and NonSecure state. 2468 */ 2469 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2470 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2471 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2472 irqstate = 0; 2473 } 2474 2475 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2476 trace_arm_gt_update_irq(timeridx, irqstate); 2477 } 2478 2479 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2480 { 2481 /* 2482 * Changing security state between Root and Secure/NonSecure, which may 2483 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2484 * mask bits. Update the IRQ state accordingly. 2485 */ 2486 gt_update_irq(cpu, GTIMER_VIRT); 2487 gt_update_irq(cpu, GTIMER_PHYS); 2488 } 2489 2490 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2491 { 2492 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2493 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2494 arm_is_el2_enabled(env) && 2495 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2496 return env->cp15.cntpoff_el2; 2497 } 2498 return 0; 2499 } 2500 2501 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx) 2502 { 2503 /* 2504 * Return the timer offset to use for indirect accesses to the timer. 2505 * This is the Offset value as defined in D12.2.4.1 "Operation of the 2506 * CompareValue views of the timers". 2507 * 2508 * The condition here is not always the same as the condition for 2509 * whether to apply an offset register when doing a direct read of 2510 * the counter sysreg; those conditions are described in the 2511 * access pseudocode for each counter register. 2512 */ 2513 switch (timeridx) { 2514 case GTIMER_PHYS: 2515 return gt_phys_raw_cnt_offset(env); 2516 case GTIMER_VIRT: 2517 return env->cp15.cntvoff_el2; 2518 case GTIMER_HYP: 2519 case GTIMER_SEC: 2520 case GTIMER_HYPVIRT: 2521 case GTIMER_S_EL2_PHYS: 2522 case GTIMER_S_EL2_VIRT: 2523 return 0; 2524 default: 2525 g_assert_not_reached(); 2526 } 2527 } 2528 2529 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx) 2530 { 2531 /* 2532 * Return the timer offset to use for direct accesses to the 2533 * counter registers CNTPCT and CNTVCT, and for direct accesses 2534 * to the CNT*_TVAL registers. 2535 * 2536 * This isn't exactly the same as the indirect-access offset, 2537 * because here we also care about what EL the register access 2538 * is being made from. 2539 * 2540 * This corresponds to the access pseudocode for the registers. 2541 */ 2542 uint64_t hcr; 2543 2544 switch (timeridx) { 2545 case GTIMER_PHYS: 2546 if (arm_current_el(env) >= 2) { 2547 return 0; 2548 } 2549 return gt_phys_raw_cnt_offset(env); 2550 case GTIMER_VIRT: 2551 switch (arm_current_el(env)) { 2552 case 2: 2553 hcr = arm_hcr_el2_eff(env); 2554 if (hcr & HCR_E2H) { 2555 return 0; 2556 } 2557 break; 2558 case 0: 2559 hcr = arm_hcr_el2_eff(env); 2560 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2561 return 0; 2562 } 2563 break; 2564 } 2565 return env->cp15.cntvoff_el2; 2566 case GTIMER_HYP: 2567 case GTIMER_SEC: 2568 case GTIMER_HYPVIRT: 2569 case GTIMER_S_EL2_PHYS: 2570 case GTIMER_S_EL2_VIRT: 2571 return 0; 2572 default: 2573 g_assert_not_reached(); 2574 } 2575 } 2576 2577 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2578 { 2579 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2580 2581 if (gt->ctl & 1) { 2582 /* 2583 * Timer enabled: calculate and set current ISTATUS, irq, and 2584 * reset timer to when ISTATUS next has to change 2585 */ 2586 uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx); 2587 uint64_t count = gt_get_countervalue(&cpu->env); 2588 /* Note that this must be unsigned 64 bit arithmetic: */ 2589 int istatus = count - offset >= gt->cval; 2590 uint64_t nexttick; 2591 2592 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2593 2594 if (istatus) { 2595 /* 2596 * Next transition is when (count - offset) rolls back over to 0. 2597 * If offset > count then this is when count == offset; 2598 * if offset <= count then this is when count == offset + 2^64 2599 * For the latter case we set nexttick to an "as far in future 2600 * as possible" value and let the code below handle it. 2601 */ 2602 if (offset > count) { 2603 nexttick = offset; 2604 } else { 2605 nexttick = UINT64_MAX; 2606 } 2607 } else { 2608 /* 2609 * Next transition is when (count - offset) == cval, i.e. 2610 * when count == (cval + offset). 2611 * If that would overflow, then again we set up the next interrupt 2612 * for "as far in the future as possible" for the code below. 2613 */ 2614 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2615 nexttick = UINT64_MAX; 2616 } 2617 } 2618 /* 2619 * Note that the desired next expiry time might be beyond the 2620 * signed-64-bit range of a QEMUTimer -- in this case we just 2621 * set the timer for as far in the future as possible. When the 2622 * timer expires we will reset the timer for any remaining period. 2623 */ 2624 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2625 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2626 } else { 2627 timer_mod(cpu->gt_timer[timeridx], nexttick); 2628 } 2629 trace_arm_gt_recalc(timeridx, nexttick); 2630 } else { 2631 /* Timer disabled: ISTATUS and timer output always clear */ 2632 gt->ctl &= ~4; 2633 timer_del(cpu->gt_timer[timeridx]); 2634 trace_arm_gt_recalc_disabled(timeridx); 2635 } 2636 gt_update_irq(cpu, timeridx); 2637 } 2638 2639 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2640 int timeridx) 2641 { 2642 ARMCPU *cpu = env_archcpu(env); 2643 2644 timer_del(cpu->gt_timer[timeridx]); 2645 } 2646 2647 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2648 { 2649 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS); 2650 return gt_get_countervalue(env) - offset; 2651 } 2652 2653 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2654 { 2655 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT); 2656 return gt_get_countervalue(env) - offset; 2657 } 2658 2659 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2660 int timeridx, 2661 uint64_t value) 2662 { 2663 trace_arm_gt_cval_write(timeridx, value); 2664 env->cp15.c14_timer[timeridx].cval = value; 2665 gt_recalc_timer(env_archcpu(env), timeridx); 2666 } 2667 2668 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset) 2669 { 2670 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2671 (gt_get_countervalue(env) - offset)); 2672 } 2673 2674 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2675 int timeridx) 2676 { 2677 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2678 2679 return do_tval_read(env, timeridx, offset); 2680 } 2681 2682 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value, 2683 uint64_t offset) 2684 { 2685 trace_arm_gt_tval_write(timeridx, value); 2686 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2687 sextract64(value, 0, 32); 2688 gt_recalc_timer(env_archcpu(env), timeridx); 2689 } 2690 2691 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 int timeridx, 2693 uint64_t value) 2694 { 2695 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2696 2697 do_tval_write(env, timeridx, value, offset); 2698 } 2699 2700 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2701 int timeridx, 2702 uint64_t value) 2703 { 2704 ARMCPU *cpu = env_archcpu(env); 2705 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2706 2707 trace_arm_gt_ctl_write(timeridx, value); 2708 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2709 if ((oldval ^ value) & 1) { 2710 /* Enable toggled */ 2711 gt_recalc_timer(cpu, timeridx); 2712 } else if ((oldval ^ value) & 2) { 2713 /* 2714 * IMASK toggled: don't need to recalculate, 2715 * just set the interrupt line based on ISTATUS 2716 */ 2717 trace_arm_gt_imask_toggle(timeridx); 2718 gt_update_irq(cpu, timeridx); 2719 } 2720 } 2721 2722 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2723 { 2724 gt_timer_reset(env, ri, GTIMER_PHYS); 2725 } 2726 2727 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2728 uint64_t value) 2729 { 2730 gt_cval_write(env, ri, GTIMER_PHYS, value); 2731 } 2732 2733 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2734 { 2735 return gt_tval_read(env, ri, GTIMER_PHYS); 2736 } 2737 2738 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2739 uint64_t value) 2740 { 2741 gt_tval_write(env, ri, GTIMER_PHYS, value); 2742 } 2743 2744 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2745 uint64_t value) 2746 { 2747 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2748 } 2749 2750 static int gt_phys_redir_timeridx(CPUARMState *env) 2751 { 2752 switch (arm_mmu_idx(env)) { 2753 case ARMMMUIdx_E20_0: 2754 case ARMMMUIdx_E20_2: 2755 case ARMMMUIdx_E20_2_PAN: 2756 return GTIMER_HYP; 2757 default: 2758 return GTIMER_PHYS; 2759 } 2760 } 2761 2762 static int gt_virt_redir_timeridx(CPUARMState *env) 2763 { 2764 switch (arm_mmu_idx(env)) { 2765 case ARMMMUIdx_E20_0: 2766 case ARMMMUIdx_E20_2: 2767 case ARMMMUIdx_E20_2_PAN: 2768 return GTIMER_HYPVIRT; 2769 default: 2770 return GTIMER_VIRT; 2771 } 2772 } 2773 2774 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2775 const ARMCPRegInfo *ri) 2776 { 2777 int timeridx = gt_phys_redir_timeridx(env); 2778 return env->cp15.c14_timer[timeridx].cval; 2779 } 2780 2781 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 int timeridx = gt_phys_redir_timeridx(env); 2785 gt_cval_write(env, ri, timeridx, value); 2786 } 2787 2788 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2789 const ARMCPRegInfo *ri) 2790 { 2791 int timeridx = gt_phys_redir_timeridx(env); 2792 return gt_tval_read(env, ri, timeridx); 2793 } 2794 2795 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2796 uint64_t value) 2797 { 2798 int timeridx = gt_phys_redir_timeridx(env); 2799 gt_tval_write(env, ri, timeridx, value); 2800 } 2801 2802 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2803 const ARMCPRegInfo *ri) 2804 { 2805 int timeridx = gt_phys_redir_timeridx(env); 2806 return env->cp15.c14_timer[timeridx].ctl; 2807 } 2808 2809 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 int timeridx = gt_phys_redir_timeridx(env); 2813 gt_ctl_write(env, ri, timeridx, value); 2814 } 2815 2816 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 gt_timer_reset(env, ri, GTIMER_VIRT); 2819 } 2820 2821 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_cval_write(env, ri, GTIMER_VIRT, value); 2825 } 2826 2827 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2828 { 2829 /* 2830 * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0 2831 * we always apply CNTVOFF_EL2. Special case that here rather 2832 * than going into the generic gt_tval_read() and then having 2833 * to re-detect that it's this register. 2834 * Note that the accessfn/perms mean we know we're at EL2 or EL3 here. 2835 */ 2836 return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2); 2837 } 2838 2839 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 /* Similarly for writes to CNTV_TVAL_EL02 */ 2843 do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2); 2844 } 2845 2846 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2847 uint64_t value) 2848 { 2849 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2850 } 2851 2852 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2853 uint64_t value) 2854 { 2855 ARMCPU *cpu = env_archcpu(env); 2856 uint32_t oldval = env->cp15.cnthctl_el2; 2857 uint32_t valid_mask = 2858 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 2859 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 2860 R_CNTHCTL_EVNTEN_MASK | 2861 R_CNTHCTL_EVNTDIR_MASK | 2862 R_CNTHCTL_EVNTI_MASK | 2863 R_CNTHCTL_EL0VTEN_MASK | 2864 R_CNTHCTL_EL0PTEN_MASK | 2865 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 2866 R_CNTHCTL_EL1PTEN_MASK; 2867 2868 if (cpu_isar_feature(aa64_rme, cpu)) { 2869 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 2870 } 2871 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 2872 valid_mask |= 2873 R_CNTHCTL_EL1TVT_MASK | 2874 R_CNTHCTL_EL1TVCT_MASK | 2875 R_CNTHCTL_EL1NVPCT_MASK | 2876 R_CNTHCTL_EL1NVVCT_MASK | 2877 R_CNTHCTL_EVNTIS_MASK; 2878 } 2879 if (cpu_isar_feature(aa64_ecv, cpu)) { 2880 valid_mask |= R_CNTHCTL_ECV_MASK; 2881 } 2882 2883 /* Clear RES0 bits */ 2884 value &= valid_mask; 2885 2886 raw_write(env, ri, value); 2887 2888 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 2889 gt_update_irq(cpu, GTIMER_VIRT); 2890 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 2891 gt_update_irq(cpu, GTIMER_PHYS); 2892 } 2893 } 2894 2895 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2896 uint64_t value) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 trace_arm_gt_cntvoff_write(value); 2901 raw_write(env, ri, value); 2902 gt_recalc_timer(cpu, GTIMER_VIRT); 2903 } 2904 2905 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2906 const ARMCPRegInfo *ri) 2907 { 2908 int timeridx = gt_virt_redir_timeridx(env); 2909 return env->cp15.c14_timer[timeridx].cval; 2910 } 2911 2912 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2913 uint64_t value) 2914 { 2915 int timeridx = gt_virt_redir_timeridx(env); 2916 gt_cval_write(env, ri, timeridx, value); 2917 } 2918 2919 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2920 const ARMCPRegInfo *ri) 2921 { 2922 int timeridx = gt_virt_redir_timeridx(env); 2923 return gt_tval_read(env, ri, timeridx); 2924 } 2925 2926 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2927 uint64_t value) 2928 { 2929 int timeridx = gt_virt_redir_timeridx(env); 2930 gt_tval_write(env, ri, timeridx, value); 2931 } 2932 2933 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2934 const ARMCPRegInfo *ri) 2935 { 2936 int timeridx = gt_virt_redir_timeridx(env); 2937 return env->cp15.c14_timer[timeridx].ctl; 2938 } 2939 2940 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2941 uint64_t value) 2942 { 2943 int timeridx = gt_virt_redir_timeridx(env); 2944 gt_ctl_write(env, ri, timeridx, value); 2945 } 2946 2947 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2948 { 2949 gt_timer_reset(env, ri, GTIMER_HYP); 2950 } 2951 2952 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2953 uint64_t value) 2954 { 2955 gt_cval_write(env, ri, GTIMER_HYP, value); 2956 } 2957 2958 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2959 { 2960 return gt_tval_read(env, ri, GTIMER_HYP); 2961 } 2962 2963 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2964 uint64_t value) 2965 { 2966 gt_tval_write(env, ri, GTIMER_HYP, value); 2967 } 2968 2969 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 gt_ctl_write(env, ri, GTIMER_HYP, value); 2973 } 2974 2975 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2976 { 2977 gt_timer_reset(env, ri, GTIMER_SEC); 2978 } 2979 2980 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2981 uint64_t value) 2982 { 2983 gt_cval_write(env, ri, GTIMER_SEC, value); 2984 } 2985 2986 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2987 { 2988 return gt_tval_read(env, ri, GTIMER_SEC); 2989 } 2990 2991 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2992 uint64_t value) 2993 { 2994 gt_tval_write(env, ri, GTIMER_SEC, value); 2995 } 2996 2997 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2998 uint64_t value) 2999 { 3000 gt_ctl_write(env, ri, GTIMER_SEC, value); 3001 } 3002 3003 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3004 { 3005 gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS); 3006 } 3007 3008 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3009 uint64_t value) 3010 { 3011 gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3012 } 3013 3014 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3015 { 3016 return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS); 3017 } 3018 3019 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3020 uint64_t value) 3021 { 3022 gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3023 } 3024 3025 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3026 uint64_t value) 3027 { 3028 gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value); 3029 } 3030 3031 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3032 { 3033 gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT); 3034 } 3035 3036 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3037 uint64_t value) 3038 { 3039 gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3040 } 3041 3042 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3043 { 3044 return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT); 3045 } 3046 3047 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3051 } 3052 3053 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3054 uint64_t value) 3055 { 3056 gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value); 3057 } 3058 3059 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3060 { 3061 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3062 } 3063 3064 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3065 uint64_t value) 3066 { 3067 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3068 } 3069 3070 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3071 { 3072 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3073 } 3074 3075 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3076 uint64_t value) 3077 { 3078 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3079 } 3080 3081 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3082 uint64_t value) 3083 { 3084 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3085 } 3086 3087 void arm_gt_ptimer_cb(void *opaque) 3088 { 3089 ARMCPU *cpu = opaque; 3090 3091 gt_recalc_timer(cpu, GTIMER_PHYS); 3092 } 3093 3094 void arm_gt_vtimer_cb(void *opaque) 3095 { 3096 ARMCPU *cpu = opaque; 3097 3098 gt_recalc_timer(cpu, GTIMER_VIRT); 3099 } 3100 3101 void arm_gt_htimer_cb(void *opaque) 3102 { 3103 ARMCPU *cpu = opaque; 3104 3105 gt_recalc_timer(cpu, GTIMER_HYP); 3106 } 3107 3108 void arm_gt_stimer_cb(void *opaque) 3109 { 3110 ARMCPU *cpu = opaque; 3111 3112 gt_recalc_timer(cpu, GTIMER_SEC); 3113 } 3114 3115 void arm_gt_sel2timer_cb(void *opaque) 3116 { 3117 ARMCPU *cpu = opaque; 3118 3119 gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS); 3120 } 3121 3122 void arm_gt_sel2vtimer_cb(void *opaque) 3123 { 3124 ARMCPU *cpu = opaque; 3125 3126 gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT); 3127 } 3128 3129 void arm_gt_hvtimer_cb(void *opaque) 3130 { 3131 ARMCPU *cpu = opaque; 3132 3133 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3134 } 3135 3136 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3137 /* 3138 * Note that CNTFRQ is purely reads-as-written for the benefit 3139 * of software; writing it doesn't actually change the timer frequency. 3140 * Our reset value matches the fixed frequency we implement the timer at. 3141 */ 3142 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3143 .type = ARM_CP_ALIAS, 3144 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3145 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3146 }, 3147 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3148 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3149 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3150 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3151 .resetfn = arm_gt_cntfrq_reset, 3152 }, 3153 /* overall control: mostly access permissions */ 3154 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3155 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3156 .access = PL1_RW, 3157 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3158 .resetvalue = 0, 3159 }, 3160 /* per-timer control */ 3161 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3162 .secure = ARM_CP_SECSTATE_NS, 3163 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3164 .accessfn = gt_ptimer_access, 3165 .fieldoffset = offsetoflow32(CPUARMState, 3166 cp15.c14_timer[GTIMER_PHYS].ctl), 3167 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3168 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3169 }, 3170 { .name = "CNTP_CTL_S", 3171 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3172 .secure = ARM_CP_SECSTATE_S, 3173 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3174 .accessfn = gt_ptimer_access, 3175 .fieldoffset = offsetoflow32(CPUARMState, 3176 cp15.c14_timer[GTIMER_SEC].ctl), 3177 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3178 }, 3179 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3181 .type = ARM_CP_IO, .access = PL0_RW, 3182 .accessfn = gt_ptimer_access, 3183 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3184 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3185 .resetvalue = 0, 3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3188 }, 3189 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3190 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3191 .accessfn = gt_vtimer_access, 3192 .fieldoffset = offsetoflow32(CPUARMState, 3193 cp15.c14_timer[GTIMER_VIRT].ctl), 3194 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3195 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3196 }, 3197 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3198 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3199 .type = ARM_CP_IO, .access = PL0_RW, 3200 .accessfn = gt_vtimer_access, 3201 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3203 .resetvalue = 0, 3204 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3205 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3206 }, 3207 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3208 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3209 .secure = ARM_CP_SECSTATE_NS, 3210 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3211 .accessfn = gt_ptimer_access, 3212 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3213 }, 3214 { .name = "CNTP_TVAL_S", 3215 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3216 .secure = ARM_CP_SECSTATE_S, 3217 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3218 .accessfn = gt_ptimer_access, 3219 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3220 }, 3221 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3223 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3224 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3225 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3226 }, 3227 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3228 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3229 .accessfn = gt_vtimer_access, 3230 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3231 }, 3232 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3233 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3235 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3236 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3237 }, 3238 /* The counter itself */ 3239 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3240 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3241 .accessfn = gt_pct_access, 3242 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3243 }, 3244 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3245 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3246 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3247 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3248 }, 3249 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3250 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3251 .accessfn = gt_vct_access, 3252 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3253 }, 3254 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3255 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3256 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3257 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3258 }, 3259 /* Comparison value, indicating when the timer goes off */ 3260 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3261 .secure = ARM_CP_SECSTATE_NS, 3262 .access = PL0_RW, 3263 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3265 .accessfn = gt_ptimer_access, 3266 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3267 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3268 }, 3269 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3270 .secure = ARM_CP_SECSTATE_S, 3271 .access = PL0_RW, 3272 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3274 .accessfn = gt_ptimer_access, 3275 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3276 }, 3277 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3278 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3279 .access = PL0_RW, 3280 .type = ARM_CP_IO, 3281 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3282 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3283 .resetvalue = 0, .accessfn = gt_ptimer_access, 3284 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3285 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3286 }, 3287 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3288 .access = PL0_RW, 3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3291 .accessfn = gt_vtimer_access, 3292 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3293 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3294 }, 3295 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3296 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3297 .access = PL0_RW, 3298 .type = ARM_CP_IO, 3299 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3300 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3301 .resetvalue = 0, .accessfn = gt_vtimer_access, 3302 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3303 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3304 }, 3305 /* 3306 * Secure timer -- this is actually restricted to only EL3 3307 * and configurably Secure-EL1 via the accessfn. 3308 */ 3309 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3310 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3311 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3312 .accessfn = gt_stimer_access, 3313 .readfn = gt_sec_tval_read, 3314 .writefn = gt_sec_tval_write, 3315 .resetfn = gt_sec_timer_reset, 3316 }, 3317 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3318 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3319 .type = ARM_CP_IO, .access = PL1_RW, 3320 .accessfn = gt_stimer_access, 3321 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3322 .resetvalue = 0, 3323 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3324 }, 3325 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3326 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3327 .type = ARM_CP_IO, .access = PL1_RW, 3328 .accessfn = gt_stimer_access, 3329 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3330 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3331 }, 3332 }; 3333 3334 /* 3335 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3336 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3337 * so our implementations here are identical to the normal registers. 3338 */ 3339 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3340 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3341 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3342 .accessfn = gt_vct_access, 3343 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3344 }, 3345 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3346 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3347 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3348 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3349 }, 3350 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3351 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3352 .accessfn = gt_pct_access, 3353 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3354 }, 3355 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3357 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3358 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3359 }, 3360 }; 3361 3362 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3363 const ARMCPRegInfo *ri, 3364 bool isread) 3365 { 3366 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3367 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3368 return CP_ACCESS_TRAP_EL3; 3369 } 3370 return CP_ACCESS_OK; 3371 } 3372 3373 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3374 uint64_t value) 3375 { 3376 ARMCPU *cpu = env_archcpu(env); 3377 3378 trace_arm_gt_cntpoff_write(value); 3379 raw_write(env, ri, value); 3380 gt_recalc_timer(cpu, GTIMER_PHYS); 3381 } 3382 3383 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3384 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3385 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3386 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3387 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3388 .nv2_redirect_offset = 0x1a8, 3389 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3390 }; 3391 #else 3392 3393 /* 3394 * In user-mode most of the generic timer registers are inaccessible 3395 * however modern kernels (4.12+) allow access to cntvct_el0 3396 */ 3397 3398 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3399 { 3400 ARMCPU *cpu = env_archcpu(env); 3401 3402 /* 3403 * Currently we have no support for QEMUTimer in linux-user so we 3404 * can't call gt_get_countervalue(env), instead we directly 3405 * call the lower level functions. 3406 */ 3407 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3408 } 3409 3410 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3411 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3412 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3413 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3414 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3415 .resetfn = arm_gt_cntfrq_reset, 3416 }, 3417 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3418 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3419 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3420 .readfn = gt_virt_cnt_read, 3421 }, 3422 }; 3423 3424 /* 3425 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3426 * is exposed to userspace by Linux. 3427 */ 3428 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3429 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3430 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3431 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3432 .readfn = gt_virt_cnt_read, 3433 }, 3434 }; 3435 3436 #endif 3437 3438 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3439 { 3440 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3441 raw_write(env, ri, value); 3442 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3443 raw_write(env, ri, value & 0xfffff6ff); 3444 } else { 3445 raw_write(env, ri, value & 0xfffff1ff); 3446 } 3447 } 3448 3449 #ifndef CONFIG_USER_ONLY 3450 /* get_phys_addr() isn't present for user-mode-only targets */ 3451 3452 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3453 bool isread) 3454 { 3455 if (ri->opc2 & 4) { 3456 /* 3457 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3458 * Secure EL1 (which can only happen if EL3 is AArch64). 3459 * They are simply UNDEF if executed from NS EL1. 3460 * They function normally from EL2 or EL3. 3461 */ 3462 if (arm_current_el(env) == 1) { 3463 if (arm_is_secure_below_el3(env)) { 3464 if (env->cp15.scr_el3 & SCR_EEL2) { 3465 return CP_ACCESS_TRAP_EL2; 3466 } 3467 return CP_ACCESS_TRAP_EL3; 3468 } 3469 return CP_ACCESS_UNDEFINED; 3470 } 3471 } 3472 return CP_ACCESS_OK; 3473 } 3474 3475 #ifdef CONFIG_TCG 3476 static int par_el1_shareability(GetPhysAddrResult *res) 3477 { 3478 /* 3479 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3480 * memory -- see pseudocode PAREncodeShareability(). 3481 */ 3482 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3483 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3484 return 2; 3485 } 3486 return res->cacheattrs.shareability; 3487 } 3488 3489 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3490 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3491 ARMSecuritySpace ss) 3492 { 3493 bool ret; 3494 uint64_t par64; 3495 bool format64 = false; 3496 ARMMMUFaultInfo fi = {}; 3497 GetPhysAddrResult res = {}; 3498 3499 /* 3500 * I_MXTJT: Granule protection checks are not performed on the final 3501 * address of a successful translation. This is a translation not a 3502 * memory reference, so "memop = none = 0". 3503 */ 3504 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3505 mmu_idx, ss, &res, &fi); 3506 3507 /* 3508 * ATS operations only do S1 or S1+S2 translations, so we never 3509 * have to deal with the ARMCacheAttrs format for S2 only. 3510 */ 3511 assert(!res.cacheattrs.is_s2_format); 3512 3513 if (ret) { 3514 /* 3515 * Some kinds of translation fault must cause exceptions rather 3516 * than being reported in the PAR. 3517 */ 3518 int current_el = arm_current_el(env); 3519 int target_el; 3520 uint32_t syn, fsr, fsc; 3521 bool take_exc = false; 3522 3523 if (fi.s1ptw && current_el == 1 3524 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3525 /* 3526 * Synchronous stage 2 fault on an access made as part of the 3527 * translation table walk for AT S1E0* or AT S1E1* insn 3528 * executed from NS EL1. If this is a synchronous external abort 3529 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3530 * to EL3. Otherwise the fault is taken as an exception to EL2, 3531 * and HPFAR_EL2 holds the faulting IPA. 3532 */ 3533 if (fi.type == ARMFault_SyncExternalOnWalk && 3534 (env->cp15.scr_el3 & SCR_EA)) { 3535 target_el = 3; 3536 } else { 3537 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3538 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3539 env->cp15.hpfar_el2 |= HPFAR_NS; 3540 } 3541 target_el = 2; 3542 } 3543 take_exc = true; 3544 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3545 /* 3546 * Synchronous external aborts during a translation table walk 3547 * are taken as Data Abort exceptions. 3548 */ 3549 if (fi.stage2) { 3550 if (current_el == 3) { 3551 target_el = 3; 3552 } else { 3553 target_el = 2; 3554 } 3555 } else { 3556 target_el = exception_target_el(env); 3557 } 3558 take_exc = true; 3559 } 3560 3561 if (take_exc) { 3562 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3563 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3564 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3565 fsr = arm_fi_to_lfsc(&fi); 3566 fsc = extract32(fsr, 0, 6); 3567 } else { 3568 fsr = arm_fi_to_sfsc(&fi); 3569 fsc = 0x3f; 3570 } 3571 /* 3572 * Report exception with ESR indicating a fault due to a 3573 * translation table walk for a cache maintenance instruction. 3574 */ 3575 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3576 fi.ea, 1, fi.s1ptw, 1, fsc); 3577 env->exception.vaddress = value; 3578 env->exception.fsr = fsr; 3579 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3580 } 3581 } 3582 3583 if (is_a64(env)) { 3584 format64 = true; 3585 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3586 /* 3587 * ATS1Cxx: 3588 * * TTBCR.EAE determines whether the result is returned using the 3589 * 32-bit or the 64-bit PAR format 3590 * * Instructions executed in Hyp mode always use the 64bit format 3591 * 3592 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3593 * * The Non-secure TTBCR.EAE bit is set to 1 3594 * * The implementation includes EL2, and the value of HCR.VM is 1 3595 * 3596 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3597 * 3598 * ATS1Hx always uses the 64bit format. 3599 */ 3600 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3601 3602 if (arm_feature(env, ARM_FEATURE_EL2)) { 3603 if (mmu_idx == ARMMMUIdx_E10_0 || 3604 mmu_idx == ARMMMUIdx_E10_1 || 3605 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3606 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3607 } else { 3608 format64 |= arm_current_el(env) == 2; 3609 } 3610 } 3611 } 3612 3613 if (format64) { 3614 /* Create a 64-bit PAR */ 3615 par64 = (1 << 11); /* LPAE bit always set */ 3616 if (!ret) { 3617 par64 |= res.f.phys_addr & ~0xfffULL; 3618 if (!res.f.attrs.secure) { 3619 par64 |= (1 << 9); /* NS */ 3620 } 3621 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3622 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3623 } else { 3624 uint32_t fsr = arm_fi_to_lfsc(&fi); 3625 3626 par64 |= 1; /* F */ 3627 par64 |= (fsr & 0x3f) << 1; /* FS */ 3628 if (fi.stage2) { 3629 par64 |= (1 << 9); /* S */ 3630 } 3631 if (fi.s1ptw) { 3632 par64 |= (1 << 8); /* PTW */ 3633 } 3634 } 3635 } else { 3636 /* 3637 * fsr is a DFSR/IFSR value for the short descriptor 3638 * translation table format (with WnR always clear). 3639 * Convert it to a 32-bit PAR. 3640 */ 3641 if (!ret) { 3642 /* We do not set any attribute bits in the PAR */ 3643 if (res.f.lg_page_size == 24 3644 && arm_feature(env, ARM_FEATURE_V7)) { 3645 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3646 } else { 3647 par64 = res.f.phys_addr & 0xfffff000; 3648 } 3649 if (!res.f.attrs.secure) { 3650 par64 |= (1 << 9); /* NS */ 3651 } 3652 } else { 3653 uint32_t fsr = arm_fi_to_sfsc(&fi); 3654 3655 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3656 ((fsr & 0xf) << 1) | 1; 3657 } 3658 } 3659 return par64; 3660 } 3661 #endif /* CONFIG_TCG */ 3662 3663 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3664 { 3665 #ifdef CONFIG_TCG 3666 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3667 uint64_t par64; 3668 ARMMMUIdx mmu_idx; 3669 int el = arm_current_el(env); 3670 ARMSecuritySpace ss = arm_security_space(env); 3671 3672 switch (ri->opc2 & 6) { 3673 case 0: 3674 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3675 switch (el) { 3676 case 3: 3677 if (ri->crm == 9 && arm_pan_enabled(env)) { 3678 mmu_idx = ARMMMUIdx_E30_3_PAN; 3679 } else { 3680 mmu_idx = ARMMMUIdx_E3; 3681 } 3682 break; 3683 case 2: 3684 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3685 /* fall through */ 3686 case 1: 3687 if (ri->crm == 9 && arm_pan_enabled(env)) { 3688 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3689 } else { 3690 mmu_idx = ARMMMUIdx_Stage1_E1; 3691 } 3692 break; 3693 default: 3694 g_assert_not_reached(); 3695 } 3696 break; 3697 case 2: 3698 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3699 switch (el) { 3700 case 3: 3701 mmu_idx = ARMMMUIdx_E30_0; 3702 break; 3703 case 2: 3704 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3705 mmu_idx = ARMMMUIdx_Stage1_E0; 3706 break; 3707 case 1: 3708 mmu_idx = ARMMMUIdx_Stage1_E0; 3709 break; 3710 default: 3711 g_assert_not_reached(); 3712 } 3713 break; 3714 case 4: 3715 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3716 mmu_idx = ARMMMUIdx_E10_1; 3717 ss = ARMSS_NonSecure; 3718 break; 3719 case 6: 3720 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3721 mmu_idx = ARMMMUIdx_E10_0; 3722 ss = ARMSS_NonSecure; 3723 break; 3724 default: 3725 g_assert_not_reached(); 3726 } 3727 3728 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3729 3730 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3731 #else 3732 /* Handled by hardware accelerator. */ 3733 g_assert_not_reached(); 3734 #endif /* CONFIG_TCG */ 3735 } 3736 3737 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3738 uint64_t value) 3739 { 3740 #ifdef CONFIG_TCG 3741 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3742 uint64_t par64; 3743 3744 /* There is no SecureEL2 for AArch32. */ 3745 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3746 ARMSS_NonSecure); 3747 3748 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3749 #else 3750 /* Handled by hardware accelerator. */ 3751 g_assert_not_reached(); 3752 #endif /* CONFIG_TCG */ 3753 } 3754 3755 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3756 bool isread) 3757 { 3758 /* 3759 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3760 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3761 * only happen when executing at EL3 because that combination also causes an 3762 * illegal exception return. We don't need to check FEAT_RME either, because 3763 * scr_write() ensures that the NSE bit is not set otherwise. 