1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/tcg.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #endif 37 38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 39 40 #ifndef CONFIG_USER_ONLY 41 42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 43 MMUAccessType access_type, ARMMMUIdx mmu_idx, 44 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 45 target_ulong *page_size_ptr, 46 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 47 #endif 48 49 static void switch_mode(CPUARMState *env, int mode); 50 51 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 52 { 53 ARMCPU *cpu = env_archcpu(env); 54 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 55 56 /* VFP data registers are always little-endian. */ 57 if (reg < nregs) { 58 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 59 return 8; 60 } 61 if (arm_feature(env, ARM_FEATURE_NEON)) { 62 /* Aliases for Q regs. */ 63 nregs += 16; 64 if (reg < nregs) { 65 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 66 stq_le_p(buf, q[0]); 67 stq_le_p(buf + 8, q[1]); 68 return 16; 69 } 70 } 71 switch (reg - nregs) { 72 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 73 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 74 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 75 } 76 return 0; 77 } 78 79 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 80 { 81 ARMCPU *cpu = env_archcpu(env); 82 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 83 84 if (reg < nregs) { 85 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 86 return 8; 87 } 88 if (arm_feature(env, ARM_FEATURE_NEON)) { 89 nregs += 16; 90 if (reg < nregs) { 91 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 92 q[0] = ldq_le_p(buf); 93 q[1] = ldq_le_p(buf + 8); 94 return 16; 95 } 96 } 97 switch (reg - nregs) { 98 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 99 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 100 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 101 } 102 return 0; 103 } 104 105 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 106 { 107 switch (reg) { 108 case 0 ... 31: 109 /* 128 bit FP register */ 110 { 111 uint64_t *q = aa64_vfp_qreg(env, reg); 112 stq_le_p(buf, q[0]); 113 stq_le_p(buf + 8, q[1]); 114 return 16; 115 } 116 case 32: 117 /* FPSR */ 118 stl_p(buf, vfp_get_fpsr(env)); 119 return 4; 120 case 33: 121 /* FPCR */ 122 stl_p(buf, vfp_get_fpcr(env)); 123 return 4; 124 default: 125 return 0; 126 } 127 } 128 129 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 130 { 131 switch (reg) { 132 case 0 ... 31: 133 /* 128 bit FP register */ 134 { 135 uint64_t *q = aa64_vfp_qreg(env, reg); 136 q[0] = ldq_le_p(buf); 137 q[1] = ldq_le_p(buf + 8); 138 return 16; 139 } 140 case 32: 141 /* FPSR */ 142 vfp_set_fpsr(env, ldl_p(buf)); 143 return 4; 144 case 33: 145 /* FPCR */ 146 vfp_set_fpcr(env, ldl_p(buf)); 147 return 4; 148 default: 149 return 0; 150 } 151 } 152 153 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 154 { 155 assert(ri->fieldoffset); 156 if (cpreg_field_is_64bit(ri)) { 157 return CPREG_FIELD64(env, ri); 158 } else { 159 return CPREG_FIELD32(env, ri); 160 } 161 } 162 163 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 164 uint64_t value) 165 { 166 assert(ri->fieldoffset); 167 if (cpreg_field_is_64bit(ri)) { 168 CPREG_FIELD64(env, ri) = value; 169 } else { 170 CPREG_FIELD32(env, ri) = value; 171 } 172 } 173 174 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 175 { 176 return (char *)env + ri->fieldoffset; 177 } 178 179 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 180 { 181 /* Raw read of a coprocessor register (as needed for migration, etc). */ 182 if (ri->type & ARM_CP_CONST) { 183 return ri->resetvalue; 184 } else if (ri->raw_readfn) { 185 return ri->raw_readfn(env, ri); 186 } else if (ri->readfn) { 187 return ri->readfn(env, ri); 188 } else { 189 return raw_read(env, ri); 190 } 191 } 192 193 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 194 uint64_t v) 195 { 196 /* Raw write of a coprocessor register (as needed for migration, etc). 197 * Note that constant registers are treated as write-ignored; the 198 * caller should check for success by whether a readback gives the 199 * value written. 200 */ 201 if (ri->type & ARM_CP_CONST) { 202 return; 203 } else if (ri->raw_writefn) { 204 ri->raw_writefn(env, ri, v); 205 } else if (ri->writefn) { 206 ri->writefn(env, ri, v); 207 } else { 208 raw_write(env, ri, v); 209 } 210 } 211 212 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 213 { 214 ARMCPU *cpu = env_archcpu(env); 215 const ARMCPRegInfo *ri; 216 uint32_t key; 217 218 key = cpu->dyn_xml.cpregs_keys[reg]; 219 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 220 if (ri) { 221 if (cpreg_field_is_64bit(ri)) { 222 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 223 } else { 224 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 225 } 226 } 227 return 0; 228 } 229 230 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 231 { 232 return 0; 233 } 234 235 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 236 { 237 /* Return true if the regdef would cause an assertion if you called 238 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 239 * program bug for it not to have the NO_RAW flag). 240 * NB that returning false here doesn't necessarily mean that calling 241 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 242 * read/write access functions which are safe for raw use" from "has 243 * read/write access functions which have side effects but has forgotten 244 * to provide raw access functions". 245 * The tests here line up with the conditions in read/write_raw_cp_reg() 246 * and assertions in raw_read()/raw_write(). 247 */ 248 if ((ri->type & ARM_CP_CONST) || 249 ri->fieldoffset || 250 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 251 return false; 252 } 253 return true; 254 } 255 256 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 257 { 258 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 259 int i; 260 bool ok = true; 261 262 for (i = 0; i < cpu->cpreg_array_len; i++) { 263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 264 const ARMCPRegInfo *ri; 265 uint64_t newval; 266 267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 268 if (!ri) { 269 ok = false; 270 continue; 271 } 272 if (ri->type & ARM_CP_NO_RAW) { 273 continue; 274 } 275 276 newval = read_raw_cp_reg(&cpu->env, ri); 277 if (kvm_sync) { 278 /* 279 * Only sync if the previous list->cpustate sync succeeded. 280 * Rather than tracking the success/failure state for every 281 * item in the list, we just recheck "does the raw write we must 282 * have made in write_list_to_cpustate() read back OK" here. 283 */ 284 uint64_t oldval = cpu->cpreg_values[i]; 285 286 if (oldval == newval) { 287 continue; 288 } 289 290 write_raw_cp_reg(&cpu->env, ri, oldval); 291 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 292 continue; 293 } 294 295 write_raw_cp_reg(&cpu->env, ri, newval); 296 } 297 cpu->cpreg_values[i] = newval; 298 } 299 return ok; 300 } 301 302 bool write_list_to_cpustate(ARMCPU *cpu) 303 { 304 int i; 305 bool ok = true; 306 307 for (i = 0; i < cpu->cpreg_array_len; i++) { 308 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 309 uint64_t v = cpu->cpreg_values[i]; 310 const ARMCPRegInfo *ri; 311 312 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 313 if (!ri) { 314 ok = false; 315 continue; 316 } 317 if (ri->type & ARM_CP_NO_RAW) { 318 continue; 319 } 320 /* Write value and confirm it reads back as written 321 * (to catch read-only registers and partially read-only 322 * registers where the incoming migration value doesn't match) 323 */ 324 write_raw_cp_reg(&cpu->env, ri, v); 325 if (read_raw_cp_reg(&cpu->env, ri) != v) { 326 ok = false; 327 } 328 } 329 return ok; 330 } 331 332 static void add_cpreg_to_list(gpointer key, gpointer opaque) 333 { 334 ARMCPU *cpu = opaque; 335 uint64_t regidx; 336 const ARMCPRegInfo *ri; 337 338 regidx = *(uint32_t *)key; 339 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 340 341 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 342 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 343 /* The value array need not be initialized at this point */ 344 cpu->cpreg_array_len++; 345 } 346 } 347 348 static void count_cpreg(gpointer key, gpointer opaque) 349 { 350 ARMCPU *cpu = opaque; 351 uint64_t regidx; 352 const ARMCPRegInfo *ri; 353 354 regidx = *(uint32_t *)key; 355 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 356 357 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 358 cpu->cpreg_array_len++; 359 } 360 } 361 362 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 363 { 364 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 365 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 366 367 if (aidx > bidx) { 368 return 1; 369 } 370 if (aidx < bidx) { 371 return -1; 372 } 373 return 0; 374 } 375 376 void init_cpreg_list(ARMCPU *cpu) 377 { 378 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 379 * Note that we require cpreg_tuples[] to be sorted by key ID. 380 */ 381 GList *keys; 382 int arraylen; 383 384 keys = g_hash_table_get_keys(cpu->cp_regs); 385 keys = g_list_sort(keys, cpreg_key_compare); 386 387 cpu->cpreg_array_len = 0; 388 389 g_list_foreach(keys, count_cpreg, cpu); 390 391 arraylen = cpu->cpreg_array_len; 392 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 393 cpu->cpreg_values = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 396 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 397 cpu->cpreg_array_len = 0; 398 399 g_list_foreach(keys, add_cpreg_to_list, cpu); 400 401 assert(cpu->cpreg_array_len == arraylen); 402 403 g_list_free(keys); 404 } 405 406 /* 407 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 408 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 409 * 410 * access_el3_aa32ns: Used to check AArch32 register views. 411 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 412 */ 413 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 414 const ARMCPRegInfo *ri, 415 bool isread) 416 { 417 bool secure = arm_is_secure_below_el3(env); 418 419 assert(!arm_el_is_aa64(env, 3)); 420 if (secure) { 421 return CP_ACCESS_TRAP_UNCATEGORIZED; 422 } 423 return CP_ACCESS_OK; 424 } 425 426 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 427 const ARMCPRegInfo *ri, 428 bool isread) 429 { 430 if (!arm_el_is_aa64(env, 3)) { 431 return access_el3_aa32ns(env, ri, isread); 432 } 433 return CP_ACCESS_OK; 434 } 435 436 /* Some secure-only AArch32 registers trap to EL3 if used from 437 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 438 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 439 * We assume that the .access field is set to PL1_RW. 440 */ 441 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 442 const ARMCPRegInfo *ri, 443 bool isread) 444 { 445 if (arm_current_el(env) == 3) { 446 return CP_ACCESS_OK; 447 } 448 if (arm_is_secure_below_el3(env)) { 449 return CP_ACCESS_TRAP_EL3; 450 } 451 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 452 return CP_ACCESS_TRAP_UNCATEGORIZED; 453 } 454 455 /* Check for traps to "powerdown debug" registers, which are controlled 456 * by MDCR.TDOSA 457 */ 458 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 459 bool isread) 460 { 461 int el = arm_current_el(env); 462 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 463 (env->cp15.mdcr_el2 & MDCR_TDE) || 464 (arm_hcr_el2_eff(env) & HCR_TGE); 465 466 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 467 return CP_ACCESS_TRAP_EL2; 468 } 469 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 470 return CP_ACCESS_TRAP_EL3; 471 } 472 return CP_ACCESS_OK; 473 } 474 475 /* Check for traps to "debug ROM" registers, which are controlled 476 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 477 */ 478 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 479 bool isread) 480 { 481 int el = arm_current_el(env); 482 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 483 (env->cp15.mdcr_el2 & MDCR_TDE) || 484 (arm_hcr_el2_eff(env) & HCR_TGE); 485 486 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 487 return CP_ACCESS_TRAP_EL2; 488 } 489 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 490 return CP_ACCESS_TRAP_EL3; 491 } 492 return CP_ACCESS_OK; 493 } 494 495 /* Check for traps to general debug registers, which are controlled 496 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 497 */ 498 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 499 bool isread) 500 { 501 int el = arm_current_el(env); 502 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 503 (env->cp15.mdcr_el2 & MDCR_TDE) || 504 (arm_hcr_el2_eff(env) & HCR_TGE); 505 506 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 507 return CP_ACCESS_TRAP_EL2; 508 } 509 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 510 return CP_ACCESS_TRAP_EL3; 511 } 512 return CP_ACCESS_OK; 513 } 514 515 /* Check for traps to performance monitor registers, which are controlled 516 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 517 */ 518 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 519 bool isread) 520 { 521 int el = arm_current_el(env); 522 523 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 524 && !arm_is_secure_below_el3(env)) { 525 return CP_ACCESS_TRAP_EL2; 526 } 527 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 528 return CP_ACCESS_TRAP_EL3; 529 } 530 return CP_ACCESS_OK; 531 } 532 533 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 534 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 535 bool isread) 536 { 537 if (arm_current_el(env) == 1) { 538 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 539 if (arm_hcr_el2_eff(env) & trap) { 540 return CP_ACCESS_TRAP_EL2; 541 } 542 } 543 return CP_ACCESS_OK; 544 } 545 546 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 547 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 548 bool isread) 549 { 550 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 551 return CP_ACCESS_TRAP_EL2; 552 } 553 return CP_ACCESS_OK; 554 } 555 556 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 557 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 558 bool isread) 559 { 560 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 561 return CP_ACCESS_TRAP_EL2; 562 } 563 return CP_ACCESS_OK; 564 } 565 566 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 567 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 568 bool isread) 569 { 570 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 571 return CP_ACCESS_TRAP_EL2; 572 } 573 return CP_ACCESS_OK; 574 } 575 576 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 577 { 578 ARMCPU *cpu = env_archcpu(env); 579 580 raw_write(env, ri, value); 581 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 582 } 583 584 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 585 { 586 ARMCPU *cpu = env_archcpu(env); 587 588 if (raw_read(env, ri) != value) { 589 /* Unlike real hardware the qemu TLB uses virtual addresses, 590 * not modified virtual addresses, so this causes a TLB flush. 591 */ 592 tlb_flush(CPU(cpu)); 593 raw_write(env, ri, value); 594 } 595 } 596 597 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 598 uint64_t value) 599 { 600 ARMCPU *cpu = env_archcpu(env); 601 602 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 603 && !extended_addresses_enabled(env)) { 604 /* For VMSA (when not using the LPAE long descriptor page table 605 * format) this register includes the ASID, so do a TLB flush. 606 * For PMSA it is purely a process ID and no action is needed. 607 */ 608 tlb_flush(CPU(cpu)); 609 } 610 raw_write(env, ri, value); 611 } 612 613 /* IS variants of TLB operations must affect all cores */ 614 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 619 tlb_flush_all_cpus_synced(cs); 620 } 621 622 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 623 uint64_t value) 624 { 625 CPUState *cs = env_cpu(env); 626 627 tlb_flush_all_cpus_synced(cs); 628 } 629 630 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 631 uint64_t value) 632 { 633 CPUState *cs = env_cpu(env); 634 635 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 636 } 637 638 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 639 uint64_t value) 640 { 641 CPUState *cs = env_cpu(env); 642 643 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 644 } 645 646 /* 647 * Non-IS variants of TLB operations are upgraded to 648 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 649 * force broadcast of these operations. 650 */ 651 static bool tlb_force_broadcast(CPUARMState *env) 652 { 653 return (env->cp15.hcr_el2 & HCR_FB) && 654 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 655 } 656 657 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 658 uint64_t value) 659 { 660 /* Invalidate all (TLBIALL) */ 661 CPUState *cs = env_cpu(env); 662 663 if (tlb_force_broadcast(env)) { 664 tlb_flush_all_cpus_synced(cs); 665 } else { 666 tlb_flush(cs); 667 } 668 } 669 670 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 671 uint64_t value) 672 { 673 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 674 CPUState *cs = env_cpu(env); 675 676 value &= TARGET_PAGE_MASK; 677 if (tlb_force_broadcast(env)) { 678 tlb_flush_page_all_cpus_synced(cs, value); 679 } else { 680 tlb_flush_page(cs, value); 681 } 682 } 683 684 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 685 uint64_t value) 686 { 687 /* Invalidate by ASID (TLBIASID) */ 688 CPUState *cs = env_cpu(env); 689 690 if (tlb_force_broadcast(env)) { 691 tlb_flush_all_cpus_synced(cs); 692 } else { 693 tlb_flush(cs); 694 } 695 } 696 697 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 698 uint64_t value) 699 { 700 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 701 CPUState *cs = env_cpu(env); 702 703 value &= TARGET_PAGE_MASK; 704 if (tlb_force_broadcast(env)) { 705 tlb_flush_page_all_cpus_synced(cs, value); 706 } else { 707 tlb_flush_page(cs, value); 708 } 709 } 710 711 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 712 uint64_t value) 713 { 714 CPUState *cs = env_cpu(env); 715 716 tlb_flush_by_mmuidx(cs, 717 ARMMMUIdxBit_E10_1 | 718 ARMMMUIdxBit_E10_1_PAN | 719 ARMMMUIdxBit_E10_0 | 720 ARMMMUIdxBit_Stage2); 721 } 722 723 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 724 uint64_t value) 725 { 726 CPUState *cs = env_cpu(env); 727 728 tlb_flush_by_mmuidx_all_cpus_synced(cs, 729 ARMMMUIdxBit_E10_1 | 730 ARMMMUIdxBit_E10_1_PAN | 731 ARMMMUIdxBit_E10_0 | 732 ARMMMUIdxBit_Stage2); 733 } 734 735 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 736 uint64_t value) 737 { 738 /* Invalidate by IPA. This has to invalidate any structures that 739 * contain only stage 2 translation information, but does not need 740 * to apply to structures that contain combined stage 1 and stage 2 741 * translation information. 742 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 743 */ 744 CPUState *cs = env_cpu(env); 745 uint64_t pageaddr; 746 747 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 748 return; 749 } 750 751 pageaddr = sextract64(value << 12, 0, 40); 752 753 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 754 } 755 756 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 757 uint64_t value) 758 { 759 CPUState *cs = env_cpu(env); 760 uint64_t pageaddr; 761 762 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 763 return; 764 } 765 766 pageaddr = sextract64(value << 12, 0, 40); 767 768 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 769 ARMMMUIdxBit_Stage2); 770 } 771 772 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 773 uint64_t value) 774 { 775 CPUState *cs = env_cpu(env); 776 777 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 778 } 779 780 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 781 uint64_t value) 782 { 783 CPUState *cs = env_cpu(env); 784 785 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 786 } 787 788 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 789 uint64_t value) 790 { 791 CPUState *cs = env_cpu(env); 792 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 793 794 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 795 } 796 797 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 798 uint64_t value) 799 { 800 CPUState *cs = env_cpu(env); 801 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 802 803 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 804 ARMMMUIdxBit_E2); 805 } 806 807 static const ARMCPRegInfo cp_reginfo[] = { 808 /* Define the secure and non-secure FCSE identifier CP registers 809 * separately because there is no secure bank in V8 (no _EL3). This allows 810 * the secure register to be properly reset and migrated. There is also no 811 * v8 EL1 version of the register so the non-secure instance stands alone. 812 */ 813 { .name = "FCSEIDR", 814 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 815 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 816 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 817 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 818 { .name = "FCSEIDR_S", 819 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 820 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 821 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 822 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 823 /* Define the secure and non-secure context identifier CP registers 824 * separately because there is no secure bank in V8 (no _EL3). This allows 825 * the secure register to be properly reset and migrated. In the 826 * non-secure case, the 32-bit register will have reset and migration 827 * disabled during registration as it is handled by the 64-bit instance. 828 */ 829 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 830 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 831 .access = PL1_RW, .accessfn = access_tvm_trvm, 832 .secure = ARM_CP_SECSTATE_NS, 833 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 834 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 835 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 836 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 837 .access = PL1_RW, .accessfn = access_tvm_trvm, 838 .secure = ARM_CP_SECSTATE_S, 839 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 840 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 841 REGINFO_SENTINEL 842 }; 843 844 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 845 /* NB: Some of these registers exist in v8 but with more precise 846 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 847 */ 848 /* MMU Domain access control / MPU write buffer control */ 849 { .name = "DACR", 850 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 851 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 852 .writefn = dacr_write, .raw_writefn = raw_write, 853 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 854 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 855 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 856 * For v6 and v5, these mappings are overly broad. 857 */ 858 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 859 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 860 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 861 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 862 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 863 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 864 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 865 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 866 /* Cache maintenance ops; some of this space may be overridden later. */ 867 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 868 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 869 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 870 REGINFO_SENTINEL 871 }; 872 873 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 874 /* Not all pre-v6 cores implemented this WFI, so this is slightly 875 * over-broad. 876 */ 877 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 878 .access = PL1_W, .type = ARM_CP_WFI }, 879 REGINFO_SENTINEL 880 }; 881 882 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 883 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 884 * is UNPREDICTABLE; we choose to NOP as most implementations do). 885 */ 886 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 887 .access = PL1_W, .type = ARM_CP_WFI }, 888 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 889 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 890 * OMAPCP will override this space. 891 */ 892 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 893 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 894 .resetvalue = 0 }, 895 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 896 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 897 .resetvalue = 0 }, 898 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 899 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 900 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 901 .resetvalue = 0 }, 902 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 903 * implementing it as RAZ means the "debug architecture version" bits 904 * will read as a reserved value, which should cause Linux to not try 905 * to use the debug hardware. 906 */ 907 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 908 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 909 /* MMU TLB control. Note that the wildcarding means we cover not just 910 * the unified TLB ops but also the dside/iside/inner-shareable variants. 911 */ 912 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 913 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 914 .type = ARM_CP_NO_RAW }, 915 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 916 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 917 .type = ARM_CP_NO_RAW }, 918 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 919 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 920 .type = ARM_CP_NO_RAW }, 921 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 922 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 923 .type = ARM_CP_NO_RAW }, 924 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 925 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 926 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 927 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 928 REGINFO_SENTINEL 929 }; 930 931 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 932 uint64_t value) 933 { 934 uint32_t mask = 0; 935 936 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 937 if (!arm_feature(env, ARM_FEATURE_V8)) { 938 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 939 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 940 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 941 */ 942 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 943 /* VFP coprocessor: cp10 & cp11 [23:20] */ 944 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 945 946 if (!arm_feature(env, ARM_FEATURE_NEON)) { 947 /* ASEDIS [31] bit is RAO/WI */ 948 value |= (1 << 31); 949 } 950 951 /* VFPv3 and upwards with NEON implement 32 double precision 952 * registers (D0-D31). 953 */ 954 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 955 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 956 value |= (1 << 30); 957 } 958 } 959 value &= mask; 960 } 961 962 /* 963 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 964 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 965 */ 966 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 967 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 968 value &= ~(0xf << 20); 969 value |= env->cp15.cpacr_el1 & (0xf << 20); 970 } 971 972 env->cp15.cpacr_el1 = value; 973 } 974 975 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 976 { 977 /* 978 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 979 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 980 */ 981 uint64_t value = env->cp15.cpacr_el1; 982 983 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 984 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 985 value &= ~(0xf << 20); 986 } 987 return value; 988 } 989 990 991 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 992 { 993 /* Call cpacr_write() so that we reset with the correct RAO bits set 994 * for our CPU features. 