3764 */ 3765 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3766 return CP_ACCESS_UNDEFINED; 3767 } 3768 return CP_ACCESS_OK; 3769 } 3770 3771 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3772 bool isread) 3773 { 3774 if (arm_current_el(env) == 3 && 3775 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3776 return CP_ACCESS_UNDEFINED; 3777 } 3778 return at_e012_access(env, ri, isread); 3779 } 3780 3781 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3782 bool isread) 3783 { 3784 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3785 return CP_ACCESS_TRAP_EL2; 3786 } 3787 return at_e012_access(env, ri, isread); 3788 } 3789 3790 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3791 uint64_t value) 3792 { 3793 #ifdef CONFIG_TCG 3794 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3795 ARMMMUIdx mmu_idx; 3796 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3797 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3798 bool for_el3 = false; 3799 ARMSecuritySpace ss; 3800 3801 switch (ri->opc2 & 6) { 3802 case 0: 3803 switch (ri->opc1) { 3804 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3805 if (ri->crm == 9 && arm_pan_enabled(env)) { 3806 mmu_idx = regime_e20 ? 3807 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3808 } else { 3809 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3810 } 3811 break; 3812 case 4: /* AT S1E2R, AT S1E2W */ 3813 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3814 break; 3815 case 6: /* AT S1E3R, AT S1E3W */ 3816 mmu_idx = ARMMMUIdx_E3; 3817 for_el3 = true; 3818 break; 3819 default: 3820 g_assert_not_reached(); 3821 } 3822 break; 3823 case 2: /* AT S1E0R, AT S1E0W */ 3824 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3825 break; 3826 case 4: /* AT S12E1R, AT S12E1W */ 3827 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3828 break; 3829 case 6: /* AT S12E0R, AT S12E0W */ 3830 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3831 break; 3832 default: 3833 g_assert_not_reached(); 3834 } 3835 3836 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3837 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3838 #else 3839 /* Handled by hardware accelerator. */ 3840 g_assert_not_reached(); 3841 #endif /* CONFIG_TCG */ 3842 } 3843 #endif 3844 3845 /* Return basic MPU access permission bits. */ 3846 static uint32_t simple_mpu_ap_bits(uint32_t val) 3847 { 3848 uint32_t ret; 3849 uint32_t mask; 3850 int i; 3851 ret = 0; 3852 mask = 3; 3853 for (i = 0; i < 16; i += 2) { 3854 ret |= (val >> i) & mask; 3855 mask <<= 2; 3856 } 3857 return ret; 3858 } 3859 3860 /* Pad basic MPU access permission bits to extended format. */ 3861 static uint32_t extended_mpu_ap_bits(uint32_t val) 3862 { 3863 uint32_t ret; 3864 uint32_t mask; 3865 int i; 3866 ret = 0; 3867 mask = 3; 3868 for (i = 0; i < 16; i += 2) { 3869 ret |= (val & mask) << i; 3870 mask <<= 2; 3871 } 3872 return ret; 3873 } 3874 3875 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3876 uint64_t value) 3877 { 3878 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3879 } 3880 3881 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3882 { 3883 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3884 } 3885 3886 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3887 uint64_t value) 3888 { 3889 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3890 } 3891 3892 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3893 { 3894 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3895 } 3896 3897 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3898 { 3899 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3900 3901 if (!u32p) { 3902 return 0; 3903 } 3904 3905 u32p += env->pmsav7.rnr[M_REG_NS]; 3906 return *u32p; 3907 } 3908 3909 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3910 uint64_t value) 3911 { 3912 ARMCPU *cpu = env_archcpu(env); 3913 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3914 3915 if (!u32p) { 3916 return; 3917 } 3918 3919 u32p += env->pmsav7.rnr[M_REG_NS]; 3920 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3921 *u32p = value; 3922 } 3923 3924 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3925 uint64_t value) 3926 { 3927 ARMCPU *cpu = env_archcpu(env); 3928 uint32_t nrgs = cpu->pmsav7_dregion; 3929 3930 if (value >= nrgs) { 3931 qemu_log_mask(LOG_GUEST_ERROR, 3932 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3933 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3934 return; 3935 } 3936 3937 raw_write(env, ri, value); 3938 } 3939 3940 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3941 uint64_t value) 3942 { 3943 ARMCPU *cpu = env_archcpu(env); 3944 3945 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3946 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3947 } 3948 3949 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3950 { 3951 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3952 } 3953 3954 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3955 uint64_t value) 3956 { 3957 ARMCPU *cpu = env_archcpu(env); 3958 3959 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3960 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3961 } 3962 3963 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3964 { 3965 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3966 } 3967 3968 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3969 uint64_t value) 3970 { 3971 ARMCPU *cpu = env_archcpu(env); 3972 3973 /* 3974 * Ignore writes that would select not implemented region. 3975 * This is architecturally UNPREDICTABLE. 3976 */ 3977 if (value >= cpu->pmsav7_dregion) { 3978 return; 3979 } 3980 3981 env->pmsav7.rnr[M_REG_NS] = value; 3982 } 3983 3984 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3985 uint64_t value) 3986 { 3987 ARMCPU *cpu = env_archcpu(env); 3988 3989 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3990 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3991 } 3992 3993 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3994 { 3995 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3996 } 3997 3998 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3999 uint64_t value) 4000 { 4001 ARMCPU *cpu = env_archcpu(env); 4002 4003 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4004 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4005 } 4006 4007 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4008 { 4009 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4010 } 4011 4012 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4013 uint64_t value) 4014 { 4015 uint32_t n; 4016 uint32_t bit; 4017 ARMCPU *cpu = env_archcpu(env); 4018 4019 /* Ignore writes to unimplemented regions */ 4020 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4021 value &= MAKE_64BIT_MASK(0, rmax); 4022 4023 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4024 4025 /* Register alias is only valid for first 32 indexes */ 4026 for (n = 0; n < rmax; ++n) { 4027 bit = extract32(value, n, 1); 4028 env->pmsav8.hprlar[n] = deposit32( 4029 env->pmsav8.hprlar[n], 0, 1, bit); 4030 } 4031 } 4032 4033 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4034 { 4035 uint32_t n; 4036 uint32_t result = 0x0; 4037 ARMCPU *cpu = env_archcpu(env); 4038 4039 /* Register alias is only valid for first 32 indexes */ 4040 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4041 if (env->pmsav8.hprlar[n] & 0x1) { 4042 result |= (0x1 << n); 4043 } 4044 } 4045 return result; 4046 } 4047 4048 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4049 uint64_t value) 4050 { 4051 ARMCPU *cpu = env_archcpu(env); 4052 4053 /* 4054 * Ignore writes that would select not implemented region. 4055 * This is architecturally UNPREDICTABLE. 4056 */ 4057 if (value >= cpu->pmsav8r_hdregion) { 4058 return; 4059 } 4060 4061 env->pmsav8.hprselr = value; 4062 } 4063 4064 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4065 uint64_t value) 4066 { 4067 ARMCPU *cpu = env_archcpu(env); 4068 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4069 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4070 4071 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4072 4073 if (ri->opc1 & 4) { 4074 if (index >= cpu->pmsav8r_hdregion) { 4075 return; 4076 } 4077 if (ri->opc2 & 0x1) { 4078 env->pmsav8.hprlar[index] = value; 4079 } else { 4080 env->pmsav8.hprbar[index] = value; 4081 } 4082 } else { 4083 if (index >= cpu->pmsav7_dregion) { 4084 return; 4085 } 4086 if (ri->opc2 & 0x1) { 4087 env->pmsav8.rlar[M_REG_NS][index] = value; 4088 } else { 4089 env->pmsav8.rbar[M_REG_NS][index] = value; 4090 } 4091 } 4092 } 4093 4094 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4095 { 4096 ARMCPU *cpu = env_archcpu(env); 4097 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4098 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4099 4100 if (ri->opc1 & 4) { 4101 if (index >= cpu->pmsav8r_hdregion) { 4102 return 0x0; 4103 } 4104 if (ri->opc2 & 0x1) { 4105 return env->pmsav8.hprlar[index]; 4106 } else { 4107 return env->pmsav8.hprbar[index]; 4108 } 4109 } else { 4110 if (index >= cpu->pmsav7_dregion) { 4111 return 0x0; 4112 } 4113 if (ri->opc2 & 0x1) { 4114 return env->pmsav8.rlar[M_REG_NS][index]; 4115 } else { 4116 return env->pmsav8.rbar[M_REG_NS][index]; 4117 } 4118 } 4119 } 4120 4121 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4122 { .name = "PRBAR", 4123 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4124 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4125 .accessfn = access_tvm_trvm, 4126 .readfn = prbar_read, .writefn = prbar_write }, 4127 { .name = "PRLAR", 4128 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4129 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4130 .accessfn = access_tvm_trvm, 4131 .readfn = prlar_read, .writefn = prlar_write }, 4132 { .name = "PRSELR", .resetvalue = 0, 4133 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4134 .access = PL1_RW, .accessfn = access_tvm_trvm, 4135 .writefn = prselr_write, 4136 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4137 { .name = "HPRBAR", .resetvalue = 0, 4138 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4139 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4140 .readfn = hprbar_read, .writefn = hprbar_write }, 4141 { .name = "HPRLAR", 4142 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4143 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4144 .readfn = hprlar_read, .writefn = hprlar_write }, 4145 { .name = "HPRSELR", .resetvalue = 0, 4146 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4147 .access = PL2_RW, 4148 .writefn = hprselr_write, 4149 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4150 { .name = "HPRENR", 4151 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4152 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4153 .readfn = hprenr_read, .writefn = hprenr_write }, 4154 }; 4155 4156 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4157 /* 4158 * Reset for all these registers is handled in arm_cpu_reset(), 4159 * because the PMSAv7 is also used by M-profile CPUs, which do 4160 * not register cpregs but still need the state to be reset. 4161 */ 4162 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4163 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4164 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4165 .readfn = pmsav7_read, .writefn = pmsav7_write, 4166 .resetfn = arm_cp_reset_ignore }, 4167 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4168 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4169 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4170 .readfn = pmsav7_read, .writefn = pmsav7_write, 4171 .resetfn = arm_cp_reset_ignore }, 4172 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4173 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4174 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4175 .readfn = pmsav7_read, .writefn = pmsav7_write, 4176 .resetfn = arm_cp_reset_ignore }, 4177 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4178 .access = PL1_RW, 4179 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4180 .writefn = pmsav7_rgnr_write, 4181 .resetfn = arm_cp_reset_ignore }, 4182 }; 4183 4184 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4185 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4186 .access = PL1_RW, .type = ARM_CP_ALIAS, 4187 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4188 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4189 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4190 .access = PL1_RW, .type = ARM_CP_ALIAS, 4191 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4192 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4193 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4194 .access = PL1_RW, 4195 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4196 .resetvalue = 0, }, 4197 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4198 .access = PL1_RW, 4199 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4200 .resetvalue = 0, }, 4201 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4202 .access = PL1_RW, 4203 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4204 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4205 .access = PL1_RW, 4206 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4207 /* Protection region base and size registers */ 4208 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4209 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4210 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4211 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4212 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4213 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4214 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4215 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4216 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4217 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4218 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4219 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4220 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4221 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4222 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4223 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4224 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4225 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4226 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4227 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4228 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4229 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4230 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4231 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4232 }; 4233 4234 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4235 uint64_t value) 4236 { 4237 ARMCPU *cpu = env_archcpu(env); 4238 4239 if (!arm_feature(env, ARM_FEATURE_V8)) { 4240 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4241 /* 4242 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4243 * using Long-descriptor translation table format 4244 */ 4245 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4246 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4247 /* 4248 * In an implementation that includes the Security Extensions 4249 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4250 * Short-descriptor translation table format. 4251 */ 4252 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4253 } else { 4254 value &= TTBCR_N; 4255 } 4256 } 4257 4258 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4259 /* 4260 * With LPAE the TTBCR could result in a change of ASID 4261 * via the TTBCR.A1 bit, so do a TLB flush. 4262 */ 4263 tlb_flush(CPU(cpu)); 4264 } 4265 raw_write(env, ri, value); 4266 } 4267 4268 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4269 uint64_t value) 4270 { 4271 ARMCPU *cpu = env_archcpu(env); 4272 4273 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4274 tlb_flush(CPU(cpu)); 4275 raw_write(env, ri, value); 4276 } 4277 4278 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4279 uint64_t value) 4280 { 4281 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4282 if (cpreg_field_is_64bit(ri) && 4283 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4284 ARMCPU *cpu = env_archcpu(env); 4285 tlb_flush(CPU(cpu)); 4286 } 4287 raw_write(env, ri, value); 4288 } 4289 4290 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4291 uint64_t value) 4292 { 4293 /* 4294 * If we are running with E2&0 regime, then an ASID is active. 4295 * Flush if that might be changing. Note we're not checking 4296 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4297 * holds the active ASID, only checking the field that might. 4298 */ 4299 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4300 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4301 uint16_t mask = ARMMMUIdxBit_E20_2 | 4302 ARMMMUIdxBit_E20_2_PAN | 4303 ARMMMUIdxBit_E20_0; 4304 tlb_flush_by_mmuidx(env_cpu(env), mask); 4305 } 4306 raw_write(env, ri, value); 4307 } 4308 4309 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4310 uint64_t value) 4311 { 4312 ARMCPU *cpu = env_archcpu(env); 4313 CPUState *cs = CPU(cpu); 4314 4315 /* 4316 * A change in VMID to the stage2 page table (Stage2) invalidates 4317 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4318 */ 4319 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4320 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4321 } 4322 raw_write(env, ri, value); 4323 } 4324 4325 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4326 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4327 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4328 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4329 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4330 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4331 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4332 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4333 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4334 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4335 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4336 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4337 offsetof(CPUARMState, cp15.dfar_ns) } }, 4338 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4339 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4340 .access = PL1_RW, .accessfn = access_tvm_trvm, 4341 .fgt = FGT_FAR_EL1, 4342 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4343 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4344 .resetvalue = 0, }, 4345 }; 4346 4347 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4348 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4349 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4350 .access = PL1_RW, .accessfn = access_tvm_trvm, 4351 .fgt = FGT_ESR_EL1, 4352 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4353 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4354 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4355 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4356 .access = PL1_RW, .accessfn = access_tvm_trvm, 4357 .fgt = FGT_TTBR0_EL1, 4358 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4359 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4360 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4361 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4362 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4363 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4364 .access = PL1_RW, .accessfn = access_tvm_trvm, 4365 .fgt = FGT_TTBR1_EL1, 4366 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4367 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4368 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4369 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4370 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4371 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4372 .access = PL1_RW, .accessfn = access_tvm_trvm, 4373 .fgt = FGT_TCR_EL1, 4374 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4375 .writefn = vmsa_tcr_el12_write, 4376 .raw_writefn = raw_write, 4377 .resetvalue = 0, 4378 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4379 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4380 .access = PL1_RW, .accessfn = access_tvm_trvm, 4381 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4382 .raw_writefn = raw_write, 4383 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4384 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4385 }; 4386 4387 /* 4388 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4389 * qemu tlbs nor adjusting cached masks. 4390 */ 4391 static const ARMCPRegInfo ttbcr2_reginfo = { 4392 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4393 .access = PL1_RW, .accessfn = access_tvm_trvm, 4394 .type = ARM_CP_ALIAS, 4395 .bank_fieldoffsets = { 4396 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4397 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4398 }, 4399 }; 4400 4401 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4402 uint64_t value) 4403 { 4404 env->cp15.c15_ticonfig = value & 0xe7; 4405 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4406 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4407 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4408 } 4409 4410 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4411 uint64_t value) 4412 { 4413 env->cp15.c15_threadid = value & 0xffff; 4414 } 4415 4416 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4417 uint64_t value) 4418 { 4419 /* Wait-for-interrupt (deprecated) */ 4420 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4421 } 4422 4423 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4424 uint64_t value) 4425 { 4426 /* 4427 * On OMAP there are registers indicating the max/min index of dcache lines 4428 * containing a dirty line; cache flush operations have to reset these. 4429 */ 4430 env->cp15.c15_i_max = 0x000; 4431 env->cp15.c15_i_min = 0xff0; 4432 } 4433 4434 static const ARMCPRegInfo omap_cp_reginfo[] = { 4435 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4436 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4437 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4438 .resetvalue = 0, }, 4439 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4440 .access = PL1_RW, .type = ARM_CP_NOP }, 4441 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4442 .access = PL1_RW, 4443 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4444 .writefn = omap_ticonfig_write }, 4445 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4446 .access = PL1_RW, 4447 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4448 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4449 .access = PL1_RW, .resetvalue = 0xff0, 4450 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4451 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4452 .access = PL1_RW, 4453 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4454 .writefn = omap_threadid_write }, 4455 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4456 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4457 .type = ARM_CP_NO_RAW, 4458 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4459 /* 4460 * TODO: Peripheral port remap register: 4461 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4462 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4463 * when MMU is off. 4464 */ 4465 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4466 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4467 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4468 .writefn = omap_cachemaint_write }, 4469 { .name = "C9", .cp = 15, .crn = 9, 4470 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4471 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4472 }; 4473 4474 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4475 uint64_t value) 4476 { 4477 env->cp15.c15_cpar = value & 0x3fff; 4478 } 4479 4480 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4481 { .name = "XSCALE_CPAR", 4482 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4483 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4484 .writefn = xscale_cpar_write, }, 4485 { .name = "XSCALE_AUXCR", 4486 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4487 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4488 .resetvalue = 0, }, 4489 /* 4490 * XScale specific cache-lockdown: since we have no cache we NOP these 4491 * and hope the guest does not really rely on cache behaviour. 4492 */ 4493 { .name = "XSCALE_LOCK_ICACHE_LINE", 4494 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4495 .access = PL1_W, .type = ARM_CP_NOP }, 4496 { .name = "XSCALE_UNLOCK_ICACHE", 4497 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4498 .access = PL1_W, .type = ARM_CP_NOP }, 4499 { .name = "XSCALE_DCACHE_LOCK", 4500 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4501 .access = PL1_RW, .type = ARM_CP_NOP }, 4502 { .name = "XSCALE_UNLOCK_DCACHE", 4503 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4504 .access = PL1_W, .type = ARM_CP_NOP }, 4505 }; 4506 4507 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4508 /* 4509 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4510 * implementation of this implementation-defined space. 4511 * Ideally this should eventually disappear in favour of actually 4512 * implementing the correct behaviour for all cores. 4513 */ 4514 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4515 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4516 .access = PL1_RW, 4517 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4518 .resetvalue = 0 }, 4519 }; 4520 4521 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4522 /* Cache status: RAZ because we have no cache so it's always clean */ 4523 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4524 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4525 .resetvalue = 0 }, 4526 }; 4527 4528 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4529 /* We never have a block transfer operation in progress */ 4530 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4531 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4532 .resetvalue = 0 }, 4533 /* The cache ops themselves: these all NOP for QEMU */ 4534 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4535 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4536 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4537 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4538 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4539 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4540 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4541 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4542 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4543 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4544 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4545 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4546 }; 4547 4548 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4549 /* 4550 * The cache test-and-clean instructions always return (1 << 30) 4551 * to indicate that there are no dirty cache lines. 4552 */ 4553 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4554 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4555 .resetvalue = (1 << 30) }, 4556 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4557 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4558 .resetvalue = (1 << 30) }, 4559 }; 4560 4561 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4562 /* Ignore ReadBuffer accesses */ 4563 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4564 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4565 .access = PL1_RW, .resetvalue = 0, 4566 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4567 }; 4568 4569 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4570 { 4571 unsigned int cur_el = arm_current_el(env); 4572 4573 if (arm_is_el2_enabled(env) && cur_el == 1) { 4574 return env->cp15.vpidr_el2; 4575 } 4576 return raw_read(env, ri); 4577 } 4578 4579 static uint64_t mpidr_read_val(CPUARMState *env) 4580 { 4581 ARMCPU *cpu = env_archcpu(env); 4582 uint64_t mpidr = cpu->mp_affinity; 4583 4584 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4585 mpidr |= (1U << 31); 4586 /* 4587 * Cores which are uniprocessor (non-coherent) 4588 * but still implement the MP extensions set 4589 * bit 30. (For instance, Cortex-R5). 4590 */ 4591 if (cpu->mp_is_up) { 4592 mpidr |= (1u << 30); 4593 } 4594 } 4595 return mpidr; 4596 } 4597 4598 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4599 { 4600 unsigned int cur_el = arm_current_el(env); 4601 4602 if (arm_is_el2_enabled(env) && cur_el == 1) { 4603 return env->cp15.vmpidr_el2; 4604 } 4605 return mpidr_read_val(env); 4606 } 4607 4608 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4609 /* NOP AMAIR0/1 */ 4610 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4611 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4612 .access = PL1_RW, .accessfn = access_tvm_trvm, 4613 .fgt = FGT_AMAIR_EL1, 4614 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4615 .type = ARM_CP_CONST, .resetvalue = 0 }, 4616 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4617 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4618 .access = PL1_RW, .accessfn = access_tvm_trvm, 4619 .type = ARM_CP_CONST, .resetvalue = 0 }, 4620 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4621 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4622 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4623 offsetof(CPUARMState, cp15.par_ns)} }, 4624 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4625 .access = PL1_RW, .accessfn = access_tvm_trvm, 4626 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4627 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4628 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4629 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4630 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4631 .access = PL1_RW, .accessfn = access_tvm_trvm, 4632 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4633 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4634 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4635 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4636 }; 4637 4638 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4639 { 4640 return vfp_get_fpcr(env); 4641 } 4642 4643 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 vfp_set_fpcr(env, value); 4647 } 4648 4649 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4650 { 4651 return vfp_get_fpsr(env); 4652 } 4653 4654 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4655 uint64_t value) 4656 { 4657 vfp_set_fpsr(env, value); 4658 } 4659 4660 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4661 bool isread) 4662 { 4663 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4664 return CP_ACCESS_TRAP_EL1; 4665 } 4666 return CP_ACCESS_OK; 4667 } 4668 4669 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4670 uint64_t value) 4671 { 4672 env->daif = value & PSTATE_DAIF; 4673 } 4674 4675 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4676 { 4677 return env->pstate & PSTATE_PAN; 4678 } 4679 4680 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4681 uint64_t value) 4682 { 4683 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4684 } 4685 4686 static const ARMCPRegInfo pan_reginfo = { 4687 .name = "PAN", .state = ARM_CP_STATE_AA64, 4688 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4689 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4690 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4691 }; 4692 4693 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4694 { 4695 return env->pstate & PSTATE_UAO; 4696 } 4697 4698 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4699 uint64_t value) 4700 { 4701 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4702 } 4703 4704 static const ARMCPRegInfo uao_reginfo = { 4705 .name = "UAO", .state = ARM_CP_STATE_AA64, 4706 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4707 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4708 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4709 }; 4710 4711 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4712 { 4713 return env->pstate & PSTATE_DIT; 4714 } 4715 4716 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4717 uint64_t value) 4718 { 4719 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4720 } 4721 4722 static const ARMCPRegInfo dit_reginfo = { 4723 .name = "DIT", .state = ARM_CP_STATE_AA64, 4724 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4725 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4726 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4727 }; 4728 4729 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4730 { 4731 return env->pstate & PSTATE_SSBS; 4732 } 4733 4734 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4735 uint64_t value) 4736 { 4737 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4738 } 4739 4740 static const ARMCPRegInfo ssbs_reginfo = { 4741 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4742 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4743 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4744 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4745 }; 4746 4747 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4748 const ARMCPRegInfo *ri, 4749 bool isread) 4750 { 4751 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4752 switch (arm_current_el(env)) { 4753 case 0: 4754 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4755 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4756 return CP_ACCESS_TRAP_EL1; 4757 } 4758 /* fall through */ 4759 case 1: 4760 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4761 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4762 return CP_ACCESS_TRAP_EL2; 4763 } 4764 break; 4765 } 4766 return CP_ACCESS_OK; 4767 } 4768 4769 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4770 { 4771 /* Cache invalidate/clean to Point of Unification... */ 4772 switch (arm_current_el(env)) { 4773 case 0: 4774 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4775 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4776 return CP_ACCESS_TRAP_EL1; 4777 } 4778 /* fall through */ 4779 case 1: 4780 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4781 if (arm_hcr_el2_eff(env) & hcrflags) { 4782 return CP_ACCESS_TRAP_EL2; 4783 } 4784 break; 4785 } 4786 return CP_ACCESS_OK; 4787 } 4788 4789 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4790 bool isread) 4791 { 4792 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4793 } 4794 4795 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4796 bool isread) 4797 { 4798 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4799 } 4800 4801 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4802 bool isread) 4803 { 4804 int cur_el = arm_current_el(env); 4805 4806 if (cur_el < 2) { 4807 uint64_t hcr = arm_hcr_el2_eff(env); 4808 4809 if (cur_el == 0) { 4810 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4811 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4812 return CP_ACCESS_TRAP_EL2; 4813 } 4814 } else { 4815 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4816 return CP_ACCESS_TRAP_EL1; 4817 } 4818 if (hcr & HCR_TDZ) { 4819 return CP_ACCESS_TRAP_EL2; 4820 } 4821 } 4822 } else if (hcr & HCR_TDZ) { 4823 return CP_ACCESS_TRAP_EL2; 4824 } 4825 } 4826 return CP_ACCESS_OK; 4827 } 4828 4829 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4830 { 4831 ARMCPU *cpu = env_archcpu(env); 4832 int dzp_bit = 1 << 4; 4833 4834 /* DZP indicates whether DC ZVA access is allowed */ 4835 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4836 dzp_bit = 0; 4837 } 4838 return cpu->dcz_blocksize | dzp_bit; 4839 } 4840 4841 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4842 bool isread) 4843 { 4844 if (!(env->pstate & PSTATE_SP)) { 4845 /* 4846 * Access to SP_EL0 is undefined if it's being used as 4847 * the stack pointer. 4848 */ 4849 return CP_ACCESS_UNDEFINED; 4850 } 4851 return CP_ACCESS_OK; 4852 } 4853 4854 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4855 { 4856 return env->pstate & PSTATE_SP; 4857 } 4858 4859 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4860 { 4861 update_spsel(env, val); 4862 } 4863 4864 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4865 uint64_t value) 4866 { 4867 ARMCPU *cpu = env_archcpu(env); 4868 4869 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4870 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4871 value &= ~SCTLR_M; 4872 } 4873 4874 /* ??? Lots of these bits are not implemented. */ 4875 4876 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4877 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4878 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4879 } else { 4880 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4881 SCTLR_ATA0 | SCTLR_ATA); 4882 } 4883 } 4884 4885 if (raw_read(env, ri) == value) { 4886 /* 4887 * Skip the TLB flush if nothing actually changed; Linux likes 4888 * to do a lot of pointless SCTLR writes. 