995 */ 996 cpacr_write(env, ri, 0); 997 } 998 999 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1000 bool isread) 1001 { 1002 if (arm_feature(env, ARM_FEATURE_V8)) { 1003 /* Check if CPACR accesses are to be trapped to EL2 */ 1004 if (arm_current_el(env) == 1 && 1005 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1006 return CP_ACCESS_TRAP_EL2; 1007 /* Check if CPACR accesses are to be trapped to EL3 */ 1008 } else if (arm_current_el(env) < 3 && 1009 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1010 return CP_ACCESS_TRAP_EL3; 1011 } 1012 } 1013 1014 return CP_ACCESS_OK; 1015 } 1016 1017 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1018 bool isread) 1019 { 1020 /* Check if CPTR accesses are set to trap to EL3 */ 1021 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1022 return CP_ACCESS_TRAP_EL3; 1023 } 1024 1025 return CP_ACCESS_OK; 1026 } 1027 1028 static const ARMCPRegInfo v6_cp_reginfo[] = { 1029 /* prefetch by MVA in v6, NOP in v7 */ 1030 { .name = "MVA_prefetch", 1031 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1032 .access = PL1_W, .type = ARM_CP_NOP }, 1033 /* We need to break the TB after ISB to execute self-modifying code 1034 * correctly and also to take any pending interrupts immediately. 1035 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1036 */ 1037 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1038 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1039 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1040 .access = PL0_W, .type = ARM_CP_NOP }, 1041 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1042 .access = PL0_W, .type = ARM_CP_NOP }, 1043 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1044 .access = PL1_RW, .accessfn = access_tvm_trvm, 1045 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1046 offsetof(CPUARMState, cp15.ifar_ns) }, 1047 .resetvalue = 0, }, 1048 /* Watchpoint Fault Address Register : should actually only be present 1049 * for 1136, 1176, 11MPCore. 1050 */ 1051 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1052 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1053 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1054 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1055 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1056 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1057 REGINFO_SENTINEL 1058 }; 1059 1060 /* Definitions for the PMU registers */ 1061 #define PMCRN_MASK 0xf800 1062 #define PMCRN_SHIFT 11 1063 #define PMCRLC 0x40 1064 #define PMCRDP 0x20 1065 #define PMCRX 0x10 1066 #define PMCRD 0x8 1067 #define PMCRC 0x4 1068 #define PMCRP 0x2 1069 #define PMCRE 0x1 1070 /* 1071 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1072 * which can be written as 1 to trigger behaviour but which stay RAZ). 1073 */ 1074 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1075 1076 #define PMXEVTYPER_P 0x80000000 1077 #define PMXEVTYPER_U 0x40000000 1078 #define PMXEVTYPER_NSK 0x20000000 1079 #define PMXEVTYPER_NSU 0x10000000 1080 #define PMXEVTYPER_NSH 0x08000000 1081 #define PMXEVTYPER_M 0x04000000 1082 #define PMXEVTYPER_MT 0x02000000 1083 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1084 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1085 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1086 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1087 PMXEVTYPER_EVTCOUNT) 1088 1089 #define PMCCFILTR 0xf8000000 1090 #define PMCCFILTR_M PMXEVTYPER_M 1091 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1092 1093 static inline uint32_t pmu_num_counters(CPUARMState *env) 1094 { 1095 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1096 } 1097 1098 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1099 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1100 { 1101 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1102 } 1103 1104 typedef struct pm_event { 1105 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1106 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1107 bool (*supported)(CPUARMState *); 1108 /* 1109 * Retrieve the current count of the underlying event. The programmed 1110 * counters hold a difference from the return value from this function 1111 */ 1112 uint64_t (*get_count)(CPUARMState *); 1113 /* 1114 * Return how many nanoseconds it will take (at a minimum) for count events 1115 * to occur. A negative value indicates the counter will never overflow, or 1116 * that the counter has otherwise arranged for the overflow bit to be set 1117 * and the PMU interrupt to be raised on overflow. 1118 */ 1119 int64_t (*ns_per_count)(uint64_t); 1120 } pm_event; 1121 1122 static bool event_always_supported(CPUARMState *env) 1123 { 1124 return true; 1125 } 1126 1127 static uint64_t swinc_get_count(CPUARMState *env) 1128 { 1129 /* 1130 * SW_INCR events are written directly to the pmevcntr's by writes to 1131 * PMSWINC, so there is no underlying count maintained by the PMU itself 1132 */ 1133 return 0; 1134 } 1135 1136 static int64_t swinc_ns_per(uint64_t ignored) 1137 { 1138 return -1; 1139 } 1140 1141 /* 1142 * Return the underlying cycle count for the PMU cycle counters. If we're in 1143 * usermode, simply return 0. 1144 */ 1145 static uint64_t cycles_get_count(CPUARMState *env) 1146 { 1147 #ifndef CONFIG_USER_ONLY 1148 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1149 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1150 #else 1151 return cpu_get_host_ticks(); 1152 #endif 1153 } 1154 1155 #ifndef CONFIG_USER_ONLY 1156 static int64_t cycles_ns_per(uint64_t cycles) 1157 { 1158 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1159 } 1160 1161 static bool instructions_supported(CPUARMState *env) 1162 { 1163 return use_icount == 1 /* Precise instruction counting */; 1164 } 1165 1166 static uint64_t instructions_get_count(CPUARMState *env) 1167 { 1168 return (uint64_t)cpu_get_icount_raw(); 1169 } 1170 1171 static int64_t instructions_ns_per(uint64_t icount) 1172 { 1173 return cpu_icount_to_ns((int64_t)icount); 1174 } 1175 #endif 1176 1177 static bool pmu_8_1_events_supported(CPUARMState *env) 1178 { 1179 /* For events which are supported in any v8.1 PMU */ 1180 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1181 } 1182 1183 static bool pmu_8_4_events_supported(CPUARMState *env) 1184 { 1185 /* For events which are supported in any v8.1 PMU */ 1186 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1187 } 1188 1189 static uint64_t zero_event_get_count(CPUARMState *env) 1190 { 1191 /* For events which on QEMU never fire, so their count is always zero */ 1192 return 0; 1193 } 1194 1195 static int64_t zero_event_ns_per(uint64_t cycles) 1196 { 1197 /* An event which never fires can never overflow */ 1198 return -1; 1199 } 1200 1201 static const pm_event pm_events[] = { 1202 { .number = 0x000, /* SW_INCR */ 1203 .supported = event_always_supported, 1204 .get_count = swinc_get_count, 1205 .ns_per_count = swinc_ns_per, 1206 }, 1207 #ifndef CONFIG_USER_ONLY 1208 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1209 .supported = instructions_supported, 1210 .get_count = instructions_get_count, 1211 .ns_per_count = instructions_ns_per, 1212 }, 1213 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1214 .supported = event_always_supported, 1215 .get_count = cycles_get_count, 1216 .ns_per_count = cycles_ns_per, 1217 }, 1218 #endif 1219 { .number = 0x023, /* STALL_FRONTEND */ 1220 .supported = pmu_8_1_events_supported, 1221 .get_count = zero_event_get_count, 1222 .ns_per_count = zero_event_ns_per, 1223 }, 1224 { .number = 0x024, /* STALL_BACKEND */ 1225 .supported = pmu_8_1_events_supported, 1226 .get_count = zero_event_get_count, 1227 .ns_per_count = zero_event_ns_per, 1228 }, 1229 { .number = 0x03c, /* STALL */ 1230 .supported = pmu_8_4_events_supported, 1231 .get_count = zero_event_get_count, 1232 .ns_per_count = zero_event_ns_per, 1233 }, 1234 }; 1235 1236 /* 1237 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1238 * events (i.e. the statistical profiling extension), this implementation 1239 * should first be updated to something sparse instead of the current 1240 * supported_event_map[] array. 1241 */ 1242 #define MAX_EVENT_ID 0x3c 1243 #define UNSUPPORTED_EVENT UINT16_MAX 1244 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1245 1246 /* 1247 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1248 * of ARM event numbers to indices in our pm_events array. 1249 * 1250 * Note: Events in the 0x40XX range are not currently supported. 1251 */ 1252 void pmu_init(ARMCPU *cpu) 1253 { 1254 unsigned int i; 1255 1256 /* 1257 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1258 * events to them 1259 */ 1260 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1261 supported_event_map[i] = UNSUPPORTED_EVENT; 1262 } 1263 cpu->pmceid0 = 0; 1264 cpu->pmceid1 = 0; 1265 1266 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1267 const pm_event *cnt = &pm_events[i]; 1268 assert(cnt->number <= MAX_EVENT_ID); 1269 /* We do not currently support events in the 0x40xx range */ 1270 assert(cnt->number <= 0x3f); 1271 1272 if (cnt->supported(&cpu->env)) { 1273 supported_event_map[cnt->number] = i; 1274 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1275 if (cnt->number & 0x20) { 1276 cpu->pmceid1 |= event_mask; 1277 } else { 1278 cpu->pmceid0 |= event_mask; 1279 } 1280 } 1281 } 1282 } 1283 1284 /* 1285 * Check at runtime whether a PMU event is supported for the current machine 1286 */ 1287 static bool event_supported(uint16_t number) 1288 { 1289 if (number > MAX_EVENT_ID) { 1290 return false; 1291 } 1292 return supported_event_map[number] != UNSUPPORTED_EVENT; 1293 } 1294 1295 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1296 bool isread) 1297 { 1298 /* Performance monitor registers user accessibility is controlled 1299 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1300 * trapping to EL2 or EL3 for other accesses. 1301 */ 1302 int el = arm_current_el(env); 1303 1304 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1305 return CP_ACCESS_TRAP; 1306 } 1307 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1308 && !arm_is_secure_below_el3(env)) { 1309 return CP_ACCESS_TRAP_EL2; 1310 } 1311 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1312 return CP_ACCESS_TRAP_EL3; 1313 } 1314 1315 return CP_ACCESS_OK; 1316 } 1317 1318 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1319 const ARMCPRegInfo *ri, 1320 bool isread) 1321 { 1322 /* ER: event counter read trap control */ 1323 if (arm_feature(env, ARM_FEATURE_V8) 1324 && arm_current_el(env) == 0 1325 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1326 && isread) { 1327 return CP_ACCESS_OK; 1328 } 1329 1330 return pmreg_access(env, ri, isread); 1331 } 1332 1333 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1334 const ARMCPRegInfo *ri, 1335 bool isread) 1336 { 1337 /* SW: software increment write trap control */ 1338 if (arm_feature(env, ARM_FEATURE_V8) 1339 && arm_current_el(env) == 0 1340 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1341 && !isread) { 1342 return CP_ACCESS_OK; 1343 } 1344 1345 return pmreg_access(env, ri, isread); 1346 } 1347 1348 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1349 const ARMCPRegInfo *ri, 1350 bool isread) 1351 { 1352 /* ER: event counter read trap control */ 1353 if (arm_feature(env, ARM_FEATURE_V8) 1354 && arm_current_el(env) == 0 1355 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1356 return CP_ACCESS_OK; 1357 } 1358 1359 return pmreg_access(env, ri, isread); 1360 } 1361 1362 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1363 const ARMCPRegInfo *ri, 1364 bool isread) 1365 { 1366 /* CR: cycle counter read trap control */ 1367 if (arm_feature(env, ARM_FEATURE_V8) 1368 && arm_current_el(env) == 0 1369 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1370 && isread) { 1371 return CP_ACCESS_OK; 1372 } 1373 1374 return pmreg_access(env, ri, isread); 1375 } 1376 1377 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1378 * the current EL, security state, and register configuration. 1379 */ 1380 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1381 { 1382 uint64_t filter; 1383 bool e, p, u, nsk, nsu, nsh, m; 1384 bool enabled, prohibited, filtered; 1385 bool secure = arm_is_secure(env); 1386 int el = arm_current_el(env); 1387 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1388 1389 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1390 return false; 1391 } 1392 1393 if (!arm_feature(env, ARM_FEATURE_EL2) || 1394 (counter < hpmn || counter == 31)) { 1395 e = env->cp15.c9_pmcr & PMCRE; 1396 } else { 1397 e = env->cp15.mdcr_el2 & MDCR_HPME; 1398 } 1399 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1400 1401 if (!secure) { 1402 if (el == 2 && (counter < hpmn || counter == 31)) { 1403 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1404 } else { 1405 prohibited = false; 1406 } 1407 } else { 1408 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1409 (env->cp15.mdcr_el3 & MDCR_SPME); 1410 } 1411 1412 if (prohibited && counter == 31) { 1413 prohibited = env->cp15.c9_pmcr & PMCRDP; 1414 } 1415 1416 if (counter == 31) { 1417 filter = env->cp15.pmccfiltr_el0; 1418 } else { 1419 filter = env->cp15.c14_pmevtyper[counter]; 1420 } 1421 1422 p = filter & PMXEVTYPER_P; 1423 u = filter & PMXEVTYPER_U; 1424 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1425 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1426 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1427 m = arm_el_is_aa64(env, 1) && 1428 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1429 1430 if (el == 0) { 1431 filtered = secure ? u : u != nsu; 1432 } else if (el == 1) { 1433 filtered = secure ? p : p != nsk; 1434 } else if (el == 2) { 1435 filtered = !nsh; 1436 } else { /* EL3 */ 1437 filtered = m != p; 1438 } 1439 1440 if (counter != 31) { 1441 /* 1442 * If not checking PMCCNTR, ensure the counter is setup to an event we 1443 * support 1444 */ 1445 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1446 if (!event_supported(event)) { 1447 return false; 1448 } 1449 } 1450 1451 return enabled && !prohibited && !filtered; 1452 } 1453 1454 static void pmu_update_irq(CPUARMState *env) 1455 { 1456 ARMCPU *cpu = env_archcpu(env); 1457 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1458 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1459 } 1460 1461 /* 1462 * Ensure c15_ccnt is the guest-visible count so that operations such as 1463 * enabling/disabling the counter or filtering, modifying the count itself, 1464 * etc. can be done logically. This is essentially a no-op if the counter is 1465 * not enabled at the time of the call. 1466 */ 1467 static void pmccntr_op_start(CPUARMState *env) 1468 { 1469 uint64_t cycles = cycles_get_count(env); 1470 1471 if (pmu_counter_enabled(env, 31)) { 1472 uint64_t eff_cycles = cycles; 1473 if (env->cp15.c9_pmcr & PMCRD) { 1474 /* Increment once every 64 processor clock cycles */ 1475 eff_cycles /= 64; 1476 } 1477 1478 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1479 1480 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1481 1ull << 63 : 1ull << 31; 1482 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1483 env->cp15.c9_pmovsr |= (1 << 31); 1484 pmu_update_irq(env); 1485 } 1486 1487 env->cp15.c15_ccnt = new_pmccntr; 1488 } 1489 env->cp15.c15_ccnt_delta = cycles; 1490 } 1491 1492 /* 1493 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1494 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1495 * pmccntr_op_start. 1496 */ 1497 static void pmccntr_op_finish(CPUARMState *env) 1498 { 1499 if (pmu_counter_enabled(env, 31)) { 1500 #ifndef CONFIG_USER_ONLY 1501 /* Calculate when the counter will next overflow */ 1502 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1503 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1504 remaining_cycles = (uint32_t)remaining_cycles; 1505 } 1506 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1507 1508 if (overflow_in > 0) { 1509 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1510 overflow_in; 1511 ARMCPU *cpu = env_archcpu(env); 1512 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1513 } 1514 #endif 1515 1516 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1517 if (env->cp15.c9_pmcr & PMCRD) { 1518 /* Increment once every 64 processor clock cycles */ 1519 prev_cycles /= 64; 1520 } 1521 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1522 } 1523 } 1524 1525 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1526 { 1527 1528 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1529 uint64_t count = 0; 1530 if (event_supported(event)) { 1531 uint16_t event_idx = supported_event_map[event]; 1532 count = pm_events[event_idx].get_count(env); 1533 } 1534 1535 if (pmu_counter_enabled(env, counter)) { 1536 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1537 1538 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1539 env->cp15.c9_pmovsr |= (1 << counter); 1540 pmu_update_irq(env); 1541 } 1542 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1543 } 1544 env->cp15.c14_pmevcntr_delta[counter] = count; 1545 } 1546 1547 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1548 { 1549 if (pmu_counter_enabled(env, counter)) { 1550 #ifndef CONFIG_USER_ONLY 1551 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1552 uint16_t event_idx = supported_event_map[event]; 1553 uint64_t delta = UINT32_MAX - 1554 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1555 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1556 1557 if (overflow_in > 0) { 1558 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1559 overflow_in; 1560 ARMCPU *cpu = env_archcpu(env); 1561 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1562 } 1563 #endif 1564 1565 env->cp15.c14_pmevcntr_delta[counter] -= 1566 env->cp15.c14_pmevcntr[counter]; 1567 } 1568 } 1569 1570 void pmu_op_start(CPUARMState *env) 1571 { 1572 unsigned int i; 1573 pmccntr_op_start(env); 1574 for (i = 0; i < pmu_num_counters(env); i++) { 1575 pmevcntr_op_start(env, i); 1576 } 1577 } 1578 1579 void pmu_op_finish(CPUARMState *env) 1580 { 1581 unsigned int i; 1582 pmccntr_op_finish(env); 1583 for (i = 0; i < pmu_num_counters(env); i++) { 1584 pmevcntr_op_finish(env, i); 1585 } 1586 } 1587 1588 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1589 { 1590 pmu_op_start(&cpu->env); 1591 } 1592 1593 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1594 { 1595 pmu_op_finish(&cpu->env); 1596 } 1597 1598 void arm_pmu_timer_cb(void *opaque) 1599 { 1600 ARMCPU *cpu = opaque; 1601 1602 /* 1603 * Update all the counter values based on the current underlying counts, 1604 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1605 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1606 * counter may expire. 1607 */ 1608 pmu_op_start(&cpu->env); 1609 pmu_op_finish(&cpu->env); 1610 } 1611 1612 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1613 uint64_t value) 1614 { 1615 pmu_op_start(env); 1616 1617 if (value & PMCRC) { 1618 /* The counter has been reset */ 1619 env->cp15.c15_ccnt = 0; 1620 } 1621 1622 if (value & PMCRP) { 1623 unsigned int i; 1624 for (i = 0; i < pmu_num_counters(env); i++) { 1625 env->cp15.c14_pmevcntr[i] = 0; 1626 } 1627 } 1628 1629 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1630 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1631 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 unsigned int i; 1639 for (i = 0; i < pmu_num_counters(env); i++) { 1640 /* Increment a counter's count iff: */ 1641 if ((value & (1 << i)) && /* counter's bit is set */ 1642 /* counter is enabled and not filtered */ 1643 pmu_counter_enabled(env, i) && 1644 /* counter is SW_INCR */ 1645 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1646 pmevcntr_op_start(env, i); 1647 1648 /* 1649 * Detect if this write causes an overflow since we can't predict 1650 * PMSWINC overflows like we can for other events 1651 */ 1652 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1653 1654 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1655 env->cp15.c9_pmovsr |= (1 << i); 1656 pmu_update_irq(env); 1657 } 1658 1659 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1660 1661 pmevcntr_op_finish(env, i); 1662 } 1663 } 1664 } 1665 1666 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1667 { 1668 uint64_t ret; 1669 pmccntr_op_start(env); 1670 ret = env->cp15.c15_ccnt; 1671 pmccntr_op_finish(env); 1672 return ret; 1673 } 1674 1675 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1676 uint64_t value) 1677 { 1678 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1679 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1680 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1681 * accessed. 1682 */ 1683 env->cp15.c9_pmselr = value & 0x1f; 1684 } 1685 1686 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1687 uint64_t value) 1688 { 1689 pmccntr_op_start(env); 1690 env->cp15.c15_ccnt = value; 1691 pmccntr_op_finish(env); 1692 } 1693 1694 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1695 uint64_t value) 1696 { 1697 uint64_t cur_val = pmccntr_read(env, NULL); 1698 1699 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1700 } 1701 1702 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1703 uint64_t value) 1704 { 1705 pmccntr_op_start(env); 1706 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1707 pmccntr_op_finish(env); 1708 } 1709 1710 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 pmccntr_op_start(env); 1714 /* M is not accessible from AArch32 */ 1715 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1716 (value & PMCCFILTR); 1717 pmccntr_op_finish(env); 1718 } 1719 1720 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1721 { 1722 /* M is not visible in AArch32 */ 1723 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1724 } 1725 1726 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint64_t value) 1728 { 1729 value &= pmu_counter_mask(env); 1730 env->cp15.c9_pmcnten |= value; 1731 } 1732 1733 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 value &= pmu_counter_mask(env); 1737 env->cp15.c9_pmcnten &= ~value; 1738 } 1739 1740 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 value &= pmu_counter_mask(env); 1744 env->cp15.c9_pmovsr &= ~value; 1745 pmu_update_irq(env); 1746 } 1747 1748 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 value &= pmu_counter_mask(env); 1752 env->cp15.c9_pmovsr |= value; 1753 pmu_update_irq(env); 1754 } 1755 1756 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1757 uint64_t value, const uint8_t counter) 1758 { 1759 if (counter == 31) { 1760 pmccfiltr_write(env, ri, value); 1761 } else if (counter < pmu_num_counters(env)) { 1762 pmevcntr_op_start(env, counter); 1763 1764 /* 1765 * If this counter's event type is changing, store the current 1766 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1767 * pmevcntr_op_finish has the correct baseline when it converts back to 1768 * a delta. 1769 */ 1770 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1771 PMXEVTYPER_EVTCOUNT; 1772 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1773 if (old_event != new_event) { 1774 uint64_t count = 0; 1775 if (event_supported(new_event)) { 1776 uint16_t event_idx = supported_event_map[new_event]; 1777 count = pm_events[event_idx].get_count(env); 1778 } 1779 env->cp15.c14_pmevcntr_delta[counter] = count; 1780 } 1781 1782 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1783 pmevcntr_op_finish(env, counter); 1784 } 1785 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1786 * PMSELR value is equal to or greater than the number of implemented 1787 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1788 */ 1789 } 1790 1791 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1792 const uint8_t counter) 1793 { 1794 if (counter == 31) { 1795 return env->cp15.pmccfiltr_el0; 1796 } else if (counter < pmu_num_counters(env)) { 1797 return env->cp15.c14_pmevtyper[counter]; 1798 } else { 1799 /* 1800 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1801 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1802 */ 1803 return 0; 1804 } 1805 } 1806 1807 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1811 pmevtyper_write(env, ri, value, counter); 1812 } 1813 1814 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1818 env->cp15.c14_pmevtyper[counter] = value; 1819 1820 /* 1821 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1822 * pmu_op_finish calls when loading saved state for a migration. Because 1823 * we're potentially updating the type of event here, the value written to 1824 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1825 * different counter type. Therefore, we need to set this value to the 1826 * current count for the counter type we're writing so that pmu_op_finish 1827 * has the correct count for its calculation. 1828 */ 1829 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1830 if (event_supported(event)) { 1831 uint16_t event_idx = supported_event_map[event]; 1832 env->cp15.c14_pmevcntr_delta[counter] = 1833 pm_events[event_idx].get_count(env); 1834 } 1835 } 1836 1837 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1838 { 1839 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1840 return pmevtyper_read(env, ri, counter); 1841 } 1842 1843 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1844 uint64_t value) 1845 { 1846 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1847 } 1848 1849 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1850 { 1851 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1852 } 1853 1854 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value, uint8_t counter) 1856 { 1857 if (counter < pmu_num_counters(env)) { 1858 pmevcntr_op_start(env, counter); 1859 env->cp15.c14_pmevcntr[counter] = value; 1860 pmevcntr_op_finish(env, counter); 1861 } 1862 /* 1863 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1864 * are CONSTRAINED UNPREDICTABLE. 1865 */ 1866 } 1867 1868 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1869 uint8_t counter) 1870 { 1871 if (counter < pmu_num_counters(env)) { 1872 uint64_t ret; 1873 pmevcntr_op_start(env, counter); 1874 ret = env->cp15.c14_pmevcntr[counter]; 1875 pmevcntr_op_finish(env, counter); 1876 return ret; 1877 } else { 1878 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1879 * are CONSTRAINED UNPREDICTABLE. */ 1880 return 0; 1881 } 1882 } 1883 1884 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1885 uint64_t value) 1886 { 1887 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1888 pmevcntr_write(env, ri, value, counter); 1889 } 1890 1891 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1892 { 1893 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1894 return pmevcntr_read(env, ri, counter); 1895 } 1896 1897 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1898 uint64_t value) 1899 { 1900 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1901 assert(counter < pmu_num_counters(env)); 1902 env->cp15.c14_pmevcntr[counter] = value; 1903 pmevcntr_write(env, ri, value, counter); 1904 } 1905 1906 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1907 { 1908 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1909 assert(counter < pmu_num_counters(env)); 1910 return env->cp15.c14_pmevcntr[counter]; 1911 } 1912 1913 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1914 uint64_t value) 1915 { 1916 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1917 } 1918 1919 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1920 { 1921 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1922 } 1923 1924 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1925 uint64_t value) 1926 { 1927 if (arm_feature(env, ARM_FEATURE_V8)) { 1928 env->cp15.c9_pmuserenr = value & 0xf; 1929 } else { 1930 env->cp15.c9_pmuserenr = value & 1; 1931 } 1932 } 1933 1934 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1935 uint64_t value) 1936 { 1937 /* We have no event counters so only the C bit can be changed */ 1938 value &= pmu_counter_mask(env); 1939 env->cp15.c9_pminten |= value; 1940 pmu_update_irq(env); 1941 } 1942 1943 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1944 uint64_t value) 1945 { 1946 value &= pmu_counter_mask(env); 1947 env->cp15.c9_pminten &= ~value; 1948 pmu_update_irq(env); 1949 } 1950 1951 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1952 uint64_t value) 1953 { 1954 /* Note that even though the AArch64 view of this register has bits 1955 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1956 * architectural requirements for bits which are RES0 only in some 1957 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1958 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1959 */ 1960 raw_write(env, ri, value & ~0x1FULL); 1961 } 1962 1963 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1964 { 1965 /* Begin with base v8.0 state. */ 1966 uint32_t valid_mask = 0x3fff; 1967 ARMCPU *cpu = env_archcpu(env); 1968 1969 if (arm_el_is_aa64(env, 3)) { 1970 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1971 valid_mask &= ~SCR_NET; 1972 } else { 1973 valid_mask &= ~(SCR_RW | SCR_ST); 1974 } 1975 1976 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1977 valid_mask &= ~SCR_HCE; 1978 1979 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1980 * supported if EL2 exists. The bit is UNK/SBZP when 1981 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1982 * when EL2 is unavailable. 1983 * On ARMv8, this bit is always available. 1984 */ 1985 if (arm_feature(env, ARM_FEATURE_V7) && 1986 !arm_feature(env, ARM_FEATURE_V8)) { 1987 valid_mask &= ~SCR_SMD; 1988 } 1989 } 1990 if (cpu_isar_feature(aa64_lor, cpu)) { 1991 valid_mask |= SCR_TLOR; 1992 } 1993 if (cpu_isar_feature(aa64_pauth, cpu)) { 1994 valid_mask |= SCR_API | SCR_APK; 1995 } 1996 1997 /* Clear all-context RES0 bits. */ 1998 value &= valid_mask; 1999 raw_write(env, ri, value); 2000 } 2001 2002 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2003 const ARMCPRegInfo *ri, 2004 bool isread) 2005 { 2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2007 return CP_ACCESS_TRAP_EL2; 2008 } 2009 2010 return CP_ACCESS_OK; 2011 } 2012 2013 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2014 { 2015 ARMCPU *cpu = env_archcpu(env); 2016 2017 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2018 * bank 2019 */ 2020 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2021 ri->secure & ARM_CP_SECSTATE_S); 2022 2023 return cpu->ccsidr[index]; 2024 } 2025 2026 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2027 uint64_t value) 2028 { 2029 raw_write(env, ri, value & 0xf); 2030 } 2031 2032 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2033 { 2034 CPUState *cs = env_cpu(env); 2035 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2036 uint64_t ret = 0; 2037 bool allow_virt = (arm_current_el(env) == 1 && 2038 (!arm_is_secure_below_el3(env) || 2039 (env->cp15.scr_el3 & SCR_EEL2))); 2040 2041 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2042 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2043 ret |= CPSR_I; 2044 } 2045 } else { 2046 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2047 ret |= CPSR_I; 2048 } 2049 } 2050 2051 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2052 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2053 ret |= CPSR_F; 2054 } 2055 } else { 2056 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2057 ret |= CPSR_F; 2058 } 2059 } 2060 2061 /* External aborts are not possible in QEMU so A bit is always clear */ 2062 return ret; 2063 } 2064 2065 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2066 bool isread) 2067 { 2068 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2069 return CP_ACCESS_TRAP_EL2; 2070 } 2071 2072 return CP_ACCESS_OK; 2073 } 2074 2075 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2076 bool isread) 2077 { 2078 if (arm_feature(env, ARM_FEATURE_V8)) { 2079 return access_aa64_tid1(env, ri, isread); 2080 } 2081 2082 return CP_ACCESS_OK; 2083 } 2084 2085 static const ARMCPRegInfo v7_cp_reginfo[] = { 2086 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2087 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2088 .access = PL1_W, .type = ARM_CP_NOP }, 2089 /* Performance monitors are implementation defined in v7, 2090 * but with an ARM recommended set of registers, which we 2091 * follow. 2092 * 2093 * Performance registers fall into three categories: 2094 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2095 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2096 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2097 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2098 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2099 */ 2100 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2101 .access = PL0_RW, .type = ARM_CP_ALIAS, 2102 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2103 .writefn = pmcntenset_write, 2104 .accessfn = pmreg_access, 2105 .raw_writefn = raw_write }, 2106 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2107 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2108 .access = PL0_RW, .accessfn = pmreg_access, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2110 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2111 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2112 .access = PL0_RW, 2113 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2114 .accessfn = pmreg_access, 2115 .writefn = pmcntenclr_write, 2116 .type = ARM_CP_ALIAS }, 2117 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2118 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2119 .access = PL0_RW, .accessfn = pmreg_access, 2120 .type = ARM_CP_ALIAS, 2121 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2122 .writefn = pmcntenclr_write }, 2123 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2124 .access = PL0_RW, .type = ARM_CP_IO, 2125 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2126 .accessfn = pmreg_access, 2127 .writefn = pmovsr_write, 2128 .raw_writefn = raw_write }, 2129 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2131 .access = PL0_RW, .accessfn = pmreg_access, 2132 .type = ARM_CP_ALIAS | ARM_CP_IO, 2133 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2134 .writefn = pmovsr_write, 2135 .raw_writefn = raw_write }, 2136 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2137 .access = PL0_W, .accessfn = pmreg_access_swinc, 2138 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .writefn = pmswinc_write }, 2140 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2141 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2142 .access = PL0_W, .accessfn = pmreg_access_swinc, 2143 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .writefn = pmswinc_write }, 2145 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2146 .access = PL0_RW, .type = ARM_CP_ALIAS, 2147 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2148 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2149 .raw_writefn = raw_write}, 2150 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2151 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2152 .access = PL0_RW, .accessfn = pmreg_access_selr, 2153 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2154 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2155 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2156 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2157 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2158 .accessfn = pmreg_access_ccntr }, 2159 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2161 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2162 .type = ARM_CP_IO, 2163 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2164 .readfn = pmccntr_read, .writefn = pmccntr_write, 2165 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2166 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2167 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2168 .access = PL0_RW, .accessfn = pmreg_access, 2169 .type = ARM_CP_ALIAS | ARM_CP_IO, 2170 .resetvalue = 0, }, 2171 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2173 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2174 .access = PL0_RW, .accessfn = pmreg_access, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2177 .resetvalue = 0, }, 2178 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2179 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2180 .accessfn = pmreg_access, 2181 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2182 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2184 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2185 .accessfn = pmreg_access, 2186 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2187 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2188 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2189 .accessfn = pmreg_access_xevcntr, 2190 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2191 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2193 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2194 .accessfn = pmreg_access_xevcntr, 2195 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2196 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2197 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2199 .resetvalue = 0, 2200 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2201 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2203 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2205 .resetvalue = 0, 2206 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2207 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2208 .access = PL1_RW, .accessfn = access_tpm, 2209 .type = ARM_CP_ALIAS | ARM_CP_IO, 2210 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2211 .resetvalue = 0, 2212 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2213 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2214 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2215 .access = PL1_RW, .accessfn = access_tpm, 2216 .type = ARM_CP_IO, 2217 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2218 .writefn = pmintenset_write, .raw_writefn = raw_write, 2219 .resetvalue = 0x0 }, 2220 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2221 .access = PL1_RW, .accessfn = access_tpm, 2222 .type = ARM_CP_ALIAS | ARM_CP_IO, 2223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2224 .writefn = pmintenclr_write, }, 2225 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2227 .access = PL1_RW, .accessfn = access_tpm, 2228 .type = ARM_CP_ALIAS | ARM_CP_IO, 2229 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2230 .writefn = pmintenclr_write }, 2231 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2232 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2233 .access = PL1_R, 2234 .accessfn = access_aa64_tid2, 2235 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2236 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2237 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2238 .access = PL1_RW, 2239 .accessfn = access_aa64_tid2, 2240 .writefn = csselr_write, .resetvalue = 0, 2241 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2242 offsetof(CPUARMState, cp15.csselr_ns) } }, 2243 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2244 * just RAZ for all cores: 2245 */ 2246 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2247 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2248 .access = PL1_R, .type = ARM_CP_CONST, 2249 .accessfn = access_aa64_tid1, 2250 .resetvalue = 0 }, 2251 /* Auxiliary fault status registers: these also are IMPDEF, and we 2252 * choose to RAZ/WI for all cores. 2253 */ 2254 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2255 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2256 .access = PL1_RW, .accessfn = access_tvm_trvm, 2257 .type = ARM_CP_CONST, .resetvalue = 0 }, 2258 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2259 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2260 .access = PL1_RW, .accessfn = access_tvm_trvm, 2261 .type = ARM_CP_CONST, .resetvalue = 0 }, 2262 /* MAIR can just read-as-written because we don't implement caches 2263 * and so don't need to care about memory attributes. 2264 */ 2265 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2266 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2267 .access = PL1_RW, .accessfn = access_tvm_trvm, 2268 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2269 .resetvalue = 0 }, 2270 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2271 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2272 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2273 .resetvalue = 0 }, 2274 /* For non-long-descriptor page tables these are PRRR and NMRR; 2275 * regardless they still act as reads-as-written for QEMU. 2276 */ 2277 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2278 * allows them to assign the correct fieldoffset based on the endianness 2279 * handled in the field definitions. 2280 */ 2281 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2282 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2283 .access = PL1_RW, .accessfn = access_tvm_trvm, 2284 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2285 offsetof(CPUARMState, cp15.mair0_ns) }, 2286 .resetfn = arm_cp_reset_ignore }, 2287 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2288 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2289 .access = PL1_RW, .accessfn = access_tvm_trvm, 2290 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2291 offsetof(CPUARMState, cp15.mair1_ns) }, 2292 .resetfn = arm_cp_reset_ignore }, 2293 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2294 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2295 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2296 /* 32 bit ITLB invalidates */ 2297 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2299 .writefn = tlbiall_write }, 2300 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2302 .writefn = tlbimva_write }, 2303 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2305 .writefn = tlbiasid_write }, 2306 /* 32 bit DTLB invalidates */ 2307 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2309 .writefn = tlbiall_write }, 2310 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2312 .writefn = tlbimva_write }, 2313 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2315 .writefn = tlbiasid_write }, 2316 /* 32 bit TLB invalidates */ 2317 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2318 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2319 .writefn = tlbiall_write }, 2320 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2321 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2322 .writefn = tlbimva_write }, 2323 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2324 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2325 .writefn = tlbiasid_write }, 2326 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2328 .writefn = tlbimvaa_write }, 2329 REGINFO_SENTINEL 2330 }; 2331 2332 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2333 /* 32 bit TLB invalidates, Inner Shareable */ 2334 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2335 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2336 .writefn = tlbiall_is_write }, 2337 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2338 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2339 .writefn = tlbimva_is_write }, 2340 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2341 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2342 .writefn = tlbiasid_is_write }, 2343 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2344 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2345 .writefn = tlbimvaa_is_write }, 2346 REGINFO_SENTINEL 2347 }; 2348 2349 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2350 /* PMOVSSET is not implemented in v7 before v7ve */ 2351 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2352 .access = PL0_RW, .accessfn = pmreg_access, 2353 .type = ARM_CP_ALIAS | ARM_CP_IO, 2354 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2355 .writefn = pmovsset_write, 2356 .raw_writefn = raw_write }, 2357 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2358 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2359 .access = PL0_RW, .accessfn = pmreg_access, 2360 .type = ARM_CP_ALIAS | ARM_CP_IO, 2361 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2362 .writefn = pmovsset_write, 2363 .raw_writefn = raw_write }, 2364 REGINFO_SENTINEL 2365 }; 2366 2367 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2368 uint64_t value) 2369 { 2370 value &= 1; 2371 env->teecr = value; 2372 } 2373 2374 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2375 bool isread) 2376 { 2377 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2378 return CP_ACCESS_TRAP; 2379 } 2380 return CP_ACCESS_OK; 2381 } 2382 2383 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2384 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2385 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2386 .resetvalue = 0, 2387 .writefn = teecr_write }, 2388 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2389 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2390 .accessfn = teehbr_access, .resetvalue = 0 }, 2391 REGINFO_SENTINEL 2392 }; 2393 2394 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2395 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2396 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2397 .access = PL0_RW, 2398 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2399 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2400 .access = PL0_RW, 2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2402 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2403 .resetfn = arm_cp_reset_ignore }, 2404 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2405 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2406 .access = PL0_R|PL1_W, 2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2408 .resetvalue = 0}, 2409 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2410 .access = PL0_R|PL1_W, 2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2412 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2413 .resetfn = arm_cp_reset_ignore }, 2414 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2415 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2416 .access = PL1_RW, 2417 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2418 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2419 .access = PL1_RW, 2420 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2421 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2422 .resetvalue = 0 }, 2423 REGINFO_SENTINEL 2424 }; 2425 2426 #ifndef CONFIG_USER_ONLY 2427 2428 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2429 bool isread) 2430 { 2431 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2432 * Writable only at the highest implemented exception level. 2433 */ 2434 int el = arm_current_el(env); 2435 uint64_t hcr; 2436 uint32_t cntkctl; 2437 2438 switch (el) { 2439 case 0: 2440 hcr = arm_hcr_el2_eff(env); 2441 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2442 cntkctl = env->cp15.cnthctl_el2; 2443 } else { 2444 cntkctl = env->cp15.c14_cntkctl; 2445 } 2446 if (!extract32(cntkctl, 0, 2)) { 2447 return CP_ACCESS_TRAP; 2448 } 2449 break; 2450 case 1: 2451 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2452 arm_is_secure_below_el3(env)) { 2453 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2454 return CP_ACCESS_TRAP_UNCATEGORIZED; 2455 } 2456 break; 2457 case 2: 2458 case 3: 2459 break; 2460 } 2461 2462 if (!isread && el < arm_highest_el(env)) { 2463 return CP_ACCESS_TRAP_UNCATEGORIZED; 2464 } 2465 2466 return CP_ACCESS_OK; 2467 } 2468 2469 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2470 bool isread) 2471 { 2472 unsigned int cur_el = arm_current_el(env); 2473 bool secure = arm_is_secure(env); 2474 uint64_t hcr = arm_hcr_el2_eff(env); 2475 2476 switch (cur_el) { 2477 case 0: 2478 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2479 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2480 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2481 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2482 } 2483 2484 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2485 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2486 return CP_ACCESS_TRAP; 2487 } 2488 2489 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2490 if (hcr & HCR_E2H) { 2491 if (timeridx == GTIMER_PHYS && 2492 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2493 return CP_ACCESS_TRAP_EL2; 2494 } 2495 } else { 2496 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2497 if (arm_feature(env, ARM_FEATURE_EL2) && 2498 timeridx == GTIMER_PHYS && !secure && 2499 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2500 return CP_ACCESS_TRAP_EL2; 2501 } 2502 } 2503 break; 2504 2505 case 1: 2506 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2507 if (arm_feature(env, ARM_FEATURE_EL2) && 2508 timeridx == GTIMER_PHYS && !secure && 2509 (hcr & HCR_E2H 2510 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2511 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2512 return CP_ACCESS_TRAP_EL2; 2513 } 2514 break; 2515 } 2516 return CP_ACCESS_OK; 2517 } 2518 2519 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2520 bool isread) 2521 { 2522 unsigned int cur_el = arm_current_el(env); 2523 bool secure = arm_is_secure(env); 2524 uint64_t hcr = arm_hcr_el2_eff(env); 2525 2526 switch (cur_el) { 2527 case 0: 2528 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2529 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2530 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2531 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2532 } 2533 2534 /* 2535 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2536 * EL0 if EL0[PV]TEN is zero. 2537 */ 2538 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2539 return CP_ACCESS_TRAP; 2540 } 2541 /* fall through */ 2542 2543 case 1: 2544 if (arm_feature(env, ARM_FEATURE_EL2) && 2545 timeridx == GTIMER_PHYS && !secure) { 2546 if (hcr & HCR_E2H) { 2547 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2548 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2549 return CP_ACCESS_TRAP_EL2; 2550 } 2551 } else { 2552 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2553 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2554 return CP_ACCESS_TRAP_EL2; 2555 } 2556 } 2557 } 2558 break; 2559 } 2560 return CP_ACCESS_OK; 2561 } 2562 2563 static CPAccessResult gt_pct_access(CPUARMState *env, 2564 const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_counter_access(env, GTIMER_PHYS, isread); 2568 } 2569 2570 static CPAccessResult gt_vct_access(CPUARMState *env, 2571 const ARMCPRegInfo *ri, 2572 bool isread) 2573 { 2574 return gt_counter_access(env, GTIMER_VIRT, isread); 2575 } 2576 2577 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2578 bool isread) 2579 { 2580 return gt_timer_access(env, GTIMER_PHYS, isread); 2581 } 2582 2583 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2584 bool isread) 2585 { 2586 return gt_timer_access(env, GTIMER_VIRT, isread); 2587 } 2588 2589 static CPAccessResult gt_stimer_access(CPUARMState *env, 2590 const ARMCPRegInfo *ri, 2591 bool isread) 2592 { 2593 /* The AArch64 register view of the secure physical timer is 2594 * always accessible from EL3, and configurably accessible from 2595 * Secure EL1. 2596 */ 2597 switch (arm_current_el(env)) { 2598 case 1: 2599 if (!arm_is_secure(env)) { 2600 return CP_ACCESS_TRAP; 2601 } 2602 if (!(env->cp15.scr_el3 & SCR_ST)) { 2603 return CP_ACCESS_TRAP_EL3; 2604 } 2605 return CP_ACCESS_OK; 2606 case 0: 2607 case 2: 2608 return CP_ACCESS_TRAP; 2609 case 3: 2610 return CP_ACCESS_OK; 2611 default: 2612 g_assert_not_reached(); 2613 } 2614 } 2615 2616 static uint64_t gt_get_countervalue(CPUARMState *env) 2617 { 2618 ARMCPU *cpu = env_archcpu(env); 2619 2620 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2621 } 2622 2623 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2624 { 2625 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2626 2627 if (gt->ctl & 1) { 2628 /* Timer enabled: calculate and set current ISTATUS, irq, and 2629 * reset timer to when ISTATUS next has to change 2630 */ 2631 uint64_t offset = timeridx == GTIMER_VIRT ? 2632 cpu->env.cp15.cntvoff_el2 : 0; 2633 uint64_t count = gt_get_countervalue(&cpu->env); 2634 /* Note that this must be unsigned 64 bit arithmetic: */ 2635 int istatus = count - offset >= gt->cval; 2636 uint64_t nexttick; 2637 int irqstate; 2638 2639 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2640 2641 irqstate = (istatus && !(gt->ctl & 2)); 2642 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2643 2644 if (istatus) { 2645 /* Next transition is when count rolls back over to zero */ 2646 nexttick = UINT64_MAX; 2647 } else { 2648 /* Next transition is when we hit cval */ 2649 nexttick = gt->cval + offset; 2650 } 2651 /* Note that the desired next expiry time might be beyond the 2652 * signed-64-bit range of a QEMUTimer -- in this case we just 2653 * set the timer for as far in the future as possible. When the 2654 * timer expires we will reset the timer for any remaining period. 2655 */ 2656 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2657 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2658 } else { 2659 timer_mod(cpu->gt_timer[timeridx], nexttick); 2660 } 2661 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2662 } else { 2663 /* Timer disabled: ISTATUS and timer output always clear */ 2664 gt->ctl &= ~4; 2665 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2666 timer_del(cpu->gt_timer[timeridx]); 2667 trace_arm_gt_recalc_disabled(timeridx); 2668 } 2669 } 2670 2671 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2672 int timeridx) 2673 { 2674 ARMCPU *cpu = env_archcpu(env); 2675 2676 timer_del(cpu->gt_timer[timeridx]); 2677 } 2678 2679 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2680 { 2681 return gt_get_countervalue(env); 2682 } 2683 2684 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2685 { 2686 uint64_t hcr; 2687 2688 switch (arm_current_el(env)) { 2689 case 2: 2690 hcr = arm_hcr_el2_eff(env); 2691 if (hcr & HCR_E2H) { 2692 return 0; 2693 } 2694 break; 2695 case 0: 2696 hcr = arm_hcr_el2_eff(env); 2697 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2698 return 0; 2699 } 2700 break; 2701 } 2702 2703 return env->cp15.cntvoff_el2; 2704 } 2705 2706 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2707 { 2708 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2709 } 2710 2711 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2712 int timeridx, 2713 uint64_t value) 2714 { 2715 trace_arm_gt_cval_write(timeridx, value); 2716 env->cp15.c14_timer[timeridx].cval = value; 2717 gt_recalc_timer(env_archcpu(env), timeridx); 2718 } 2719 2720 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2721 int timeridx) 2722 { 2723 uint64_t offset = 0; 2724 2725 switch (timeridx) { 2726 case GTIMER_VIRT: 2727 case GTIMER_HYPVIRT: 2728 offset = gt_virt_cnt_offset(env); 2729 break; 2730 } 2731 2732 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2733 (gt_get_countervalue(env) - offset)); 2734 } 2735 2736 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2737 int timeridx, 2738 uint64_t value) 2739 { 2740 uint64_t offset = 0; 2741 2742 switch (timeridx) { 2743 case GTIMER_VIRT: 2744 case GTIMER_HYPVIRT: 2745 offset = gt_virt_cnt_offset(env); 2746 break; 2747 } 2748 2749 trace_arm_gt_tval_write(timeridx, value); 2750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2751 sextract64(value, 0, 32); 2752 gt_recalc_timer(env_archcpu(env), timeridx); 2753 } 2754 2755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 int timeridx, 2757 uint64_t value) 2758 { 2759 ARMCPU *cpu = env_archcpu(env); 2760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2761 2762 trace_arm_gt_ctl_write(timeridx, value); 2763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2764 if ((oldval ^ value) & 1) { 2765 /* Enable toggled */ 2766 gt_recalc_timer(cpu, timeridx); 2767 } else if ((oldval ^ value) & 2) { 2768 /* IMASK toggled: don't need to recalculate, 2769 * just set the interrupt line based on ISTATUS 2770 */ 2771 int irqstate = (oldval & 4) && !