4889 */ 4890 return; 4891 } 4892 4893 raw_write(env, ri, value); 4894 4895 /* This may enable/disable the MMU, so do a TLB flush. */ 4896 tlb_flush(CPU(cpu)); 4897 4898 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 4899 /* 4900 * Normally we would always end the TB on an SCTLR write; see the 4901 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4902 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4903 * of hflags from the translator, so do it here. 4904 */ 4905 arm_rebuild_hflags(env); 4906 } 4907 } 4908 4909 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4910 uint64_t value) 4911 { 4912 /* 4913 * Some MDCR_EL3 bits affect whether PMU counters are running: 4914 * if we are trying to change any of those then we must 4915 * bracket this update with PMU start/finish calls. 4916 */ 4917 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4918 4919 if (pmu_op) { 4920 pmu_op_start(env); 4921 } 4922 env->cp15.mdcr_el3 = value; 4923 if (pmu_op) { 4924 pmu_op_finish(env); 4925 } 4926 } 4927 4928 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4929 uint64_t value) 4930 { 4931 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4932 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4933 } 4934 4935 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4936 uint64_t value) 4937 { 4938 /* 4939 * Some MDCR_EL2 bits affect whether PMU counters are running: 4940 * if we are trying to change any of those then we must 4941 * bracket this update with PMU start/finish calls. 4942 */ 4943 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4944 4945 if (pmu_op) { 4946 pmu_op_start(env); 4947 } 4948 env->cp15.mdcr_el2 = value; 4949 if (pmu_op) { 4950 pmu_op_finish(env); 4951 } 4952 } 4953 4954 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 4955 bool isread) 4956 { 4957 if (arm_current_el(env) == 1) { 4958 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 4959 4960 if (hcr_nv == (HCR_NV | HCR_NV1)) { 4961 return CP_ACCESS_TRAP_EL2; 4962 } 4963 } 4964 return CP_ACCESS_OK; 4965 } 4966 4967 #ifdef CONFIG_USER_ONLY 4968 /* 4969 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 4970 * code to get around W^X restrictions, where one region is writable and the 4971 * other is executable. 4972 * 4973 * Since the executable region is never written to we cannot detect code 4974 * changes when running in user mode, and rely on the emulated JIT telling us 4975 * that the code has changed by executing this instruction. 4976 */ 4977 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 4978 uint64_t value) 4979 { 4980 uint64_t icache_line_mask, start_address, end_address; 4981 const ARMCPU *cpu; 4982 4983 cpu = env_archcpu(env); 4984 4985 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 4986 start_address = value & ~icache_line_mask; 4987 end_address = value | icache_line_mask; 4988 4989 mmap_lock(); 4990 4991 tb_invalidate_phys_range(env_cpu(env), start_address, end_address); 4992 4993 mmap_unlock(); 4994 } 4995 #endif 4996 4997 static const ARMCPRegInfo v8_cp_reginfo[] = { 4998 /* 4999 * Minimal set of EL0-visible registers. This will need to be expanded 5000 * significantly for system emulation of AArch64 CPUs. 5001 */ 5002 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5004 .access = PL0_RW, .type = ARM_CP_NZCV }, 5005 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5007 .type = ARM_CP_NO_RAW, 5008 .access = PL0_RW, .accessfn = aa64_daif_access, 5009 .fieldoffset = offsetof(CPUARMState, daif), 5010 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5011 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5012 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5013 .access = PL0_RW, .type = ARM_CP_FPU, 5014 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5015 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5016 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5017 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5018 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5019 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5020 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5021 .access = PL0_R, .type = ARM_CP_NO_RAW, 5022 .fgt = FGT_DCZID_EL0, 5023 .readfn = aa64_dczid_read }, 5024 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5026 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5027 #ifndef CONFIG_USER_ONLY 5028 /* Avoid overhead of an access check that always passes in user-mode */ 5029 .accessfn = aa64_zva_access, 5030 .fgt = FGT_DCZVA, 5031 #endif 5032 }, 5033 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5035 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5036 /* 5037 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5038 * don't emulate caches. 5039 */ 5040 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5042 .access = PL1_W, .type = ARM_CP_NOP, 5043 .fgt = FGT_ICIALLUIS, 5044 .accessfn = access_ticab }, 5045 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5046 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5047 .access = PL1_W, .type = ARM_CP_NOP, 5048 .fgt = FGT_ICIALLU, 5049 .accessfn = access_tocu }, 5050 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5051 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5052 .access = PL0_W, 5053 .fgt = FGT_ICIVAU, 5054 .accessfn = access_tocu, 5055 #ifdef CONFIG_USER_ONLY 5056 .type = ARM_CP_NO_RAW, 5057 .writefn = ic_ivau_write 5058 #else 5059 .type = ARM_CP_NOP 5060 #endif 5061 }, 5062 /* Cache ops: all NOPs since we don't emulate caches */ 5063 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5064 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5065 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5066 .fgt = FGT_DCIVAC, 5067 .type = ARM_CP_NOP }, 5068 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5070 .fgt = FGT_DCISW, 5071 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5072 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5074 .access = PL0_W, .type = ARM_CP_NOP, 5075 .fgt = FGT_DCCVAC, 5076 .accessfn = aa64_cacheop_poc_access }, 5077 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5079 .fgt = FGT_DCCSW, 5080 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5081 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5083 .access = PL0_W, .type = ARM_CP_NOP, 5084 .fgt = FGT_DCCVAU, 5085 .accessfn = access_tocu }, 5086 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5088 .access = PL0_W, .type = ARM_CP_NOP, 5089 .fgt = FGT_DCCIVAC, 5090 .accessfn = aa64_cacheop_poc_access }, 5091 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5093 .fgt = FGT_DCCISW, 5094 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5095 #ifndef CONFIG_USER_ONLY 5096 /* 64 bit address translation operations */ 5097 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5099 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5100 .fgt = FGT_ATS1E1R, 5101 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5102 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5103 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5104 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5105 .fgt = FGT_ATS1E1W, 5106 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5107 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5108 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5109 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5110 .fgt = FGT_ATS1E0R, 5111 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5112 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5113 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5114 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5115 .fgt = FGT_ATS1E0W, 5116 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5117 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5118 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5119 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5120 .accessfn = at_e012_access, .writefn = ats_write64 }, 5121 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5122 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5123 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5124 .accessfn = at_e012_access, .writefn = ats_write64 }, 5125 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5126 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5127 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5128 .accessfn = at_e012_access, .writefn = ats_write64 }, 5129 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5130 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5131 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5132 .accessfn = at_e012_access, .writefn = ats_write64 }, 5133 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5134 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5135 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5136 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5137 .writefn = ats_write64 }, 5138 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5139 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5140 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5141 .writefn = ats_write64 }, 5142 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5143 .type = ARM_CP_ALIAS, 5144 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5145 .access = PL1_RW, .resetvalue = 0, 5146 .fgt = FGT_PAR_EL1, 5147 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5148 .writefn = par_write }, 5149 #endif 5150 /* 32 bit cache operations */ 5151 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5152 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5153 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5154 .type = ARM_CP_NOP, .access = PL1_W }, 5155 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5156 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5157 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5158 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5159 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5160 .type = ARM_CP_NOP, .access = PL1_W }, 5161 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5162 .type = ARM_CP_NOP, .access = PL1_W }, 5163 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5164 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5165 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5167 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5168 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5169 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5170 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5171 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5172 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5173 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5174 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5175 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5176 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5177 /* MMU Domain access control / MPU write buffer control */ 5178 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5179 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5180 .writefn = dacr_write, .raw_writefn = raw_write, 5181 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5182 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5183 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5184 .type = ARM_CP_ALIAS, 5185 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5186 .access = PL1_RW, .accessfn = access_nv1, 5187 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5188 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5189 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5190 .type = ARM_CP_ALIAS, 5191 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5192 .access = PL1_RW, .accessfn = access_nv1, 5193 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5194 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5195 /* 5196 * We rely on the access checks not allowing the guest to write to the 5197 * state field when SPSel indicates that it's being used as the stack 5198 * pointer. 5199 */ 5200 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5201 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5202 .access = PL1_RW, .accessfn = sp_el0_access, 5203 .type = ARM_CP_ALIAS, 5204 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5205 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5206 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5207 .nv2_redirect_offset = 0x240, 5208 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5209 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5210 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5211 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5212 .type = ARM_CP_NO_RAW, 5213 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5214 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5215 .type = ARM_CP_ALIAS, 5216 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5217 .access = PL2_RW, 5218 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5219 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5220 .type = ARM_CP_ALIAS, 5221 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5222 .access = PL2_RW, 5223 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5224 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5225 .type = ARM_CP_ALIAS, 5226 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5227 .access = PL2_RW, 5228 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5229 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5230 .type = ARM_CP_ALIAS, 5231 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5232 .access = PL2_RW, 5233 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5234 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5235 .type = ARM_CP_IO, 5236 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5237 .resetvalue = 0, 5238 .access = PL3_RW, 5239 .writefn = mdcr_el3_write, 5240 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5241 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5242 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5243 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5244 .writefn = sdcr_write, 5245 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5246 }; 5247 5248 /* These are present only when EL1 supports AArch32 */ 5249 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5250 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5251 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5252 .access = PL2_RW, 5253 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5254 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5255 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5256 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5257 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5258 .writefn = dacr_write, .raw_writefn = raw_write, 5259 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5260 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5261 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5262 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5263 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5264 }; 5265 5266 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5267 { 5268 ARMCPU *cpu = env_archcpu(env); 5269 5270 if (arm_feature(env, ARM_FEATURE_V8)) { 5271 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5272 } else { 5273 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5274 } 5275 5276 if (arm_feature(env, ARM_FEATURE_EL3)) { 5277 valid_mask &= ~HCR_HCD; 5278 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5279 /* 5280 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5281 * However, if we're using the SMC PSCI conduit then QEMU is 5282 * effectively acting like EL3 firmware and so the guest at 5283 * EL2 should retain the ability to prevent EL1 from being 5284 * able to make SMC calls into the ersatz firmware, so in 5285 * that case HCR.TSC should be read/write. 5286 */ 5287 valid_mask &= ~HCR_TSC; 5288 } 5289 5290 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5291 if (cpu_isar_feature(aa64_vh, cpu)) { 5292 valid_mask |= HCR_E2H; 5293 } 5294 if (cpu_isar_feature(aa64_ras, cpu)) { 5295 valid_mask |= HCR_TERR | HCR_TEA; 5296 } 5297 if (cpu_isar_feature(aa64_lor, cpu)) { 5298 valid_mask |= HCR_TLOR; 5299 } 5300 if (cpu_isar_feature(aa64_pauth, cpu)) { 5301 valid_mask |= HCR_API | HCR_APK; 5302 } 5303 if (cpu_isar_feature(aa64_mte, cpu)) { 5304 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5305 } 5306 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5307 valid_mask |= HCR_ENSCXT; 5308 } 5309 if (cpu_isar_feature(aa64_fwb, cpu)) { 5310 valid_mask |= HCR_FWB; 5311 } 5312 if (cpu_isar_feature(aa64_rme, cpu)) { 5313 valid_mask |= HCR_GPF; 5314 } 5315 if (cpu_isar_feature(aa64_nv, cpu)) { 5316 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5317 } 5318 if (cpu_isar_feature(aa64_nv2, cpu)) { 5319 valid_mask |= HCR_NV2; 5320 } 5321 } 5322 5323 if (cpu_isar_feature(any_evt, cpu)) { 5324 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5325 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5326 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5327 } 5328 5329 /* Clear RES0 bits. */ 5330 value &= valid_mask; 5331 5332 /* RW is RAO/WI if EL1 is AArch64 only */ 5333 if (!cpu_isar_feature(aa64_aa32_el1, cpu)) { 5334 value |= HCR_RW; 5335 } 5336 5337 /* 5338 * These bits change the MMU setup: 5339 * HCR_VM enables stage 2 translation 5340 * HCR_PTW forbids certain page-table setups 5341 * HCR_DC disables stage1 and enables stage2 translation 5342 * HCR_DCT enables tagging on (disabled) stage1 translation 5343 * HCR_FWB changes the interpretation of stage2 descriptor bits 5344 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5345 */ 5346 if ((env->cp15.hcr_el2 ^ value) & 5347 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5348 tlb_flush(CPU(cpu)); 5349 } 5350 env->cp15.hcr_el2 = value; 5351 5352 /* 5353 * Updates to VI and VF require us to update the status of 5354 * virtual interrupts, which are the logical OR of these bits 5355 * and the state of the input lines from the GIC. (This requires 5356 * that we have the BQL, which is done by marking the 5357 * reginfo structs as ARM_CP_IO.) 5358 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 5359 * VFNMI, it is never possible for it to be taken immediately 5360 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 5361 * at EL0 or EL1, and HCR can only be written at EL2. 5362 */ 5363 g_assert(bql_locked()); 5364 arm_cpu_update_virq(cpu); 5365 arm_cpu_update_vfiq(cpu); 5366 arm_cpu_update_vserr(cpu); 5367 if (cpu_isar_feature(aa64_nmi, cpu)) { 5368 arm_cpu_update_vinmi(cpu); 5369 arm_cpu_update_vfnmi(cpu); 5370 } 5371 } 5372 5373 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5374 { 5375 do_hcr_write(env, value, 0); 5376 } 5377 5378 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5379 uint64_t value) 5380 { 5381 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5382 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5383 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5384 } 5385 5386 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5387 uint64_t value) 5388 { 5389 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5390 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5391 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5392 } 5393 5394 static void hcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 5395 { 5396 /* hcr_write will set the RES1 bits on an AArch64-only CPU */ 5397 hcr_write(env, ri, 0); 5398 } 5399 5400 /* 5401 * Return the effective value of HCR_EL2, at the given security state. 5402 * Bits that are not included here: 5403 * RW (read from SCR_EL3.RW as needed) 5404 */ 5405 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5406 { 5407 uint64_t ret = env->cp15.hcr_el2; 5408 5409 assert(space != ARMSS_Root); 5410 5411 if (!arm_is_el2_enabled_secstate(env, space)) { 5412 /* 5413 * "This register has no effect if EL2 is not enabled in the 5414 * current Security state". This is ARMv8.4-SecEL2 speak for 5415 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5416 * 5417 * Prior to that, the language was "In an implementation that 5418 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5419 * as if this field is 0 for all purposes other than a direct 5420 * read or write access of HCR_EL2". With lots of enumeration 5421 * on a per-field basis. In current QEMU, this is condition 5422 * is arm_is_secure_below_el3. 5423 * 5424 * Since the v8.4 language applies to the entire register, and 5425 * appears to be backward compatible, use that. 5426 */ 5427 return 0; 5428 } 5429 5430 /* 5431 * For a cpu that supports both aarch64 and aarch32, we can set bits 5432 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5433 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5434 */ 5435 if (!arm_el_is_aa64(env, 2)) { 5436 uint64_t aa32_valid; 5437 5438 /* 5439 * These bits are up-to-date as of ARMv8.6. 5440 * For HCR, it's easiest to list just the 2 bits that are invalid. 5441 * For HCR2, list those that are valid. 5442 */ 5443 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5444 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5445 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5446 ret &= aa32_valid; 5447 } 5448 5449 if (ret & HCR_TGE) { 5450 /* These bits are up-to-date as of ARMv8.6. */ 5451 if (ret & HCR_E2H) { 5452 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5453 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5454 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5455 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5456 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5457 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5458 } else { 5459 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5460 } 5461 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5462 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5463 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5464 HCR_TLOR); 5465 } 5466 5467 return ret; 5468 } 5469 5470 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5471 { 5472 if (arm_feature(env, ARM_FEATURE_M)) { 5473 return 0; 5474 } 5475 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5476 } 5477 5478 /* 5479 * Corresponds to ARM pseudocode function ELIsInHost(). 5480 */ 5481 bool el_is_in_host(CPUARMState *env, int el) 5482 { 5483 uint64_t mask; 5484 5485 /* 5486 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5487 * Perform the simplest bit tests first, and validate EL2 afterward. 5488 */ 5489 if (el & 1) { 5490 return false; /* EL1 or EL3 */ 5491 } 5492 5493 /* 5494 * Note that hcr_write() checks isar_feature_aa64_vh(), 5495 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5496 */ 5497 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5498 if ((env->cp15.hcr_el2 & mask) != mask) { 5499 return false; 5500 } 5501 5502 /* TGE and/or E2H set: double check those bits are currently legal. */ 5503 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5504 } 5505 5506 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5507 uint64_t value) 5508 { 5509 ARMCPU *cpu = env_archcpu(env); 5510 uint64_t valid_mask = 0; 5511 5512 /* FEAT_MOPS adds MSCEn and MCE2 */ 5513 if (cpu_isar_feature(aa64_mops, cpu)) { 5514 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5515 } 5516 5517 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 5518 if (cpu_isar_feature(aa64_nmi, cpu)) { 5519 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 5520 } 5521 /* FEAT_CMOW adds CMOW */ 5522 if (cpu_isar_feature(aa64_cmow, cpu)) { 5523 valid_mask |= HCRX_CMOW; 5524 } 5525 /* FEAT_XS adds FGTnXS, FnXS */ 5526 if (cpu_isar_feature(aa64_xs, cpu)) { 5527 valid_mask |= HCRX_FGTNXS | HCRX_FNXS; 5528 } 5529 5530 /* Clear RES0 bits. */ 5531 env->cp15.hcrx_el2 = value & valid_mask; 5532 5533 /* 5534 * Updates to VINMI and VFNMI require us to update the status of 5535 * virtual NMI, which are the logical OR of these bits 5536 * and the state of the input lines from the GIC. (This requires 5537 * that we have the BQL, which is done by marking the 5538 * reginfo structs as ARM_CP_IO.) 5539 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 5540 * possible for it to be taken immediately, because VINMI and 5541 * VFNMI are masked unless running at EL0 or EL1, and HCRX 5542 * can only be written at EL2. 5543 */ 5544 if (cpu_isar_feature(aa64_nmi, cpu)) { 5545 g_assert(bql_locked()); 5546 arm_cpu_update_vinmi(cpu); 5547 arm_cpu_update_vfnmi(cpu); 5548 } 5549 } 5550 5551 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5552 bool isread) 5553 { 5554 if (arm_current_el(env) == 2 5555 && arm_feature(env, ARM_FEATURE_EL3) 5556 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5557 return CP_ACCESS_TRAP_EL3; 5558 } 5559 return CP_ACCESS_OK; 5560 } 5561 5562 static const ARMCPRegInfo hcrx_el2_reginfo = { 5563 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5564 .type = ARM_CP_IO, 5565 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5566 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5567 .nv2_redirect_offset = 0xa0, 5568 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5569 }; 5570 5571 /* Return the effective value of HCRX_EL2. */ 5572 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5573 { 5574 /* 5575 * The bits in this register behave as 0 for all purposes other than 5576 * direct reads of the register if SCR_EL3.HXEn is 0. 5577 * If EL2 is not enabled in the current security state, then the 5578 * bit may behave as if 0, or as if 1, depending on the bit. 5579 * For the moment, we treat the EL2-disabled case as taking 5580 * priority over the HXEn-disabled case. This is true for the only 5581 * bit for a feature which we implement where the answer is different 5582 * for the two cases (MSCEn for FEAT_MOPS). 5583 * This may need to be revisited for future bits. 5584 */ 5585 if (!arm_is_el2_enabled(env)) { 5586 uint64_t hcrx = 0; 5587 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5588 /* MSCEn behaves as 1 if EL2 is not enabled */ 5589 hcrx |= HCRX_MSCEN; 5590 } 5591 return hcrx; 5592 } 5593 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 5594 return 0; 5595 } 5596 return env->cp15.hcrx_el2; 5597 } 5598 5599 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5600 uint64_t value) 5601 { 5602 /* 5603 * For A-profile AArch32 EL3, if NSACR.CP10 5604 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5605 */ 5606 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5607 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5608 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5609 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5610 } 5611 env->cp15.cptr_el[2] = value; 5612 } 5613 5614 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5615 { 5616 /* 5617 * For A-profile AArch32 EL3, if NSACR.CP10 5618 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5619 */ 5620 uint64_t value = env->cp15.cptr_el[2]; 5621 5622 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5623 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5624 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5625 } 5626 return value; 5627 } 5628 5629 static const ARMCPRegInfo el2_cp_reginfo[] = { 5630 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5631 .type = ARM_CP_IO, 5632 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5633 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5634 .nv2_redirect_offset = 0x78, 5635 .resetfn = hcr_reset, 5636 .writefn = hcr_write, .raw_writefn = raw_write }, 5637 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5638 .type = ARM_CP_ALIAS | ARM_CP_IO, 5639 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5640 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5641 .writefn = hcr_writelow }, 5642 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5643 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5644 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5645 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5646 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5647 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5648 .access = PL2_RW, 5649 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5650 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5651 .type = ARM_CP_NV2_REDIRECT, 5652 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5653 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5654 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5655 .type = ARM_CP_NV2_REDIRECT, 5656 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5657 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5658 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5659 .type = ARM_CP_ALIAS, 5660 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5661 .access = PL2_RW, 5662 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5663 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5664 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5665 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5666 .access = PL2_RW, 5667 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5668 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5669 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5670 .access = PL2_RW, .writefn = vbar_write, 5671 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5672 .resetvalue = 0 }, 5673 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5675 .access = PL3_RW, .type = ARM_CP_ALIAS, 5676 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5677 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5678 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5679 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5680 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5681 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5682 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5683 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5684 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5685 .resetvalue = 0 }, 5686 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5687 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5688 .access = PL2_RW, .type = ARM_CP_ALIAS, 5689 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5690 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5691 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5692 .access = PL2_RW, .type = ARM_CP_CONST, 5693 .resetvalue = 0 }, 5694 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5695 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5696 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5697 .access = PL2_RW, .type = ARM_CP_CONST, 5698 .resetvalue = 0 }, 5699 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5700 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5701 .access = PL2_RW, .type = ARM_CP_CONST, 5702 .resetvalue = 0 }, 5703 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5704 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5705 .access = PL2_RW, .type = ARM_CP_CONST, 5706 .resetvalue = 0 }, 5707 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5708 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5709 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5710 .raw_writefn = raw_write, 5711 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5712 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5713 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5714 .type = ARM_CP_ALIAS, 5715 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5716 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5717 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5719 .access = PL2_RW, 5720 .nv2_redirect_offset = 0x40, 5721 /* no .writefn needed as this can't cause an ASID change */ 5722 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5723 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5724 .cp = 15, .opc1 = 6, .crm = 2, 5725 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5726 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5727 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5728 .writefn = vttbr_write, .raw_writefn = raw_write }, 5729 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5730 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5731 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 5732 .nv2_redirect_offset = 0x20, 5733 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5734 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5735 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5736 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5737 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5738 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5739 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5740 .access = PL2_RW, .resetvalue = 0, 5741 .nv2_redirect_offset = 0x90, 5742 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5743 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5745 .access = PL2_RW, .resetvalue = 0, 5746 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 5747 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5748 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5749 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5750 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5751 #ifndef CONFIG_USER_ONLY 5752 /* 5753 * Unlike the other EL2-related AT operations, these must 5754 * UNDEF from EL3 if EL2 is not implemented, which is why we 5755 * define them here rather than with the rest of the AT ops. 5756 */ 5757 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5758 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5759 .access = PL2_W, .accessfn = at_s1e2_access, 5760 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5761 .writefn = ats_write64 }, 5762 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5764 .access = PL2_W, .accessfn = at_s1e2_access, 5765 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5766 .writefn = ats_write64 }, 5767 /* 5768 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5769 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5770 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5771 * to behave as if SCR.NS was 1. 5772 */ 5773 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5774 .access = PL2_W, 5775 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5776 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5777 .access = PL2_W, 5778 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5779 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5780 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5781 /* 5782 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5783 * reset values as IMPDEF. We choose to reset to 3 to comply with 5784 * both ARMv7 and ARMv8. 5785 */ 5786 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 5787 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 5788 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5789 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5791 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5792 .writefn = gt_cntvoff_write, 5793 .nv2_redirect_offset = 0x60, 5794 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5795 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5796 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5797 .writefn = gt_cntvoff_write, 5798 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5799 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5801 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5802 .type = ARM_CP_IO, .access = PL2_RW, 5803 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5804 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5805 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5806 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5807 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5808 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5809 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5810 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5811 .resetfn = gt_hyp_timer_reset, 5812 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5813 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5814 .type = ARM_CP_IO, 5815 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5816 .access = PL2_RW, 5817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5818 .resetvalue = 0, 5819 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5820 #endif 5821 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5822 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5823 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5824 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5825 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5826 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5827 .access = PL2_RW, 5828 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5829 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5830 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5831 .access = PL2_RW, 5832 .nv2_redirect_offset = 0x80, 5833 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5834 }; 5835 5836 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5837 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5838 .type = ARM_CP_ALIAS | ARM_CP_IO, 5839 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5840 .access = PL2_RW, 5841 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5842 .writefn = hcr_writehigh }, 5843 }; 5844 5845 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5846 bool isread) 5847 { 5848 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5849 return CP_ACCESS_OK; 5850 } 5851 return CP_ACCESS_UNDEFINED; 5852 } 5853 5854 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5855 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5856 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5857 .access = PL2_RW, .accessfn = sel2_access, 5858 .nv2_redirect_offset = 0x30, 5859 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5860 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5861 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5862 .access = PL2_RW, .accessfn = sel2_access, 5863 .nv2_redirect_offset = 0x48, 5864 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5865 #ifndef CONFIG_USER_ONLY 5866 /* Secure EL2 Physical Timer */ 5867 { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5868 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0, 5869 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5870 .accessfn = gt_sel2timer_access, 5871 .readfn = gt_sec_pel2_tval_read, 5872 .writefn = gt_sec_pel2_tval_write, 5873 .resetfn = gt_sec_pel2_timer_reset, 5874 }, 5875 { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5876 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1, 5877 .type = ARM_CP_IO, .access = PL2_RW, 5878 .accessfn = gt_sel2timer_access, 5879 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl), 5880 .resetvalue = 0, 5881 .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write, 5882 }, 5883 { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5884 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2, 5885 .type = ARM_CP_IO, .access = PL2_RW, 5886 .accessfn = gt_sel2timer_access, 5887 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval), 5888 .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write, 5889 }, 5890 /* Secure EL2 Virtual Timer */ 5891 { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5892 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0, 5893 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5894 .accessfn = gt_sel2timer_access, 5895 .readfn = gt_sec_vel2_tval_read, 5896 .writefn = gt_sec_vel2_tval_write, 5897 .resetfn = gt_sec_vel2_timer_reset, 5898 }, 5899 { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5900 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1, 5901 .type = ARM_CP_IO, .access = PL2_RW, 5902 .accessfn = gt_sel2timer_access, 5903 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl), 5904 .resetvalue = 0, 5905 .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write, 5906 }, 5907 { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5908 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2, 5909 .type = ARM_CP_IO, .access = PL2_RW, 5910 .accessfn = gt_sel2timer_access, 5911 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval), 5912 .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write, 5913 }, 5914 #endif 5915 }; 5916 5917 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5918 bool isread) 5919 { 5920 /* 5921 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5922 * At Secure EL1 it traps to EL3 or EL2. 5923 */ 5924 if (arm_current_el(env) == 3) { 5925 return CP_ACCESS_OK; 5926 } 5927 if (arm_is_secure_below_el3(env)) { 5928 if (env->cp15.scr_el3 & SCR_EEL2) { 5929 return CP_ACCESS_TRAP_EL2; 5930 } 5931 return CP_ACCESS_TRAP_EL3; 5932 } 5933 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5934 if (isread) { 5935 return CP_ACCESS_OK; 5936 } 5937 return CP_ACCESS_UNDEFINED; 5938 } 5939 5940 static const ARMCPRegInfo el3_cp_reginfo[] = { 5941 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5942 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5943 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5944 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 5945 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5946 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5947 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5948 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5949 .writefn = scr_write, .raw_writefn = raw_write }, 5950 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5951 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5952 .access = PL3_RW, .resetvalue = 0, 5953 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5954 { .name = "SDER", 5955 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5956 .access = PL3_RW, .resetvalue = 0, 5957 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5958 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5959 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5960 .writefn = vbar_write, .resetvalue = 0, 5961 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5962 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5963 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5964 .access = PL3_RW, .resetvalue = 0, 5965 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5966 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5967 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5968 .access = PL3_RW, 5969 /* no .writefn needed as this can't cause an ASID change */ 5970 .resetvalue = 0, 5971 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5972 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5973 .type = ARM_CP_ALIAS, 5974 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5975 .access = PL3_RW, 5976 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5977 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5978 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5979 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5980 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5981 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5982 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5983 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5984 .type = ARM_CP_ALIAS, 5985 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5986 .access = PL3_RW, 5987 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5988 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5989 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5990 .access = PL3_RW, .writefn = vbar_write, 5991 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5992 .resetvalue = 0 }, 5993 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5994 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5995 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5996 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5997 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5998 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5999 .access = PL3_RW, .resetvalue = 0, 6000 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6001 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6002 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6003 .access = PL3_RW, .type = ARM_CP_CONST, 6004 .resetvalue = 0 }, 6005 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6006 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6007 .access = PL3_RW, .type = ARM_CP_CONST, 6008 .resetvalue = 0 }, 6009 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6010 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6011 .access = PL3_RW, .type = ARM_CP_CONST, 6012 .resetvalue = 0 }, 6013 }; 6014 6015 #ifndef CONFIG_USER_ONLY 6016 6017 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6018 bool isread) 6019 { 6020 if (arm_current_el(env) == 1) { 6021 /* This must be a FEAT_NV access */ 6022 return CP_ACCESS_OK; 6023 } 6024 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6025 return CP_ACCESS_UNDEFINED; 6026 } 6027 return CP_ACCESS_OK; 6028 } 6029 6030 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6031 bool isread) 6032 { 6033 if (arm_current_el(env) == 1) { 6034 /* This must be a FEAT_NV access with NVx == 101 */ 6035 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6036 return CP_ACCESS_TRAP_EL2; 6037 } 6038 } 6039 return e2h_access(env, ri, isread); 6040 } 6041 6042 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6043 bool isread) 6044 { 6045 if (arm_current_el(env) == 1) { 6046 /* This must be a FEAT_NV access with NVx == 101 */ 6047 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6048 return CP_ACCESS_TRAP_EL2; 6049 } 6050 } 6051 return e2h_access(env, ri, isread); 6052 } 6053 6054 /* Test if system register redirection is to occur in the current state. */ 6055 static bool redirect_for_e2h(CPUARMState *env) 6056 { 6057 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6058 } 6059 6060 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6061 { 6062 CPReadFn *readfn; 6063 6064 if (redirect_for_e2h(env)) { 6065 /* Switch to the saved EL2 version of the register. */ 6066 ri = ri->opaque; 6067 readfn = ri->readfn; 6068 } else { 6069 readfn = ri->orig_readfn; 6070 } 6071 if (readfn == NULL) { 6072 readfn = raw_read; 6073 } 6074 return readfn(env, ri); 6075 } 6076 6077 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6078 uint64_t value) 6079 { 6080 CPWriteFn *writefn; 6081 6082 if (redirect_for_e2h(env)) { 6083 /* Switch to the saved EL2 version of the register. */ 6084 ri = ri->opaque; 6085 writefn = ri->writefn; 6086 } else { 6087 writefn = ri->orig_writefn; 6088 } 6089 if (writefn == NULL) { 6090 writefn = raw_write; 6091 } 6092 writefn(env, ri, value); 6093 } 6094 6095 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6096 { 6097 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6098 return ri->orig_readfn(env, ri->opaque); 6099 } 6100 6101 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6102 uint64_t value) 6103 { 6104 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6105 return ri->orig_writefn(env, ri->opaque, value); 6106 } 6107 6108 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6109 const ARMCPRegInfo *ri, 6110 bool isread) 6111 { 6112 if (arm_current_el(env) == 1) { 6113 /* 6114 * This must be a FEAT_NV access (will either trap or redirect 6115 * to memory). None of the registers with _EL12 aliases want to 6116 * apply their trap controls for this kind of access, so don't 6117 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6118 */ 6119 return CP_ACCESS_OK; 6120 } 6121 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6122 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6123 return CP_ACCESS_UNDEFINED; 6124 } 6125 if (ri->orig_accessfn) { 6126 return ri->orig_accessfn(env, ri->opaque, isread); 6127 } 6128 return CP_ACCESS_OK; 6129 } 6130 6131 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6132 { 6133 struct E2HAlias { 6134 uint32_t src_key, dst_key, new_key; 6135 const char *src_name, *dst_name, *new_name; 6136 bool (*feature)(const ARMISARegisters *id); 6137 }; 6138 6139 #define K(op0, op1, crn, crm, op2) \ 6140 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6141 6142 static const struct E2HAlias aliases[] = { 6143 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6144 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6145 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6146 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6147 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6148 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6149 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6150 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6151 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6152 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6153 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6154 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6155 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6156 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6157 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6158 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6159 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6160 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6161 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6162 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6163 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6164 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6165 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6166 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6167 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6168 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6169 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6170 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6171 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6172 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6173 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6174 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6175 6176 /* 6177 * Note that redirection of ZCR is mentioned in the description 6178 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6179 * not in the summary table. 6180 */ 6181 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6182 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6183 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6184 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6185 6186 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6187 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6188 6189 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6190 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6191 isar_feature_aa64_scxtnum }, 6192 6193 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6194 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6195 }; 6196 #undef K 6197 6198 size_t i; 6199 6200 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6201 const struct E2HAlias *a = &aliases[i]; 6202 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6203 bool ok; 6204 6205 if (a->feature && !a->feature(&cpu->isar)) { 6206 continue; 6207 } 6208 6209 src_reg = g_hash_table_lookup(cpu->cp_regs, 6210 (gpointer)(uintptr_t)a->src_key); 6211 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6212 (gpointer)(uintptr_t)a->dst_key); 6213 g_assert(src_reg != NULL); 6214 g_assert(dst_reg != NULL); 6215 6216 /* Cross-compare names to detect typos in the keys. */ 6217 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6218 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6219 6220 /* None of the core system registers use opaque; we will. */ 6221 g_assert(src_reg->opaque == NULL); 6222 6223 /* Create alias before redirection so we dup the right data. */ 6224 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6225 6226 new_reg->name = a->new_name; 6227 new_reg->type |= ARM_CP_ALIAS; 6228 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6229 new_reg->access &= PL2_RW | PL3_RW; 6230 /* The new_reg op fields are as per new_key, not the target reg */ 6231 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6232 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6233 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6234 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6235 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6236 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6237 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6238 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6239 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6240 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6241 new_reg->opaque = src_reg; 6242 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6243 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6244 new_reg->orig_accessfn = src_reg->accessfn; 6245 if (!new_reg->raw_readfn) { 6246 new_reg->raw_readfn = raw_read; 6247 } 6248 if (!new_reg->raw_writefn) { 6249 new_reg->raw_writefn = raw_write; 6250 } 6251 new_reg->readfn = el2_e2h_e12_read; 6252 new_reg->writefn = el2_e2h_e12_write; 6253 new_reg->accessfn = el2_e2h_e12_access; 6254 6255 /* 6256 * If the _EL1 register is redirected to memory by FEAT_NV2, 6257 * then it shares the offset with the _EL12 register, 6258 * and which one is redirected depends on HCR_EL2.NV1. 6259 */ 6260 if (new_reg->nv2_redirect_offset) { 6261 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6262 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6263 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6264 } 6265 6266 ok = g_hash_table_insert(cpu->cp_regs, 6267 (gpointer)(uintptr_t)a->new_key, new_reg); 6268 g_assert(ok); 6269 6270 src_reg->opaque = dst_reg; 6271 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6272 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6273 if (!src_reg->raw_readfn) { 6274 src_reg->raw_readfn = raw_read; 6275 } 6276 if (!src_reg->raw_writefn) { 6277 src_reg->raw_writefn = raw_write; 6278 } 6279 src_reg->readfn = el2_e2h_read; 6280 src_reg->writefn = el2_e2h_write; 6281 } 6282 } 6283 #endif 6284 6285 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6286 bool isread) 6287 { 6288 int cur_el = arm_current_el(env); 6289 6290 if (cur_el < 2) { 6291 uint64_t hcr = arm_hcr_el2_eff(env); 6292 6293 if (cur_el == 0) { 6294 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6295 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6296 return CP_ACCESS_TRAP_EL2; 6297 } 6298 } else { 6299 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6300 return CP_ACCESS_TRAP_EL1; 6301 } 6302 if (hcr & HCR_TID2) { 6303 return CP_ACCESS_TRAP_EL2; 6304 } 6305 } 6306 } else if (hcr & HCR_TID2) { 6307 return CP_ACCESS_TRAP_EL2; 6308 } 6309 } 6310 6311 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6312 return CP_ACCESS_TRAP_EL2; 6313 } 6314 6315 return CP_ACCESS_OK; 6316 } 6317 6318 /* 6319 * Check for traps to RAS registers, which are controlled 6320 * by HCR_EL2.TERR and SCR_EL3.TERR. 6321 */ 6322 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6323 bool isread) 6324 { 6325 int el = arm_current_el(env); 6326 6327 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6328 return CP_ACCESS_TRAP_EL2; 6329 } 6330 if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) { 6331 return CP_ACCESS_TRAP_EL3; 6332 } 6333 return CP_ACCESS_OK; 6334 } 6335 6336 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6337 { 6338 int el = arm_current_el(env); 6339 6340 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6341 return env->cp15.vdisr_el2; 6342 } 6343 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6344 return 0; /* RAZ/WI */ 6345 } 6346 return env->cp15.disr_el1; 6347 } 6348 6349 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6350 { 6351 int el = arm_current_el(env); 6352 6353 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6354 env->cp15.vdisr_el2 = val; 6355 return; 6356 } 6357 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6358 return; /* RAZ/WI */ 6359 } 6360 env->cp15.disr_el1 = val; 6361 } 6362 6363 /* 6364 * Minimal RAS implementation with no Error Records. 6365 * Which means that all of the Error Record registers: 6366 * ERXADDR_EL1 6367 * ERXCTLR_EL1 6368 * ERXFR_EL1 6369 * ERXMISC0_EL1 6370 * ERXMISC1_EL1 6371 * ERXMISC2_EL1 6372 * ERXMISC3_EL1 6373 * ERXPFGCDN_EL1 (RASv1p1) 6374 * ERXPFGCTL_EL1 (RASv1p1) 6375 * ERXPFGF_EL1 (RASv1p1) 6376 * ERXSTATUS_EL1 6377 * and 6378 * ERRSELR_EL1 6379 * may generate UNDEFINED, which is the effect we get by not 6380 * listing them at all. 6381 * 6382 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6383 * is higher priority than FGT-to-EL2 so we do not need to list them 6384 * in order to check for an FGT. 6385 */ 6386 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6387 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6388 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6389 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6390 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6391 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6393 .access = PL1_R, .accessfn = access_terr, 6394 .fgt = FGT_ERRIDR_EL1, 6395 .type = ARM_CP_CONST, .resetvalue = 0 }, 6396 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6397 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6398 .nv2_redirect_offset = 0x500, 6399 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6400 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6401 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6402 .nv2_redirect_offset = 0x508, 6403 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6404 }; 6405 6406 /* 6407 * Return the exception level to which exceptions should be taken 6408 * via SVEAccessTrap. This excludes the check for whether the exception 6409 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6410 * be found by testing 0 < fp_exception_el < sve_exception_el. 6411 * 6412 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6413 * pseudocode does *not* separate out the FP trap checks, but has them 6414 * all in one function. 6415 */ 6416 int sve_exception_el(CPUARMState *env, int el) 6417 { 6418 #ifndef CONFIG_USER_ONLY 6419 if (el <= 1 && !el_is_in_host(env, el)) { 6420 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6421 case 1: 6422 if (el != 0) { 6423 break; 6424 } 6425 /* fall through */ 6426 case 0: 6427 case 2: 6428 return 1; 6429 } 6430 } 6431 6432 if (el <= 2 && arm_is_el2_enabled(env)) { 6433 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6434 if (env->cp15.hcr_el2 & HCR_E2H) { 6435 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6436 case 1: 6437 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6438 break; 6439 } 6440 /* fall through */ 6441 case 0: 6442 case 2: 6443 return 2; 6444 } 6445 } else { 6446 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6447 return 2; 6448 } 6449 } 6450 } 6451 6452 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6453 if (arm_feature(env, ARM_FEATURE_EL3) 6454 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6455 return 3; 6456 } 6457 #endif 6458 return 0; 6459 } 6460 6461 /* 6462 * Return the exception level to which exceptions should be taken for SME. 6463 * C.f. the ARM pseudocode function CheckSMEAccess. 6464 */ 6465 int sme_exception_el(CPUARMState *env, int el) 6466 { 6467 #ifndef CONFIG_USER_ONLY 6468 if (el <= 1 && !el_is_in_host(env, el)) { 6469 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6470 case 1: 6471 if (el != 0) { 6472 break; 6473 } 6474 /* fall through */ 6475 case 0: 6476 case 2: 6477 return 1; 6478 } 6479 } 6480 6481 if (el <= 2 && arm_is_el2_enabled(env)) { 6482 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6483 if (env->cp15.hcr_el2 & HCR_E2H) { 6484 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6485 case 1: 6486 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6487 break; 6488 } 6489 /* fall through */ 6490 case 0: 6491 case 2: 6492 return 2; 6493 } 6494 } else { 6495 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6496 return 2; 6497 } 6498 } 6499 } 6500 6501 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6502 if (arm_feature(env, ARM_FEATURE_EL3) 6503 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6504 return 3; 6505 } 6506 #endif 6507 return 0; 6508 } 6509 6510 /* 6511 * Given that SVE is enabled, return the vector length for EL. 6512 */ 6513 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6514 { 6515 ARMCPU *cpu = env_archcpu(env); 6516 uint64_t *cr = env->vfp.zcr_el; 6517 uint32_t map = cpu->sve_vq.map; 6518 uint32_t len = ARM_MAX_VQ - 1; 6519 6520 if (sm) { 6521 cr = env->vfp.smcr_el; 6522 map = cpu->sme_vq.map; 6523 } 6524 6525 if (el <= 1 && !el_is_in_host(env, el)) { 6526 len = MIN(len, 0xf & (uint32_t)cr[1]); 6527 } 6528 if (el <= 2 && arm_is_el2_enabled(env)) { 6529 len = MIN(len, 0xf & (uint32_t)cr[2]); 6530 } 6531 if (arm_feature(env, ARM_FEATURE_EL3)) { 6532 len = MIN(len, 0xf & (uint32_t)cr[3]); 6533 } 6534 6535 map &= MAKE_64BIT_MASK(0, len + 1); 6536 if (map != 0) { 6537 return 31 - clz32(map); 6538 } 6539 6540 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6541 assert(sm); 6542 return ctz32(cpu->sme_vq.map); 6543 } 6544 6545 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6546 { 6547 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6548 } 6549 6550 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6551 uint64_t value) 6552 { 6553 int cur_el = arm_current_el(env); 6554 int old_len = sve_vqm1_for_el(env, cur_el); 6555 int new_len; 6556 6557 /* Bits other than [3:0] are RAZ/WI. */ 6558 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6559 raw_write(env, ri, value & 0xf); 6560 6561 /* 6562 * Because we arrived here, we know both FP and SVE are enabled; 6563 * otherwise we would have trapped access to the ZCR_ELn register. 6564 */ 6565 new_len = sve_vqm1_for_el(env, cur_el); 6566 if (new_len < old_len) { 6567 #ifdef TARGET_AARCH64 6568 aarch64_sve_narrow_vq(env, new_len + 1); 6569 #endif 6570 } 6571 } 6572 6573 static const ARMCPRegInfo zcr_reginfo[] = { 6574 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6575 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6576 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 6577 .access = PL1_RW, .type = ARM_CP_SVE, 6578 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6579 .writefn = zcr_write, .raw_writefn = raw_write }, 6580 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6581 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6582 .access = PL2_RW, .type = ARM_CP_SVE, 6583 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6584 .writefn = zcr_write, .raw_writefn = raw_write }, 6585 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6586 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6587 .access = PL3_RW, .type = ARM_CP_SVE, 6588 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6589 .writefn = zcr_write, .raw_writefn = raw_write }, 6590 }; 6591 6592 #ifdef TARGET_AARCH64 6593 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6594 bool isread) 6595 { 6596 int el = arm_current_el(env); 6597 6598 if (el == 0) { 6599 uint64_t sctlr = arm_sctlr(env, el); 6600 if (!(sctlr & SCTLR_EnTP2)) { 6601 return CP_ACCESS_TRAP_EL1; 6602 } 6603 } 6604 /* TODO: FEAT_FGT */ 6605 if (el < 3 6606 && arm_feature(env, ARM_FEATURE_EL3) 6607 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6608 return CP_ACCESS_TRAP_EL3; 6609 } 6610 return CP_ACCESS_OK; 6611 } 6612 6613 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 6614 bool isread) 6615 { 6616 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 6617 if (arm_current_el(env) == 2 6618 && arm_feature(env, ARM_FEATURE_EL3) 6619 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6620 return CP_ACCESS_TRAP_EL3; 6621 } 6622 return CP_ACCESS_OK; 6623 } 6624 6625 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 6626 bool isread) 6627 { 6628 if (arm_current_el(env) < 3 6629 && arm_feature(env, ARM_FEATURE_EL3) 6630 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6631 return CP_ACCESS_TRAP_EL3; 6632 } 6633 return CP_ACCESS_OK; 6634 } 6635 6636 /* ResetSVEState */ 6637 static void arm_reset_sve_state(CPUARMState *env) 6638 { 6639 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6640 /* Recall that FFR is stored as pregs[16]. */ 6641 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6642 vfp_set_fpsr(env, 0x0800009f); 6643 } 6644 6645 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6646 { 6647 uint64_t change = (env->svcr ^ new) & mask; 6648 6649 if (change == 0) { 6650 return; 6651 } 6652 env->svcr ^= change; 6653 6654 if (change & R_SVCR_SM_MASK) { 6655 arm_reset_sve_state(env); 6656 } 6657 6658 /* 6659 * ResetSMEState. 6660 * 6661 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6662 * on enable: while disabled, the storage is inaccessible and the 6663 * value does not matter. We're not saving the storage in vmstate 6664 * when disabled either. 6665 */ 6666 if (change & new & R_SVCR_ZA_MASK) { 6667 memset(env->zarray, 0, sizeof(env->zarray)); 6668 } 6669 6670 if (tcg_enabled()) { 6671 arm_rebuild_hflags(env); 6672 } 6673 } 6674 6675 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6676 uint64_t value) 6677 { 6678 aarch64_set_svcr(env, value, -1); 6679 } 6680 6681 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6682 uint64_t value) 6683 { 6684 int cur_el = arm_current_el(env); 6685 int old_len = sve_vqm1_for_el(env, cur_el); 6686 int new_len; 6687 6688 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6689 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6690 raw_write(env, ri, value); 6691 6692 /* 6693 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6694 * when SVL is widened (old values kept, or zeros). Choose to keep the 6695 * current values for simplicity. But for QEMU internals, we must still 6696 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6697 * above aarch64_sve_narrow_vq. 6698 */ 6699 new_len = sve_vqm1_for_el(env, cur_el); 6700 if (new_len < old_len) { 6701 aarch64_sve_narrow_vq(env, new_len + 1); 6702 } 6703 } 6704 6705 static const ARMCPRegInfo sme_reginfo[] = { 6706 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6707 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6708 .access = PL0_RW, .accessfn = access_tpidr2, 6709 .fgt = FGT_NTPIDR2_EL0, 6710 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6711 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6713 .access = PL0_RW, .type = ARM_CP_SME, 6714 .fieldoffset = offsetof(CPUARMState, svcr), 6715 .writefn = svcr_write, .raw_writefn = raw_write }, 6716 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6717 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6718 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 6719 .access = PL1_RW, .type = ARM_CP_SME, 6720 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6721 .writefn = smcr_write, .raw_writefn = raw_write }, 6722 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6723 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6724 .access = PL2_RW, .type = ARM_CP_SME, 6725 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6726 .writefn = smcr_write, .raw_writefn = raw_write }, 6727 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6728 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6729 .access = PL3_RW, .type = ARM_CP_SME, 6730 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6731 .writefn = smcr_write, .raw_writefn = raw_write }, 6732 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6733 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6734 .access = PL1_R, .accessfn = access_aa64_tid1, 6735 /* 6736 * IMPLEMENTOR = 0 (software) 6737 * REVISION = 0 (implementation defined) 6738 * SMPS = 0 (no streaming execution priority in QEMU) 6739 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6740 */ 6741 .type = ARM_CP_CONST, .resetvalue = 0, }, 6742 /* 6743 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6744 */ 6745 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6746 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6747 .access = PL1_RW, .accessfn = access_smpri, 6748 .fgt = FGT_NSMPRI_EL1, 6749 .type = ARM_CP_CONST, .resetvalue = 0 }, 6750 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6751 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6752 .nv2_redirect_offset = 0x1f8, 6753 .access = PL2_RW, .accessfn = access_smprimap, 6754 .type = ARM_CP_CONST, .resetvalue = 0 }, 6755 }; 6756 6757 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6758 uint64_t value) 6759 { 6760 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6761 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6762 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6763 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6764 6765 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6766 } 6767 6768 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6769 { 6770 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6771 env_archcpu(env)->reset_l0gptsz); 6772 } 6773 6774 static const ARMCPRegInfo rme_reginfo[] = { 6775 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6776 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6777 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6778 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6779 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6780 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6781 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6782 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6784 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6785 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6787 .access = PL3_W, .type = ARM_CP_NOP }, 6788 }; 6789 6790 static const ARMCPRegInfo rme_mte_reginfo[] = { 6791 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6792 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6793 .access = PL3_W, .type = ARM_CP_NOP }, 6794 }; 6795 6796 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 6797 uint64_t value) 6798 { 6799 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 6800 } 6801 6802 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 6803 { 6804 return env->pstate & PSTATE_ALLINT; 6805 } 6806 6807 static CPAccessResult aa64_allint_access(CPUARMState *env, 6808 const ARMCPRegInfo *ri, bool isread) 6809 { 6810 if (!isread && arm_current_el(env) == 1 && 6811 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 6812 return CP_ACCESS_TRAP_EL2; 6813 } 6814 return CP_ACCESS_OK; 6815 } 6816 6817 static const ARMCPRegInfo nmi_reginfo[] = { 6818 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 6820 .type = ARM_CP_NO_RAW, 6821 .access = PL1_RW, .accessfn = aa64_allint_access, 6822 .fieldoffset = offsetof(CPUARMState, pstate), 6823 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 6824 .resetfn = arm_cp_reset_ignore }, 6825 }; 6826 #endif /* TARGET_AARCH64 */ 6827 6828 static void define_pmu_regs(ARMCPU *cpu) 6829 { 6830 /* 6831 * v7 performance monitor control register: same implementor 6832 * field as main ID register, and we implement four counters in 6833 * addition to the cycle count register. 6834 */ 6835 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6836 ARMCPRegInfo pmcr = { 6837 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6838 .access = PL0_RW, 6839 .fgt = FGT_PMCR_EL0, 6840 .type = ARM_CP_IO | ARM_CP_ALIAS, 6841 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6842 .accessfn = pmreg_access, 6843 .readfn = pmcr_read, .raw_readfn = raw_read, 6844 .writefn = pmcr_write, .raw_writefn = raw_write, 6845 }; 6846 ARMCPRegInfo pmcr64 = { 6847 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6849 .access = PL0_RW, .accessfn = pmreg_access, 6850 .fgt = FGT_PMCR_EL0, 6851 .type = ARM_CP_IO, 6852 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6853 .resetvalue = cpu->isar.reset_pmcr_el0, 6854 .readfn = pmcr_read, .raw_readfn = raw_read, 6855 .writefn = pmcr_write, .raw_writefn = raw_write, 6856 }; 6857 6858 define_one_arm_cp_reg(cpu, &pmcr); 6859 define_one_arm_cp_reg(cpu, &pmcr64); 6860 for (i = 0; i < pmcrn; i++) { 6861 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6862 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6863 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6864 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6865 ARMCPRegInfo pmev_regs[] = { 6866 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6867 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6868 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6869 .fgt = FGT_PMEVCNTRN_EL0, 6870 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6871 .accessfn = pmreg_access_xevcntr }, 6872 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6873 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6874 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6875 .type = ARM_CP_IO, 6876 .fgt = FGT_PMEVCNTRN_EL0, 6877 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6878 .raw_readfn = pmevcntr_rawread, 6879 .raw_writefn = pmevcntr_rawwrite }, 6880 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6881 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6882 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6883 .fgt = FGT_PMEVTYPERN_EL0, 6884 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6885 .accessfn = pmreg_access }, 6886 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6887 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6888 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6889 .fgt = FGT_PMEVTYPERN_EL0, 6890 .type = ARM_CP_IO, 6891 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6892 .raw_writefn = pmevtyper_rawwrite }, 6893 }; 6894 define_arm_cp_regs(cpu, pmev_regs); 6895 g_free(pmevcntr_name); 6896 g_free(pmevcntr_el0_name); 6897 g_free(pmevtyper_name); 6898 g_free(pmevtyper_el0_name); 6899 } 6900 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6901 ARMCPRegInfo v81_pmu_regs[] = { 6902 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6903 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6904 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6905 .fgt = FGT_PMCEIDN_EL0, 6906 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6907 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6908 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6909 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6910 .fgt = FGT_PMCEIDN_EL0, 6911 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6912 }; 6913 define_arm_cp_regs(cpu, v81_pmu_regs); 6914 } 6915 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6916 static const ARMCPRegInfo v84_pmmir = { 6917 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6918 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6919 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6920 .fgt = FGT_PMMIR_EL1, 6921 .resetvalue = 0 6922 }; 6923 define_one_arm_cp_reg(cpu, &v84_pmmir); 6924 } 6925 } 6926 6927 #ifndef CONFIG_USER_ONLY 6928 /* 6929 * We don't know until after realize whether there's a GICv3 6930 * attached, and that is what registers the gicv3 sysregs. 6931 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6932 * at runtime. 6933 */ 6934 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6935 { 6936 ARMCPU *cpu = env_archcpu(env); 6937 uint64_t pfr1 = cpu->isar.id_pfr1; 6938 6939 if (env->gicv3state) { 6940 pfr1 |= 1 << 28; 6941 } 6942 return pfr1; 6943 } 6944 6945 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6946 { 6947 ARMCPU *cpu = env_archcpu(env); 6948 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6949 6950 if (env->gicv3state) { 6951 pfr0 |= 1 << 24; 6952 } 6953 return pfr0; 6954 } 6955 #endif 6956 6957 /* 6958 * Shared logic between LORID and the rest of the LOR* registers. 6959 * Secure state exclusion has already been dealt with. 6960 */ 6961 static CPAccessResult access_lor_ns(CPUARMState *env, 6962 const ARMCPRegInfo *ri, bool isread) 6963 { 6964 int el = arm_current_el(env); 6965 6966 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6967 return CP_ACCESS_TRAP_EL2; 6968 } 6969 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6970 return CP_ACCESS_TRAP_EL3; 6971 } 6972 return CP_ACCESS_OK; 6973 } 6974 6975 static CPAccessResult access_lor_other(CPUARMState *env, 6976 const ARMCPRegInfo *ri, bool isread) 6977 { 6978 if (arm_is_secure_below_el3(env)) { 6979 /* UNDEF if SCR_EL3.NS == 0 */ 6980 return CP_ACCESS_UNDEFINED; 6981 } 6982 return access_lor_ns(env, ri, isread); 6983 } 6984 6985 /* 6986 * A trivial implementation of ARMv8.1-LOR leaves all of these 6987 * registers fixed at 0, which indicates that there are zero 6988 * supported Limited Ordering regions. 