(value & 2); 2772 2773 trace_arm_gt_imask_toggle(timeridx, irqstate); 2774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2775 } 2776 } 2777 2778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_PHYS); 2781 } 2782 2783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_PHYS, value); 2787 } 2788 2789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_PHYS); 2792 } 2793 2794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_PHYS, value); 2798 } 2799 2800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2804 } 2805 2806 static int gt_phys_redir_timeridx(CPUARMState *env) 2807 { 2808 switch (arm_mmu_idx(env)) { 2809 case ARMMMUIdx_E20_0: 2810 case ARMMMUIdx_E20_2: 2811 case ARMMMUIdx_E20_2_PAN: 2812 return GTIMER_HYP; 2813 default: 2814 return GTIMER_PHYS; 2815 } 2816 } 2817 2818 static int gt_virt_redir_timeridx(CPUARMState *env) 2819 { 2820 switch (arm_mmu_idx(env)) { 2821 case ARMMMUIdx_E20_0: 2822 case ARMMMUIdx_E20_2: 2823 case ARMMMUIdx_E20_2_PAN: 2824 return GTIMER_HYPVIRT; 2825 default: 2826 return GTIMER_VIRT; 2827 } 2828 } 2829 2830 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2831 const ARMCPRegInfo *ri) 2832 { 2833 int timeridx = gt_phys_redir_timeridx(env); 2834 return env->cp15.c14_timer[timeridx].cval; 2835 } 2836 2837 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 int timeridx = gt_phys_redir_timeridx(env); 2841 gt_cval_write(env, ri, timeridx, value); 2842 } 2843 2844 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2845 const ARMCPRegInfo *ri) 2846 { 2847 int timeridx = gt_phys_redir_timeridx(env); 2848 return gt_tval_read(env, ri, timeridx); 2849 } 2850 2851 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 int timeridx = gt_phys_redir_timeridx(env); 2855 gt_tval_write(env, ri, timeridx, value); 2856 } 2857 2858 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2859 const ARMCPRegInfo *ri) 2860 { 2861 int timeridx = gt_phys_redir_timeridx(env); 2862 return env->cp15.c14_timer[timeridx].ctl; 2863 } 2864 2865 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2866 uint64_t value) 2867 { 2868 int timeridx = gt_phys_redir_timeridx(env); 2869 gt_ctl_write(env, ri, timeridx, value); 2870 } 2871 2872 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2873 { 2874 gt_timer_reset(env, ri, GTIMER_VIRT); 2875 } 2876 2877 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2878 uint64_t value) 2879 { 2880 gt_cval_write(env, ri, GTIMER_VIRT, value); 2881 } 2882 2883 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2884 { 2885 return gt_tval_read(env, ri, GTIMER_VIRT); 2886 } 2887 2888 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2889 uint64_t value) 2890 { 2891 gt_tval_write(env, ri, GTIMER_VIRT, value); 2892 } 2893 2894 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2895 uint64_t value) 2896 { 2897 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2898 } 2899 2900 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2901 uint64_t value) 2902 { 2903 ARMCPU *cpu = env_archcpu(env); 2904 2905 trace_arm_gt_cntvoff_write(value); 2906 raw_write(env, ri, value); 2907 gt_recalc_timer(cpu, GTIMER_VIRT); 2908 } 2909 2910 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2911 const ARMCPRegInfo *ri) 2912 { 2913 int timeridx = gt_virt_redir_timeridx(env); 2914 return env->cp15.c14_timer[timeridx].cval; 2915 } 2916 2917 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2918 uint64_t value) 2919 { 2920 int timeridx = gt_virt_redir_timeridx(env); 2921 gt_cval_write(env, ri, timeridx, value); 2922 } 2923 2924 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2925 const ARMCPRegInfo *ri) 2926 { 2927 int timeridx = gt_virt_redir_timeridx(env); 2928 return gt_tval_read(env, ri, timeridx); 2929 } 2930 2931 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2932 uint64_t value) 2933 { 2934 int timeridx = gt_virt_redir_timeridx(env); 2935 gt_tval_write(env, ri, timeridx, value); 2936 } 2937 2938 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2939 const ARMCPRegInfo *ri) 2940 { 2941 int timeridx = gt_virt_redir_timeridx(env); 2942 return env->cp15.c14_timer[timeridx].ctl; 2943 } 2944 2945 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2946 uint64_t value) 2947 { 2948 int timeridx = gt_virt_redir_timeridx(env); 2949 gt_ctl_write(env, ri, timeridx, value); 2950 } 2951 2952 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2953 { 2954 gt_timer_reset(env, ri, GTIMER_HYP); 2955 } 2956 2957 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2958 uint64_t value) 2959 { 2960 gt_cval_write(env, ri, GTIMER_HYP, value); 2961 } 2962 2963 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2964 { 2965 return gt_tval_read(env, ri, GTIMER_HYP); 2966 } 2967 2968 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 gt_tval_write(env, ri, GTIMER_HYP, value); 2972 } 2973 2974 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2975 uint64_t value) 2976 { 2977 gt_ctl_write(env, ri, GTIMER_HYP, value); 2978 } 2979 2980 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2981 { 2982 gt_timer_reset(env, ri, GTIMER_SEC); 2983 } 2984 2985 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2986 uint64_t value) 2987 { 2988 gt_cval_write(env, ri, GTIMER_SEC, value); 2989 } 2990 2991 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2992 { 2993 return gt_tval_read(env, ri, GTIMER_SEC); 2994 } 2995 2996 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2997 uint64_t value) 2998 { 2999 gt_tval_write(env, ri, GTIMER_SEC, value); 3000 } 3001 3002 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3003 uint64_t value) 3004 { 3005 gt_ctl_write(env, ri, GTIMER_SEC, value); 3006 } 3007 3008 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3009 { 3010 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3011 } 3012 3013 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3014 uint64_t value) 3015 { 3016 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3017 } 3018 3019 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3020 { 3021 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3022 } 3023 3024 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3028 } 3029 3030 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3031 uint64_t value) 3032 { 3033 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3034 } 3035 3036 void arm_gt_ptimer_cb(void *opaque) 3037 { 3038 ARMCPU *cpu = opaque; 3039 3040 gt_recalc_timer(cpu, GTIMER_PHYS); 3041 } 3042 3043 void arm_gt_vtimer_cb(void *opaque) 3044 { 3045 ARMCPU *cpu = opaque; 3046 3047 gt_recalc_timer(cpu, GTIMER_VIRT); 3048 } 3049 3050 void arm_gt_htimer_cb(void *opaque) 3051 { 3052 ARMCPU *cpu = opaque; 3053 3054 gt_recalc_timer(cpu, GTIMER_HYP); 3055 } 3056 3057 void arm_gt_stimer_cb(void *opaque) 3058 { 3059 ARMCPU *cpu = opaque; 3060 3061 gt_recalc_timer(cpu, GTIMER_SEC); 3062 } 3063 3064 void arm_gt_hvtimer_cb(void *opaque) 3065 { 3066 ARMCPU *cpu = opaque; 3067 3068 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3069 } 3070 3071 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3072 { 3073 ARMCPU *cpu = env_archcpu(env); 3074 3075 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3076 } 3077 3078 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3079 /* Note that CNTFRQ is purely reads-as-written for the benefit 3080 * of software; writing it doesn't actually change the timer frequency. 3081 * Our reset value matches the fixed frequency we implement the timer at. 3082 */ 3083 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3084 .type = ARM_CP_ALIAS, 3085 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3086 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3087 }, 3088 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3089 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3090 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3092 .resetfn = arm_gt_cntfrq_reset, 3093 }, 3094 /* overall control: mostly access permissions */ 3095 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3096 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3097 .access = PL1_RW, 3098 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3099 .resetvalue = 0, 3100 }, 3101 /* per-timer control */ 3102 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3103 .secure = ARM_CP_SECSTATE_NS, 3104 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3105 .accessfn = gt_ptimer_access, 3106 .fieldoffset = offsetoflow32(CPUARMState, 3107 cp15.c14_timer[GTIMER_PHYS].ctl), 3108 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3109 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3110 }, 3111 { .name = "CNTP_CTL_S", 3112 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3113 .secure = ARM_CP_SECSTATE_S, 3114 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3115 .accessfn = gt_ptimer_access, 3116 .fieldoffset = offsetoflow32(CPUARMState, 3117 cp15.c14_timer[GTIMER_SEC].ctl), 3118 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3119 }, 3120 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3121 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3122 .type = ARM_CP_IO, .access = PL0_RW, 3123 .accessfn = gt_ptimer_access, 3124 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3125 .resetvalue = 0, 3126 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3127 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3128 }, 3129 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3130 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3131 .accessfn = gt_vtimer_access, 3132 .fieldoffset = offsetoflow32(CPUARMState, 3133 cp15.c14_timer[GTIMER_VIRT].ctl), 3134 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3135 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3136 }, 3137 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3138 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3139 .type = ARM_CP_IO, .access = PL0_RW, 3140 .accessfn = gt_vtimer_access, 3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3142 .resetvalue = 0, 3143 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3144 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3145 }, 3146 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3147 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3148 .secure = ARM_CP_SECSTATE_NS, 3149 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3150 .accessfn = gt_ptimer_access, 3151 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3152 }, 3153 { .name = "CNTP_TVAL_S", 3154 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3155 .secure = ARM_CP_SECSTATE_S, 3156 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3157 .accessfn = gt_ptimer_access, 3158 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3159 }, 3160 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3161 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3162 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3163 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3164 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3165 }, 3166 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3167 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3168 .accessfn = gt_vtimer_access, 3169 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3170 }, 3171 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3173 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3174 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3175 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3176 }, 3177 /* The counter itself */ 3178 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3179 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3180 .accessfn = gt_pct_access, 3181 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3182 }, 3183 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3184 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3185 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3186 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3187 }, 3188 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3189 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3190 .accessfn = gt_vct_access, 3191 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3192 }, 3193 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3194 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3195 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3196 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3197 }, 3198 /* Comparison value, indicating when the timer goes off */ 3199 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3200 .secure = ARM_CP_SECSTATE_NS, 3201 .access = PL0_RW, 3202 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3203 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3204 .accessfn = gt_ptimer_access, 3205 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3206 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3207 }, 3208 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3209 .secure = ARM_CP_SECSTATE_S, 3210 .access = PL0_RW, 3211 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3213 .accessfn = gt_ptimer_access, 3214 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3215 }, 3216 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3217 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3218 .access = PL0_RW, 3219 .type = ARM_CP_IO, 3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3221 .resetvalue = 0, .accessfn = gt_ptimer_access, 3222 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3223 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3224 }, 3225 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3226 .access = PL0_RW, 3227 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3228 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3229 .accessfn = gt_vtimer_access, 3230 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3231 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3232 }, 3233 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3234 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3235 .access = PL0_RW, 3236 .type = ARM_CP_IO, 3237 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3238 .resetvalue = 0, .accessfn = gt_vtimer_access, 3239 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3240 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3241 }, 3242 /* Secure timer -- this is actually restricted to only EL3 3243 * and configurably Secure-EL1 via the accessfn. 3244 */ 3245 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3246 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3247 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3248 .accessfn = gt_stimer_access, 3249 .readfn = gt_sec_tval_read, 3250 .writefn = gt_sec_tval_write, 3251 .resetfn = gt_sec_timer_reset, 3252 }, 3253 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3254 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3255 .type = ARM_CP_IO, .access = PL1_RW, 3256 .accessfn = gt_stimer_access, 3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3258 .resetvalue = 0, 3259 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3260 }, 3261 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3262 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3263 .type = ARM_CP_IO, .access = PL1_RW, 3264 .accessfn = gt_stimer_access, 3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3266 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3267 }, 3268 REGINFO_SENTINEL 3269 }; 3270 3271 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3272 bool isread) 3273 { 3274 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3275 return CP_ACCESS_TRAP; 3276 } 3277 return CP_ACCESS_OK; 3278 } 3279 3280 #else 3281 3282 /* In user-mode most of the generic timer registers are inaccessible 3283 * however modern kernels (4.12+) allow access to cntvct_el0 3284 */ 3285 3286 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3287 { 3288 ARMCPU *cpu = env_archcpu(env); 3289 3290 /* Currently we have no support for QEMUTimer in linux-user so we 3291 * can't call gt_get_countervalue(env), instead we directly 3292 * call the lower level functions. 3293 */ 3294 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3295 } 3296 3297 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3298 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3300 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3301 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3302 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3303 }, 3304 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3305 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3306 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3307 .readfn = gt_virt_cnt_read, 3308 }, 3309 REGINFO_SENTINEL 3310 }; 3311 3312 #endif 3313 3314 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3315 { 3316 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3317 raw_write(env, ri, value); 3318 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3319 raw_write(env, ri, value & 0xfffff6ff); 3320 } else { 3321 raw_write(env, ri, value & 0xfffff1ff); 3322 } 3323 } 3324 3325 #ifndef CONFIG_USER_ONLY 3326 /* get_phys_addr() isn't present for user-mode-only targets */ 3327 3328 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3329 bool isread) 3330 { 3331 if (ri->opc2 & 4) { 3332 /* The ATS12NSO* operations must trap to EL3 if executed in 3333 * Secure EL1 (which can only happen if EL3 is AArch64). 3334 * They are simply UNDEF if executed from NS EL1. 3335 * They function normally from EL2 or EL3. 3336 */ 3337 if (arm_current_el(env) == 1) { 3338 if (arm_is_secure_below_el3(env)) { 3339 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3340 } 3341 return CP_ACCESS_TRAP_UNCATEGORIZED; 3342 } 3343 } 3344 return CP_ACCESS_OK; 3345 } 3346 3347 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3348 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3349 { 3350 hwaddr phys_addr; 3351 target_ulong page_size; 3352 int prot; 3353 bool ret; 3354 uint64_t par64; 3355 bool format64 = false; 3356 MemTxAttrs attrs = {}; 3357 ARMMMUFaultInfo fi = {}; 3358 ARMCacheAttrs cacheattrs = {}; 3359 3360 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3361 &prot, &page_size, &fi, &cacheattrs); 3362 3363 if (ret) { 3364 /* 3365 * Some kinds of translation fault must cause exceptions rather 3366 * than being reported in the PAR. 3367 */ 3368 int current_el = arm_current_el(env); 3369 int target_el; 3370 uint32_t syn, fsr, fsc; 3371 bool take_exc = false; 3372 3373 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3374 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3375 /* 3376 * Synchronous stage 2 fault on an access made as part of the 3377 * translation table walk for AT S1E0* or AT S1E1* insn 3378 * executed from NS EL1. If this is a synchronous external abort 3379 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3380 * to EL3. Otherwise the fault is taken as an exception to EL2, 3381 * and HPFAR_EL2 holds the faulting IPA. 3382 */ 3383 if (fi.type == ARMFault_SyncExternalOnWalk && 3384 (env->cp15.scr_el3 & SCR_EA)) { 3385 target_el = 3; 3386 } else { 3387 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3388 target_el = 2; 3389 } 3390 take_exc = true; 3391 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3392 /* 3393 * Synchronous external aborts during a translation table walk 3394 * are taken as Data Abort exceptions. 3395 */ 3396 if (fi.stage2) { 3397 if (current_el == 3) { 3398 target_el = 3; 3399 } else { 3400 target_el = 2; 3401 } 3402 } else { 3403 target_el = exception_target_el(env); 3404 } 3405 take_exc = true; 3406 } 3407 3408 if (take_exc) { 3409 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3410 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3411 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3412 fsr = arm_fi_to_lfsc(&fi); 3413 fsc = extract32(fsr, 0, 6); 3414 } else { 3415 fsr = arm_fi_to_sfsc(&fi); 3416 fsc = 0x3f; 3417 } 3418 /* 3419 * Report exception with ESR indicating a fault due to a 3420 * translation table walk for a cache maintenance instruction. 3421 */ 3422 syn = syn_data_abort_no_iss(current_el == target_el, 3423 fi.ea, 1, fi.s1ptw, 1, fsc); 3424 env->exception.vaddress = value; 3425 env->exception.fsr = fsr; 3426 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3427 } 3428 } 3429 3430 if (is_a64(env)) { 3431 format64 = true; 3432 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3433 /* 3434 * ATS1Cxx: 3435 * * TTBCR.EAE determines whether the result is returned using the 3436 * 32-bit or the 64-bit PAR format 3437 * * Instructions executed in Hyp mode always use the 64bit format 3438 * 3439 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3440 * * The Non-secure TTBCR.EAE bit is set to 1 3441 * * The implementation includes EL2, and the value of HCR.VM is 1 3442 * 3443 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3444 * 3445 * ATS1Hx always uses the 64bit format. 3446 */ 3447 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3448 3449 if (arm_feature(env, ARM_FEATURE_EL2)) { 3450 if (mmu_idx == ARMMMUIdx_E10_0 || 3451 mmu_idx == ARMMMUIdx_E10_1 || 3452 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3453 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3454 } else { 3455 format64 |= arm_current_el(env) == 2; 3456 } 3457 } 3458 } 3459 3460 if (format64) { 3461 /* Create a 64-bit PAR */ 3462 par64 = (1 << 11); /* LPAE bit always set */ 3463 if (!ret) { 3464 par64 |= phys_addr & ~0xfffULL; 3465 if (!attrs.secure) { 3466 par64 |= (1 << 9); /* NS */ 3467 } 3468 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3469 par64 |= cacheattrs.shareability << 7; /* SH */ 3470 } else { 3471 uint32_t fsr = arm_fi_to_lfsc(&fi); 3472 3473 par64 |= 1; /* F */ 3474 par64 |= (fsr & 0x3f) << 1; /* FS */ 3475 if (fi.stage2) { 3476 par64 |= (1 << 9); /* S */ 3477 } 3478 if (fi.s1ptw) { 3479 par64 |= (1 << 8); /* PTW */ 3480 } 3481 } 3482 } else { 3483 /* fsr is a DFSR/IFSR value for the short descriptor 3484 * translation table format (with WnR always clear). 3485 * Convert it to a 32-bit PAR. 3486 */ 3487 if (!ret) { 3488 /* We do not set any attribute bits in the PAR */ 3489 if (page_size == (1 << 24) 3490 && arm_feature(env, ARM_FEATURE_V7)) { 3491 par64 = (phys_addr & 0xff000000) | (1 << 1); 3492 } else { 3493 par64 = phys_addr & 0xfffff000; 3494 } 3495 if (!attrs.secure) { 3496 par64 |= (1 << 9); /* NS */ 3497 } 3498 } else { 3499 uint32_t fsr = arm_fi_to_sfsc(&fi); 3500 3501 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3502 ((fsr & 0xf) << 1) | 1; 3503 } 3504 } 3505 return par64; 3506 } 3507 3508 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3509 { 3510 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3511 uint64_t par64; 3512 ARMMMUIdx mmu_idx; 3513 int el = arm_current_el(env); 3514 bool secure = arm_is_secure_below_el3(env); 3515 3516 switch (ri->opc2 & 6) { 3517 case 0: 3518 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3519 switch (el) { 3520 case 3: 3521 mmu_idx = ARMMMUIdx_SE3; 3522 break; 3523 case 2: 3524 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3525 /* fall through */ 3526 case 1: 3527 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3528 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3529 : ARMMMUIdx_Stage1_E1_PAN); 3530 } else { 3531 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3532 } 3533 break; 3534 default: 3535 g_assert_not_reached(); 3536 } 3537 break; 3538 case 2: 3539 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3540 switch (el) { 3541 case 3: 3542 mmu_idx = ARMMMUIdx_SE10_0; 3543 break; 3544 case 2: 3545 mmu_idx = ARMMMUIdx_Stage1_E0; 3546 break; 3547 case 1: 3548 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3549 break; 3550 default: 3551 g_assert_not_reached(); 3552 } 3553 break; 3554 case 4: 3555 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3556 mmu_idx = ARMMMUIdx_E10_1; 3557 break; 3558 case 6: 3559 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3560 mmu_idx = ARMMMUIdx_E10_0; 3561 break; 3562 default: 3563 g_assert_not_reached(); 3564 } 3565 3566 par64 = do_ats_write(env, value, access_type, mmu_idx); 3567 3568 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3569 } 3570 3571 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3572 uint64_t value) 3573 { 3574 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3575 uint64_t par64; 3576 3577 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3578 3579 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3580 } 3581 3582 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3583 bool isread) 3584 { 3585 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3586 return CP_ACCESS_TRAP; 3587 } 3588 return CP_ACCESS_OK; 3589 } 3590 3591 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3592 uint64_t value) 3593 { 3594 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3595 ARMMMUIdx mmu_idx; 3596 int secure = arm_is_secure_below_el3(env); 3597 3598 switch (ri->opc2 & 6) { 3599 case 0: 3600 switch (ri->opc1) { 3601 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3602 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3603 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3604 : ARMMMUIdx_Stage1_E1_PAN); 3605 } else { 3606 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3607 } 3608 break; 3609 case 4: /* AT S1E2R, AT S1E2W */ 3610 mmu_idx = ARMMMUIdx_E2; 3611 break; 3612 case 6: /* AT S1E3R, AT S1E3W */ 3613 mmu_idx = ARMMMUIdx_SE3; 3614 break; 3615 default: 3616 g_assert_not_reached(); 3617 } 3618 break; 3619 case 2: /* AT S1E0R, AT S1E0W */ 3620 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3621 break; 3622 case 4: /* AT S12E1R, AT S12E1W */ 3623 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3624 break; 3625 case 6: /* AT S12E0R, AT S12E0W */ 3626 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3627 break; 3628 default: 3629 g_assert_not_reached(); 3630 } 3631 3632 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3633 } 3634 #endif 3635 3636 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3637 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3638 .access = PL1_RW, .resetvalue = 0, 3639 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3640 offsetoflow32(CPUARMState, cp15.par_ns) }, 3641 .writefn = par_write }, 3642 #ifndef CONFIG_USER_ONLY 3643 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3644 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3645 .access = PL1_W, .accessfn = ats_access, 3646 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3647 #endif 3648 REGINFO_SENTINEL 3649 }; 3650 3651 /* Return basic MPU access permission bits. */ 3652 static uint32_t simple_mpu_ap_bits(uint32_t val) 3653 { 3654 uint32_t ret; 3655 uint32_t mask; 3656 int i; 3657 ret = 0; 3658 mask = 3; 3659 for (i = 0; i < 16; i += 2) { 3660 ret |= (val >> i) & mask; 3661 mask <<= 2; 3662 } 3663 return ret; 3664 } 3665 3666 /* Pad basic MPU access permission bits to extended format. */ 3667 static uint32_t extended_mpu_ap_bits(uint32_t val) 3668 { 3669 uint32_t ret; 3670 uint32_t mask; 3671 int i; 3672 ret = 0; 3673 mask = 3; 3674 for (i = 0; i < 16; i += 2) { 3675 ret |= (val & mask) << i; 3676 mask <<= 2; 3677 } 3678 return ret; 3679 } 3680 3681 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3682 uint64_t value) 3683 { 3684 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3685 } 3686 3687 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3688 { 3689 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3690 } 3691 3692 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3693 uint64_t value) 3694 { 3695 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3696 } 3697 3698 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3699 { 3700 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3701 } 3702 3703 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3704 { 3705 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3706 3707 if (!u32p) { 3708 return 0; 3709 } 3710 3711 u32p += env->pmsav7.rnr[M_REG_NS]; 3712 return *u32p; 3713 } 3714 3715 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3716 uint64_t value) 3717 { 3718 ARMCPU *cpu = env_archcpu(env); 3719 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3720 3721 if (!u32p) { 3722 return; 3723 } 3724 3725 u32p += env->pmsav7.rnr[M_REG_NS]; 3726 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3727 *u32p = value; 3728 } 3729 3730 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3731 uint64_t value) 3732 { 3733 ARMCPU *cpu = env_archcpu(env); 3734 uint32_t nrgs = cpu->pmsav7_dregion; 3735 3736 if (value >= nrgs) { 3737 qemu_log_mask(LOG_GUEST_ERROR, 3738 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3739 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3740 return; 3741 } 3742 3743 raw_write(env, ri, value); 3744 } 3745 3746 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3747 /* Reset for all these registers is handled in arm_cpu_reset(), 3748 * because the PMSAv7 is also used by M-profile CPUs, which do 3749 * not register cpregs but still need the state to be reset. 3750 */ 3751 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3752 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3753 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3754 .readfn = pmsav7_read, .writefn = pmsav7_write, 3755 .resetfn = arm_cp_reset_ignore }, 3756 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3757 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3758 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3759 .readfn = pmsav7_read, .writefn = pmsav7_write, 3760 .resetfn = arm_cp_reset_ignore }, 3761 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3762 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3763 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3764 .readfn = pmsav7_read, .writefn = pmsav7_write, 3765 .resetfn = arm_cp_reset_ignore }, 3766 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3767 .access = PL1_RW, 3768 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3769 .writefn = pmsav7_rgnr_write, 3770 .resetfn = arm_cp_reset_ignore }, 3771 REGINFO_SENTINEL 3772 }; 3773 3774 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3775 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3776 .access = PL1_RW, .type = ARM_CP_ALIAS, 3777 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3778 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3779 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3780 .access = PL1_RW, .type = ARM_CP_ALIAS, 3781 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3782 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3783 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3784 .access = PL1_RW, 3785 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3786 .resetvalue = 0, }, 3787 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3788 .access = PL1_RW, 3789 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3790 .resetvalue = 0, }, 3791 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3792 .access = PL1_RW, 3793 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3794 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3795 .access = PL1_RW, 3796 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3797 /* Protection region base and size registers */ 3798 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3799 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3800 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3801 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3802 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3803 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3804 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3805 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3806 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3807 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3808 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3809 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3810 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3811 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3812 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3813 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3814 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3815 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3816 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3817 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3818 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3819 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3820 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3821 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3822 REGINFO_SENTINEL 3823 }; 3824 3825 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3826 uint64_t value) 3827 { 3828 TCR *tcr = raw_ptr(env, ri); 3829 int maskshift = extract32(value, 0, 3); 3830 3831 if (!arm_feature(env, ARM_FEATURE_V8)) { 3832 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3833 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3834 * using Long-desciptor translation table format */ 3835 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3836 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3837 /* In an implementation that includes the Security Extensions 3838 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3839 * Short-descriptor translation table format. 3840 */ 3841 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3842 } else { 3843 value &= TTBCR_N; 3844 } 3845 } 3846 3847 /* Update the masks corresponding to the TCR bank being written 3848 * Note that we always calculate mask and base_mask, but 3849 * they are only used for short-descriptor tables (ie if EAE is 0); 3850 * for long-descriptor tables the TCR fields are used differently 3851 * and the mask and base_mask values are meaningless. 3852 */ 3853 tcr->raw_tcr = value; 3854 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3855 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3856 } 3857 3858 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3859 uint64_t value) 3860 { 3861 ARMCPU *cpu = env_archcpu(env); 3862 TCR *tcr = raw_ptr(env, ri); 3863 3864 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3865 /* With LPAE the TTBCR could result in a change of ASID 3866 * via the TTBCR.A1 bit, so do a TLB flush. 3867 */ 3868 tlb_flush(CPU(cpu)); 3869 } 3870 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3871 value = deposit64(tcr->raw_tcr, 0, 32, value); 3872 vmsa_ttbcr_raw_write(env, ri, value); 3873 } 3874 3875 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3876 { 3877 TCR *tcr = raw_ptr(env, ri); 3878 3879 /* Reset both the TCR as well as the masks corresponding to the bank of 3880 * the TCR being reset. 3881 */ 3882 tcr->raw_tcr = 0; 3883 tcr->mask = 0; 3884 tcr->base_mask = 0xffffc000u; 3885 } 3886 3887 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3888 uint64_t value) 3889 { 3890 ARMCPU *cpu = env_archcpu(env); 3891 TCR *tcr = raw_ptr(env, ri); 3892 3893 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3894 tlb_flush(CPU(cpu)); 3895 tcr->raw_tcr = value; 3896 } 3897 3898 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3902 if (cpreg_field_is_64bit(ri) && 3903 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3904 ARMCPU *cpu = env_archcpu(env); 3905 tlb_flush(CPU(cpu)); 3906 } 3907 raw_write(env, ri, value); 3908 } 3909 3910 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3911 uint64_t value) 3912 { 3913 /* 3914 * If we are running with E2&0 regime, then an ASID is active. 3915 * Flush if that might be changing. Note we're not checking 3916 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3917 * holds the active ASID, only checking the field that might. 3918 */ 3919 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3920 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3921 tlb_flush_by_mmuidx(env_cpu(env), 3922 ARMMMUIdxBit_E20_2 | 3923 ARMMMUIdxBit_E20_2_PAN | 3924 ARMMMUIdxBit_E20_0); 3925 } 3926 raw_write(env, ri, value); 3927 } 3928 3929 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3930 uint64_t value) 3931 { 3932 ARMCPU *cpu = env_archcpu(env); 3933 CPUState *cs = CPU(cpu); 3934 3935 /* 3936 * A change in VMID to the stage2 page table (Stage2) invalidates 3937 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3938 */ 3939 if (raw_read(env, ri) != value) { 3940 tlb_flush_by_mmuidx(cs, 3941 ARMMMUIdxBit_E10_1 | 3942 ARMMMUIdxBit_E10_1_PAN | 3943 ARMMMUIdxBit_E10_0 | 3944 ARMMMUIdxBit_Stage2); 3945 raw_write(env, ri, value); 3946 } 3947 } 3948 3949 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3950 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3951 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3952 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3953 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3954 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3955 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3956 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3957 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3958 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3959 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3960 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3961 offsetof(CPUARMState, cp15.dfar_ns) } }, 3962 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3963 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3964 .access = PL1_RW, .accessfn = access_tvm_trvm, 3965 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3966 .resetvalue = 0, }, 3967 REGINFO_SENTINEL 3968 }; 3969 3970 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3971 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3972 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3973 .access = PL1_RW, .accessfn = access_tvm_trvm, 3974 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3975 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3976 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3977 .access = PL1_RW, .accessfn = access_tvm_trvm, 3978 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3979 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3980 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3981 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3982 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3983 .access = PL1_RW, .accessfn = access_tvm_trvm, 3984 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3985 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3986 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3987 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3988 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3989 .access = PL1_RW, .accessfn = access_tvm_trvm, 3990 .writefn = vmsa_tcr_el12_write, 3991 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3992 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3993 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3994 .access = PL1_RW, .accessfn = access_tvm_trvm, 3995 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3996 .raw_writefn = vmsa_ttbcr_raw_write, 3997 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3998 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3999 REGINFO_SENTINEL 4000 }; 4001 4002 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4003 * qemu tlbs nor adjusting cached masks. 4004 */ 4005 static const ARMCPRegInfo ttbcr2_reginfo = { 4006 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4007 .access = PL1_RW, .accessfn = access_tvm_trvm, 4008 .type = ARM_CP_ALIAS, 4009 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4010 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4011 }; 4012 4013 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 env->cp15.c15_ticonfig = value & 0xe7; 4017 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4018 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4019 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4020 } 4021 4022 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4023 uint64_t value) 4024 { 4025 env->cp15.c15_threadid = value & 0xffff; 4026 } 4027 4028 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4029 uint64_t value) 4030 { 4031 /* Wait-for-interrupt (deprecated) */ 4032 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4033 } 4034 4035 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4036 uint64_t value) 4037 { 4038 /* On OMAP there are registers indicating the max/min index of dcache lines 4039 * containing a dirty line; cache flush operations have to reset these. 4040 */ 4041 env->cp15.c15_i_max = 0x000; 4042 env->cp15.c15_i_min = 0xff0; 4043 } 4044 4045 static const ARMCPRegInfo omap_cp_reginfo[] = { 4046 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4047 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4048 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4049 .resetvalue = 0, }, 4050 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4051 .access = PL1_RW, .type = ARM_CP_NOP }, 4052 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4053 .access = PL1_RW, 4054 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4055 .writefn = omap_ticonfig_write }, 4056 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4057 .access = PL1_RW, 4058 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4059 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4060 .access = PL1_RW, .resetvalue = 0xff0, 4061 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4062 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4063 .access = PL1_RW, 4064 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4065 .writefn = omap_threadid_write }, 4066 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4067 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4068 .type = ARM_CP_NO_RAW, 4069 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4070 /* TODO: Peripheral port remap register: 4071 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4072 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4073 * when MMU is off. 4074 */ 4075 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4076 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4077 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4078 .writefn = omap_cachemaint_write }, 4079 { .name = "C9", .cp = 15, .crn = 9, 4080 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4081 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4082 REGINFO_SENTINEL 4083 }; 4084 4085 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4086 uint64_t value) 4087 { 4088 env->cp15.c15_cpar = value & 0x3fff; 4089 } 4090 4091 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4092 { .name = "XSCALE_CPAR", 4093 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4094 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4095 .writefn = xscale_cpar_write, }, 4096 { .name = "XSCALE_AUXCR", 4097 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4098 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4099 .resetvalue = 0, }, 4100 /* XScale specific cache-lockdown: since we have no cache we NOP these 4101 * and hope the guest does not really rely on cache behaviour. 4102 */ 4103 { .name = "XSCALE_LOCK_ICACHE_LINE", 4104 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4105 .access = PL1_W, .type = ARM_CP_NOP }, 4106 { .name = "XSCALE_UNLOCK_ICACHE", 4107 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4108 .access = PL1_W, .type = ARM_CP_NOP }, 4109 { .name = "XSCALE_DCACHE_LOCK", 4110 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4111 .access = PL1_RW, .type = ARM_CP_NOP }, 4112 { .name = "XSCALE_UNLOCK_DCACHE", 4113 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4114 .access = PL1_W, .type = ARM_CP_NOP }, 4115 REGINFO_SENTINEL 4116 }; 4117 4118 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4119 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4120 * implementation of this implementation-defined space. 4121 * Ideally this should eventually disappear in favour of actually 4122 * implementing the correct behaviour for all cores. 4123 */ 4124 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4125 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4126 .access = PL1_RW, 4127 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4128 .resetvalue = 0 }, 4129 REGINFO_SENTINEL 4130 }; 4131 4132 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4133 /* Cache status: RAZ because we have no cache so it's always clean */ 4134 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4135 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4136 .resetvalue = 0 }, 4137 REGINFO_SENTINEL 4138 }; 4139 4140 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4141 /* We never have a a block transfer operation in progress */ 4142 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4143 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4144 .resetvalue = 0 }, 4145 /* The cache ops themselves: these all NOP for QEMU */ 4146 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4147 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4148 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4149 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4150 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4151 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4152 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4153 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4154 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4155 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4156 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4157 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4158 REGINFO_SENTINEL 4159 }; 4160 4161 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4162 /* The cache test-and-clean instructions always return (1 << 30) 4163 * to indicate that there are no dirty cache lines. 4164 */ 4165 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4166 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4167 .resetvalue = (1 << 30) }, 4168 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4169 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4170 .resetvalue = (1 << 30) }, 4171 REGINFO_SENTINEL 4172 }; 4173 4174 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4175 /* Ignore ReadBuffer accesses */ 4176 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4177 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4178 .access = PL1_RW, .resetvalue = 0, 4179 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4180 REGINFO_SENTINEL 4181 }; 4182 4183 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4184 { 4185 ARMCPU *cpu = env_archcpu(env); 4186 unsigned int cur_el = arm_current_el(env); 4187 bool secure = arm_is_secure(env); 4188 4189 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4190 return env->cp15.vpidr_el2; 4191 } 4192 return raw_read(env, ri); 4193 } 4194 4195 static uint64_t mpidr_read_val(CPUARMState *env) 4196 { 4197 ARMCPU *cpu = env_archcpu(env); 4198 uint64_t mpidr = cpu->mp_affinity; 4199 4200 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4201 mpidr |= (1U << 31); 4202 /* Cores which are uniprocessor (non-coherent) 4203 * but still implement the MP extensions set 4204 * bit 30. (For instance, Cortex-R5). 4205 */ 4206 if (cpu->mp_is_up) { 4207 mpidr |= (1u << 30); 4208 } 4209 } 4210 return mpidr; 4211 } 4212 4213 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4214 { 4215 unsigned int cur_el = arm_current_el(env); 4216 bool secure = arm_is_secure(env); 4217 4218 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4219 return env->cp15.vmpidr_el2; 4220 } 4221 return mpidr_read_val(env); 4222 } 4223 4224 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4225 /* NOP AMAIR0/1 */ 4226 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4227 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4228 .access = PL1_RW, .accessfn = access_tvm_trvm, 4229 .type = ARM_CP_CONST, .resetvalue = 0 }, 4230 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4231 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4232 .access = PL1_RW, .accessfn = access_tvm_trvm, 4233 .type = ARM_CP_CONST, .resetvalue = 0 }, 4234 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4235 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4236 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4237 offsetof(CPUARMState, cp15.par_ns)} }, 4238 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4239 .access = PL1_RW, .accessfn = access_tvm_trvm, 4240 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4241 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4242 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4243 .writefn = vmsa_ttbr_write, }, 4244 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4245 .access = PL1_RW, .accessfn = access_tvm_trvm, 4246 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4247 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4248 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4249 .writefn = vmsa_ttbr_write, }, 4250 REGINFO_SENTINEL 4251 }; 4252 4253 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4254 { 4255 return vfp_get_fpcr(env); 4256 } 4257 4258 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4259 uint64_t value) 4260 { 4261 vfp_set_fpcr(env, value); 4262 } 4263 4264 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4265 { 4266 return vfp_get_fpsr(env); 4267 } 4268 4269 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4270 uint64_t value) 4271 { 4272 vfp_set_fpsr(env, value); 4273 } 4274 4275 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4276 bool isread) 4277 { 4278 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4279 return CP_ACCESS_TRAP; 4280 } 4281 return CP_ACCESS_OK; 4282 } 4283 4284 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4285 uint64_t value) 4286 { 4287 env->daif = value & PSTATE_DAIF; 4288 } 4289 4290 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4291 { 4292 return env->pstate & PSTATE_PAN; 4293 } 4294 4295 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4296 uint64_t value) 4297 { 4298 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4299 } 4300 4301 static const ARMCPRegInfo pan_reginfo = { 4302 .name = "PAN", .state = ARM_CP_STATE_AA64, 4303 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4304 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4305 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4306 }; 4307 4308 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4309 { 4310 return env->pstate & PSTATE_UAO; 4311 } 4312 4313 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4314 uint64_t value) 4315 { 4316 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4317 } 4318 4319 static const ARMCPRegInfo uao_reginfo = { 4320 .name = "UAO", .state = ARM_CP_STATE_AA64, 4321 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4322 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4323 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4324 }; 4325 4326 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4327 const ARMCPRegInfo *ri, 4328 bool isread) 4329 { 4330 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4331 switch (arm_current_el(env)) { 4332 case 0: 4333 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4334 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4335 return CP_ACCESS_TRAP; 4336 } 4337 /* fall through */ 4338 case 1: 4339 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4340 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4341 return CP_ACCESS_TRAP_EL2; 4342 } 4343 break; 4344 } 4345 return CP_ACCESS_OK; 4346 } 4347 4348 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4349 const ARMCPRegInfo *ri, 4350 bool isread) 4351 { 4352 /* Cache invalidate/clean to Point of Unification... */ 4353 switch (arm_current_el(env)) { 4354 case 0: 4355 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4356 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4357 return CP_ACCESS_TRAP; 4358 } 4359 /* fall through */ 4360 case 1: 4361 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4362 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4363 return CP_ACCESS_TRAP_EL2; 4364 } 4365 break; 4366 } 4367 return CP_ACCESS_OK; 4368 } 4369 4370 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4371 * Page D4-1736 (DDI0487A.b) 4372 */ 4373 4374 static int vae1_tlbmask(CPUARMState *env) 4375 { 4376 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4377 if (arm_is_secure_below_el3(env)) { 4378 return ARMMMUIdxBit_SE10_1 | 4379 ARMMMUIdxBit_SE10_1_PAN | 4380 ARMMMUIdxBit_SE10_0; 4381 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4382 == (HCR_E2H | HCR_TGE)) { 4383 return ARMMMUIdxBit_E20_2 | 4384 ARMMMUIdxBit_E20_2_PAN | 4385 ARMMMUIdxBit_E20_0; 4386 } else { 4387 return ARMMMUIdxBit_E10_1 | 4388 ARMMMUIdxBit_E10_1_PAN | 4389 ARMMMUIdxBit_E10_0; 4390 } 4391 } 4392 4393 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 CPUState *cs = env_cpu(env); 4397 int mask = vae1_tlbmask(env); 4398 4399 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4400 } 4401 4402 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4403 uint64_t value) 4404 { 4405 CPUState *cs = env_cpu(env); 4406 int mask = vae1_tlbmask(env); 4407 4408 if (tlb_force_broadcast(env)) { 4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4410 } else { 4411 tlb_flush_by_mmuidx(cs, mask); 4412 } 4413 } 4414 4415 static int alle1_tlbmask(CPUARMState *env) 4416 { 4417 /* 4418 * Note that the 'ALL' scope must invalidate both stage 1 and 4419 * stage 2 translations, whereas most other scopes only invalidate 4420 * stage 1 translations. 