6989 */ 6990 static const ARMCPRegInfo lor_reginfo[] = { 6991 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6993 .access = PL1_RW, .accessfn = access_lor_other, 6994 .fgt = FGT_LORSA_EL1, 6995 .type = ARM_CP_CONST, .resetvalue = 0 }, 6996 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6998 .access = PL1_RW, .accessfn = access_lor_other, 6999 .fgt = FGT_LOREA_EL1, 7000 .type = ARM_CP_CONST, .resetvalue = 0 }, 7001 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7003 .access = PL1_RW, .accessfn = access_lor_other, 7004 .fgt = FGT_LORN_EL1, 7005 .type = ARM_CP_CONST, .resetvalue = 0 }, 7006 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7007 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7008 .access = PL1_RW, .accessfn = access_lor_other, 7009 .fgt = FGT_LORC_EL1, 7010 .type = ARM_CP_CONST, .resetvalue = 0 }, 7011 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7013 .access = PL1_R, .accessfn = access_lor_ns, 7014 .fgt = FGT_LORID_EL1, 7015 .type = ARM_CP_CONST, .resetvalue = 0 }, 7016 }; 7017 7018 #ifdef TARGET_AARCH64 7019 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7020 bool isread) 7021 { 7022 int el = arm_current_el(env); 7023 7024 if (el < 2 && 7025 arm_is_el2_enabled(env) && 7026 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7027 return CP_ACCESS_TRAP_EL2; 7028 } 7029 if (el < 3 && 7030 arm_feature(env, ARM_FEATURE_EL3) && 7031 !(env->cp15.scr_el3 & SCR_APK)) { 7032 return CP_ACCESS_TRAP_EL3; 7033 } 7034 return CP_ACCESS_OK; 7035 } 7036 7037 static const ARMCPRegInfo pauth_reginfo[] = { 7038 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7040 .access = PL1_RW, .accessfn = access_pauth, 7041 .fgt = FGT_APDAKEY, 7042 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7043 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7045 .access = PL1_RW, .accessfn = access_pauth, 7046 .fgt = FGT_APDAKEY, 7047 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7048 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7050 .access = PL1_RW, .accessfn = access_pauth, 7051 .fgt = FGT_APDBKEY, 7052 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7053 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7055 .access = PL1_RW, .accessfn = access_pauth, 7056 .fgt = FGT_APDBKEY, 7057 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7058 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7060 .access = PL1_RW, .accessfn = access_pauth, 7061 .fgt = FGT_APGAKEY, 7062 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7063 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7065 .access = PL1_RW, .accessfn = access_pauth, 7066 .fgt = FGT_APGAKEY, 7067 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7068 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7070 .access = PL1_RW, .accessfn = access_pauth, 7071 .fgt = FGT_APIAKEY, 7072 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7073 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7075 .access = PL1_RW, .accessfn = access_pauth, 7076 .fgt = FGT_APIAKEY, 7077 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7078 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7079 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7080 .access = PL1_RW, .accessfn = access_pauth, 7081 .fgt = FGT_APIBKEY, 7082 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7083 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7085 .access = PL1_RW, .accessfn = access_pauth, 7086 .fgt = FGT_APIBKEY, 7087 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7088 }; 7089 7090 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7091 { 7092 Error *err = NULL; 7093 uint64_t ret; 7094 7095 /* Success sets NZCV = 0000. */ 7096 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7097 7098 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7099 /* 7100 * ??? Failed, for unknown reasons in the crypto subsystem. 7101 * The best we can do is log the reason and return the 7102 * timed-out indication to the guest. There is no reason 7103 * we know to expect this failure to be transitory, so the 7104 * guest may well hang retrying the operation. 7105 */ 7106 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7107 ri->name, error_get_pretty(err)); 7108 error_free(err); 7109 7110 env->ZF = 0; /* NZCF = 0100 */ 7111 return 0; 7112 } 7113 return ret; 7114 } 7115 7116 /* We do not support re-seeding, so the two registers operate the same. */ 7117 static const ARMCPRegInfo rndr_reginfo[] = { 7118 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7119 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7120 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7121 .access = PL0_R, .readfn = rndr_readfn }, 7122 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7123 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7124 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7125 .access = PL0_R, .readfn = rndr_readfn }, 7126 }; 7127 7128 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7129 uint64_t value) 7130 { 7131 #ifdef CONFIG_TCG 7132 ARMCPU *cpu = env_archcpu(env); 7133 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7134 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7135 uint64_t vaddr_in = (uint64_t) value; 7136 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7137 void *haddr; 7138 int mem_idx = arm_env_mmu_index(env); 7139 7140 /* This won't be crossing page boundaries */ 7141 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7142 if (haddr) { 7143 #ifndef CONFIG_USER_ONLY 7144 7145 ram_addr_t offset; 7146 MemoryRegion *mr; 7147 7148 /* RCU lock is already being held */ 7149 mr = memory_region_from_host(haddr, &offset); 7150 7151 if (mr) { 7152 memory_region_writeback(mr, offset, dline_size); 7153 } 7154 #endif /*CONFIG_USER_ONLY*/ 7155 } 7156 #else 7157 /* Handled by hardware accelerator. */ 7158 g_assert_not_reached(); 7159 #endif /* CONFIG_TCG */ 7160 } 7161 7162 static const ARMCPRegInfo dcpop_reg[] = { 7163 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7165 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7166 .fgt = FGT_DCCVAP, 7167 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7168 }; 7169 7170 static const ARMCPRegInfo dcpodp_reg[] = { 7171 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7173 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7174 .fgt = FGT_DCCVADP, 7175 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7176 }; 7177 7178 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7179 bool isread) 7180 { 7181 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7182 return CP_ACCESS_TRAP_EL2; 7183 } 7184 7185 return CP_ACCESS_OK; 7186 } 7187 7188 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7189 bool isread) 7190 { 7191 int el = arm_current_el(env); 7192 if (el < 2 && arm_is_el2_enabled(env)) { 7193 uint64_t hcr = arm_hcr_el2_eff(env); 7194 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7195 return CP_ACCESS_TRAP_EL2; 7196 } 7197 } 7198 if (el < 3 && 7199 arm_feature(env, ARM_FEATURE_EL3) && 7200 !(env->cp15.scr_el3 & SCR_ATA)) { 7201 return CP_ACCESS_TRAP_EL3; 7202 } 7203 return CP_ACCESS_OK; 7204 } 7205 7206 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 7207 bool isread) 7208 { 7209 CPAccessResult nv1 = access_nv1(env, ri, isread); 7210 7211 if (nv1 != CP_ACCESS_OK) { 7212 return nv1; 7213 } 7214 return access_mte(env, ri, isread); 7215 } 7216 7217 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 7218 bool isread) 7219 { 7220 /* 7221 * TFSR_EL2: similar to generic access_mte(), but we need to 7222 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 7223 * if NV2 is enabled then we will redirect this to TFSR_EL1 7224 * after doing the HCR and SCR ATA traps; otherwise this will 7225 * be a trap to EL2 and the HCR/SCR traps do not apply. 7226 */ 7227 int el = arm_current_el(env); 7228 7229 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7230 return CP_ACCESS_OK; 7231 } 7232 if (el < 2 && arm_is_el2_enabled(env)) { 7233 uint64_t hcr = arm_hcr_el2_eff(env); 7234 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7235 return CP_ACCESS_TRAP_EL2; 7236 } 7237 } 7238 if (el < 3 && 7239 arm_feature(env, ARM_FEATURE_EL3) && 7240 !(env->cp15.scr_el3 & SCR_ATA)) { 7241 return CP_ACCESS_TRAP_EL3; 7242 } 7243 return CP_ACCESS_OK; 7244 } 7245 7246 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7247 { 7248 return env->pstate & PSTATE_TCO; 7249 } 7250 7251 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7252 { 7253 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7254 } 7255 7256 static const ARMCPRegInfo mte_reginfo[] = { 7257 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7258 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7259 .access = PL1_RW, .accessfn = access_mte, 7260 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7261 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7262 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7263 .access = PL1_RW, .accessfn = access_tfsr_el1, 7264 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7265 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7266 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7267 .type = ARM_CP_NV2_REDIRECT, 7268 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7269 .access = PL2_RW, .accessfn = access_tfsr_el2, 7270 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7271 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7273 .access = PL3_RW, 7274 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7275 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7277 .access = PL1_RW, .accessfn = access_mte, 7278 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7279 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7281 .access = PL1_RW, .accessfn = access_mte, 7282 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7283 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7285 .type = ARM_CP_NO_RAW, 7286 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7287 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7289 .type = ARM_CP_NOP, .access = PL1_W, 7290 .fgt = FGT_DCIVAC, 7291 .accessfn = aa64_cacheop_poc_access }, 7292 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7294 .fgt = FGT_DCISW, 7295 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7296 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7298 .type = ARM_CP_NOP, .access = PL1_W, 7299 .fgt = FGT_DCIVAC, 7300 .accessfn = aa64_cacheop_poc_access }, 7301 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7303 .fgt = FGT_DCISW, 7304 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7305 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7307 .fgt = FGT_DCCSW, 7308 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7309 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7311 .fgt = FGT_DCCSW, 7312 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7313 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7315 .fgt = FGT_DCCISW, 7316 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7317 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7318 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7319 .fgt = FGT_DCCISW, 7320 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7321 }; 7322 7323 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7324 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7325 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7326 .type = ARM_CP_CONST, .access = PL0_RW, }, 7327 }; 7328 7329 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7330 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7332 .type = ARM_CP_NOP, .access = PL0_W, 7333 .fgt = FGT_DCCVAC, 7334 .accessfn = aa64_cacheop_poc_access }, 7335 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7337 .type = ARM_CP_NOP, .access = PL0_W, 7338 .fgt = FGT_DCCVAC, 7339 .accessfn = aa64_cacheop_poc_access }, 7340 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7341 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7342 .type = ARM_CP_NOP, .access = PL0_W, 7343 .fgt = FGT_DCCVAP, 7344 .accessfn = aa64_cacheop_poc_access }, 7345 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7347 .type = ARM_CP_NOP, .access = PL0_W, 7348 .fgt = FGT_DCCVAP, 7349 .accessfn = aa64_cacheop_poc_access }, 7350 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7352 .type = ARM_CP_NOP, .access = PL0_W, 7353 .fgt = FGT_DCCVADP, 7354 .accessfn = aa64_cacheop_poc_access }, 7355 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7356 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7357 .type = ARM_CP_NOP, .access = PL0_W, 7358 .fgt = FGT_DCCVADP, 7359 .accessfn = aa64_cacheop_poc_access }, 7360 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7362 .type = ARM_CP_NOP, .access = PL0_W, 7363 .fgt = FGT_DCCIVAC, 7364 .accessfn = aa64_cacheop_poc_access }, 7365 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7366 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7367 .type = ARM_CP_NOP, .access = PL0_W, 7368 .fgt = FGT_DCCIVAC, 7369 .accessfn = aa64_cacheop_poc_access }, 7370 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7371 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7372 .access = PL0_W, .type = ARM_CP_DC_GVA, 7373 #ifndef CONFIG_USER_ONLY 7374 /* Avoid overhead of an access check that always passes in user-mode */ 7375 .accessfn = aa64_zva_access, 7376 .fgt = FGT_DCZVA, 7377 #endif 7378 }, 7379 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7380 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7381 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7382 #ifndef CONFIG_USER_ONLY 7383 /* Avoid overhead of an access check that always passes in user-mode */ 7384 .accessfn = aa64_zva_access, 7385 .fgt = FGT_DCZVA, 7386 #endif 7387 }, 7388 }; 7389 7390 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7391 bool isread) 7392 { 7393 uint64_t hcr = arm_hcr_el2_eff(env); 7394 int el = arm_current_el(env); 7395 7396 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7397 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7398 if (hcr & HCR_TGE) { 7399 return CP_ACCESS_TRAP_EL2; 7400 } 7401 return CP_ACCESS_TRAP_EL1; 7402 } 7403 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7404 return CP_ACCESS_TRAP_EL2; 7405 } 7406 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7407 return CP_ACCESS_TRAP_EL2; 7408 } 7409 if (el < 3 7410 && arm_feature(env, ARM_FEATURE_EL3) 7411 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7412 return CP_ACCESS_TRAP_EL3; 7413 } 7414 return CP_ACCESS_OK; 7415 } 7416 7417 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 7418 const ARMCPRegInfo *ri, 7419 bool isread) 7420 { 7421 CPAccessResult nv1 = access_nv1(env, ri, isread); 7422 7423 if (nv1 != CP_ACCESS_OK) { 7424 return nv1; 7425 } 7426 return access_scxtnum(env, ri, isread); 7427 } 7428 7429 static const ARMCPRegInfo scxtnum_reginfo[] = { 7430 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7432 .access = PL0_RW, .accessfn = access_scxtnum, 7433 .fgt = FGT_SCXTNUM_EL0, 7434 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7435 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7437 .access = PL1_RW, .accessfn = access_scxtnum_el1, 7438 .fgt = FGT_SCXTNUM_EL1, 7439 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 7440 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7441 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7443 .access = PL2_RW, .accessfn = access_scxtnum, 7444 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7445 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7447 .access = PL3_RW, 7448 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7449 }; 7450 7451 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7452 bool isread) 7453 { 7454 if (arm_current_el(env) == 2 && 7455 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7456 return CP_ACCESS_TRAP_EL3; 7457 } 7458 return CP_ACCESS_OK; 7459 } 7460 7461 static const ARMCPRegInfo fgt_reginfo[] = { 7462 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7464 .nv2_redirect_offset = 0x1b8, 7465 .access = PL2_RW, .accessfn = access_fgt, 7466 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7467 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7468 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7469 .nv2_redirect_offset = 0x1c0, 7470 .access = PL2_RW, .accessfn = access_fgt, 7471 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7472 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7474 .nv2_redirect_offset = 0x1d0, 7475 .access = PL2_RW, .accessfn = access_fgt, 7476 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7477 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7479 .nv2_redirect_offset = 0x1d8, 7480 .access = PL2_RW, .accessfn = access_fgt, 7481 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7482 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7484 .nv2_redirect_offset = 0x1c8, 7485 .access = PL2_RW, .accessfn = access_fgt, 7486 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7487 }; 7488 7489 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7490 uint64_t value) 7491 { 7492 /* 7493 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 7494 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 7495 * about the RESS bits at the top -- we choose the "generate an EL2 7496 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 7497 * the ptw.c code detect the resulting invalid address). 7498 */ 7499 env->cp15.vncr_el2 = value & ~0xfffULL; 7500 } 7501 7502 static const ARMCPRegInfo nv2_reginfo[] = { 7503 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 7505 .access = PL2_RW, 7506 .writefn = vncr_write, 7507 .nv2_redirect_offset = 0xb0, 7508 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 7509 }; 7510 7511 #endif /* TARGET_AARCH64 */ 7512 7513 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7514 bool isread) 7515 { 7516 int el = arm_current_el(env); 7517 7518 if (el == 0) { 7519 uint64_t sctlr = arm_sctlr(env, el); 7520 if (!(sctlr & SCTLR_EnRCTX)) { 7521 return CP_ACCESS_TRAP_EL1; 7522 } 7523 } else if (el == 1) { 7524 uint64_t hcr = arm_hcr_el2_eff(env); 7525 if (hcr & HCR_NV) { 7526 return CP_ACCESS_TRAP_EL2; 7527 } 7528 } 7529 return CP_ACCESS_OK; 7530 } 7531 7532 static const ARMCPRegInfo predinv_reginfo[] = { 7533 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7535 .fgt = FGT_CFPRCTX, 7536 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7537 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7539 .fgt = FGT_DVPRCTX, 7540 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7541 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7542 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7543 .fgt = FGT_CPPRCTX, 7544 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7545 /* 7546 * Note the AArch32 opcodes have a different OPC1. 7547 */ 7548 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7549 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7550 .fgt = FGT_CFPRCTX, 7551 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7552 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7553 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7554 .fgt = FGT_DVPRCTX, 7555 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7556 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7557 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7558 .fgt = FGT_CPPRCTX, 7559 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7560 }; 7561 7562 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7563 { 7564 /* Read the high 32 bits of the current CCSIDR */ 7565 return extract64(ccsidr_read(env, ri), 32, 32); 7566 } 7567 7568 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7569 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7570 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7571 .access = PL1_R, 7572 .accessfn = access_tid4, 7573 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7574 }; 7575 7576 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7577 bool isread) 7578 { 7579 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7580 return CP_ACCESS_TRAP_EL2; 7581 } 7582 7583 return CP_ACCESS_OK; 7584 } 7585 7586 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7587 bool isread) 7588 { 7589 if (arm_feature(env, ARM_FEATURE_V8)) { 7590 return access_aa64_tid3(env, ri, isread); 7591 } 7592 7593 return CP_ACCESS_OK; 7594 } 7595 7596 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7597 bool isread) 7598 { 7599 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7600 return CP_ACCESS_TRAP_EL2; 7601 } 7602 7603 return CP_ACCESS_OK; 7604 } 7605 7606 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7607 const ARMCPRegInfo *ri, bool isread) 7608 { 7609 /* 7610 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7611 * in v7A, not in v8A. 7612 */ 7613 if (!arm_feature(env, ARM_FEATURE_V8) && 7614 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7615 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7616 return CP_ACCESS_TRAP_EL2; 7617 } 7618 return CP_ACCESS_OK; 7619 } 7620 7621 static const ARMCPRegInfo jazelle_regs[] = { 7622 { .name = "JIDR", 7623 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7624 .access = PL1_R, .accessfn = access_jazelle, 7625 .type = ARM_CP_CONST, .resetvalue = 0 }, 7626 { .name = "JOSCR", 7627 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7628 .accessfn = access_joscr_jmcr, 7629 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7630 { .name = "JMCR", 7631 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7632 .accessfn = access_joscr_jmcr, 7633 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7634 }; 7635 7636 static const ARMCPRegInfo contextidr_el2 = { 7637 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7638 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7639 .access = PL2_RW, 7640 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7641 }; 7642 7643 static const ARMCPRegInfo vhe_reginfo[] = { 7644 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7645 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7646 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7647 .raw_writefn = raw_write, 7648 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7649 #ifndef CONFIG_USER_ONLY 7650 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7652 .fieldoffset = 7653 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7654 .type = ARM_CP_IO, .access = PL2_RW, 7655 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7656 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7657 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7658 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7659 .resetfn = gt_hv_timer_reset, 7660 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7661 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7662 .type = ARM_CP_IO, 7663 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7664 .access = PL2_RW, 7665 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7666 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7667 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7668 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7669 .type = ARM_CP_IO | ARM_CP_ALIAS, 7670 .access = PL2_RW, .accessfn = access_el1nvpct, 7671 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 7672 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7673 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7674 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7676 .type = ARM_CP_IO | ARM_CP_ALIAS, 7677 .access = PL2_RW, .accessfn = access_el1nvvct, 7678 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 7679 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7680 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7681 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7683 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7684 .access = PL2_RW, .accessfn = e2h_access, 7685 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7686 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7688 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7689 .access = PL2_RW, .accessfn = e2h_access, 7690 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7691 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7693 .type = ARM_CP_IO | ARM_CP_ALIAS, 7694 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7695 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 7696 .access = PL2_RW, .accessfn = access_el1nvpct, 7697 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7698 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7699 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7700 .type = ARM_CP_IO | ARM_CP_ALIAS, 7701 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 7702 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7703 .access = PL2_RW, .accessfn = access_el1nvvct, 7704 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7705 #endif 7706 }; 7707 7708 #ifndef CONFIG_USER_ONLY 7709 static const ARMCPRegInfo ats1e1_reginfo[] = { 7710 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7712 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7713 .fgt = FGT_ATS1E1RP, 7714 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7715 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7717 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7718 .fgt = FGT_ATS1E1WP, 7719 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7720 }; 7721 7722 static const ARMCPRegInfo ats1cp_reginfo[] = { 7723 { .name = "ATS1CPRP", 7724 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7725 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7726 .writefn = ats_write }, 7727 { .name = "ATS1CPWP", 7728 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7729 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7730 .writefn = ats_write }, 7731 }; 7732 #endif 7733 7734 /* 7735 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7736 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7737 * is non-zero, which is never for ARMv7, optionally in ARMv8 7738 * and mandatorily for ARMv8.2 and up. 7739 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7740 * implementation is RAZ/WI we can ignore this detail, as we 7741 * do for ACTLR. 7742 */ 7743 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7744 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7745 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7746 .access = PL1_RW, .accessfn = access_tacr, 7747 .type = ARM_CP_CONST, .resetvalue = 0 }, 7748 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7749 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7750 .access = PL2_RW, .type = ARM_CP_CONST, 7751 .resetvalue = 0 }, 7752 }; 7753 7754 void register_cp_regs_for_features(ARMCPU *cpu) 7755 { 7756 /* Register all the coprocessor registers based on feature bits */ 7757 CPUARMState *env = &cpu->env; 7758 if (arm_feature(env, ARM_FEATURE_M)) { 7759 /* M profile has no coprocessor registers */ 7760 return; 7761 } 7762 7763 define_arm_cp_regs(cpu, cp_reginfo); 7764 if (!arm_feature(env, ARM_FEATURE_V8)) { 7765 /* 7766 * Must go early as it is full of wildcards that may be 7767 * overridden by later definitions. 7768 */ 7769 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7770 } 7771 7772 define_tlb_insn_regs(cpu); 7773 7774 if (arm_feature(env, ARM_FEATURE_V6)) { 7775 /* The ID registers all have impdef reset values */ 7776 ARMCPRegInfo v6_idregs[] = { 7777 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7779 .access = PL1_R, .type = ARM_CP_CONST, 7780 .accessfn = access_aa32_tid3, 7781 .resetvalue = cpu->isar.id_pfr0 }, 7782 /* 7783 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7784 * the value of the GIC field until after we define these regs. 7785 */ 7786 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7788 .access = PL1_R, .type = ARM_CP_NO_RAW, 7789 .accessfn = access_aa32_tid3, 7790 #ifdef CONFIG_USER_ONLY 7791 .type = ARM_CP_CONST, 7792 .resetvalue = cpu->isar.id_pfr1, 7793 #else 7794 .type = ARM_CP_NO_RAW, 7795 .accessfn = access_aa32_tid3, 7796 .readfn = id_pfr1_read, 7797 .writefn = arm_cp_write_ignore 7798 #endif 7799 }, 7800 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa32_tid3, 7804 .resetvalue = cpu->isar.id_dfr0 }, 7805 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa32_tid3, 7809 .resetvalue = cpu->id_afr0 }, 7810 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa32_tid3, 7814 .resetvalue = cpu->isar.id_mmfr0 }, 7815 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa32_tid3, 7819 .resetvalue = cpu->isar.id_mmfr1 }, 7820 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa32_tid3, 7824 .resetvalue = cpu->isar.id_mmfr2 }, 7825 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa32_tid3, 7829 .resetvalue = cpu->isar.id_mmfr3 }, 7830 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa32_tid3, 7834 .resetvalue = cpu->isar.id_isar0 }, 7835 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa32_tid3, 7839 .resetvalue = cpu->isar.id_isar1 }, 7840 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa32_tid3, 7844 .resetvalue = cpu->isar.id_isar2 }, 7845 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7847 .access = PL1_R, .type = ARM_CP_CONST, 7848 .accessfn = access_aa32_tid3, 7849 .resetvalue = cpu->isar.id_isar3 }, 7850 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7852 .access = PL1_R, .type = ARM_CP_CONST, 7853 .accessfn = access_aa32_tid3, 7854 .resetvalue = cpu->isar.id_isar4 }, 7855 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7857 .access = PL1_R, .type = ARM_CP_CONST, 7858 .accessfn = access_aa32_tid3, 7859 .resetvalue = cpu->isar.id_isar5 }, 7860 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7862 .access = PL1_R, .type = ARM_CP_CONST, 7863 .accessfn = access_aa32_tid3, 7864 .resetvalue = cpu->isar.id_mmfr4 }, 7865 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7867 .access = PL1_R, .type = ARM_CP_CONST, 7868 .accessfn = access_aa32_tid3, 7869 .resetvalue = cpu->isar.id_isar6 }, 7870 }; 7871 define_arm_cp_regs(cpu, v6_idregs); 7872 define_arm_cp_regs(cpu, v6_cp_reginfo); 7873 } else { 7874 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7875 } 7876 if (arm_feature(env, ARM_FEATURE_V6K)) { 7877 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7878 } 7879 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7880 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7881 } 7882 if (arm_feature(env, ARM_FEATURE_V7)) { 7883 ARMCPRegInfo clidr = { 7884 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7885 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7886 .access = PL1_R, .type = ARM_CP_CONST, 7887 .accessfn = access_tid4, 7888 .fgt = FGT_CLIDR_EL1, 7889 .resetvalue = cpu->clidr 7890 }; 7891 define_one_arm_cp_reg(cpu, &clidr); 7892 define_arm_cp_regs(cpu, v7_cp_reginfo); 7893 define_debug_regs(cpu); 7894 define_pmu_regs(cpu); 7895 } else { 7896 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7897 } 7898 if (arm_feature(env, ARM_FEATURE_V8)) { 7899 /* 7900 * v8 ID registers, which all have impdef reset values. 7901 * Note that within the ID register ranges the unused slots 7902 * must all RAZ, not UNDEF; future architecture versions may 7903 * define new registers here. 7904 * ID registers which are AArch64 views of the AArch32 ID registers 7905 * which already existed in v6 and v7 are handled elsewhere, 7906 * in v6_idregs[]. 7907 */ 7908 int i; 7909 ARMCPRegInfo v8_idregs[] = { 7910 /* 7911 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7912 * emulation because we don't know the right value for the 7913 * GIC field until after we define these regs. 7914 */ 7915 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7917 .access = PL1_R, 7918 #ifdef CONFIG_USER_ONLY 7919 .type = ARM_CP_CONST, 7920 .resetvalue = cpu->isar.id_aa64pfr0 7921 #else 7922 .type = ARM_CP_NO_RAW, 7923 .accessfn = access_aa64_tid3, 7924 .readfn = id_aa64pfr0_read, 7925 .writefn = arm_cp_write_ignore 7926 #endif 7927 }, 7928 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7930 .access = PL1_R, .type = ARM_CP_CONST, 7931 .accessfn = access_aa64_tid3, 7932 .resetvalue = cpu->isar.id_aa64pfr1}, 7933 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7935 .access = PL1_R, .type = ARM_CP_CONST, 7936 .accessfn = access_aa64_tid3, 7937 .resetvalue = 0 }, 7938 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7940 .access = PL1_R, .type = ARM_CP_CONST, 7941 .accessfn = access_aa64_tid3, 7942 .resetvalue = 0 }, 7943 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7945 .access = PL1_R, .type = ARM_CP_CONST, 7946 .accessfn = access_aa64_tid3, 7947 .resetvalue = cpu->isar.id_aa64zfr0 }, 7948 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7950 .access = PL1_R, .type = ARM_CP_CONST, 7951 .accessfn = access_aa64_tid3, 7952 .resetvalue = cpu->isar.id_aa64smfr0 }, 7953 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7955 .access = PL1_R, .type = ARM_CP_CONST, 7956 .accessfn = access_aa64_tid3, 7957 .resetvalue = 0 }, 7958 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7960 .access = PL1_R, .type = ARM_CP_CONST, 7961 .accessfn = access_aa64_tid3, 7962 .resetvalue = 0 }, 7963 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7965 .access = PL1_R, .type = ARM_CP_CONST, 7966 .accessfn = access_aa64_tid3, 7967 .resetvalue = cpu->isar.id_aa64dfr0 }, 7968 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7970 .access = PL1_R, .type = ARM_CP_CONST, 7971 .accessfn = access_aa64_tid3, 7972 .resetvalue = cpu->isar.id_aa64dfr1 }, 7973 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7975 .access = PL1_R, .type = ARM_CP_CONST, 7976 .accessfn = access_aa64_tid3, 7977 .resetvalue = 0 }, 7978 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7980 .access = PL1_R, .type = ARM_CP_CONST, 7981 .accessfn = access_aa64_tid3, 7982 .resetvalue = 0 }, 7983 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7985 .access = PL1_R, .type = ARM_CP_CONST, 7986 .accessfn = access_aa64_tid3, 7987 .resetvalue = cpu->id_aa64afr0 }, 7988 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7990 .access = PL1_R, .type = ARM_CP_CONST, 7991 .accessfn = access_aa64_tid3, 7992 .resetvalue = cpu->id_aa64afr1 }, 7993 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7995 .access = PL1_R, .type = ARM_CP_CONST, 7996 .accessfn = access_aa64_tid3, 7997 .resetvalue = 0 }, 7998 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8000 .access = PL1_R, .type = ARM_CP_CONST, 8001 .accessfn = access_aa64_tid3, 8002 .resetvalue = 0 }, 8003 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8005 .access = PL1_R, .type = ARM_CP_CONST, 8006 .accessfn = access_aa64_tid3, 8007 .resetvalue = cpu->isar.id_aa64isar0 }, 8008 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8010 .access = PL1_R, .type = ARM_CP_CONST, 8011 .accessfn = access_aa64_tid3, 8012 .resetvalue = cpu->isar.id_aa64isar1 }, 8013 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8015 .access = PL1_R, .type = ARM_CP_CONST, 8016 .accessfn = access_aa64_tid3, 8017 .resetvalue = cpu->isar.id_aa64isar2 }, 8018 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8020 .access = PL1_R, .type = ARM_CP_CONST, 8021 .accessfn = access_aa64_tid3, 8022 .resetvalue = 0 }, 8023 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8025 .access = PL1_R, .type = ARM_CP_CONST, 8026 .accessfn = access_aa64_tid3, 8027 .resetvalue = 0 }, 8028 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8030 .access = PL1_R, .type = ARM_CP_CONST, 8031 .accessfn = access_aa64_tid3, 8032 .resetvalue = 0 }, 8033 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8035 .access = PL1_R, .type = ARM_CP_CONST, 8036 .accessfn = access_aa64_tid3, 8037 .resetvalue = 0 }, 8038 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8040 .access = PL1_R, .type = ARM_CP_CONST, 8041 .accessfn = access_aa64_tid3, 8042 .resetvalue = 0 }, 8043 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8045 .access = PL1_R, .type = ARM_CP_CONST, 8046 .accessfn = access_aa64_tid3, 8047 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8048 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8050 .access = PL1_R, .type = ARM_CP_CONST, 8051 .accessfn = access_aa64_tid3, 8052 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8053 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa64_tid3, 8057 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8058 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 8059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8060 .access = PL1_R, .type = ARM_CP_CONST, 8061 .accessfn = access_aa64_tid3, 8062 .resetvalue = cpu->isar.id_aa64mmfr3 }, 8063 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8065 .access = PL1_R, .type = ARM_CP_CONST, 8066 .accessfn = access_aa64_tid3, 8067 .resetvalue = 0 }, 8068 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8070 .access = PL1_R, .type = ARM_CP_CONST, 8071 .accessfn = access_aa64_tid3, 8072 .resetvalue = 0 }, 8073 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8075 .access = PL1_R, .type = ARM_CP_CONST, 8076 .accessfn = access_aa64_tid3, 8077 .resetvalue = 0 }, 8078 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8080 .access = PL1_R, .type = ARM_CP_CONST, 8081 .accessfn = access_aa64_tid3, 8082 .resetvalue = 0 }, 8083 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8085 .access = PL1_R, .type = ARM_CP_CONST, 8086 .accessfn = access_aa64_tid3, 8087 .resetvalue = cpu->isar.mvfr0 }, 8088 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8090 .access = PL1_R, .type = ARM_CP_CONST, 8091 .accessfn = access_aa64_tid3, 8092 .resetvalue = cpu->isar.mvfr1 }, 8093 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8095 .access = PL1_R, .type = ARM_CP_CONST, 8096 .accessfn = access_aa64_tid3, 8097 .resetvalue = cpu->isar.mvfr2 }, 8098 /* 8099 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8100 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8101 * as RAZ, since it is in the "reserved for future ID 8102 * registers, RAZ" part of the AArch32 encoding space. 8103 */ 8104 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8105 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8106 .access = PL1_R, .type = ARM_CP_CONST, 8107 .accessfn = access_aa64_tid3, 8108 .resetvalue = 0 }, 8109 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8110 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8111 .access = PL1_R, .type = ARM_CP_CONST, 8112 .accessfn = access_aa64_tid3, 8113 .resetvalue = 0 }, 8114 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8115 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8116 .access = PL1_R, .type = ARM_CP_CONST, 8117 .accessfn = access_aa64_tid3, 8118 .resetvalue = 0 }, 8119 /* 8120 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8121 * they're also RAZ for AArch64, and in v8 are gradually 8122 * being filled with AArch64-view-of-AArch32-ID-register 8123 * for new ID registers. 