4421 */ 4422 if (arm_is_secure_below_el3(env)) { 4423 return ARMMMUIdxBit_SE10_1 | 4424 ARMMMUIdxBit_SE10_1_PAN | 4425 ARMMMUIdxBit_SE10_0; 4426 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 4427 return ARMMMUIdxBit_E10_1 | 4428 ARMMMUIdxBit_E10_1_PAN | 4429 ARMMMUIdxBit_E10_0 | 4430 ARMMMUIdxBit_Stage2; 4431 } else { 4432 return ARMMMUIdxBit_E10_1 | 4433 ARMMMUIdxBit_E10_1_PAN | 4434 ARMMMUIdxBit_E10_0; 4435 } 4436 } 4437 4438 static int e2_tlbmask(CPUARMState *env) 4439 { 4440 /* TODO: ARMv8.4-SecEL2 */ 4441 return ARMMMUIdxBit_E20_0 | 4442 ARMMMUIdxBit_E20_2 | 4443 ARMMMUIdxBit_E20_2_PAN | 4444 ARMMMUIdxBit_E2; 4445 } 4446 4447 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4448 uint64_t value) 4449 { 4450 CPUState *cs = env_cpu(env); 4451 int mask = alle1_tlbmask(env); 4452 4453 tlb_flush_by_mmuidx(cs, mask); 4454 } 4455 4456 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4457 uint64_t value) 4458 { 4459 CPUState *cs = env_cpu(env); 4460 int mask = e2_tlbmask(env); 4461 4462 tlb_flush_by_mmuidx(cs, mask); 4463 } 4464 4465 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4466 uint64_t value) 4467 { 4468 ARMCPU *cpu = env_archcpu(env); 4469 CPUState *cs = CPU(cpu); 4470 4471 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4472 } 4473 4474 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4475 uint64_t value) 4476 { 4477 CPUState *cs = env_cpu(env); 4478 int mask = alle1_tlbmask(env); 4479 4480 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4481 } 4482 4483 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4484 uint64_t value) 4485 { 4486 CPUState *cs = env_cpu(env); 4487 int mask = e2_tlbmask(env); 4488 4489 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4490 } 4491 4492 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4493 uint64_t value) 4494 { 4495 CPUState *cs = env_cpu(env); 4496 4497 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4498 } 4499 4500 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4501 uint64_t value) 4502 { 4503 /* Invalidate by VA, EL2 4504 * Currently handles both VAE2 and VALE2, since we don't support 4505 * flush-last-level-only. 4506 */ 4507 CPUState *cs = env_cpu(env); 4508 int mask = e2_tlbmask(env); 4509 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4510 4511 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4512 } 4513 4514 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4515 uint64_t value) 4516 { 4517 /* Invalidate by VA, EL3 4518 * Currently handles both VAE3 and VALE3, since we don't support 4519 * flush-last-level-only. 4520 */ 4521 ARMCPU *cpu = env_archcpu(env); 4522 CPUState *cs = CPU(cpu); 4523 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4524 4525 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4526 } 4527 4528 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4529 uint64_t value) 4530 { 4531 CPUState *cs = env_cpu(env); 4532 int mask = vae1_tlbmask(env); 4533 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4534 4535 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4536 } 4537 4538 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4539 uint64_t value) 4540 { 4541 /* Invalidate by VA, EL1&0 (AArch64 version). 4542 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4543 * since we don't support flush-for-specific-ASID-only or 4544 * flush-last-level-only. 4545 */ 4546 CPUState *cs = env_cpu(env); 4547 int mask = vae1_tlbmask(env); 4548 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4549 4550 if (tlb_force_broadcast(env)) { 4551 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4552 } else { 4553 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4554 } 4555 } 4556 4557 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4558 uint64_t value) 4559 { 4560 CPUState *cs = env_cpu(env); 4561 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4562 4563 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4564 ARMMMUIdxBit_E2); 4565 } 4566 4567 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4568 uint64_t value) 4569 { 4570 CPUState *cs = env_cpu(env); 4571 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4572 4573 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4574 ARMMMUIdxBit_SE3); 4575 } 4576 4577 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4578 uint64_t value) 4579 { 4580 /* Invalidate by IPA. This has to invalidate any structures that 4581 * contain only stage 2 translation information, but does not need 4582 * to apply to structures that contain combined stage 1 and stage 2 4583 * translation information. 4584 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4585 */ 4586 ARMCPU *cpu = env_archcpu(env); 4587 CPUState *cs = CPU(cpu); 4588 uint64_t pageaddr; 4589 4590 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4591 return; 4592 } 4593 4594 pageaddr = sextract64(value << 12, 0, 48); 4595 4596 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 4597 } 4598 4599 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4600 uint64_t value) 4601 { 4602 CPUState *cs = env_cpu(env); 4603 uint64_t pageaddr; 4604 4605 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4606 return; 4607 } 4608 4609 pageaddr = sextract64(value << 12, 0, 48); 4610 4611 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4612 ARMMMUIdxBit_Stage2); 4613 } 4614 4615 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4616 bool isread) 4617 { 4618 int cur_el = arm_current_el(env); 4619 4620 if (cur_el < 2) { 4621 uint64_t hcr = arm_hcr_el2_eff(env); 4622 4623 if (cur_el == 0) { 4624 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4625 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4626 return CP_ACCESS_TRAP_EL2; 4627 } 4628 } else { 4629 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4630 return CP_ACCESS_TRAP; 4631 } 4632 if (hcr & HCR_TDZ) { 4633 return CP_ACCESS_TRAP_EL2; 4634 } 4635 } 4636 } else if (hcr & HCR_TDZ) { 4637 return CP_ACCESS_TRAP_EL2; 4638 } 4639 } 4640 return CP_ACCESS_OK; 4641 } 4642 4643 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4644 { 4645 ARMCPU *cpu = env_archcpu(env); 4646 int dzp_bit = 1 << 4; 4647 4648 /* DZP indicates whether DC ZVA access is allowed */ 4649 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4650 dzp_bit = 0; 4651 } 4652 return cpu->dcz_blocksize | dzp_bit; 4653 } 4654 4655 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4656 bool isread) 4657 { 4658 if (!(env->pstate & PSTATE_SP)) { 4659 /* Access to SP_EL0 is undefined if it's being used as 4660 * the stack pointer. 4661 */ 4662 return CP_ACCESS_TRAP_UNCATEGORIZED; 4663 } 4664 return CP_ACCESS_OK; 4665 } 4666 4667 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4668 { 4669 return env->pstate & PSTATE_SP; 4670 } 4671 4672 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4673 { 4674 update_spsel(env, val); 4675 } 4676 4677 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4678 uint64_t value) 4679 { 4680 ARMCPU *cpu = env_archcpu(env); 4681 4682 if (raw_read(env, ri) == value) { 4683 /* Skip the TLB flush if nothing actually changed; Linux likes 4684 * to do a lot of pointless SCTLR writes. 4685 */ 4686 return; 4687 } 4688 4689 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4690 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4691 value &= ~SCTLR_M; 4692 } 4693 4694 raw_write(env, ri, value); 4695 /* ??? Lots of these bits are not implemented. */ 4696 /* This may enable/disable the MMU, so do a TLB flush. */ 4697 tlb_flush(CPU(cpu)); 4698 4699 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4700 /* 4701 * Normally we would always end the TB on an SCTLR write; see the 4702 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4703 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4704 * of hflags from the translator, so do it here. 4705 */ 4706 arm_rebuild_hflags(env); 4707 } 4708 } 4709 4710 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4711 bool isread) 4712 { 4713 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4714 return CP_ACCESS_TRAP_FP_EL2; 4715 } 4716 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4717 return CP_ACCESS_TRAP_FP_EL3; 4718 } 4719 return CP_ACCESS_OK; 4720 } 4721 4722 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4723 uint64_t value) 4724 { 4725 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4726 } 4727 4728 static const ARMCPRegInfo v8_cp_reginfo[] = { 4729 /* Minimal set of EL0-visible registers. This will need to be expanded 4730 * significantly for system emulation of AArch64 CPUs. 4731 */ 4732 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4733 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4734 .access = PL0_RW, .type = ARM_CP_NZCV }, 4735 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4736 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4737 .type = ARM_CP_NO_RAW, 4738 .access = PL0_RW, .accessfn = aa64_daif_access, 4739 .fieldoffset = offsetof(CPUARMState, daif), 4740 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4741 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4742 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4743 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4744 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4745 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4746 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4747 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4748 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4749 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4750 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4751 .access = PL0_R, .type = ARM_CP_NO_RAW, 4752 .readfn = aa64_dczid_read }, 4753 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4754 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4755 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4756 #ifndef CONFIG_USER_ONLY 4757 /* Avoid overhead of an access check that always passes in user-mode */ 4758 .accessfn = aa64_zva_access, 4759 #endif 4760 }, 4761 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4762 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4763 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4764 /* Cache ops: all NOPs since we don't emulate caches */ 4765 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4766 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4767 .access = PL1_W, .type = ARM_CP_NOP, 4768 .accessfn = aa64_cacheop_pou_access }, 4769 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4771 .access = PL1_W, .type = ARM_CP_NOP, 4772 .accessfn = aa64_cacheop_pou_access }, 4773 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4774 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4775 .access = PL0_W, .type = ARM_CP_NOP, 4776 .accessfn = aa64_cacheop_pou_access }, 4777 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4779 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4780 .type = ARM_CP_NOP }, 4781 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4782 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4783 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4784 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4785 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4786 .access = PL0_W, .type = ARM_CP_NOP, 4787 .accessfn = aa64_cacheop_poc_access }, 4788 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4789 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4790 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4791 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4793 .access = PL0_W, .type = ARM_CP_NOP, 4794 .accessfn = aa64_cacheop_pou_access }, 4795 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4797 .access = PL0_W, .type = ARM_CP_NOP, 4798 .accessfn = aa64_cacheop_poc_access }, 4799 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4801 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4802 /* TLBI operations */ 4803 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4805 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4806 .writefn = tlbi_aa64_vmalle1is_write }, 4807 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4809 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4810 .writefn = tlbi_aa64_vae1is_write }, 4811 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4813 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4814 .writefn = tlbi_aa64_vmalle1is_write }, 4815 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4817 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4818 .writefn = tlbi_aa64_vae1is_write }, 4819 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4821 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4822 .writefn = tlbi_aa64_vae1is_write }, 4823 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4825 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4826 .writefn = tlbi_aa64_vae1is_write }, 4827 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4829 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4830 .writefn = tlbi_aa64_vmalle1_write }, 4831 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4833 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4834 .writefn = tlbi_aa64_vae1_write }, 4835 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4837 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4838 .writefn = tlbi_aa64_vmalle1_write }, 4839 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4841 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4842 .writefn = tlbi_aa64_vae1_write }, 4843 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4845 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4846 .writefn = tlbi_aa64_vae1_write }, 4847 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4849 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4850 .writefn = tlbi_aa64_vae1_write }, 4851 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4853 .access = PL2_W, .type = ARM_CP_NO_RAW, 4854 .writefn = tlbi_aa64_ipas2e1is_write }, 4855 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4857 .access = PL2_W, .type = ARM_CP_NO_RAW, 4858 .writefn = tlbi_aa64_ipas2e1is_write }, 4859 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4861 .access = PL2_W, .type = ARM_CP_NO_RAW, 4862 .writefn = tlbi_aa64_alle1is_write }, 4863 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4865 .access = PL2_W, .type = ARM_CP_NO_RAW, 4866 .writefn = tlbi_aa64_alle1is_write }, 4867 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4869 .access = PL2_W, .type = ARM_CP_NO_RAW, 4870 .writefn = tlbi_aa64_ipas2e1_write }, 4871 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4873 .access = PL2_W, .type = ARM_CP_NO_RAW, 4874 .writefn = tlbi_aa64_ipas2e1_write }, 4875 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4877 .access = PL2_W, .type = ARM_CP_NO_RAW, 4878 .writefn = tlbi_aa64_alle1_write }, 4879 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4881 .access = PL2_W, .type = ARM_CP_NO_RAW, 4882 .writefn = tlbi_aa64_alle1is_write }, 4883 #ifndef CONFIG_USER_ONLY 4884 /* 64 bit address translation operations */ 4885 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4887 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4888 .writefn = ats_write64 }, 4889 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4891 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4892 .writefn = ats_write64 }, 4893 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4895 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4896 .writefn = ats_write64 }, 4897 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4899 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4900 .writefn = ats_write64 }, 4901 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4903 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4904 .writefn = ats_write64 }, 4905 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4907 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4908 .writefn = ats_write64 }, 4909 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4911 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4912 .writefn = ats_write64 }, 4913 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4915 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4916 .writefn = ats_write64 }, 4917 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4918 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4920 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4921 .writefn = ats_write64 }, 4922 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4924 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4925 .writefn = ats_write64 }, 4926 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4927 .type = ARM_CP_ALIAS, 4928 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4929 .access = PL1_RW, .resetvalue = 0, 4930 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4931 .writefn = par_write }, 4932 #endif 4933 /* TLB invalidate last level of translation table walk */ 4934 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4935 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4936 .writefn = tlbimva_is_write }, 4937 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4938 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4939 .writefn = tlbimvaa_is_write }, 4940 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4941 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4942 .writefn = tlbimva_write }, 4943 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4944 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4945 .writefn = tlbimvaa_write }, 4946 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4947 .type = ARM_CP_NO_RAW, .access = PL2_W, 4948 .writefn = tlbimva_hyp_write }, 4949 { .name = "TLBIMVALHIS", 4950 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4951 .type = ARM_CP_NO_RAW, .access = PL2_W, 4952 .writefn = tlbimva_hyp_is_write }, 4953 { .name = "TLBIIPAS2", 4954 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4955 .type = ARM_CP_NO_RAW, .access = PL2_W, 4956 .writefn = tlbiipas2_write }, 4957 { .name = "TLBIIPAS2IS", 4958 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4959 .type = ARM_CP_NO_RAW, .access = PL2_W, 4960 .writefn = tlbiipas2_is_write }, 4961 { .name = "TLBIIPAS2L", 4962 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4963 .type = ARM_CP_NO_RAW, .access = PL2_W, 4964 .writefn = tlbiipas2_write }, 4965 { .name = "TLBIIPAS2LIS", 4966 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4967 .type = ARM_CP_NO_RAW, .access = PL2_W, 4968 .writefn = tlbiipas2_is_write }, 4969 /* 32 bit cache operations */ 4970 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4971 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4972 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4973 .type = ARM_CP_NOP, .access = PL1_W }, 4974 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4975 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4976 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4977 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4978 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4979 .type = ARM_CP_NOP, .access = PL1_W }, 4980 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4981 .type = ARM_CP_NOP, .access = PL1_W }, 4982 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4983 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 4984 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4985 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 4986 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4987 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 4988 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4989 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 4990 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4991 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 4992 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4993 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 4994 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4995 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 4996 /* MMU Domain access control / MPU write buffer control */ 4997 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4998 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4999 .writefn = dacr_write, .raw_writefn = raw_write, 5000 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5001 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5002 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5003 .type = ARM_CP_ALIAS, 5004 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5005 .access = PL1_RW, 5006 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5007 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5008 .type = ARM_CP_ALIAS, 5009 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5010 .access = PL1_RW, 5011 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5012 /* We rely on the access checks not allowing the guest to write to the 5013 * state field when SPSel indicates that it's being used as the stack 5014 * pointer. 5015 */ 5016 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5018 .access = PL1_RW, .accessfn = sp_el0_access, 5019 .type = ARM_CP_ALIAS, 5020 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5021 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5023 .access = PL2_RW, .type = ARM_CP_ALIAS, 5024 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5025 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5027 .type = ARM_CP_NO_RAW, 5028 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5029 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5031 .type = ARM_CP_ALIAS, 5032 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5033 .access = PL2_RW, .accessfn = fpexc32_access }, 5034 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5035 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5036 .access = PL2_RW, .resetvalue = 0, 5037 .writefn = dacr_write, .raw_writefn = raw_write, 5038 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5039 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5040 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5041 .access = PL2_RW, .resetvalue = 0, 5042 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5043 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5044 .type = ARM_CP_ALIAS, 5045 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5046 .access = PL2_RW, 5047 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5048 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5049 .type = ARM_CP_ALIAS, 5050 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5051 .access = PL2_RW, 5052 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5053 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5054 .type = ARM_CP_ALIAS, 5055 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5056 .access = PL2_RW, 5057 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5058 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5059 .type = ARM_CP_ALIAS, 5060 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5061 .access = PL2_RW, 5062 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5063 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5064 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5065 .resetvalue = 0, 5066 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5067 { .name = "SDCR", .type = ARM_CP_ALIAS, 5068 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5069 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5070 .writefn = sdcr_write, 5071 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5072 REGINFO_SENTINEL 5073 }; 5074 5075 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5076 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5077 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5078 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5079 .access = PL2_RW, 5080 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5081 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5082 .type = ARM_CP_NO_RAW, 5083 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5084 .access = PL2_RW, 5085 .type = ARM_CP_CONST, .resetvalue = 0 }, 5086 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5087 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5088 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5089 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5090 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5091 .access = PL2_RW, 5092 .type = ARM_CP_CONST, .resetvalue = 0 }, 5093 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5094 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5095 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5096 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5097 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5098 .access = PL2_RW, .type = ARM_CP_CONST, 5099 .resetvalue = 0 }, 5100 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5101 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5102 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5103 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5104 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5105 .access = PL2_RW, .type = ARM_CP_CONST, 5106 .resetvalue = 0 }, 5107 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5108 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5109 .access = PL2_RW, .type = ARM_CP_CONST, 5110 .resetvalue = 0 }, 5111 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5112 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5113 .access = PL2_RW, .type = ARM_CP_CONST, 5114 .resetvalue = 0 }, 5115 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5116 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5117 .access = PL2_RW, .type = ARM_CP_CONST, 5118 .resetvalue = 0 }, 5119 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5120 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5121 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5122 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5123 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5124 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5125 .type = ARM_CP_CONST, .resetvalue = 0 }, 5126 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5127 .cp = 15, .opc1 = 6, .crm = 2, 5128 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5129 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5130 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5131 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5132 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5133 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5134 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5135 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5136 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5137 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5138 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5139 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5140 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5141 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5142 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5143 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5144 .resetvalue = 0 }, 5145 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5146 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5147 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5148 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5149 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5150 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5151 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5152 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5153 .resetvalue = 0 }, 5154 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5156 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5157 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5158 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5159 .resetvalue = 0 }, 5160 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5161 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5162 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5163 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5164 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5165 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5166 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5167 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5168 .access = PL2_RW, .accessfn = access_tda, 5169 .type = ARM_CP_CONST, .resetvalue = 0 }, 5170 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5171 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5172 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5173 .type = ARM_CP_CONST, .resetvalue = 0 }, 5174 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5175 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5176 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5177 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5179 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5180 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5181 .type = ARM_CP_CONST, 5182 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5183 .access = PL2_RW, .resetvalue = 0 }, 5184 REGINFO_SENTINEL 5185 }; 5186 5187 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5188 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5189 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5190 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5191 .access = PL2_RW, 5192 .type = ARM_CP_CONST, .resetvalue = 0 }, 5193 REGINFO_SENTINEL 5194 }; 5195 5196 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5197 { 5198 ARMCPU *cpu = env_archcpu(env); 5199 5200 if (arm_feature(env, ARM_FEATURE_V8)) { 5201 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5202 } else { 5203 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5204 } 5205 5206 if (arm_feature(env, ARM_FEATURE_EL3)) { 5207 valid_mask &= ~HCR_HCD; 5208 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5209 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5210 * However, if we're using the SMC PSCI conduit then QEMU is 5211 * effectively acting like EL3 firmware and so the guest at 5212 * EL2 should retain the ability to prevent EL1 from being 5213 * able to make SMC calls into the ersatz firmware, so in 5214 * that case HCR.TSC should be read/write. 