8124 */ 8125 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8127 .access = PL1_R, .type = ARM_CP_CONST, 8128 .accessfn = access_aa64_tid3, 8129 .resetvalue = 0 }, 8130 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8132 .access = PL1_R, .type = ARM_CP_CONST, 8133 .accessfn = access_aa64_tid3, 8134 .resetvalue = cpu->isar.id_pfr2 }, 8135 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8137 .access = PL1_R, .type = ARM_CP_CONST, 8138 .accessfn = access_aa64_tid3, 8139 .resetvalue = cpu->isar.id_dfr1 }, 8140 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8142 .access = PL1_R, .type = ARM_CP_CONST, 8143 .accessfn = access_aa64_tid3, 8144 .resetvalue = cpu->isar.id_mmfr5 }, 8145 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8147 .access = PL1_R, .type = ARM_CP_CONST, 8148 .accessfn = access_aa64_tid3, 8149 .resetvalue = 0 }, 8150 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8151 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8152 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8153 .fgt = FGT_PMCEIDN_EL0, 8154 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8155 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8156 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8157 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8158 .fgt = FGT_PMCEIDN_EL0, 8159 .resetvalue = cpu->pmceid0 }, 8160 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8161 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8162 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8163 .fgt = FGT_PMCEIDN_EL0, 8164 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8165 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8167 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8168 .fgt = FGT_PMCEIDN_EL0, 8169 .resetvalue = cpu->pmceid1 }, 8170 }; 8171 #ifdef CONFIG_USER_ONLY 8172 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8173 { .name = "ID_AA64PFR0_EL1", 8174 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8175 R_ID_AA64PFR0_ADVSIMD_MASK | 8176 R_ID_AA64PFR0_SVE_MASK | 8177 R_ID_AA64PFR0_DIT_MASK, 8178 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8179 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8180 { .name = "ID_AA64PFR1_EL1", 8181 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8182 R_ID_AA64PFR1_SSBS_MASK | 8183 R_ID_AA64PFR1_MTE_MASK | 8184 R_ID_AA64PFR1_SME_MASK }, 8185 { .name = "ID_AA64PFR*_EL1_RESERVED", 8186 .is_glob = true }, 8187 { .name = "ID_AA64ZFR0_EL1", 8188 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8189 R_ID_AA64ZFR0_AES_MASK | 8190 R_ID_AA64ZFR0_BITPERM_MASK | 8191 R_ID_AA64ZFR0_BFLOAT16_MASK | 8192 R_ID_AA64ZFR0_B16B16_MASK | 8193 R_ID_AA64ZFR0_SHA3_MASK | 8194 R_ID_AA64ZFR0_SM4_MASK | 8195 R_ID_AA64ZFR0_I8MM_MASK | 8196 R_ID_AA64ZFR0_F32MM_MASK | 8197 R_ID_AA64ZFR0_F64MM_MASK }, 8198 { .name = "ID_AA64SMFR0_EL1", 8199 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8200 R_ID_AA64SMFR0_BI32I32_MASK | 8201 R_ID_AA64SMFR0_B16F32_MASK | 8202 R_ID_AA64SMFR0_F16F32_MASK | 8203 R_ID_AA64SMFR0_I8I32_MASK | 8204 R_ID_AA64SMFR0_F16F16_MASK | 8205 R_ID_AA64SMFR0_B16B16_MASK | 8206 R_ID_AA64SMFR0_I16I32_MASK | 8207 R_ID_AA64SMFR0_F64F64_MASK | 8208 R_ID_AA64SMFR0_I16I64_MASK | 8209 R_ID_AA64SMFR0_SMEVER_MASK | 8210 R_ID_AA64SMFR0_FA64_MASK }, 8211 { .name = "ID_AA64MMFR0_EL1", 8212 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8213 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8214 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8215 { .name = "ID_AA64MMFR1_EL1", 8216 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8217 { .name = "ID_AA64MMFR2_EL1", 8218 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8219 { .name = "ID_AA64MMFR3_EL1", 8220 .exported_bits = 0 }, 8221 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8222 .is_glob = true }, 8223 { .name = "ID_AA64DFR0_EL1", 8224 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8225 { .name = "ID_AA64DFR1_EL1" }, 8226 { .name = "ID_AA64DFR*_EL1_RESERVED", 8227 .is_glob = true }, 8228 { .name = "ID_AA64AFR*", 8229 .is_glob = true }, 8230 { .name = "ID_AA64ISAR0_EL1", 8231 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8232 R_ID_AA64ISAR0_SHA1_MASK | 8233 R_ID_AA64ISAR0_SHA2_MASK | 8234 R_ID_AA64ISAR0_CRC32_MASK | 8235 R_ID_AA64ISAR0_ATOMIC_MASK | 8236 R_ID_AA64ISAR0_RDM_MASK | 8237 R_ID_AA64ISAR0_SHA3_MASK | 8238 R_ID_AA64ISAR0_SM3_MASK | 8239 R_ID_AA64ISAR0_SM4_MASK | 8240 R_ID_AA64ISAR0_DP_MASK | 8241 R_ID_AA64ISAR0_FHM_MASK | 8242 R_ID_AA64ISAR0_TS_MASK | 8243 R_ID_AA64ISAR0_RNDR_MASK }, 8244 { .name = "ID_AA64ISAR1_EL1", 8245 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8246 R_ID_AA64ISAR1_APA_MASK | 8247 R_ID_AA64ISAR1_API_MASK | 8248 R_ID_AA64ISAR1_JSCVT_MASK | 8249 R_ID_AA64ISAR1_FCMA_MASK | 8250 R_ID_AA64ISAR1_LRCPC_MASK | 8251 R_ID_AA64ISAR1_GPA_MASK | 8252 R_ID_AA64ISAR1_GPI_MASK | 8253 R_ID_AA64ISAR1_FRINTTS_MASK | 8254 R_ID_AA64ISAR1_SB_MASK | 8255 R_ID_AA64ISAR1_BF16_MASK | 8256 R_ID_AA64ISAR1_DGH_MASK | 8257 R_ID_AA64ISAR1_I8MM_MASK }, 8258 { .name = "ID_AA64ISAR2_EL1", 8259 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8260 R_ID_AA64ISAR2_RPRES_MASK | 8261 R_ID_AA64ISAR2_GPA3_MASK | 8262 R_ID_AA64ISAR2_APA3_MASK | 8263 R_ID_AA64ISAR2_MOPS_MASK | 8264 R_ID_AA64ISAR2_BC_MASK | 8265 R_ID_AA64ISAR2_RPRFM_MASK | 8266 R_ID_AA64ISAR2_CSSC_MASK }, 8267 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8268 .is_glob = true }, 8269 }; 8270 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8271 #endif 8272 /* 8273 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8274 * TODO: For RMR, a write with bit 1 set should do something with 8275 * cpu_reset(). In the meantime, "the bit is strictly a request", 8276 * so we are in spec just ignoring writes. 8277 */ 8278 if (!arm_feature(env, ARM_FEATURE_EL3) && 8279 !arm_feature(env, ARM_FEATURE_EL2)) { 8280 ARMCPRegInfo el1_reset_regs[] = { 8281 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8282 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8283 .access = PL1_R, 8284 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8285 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8286 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8287 .access = PL1_RW, .type = ARM_CP_CONST, 8288 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8289 }; 8290 define_arm_cp_regs(cpu, el1_reset_regs); 8291 } 8292 define_arm_cp_regs(cpu, v8_idregs); 8293 define_arm_cp_regs(cpu, v8_cp_reginfo); 8294 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8295 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8296 } 8297 8298 for (i = 4; i < 16; i++) { 8299 /* 8300 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8301 * For pre-v8 cores there are RAZ patterns for these in 8302 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8303 * v8 extends the "must RAZ" part of the ID register space 8304 * to also cover c0, 0, c{8-15}, {0-7}. 8305 * These are STATE_AA32 because in the AArch64 sysreg space 8306 * c4-c7 is where the AArch64 ID registers live (and we've 8307 * already defined those in v8_idregs[]), and c8-c15 are not 8308 * "must RAZ" for AArch64. 8309 */ 8310 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8311 ARMCPRegInfo v8_aa32_raz_idregs = { 8312 .name = name, 8313 .state = ARM_CP_STATE_AA32, 8314 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8315 .access = PL1_R, .type = ARM_CP_CONST, 8316 .accessfn = access_aa64_tid3, 8317 .resetvalue = 0 }; 8318 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8319 } 8320 } 8321 8322 /* 8323 * Register the base EL2 cpregs. 8324 * Pre v8, these registers are implemented only as part of the 8325 * Virtualization Extensions (EL2 present). Beginning with v8, 8326 * if EL2 is missing but EL3 is enabled, mostly these become 8327 * RES0 from EL3, with some specific exceptions. 8328 */ 8329 if (arm_feature(env, ARM_FEATURE_EL2) 8330 || (arm_feature(env, ARM_FEATURE_EL3) 8331 && arm_feature(env, ARM_FEATURE_V8))) { 8332 uint64_t vmpidr_def = mpidr_read_val(env); 8333 ARMCPRegInfo vpidr_regs[] = { 8334 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8335 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8336 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8337 .resetvalue = cpu->midr, 8338 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8339 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8340 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8341 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8342 .access = PL2_RW, .resetvalue = cpu->midr, 8343 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8344 .nv2_redirect_offset = 0x88, 8345 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8346 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8347 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8348 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8349 .resetvalue = vmpidr_def, 8350 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8351 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8352 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8353 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8354 .access = PL2_RW, .resetvalue = vmpidr_def, 8355 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8356 .nv2_redirect_offset = 0x50, 8357 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8358 }; 8359 /* 8360 * The only field of MDCR_EL2 that has a defined architectural reset 8361 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8362 */ 8363 ARMCPRegInfo mdcr_el2 = { 8364 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8365 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8366 .writefn = mdcr_el2_write, 8367 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8368 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8369 }; 8370 define_one_arm_cp_reg(cpu, &mdcr_el2); 8371 define_arm_cp_regs(cpu, vpidr_regs); 8372 define_arm_cp_regs(cpu, el2_cp_reginfo); 8373 if (arm_feature(env, ARM_FEATURE_V8)) { 8374 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8375 } 8376 if (cpu_isar_feature(aa64_sel2, cpu)) { 8377 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8378 } 8379 /* 8380 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8381 * See commentary near RMR_EL1. 8382 */ 8383 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8384 static const ARMCPRegInfo el2_reset_regs[] = { 8385 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8386 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8387 .access = PL2_R, 8388 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8389 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8390 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8391 .access = PL2_R, 8392 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8393 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8394 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8395 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8396 }; 8397 define_arm_cp_regs(cpu, el2_reset_regs); 8398 } 8399 } 8400 8401 /* Register the base EL3 cpregs. */ 8402 if (arm_feature(env, ARM_FEATURE_EL3)) { 8403 define_arm_cp_regs(cpu, el3_cp_reginfo); 8404 ARMCPRegInfo el3_regs[] = { 8405 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8406 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8407 .access = PL3_R, 8408 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8409 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8410 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8411 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8412 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8413 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8414 .access = PL3_RW, .type = ARM_CP_CONST, 8415 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8416 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8417 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8418 .access = PL3_RW, 8419 .raw_writefn = raw_write, .writefn = sctlr_write, 8420 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8421 .resetvalue = cpu->reset_sctlr }, 8422 }; 8423 8424 define_arm_cp_regs(cpu, el3_regs); 8425 } 8426 /* 8427 * The behaviour of NSACR is sufficiently various that we don't 8428 * try to describe it in a single reginfo: 8429 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8430 * reads as constant 0xc00 from NS EL1 and NS EL2 8431 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8432 * if v7 without EL3, register doesn't exist 8433 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8434 */ 8435 if (arm_feature(env, ARM_FEATURE_EL3)) { 8436 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8437 static const ARMCPRegInfo nsacr = { 8438 .name = "NSACR", .type = ARM_CP_CONST, 8439 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8440 .access = PL1_RW, .accessfn = nsacr_access, 8441 .resetvalue = 0xc00 8442 }; 8443 define_one_arm_cp_reg(cpu, &nsacr); 8444 } else { 8445 static const ARMCPRegInfo nsacr = { 8446 .name = "NSACR", 8447 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8448 .access = PL3_RW | PL1_R, 8449 .resetvalue = 0, 8450 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8451 }; 8452 define_one_arm_cp_reg(cpu, &nsacr); 8453 } 8454 } else { 8455 if (arm_feature(env, ARM_FEATURE_V8)) { 8456 static const ARMCPRegInfo nsacr = { 8457 .name = "NSACR", .type = ARM_CP_CONST, 8458 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8459 .access = PL1_R, 8460 .resetvalue = 0xc00 8461 }; 8462 define_one_arm_cp_reg(cpu, &nsacr); 8463 } 8464 } 8465 8466 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8467 if (arm_feature(env, ARM_FEATURE_V6)) { 8468 /* PMSAv6 not implemented */ 8469 assert(arm_feature(env, ARM_FEATURE_V7)); 8470 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8471 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8472 } else { 8473 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8474 } 8475 } else { 8476 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8477 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8478 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8479 if (cpu_isar_feature(aa32_hpd, cpu)) { 8480 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8481 } 8482 } 8483 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8484 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8485 } 8486 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8487 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8488 } 8489 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 8490 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 8491 } 8492 #ifndef CONFIG_USER_ONLY 8493 if (cpu_isar_feature(aa64_ecv, cpu)) { 8494 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 8495 } 8496 #endif 8497 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8498 ARMCPRegInfo vapa_cp_reginfo[] = { 8499 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8500 .access = PL1_RW, .resetvalue = 0, 8501 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8502 offsetoflow32(CPUARMState, cp15.par_ns) }, 8503 .writefn = par_write}, 8504 #ifndef CONFIG_USER_ONLY 8505 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8506 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8507 .access = PL1_W, .accessfn = ats_access, 8508 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8509 #endif 8510 }; 8511 8512 /* 8513 * When LPAE exists this 32-bit PAR register is an alias of the 8514 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8515 */ 8516 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8517 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8518 } 8519 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8520 } 8521 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8522 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8523 } 8524 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8525 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8526 } 8527 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8528 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8529 } 8530 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8531 define_arm_cp_regs(cpu, omap_cp_reginfo); 8532 } 8533 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8534 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8535 } 8536 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8537 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8538 } 8539 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8540 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8541 } 8542 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8543 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8544 } 8545 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8546 define_arm_cp_regs(cpu, jazelle_regs); 8547 } 8548 /* 8549 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8550 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8551 * be read-only (ie write causes UNDEF exception). 8552 */ 8553 { 8554 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8555 /* 8556 * Pre-v8 MIDR space. 8557 * Note that the MIDR isn't a simple constant register because 8558 * of the TI925 behaviour where writes to another register can 8559 * cause the MIDR value to change. 8560 * 8561 * Unimplemented registers in the c15 0 0 0 space default to 8562 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8563 * and friends override accordingly. 8564 */ 8565 { .name = "MIDR", 8566 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8567 .access = PL1_R, .resetvalue = cpu->midr, 8568 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8569 .readfn = midr_read, 8570 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8571 .type = ARM_CP_OVERRIDE }, 8572 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8573 { .name = "DUMMY", 8574 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8575 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8576 { .name = "DUMMY", 8577 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8578 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8579 { .name = "DUMMY", 8580 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8581 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8582 { .name = "DUMMY", 8583 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8584 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8585 { .name = "DUMMY", 8586 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8587 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8588 }; 8589 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8590 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8592 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8593 .fgt = FGT_MIDR_EL1, 8594 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8595 .readfn = midr_read }, 8596 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8597 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8598 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8599 .access = PL1_R, .resetvalue = cpu->midr }, 8600 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8602 .access = PL1_R, 8603 .accessfn = access_aa64_tid1, 8604 .fgt = FGT_REVIDR_EL1, 8605 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8606 }; 8607 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8608 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 8609 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8610 .access = PL1_R, .resetvalue = cpu->midr 8611 }; 8612 ARMCPRegInfo id_cp_reginfo[] = { 8613 /* These are common to v8 and pre-v8 */ 8614 { .name = "CTR", 8615 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8616 .access = PL1_R, .accessfn = ctr_el0_access, 8617 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8618 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8619 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8620 .access = PL0_R, .accessfn = ctr_el0_access, 8621 .fgt = FGT_CTR_EL0, 8622 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8623 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8624 { .name = "TCMTR", 8625 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8626 .access = PL1_R, 8627 .accessfn = access_aa32_tid1, 8628 .type = ARM_CP_CONST, .resetvalue = 0 }, 8629 }; 8630 /* TLBTR is specific to VMSA */ 8631 ARMCPRegInfo id_tlbtr_reginfo = { 8632 .name = "TLBTR", 8633 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8634 .access = PL1_R, 8635 .accessfn = access_aa32_tid1, 8636 .type = ARM_CP_CONST, .resetvalue = 0, 8637 }; 8638 /* MPUIR is specific to PMSA V6+ */ 8639 ARMCPRegInfo id_mpuir_reginfo = { 8640 .name = "MPUIR", 8641 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8642 .access = PL1_R, .type = ARM_CP_CONST, 8643 .resetvalue = cpu->pmsav7_dregion << 8 8644 }; 8645 /* HMPUIR is specific to PMSA V8 */ 8646 ARMCPRegInfo id_hmpuir_reginfo = { 8647 .name = "HMPUIR", 8648 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8649 .access = PL2_R, .type = ARM_CP_CONST, 8650 .resetvalue = cpu->pmsav8r_hdregion 8651 }; 8652 static const ARMCPRegInfo crn0_wi_reginfo = { 8653 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8654 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8655 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8656 }; 8657 #ifdef CONFIG_USER_ONLY 8658 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8659 { .name = "MIDR_EL1", 8660 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8661 R_MIDR_EL1_PARTNUM_MASK | 8662 R_MIDR_EL1_ARCHITECTURE_MASK | 8663 R_MIDR_EL1_VARIANT_MASK | 8664 R_MIDR_EL1_IMPLEMENTER_MASK }, 8665 { .name = "REVIDR_EL1" }, 8666 }; 8667 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8668 #endif 8669 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8670 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8671 size_t i; 8672 /* 8673 * Register the blanket "writes ignored" value first to cover the 8674 * whole space. Then update the specific ID registers to allow write 8675 * access, so that they ignore writes rather than causing them to 8676 * UNDEF. 8677 */ 8678 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8679 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8680 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8681 } 8682 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8683 id_cp_reginfo[i].access = PL1_RW; 8684 } 8685 id_mpuir_reginfo.access = PL1_RW; 8686 id_tlbtr_reginfo.access = PL1_RW; 8687 } 8688 if (arm_feature(env, ARM_FEATURE_V8)) { 8689 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8690 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8691 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8692 } 8693 } else { 8694 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8695 } 8696 define_arm_cp_regs(cpu, id_cp_reginfo); 8697 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8698 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8699 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8700 arm_feature(env, ARM_FEATURE_V8)) { 8701 uint32_t i = 0; 8702 char *tmp_string; 8703 8704 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8705 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8706 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8707 8708 /* Register alias is only valid for first 32 indexes */ 8709 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8710 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8711 uint8_t opc1 = extract32(i, 4, 1); 8712 uint8_t opc2 = extract32(i, 0, 1) << 2; 8713 8714 tmp_string = g_strdup_printf("PRBAR%u", i); 8715 ARMCPRegInfo tmp_prbarn_reginfo = { 8716 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8717 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8718 .access = PL1_RW, .resetvalue = 0, 8719 .accessfn = access_tvm_trvm, 8720 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8721 }; 8722 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8723 g_free(tmp_string); 8724 8725 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8726 tmp_string = g_strdup_printf("PRLAR%u", i); 8727 ARMCPRegInfo tmp_prlarn_reginfo = { 8728 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8729 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8730 .access = PL1_RW, .resetvalue = 0, 8731 .accessfn = access_tvm_trvm, 8732 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8733 }; 8734 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8735 g_free(tmp_string); 8736 } 8737 8738 /* Register alias is only valid for first 32 indexes */ 8739 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8740 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8741 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8742 uint8_t opc2 = extract32(i, 0, 1) << 2; 8743 8744 tmp_string = g_strdup_printf("HPRBAR%u", i); 8745 ARMCPRegInfo tmp_hprbarn_reginfo = { 8746 .name = tmp_string, 8747 .type = ARM_CP_NO_RAW, 8748 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8749 .access = PL2_RW, .resetvalue = 0, 8750 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8751 }; 8752 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8753 g_free(tmp_string); 8754 8755 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8756 tmp_string = g_strdup_printf("HPRLAR%u", i); 8757 ARMCPRegInfo tmp_hprlarn_reginfo = { 8758 .name = tmp_string, 8759 .type = ARM_CP_NO_RAW, 8760 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8761 .access = PL2_RW, .resetvalue = 0, 8762 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8763 }; 8764 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8765 g_free(tmp_string); 8766 } 8767 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8768 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8769 } 8770 } 8771 8772 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8773 ARMCPRegInfo mpidr_cp_reginfo[] = { 8774 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8775 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8776 .fgt = FGT_MPIDR_EL1, 8777 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8778 }; 8779 #ifdef CONFIG_USER_ONLY 8780 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8781 { .name = "MPIDR_EL1", 8782 .fixed_bits = 0x0000000080000000 }, 8783 }; 8784 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8785 #endif 8786 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8787 } 8788 8789 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8790 ARMCPRegInfo auxcr_reginfo[] = { 8791 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8792 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8793 .access = PL1_RW, .accessfn = access_tacr, 8794 .nv2_redirect_offset = 0x118, 8795 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8796 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8797 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8798 .access = PL2_RW, .type = ARM_CP_CONST, 8799 .resetvalue = 0 }, 8800 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8801 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8802 .access = PL3_RW, .type = ARM_CP_CONST, 8803 .resetvalue = 0 }, 8804 }; 8805 define_arm_cp_regs(cpu, auxcr_reginfo); 8806 if (cpu_isar_feature(aa32_ac2, cpu)) { 8807 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8808 } 8809 } 8810 8811 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8812 /* 8813 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8814 * There are two flavours: 8815 * (1) older 32-bit only cores have a simple 32-bit CBAR 8816 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8817 * 32-bit register visible to AArch32 at a different encoding 8818 * to the "flavour 1" register and with the bits rearranged to 8819 * be able to squash a 64-bit address into the 32-bit view. 8820 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8821 * in future if we support AArch32-only configs of some of the 8822 * AArch64 cores we might need to add a specific feature flag 8823 * to indicate cores with "flavour 2" CBAR. 8824 */ 8825 if (arm_feature(env, ARM_FEATURE_V8)) { 8826 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8827 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8828 | extract64(cpu->reset_cbar, 32, 12); 8829 ARMCPRegInfo cbar_reginfo[] = { 8830 { .name = "CBAR", 8831 .type = ARM_CP_CONST, 8832 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8833 .access = PL1_R, .resetvalue = cbar32 }, 8834 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8835 .type = ARM_CP_CONST, 8836 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8837 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8838 }; 8839 /* We don't implement a r/w 64 bit CBAR currently */ 8840 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8841 define_arm_cp_regs(cpu, cbar_reginfo); 8842 } else { 8843 ARMCPRegInfo cbar = { 8844 .name = "CBAR", 8845 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8846 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8847 .fieldoffset = offsetof(CPUARMState, 8848 cp15.c15_config_base_address) 8849 }; 8850 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8851 cbar.access = PL1_R; 8852 cbar.fieldoffset = 0; 8853 cbar.type = ARM_CP_CONST; 8854 } 8855 define_one_arm_cp_reg(cpu, &cbar); 8856 } 8857 } 8858 8859 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8860 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8861 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8862 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8863 .access = PL1_RW, .writefn = vbar_write, 8864 .accessfn = access_nv1, 8865 .fgt = FGT_VBAR_EL1, 8866 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 8867 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8868 offsetof(CPUARMState, cp15.vbar_ns) }, 8869 .resetvalue = 0 }, 8870 }; 8871 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8872 } 8873 8874 /* Generic registers whose values depend on the implementation */ 8875 { 8876 ARMCPRegInfo sctlr = { 8877 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8878 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8879 .access = PL1_RW, .accessfn = access_tvm_trvm, 8880 .fgt = FGT_SCTLR_EL1, 8881 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 8882 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8883 offsetof(CPUARMState, cp15.sctlr_ns) }, 8884 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8885 .raw_writefn = raw_write, 8886 }; 8887 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8888 /* 8889 * Normally we would always end the TB on an SCTLR write, but Linux 8890 * arch/arm/mach-pxa/sleep.S expects two instructions following 8891 * an MMU enable to execute from cache. Imitate this behaviour. 8892 */ 8893 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8894 } 8895 define_one_arm_cp_reg(cpu, &sctlr); 8896 8897 if (arm_feature(env, ARM_FEATURE_PMSA) && 8898 arm_feature(env, ARM_FEATURE_V8)) { 8899 ARMCPRegInfo vsctlr = { 8900 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8901 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8902 .access = PL2_RW, .resetvalue = 0x0, 8903 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8904 }; 8905 define_one_arm_cp_reg(cpu, &vsctlr); 8906 } 8907 } 8908 8909 if (cpu_isar_feature(aa64_lor, cpu)) { 8910 define_arm_cp_regs(cpu, lor_reginfo); 8911 } 8912 if (cpu_isar_feature(aa64_pan, cpu)) { 8913 define_one_arm_cp_reg(cpu, &pan_reginfo); 8914 } 8915 #ifndef CONFIG_USER_ONLY 8916 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8917 define_arm_cp_regs(cpu, ats1e1_reginfo); 8918 } 8919 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8920 define_arm_cp_regs(cpu, ats1cp_reginfo); 8921 } 8922 #endif 8923 if (cpu_isar_feature(aa64_uao, cpu)) { 8924 define_one_arm_cp_reg(cpu, &uao_reginfo); 8925 } 8926 8927 if (cpu_isar_feature(aa64_dit, cpu)) { 8928 define_one_arm_cp_reg(cpu, &dit_reginfo); 8929 } 8930 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8931 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8932 } 8933 if (cpu_isar_feature(any_ras, cpu)) { 8934 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8935 } 8936 8937 if (cpu_isar_feature(aa64_vh, cpu) || 8938 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8939 define_one_arm_cp_reg(cpu, &contextidr_el2); 8940 } 8941 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8942 define_arm_cp_regs(cpu, vhe_reginfo); 8943 } 8944 8945 if (cpu_isar_feature(aa64_sve, cpu)) { 8946 define_arm_cp_regs(cpu, zcr_reginfo); 8947 } 8948 8949 if (cpu_isar_feature(aa64_hcx, cpu)) { 8950 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8951 } 8952 8953 #ifdef TARGET_AARCH64 8954 if (cpu_isar_feature(aa64_sme, cpu)) { 8955 define_arm_cp_regs(cpu, sme_reginfo); 8956 } 8957 if (cpu_isar_feature(aa64_pauth, cpu)) { 8958 define_arm_cp_regs(cpu, pauth_reginfo); 8959 } 8960 if (cpu_isar_feature(aa64_rndr, cpu)) { 8961 define_arm_cp_regs(cpu, rndr_reginfo); 8962 } 8963 /* Data Cache clean instructions up to PoP */ 8964 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8965 define_one_arm_cp_reg(cpu, dcpop_reg); 8966 8967 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8968 define_one_arm_cp_reg(cpu, dcpodp_reg); 8969 } 8970 } 8971 8972 /* 8973 * If full MTE is enabled, add all of the system registers. 8974 * If only "instructions available at EL0" are enabled, 8975 * then define only a RAZ/WI version of PSTATE.TCO. 8976 */ 8977 if (cpu_isar_feature(aa64_mte, cpu)) { 8978 ARMCPRegInfo gmid_reginfo = { 8979 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 8980 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 8981 .access = PL1_R, .accessfn = access_aa64_tid5, 8982 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 8983 }; 8984 define_one_arm_cp_reg(cpu, &gmid_reginfo); 8985 define_arm_cp_regs(cpu, mte_reginfo); 8986 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8987 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8988 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8989 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8990 } 8991 8992 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8993 define_arm_cp_regs(cpu, scxtnum_reginfo); 8994 } 8995 8996 if (cpu_isar_feature(aa64_fgt, cpu)) { 8997 define_arm_cp_regs(cpu, fgt_reginfo); 8998 } 8999 9000 if (cpu_isar_feature(aa64_rme, cpu)) { 9001 define_arm_cp_regs(cpu, rme_reginfo); 9002 if (cpu_isar_feature(aa64_mte, cpu)) { 9003 define_arm_cp_regs(cpu, rme_mte_reginfo); 9004 } 9005 } 9006 9007 if (cpu_isar_feature(aa64_nv2, cpu)) { 9008 define_arm_cp_regs(cpu, nv2_reginfo); 9009 } 9010 9011 if (cpu_isar_feature(aa64_nmi, cpu)) { 9012 define_arm_cp_regs(cpu, nmi_reginfo); 9013 } 9014 #endif 9015 9016 if (cpu_isar_feature(any_predinv, cpu)) { 9017 define_arm_cp_regs(cpu, predinv_reginfo); 9018 } 9019 9020 if (cpu_isar_feature(any_ccidx, cpu)) { 9021 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9022 } 9023 9024 #ifndef CONFIG_USER_ONLY 9025 /* 9026 * Register redirections and aliases must be done last, 9027 * after the registers from the other extensions have been defined. 9028 */ 9029 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9030 define_arm_vh_e2h_redirects_aliases(cpu); 9031 } 9032 #endif 9033 } 9034 9035 /* 9036 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9037 * add a single reginfo struct to the hash table. 9038 */ 9039 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9040 void *opaque, CPState state, 9041 CPSecureState secstate, 9042 int crm, int opc1, int opc2, 9043 const char *name) 9044 { 9045 CPUARMState *env = &cpu->env; 9046 uint32_t key; 9047 ARMCPRegInfo *r2; 9048 bool is64 = r->type & ARM_CP_64BIT; 9049 bool ns = secstate & ARM_CP_SECSTATE_NS; 9050 int cp = r->cp; 9051 size_t name_len; 9052 bool make_const; 9053 9054 switch (state) { 9055 case ARM_CP_STATE_AA32: 9056 /* We assume it is a cp15 register if the .cp field is left unset. */ 9057 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9058 cp = 15; 9059 } 9060 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9061 break; 9062 case ARM_CP_STATE_AA64: 9063 /* 9064 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9065 * cp == 0 as equivalent to the value for "standard guest-visible 9066 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9067 * in their AArch64 view (the .cp value may be non-zero for the 9068 * benefit of the AArch32 view). 9069 */ 9070 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9071 cp = CP_REG_ARM64_SYSREG_CP; 9072 } 9073 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9074 break; 9075 default: 9076 g_assert_not_reached(); 9077 } 9078 9079 /* Overriding of an existing definition must be explicitly requested. */ 9080 if (!(r->type & ARM_CP_OVERRIDE)) { 9081 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9082 if (oldreg) { 9083 assert(oldreg->type & ARM_CP_OVERRIDE); 9084 } 9085 } 9086 9087 /* 9088 * Eliminate registers that are not present because the EL is missing. 9089 * Doing this here makes it easier to put all registers for a given 9090 * feature into the same ARMCPRegInfo array and define them all at once. 9091 */ 9092 make_const = false; 9093 if (arm_feature(env, ARM_FEATURE_EL3)) { 9094 /* 9095 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9096 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9097 */ 9098 int min_el = ctz32(r->access) / 2; 9099 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9100 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9101 return; 9102 } 9103 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9104 } 9105 } else { 9106 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9107 ? PL2_RW : PL1_RW); 9108 if ((r->access & max_el) == 0) { 9109 return; 9110 } 9111 } 9112 9113 /* Combine cpreg and name into one allocation. */ 9114 name_len = strlen(name) + 1; 9115 r2 = g_malloc(sizeof(*r2) + name_len); 9116 *r2 = *r; 9117 r2->name = memcpy(r2 + 1, name, name_len); 9118 9119 /* 9120 * Update fields to match the instantiation, overwiting wildcards 9121 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9122 */ 9123 r2->cp = cp; 9124 r2->crm = crm; 9125 r2->opc1 = opc1; 9126 r2->opc2 = opc2; 9127 r2->state = state; 9128 r2->secure = secstate; 9129 if (opaque) { 9130 r2->opaque = opaque; 9131 } 9132 9133 if (make_const) { 9134 /* This should not have been a very special register to begin. */ 9135 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9136 assert(old_special == 0 || old_special == ARM_CP_NOP); 9137 /* 9138 * Set the special function to CONST, retaining the other flags. 9139 * This is important for e.g. ARM_CP_SVE so that we still 9140 * take the SVE trap if CPTR_EL3.EZ == 0. 9141 */ 9142 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9143 /* 9144 * Usually, these registers become RES0, but there are a few 9145 * special cases like VPIDR_EL2 which have a constant non-zero 9146 * value with writes ignored. 9147 */ 9148 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9149 r2->resetvalue = 0; 9150 } 9151 /* 9152 * ARM_CP_CONST has precedence, so removing the callbacks and 9153 * offsets are not strictly necessary, but it is potentially 9154 * less confusing to debug later. 