5215 */ 5216 valid_mask &= ~HCR_TSC; 5217 } 5218 5219 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5220 if (cpu_isar_feature(aa64_vh, cpu)) { 5221 valid_mask |= HCR_E2H; 5222 } 5223 if (cpu_isar_feature(aa64_lor, cpu)) { 5224 valid_mask |= HCR_TLOR; 5225 } 5226 if (cpu_isar_feature(aa64_pauth, cpu)) { 5227 valid_mask |= HCR_API | HCR_APK; 5228 } 5229 } 5230 5231 /* Clear RES0 bits. */ 5232 value &= valid_mask; 5233 5234 /* These bits change the MMU setup: 5235 * HCR_VM enables stage 2 translation 5236 * HCR_PTW forbids certain page-table setups 5237 * HCR_DC Disables stage1 and enables stage2 translation 5238 */ 5239 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 5240 tlb_flush(CPU(cpu)); 5241 } 5242 env->cp15.hcr_el2 = value; 5243 5244 /* 5245 * Updates to VI and VF require us to update the status of 5246 * virtual interrupts, which are the logical OR of these bits 5247 * and the state of the input lines from the GIC. (This requires 5248 * that we have the iothread lock, which is done by marking the 5249 * reginfo structs as ARM_CP_IO.) 5250 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5251 * possible for it to be taken immediately, because VIRQ and 5252 * VFIQ are masked unless running at EL0 or EL1, and HCR 5253 * can only be written at EL2. 5254 */ 5255 g_assert(qemu_mutex_iothread_locked()); 5256 arm_cpu_update_virq(cpu); 5257 arm_cpu_update_vfiq(cpu); 5258 } 5259 5260 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5261 { 5262 do_hcr_write(env, value, 0); 5263 } 5264 5265 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5266 uint64_t value) 5267 { 5268 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5269 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5270 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5271 } 5272 5273 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5274 uint64_t value) 5275 { 5276 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5277 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5278 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5279 } 5280 5281 /* 5282 * Return the effective value of HCR_EL2. 5283 * Bits that are not included here: 5284 * RW (read from SCR_EL3.RW as needed) 5285 */ 5286 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5287 { 5288 uint64_t ret = env->cp15.hcr_el2; 5289 5290 if (arm_is_secure_below_el3(env)) { 5291 /* 5292 * "This register has no effect if EL2 is not enabled in the 5293 * current Security state". This is ARMv8.4-SecEL2 speak for 5294 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5295 * 5296 * Prior to that, the language was "In an implementation that 5297 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5298 * as if this field is 0 for all purposes other than a direct 5299 * read or write access of HCR_EL2". With lots of enumeration 5300 * on a per-field basis. In current QEMU, this is condition 5301 * is arm_is_secure_below_el3. 5302 * 5303 * Since the v8.4 language applies to the entire register, and 5304 * appears to be backward compatible, use that. 5305 */ 5306 return 0; 5307 } 5308 5309 /* 5310 * For a cpu that supports both aarch64 and aarch32, we can set bits 5311 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5312 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5313 */ 5314 if (!arm_el_is_aa64(env, 2)) { 5315 uint64_t aa32_valid; 5316 5317 /* 5318 * These bits are up-to-date as of ARMv8.6. 5319 * For HCR, it's easiest to list just the 2 bits that are invalid. 5320 * For HCR2, list those that are valid. 5321 */ 5322 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5323 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5324 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5325 ret &= aa32_valid; 5326 } 5327 5328 if (ret & HCR_TGE) { 5329 /* These bits are up-to-date as of ARMv8.6. */ 5330 if (ret & HCR_E2H) { 5331 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5332 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5333 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5334 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5335 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5336 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5337 } else { 5338 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5339 } 5340 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5341 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5342 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5343 HCR_TLOR); 5344 } 5345 5346 return ret; 5347 } 5348 5349 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5350 uint64_t value) 5351 { 5352 /* 5353 * For A-profile AArch32 EL3, if NSACR.CP10 5354 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5355 */ 5356 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5357 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5358 value &= ~(0x3 << 10); 5359 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5360 } 5361 env->cp15.cptr_el[2] = value; 5362 } 5363 5364 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5365 { 5366 /* 5367 * For A-profile AArch32 EL3, if NSACR.CP10 5368 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5369 */ 5370 uint64_t value = env->cp15.cptr_el[2]; 5371 5372 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5373 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5374 value |= 0x3 << 10; 5375 } 5376 return value; 5377 } 5378 5379 static const ARMCPRegInfo el2_cp_reginfo[] = { 5380 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5381 .type = ARM_CP_IO, 5382 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5383 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5384 .writefn = hcr_write }, 5385 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5386 .type = ARM_CP_ALIAS | ARM_CP_IO, 5387 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5388 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5389 .writefn = hcr_writelow }, 5390 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5391 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5392 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5393 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5394 .type = ARM_CP_ALIAS, 5395 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5396 .access = PL2_RW, 5397 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5398 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5399 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5400 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5401 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5402 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5403 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5404 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5405 .type = ARM_CP_ALIAS, 5406 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5407 .access = PL2_RW, 5408 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5409 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5410 .type = ARM_CP_ALIAS, 5411 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5412 .access = PL2_RW, 5413 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5414 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5415 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5416 .access = PL2_RW, .writefn = vbar_write, 5417 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5418 .resetvalue = 0 }, 5419 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5421 .access = PL3_RW, .type = ARM_CP_ALIAS, 5422 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5423 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5424 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5425 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5426 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5427 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5428 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5429 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5430 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5431 .resetvalue = 0 }, 5432 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5433 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5434 .access = PL2_RW, .type = ARM_CP_ALIAS, 5435 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5436 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5437 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5438 .access = PL2_RW, .type = ARM_CP_CONST, 5439 .resetvalue = 0 }, 5440 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5441 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5442 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5443 .access = PL2_RW, .type = ARM_CP_CONST, 5444 .resetvalue = 0 }, 5445 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5446 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5447 .access = PL2_RW, .type = ARM_CP_CONST, 5448 .resetvalue = 0 }, 5449 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5450 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5451 .access = PL2_RW, .type = ARM_CP_CONST, 5452 .resetvalue = 0 }, 5453 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5454 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5455 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5456 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5457 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5458 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5459 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5460 .type = ARM_CP_ALIAS, 5461 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5462 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5463 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5465 .access = PL2_RW, 5466 /* no .writefn needed as this can't cause an ASID change; 5467 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5468 */ 5469 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5470 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5471 .cp = 15, .opc1 = 6, .crm = 2, 5472 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5473 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5474 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5475 .writefn = vttbr_write }, 5476 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5477 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5478 .access = PL2_RW, .writefn = vttbr_write, 5479 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5480 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5481 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5482 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5483 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5484 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5486 .access = PL2_RW, .resetvalue = 0, 5487 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5488 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5490 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5491 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5492 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5493 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5494 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5495 { .name = "TLBIALLNSNH", 5496 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5497 .type = ARM_CP_NO_RAW, .access = PL2_W, 5498 .writefn = tlbiall_nsnh_write }, 5499 { .name = "TLBIALLNSNHIS", 5500 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5501 .type = ARM_CP_NO_RAW, .access = PL2_W, 5502 .writefn = tlbiall_nsnh_is_write }, 5503 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5504 .type = ARM_CP_NO_RAW, .access = PL2_W, 5505 .writefn = tlbiall_hyp_write }, 5506 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5507 .type = ARM_CP_NO_RAW, .access = PL2_W, 5508 .writefn = tlbiall_hyp_is_write }, 5509 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5510 .type = ARM_CP_NO_RAW, .access = PL2_W, 5511 .writefn = tlbimva_hyp_write }, 5512 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5513 .type = ARM_CP_NO_RAW, .access = PL2_W, 5514 .writefn = tlbimva_hyp_is_write }, 5515 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5516 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5517 .type = ARM_CP_NO_RAW, .access = PL2_W, 5518 .writefn = tlbi_aa64_alle2_write }, 5519 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5520 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5521 .type = ARM_CP_NO_RAW, .access = PL2_W, 5522 .writefn = tlbi_aa64_vae2_write }, 5523 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5525 .access = PL2_W, .type = ARM_CP_NO_RAW, 5526 .writefn = tlbi_aa64_vae2_write }, 5527 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5528 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5529 .access = PL2_W, .type = ARM_CP_NO_RAW, 5530 .writefn = tlbi_aa64_alle2is_write }, 5531 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5532 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5533 .type = ARM_CP_NO_RAW, .access = PL2_W, 5534 .writefn = tlbi_aa64_vae2is_write }, 5535 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5536 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5537 .access = PL2_W, .type = ARM_CP_NO_RAW, 5538 .writefn = tlbi_aa64_vae2is_write }, 5539 #ifndef CONFIG_USER_ONLY 5540 /* Unlike the other EL2-related AT operations, these must 5541 * UNDEF from EL3 if EL2 is not implemented, which is why we 5542 * define them here rather than with the rest of the AT ops. 5543 */ 5544 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5545 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5546 .access = PL2_W, .accessfn = at_s1e2_access, 5547 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5548 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5549 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5550 .access = PL2_W, .accessfn = at_s1e2_access, 5551 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5552 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5553 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5554 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5555 * to behave as if SCR.NS was 1. 5556 */ 5557 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5558 .access = PL2_W, 5559 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5560 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5561 .access = PL2_W, 5562 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5563 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5564 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5565 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5566 * reset values as IMPDEF. We choose to reset to 3 to comply with 5567 * both ARMv7 and ARMv8. 5568 */ 5569 .access = PL2_RW, .resetvalue = 3, 5570 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5571 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5572 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5573 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5574 .writefn = gt_cntvoff_write, 5575 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5576 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5577 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5578 .writefn = gt_cntvoff_write, 5579 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5580 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5582 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5583 .type = ARM_CP_IO, .access = PL2_RW, 5584 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5585 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5586 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5587 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5588 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5589 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5590 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5591 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5592 .resetfn = gt_hyp_timer_reset, 5593 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5594 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5595 .type = ARM_CP_IO, 5596 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5597 .access = PL2_RW, 5598 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5599 .resetvalue = 0, 5600 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5601 #endif 5602 /* The only field of MDCR_EL2 that has a defined architectural reset value 5603 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5604 * don't implement any PMU event counters, so using zero as a reset 5605 * value for MDCR_EL2 is okay 5606 */ 5607 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5608 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5609 .access = PL2_RW, .resetvalue = 0, 5610 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5611 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5612 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5613 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5614 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5615 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5616 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5617 .access = PL2_RW, 5618 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5619 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5620 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5621 .access = PL2_RW, 5622 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5623 REGINFO_SENTINEL 5624 }; 5625 5626 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5627 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5628 .type = ARM_CP_ALIAS | ARM_CP_IO, 5629 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5630 .access = PL2_RW, 5631 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5632 .writefn = hcr_writehigh }, 5633 REGINFO_SENTINEL 5634 }; 5635 5636 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5637 bool isread) 5638 { 5639 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5640 * At Secure EL1 it traps to EL3. 5641 */ 5642 if (arm_current_el(env) == 3) { 5643 return CP_ACCESS_OK; 5644 } 5645 if (arm_is_secure_below_el3(env)) { 5646 return CP_ACCESS_TRAP_EL3; 5647 } 5648 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5649 if (isread) { 5650 return CP_ACCESS_OK; 5651 } 5652 return CP_ACCESS_TRAP_UNCATEGORIZED; 5653 } 5654 5655 static const ARMCPRegInfo el3_cp_reginfo[] = { 5656 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5657 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5658 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5659 .resetvalue = 0, .writefn = scr_write }, 5660 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5661 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5662 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5663 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5664 .writefn = scr_write }, 5665 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5666 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5667 .access = PL3_RW, .resetvalue = 0, 5668 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5669 { .name = "SDER", 5670 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5671 .access = PL3_RW, .resetvalue = 0, 5672 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5673 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5674 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5675 .writefn = vbar_write, .resetvalue = 0, 5676 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5677 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5678 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5679 .access = PL3_RW, .resetvalue = 0, 5680 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5681 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5682 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5683 .access = PL3_RW, 5684 /* no .writefn needed as this can't cause an ASID change; 5685 * we must provide a .raw_writefn and .resetfn because we handle 5686 * reset and migration for the AArch32 TTBCR(S), which might be 5687 * using mask and base_mask. 5688 */ 5689 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5690 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5691 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5692 .type = ARM_CP_ALIAS, 5693 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5694 .access = PL3_RW, 5695 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5696 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5698 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5699 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5701 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5702 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5703 .type = ARM_CP_ALIAS, 5704 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5705 .access = PL3_RW, 5706 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5707 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5708 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5709 .access = PL3_RW, .writefn = vbar_write, 5710 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5711 .resetvalue = 0 }, 5712 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5714 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5715 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5716 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5718 .access = PL3_RW, .resetvalue = 0, 5719 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5720 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5721 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5722 .access = PL3_RW, .type = ARM_CP_CONST, 5723 .resetvalue = 0 }, 5724 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5725 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5726 .access = PL3_RW, .type = ARM_CP_CONST, 5727 .resetvalue = 0 }, 5728 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5729 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5730 .access = PL3_RW, .type = ARM_CP_CONST, 5731 .resetvalue = 0 }, 5732 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5733 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5734 .access = PL3_W, .type = ARM_CP_NO_RAW, 5735 .writefn = tlbi_aa64_alle3is_write }, 5736 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5737 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5738 .access = PL3_W, .type = ARM_CP_NO_RAW, 5739 .writefn = tlbi_aa64_vae3is_write }, 5740 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5741 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5742 .access = PL3_W, .type = ARM_CP_NO_RAW, 5743 .writefn = tlbi_aa64_vae3is_write }, 5744 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5745 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5746 .access = PL3_W, .type = ARM_CP_NO_RAW, 5747 .writefn = tlbi_aa64_alle3_write }, 5748 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5749 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5750 .access = PL3_W, .type = ARM_CP_NO_RAW, 5751 .writefn = tlbi_aa64_vae3_write }, 5752 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5754 .access = PL3_W, .type = ARM_CP_NO_RAW, 5755 .writefn = tlbi_aa64_vae3_write }, 5756 REGINFO_SENTINEL 5757 }; 5758 5759 #ifndef CONFIG_USER_ONLY 5760 /* Test if system register redirection is to occur in the current state. */ 5761 static bool redirect_for_e2h(CPUARMState *env) 5762 { 5763 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5764 } 5765 5766 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5767 { 5768 CPReadFn *readfn; 5769 5770 if (redirect_for_e2h(env)) { 5771 /* Switch to the saved EL2 version of the register. */ 5772 ri = ri->opaque; 5773 readfn = ri->readfn; 5774 } else { 5775 readfn = ri->orig_readfn; 5776 } 5777 if (readfn == NULL) { 5778 readfn = raw_read; 5779 } 5780 return readfn(env, ri); 5781 } 5782 5783 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5784 uint64_t value) 5785 { 5786 CPWriteFn *writefn; 5787 5788 if (redirect_for_e2h(env)) { 5789 /* Switch to the saved EL2 version of the register. */ 5790 ri = ri->opaque; 5791 writefn = ri->writefn; 5792 } else { 5793 writefn = ri->orig_writefn; 5794 } 5795 if (writefn == NULL) { 5796 writefn = raw_write; 5797 } 5798 writefn(env, ri, value); 5799 } 5800 5801 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5802 { 5803 struct E2HAlias { 5804 uint32_t src_key, dst_key, new_key; 5805 const char *src_name, *dst_name, *new_name; 5806 bool (*feature)(const ARMISARegisters *id); 5807 }; 5808 5809 #define K(op0, op1, crn, crm, op2) \ 5810 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5811 5812 static const struct E2HAlias aliases[] = { 5813 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5814 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5815 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5816 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5817 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5818 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5819 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5820 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5821 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5822 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5823 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5824 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5825 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5826 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5827 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5828 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5829 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5830 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5831 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5832 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5833 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5834 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5835 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5836 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5837 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5838 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5839 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5840 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5841 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5842 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5843 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5844 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5845 5846 /* 5847 * Note that redirection of ZCR is mentioned in the description 5848 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5849 * not in the summary table. 