9155 */ 9156 r2->readfn = NULL; 9157 r2->writefn = NULL; 9158 r2->raw_readfn = NULL; 9159 r2->raw_writefn = NULL; 9160 r2->resetfn = NULL; 9161 r2->fieldoffset = 0; 9162 r2->bank_fieldoffsets[0] = 0; 9163 r2->bank_fieldoffsets[1] = 0; 9164 } else { 9165 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9166 9167 if (isbanked) { 9168 /* 9169 * Register is banked (using both entries in array). 9170 * Overwriting fieldoffset as the array is only used to define 9171 * banked registers but later only fieldoffset is used. 9172 */ 9173 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9174 } 9175 if (state == ARM_CP_STATE_AA32) { 9176 if (isbanked) { 9177 /* 9178 * If the register is banked then we don't need to migrate or 9179 * reset the 32-bit instance in certain cases: 9180 * 9181 * 1) If the register has both 32-bit and 64-bit instances 9182 * then we can count on the 64-bit instance taking care 9183 * of the non-secure bank. 9184 * 2) If ARMv8 is enabled then we can count on a 64-bit 9185 * version taking care of the secure bank. This requires 9186 * that separate 32 and 64-bit definitions are provided. 9187 */ 9188 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9189 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9190 r2->type |= ARM_CP_ALIAS; 9191 } 9192 } else if ((secstate != r->secure) && !ns) { 9193 /* 9194 * The register is not banked so we only want to allow 9195 * migration of the non-secure instance. 9196 */ 9197 r2->type |= ARM_CP_ALIAS; 9198 } 9199 9200 if (HOST_BIG_ENDIAN && 9201 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9202 r2->fieldoffset += sizeof(uint32_t); 9203 } 9204 } 9205 } 9206 9207 /* 9208 * By convention, for wildcarded registers only the first 9209 * entry is used for migration; the others are marked as 9210 * ALIAS so we don't try to transfer the register 9211 * multiple times. Special registers (ie NOP/WFI) are 9212 * never migratable and not even raw-accessible. 9213 */ 9214 if (r2->type & ARM_CP_SPECIAL_MASK) { 9215 r2->type |= ARM_CP_NO_RAW; 9216 } 9217 if (((r->crm == CP_ANY) && crm != 0) || 9218 ((r->opc1 == CP_ANY) && opc1 != 0) || 9219 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9220 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9221 } 9222 9223 /* 9224 * Check that raw accesses are either forbidden or handled. Note that 9225 * we can't assert this earlier because the setup of fieldoffset for 9226 * banked registers has to be done first. 9227 */ 9228 if (!(r2->type & ARM_CP_NO_RAW)) { 9229 assert(!raw_accessors_invalid(r2)); 9230 } 9231 9232 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9233 } 9234 9235 9236 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9237 const ARMCPRegInfo *r, void *opaque) 9238 { 9239 /* 9240 * Define implementations of coprocessor registers. 9241 * We store these in a hashtable because typically 9242 * there are less than 150 registers in a space which 9243 * is 16*16*16*8*8 = 262144 in size. 9244 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9245 * If a register is defined twice then the second definition is 9246 * used, so this can be used to define some generic registers and 9247 * then override them with implementation specific variations. 9248 * At least one of the original and the second definition should 9249 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9250 * against accidental use. 9251 * 9252 * The state field defines whether the register is to be 9253 * visible in the AArch32 or AArch64 execution state. If the 9254 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9255 * reginfo structure for the AArch32 view, which sees the lower 9256 * 32 bits of the 64 bit register. 9257 * 9258 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9259 * be wildcarded. AArch64 registers are always considered to be 64 9260 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9261 * the register, if any. 9262 */ 9263 int crm, opc1, opc2; 9264 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9265 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9266 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9267 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9268 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9269 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9270 CPState state; 9271 9272 /* 64 bit registers have only CRm and Opc1 fields */ 9273 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9274 /* op0 only exists in the AArch64 encodings */ 9275 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9276 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9277 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9278 /* 9279 * This API is only for Arm's system coprocessors (14 and 15) or 9280 * (M-profile or v7A-and-earlier only) for implementation defined 9281 * coprocessors in the range 0..7. Our decode assumes this, since 9282 * 8..13 can be used for other insns including VFP and Neon. See 9283 * valid_cp() in translate.c. Assert here that we haven't tried 9284 * to use an invalid coprocessor number. 9285 */ 9286 switch (r->state) { 9287 case ARM_CP_STATE_BOTH: 9288 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9289 if (r->cp == 0) { 9290 break; 9291 } 9292 /* fall through */ 9293 case ARM_CP_STATE_AA32: 9294 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9295 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9296 assert(r->cp >= 14 && r->cp <= 15); 9297 } else { 9298 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9299 } 9300 break; 9301 case ARM_CP_STATE_AA64: 9302 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9303 break; 9304 default: 9305 g_assert_not_reached(); 9306 } 9307 /* 9308 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9309 * encodes a minimum access level for the register. We roll this 9310 * runtime check into our general permission check code, so check 9311 * here that the reginfo's specified permissions are strict enough 9312 * to encompass the generic architectural permission check. 9313 */ 9314 if (r->state != ARM_CP_STATE_AA32) { 9315 CPAccessRights mask; 9316 switch (r->opc1) { 9317 case 0: 9318 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9319 mask = PL0U_R | PL1_RW; 9320 break; 9321 case 1: case 2: 9322 /* min_EL EL1 */ 9323 mask = PL1_RW; 9324 break; 9325 case 3: 9326 /* min_EL EL0 */ 9327 mask = PL0_RW; 9328 break; 9329 case 4: 9330 case 5: 9331 /* min_EL EL2 */ 9332 mask = PL2_RW; 9333 break; 9334 case 6: 9335 /* min_EL EL3 */ 9336 mask = PL3_RW; 9337 break; 9338 case 7: 9339 /* min_EL EL1, secure mode only (we don't check the latter) */ 9340 mask = PL1_RW; 9341 break; 9342 default: 9343 /* broken reginfo with out-of-range opc1 */ 9344 g_assert_not_reached(); 9345 } 9346 /* assert our permissions are not too lax (stricter is fine) */ 9347 assert((r->access & ~mask) == 0); 9348 } 9349 9350 /* 9351 * Check that the register definition has enough info to handle 9352 * reads and writes if they are permitted. 9353 */ 9354 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9355 if (r->access & PL3_R) { 9356 assert((r->fieldoffset || 9357 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9358 r->readfn); 9359 } 9360 if (r->access & PL3_W) { 9361 assert((r->fieldoffset || 9362 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9363 r->writefn); 9364 } 9365 } 9366 9367 for (crm = crmmin; crm <= crmmax; crm++) { 9368 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9369 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9370 for (state = ARM_CP_STATE_AA32; 9371 state <= ARM_CP_STATE_AA64; state++) { 9372 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9373 continue; 9374 } 9375 if ((r->type & ARM_CP_ADD_TLBI_NXS) && 9376 cpu_isar_feature(aa64_xs, cpu)) { 9377 /* 9378 * This is a TLBI insn which has an NXS variant. The 9379 * NXS variant is at the same encoding except that 9380 * crn is +1, and has the same behaviour except for 9381 * fine-grained trapping. Add the NXS insn here and 9382 * then fall through to add the normal register. 9383 * add_cpreg_to_hashtable() copies the cpreg struct 9384 * and name that it is passed, so it's OK to use 9385 * a local struct here. 9386 */ 9387 ARMCPRegInfo nxs_ri = *r; 9388 g_autofree char *name = g_strdup_printf("%sNXS", r->name); 9389 9390 assert(state == ARM_CP_STATE_AA64); 9391 assert(nxs_ri.crn < 0xf); 9392 nxs_ri.crn++; 9393 if (nxs_ri.fgt) { 9394 nxs_ri.fgt |= R_FGT_NXS_MASK; 9395 } 9396 add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state, 9397 ARM_CP_SECSTATE_NS, 9398 crm, opc1, opc2, name); 9399 } 9400 if (state == ARM_CP_STATE_AA32) { 9401 /* 9402 * Under AArch32 CP registers can be common 9403 * (same for secure and non-secure world) or banked. 9404 */ 9405 char *name; 9406 9407 switch (r->secure) { 9408 case ARM_CP_SECSTATE_S: 9409 case ARM_CP_SECSTATE_NS: 9410 add_cpreg_to_hashtable(cpu, r, opaque, state, 9411 r->secure, crm, opc1, opc2, 9412 r->name); 9413 break; 9414 case ARM_CP_SECSTATE_BOTH: 9415 name = g_strdup_printf("%s_S", r->name); 9416 add_cpreg_to_hashtable(cpu, r, opaque, state, 9417 ARM_CP_SECSTATE_S, 9418 crm, opc1, opc2, name); 9419 g_free(name); 9420 add_cpreg_to_hashtable(cpu, r, opaque, state, 9421 ARM_CP_SECSTATE_NS, 9422 crm, opc1, opc2, r->name); 9423 break; 9424 default: 9425 g_assert_not_reached(); 9426 } 9427 } else { 9428 /* 9429 * AArch64 registers get mapped to non-secure instance 9430 * of AArch32 9431 */ 9432 add_cpreg_to_hashtable(cpu, r, opaque, state, 9433 ARM_CP_SECSTATE_NS, 9434 crm, opc1, opc2, r->name); 9435 } 9436 } 9437 } 9438 } 9439 } 9440 } 9441 9442 /* Define a whole list of registers */ 9443 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9444 void *opaque, size_t len) 9445 { 9446 size_t i; 9447 for (i = 0; i < len; ++i) { 9448 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9449 } 9450 } 9451 9452 /* 9453 * Modify ARMCPRegInfo for access from userspace. 9454 * 9455 * This is a data driven modification directed by 9456 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9457 * user-space cannot alter any values and dynamic values pertaining to 9458 * execution state are hidden from user space view anyway. 9459 */ 9460 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9461 const ARMCPRegUserSpaceInfo *mods, 9462 size_t mods_len) 9463 { 9464 for (size_t mi = 0; mi < mods_len; ++mi) { 9465 const ARMCPRegUserSpaceInfo *m = mods + mi; 9466 GPatternSpec *pat = NULL; 9467 9468 if (m->is_glob) { 9469 pat = g_pattern_spec_new(m->name); 9470 } 9471 for (size_t ri = 0; ri < regs_len; ++ri) { 9472 ARMCPRegInfo *r = regs + ri; 9473 9474 if (pat && g_pattern_match_string(pat, r->name)) { 9475 r->type = ARM_CP_CONST; 9476 r->access = PL0U_R; 9477 r->resetvalue = 0; 9478 /* continue */ 9479 } else if (strcmp(r->name, m->name) == 0) { 9480 r->type = ARM_CP_CONST; 9481 r->access = PL0U_R; 9482 r->resetvalue &= m->exported_bits; 9483 r->resetvalue |= m->fixed_bits; 9484 break; 9485 } 9486 } 9487 if (pat) { 9488 g_pattern_spec_free(pat); 9489 } 9490 } 9491 } 9492 9493 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9494 { 9495 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9496 } 9497 9498 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9499 uint64_t value) 9500 { 9501 /* Helper coprocessor write function for write-ignore registers */ 9502 } 9503 9504 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9505 { 9506 /* Helper coprocessor write function for read-as-zero registers */ 9507 return 0; 9508 } 9509 9510 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9511 { 9512 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9513 } 9514 9515 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9516 { 9517 /* 9518 * Return true if it is not valid for us to switch to 9519 * this CPU mode (ie all the UNPREDICTABLE cases in 9520 * the ARM ARM CPSRWriteByInstr pseudocode). 9521 */ 9522 9523 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9524 if (write_type == CPSRWriteByInstr && 9525 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9526 mode == ARM_CPU_MODE_HYP)) { 9527 return 1; 9528 } 9529 9530 switch (mode) { 9531 case ARM_CPU_MODE_USR: 9532 return 0; 9533 case ARM_CPU_MODE_SYS: 9534 case ARM_CPU_MODE_SVC: 9535 case ARM_CPU_MODE_ABT: 9536 case ARM_CPU_MODE_UND: 9537 case ARM_CPU_MODE_IRQ: 9538 case ARM_CPU_MODE_FIQ: 9539 /* 9540 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9541 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9542 */ 9543 /* 9544 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9545 * and CPS are treated as illegal mode changes. 9546 */ 9547 if (write_type == CPSRWriteByInstr && 9548 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9549 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9550 return 1; 9551 } 9552 return 0; 9553 case ARM_CPU_MODE_HYP: 9554 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9555 case ARM_CPU_MODE_MON: 9556 return arm_current_el(env) < 3; 9557 default: 9558 return 1; 9559 } 9560 } 9561 9562 uint32_t cpsr_read(CPUARMState *env) 9563 { 9564 int ZF; 9565 ZF = (env->ZF == 0); 9566 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9567 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9568 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9569 | ((env->condexec_bits & 0xfc) << 8) 9570 | (env->GE << 16) | (env->daif & CPSR_AIF); 9571 } 9572 9573 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9574 CPSRWriteType write_type) 9575 { 9576 uint32_t changed_daif; 9577 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9578 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9579 9580 if (mask & CPSR_NZCV) { 9581 env->ZF = (~val) & CPSR_Z; 9582 env->NF = val; 9583 env->CF = (val >> 29) & 1; 9584 env->VF = (val << 3) & 0x80000000; 9585 } 9586 if (mask & CPSR_Q) { 9587 env->QF = ((val & CPSR_Q) != 0); 9588 } 9589 if (mask & CPSR_T) { 9590 env->thumb = ((val & CPSR_T) != 0); 9591 } 9592 if (mask & CPSR_IT_0_1) { 9593 env->condexec_bits &= ~3; 9594 env->condexec_bits |= (val >> 25) & 3; 9595 } 9596 if (mask & CPSR_IT_2_7) { 9597 env->condexec_bits &= 3; 9598 env->condexec_bits |= (val >> 8) & 0xfc; 9599 } 9600 if (mask & CPSR_GE) { 9601 env->GE = (val >> 16) & 0xf; 9602 } 9603 9604 /* 9605 * In a V7 implementation that includes the security extensions but does 9606 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9607 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9608 * bits respectively. 9609 * 9610 * In a V8 implementation, it is permitted for privileged software to 9611 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9612 */ 9613 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9614 arm_feature(env, ARM_FEATURE_EL3) && 9615 !arm_feature(env, ARM_FEATURE_EL2) && 9616 !arm_is_secure(env)) { 9617 9618 changed_daif = (env->daif ^ val) & mask; 9619 9620 if (changed_daif & CPSR_A) { 9621 /* 9622 * Check to see if we are allowed to change the masking of async 9623 * abort exceptions from a non-secure state. 9624 */ 9625 if (!(env->cp15.scr_el3 & SCR_AW)) { 9626 qemu_log_mask(LOG_GUEST_ERROR, 9627 "Ignoring attempt to switch CPSR_A flag from " 9628 "non-secure world with SCR.AW bit clear\n"); 9629 mask &= ~CPSR_A; 9630 } 9631 } 9632 9633 if (changed_daif & CPSR_F) { 9634 /* 9635 * Check to see if we are allowed to change the masking of FIQ 9636 * exceptions from a non-secure state. 9637 */ 9638 if (!(env->cp15.scr_el3 & SCR_FW)) { 9639 qemu_log_mask(LOG_GUEST_ERROR, 9640 "Ignoring attempt to switch CPSR_F flag from " 9641 "non-secure world with SCR.FW bit clear\n"); 9642 mask &= ~CPSR_F; 9643 } 9644 9645 /* 9646 * Check whether non-maskable FIQ (NMFI) support is enabled. 9647 * If this bit is set software is not allowed to mask 9648 * FIQs, but is allowed to set CPSR_F to 0. 9649 */ 9650 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9651 (val & CPSR_F)) { 9652 qemu_log_mask(LOG_GUEST_ERROR, 9653 "Ignoring attempt to enable CPSR_F flag " 9654 "(non-maskable FIQ [NMFI] support enabled)\n"); 9655 mask &= ~CPSR_F; 9656 } 9657 } 9658 } 9659 9660 env->daif &= ~(CPSR_AIF & mask); 9661 env->daif |= val & CPSR_AIF & mask; 9662 9663 if (write_type != CPSRWriteRaw && 9664 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9665 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9666 /* 9667 * Note that we can only get here in USR mode if this is a 9668 * gdb stub write; for this case we follow the architectural 9669 * behaviour for guest writes in USR mode of ignoring an attempt 9670 * to switch mode. (Those are caught by translate.c for writes 9671 * triggered by guest instructions.) 9672 */ 9673 mask &= ~CPSR_M; 9674 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9675 /* 9676 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9677 * v7, and has defined behaviour in v8: 9678 * + leave CPSR.M untouched 9679 * + allow changes to the other CPSR fields 9680 * + set PSTATE.IL 9681 * For user changes via the GDB stub, we don't set PSTATE.IL, 9682 * as this would be unnecessarily harsh for a user error. 9683 */ 9684 mask &= ~CPSR_M; 9685 if (write_type != CPSRWriteByGDBStub && 9686 arm_feature(env, ARM_FEATURE_V8)) { 9687 mask |= CPSR_IL; 9688 val |= CPSR_IL; 9689 } 9690 qemu_log_mask(LOG_GUEST_ERROR, 9691 "Illegal AArch32 mode switch attempt from %s to %s\n", 9692 aarch32_mode_name(env->uncached_cpsr), 9693 aarch32_mode_name(val)); 9694 } else { 9695 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9696 write_type == CPSRWriteExceptionReturn ? 9697 "Exception return from AArch32" : 9698 "AArch32 mode switch from", 9699 aarch32_mode_name(env->uncached_cpsr), 9700 aarch32_mode_name(val), env->regs[15]); 9701 switch_mode(env, val & CPSR_M); 9702 } 9703 } 9704 mask &= ~CACHED_CPSR_BITS; 9705 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9706 if (tcg_enabled() && rebuild_hflags) { 9707 arm_rebuild_hflags(env); 9708 } 9709 } 9710 9711 #ifdef CONFIG_USER_ONLY 9712 9713 static void switch_mode(CPUARMState *env, int mode) 9714 { 9715 ARMCPU *cpu = env_archcpu(env); 9716 9717 if (mode != ARM_CPU_MODE_USR) { 9718 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9719 } 9720 } 9721 9722 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9723 uint32_t cur_el, bool secure) 9724 { 9725 return 1; 9726 } 9727 9728 void aarch64_sync_64_to_32(CPUARMState *env) 9729 { 9730 g_assert_not_reached(); 9731 } 9732 9733 #else 9734 9735 static void switch_mode(CPUARMState *env, int mode) 9736 { 9737 int old_mode; 9738 int i; 9739 9740 old_mode = env->uncached_cpsr & CPSR_M; 9741 if (mode == old_mode) { 9742 return; 9743 } 9744 9745 if (old_mode == ARM_CPU_MODE_FIQ) { 9746 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9747 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9748 } else if (mode == ARM_CPU_MODE_FIQ) { 9749 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9750 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9751 } 9752 9753 i = bank_number(old_mode); 9754 env->banked_r13[i] = env->regs[13]; 9755 env->banked_spsr[i] = env->spsr; 9756 9757 i = bank_number(mode); 9758 env->regs[13] = env->banked_r13[i]; 9759 env->spsr = env->banked_spsr[i]; 9760 9761 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9762 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9763 } 9764 9765 /* 9766 * Physical Interrupt Target EL Lookup Table 9767 * 9768 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9769 * 9770 * The below multi-dimensional table is used for looking up the target 9771 * exception level given numerous condition criteria. Specifically, the 9772 * target EL is based on SCR and HCR routing controls as well as the 9773 * currently executing EL and secure state. 9774 * 9775 * Dimensions: 9776 * target_el_table[2][2][2][2][2][4] 9777 * | | | | | +--- Current EL 9778 * | | | | +------ Non-secure(0)/Secure(1) 9779 * | | | +--------- HCR mask override 9780 * | | +------------ SCR exec state control 9781 * | +--------------- SCR mask override 9782 * +------------------ 32-bit(0)/64-bit(1) EL3 9783 * 9784 * The table values are as such: 9785 * 0-3 = EL0-EL3 9786 * -1 = Cannot occur 9787 * 9788 * The ARM ARM target EL table includes entries indicating that an "exception 9789 * is not taken". The two cases where this is applicable are: 9790 * 1) An exception is taken from EL3 but the SCR does not have the exception 9791 * routed to EL3. 9792 * 2) An exception is taken from EL2 but the HCR does not have the exception 9793 * routed to EL2. 9794 * In these two cases, the below table contain a target of EL1. This value is 9795 * returned as it is expected that the consumer of the table data will check 9796 * for "target EL >= current EL" to ensure the exception is not taken. 9797 * 9798 * SCR HCR 9799 * 64 EA AMO From 9800 * BIT IRQ IMO Non-secure Secure 9801 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9802 */ 9803 static const int8_t target_el_table[2][2][2][2][2][4] = { 9804 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9805 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9806 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9807 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9808 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9809 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9810 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9811 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9812 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9813 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9814 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9815 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9816 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9817 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9818 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9819 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9820 }; 9821 9822 /* 9823 * Determine the target EL for physical exceptions 9824 */ 9825 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9826 uint32_t cur_el, bool secure) 9827 { 9828 CPUARMState *env = cpu_env(cs); 9829 bool rw; 9830 bool scr; 9831 bool hcr; 9832 int target_el; 9833 /* Is the highest EL AArch64? */ 9834 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9835 uint64_t hcr_el2; 9836 9837 if (arm_feature(env, ARM_FEATURE_EL3)) { 9838 rw = arm_scr_rw_eff(env); 9839 } else { 9840 /* 9841 * Either EL2 is the highest EL (and so the EL2 register width 9842 * is given by is64); or there is no EL2 or EL3, in which case 9843 * the value of 'rw' does not affect the table lookup anyway. 9844 */ 9845 rw = is64; 9846 } 9847 9848 hcr_el2 = arm_hcr_el2_eff(env); 9849 switch (excp_idx) { 9850 case EXCP_IRQ: 9851 case EXCP_NMI: 9852 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9853 hcr = hcr_el2 & HCR_IMO; 9854 break; 9855 case EXCP_FIQ: 9856 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9857 hcr = hcr_el2 & HCR_FMO; 9858 break; 9859 default: 9860 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9861 hcr = hcr_el2 & HCR_AMO; 9862 break; 9863 }; 9864 9865 /* 9866 * For these purposes, TGE and AMO/IMO/FMO both force the 9867 * interrupt to EL2. Fold TGE into the bit extracted above. 9868 */ 9869 hcr |= (hcr_el2 & HCR_TGE) != 0; 9870 9871 /* Perform a table-lookup for the target EL given the current state */ 9872 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9873 9874 assert(target_el > 0); 9875 9876 return target_el; 9877 } 9878 9879 void arm_log_exception(CPUState *cs) 9880 { 9881 int idx = cs->exception_index; 9882 9883 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9884 const char *exc = NULL; 9885 static const char * const excnames[] = { 9886 [EXCP_UDEF] = "Undefined Instruction", 9887 [EXCP_SWI] = "SVC", 9888 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9889 [EXCP_DATA_ABORT] = "Data Abort", 9890 [EXCP_IRQ] = "IRQ", 9891 [EXCP_FIQ] = "FIQ", 9892 [EXCP_BKPT] = "Breakpoint", 9893 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9894 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9895 [EXCP_HVC] = "Hypervisor Call", 9896 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9897 [EXCP_SMC] = "Secure Monitor Call", 9898 [EXCP_VIRQ] = "Virtual IRQ", 9899 [EXCP_VFIQ] = "Virtual FIQ", 9900 [EXCP_SEMIHOST] = "Semihosting call", 9901 [EXCP_NOCP] = "v7M NOCP UsageFault", 9902 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9903 [EXCP_STKOF] = "v8M STKOF UsageFault", 9904 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9905 [EXCP_LSERR] = "v8M LSERR UsageFault", 9906 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9907 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9908 [EXCP_VSERR] = "Virtual SERR", 9909 [EXCP_GPC] = "Granule Protection Check", 9910 [EXCP_NMI] = "NMI", 9911 [EXCP_VINMI] = "Virtual IRQ NMI", 9912 [EXCP_VFNMI] = "Virtual FIQ NMI", 9913 [EXCP_MON_TRAP] = "Monitor Trap", 9914 }; 9915 9916 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9917 exc = excnames[idx]; 9918 } 9919 if (!exc) { 9920 exc = "unknown"; 9921 } 9922 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9923 idx, exc, cs->cpu_index); 9924 } 9925 } 9926 9927 /* 9928 * Function used to synchronize QEMU's AArch64 register set with AArch32 9929 * register set. This is necessary when switching between AArch32 and AArch64 9930 * execution state. 9931 */ 9932 void aarch64_sync_32_to_64(CPUARMState *env) 9933 { 9934 int i; 9935 uint32_t mode = env->uncached_cpsr & CPSR_M; 9936 9937 /* We can blanket copy R[0:7] to X[0:7] */ 9938 for (i = 0; i < 8; i++) { 9939 env->xregs[i] = env->regs[i]; 9940 } 9941 9942 /* 9943 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9944 * Otherwise, they come from the banked user regs. 9945 */ 9946 if (mode == ARM_CPU_MODE_FIQ) { 9947 for (i = 8; i < 13; i++) { 9948 env->xregs[i] = env->usr_regs[i - 8]; 9949 } 9950 } else { 9951 for (i = 8; i < 13; i++) { 9952 env->xregs[i] = env->regs[i]; 9953 } 9954 } 9955 9956 /* 9957 * Registers x13-x23 are the various mode SP and FP registers. Registers 9958 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9959 * from the mode banked register. 9960 */ 9961 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9962 env->xregs[13] = env->regs[13]; 9963 env->xregs[14] = env->regs[14]; 9964 } else { 9965 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9966 /* HYP is an exception in that it is copied from r14 */ 9967 if (mode == ARM_CPU_MODE_HYP) { 9968 env->xregs[14] = env->regs[14]; 9969 } else { 9970 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9971 } 9972 } 9973 9974 if (mode == ARM_CPU_MODE_HYP) { 9975 env->xregs[15] = env->regs[13]; 9976 } else { 9977 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9978 } 9979 9980 if (mode == ARM_CPU_MODE_IRQ) { 9981 env->xregs[16] = env->regs[14]; 9982 env->xregs[17] = env->regs[13]; 9983 } else { 9984 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9985 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9986 } 9987 9988 if (mode == ARM_CPU_MODE_SVC) { 9989 env->xregs[18] = env->regs[14]; 9990 env->xregs[19] = env->regs[13]; 9991 } else { 9992 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9993 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9994 } 9995 9996 if (mode == ARM_CPU_MODE_ABT) { 9997 env->xregs[20] = env->regs[14]; 9998 env->xregs[21] = env->regs[13]; 9999 } else { 10000 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10001 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10002 } 10003 10004 if (mode == ARM_CPU_MODE_UND) { 10005 env->xregs[22] = env->regs[14]; 10006 env->xregs[23] = env->regs[13]; 10007 } else { 10008 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10009 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10010 } 10011 10012 /* 10013 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10014 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10015 * FIQ bank for r8-r14. 10016 */ 10017 if (mode == ARM_CPU_MODE_FIQ) { 10018 for (i = 24; i < 31; i++) { 10019 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10020 } 10021 } else { 10022 for (i = 24; i < 29; i++) { 10023 env->xregs[i] = env->fiq_regs[i - 24]; 10024 } 10025 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10026 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10027 } 10028 10029 env->pc = env->regs[15]; 10030 } 10031 10032 /* 10033 * Function used to synchronize QEMU's AArch32 register set with AArch64 10034 * register set. This is necessary when switching between AArch32 and AArch64 10035 * execution state. 10036 */ 10037 void aarch64_sync_64_to_32(CPUARMState *env) 10038 { 10039 int i; 10040 uint32_t mode = env->uncached_cpsr & CPSR_M; 10041 10042 /* We can blanket copy X[0:7] to R[0:7] */ 10043 for (i = 0; i < 8; i++) { 10044 env->regs[i] = env->xregs[i]; 10045 } 10046 10047 /* 10048 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10049 * Otherwise, we copy x8-x12 into the banked user regs. 10050 */ 10051 if (mode == ARM_CPU_MODE_FIQ) { 10052 for (i = 8; i < 13; i++) { 10053 env->usr_regs[i - 8] = env->xregs[i]; 10054 } 10055 } else { 10056 for (i = 8; i < 13; i++) { 10057 env->regs[i] = env->xregs[i]; 10058 } 10059 } 10060 10061 /* 10062 * Registers r13 & r14 depend on the current mode. 10063 * If we are in a given mode, we copy the corresponding x registers to r13 10064 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10065 * for the mode. 10066 */ 10067 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10068 env->regs[13] = env->xregs[13]; 10069 env->regs[14] = env->xregs[14]; 10070 } else { 10071 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10072 10073 /* 10074 * HYP is an exception in that it does not have its own banked r14 but 10075 * shares the USR r14 10076 */ 10077 if (mode == ARM_CPU_MODE_HYP) { 10078 env->regs[14] = env->xregs[14]; 10079 } else { 10080 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10081 } 10082 } 10083 10084 if (mode == ARM_CPU_MODE_HYP) { 10085 env->regs[13] = env->xregs[15]; 10086 } else { 10087 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10088 } 10089 10090 if (mode == ARM_CPU_MODE_IRQ) { 10091 env->regs[14] = env->xregs[16]; 10092 env->regs[13] = env->xregs[17]; 10093 } else { 10094 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10095 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10096 } 10097 10098 if (mode == ARM_CPU_MODE_SVC) { 10099 env->regs[14] = env->xregs[18]; 10100 env->regs[13] = env->xregs[19]; 10101 } else { 10102 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10103 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10104 } 10105 10106 if (mode == ARM_CPU_MODE_ABT) { 10107 env->regs[14] = env->xregs[20]; 10108 env->regs[13] = env->xregs[21]; 10109 } else { 10110 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10111 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10112 } 10113 10114 if (mode == ARM_CPU_MODE_UND) { 10115 env->regs[14] = env->xregs[22]; 10116 env->regs[13] = env->xregs[23]; 10117 } else { 10118 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10119 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10120 } 10121 10122 /* 10123 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10124 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10125 * FIQ bank for r8-r14. 10126 */ 10127 if (mode == ARM_CPU_MODE_FIQ) { 10128 for (i = 24; i < 31; i++) { 10129 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10130 } 10131 } else { 10132 for (i = 24; i < 29; i++) { 10133 env->fiq_regs[i - 24] = env->xregs[i]; 10134 } 10135 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10136 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10137 } 10138 10139 env->regs[15] = env->pc; 10140 } 10141 10142 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10143 uint32_t mask, uint32_t offset, 10144 uint32_t newpc) 10145 { 10146 int new_el; 10147 10148 /* Change the CPU state so as to actually take the exception. */ 10149 switch_mode(env, new_mode); 10150 10151 /* 10152 * For exceptions taken to AArch32 we must clear the SS bit in both 10153 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10154 */ 10155 env->pstate &= ~PSTATE_SS; 10156 env->spsr = cpsr_read(env); 10157 /* Clear IT bits. */ 10158 env->condexec_bits = 0; 10159 /* Switch to the new mode, and to the correct instruction set. */ 10160 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10161 10162 /* This must be after mode switching. */ 10163 new_el = arm_current_el(env); 10164 10165 /* Set new mode endianness */ 10166 env->uncached_cpsr &= ~CPSR_E; 10167 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10168 env->uncached_cpsr |= CPSR_E; 10169 } 10170 /* J and IL must always be cleared for exception entry */ 10171 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10172 env->daif |= mask; 10173 10174 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10175 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10176 env->uncached_cpsr |= CPSR_SSBS; 10177 } else { 10178 env->uncached_cpsr &= ~CPSR_SSBS; 10179 } 10180 } 10181 10182 if (new_mode == ARM_CPU_MODE_HYP) { 10183 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10184 env->elr_el[2] = env->regs[15]; 10185 } else { 10186 /* CPSR.PAN is normally preserved preserved unless... */ 10187 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10188 switch (new_el) { 10189 case 3: 10190 if (!arm_is_secure_below_el3(env)) { 10191 /* ... the target is EL3, from non-secure state. */ 10192 env->uncached_cpsr &= ~CPSR_PAN; 10193 break; 10194 } 10195 /* ... the target is EL3, from secure state ... */ 10196 /* fall through */ 10197 case 1: 10198 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10199 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10200 env->uncached_cpsr |= CPSR_PAN; 10201 } 10202 break; 10203 } 10204 } 10205 /* 10206 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10207 * and we should just guard the thumb mode on V4 10208 */ 10209 if (arm_feature(env, ARM_FEATURE_V4T)) { 10210 env->thumb = 10211 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10212 } 10213 env->regs[14] = env->regs[15] + offset; 10214 } 10215 env->regs[15] = newpc; 10216 10217 if (tcg_enabled()) { 10218 arm_rebuild_hflags(env); 10219 } 10220 } 10221 10222 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10223 { 10224 /* 10225 * Handle exception entry to Hyp mode; this is sufficiently 10226 * different to entry to other AArch32 modes that we handle it 10227 * separately here. 10228 * 10229 * The vector table entry used is always the 0x14 Hyp mode entry point, 10230 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10231 * The offset applied to the preferred return address is always zero 10232 * (see DDI0487C.a section G1.12.3). 10233 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10234 */ 10235 uint32_t addr, mask; 10236 ARMCPU *cpu = ARM_CPU(cs); 10237 CPUARMState *env = &cpu->env; 10238 10239 switch (cs->exception_index) { 10240 case EXCP_UDEF: 10241 addr = 0x04; 10242 break; 10243 case EXCP_SWI: 10244 addr = 0x08; 10245 break; 10246 case EXCP_BKPT: 10247 /* Fall through to prefetch abort. */ 10248 case EXCP_PREFETCH_ABORT: 10249 env->cp15.ifar_s = env->exception.vaddress; 10250 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10251 (uint32_t)env->exception.vaddress); 10252 addr = 0x0c; 10253 break; 10254 case EXCP_DATA_ABORT: 10255 env->cp15.dfar_s = env->exception.vaddress; 10256 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10257 (uint32_t)env->exception.vaddress); 10258 addr = 0x10; 10259 break; 10260 case EXCP_IRQ: 10261 addr = 0x18; 10262 break; 10263 case EXCP_FIQ: 10264 addr = 0x1c; 10265 break; 10266 case EXCP_HVC: 10267 addr = 0x08; 10268 break; 10269 case EXCP_HYP_TRAP: 10270 addr = 0x14; 10271 break; 10272 default: 10273 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10274 } 10275 10276 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10277 if (!arm_feature(env, ARM_FEATURE_V8)) { 10278 /* 10279 * QEMU syndrome values are v8-style. v7 has the IL bit 10280 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10281 * If this is a v7 CPU, squash the IL bit in those cases. 10282 */ 10283 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10284 (cs->exception_index == EXCP_DATA_ABORT && 10285 !(env->exception.syndrome & ARM_EL_ISV)) || 10286 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10287 env->exception.syndrome &= ~ARM_EL_IL; 10288 } 10289 } 10290 env->cp15.esr_el[2] = env->exception.syndrome; 10291 } 10292 10293 if (arm_current_el(env) != 2 && addr < 0x14) { 10294 addr = 0x14; 10295 } 10296 10297 mask = 0; 10298 if (!(env->cp15.scr_el3 & SCR_EA)) { 10299 mask |= CPSR_A; 10300 } 10301 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10302 mask |= CPSR_I; 10303 } 10304 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10305 mask |= CPSR_F; 10306 } 10307 10308 addr += env->cp15.hvbar; 10309 10310 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10311 } 10312 10313 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10314 { 10315 ARMCPU *cpu = ARM_CPU(cs); 10316 CPUARMState *env = &cpu->env; 10317 uint32_t addr; 10318 uint32_t mask; 10319 int new_mode; 10320 uint32_t offset; 10321 uint32_t moe; 10322 10323 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10324 switch (syn_get_ec(env->exception.syndrome)) { 10325 case EC_BREAKPOINT: 10326 case EC_BREAKPOINT_SAME_EL: 10327 moe = 1; 10328 break; 10329 case EC_WATCHPOINT: 10330 case EC_WATCHPOINT_SAME_EL: 10331 moe = 10; 10332 break; 10333 case EC_AA32_BKPT: 10334 moe = 3; 10335 break; 10336 case EC_VECTORCATCH: 10337 moe = 5; 10338 break; 10339 default: 10340 moe = 0; 10341 break; 10342 } 10343 10344 if (moe) { 10345 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10346 } 10347 10348 if (env->exception.target_el == 2) { 10349 /* Debug exceptions are reported differently on AArch32 */ 10350 switch (syn_get_ec(env->exception.syndrome)) { 10351 case EC_BREAKPOINT: 10352 case EC_BREAKPOINT_SAME_EL: 10353 case EC_AA32_BKPT: 10354 case EC_VECTORCATCH: 10355 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 10356 0, 0, 0x22); 10357 break; 10358 case EC_WATCHPOINT: 10359 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10360 EC_DATAABORT); 10361 break; 10362 case EC_WATCHPOINT_SAME_EL: 10363 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10364 EC_DATAABORT_SAME_EL); 10365 break; 10366 } 10367 arm_cpu_do_interrupt_aarch32_hyp(cs); 10368 return; 10369 } 10370 10371 switch (cs->exception_index) { 10372 case EXCP_UDEF: 10373 new_mode = ARM_CPU_MODE_UND; 10374 addr = 0x04; 10375 mask = CPSR_I; 10376 if (env->thumb) { 10377 offset = 2; 10378 } else { 10379 offset = 4; 10380 } 10381 break; 10382 case EXCP_SWI: 10383 new_mode = ARM_CPU_MODE_SVC; 10384 addr = 0x08; 10385 mask = CPSR_I; 10386 /* The PC already points to the next instruction. */ 10387 offset = 0; 10388 break; 10389 case EXCP_BKPT: 10390 /* Fall through to prefetch abort. */ 10391 case EXCP_PREFETCH_ABORT: 10392 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10393 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10394 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10395 env->exception.fsr, (uint32_t)env->exception.vaddress); 10396 new_mode = ARM_CPU_MODE_ABT; 10397 addr = 0x0c; 10398 mask = CPSR_A | CPSR_I; 10399 offset = 4; 10400 break; 10401 case EXCP_DATA_ABORT: 10402 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10403 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10404 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10405 env->exception.fsr, 10406 (uint32_t)env->exception.vaddress); 10407 new_mode = ARM_CPU_MODE_ABT; 10408 addr = 0x10; 10409 mask = CPSR_A | CPSR_I; 10410 offset = 8; 10411 break; 10412 case EXCP_IRQ: 10413 new_mode = ARM_CPU_MODE_IRQ; 10414 addr = 0x18; 10415 /* Disable IRQ and imprecise data aborts. */ 10416 mask = CPSR_A | CPSR_I; 10417 offset = 4; 10418 if (env->cp15.scr_el3 & SCR_IRQ) { 10419 /* IRQ routed to monitor mode */ 10420 new_mode = ARM_CPU_MODE_MON; 10421 mask |= CPSR_F; 10422 } 10423 break; 10424 case EXCP_FIQ: 10425 new_mode = ARM_CPU_MODE_FIQ; 10426 addr = 0x1c; 10427 /* Disable FIQ, IRQ and imprecise data aborts. */ 10428 mask = CPSR_A | CPSR_I | CPSR_F; 10429 if (env->cp15.scr_el3 & SCR_FIQ) { 10430 /* FIQ routed to monitor mode */ 10431 new_mode = ARM_CPU_MODE_MON; 10432 } 10433 offset = 4; 10434 break; 10435 case EXCP_VIRQ: 10436 new_mode = ARM_CPU_MODE_IRQ; 10437 addr = 0x18; 10438 /* Disable IRQ and imprecise data aborts. */ 10439 mask = CPSR_A | CPSR_I; 10440 offset = 4; 10441 break; 10442 case EXCP_VFIQ: 10443 new_mode = ARM_CPU_MODE_FIQ; 10444 addr = 0x1c; 10445 /* Disable FIQ, IRQ and imprecise data aborts. */ 10446 mask = CPSR_A | CPSR_I | CPSR_F; 10447 offset = 4; 10448 break; 10449 case EXCP_VSERR: 10450 { 10451 /* 10452 * Note that this is reported as a data abort, but the DFAR 10453 * has an UNKNOWN value. Construct the SError syndrome from 10454 * AET and ExT fields. 10455 */ 10456 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10457 10458 if (extended_addresses_enabled(env)) { 10459 env->exception.fsr = arm_fi_to_lfsc(&fi); 10460 } else { 10461 env->exception.fsr = arm_fi_to_sfsc(&fi); 10462 } 10463 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10464 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10465 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10466 env->exception.fsr); 10467 10468 new_mode = ARM_CPU_MODE_ABT; 10469 addr = 0x10; 10470 mask = CPSR_A | CPSR_I; 10471 offset = 8; 10472 } 10473 break; 10474 case EXCP_SMC: 10475 new_mode = ARM_CPU_MODE_MON; 10476 addr = 0x08; 10477 mask = CPSR_A | CPSR_I | CPSR_F; 10478 offset = 0; 10479 break; 10480 case EXCP_MON_TRAP: 10481 new_mode = ARM_CPU_MODE_MON; 10482 addr = 0x04; 10483 mask = CPSR_A | CPSR_I | CPSR_F; 10484 if (env->thumb) { 10485 offset = 2; 10486 } else { 10487 offset = 4; 10488 } 10489 break; 10490 default: 10491 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10492 return; /* Never happens. Keep compiler happy. */ 10493 } 10494 10495 if (new_mode == ARM_CPU_MODE_MON) { 10496 addr += env->cp15.mvbar; 10497 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10498 /* High vectors. When enabled, base address cannot be remapped. */ 10499 addr += 0xffff0000; 10500 } else { 10501 /* 10502 * ARM v7 architectures provide a vector base address register to remap 10503 * the interrupt vector table. 10504 * This register is only followed in non-monitor mode, and is banked. 10505 * Note: only bits 31:5 are valid. 10506 */ 10507 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10508 } 10509 10510 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10511 env->cp15.scr_el3 &= ~SCR_NS; 10512 } 10513 10514 take_aarch32_exception(env, new_mode, mask, offset, addr); 10515 } 10516 10517 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10518 { 10519 /* 10520 * Return the register number of the AArch64 view of the AArch32 10521 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10522 * be that of the AArch32 mode the exception came from. 10523 */ 10524 int mode = env->uncached_cpsr & CPSR_M; 10525 10526 switch (aarch32_reg) { 10527 case 0 ... 7: 10528 return aarch32_reg; 10529 case 8 ... 12: 10530 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10531 case 13: 10532 switch (mode) { 10533 case ARM_CPU_MODE_USR: 10534 case ARM_CPU_MODE_SYS: 10535 return 13; 10536 case ARM_CPU_MODE_HYP: 10537 return 15; 10538 case ARM_CPU_MODE_IRQ: 10539 return 17; 10540 case ARM_CPU_MODE_SVC: 10541 return 19; 10542 case ARM_CPU_MODE_ABT: 10543 return 21; 10544 case ARM_CPU_MODE_UND: 10545 return 23; 10546 case ARM_CPU_MODE_FIQ: 10547 return 29; 10548 default: 10549 g_assert_not_reached(); 10550 } 10551 case 14: 10552 switch (mode) { 10553 case ARM_CPU_MODE_USR: 10554 case ARM_CPU_MODE_SYS: 10555 case ARM_CPU_MODE_HYP: 10556 return 14; 10557 case ARM_CPU_MODE_IRQ: 10558 return 16; 10559 case ARM_CPU_MODE_SVC: 10560 return 18; 10561 case ARM_CPU_MODE_ABT: 10562 return 20; 10563 case ARM_CPU_MODE_UND: 10564 return 22; 10565 case ARM_CPU_MODE_FIQ: 10566 return 30; 10567 default: 10568 g_assert_not_reached(); 10569 } 10570 case 15: 10571 return 31; 10572 default: 10573 g_assert_not_reached(); 10574 } 10575 } 10576 10577 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10578 { 10579 uint32_t ret = cpsr_read(env); 10580 10581 /* Move DIT to the correct location for SPSR_ELx */ 10582 if (ret & CPSR_DIT) { 10583 ret &= ~CPSR_DIT; 10584 ret |= PSTATE_DIT; 10585 } 10586 /* Merge PSTATE.SS into SPSR_ELx */ 10587 ret |= env->pstate & PSTATE_SS; 10588 10589 return ret; 10590 } 10591 10592 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10593 { 10594 /* Return true if this syndrome value is a synchronous external abort */ 10595 switch (syn_get_ec(syndrome)) { 10596 case EC_INSNABORT: 10597 case EC_INSNABORT_SAME_EL: 10598 case EC_DATAABORT: 10599 case EC_DATAABORT_SAME_EL: 10600 /* Look at fault status code for all the synchronous ext abort cases */ 10601 switch (syndrome & 0x3f) { 10602 case 0x10: 10603 case 0x13: 10604 case 0x14: 10605 case 0x15: 10606 case 0x16: 10607 case 0x17: 10608 return true; 10609 default: 10610 return false; 10611 } 10612 default: 10613 return false; 10614 } 10615 } 10616 10617 /* Handle exception entry to a target EL which is using AArch64 */ 10618 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10619 { 10620 ARMCPU *cpu = ARM_CPU(cs); 10621 CPUARMState *env = &cpu->env; 10622 unsigned int new_el = env->exception.target_el; 10623 target_ulong addr = env->cp15.vbar_el[new_el]; 10624 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10625 unsigned int old_mode; 10626 unsigned int cur_el = arm_current_el(env); 10627 int rt; 10628 10629 if (tcg_enabled()) { 10630 /* 10631 * Note that new_el can never be 0. If cur_el is 0, then 10632 * el0_a64 is is_a64(), else el0_a64 is ignored. 10633 */ 10634 #ifdef TARGET_AARCH64 10635 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10636 #endif 10637 } 10638 10639 if (cur_el < new_el) { 10640 /* 10641 * Entry vector offset depends on whether the implemented EL 10642 * immediately lower than the target level is using AArch32 or AArch64 10643 */ 10644 bool is_aa64; 10645 uint64_t hcr; 10646 10647 switch (new_el) { 10648 case 3: 10649 is_aa64 = arm_scr_rw_eff(env); 10650 break; 10651 case 2: 10652 hcr = arm_hcr_el2_eff(env); 10653 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10654 is_aa64 = (hcr & HCR_RW) != 0; 10655 break; 10656 } 10657 /* fall through */ 10658 case 1: 10659 is_aa64 = is_a64(env); 10660 break; 10661 default: 10662 g_assert_not_reached(); 10663 } 10664 10665 if (is_aa64) { 10666 addr += 0x400; 10667 } else { 10668 addr += 0x600; 10669 } 10670 } else if (pstate_read(env) & PSTATE_SP) { 10671 addr += 0x200; 10672 } 10673 10674 switch (cs->exception_index) { 10675 case EXCP_GPC: 10676 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10677 env->cp15.mfar_el3); 10678 /* fall through */ 10679 case EXCP_PREFETCH_ABORT: 10680 case EXCP_DATA_ABORT: 10681 /* 10682 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10683 * to be taken to the SError vector entrypoint. 10684 */ 10685 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10686 syndrome_is_sync_extabt(env->exception.syndrome)) { 10687 addr += 0x180; 10688 } 10689 env->cp15.far_el[new_el] = env->exception.vaddress; 10690 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10691 env->cp15.far_el[new_el]); 10692 /* fall through */ 10693 case EXCP_BKPT: 10694 case EXCP_UDEF: 10695 case EXCP_SWI: 10696 case EXCP_HVC: 10697 case EXCP_HYP_TRAP: 10698 case EXCP_SMC: 10699 switch (syn_get_ec(env->exception.syndrome)) { 10700 case EC_ADVSIMDFPACCESSTRAP: 10701 /* 10702 * QEMU internal FP/SIMD syndromes from AArch32 include the 10703 * TA and coproc fields which are only exposed if the exception 10704 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10705 * AArch64 format syndrome. 10706 */ 10707 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10708 break; 10709 case EC_CP14RTTRAP: 10710 case EC_CP15RTTRAP: 10711 case EC_CP14DTTRAP: 10712 /* 10713 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10714 * the raw register field from the insn; when taking this to 10715 * AArch64 we must convert it to the AArch64 view of the register 10716 * number. Notice that we read a 4-bit AArch32 register number and 10717 * write back a 5-bit AArch64 one. 10718 */ 10719 rt = extract32(env->exception.syndrome, 5, 4); 10720 rt = aarch64_regnum(env, rt); 10721 env->exception.syndrome = deposit32(env->exception.syndrome, 10722 5, 5, rt); 10723 break; 10724 case EC_CP15RRTTRAP: 10725 case EC_CP14RRTTRAP: 10726 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10727 rt = extract32(env->exception.syndrome, 5, 4); 10728 rt = aarch64_regnum(env, rt); 10729 env->exception.syndrome = deposit32(env->exception.syndrome, 10730 5, 5, rt); 10731 rt = extract32(env->exception.syndrome, 10, 4); 10732 rt = aarch64_regnum(env, rt); 10733 env->exception.syndrome = deposit32(env->exception.syndrome, 10734 10, 5, rt); 10735 break; 10736 } 10737 env->cp15.esr_el[new_el] = env->exception.syndrome; 10738 break; 10739 case EXCP_IRQ: 10740 case EXCP_VIRQ: 10741 case EXCP_NMI: 10742 case EXCP_VINMI: 10743 addr += 0x80; 10744 break; 10745 case EXCP_FIQ: 10746 case EXCP_VFIQ: 10747 case EXCP_VFNMI: 10748 addr += 0x100; 10749 break; 10750 case EXCP_VSERR: 10751 addr += 0x180; 10752 /* Construct the SError syndrome from IDS and ISS fields. */ 10753 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10754 env->cp15.esr_el[new_el] = env->exception.syndrome; 10755 break; 10756 default: 10757 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10758 } 10759 10760 if (is_a64(env)) { 10761 old_mode = pstate_read(env); 10762 aarch64_save_sp(env, arm_current_el(env)); 10763 env->elr_el[new_el] = env->pc; 10764 10765 if (cur_el == 1 && new_el == 1) { 10766 uint64_t hcr = arm_hcr_el2_eff(env); 10767 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 10768 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 10769 /* 10770 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 10771 * by setting M[3:2] to 0b10. 10772 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 10773 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 10774 */ 10775 old_mode = deposit32(old_mode, 2, 2, 2); 10776 } 10777 } 10778 } else { 10779 old_mode = cpsr_read_for_spsr_elx(env); 10780 env->elr_el[new_el] = env->regs[15]; 10781 10782 aarch64_sync_32_to_64(env); 10783 10784 env->condexec_bits = 0; 10785 } 10786 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10787 10788 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 10789 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10790 env->elr_el[new_el]); 10791 10792 if (cpu_isar_feature(aa64_pan, cpu)) { 10793 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10794 new_mode |= old_mode & PSTATE_PAN; 10795 switch (new_el) { 10796 case 2: 10797 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10798 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10799 != (HCR_E2H | HCR_TGE)) { 10800 break; 10801 } 10802 /* fall through */ 10803 case 1: 10804 /* ... the target is EL1 ... */ 10805 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10806 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10807 new_mode |= PSTATE_PAN; 10808 } 10809 break; 10810 } 10811 } 10812 if (cpu_isar_feature(aa64_mte, cpu)) { 10813 new_mode |= PSTATE_TCO; 10814 } 10815 10816 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10817 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10818 new_mode |= PSTATE_SSBS; 10819 } else { 10820 new_mode &= ~PSTATE_SSBS; 10821 } 10822 } 10823 10824 if (cpu_isar_feature(aa64_nmi, cpu)) { 10825 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 10826 new_mode |= PSTATE_ALLINT; 10827 } else { 10828 new_mode &= ~PSTATE_ALLINT; 10829 } 10830 } 10831 10832 pstate_write(env, PSTATE_DAIF | new_mode); 10833 env->aarch64 = true; 10834 aarch64_restore_sp(env, new_el); 10835 10836 if (tcg_enabled()) { 10837 helper_rebuild_hflags_a64(env, new_el); 10838 } 10839 10840 env->pc = addr; 10841 10842 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10843 new_el, env->pc, pstate_read(env)); 10844 } 10845 10846 /* 10847 * Do semihosting call and set the appropriate return value. All the 10848 * permission and validity checks have been done at translate time. 10849 * 10850 * We only see semihosting exceptions in TCG only as they are not 10851 * trapped to the hypervisor in KVM. 10852 */ 10853 #ifdef CONFIG_TCG 10854 static void tcg_handle_semihosting(CPUState *cs) 10855 { 10856 ARMCPU *cpu = ARM_CPU(cs); 10857 CPUARMState *env = &cpu->env; 10858 10859 if (is_a64(env)) { 10860 qemu_log_mask(CPU_LOG_INT, 10861 "...handling as semihosting call 0x%" PRIx64 "\n", 10862 env->xregs[0]); 10863 do_common_semihosting(cs); 10864 env->pc += 4; 10865 } else { 10866 qemu_log_mask(CPU_LOG_INT, 10867 "...handling as semihosting call 0x%x\n", 10868 env->regs[0]); 10869 do_common_semihosting(cs); 10870 env->regs[15] += env->thumb ? 2 : 4; 10871 } 10872 } 10873 #endif 10874 10875 /* 10876 * Handle a CPU exception for A and R profile CPUs. 10877 * Do any appropriate logging, handle PSCI calls, and then hand off 10878 * to the AArch64-entry or AArch32-entry function depending on the 10879 * target exception level's register width. 10880 * 10881 * Note: this is used for both TCG (as the do_interrupt tcg op), 10882 * and KVM to re-inject guest debug exceptions, and to 10883 * inject a Synchronous-External-Abort. 10884 */ 10885 void arm_cpu_do_interrupt(CPUState *cs) 10886 { 10887 ARMCPU *cpu = ARM_CPU(cs); 10888 CPUARMState *env = &cpu->env; 10889 unsigned int new_el = env->exception.target_el; 10890 10891 assert(!arm_feature(env, ARM_FEATURE_M)); 10892 10893 arm_log_exception(cs); 10894 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10895 new_el); 10896 if (qemu_loglevel_mask(CPU_LOG_INT) 10897 && !excp_is_internal(cs->exception_index)) { 10898 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10899 syn_get_ec(env->exception.syndrome), 10900 env->exception.syndrome); 10901 } 10902 10903 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 10904 arm_handle_psci_call(cpu); 10905 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10906 return; 10907 } 10908 10909 /* 10910 * Semihosting semantics depend on the register width of the code 10911 * that caused the exception, not the target exception level, so 10912 * must be handled here. 10913 */ 10914 #ifdef CONFIG_TCG 10915 if (cs->exception_index == EXCP_SEMIHOST) { 10916 tcg_handle_semihosting(cs); 10917 return; 10918 } 10919 #endif 10920 10921 /* 10922 * Hooks may change global state so BQL should be held, also the 10923 * BQL needs to be held for any modification of 10924 * cs->interrupt_request. 10925 */ 10926 g_assert(bql_locked()); 10927 10928 arm_call_pre_el_change_hook(cpu); 10929 10930 assert(!excp_is_internal(cs->exception_index)); 10931 if (arm_el_is_aa64(env, new_el)) { 10932 arm_cpu_do_interrupt_aarch64(cs); 10933 } else { 10934 arm_cpu_do_interrupt_aarch32(cs); 10935 } 10936 10937 arm_call_el_change_hook(cpu); 10938 10939 if (!kvm_enabled()) { 10940 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10941 } 10942 } 10943 #endif /* !CONFIG_USER_ONLY */ 10944 10945 uint64_t arm_sctlr(CPUARMState *env, int el) 10946 { 10947 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 10948 if (el == 0) { 10949 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10950 switch (mmu_idx) { 10951 case ARMMMUIdx_E20_0: 10952 el = 2; 10953 break; 10954 case ARMMMUIdx_E30_0: 10955 el = 3; 10956 break; 10957 default: 10958 el = 1; 10959 break; 10960 } 10961 } 10962 return env->cp15.sctlr_el[el]; 10963 } 10964 10965 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10966 { 10967 if (regime_has_2_ranges(mmu_idx)) { 10968 return extract64(tcr, 37, 2); 10969 } else if (regime_is_stage2(mmu_idx)) { 10970 return 0; /* VTCR_EL2 */ 10971 } else { 10972 /* Replicate the single TBI bit so we always have 2 bits. */ 10973 return extract32(tcr, 20, 1) * 3; 10974 } 10975 } 10976 10977 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10978 { 10979 if (regime_has_2_ranges(mmu_idx)) { 10980 return extract64(tcr, 51, 2); 10981 } else if (regime_is_stage2(mmu_idx)) { 10982 return 0; /* VTCR_EL2 */ 10983 } else { 10984 /* Replicate the single TBID bit so we always have 2 bits. */ 10985 return extract32(tcr, 29, 1) * 3; 10986 } 10987 } 10988 10989 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10990 { 10991 if (regime_has_2_ranges(mmu_idx)) { 10992 return extract64(tcr, 57, 2); 10993 } else { 10994 /* Replicate the single TCMA bit so we always have 2 bits. */ 10995 return extract32(tcr, 30, 1) * 3; 10996 } 10997 } 10998 10999 static ARMGranuleSize tg0_to_gran_size(int tg) 11000 { 11001 switch (tg) { 11002 case 0: 11003 return Gran4K; 11004 case 1: 11005 return Gran64K; 11006 case 2: 11007 return Gran16K; 11008 default: 11009 return GranInvalid; 11010 } 11011 } 11012 11013 static ARMGranuleSize tg1_to_gran_size(int tg) 11014 { 11015 switch (tg) { 11016 case 1: 11017 return Gran16K; 11018 case 2: 11019 return Gran4K; 11020 case 3: 11021 return Gran64K; 11022 default: 11023 return GranInvalid; 11024 } 11025 } 11026 11027 static inline bool have4k(ARMCPU *cpu, bool stage2) 11028 { 11029 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11030 : cpu_isar_feature(aa64_tgran4, cpu); 11031 } 11032 11033 static inline bool have16k(ARMCPU *cpu, bool stage2) 11034 { 11035 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11036 : cpu_isar_feature(aa64_tgran16, cpu); 11037 } 11038 11039 static inline bool have64k(ARMCPU *cpu, bool stage2) 11040 { 11041 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11042 : cpu_isar_feature(aa64_tgran64, cpu); 11043 } 11044 11045 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11046 bool stage2) 11047 { 11048 switch (gran) { 11049 case Gran4K: 11050 if (have4k(cpu, stage2)) { 11051 return gran; 11052 } 11053 break; 11054 case Gran16K: 11055 if (have16k(cpu, stage2)) { 11056 return gran; 11057 } 11058 break; 11059 case Gran64K: 11060 if (have64k(cpu, stage2)) { 11061 return gran; 11062 } 11063 break; 11064 case GranInvalid: 11065 break; 11066 } 11067 /* 11068 * If the guest selects a granule size that isn't implemented, 11069 * the architecture requires that we behave as if it selected one 11070 * that is (with an IMPDEF choice of which one to pick). We choose 11071 * to implement the smallest supported granule size. 11072 */ 11073 if (have4k(cpu, stage2)) { 11074 return Gran4K; 11075 } 11076 if (have16k(cpu, stage2)) { 11077 return Gran16K; 11078 } 11079 assert(have64k(cpu, stage2)); 11080 return Gran64K; 11081 } 11082 11083 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11084 ARMMMUIdx mmu_idx, bool data, 11085 bool el1_is_aa32) 11086 { 11087 uint64_t tcr = regime_tcr(env, mmu_idx); 11088 bool epd, hpd, tsz_oob, ds, ha, hd; 11089 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11090 ARMGranuleSize gran; 11091 ARMCPU *cpu = env_archcpu(env); 11092 bool stage2 = regime_is_stage2(mmu_idx); 11093 11094 if (!regime_has_2_ranges(mmu_idx)) { 11095 select = 0; 11096 tsz = extract32(tcr, 0, 6); 11097 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11098 if (stage2) { 11099 /* VTCR_EL2 */ 11100 hpd = false; 11101 } else { 11102 hpd = extract32(tcr, 24, 1); 11103 } 11104 epd = false; 11105 sh = extract32(tcr, 12, 2); 11106 ps = extract32(tcr, 16, 3); 11107 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11108 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11109 ds = extract64(tcr, 32, 1); 11110 } else { 11111 bool e0pd; 11112 11113 /* 11114 * Bit 55 is always between the two regions, and is canonical for 11115 * determining if address tagging is enabled. 11116 */ 11117 select = extract64(va, 55, 1); 11118 if (!select) { 11119 tsz = extract32(tcr, 0, 6); 11120 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11121 epd = extract32(tcr, 7, 1); 11122 sh = extract32(tcr, 12, 2); 11123 hpd = extract64(tcr, 41, 1); 11124 e0pd = extract64(tcr, 55, 1); 11125 } else { 11126 tsz = extract32(tcr, 16, 6); 11127 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11128 epd = extract32(tcr, 23, 1); 11129 sh = extract32(tcr, 28, 2); 11130 hpd = extract64(tcr, 42, 1); 11131 e0pd = extract64(tcr, 56, 1); 11132 } 11133 ps = extract64(tcr, 32, 3); 11134 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11135 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11136 ds = extract64(tcr, 59, 1); 11137 11138 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11139 regime_is_user(env, mmu_idx)) { 11140 epd = true; 11141 } 11142 } 11143 11144 gran = sanitize_gran_size(cpu, gran, stage2); 11145 11146 if (cpu_isar_feature(aa64_st, cpu)) { 11147 max_tsz = 48 - (gran == Gran64K); 11148 } else { 11149 max_tsz = 39; 11150 } 11151 11152 /* 11153 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11154 * adjust the effective value of DS, as documented. 11155 */ 11156 min_tsz = 16; 11157 if (gran == Gran64K) { 11158 if (cpu_isar_feature(aa64_lva, cpu)) { 11159 min_tsz = 12; 11160 } 11161 ds = false; 11162 } else if (ds) { 11163 if (regime_is_stage2(mmu_idx)) { 11164 if (gran == Gran16K) { 11165 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11166 } else { 11167 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11168 } 11169 } else { 11170 if (gran == Gran16K) { 11171 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11172 } else { 11173 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11174 } 11175 } 11176 if (ds) { 11177 min_tsz = 12; 11178 } 11179 } 11180 11181 if (stage2 && el1_is_aa32) { 11182 /* 11183 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11184 * are loosened: a configured IPA of 40 bits is permitted even if 11185 * the implemented PA is less than that (and so a 40 bit IPA would 11186 * fault for an AArch64 EL1). See R_DTLMN. 11187 */ 11188 min_tsz = MIN(min_tsz, 24); 11189 } 11190 11191 if (tsz > max_tsz) { 11192 tsz = max_tsz; 11193 tsz_oob = true; 11194 } else if (tsz < min_tsz) { 11195 tsz = min_tsz; 11196 tsz_oob = true; 11197 } else { 11198 tsz_oob = false; 11199 } 11200 11201 /* Present TBI as a composite with TBID. */ 11202 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11203 if (!data) { 11204 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11205 } 11206 tbi = (tbi >> select) & 1; 11207 11208 return (ARMVAParameters) { 11209 .tsz = tsz, 11210 .ps = ps, 11211 .sh = sh, 11212 .select = select, 11213 .tbi = tbi, 11214 .epd = epd, 11215 .hpd = hpd, 11216 .tsz_oob = tsz_oob, 11217 .ds = ds, 11218 .ha = ha, 11219 .hd = ha && hd, 11220 .gran = gran, 11221 }; 11222 } 11223 11224 11225 /* 11226 * Return the exception level to which FP-disabled exceptions should 11227 * be taken, or 0 if FP is enabled. 11228 */ 11229 int fp_exception_el(CPUARMState *env, int cur_el) 11230 { 11231 #ifndef CONFIG_USER_ONLY 11232 uint64_t hcr_el2; 11233 11234 /* 11235 * CPACR and the CPTR registers don't exist before v6, so FP is 11236 * always accessible 11237 */ 11238 if (!arm_feature(env, ARM_FEATURE_V6)) { 11239 return 0; 11240 } 11241 11242 if (arm_feature(env, ARM_FEATURE_M)) { 11243 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11244 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11245 return 1; 11246 } 11247 11248 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11249 if (!extract32(env->v7m.nsacr, 10, 1)) { 11250 /* FP insns cause a NOCP UsageFault taken to Secure */ 11251 return 3; 11252 } 11253 } 11254 11255 return 0; 11256 } 11257 11258 hcr_el2 = arm_hcr_el2_eff(env); 11259 11260 /* 11261 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11262 * 0, 2 : trap EL0 and EL1/PL1 accesses 11263 * 1 : trap only EL0 accesses 11264 * 3 : trap no accesses 11265 * This register is ignored if E2H+TGE are both set. 11266 */ 11267 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11268 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11269 11270 switch (fpen) { 11271 case 1: 11272 if (cur_el != 0) { 11273 break; 11274 } 11275 /* fall through */ 11276 case 0: 11277 case 2: 11278 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11279 if (!arm_el_is_aa64(env, 3) 11280 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11281 return 3; 11282 } 11283 if (cur_el <= 1) { 11284 return 1; 11285 } 11286 break; 11287 } 11288 } 11289 11290 /* 11291 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11292 * to control non-secure access to the FPU. It doesn't have any 11293 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11294 */ 11295 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11296 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11297 if (!extract32(env->cp15.nsacr, 10, 1)) { 11298 /* FP insns act as UNDEF */ 11299 return cur_el == 2 ? 2 : 1; 11300 } 11301 } 11302 11303 /* 11304 * CPTR_EL2 is present in v7VE or v8, and changes format 11305 * with HCR_EL2.E2H (regardless of TGE). 11306 */ 11307 if (cur_el <= 2) { 11308 if (hcr_el2 & HCR_E2H) { 11309 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11310 case 1: 11311 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11312 break; 11313 } 11314 /* fall through */ 11315 case 0: 11316 case 2: 11317 return 2; 11318 } 11319 } else if (arm_is_el2_enabled(env)) { 11320 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11321 return 2; 11322 } 11323 } 11324 } 11325 11326 /* CPTR_EL3 : present in v8 */ 11327 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11328 /* Trap all FP ops to EL3 */ 11329 return 3; 11330 } 11331 #endif 11332 return 0; 11333 } 11334 11335 /* Return the exception level we're running at if this is our mmu_idx */ 11336 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11337 { 11338 if (mmu_idx & ARM_MMU_IDX_M) { 11339 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11340 } 11341 11342 switch (mmu_idx) { 11343 case ARMMMUIdx_E10_0: 11344 case ARMMMUIdx_E20_0: 11345 case ARMMMUIdx_E30_0: 11346 return 0; 11347 case ARMMMUIdx_E10_1: 11348 case ARMMMUIdx_E10_1_PAN: 11349 return 1; 11350 case ARMMMUIdx_E2: 11351 case ARMMMUIdx_E20_2: 11352 case ARMMMUIdx_E20_2_PAN: 11353 return 2; 11354 case ARMMMUIdx_E3: 11355 case ARMMMUIdx_E30_3_PAN: 11356 return 3; 11357 default: 11358 g_assert_not_reached(); 11359 } 11360 } 11361 11362 #ifndef CONFIG_TCG 11363 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11364 { 11365 g_assert_not_reached(); 11366 } 11367 #endif 11368 11369 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11370 { 11371 ARMMMUIdx idx; 11372 uint64_t hcr; 11373 11374 if (arm_feature(env, ARM_FEATURE_M)) { 11375 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11376 } 11377 11378 /* See ARM pseudo-function ELIsInHost. */ 11379 switch (el) { 11380 case 0: 11381 hcr = arm_hcr_el2_eff(env); 11382 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11383 idx = ARMMMUIdx_E20_0; 11384 } else if (arm_is_secure_below_el3(env) && 11385 !arm_el_is_aa64(env, 3)) { 11386 idx = ARMMMUIdx_E30_0; 11387 } else { 11388 idx = ARMMMUIdx_E10_0; 11389 } 11390 break; 11391 case 1: 11392 if (arm_pan_enabled(env)) { 11393 idx = ARMMMUIdx_E10_1_PAN; 11394 } else { 11395 idx = ARMMMUIdx_E10_1; 11396 } 11397 break; 11398 case 2: 11399 /* Note that TGE does not apply at EL2. */ 11400 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11401 if (arm_pan_enabled(env)) { 11402 idx = ARMMMUIdx_E20_2_PAN; 11403 } else { 11404 idx = ARMMMUIdx_E20_2; 11405 } 11406 } else { 11407 idx = ARMMMUIdx_E2; 11408 } 11409 break; 11410 case 3: 11411 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 11412 return ARMMMUIdx_E30_3_PAN; 11413 } 11414 return ARMMMUIdx_E3; 11415 default: 11416 g_assert_not_reached(); 11417 } 11418 11419 return idx; 11420 } 11421 11422 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11423 { 11424 return arm_mmu_idx_el(env, arm_current_el(env)); 11425 } 11426 11427 static bool mve_no_pred(CPUARMState *env) 11428 { 11429 /* 11430 * Return true if there is definitely no predication of MVE 11431 * instructions by VPR or LTPSIZE. (Returning false even if there 11432 * isn't any predication is OK; generated code will just be 11433 * a little worse.) 11434 * If the CPU does not implement MVE then this TB flag is always 0. 11435 * 11436 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11437 * logic in gen_update_fp_context() needs to be updated to match. 11438 * 11439 * We do not include the effect of the ECI bits here -- they are 11440 * tracked in other TB flags. This simplifies the logic for 11441 * "when did we emit code that changes the MVE_NO_PRED TB flag 11442 * and thus need to end the TB?". 11443 */ 11444 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11445 return false; 11446 } 11447 if (env->v7m.vpr) { 11448 return false; 11449 } 11450 if (env->v7m.ltpsize < 4) { 11451 return false; 11452 } 11453 return true; 11454 } 11455 11456 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11457 uint64_t *cs_base, uint32_t *pflags) 11458 { 11459 CPUARMTBFlags flags; 11460 11461 assert_hflags_rebuild_correctly(env); 11462 flags = env->hflags; 11463 11464 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11465 *pc = env->pc; 11466 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11467 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11468 } 11469 } else { 11470 *pc = env->regs[15]; 11471 11472 if (arm_feature(env, ARM_FEATURE_M)) { 11473 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11474 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11475 != env->v7m.secure) { 11476 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11477 } 11478 11479 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11480 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11481 (env->v7m.secure && 11482 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11483 /* 11484 * ASPEN is set, but FPCA/SFPA indicate that there is no 11485 * active FP context; we must create a new FP context before 11486 * executing any FP insn. 11487 */ 11488 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11489 } 11490 11491 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11492 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11493 DP_TBFLAG_M32(flags, LSPACT, 1); 11494 } 11495 11496 if (mve_no_pred(env)) { 11497 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11498 } 11499 } else { 11500 /* 11501 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11502 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11503 */ 11504 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11505 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11506 } else { 11507 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11508 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11509 } 11510 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11511 DP_TBFLAG_A32(flags, VFPEN, 1); 11512 } 11513 } 11514 11515 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11516 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11517 } 11518 11519 /* 11520 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11521 * states defined in the ARM ARM for software singlestep: 11522 * SS_ACTIVE PSTATE.SS State 11523 * 0 x Inactive (the TB flag for SS is always 0) 11524 * 1 0 Active-pending 11525 * 1 1 Active-not-pending 11526 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11527 */ 11528 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11529 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11530 } 11531 11532 *pflags = flags.flags; 11533 *cs_base = flags.flags2; 11534 } 11535 11536 #ifdef TARGET_AARCH64 11537 /* 11538 * The manual says that when SVE is enabled and VQ is widened the 11539 * implementation is allowed to zero the previously inaccessible 11540 * portion of the registers. The corollary to that is that when 11541 * SVE is enabled and VQ is narrowed we are also allowed to zero 11542 * the now inaccessible portion of the registers. 11543 * 11544 * The intent of this is that no predicate bit beyond VQ is ever set. 11545 * Which means that some operations on predicate registers themselves 11546 * may operate on full uint64_t or even unrolled across the maximum 11547 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11548 * may well be cheaper than conditionals to restrict the operation 11549 * to the relevant portion of a uint16_t[16]. 11550 */ 11551 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11552 { 11553 int i, j; 11554 uint64_t pmask; 11555 11556 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11557 assert(vq <= env_archcpu(env)->sve_max_vq); 11558 11559 /* Zap the high bits of the zregs. */ 11560 for (i = 0; i < 32; i++) { 11561 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11562 } 11563 11564 /* Zap the high bits of the pregs and ffr. */ 11565 pmask = 0; 11566 if (vq & 3) { 11567 pmask = ~(-1ULL << (16 * (vq & 3))); 11568 } 11569 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11570 for (i = 0; i < 17; ++i) { 11571 env->vfp.pregs[i].p[j] &= pmask; 11572 } 11573 pmask = 0; 11574 } 11575 } 11576 11577 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11578 { 11579 int exc_el; 11580 11581 if (sm) { 11582 exc_el = sme_exception_el(env, el); 11583 } else { 11584 exc_el = sve_exception_el(env, el); 11585 } 11586 if (exc_el) { 11587 return 0; /* disabled */ 11588 } 11589 return sve_vqm1_for_el_sm(env, el, sm); 11590 } 11591 11592 /* 11593 * Notice a change in SVE vector size when changing EL. 11594 */ 11595 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11596 int new_el, bool el0_a64) 11597 { 11598 ARMCPU *cpu = env_archcpu(env); 11599 int old_len, new_len; 11600 bool old_a64, new_a64, sm; 11601 11602 /* Nothing to do if no SVE. */ 11603 if (!cpu_isar_feature(aa64_sve, cpu)) { 11604 return; 11605 } 11606 11607 /* Nothing to do if FP is disabled in either EL. */ 11608 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11609 return; 11610 } 11611 11612 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11613 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11614 11615 /* 11616 * Both AArch64.TakeException and AArch64.ExceptionReturn 11617 * invoke ResetSVEState when taking an exception from, or 11618 * returning to, AArch32 state when PSTATE.SM is enabled. 11619 */ 11620 sm = FIELD_EX64(env->svcr, SVCR, SM); 11621 if (old_a64 != new_a64 && sm) { 11622 arm_reset_sve_state(env); 11623 return; 11624 } 11625 11626 /* 11627 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11628 * at ELx, or not available because the EL is in AArch32 state, then 11629 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11630 * has an effective value of 0". 11631 * 11632 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11633 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11634 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11635 * we already have the correct register contents when encountering the 11636 * vq0->vq0 transition between EL0->EL1. 11637 */ 11638 old_len = new_len = 0; 11639 if (old_a64) { 11640 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11641 } 11642 if (new_a64) { 11643 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11644 } 11645 11646 /* When changing vector length, clear inaccessible state. */ 11647 if (new_len < old_len) { 11648 #ifdef TARGET_AARCH64 11649 aarch64_sve_narrow_vq(env, new_len + 1); 11650 #endif 11651 } 11652 } 11653 #endif 11654 11655 #ifndef CONFIG_USER_ONLY 11656 ARMSecuritySpace arm_security_space(CPUARMState *env) 11657 { 11658 if (arm_feature(env, ARM_FEATURE_M)) { 11659 return arm_secure_to_space(env->v7m.secure); 11660 } 11661 11662 /* 11663 * If EL3 is not supported then the secure state is implementation 11664 * defined, in which case QEMU defaults to non-secure. 11665 */ 11666 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11667 return ARMSS_NonSecure; 11668 } 11669 11670 /* Check for AArch64 EL3 or AArch32 Mon. */ 11671 if (is_a64(env)) { 11672 if (extract32(env->pstate, 2, 2) == 3) { 11673 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 11674 return ARMSS_Root; 11675 } else { 11676 return ARMSS_Secure; 11677 } 11678 } 11679 } else { 11680 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11681 return ARMSS_Secure; 11682 } 11683 } 11684 11685 return arm_security_space_below_el3(env); 11686 } 11687 11688 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 11689 { 11690 assert(!arm_feature(env, ARM_FEATURE_M)); 11691 11692 /* 11693 * If EL3 is not supported then the secure state is implementation 11694 * defined, in which case QEMU defaults to non-secure. 11695 */ 11696 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11697 return ARMSS_NonSecure; 11698 } 11699 11700 /* 11701 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 11702 * Ignoring NSE when !NS retains consistency without having to 11703 * modify other predicates. 11704 */ 11705 if (!(env->cp15.scr_el3 & SCR_NS)) { 11706 return ARMSS_Secure; 11707 } else if (env->cp15.scr_el3 & SCR_NSE) { 11708 return ARMSS_Realm; 11709 } else { 11710 return ARMSS_NonSecure; 11711 } 11712 } 11713 #endif /* !CONFIG_USER_ONLY */ 11714