5850 */ 5851 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5852 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5853 5854 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5855 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5856 }; 5857 #undef K 5858 5859 size_t i; 5860 5861 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5862 const struct E2HAlias *a = &aliases[i]; 5863 ARMCPRegInfo *src_reg, *dst_reg; 5864 5865 if (a->feature && !a->feature(&cpu->isar)) { 5866 continue; 5867 } 5868 5869 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5870 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5871 g_assert(src_reg != NULL); 5872 g_assert(dst_reg != NULL); 5873 5874 /* Cross-compare names to detect typos in the keys. */ 5875 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5876 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5877 5878 /* None of the core system registers use opaque; we will. */ 5879 g_assert(src_reg->opaque == NULL); 5880 5881 /* Create alias before redirection so we dup the right data. */ 5882 if (a->new_key) { 5883 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5884 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5885 bool ok; 5886 5887 new_reg->name = a->new_name; 5888 new_reg->type |= ARM_CP_ALIAS; 5889 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5890 new_reg->access &= PL2_RW | PL3_RW; 5891 5892 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5893 g_assert(ok); 5894 } 5895 5896 src_reg->opaque = dst_reg; 5897 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5898 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5899 if (!src_reg->raw_readfn) { 5900 src_reg->raw_readfn = raw_read; 5901 } 5902 if (!src_reg->raw_writefn) { 5903 src_reg->raw_writefn = raw_write; 5904 } 5905 src_reg->readfn = el2_e2h_read; 5906 src_reg->writefn = el2_e2h_write; 5907 } 5908 } 5909 #endif 5910 5911 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5912 bool isread) 5913 { 5914 int cur_el = arm_current_el(env); 5915 5916 if (cur_el < 2) { 5917 uint64_t hcr = arm_hcr_el2_eff(env); 5918 5919 if (cur_el == 0) { 5920 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5921 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5922 return CP_ACCESS_TRAP_EL2; 5923 } 5924 } else { 5925 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5926 return CP_ACCESS_TRAP; 5927 } 5928 if (hcr & HCR_TID2) { 5929 return CP_ACCESS_TRAP_EL2; 5930 } 5931 } 5932 } else if (hcr & HCR_TID2) { 5933 return CP_ACCESS_TRAP_EL2; 5934 } 5935 } 5936 5937 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5938 return CP_ACCESS_TRAP_EL2; 5939 } 5940 5941 return CP_ACCESS_OK; 5942 } 5943 5944 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5945 uint64_t value) 5946 { 5947 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5948 * read via a bit in OSLSR_EL1. 5949 */ 5950 int oslock; 5951 5952 if (ri->state == ARM_CP_STATE_AA32) { 5953 oslock = (value == 0xC5ACCE55); 5954 } else { 5955 oslock = value & 1; 5956 } 5957 5958 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5959 } 5960 5961 static const ARMCPRegInfo debug_cp_reginfo[] = { 5962 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5963 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5964 * unlike DBGDRAR it is never accessible from EL0. 5965 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5966 * accessor. 5967 */ 5968 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5969 .access = PL0_R, .accessfn = access_tdra, 5970 .type = ARM_CP_CONST, .resetvalue = 0 }, 5971 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5972 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5973 .access = PL1_R, .accessfn = access_tdra, 5974 .type = ARM_CP_CONST, .resetvalue = 0 }, 5975 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5976 .access = PL0_R, .accessfn = access_tdra, 5977 .type = ARM_CP_CONST, .resetvalue = 0 }, 5978 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5979 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5980 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5981 .access = PL1_RW, .accessfn = access_tda, 5982 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5983 .resetvalue = 0 }, 5984 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5985 * We don't implement the configurable EL0 access. 5986 */ 5987 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5988 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5989 .type = ARM_CP_ALIAS, 5990 .access = PL1_R, .accessfn = access_tda, 5991 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5992 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5993 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5994 .access = PL1_W, .type = ARM_CP_NO_RAW, 5995 .accessfn = access_tdosa, 5996 .writefn = oslar_write }, 5997 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5998 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5999 .access = PL1_R, .resetvalue = 10, 6000 .accessfn = access_tdosa, 6001 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6002 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6003 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6004 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6005 .access = PL1_RW, .accessfn = access_tdosa, 6006 .type = ARM_CP_NOP }, 6007 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6008 * implement vector catch debug events yet. 6009 */ 6010 { .name = "DBGVCR", 6011 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6012 .access = PL1_RW, .accessfn = access_tda, 6013 .type = ARM_CP_NOP }, 6014 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6015 * to save and restore a 32-bit guest's DBGVCR) 6016 */ 6017 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6018 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6019 .access = PL2_RW, .accessfn = access_tda, 6020 .type = ARM_CP_NOP }, 6021 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6022 * Channel but Linux may try to access this register. The 32-bit 6023 * alias is DBGDCCINT. 6024 */ 6025 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6026 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6027 .access = PL1_RW, .accessfn = access_tda, 6028 .type = ARM_CP_NOP }, 6029 REGINFO_SENTINEL 6030 }; 6031 6032 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6033 /* 64 bit access versions of the (dummy) debug registers */ 6034 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6035 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6036 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6037 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6038 REGINFO_SENTINEL 6039 }; 6040 6041 /* Return the exception level to which exceptions should be taken 6042 * via SVEAccessTrap. If an exception should be routed through 6043 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6044 * take care of raising that exception. 6045 * C.f. the ARM pseudocode function CheckSVEEnabled. 6046 */ 6047 int sve_exception_el(CPUARMState *env, int el) 6048 { 6049 #ifndef CONFIG_USER_ONLY 6050 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6051 6052 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6053 bool disabled = false; 6054 6055 /* The CPACR.ZEN controls traps to EL1: 6056 * 0, 2 : trap EL0 and EL1 accesses 6057 * 1 : trap only EL0 accesses 6058 * 3 : trap no accesses 6059 */ 6060 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6061 disabled = true; 6062 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6063 disabled = el == 0; 6064 } 6065 if (disabled) { 6066 /* route_to_el2 */ 6067 return hcr_el2 & HCR_TGE ? 2 : 1; 6068 } 6069 6070 /* Check CPACR.FPEN. */ 6071 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6072 disabled = true; 6073 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6074 disabled = el == 0; 6075 } 6076 if (disabled) { 6077 return 0; 6078 } 6079 } 6080 6081 /* CPTR_EL2. Since TZ and TFP are positive, 6082 * they will be zero when EL2 is not present. 6083 */ 6084 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6085 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6086 return 2; 6087 } 6088 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6089 return 0; 6090 } 6091 } 6092 6093 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6094 if (arm_feature(env, ARM_FEATURE_EL3) 6095 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6096 return 3; 6097 } 6098 #endif 6099 return 0; 6100 } 6101 6102 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6103 { 6104 uint32_t end_len; 6105 6106 end_len = start_len &= 0xf; 6107 if (!test_bit(start_len, cpu->sve_vq_map)) { 6108 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6109 assert(end_len < start_len); 6110 } 6111 return end_len; 6112 } 6113 6114 /* 6115 * Given that SVE is enabled, return the vector length for EL. 6116 */ 6117 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6118 { 6119 ARMCPU *cpu = env_archcpu(env); 6120 uint32_t zcr_len = cpu->sve_max_vq - 1; 6121 6122 if (el <= 1) { 6123 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6124 } 6125 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6126 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6127 } 6128 if (arm_feature(env, ARM_FEATURE_EL3)) { 6129 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6130 } 6131 6132 return sve_zcr_get_valid_len(cpu, zcr_len); 6133 } 6134 6135 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6136 uint64_t value) 6137 { 6138 int cur_el = arm_current_el(env); 6139 int old_len = sve_zcr_len_for_el(env, cur_el); 6140 int new_len; 6141 6142 /* Bits other than [3:0] are RAZ/WI. */ 6143 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6144 raw_write(env, ri, value & 0xf); 6145 6146 /* 6147 * Because we arrived here, we know both FP and SVE are enabled; 6148 * otherwise we would have trapped access to the ZCR_ELn register. 6149 */ 6150 new_len = sve_zcr_len_for_el(env, cur_el); 6151 if (new_len < old_len) { 6152 aarch64_sve_narrow_vq(env, new_len + 1); 6153 } 6154 } 6155 6156 static const ARMCPRegInfo zcr_el1_reginfo = { 6157 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6158 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6159 .access = PL1_RW, .type = ARM_CP_SVE, 6160 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6161 .writefn = zcr_write, .raw_writefn = raw_write 6162 }; 6163 6164 static const ARMCPRegInfo zcr_el2_reginfo = { 6165 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6166 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6167 .access = PL2_RW, .type = ARM_CP_SVE, 6168 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6169 .writefn = zcr_write, .raw_writefn = raw_write 6170 }; 6171 6172 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6173 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6174 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6175 .access = PL2_RW, .type = ARM_CP_SVE, 6176 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6177 }; 6178 6179 static const ARMCPRegInfo zcr_el3_reginfo = { 6180 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6181 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6182 .access = PL3_RW, .type = ARM_CP_SVE, 6183 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6184 .writefn = zcr_write, .raw_writefn = raw_write 6185 }; 6186 6187 void hw_watchpoint_update(ARMCPU *cpu, int n) 6188 { 6189 CPUARMState *env = &cpu->env; 6190 vaddr len = 0; 6191 vaddr wvr = env->cp15.dbgwvr[n]; 6192 uint64_t wcr = env->cp15.dbgwcr[n]; 6193 int mask; 6194 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6195 6196 if (env->cpu_watchpoint[n]) { 6197 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6198 env->cpu_watchpoint[n] = NULL; 6199 } 6200 6201 if (!extract64(wcr, 0, 1)) { 6202 /* E bit clear : watchpoint disabled */ 6203 return; 6204 } 6205 6206 switch (extract64(wcr, 3, 2)) { 6207 case 0: 6208 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6209 return; 6210 case 1: 6211 flags |= BP_MEM_READ; 6212 break; 6213 case 2: 6214 flags |= BP_MEM_WRITE; 6215 break; 6216 case 3: 6217 flags |= BP_MEM_ACCESS; 6218 break; 6219 } 6220 6221 /* Attempts to use both MASK and BAS fields simultaneously are 6222 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6223 * thus generating a watchpoint for every byte in the masked region. 6224 */ 6225 mask = extract64(wcr, 24, 4); 6226 if (mask == 1 || mask == 2) { 6227 /* Reserved values of MASK; we must act as if the mask value was 6228 * some non-reserved value, or as if the watchpoint were disabled. 6229 * We choose the latter. 6230 */ 6231 return; 6232 } else if (mask) { 6233 /* Watchpoint covers an aligned area up to 2GB in size */ 6234 len = 1ULL << mask; 6235 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6236 * whether the watchpoint fires when the unmasked bits match; we opt 6237 * to generate the exceptions. 6238 */ 6239 wvr &= ~(len - 1); 6240 } else { 6241 /* Watchpoint covers bytes defined by the byte address select bits */ 6242 int bas = extract64(wcr, 5, 8); 6243 int basstart; 6244 6245 if (bas == 0) { 6246 /* This must act as if the watchpoint is disabled */ 6247 return; 6248 } 6249 6250 if (extract64(wvr, 2, 1)) { 6251 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6252 * ignored, and BAS[3:0] define which bytes to watch. 6253 */ 6254 bas &= 0xf; 6255 } 6256 /* The BAS bits are supposed to be programmed to indicate a contiguous 6257 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6258 * we fire for each byte in the word/doubleword addressed by the WVR. 6259 * We choose to ignore any non-zero bits after the first range of 1s. 6260 */ 6261 basstart = ctz32(bas); 6262 len = cto32(bas >> basstart); 6263 wvr += basstart; 6264 } 6265 6266 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6267 &env->cpu_watchpoint[n]); 6268 } 6269 6270 void hw_watchpoint_update_all(ARMCPU *cpu) 6271 { 6272 int i; 6273 CPUARMState *env = &cpu->env; 6274 6275 /* Completely clear out existing QEMU watchpoints and our array, to 6276 * avoid possible stale entries following migration load. 6277 */ 6278 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6279 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6280 6281 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6282 hw_watchpoint_update(cpu, i); 6283 } 6284 } 6285 6286 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6287 uint64_t value) 6288 { 6289 ARMCPU *cpu = env_archcpu(env); 6290 int i = ri->crm; 6291 6292 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6293 * register reads and behaves as if values written are sign extended. 6294 * Bits [1:0] are RES0. 6295 */ 6296 value = sextract64(value, 0, 49) & ~3ULL; 6297 6298 raw_write(env, ri, value); 6299 hw_watchpoint_update(cpu, i); 6300 } 6301 6302 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6303 uint64_t value) 6304 { 6305 ARMCPU *cpu = env_archcpu(env); 6306 int i = ri->crm; 6307 6308 raw_write(env, ri, value); 6309 hw_watchpoint_update(cpu, i); 6310 } 6311 6312 void hw_breakpoint_update(ARMCPU *cpu, int n) 6313 { 6314 CPUARMState *env = &cpu->env; 6315 uint64_t bvr = env->cp15.dbgbvr[n]; 6316 uint64_t bcr = env->cp15.dbgbcr[n]; 6317 vaddr addr; 6318 int bt; 6319 int flags = BP_CPU; 6320 6321 if (env->cpu_breakpoint[n]) { 6322 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6323 env->cpu_breakpoint[n] = NULL; 6324 } 6325 6326 if (!extract64(bcr, 0, 1)) { 6327 /* E bit clear : watchpoint disabled */ 6328 return; 6329 } 6330 6331 bt = extract64(bcr, 20, 4); 6332 6333 switch (bt) { 6334 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6335 case 5: /* linked address mismatch (reserved if AArch64) */ 6336 qemu_log_mask(LOG_UNIMP, 6337 "arm: address mismatch breakpoint types not implemented\n"); 6338 return; 6339 case 0: /* unlinked address match */ 6340 case 1: /* linked address match */ 6341 { 6342 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6343 * we behave as if the register was sign extended. Bits [1:0] are 6344 * RES0. The BAS field is used to allow setting breakpoints on 16 6345 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6346 * a bp will fire if the addresses covered by the bp and the addresses 6347 * covered by the insn overlap but the insn doesn't start at the 6348 * start of the bp address range. We choose to require the insn and 6349 * the bp to have the same address. The constraints on writing to 6350 * BAS enforced in dbgbcr_write mean we have only four cases: 6351 * 0b0000 => no breakpoint 6352 * 0b0011 => breakpoint on addr 6353 * 0b1100 => breakpoint on addr + 2 6354 * 0b1111 => breakpoint on addr 6355 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6356 */ 6357 int bas = extract64(bcr, 5, 4); 6358 addr = sextract64(bvr, 0, 49) & ~3ULL; 6359 if (bas == 0) { 6360 return; 6361 } 6362 if (bas == 0xc) { 6363 addr += 2; 6364 } 6365 break; 6366 } 6367 case 2: /* unlinked context ID match */ 6368 case 8: /* unlinked VMID match (reserved if no EL2) */ 6369 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6370 qemu_log_mask(LOG_UNIMP, 6371 "arm: unlinked context breakpoint types not implemented\n"); 6372 return; 6373 case 9: /* linked VMID match (reserved if no EL2) */ 6374 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6375 case 3: /* linked context ID match */ 6376 default: 6377 /* We must generate no events for Linked context matches (unless 6378 * they are linked to by some other bp/wp, which is handled in 6379 * updates for the linking bp/wp). We choose to also generate no events 6380 * for reserved values. 6381 */ 6382 return; 6383 } 6384 6385 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6386 } 6387 6388 void hw_breakpoint_update_all(ARMCPU *cpu) 6389 { 6390 int i; 6391 CPUARMState *env = &cpu->env; 6392 6393 /* Completely clear out existing QEMU breakpoints and our array, to 6394 * avoid possible stale entries following migration load. 6395 */ 6396 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6397 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6398 6399 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6400 hw_breakpoint_update(cpu, i); 6401 } 6402 } 6403 6404 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6405 uint64_t value) 6406 { 6407 ARMCPU *cpu = env_archcpu(env); 6408 int i = ri->crm; 6409 6410 raw_write(env, ri, value); 6411 hw_breakpoint_update(cpu, i); 6412 } 6413 6414 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6415 uint64_t value) 6416 { 6417 ARMCPU *cpu = env_archcpu(env); 6418 int i = ri->crm; 6419 6420 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6421 * copy of BAS[0]. 6422 */ 6423 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6424 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6425 6426 raw_write(env, ri, value); 6427 hw_breakpoint_update(cpu, i); 6428 } 6429 6430 static void define_debug_regs(ARMCPU *cpu) 6431 { 6432 /* Define v7 and v8 architectural debug registers. 6433 * These are just dummy implementations for now. 6434 */ 6435 int i; 6436 int wrps, brps, ctx_cmps; 6437 ARMCPRegInfo dbgdidr = { 6438 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6439 .access = PL0_R, .accessfn = access_tda, 6440 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6441 }; 6442 6443 /* Note that all these register fields hold "number of Xs minus 1". */ 6444 brps = arm_num_brps(cpu); 6445 wrps = arm_num_wrps(cpu); 6446 ctx_cmps = arm_num_ctx_cmps(cpu); 6447 6448 assert(ctx_cmps <= brps); 6449 6450 define_one_arm_cp_reg(cpu, &dbgdidr); 6451 define_arm_cp_regs(cpu, debug_cp_reginfo); 6452 6453 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6454 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6455 } 6456 6457 for (i = 0; i < brps; i++) { 6458 ARMCPRegInfo dbgregs[] = { 6459 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6460 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6461 .access = PL1_RW, .accessfn = access_tda, 6462 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6463 .writefn = dbgbvr_write, .raw_writefn = raw_write 6464 }, 6465 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6466 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6467 .access = PL1_RW, .accessfn = access_tda, 6468 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6469 .writefn = dbgbcr_write, .raw_writefn = raw_write 6470 }, 6471 REGINFO_SENTINEL 6472 }; 6473 define_arm_cp_regs(cpu, dbgregs); 6474 } 6475 6476 for (i = 0; i < wrps; i++) { 6477 ARMCPRegInfo dbgregs[] = { 6478 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6479 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6480 .access = PL1_RW, .accessfn = access_tda, 6481 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6482 .writefn = dbgwvr_write, .raw_writefn = raw_write 6483 }, 6484 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6485 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6486 .access = PL1_RW, .accessfn = access_tda, 6487 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6488 .writefn = dbgwcr_write, .raw_writefn = raw_write 6489 }, 6490 REGINFO_SENTINEL 6491 }; 6492 define_arm_cp_regs(cpu, dbgregs); 6493 } 6494 } 6495 6496 static void define_pmu_regs(ARMCPU *cpu) 6497 { 6498 /* 6499 * v7 performance monitor control register: same implementor 6500 * field as main ID register, and we implement four counters in 6501 * addition to the cycle count register. 6502 */ 6503 unsigned int i, pmcrn = 4; 6504 ARMCPRegInfo pmcr = { 6505 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6506 .access = PL0_RW, 6507 .type = ARM_CP_IO | ARM_CP_ALIAS, 6508 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6509 .accessfn = pmreg_access, .writefn = pmcr_write, 6510 .raw_writefn = raw_write, 6511 }; 6512 ARMCPRegInfo pmcr64 = { 6513 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6514 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6515 .access = PL0_RW, .accessfn = pmreg_access, 6516 .type = ARM_CP_IO, 6517 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6518 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6519 PMCRLC, 6520 .writefn = pmcr_write, .raw_writefn = raw_write, 6521 }; 6522 define_one_arm_cp_reg(cpu, &pmcr); 6523 define_one_arm_cp_reg(cpu, &pmcr64); 6524 for (i = 0; i < pmcrn; i++) { 6525 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6526 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6527 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6528 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6529 ARMCPRegInfo pmev_regs[] = { 6530 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6531 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6532 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6533 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6534 .accessfn = pmreg_access }, 6535 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6536 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6537 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6538 .type = ARM_CP_IO, 6539 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6540 .raw_readfn = pmevcntr_rawread, 6541 .raw_writefn = pmevcntr_rawwrite }, 6542 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6543 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6544 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6545 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6546 .accessfn = pmreg_access }, 6547 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6548 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6549 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6550 .type = ARM_CP_IO, 6551 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6552 .raw_writefn = pmevtyper_rawwrite }, 6553 REGINFO_SENTINEL 6554 }; 6555 define_arm_cp_regs(cpu, pmev_regs); 6556 g_free(pmevcntr_name); 6557 g_free(pmevcntr_el0_name); 6558 g_free(pmevtyper_name); 6559 g_free(pmevtyper_el0_name); 6560 } 6561 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6562 ARMCPRegInfo v81_pmu_regs[] = { 6563 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6564 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6565 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6566 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6567 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6568 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6569 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6570 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6571 REGINFO_SENTINEL 6572 }; 6573 define_arm_cp_regs(cpu, v81_pmu_regs); 6574 } 6575 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6576 static const ARMCPRegInfo v84_pmmir = { 6577 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6578 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6579 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6580 .resetvalue = 0 6581 }; 6582 define_one_arm_cp_reg(cpu, &v84_pmmir); 6583 } 6584 } 6585 6586 /* We don't know until after realize whether there's a GICv3 6587 * attached, and that is what registers the gicv3 sysregs. 6588 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6589 * at runtime. 6590 */ 6591 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6592 { 6593 ARMCPU *cpu = env_archcpu(env); 6594 uint64_t pfr1 = cpu->id_pfr1; 6595 6596 if (env->gicv3state) { 6597 pfr1 |= 1 << 28; 6598 } 6599 return pfr1; 6600 } 6601 6602 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6603 { 6604 ARMCPU *cpu = env_archcpu(env); 6605 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6606 6607 if (env->gicv3state) { 6608 pfr0 |= 1 << 24; 6609 } 6610 return pfr0; 6611 } 6612 6613 /* Shared logic between LORID and the rest of the LOR* registers. 6614 * Secure state has already been delt with. 6615 */ 6616 static CPAccessResult access_lor_ns(CPUARMState *env) 6617 { 6618 int el = arm_current_el(env); 6619 6620 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6621 return CP_ACCESS_TRAP_EL2; 6622 } 6623 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6624 return CP_ACCESS_TRAP_EL3; 6625 } 6626 return CP_ACCESS_OK; 6627 } 6628 6629 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 6630 bool isread) 6631 { 6632 if (arm_is_secure_below_el3(env)) { 6633 /* Access ok in secure mode. */ 6634 return CP_ACCESS_OK; 6635 } 6636 return access_lor_ns(env); 6637 } 6638 6639 static CPAccessResult access_lor_other(CPUARMState *env, 6640 const ARMCPRegInfo *ri, bool isread) 6641 { 6642 if (arm_is_secure_below_el3(env)) { 6643 /* Access denied in secure mode. */ 6644 return CP_ACCESS_TRAP; 6645 } 6646 return access_lor_ns(env); 6647 } 6648 6649 /* 6650 * A trivial implementation of ARMv8.1-LOR leaves all of these 6651 * registers fixed at 0, which indicates that there are zero 6652 * supported Limited Ordering regions. 6653 */ 6654 static const ARMCPRegInfo lor_reginfo[] = { 6655 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6656 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6657 .access = PL1_RW, .accessfn = access_lor_other, 6658 .type = ARM_CP_CONST, .resetvalue = 0 }, 6659 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6660 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6661 .access = PL1_RW, .accessfn = access_lor_other, 6662 .type = ARM_CP_CONST, .resetvalue = 0 }, 6663 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6664 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6665 .access = PL1_RW, .accessfn = access_lor_other, 6666 .type = ARM_CP_CONST, .resetvalue = 0 }, 6667 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6668 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6669 .access = PL1_RW, .accessfn = access_lor_other, 6670 .type = ARM_CP_CONST, .resetvalue = 0 }, 6671 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6672 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6673 .access = PL1_R, .accessfn = access_lorid, 6674 .type = ARM_CP_CONST, .resetvalue = 0 }, 6675 REGINFO_SENTINEL 6676 }; 6677 6678 #ifdef TARGET_AARCH64 6679 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6680 bool isread) 6681 { 6682 int el = arm_current_el(env); 6683 6684 if (el < 2 && 6685 arm_feature(env, ARM_FEATURE_EL2) && 6686 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6687 return CP_ACCESS_TRAP_EL2; 6688 } 6689 if (el < 3 && 6690 arm_feature(env, ARM_FEATURE_EL3) && 6691 !(env->cp15.scr_el3 & SCR_APK)) { 6692 return CP_ACCESS_TRAP_EL3; 6693 } 6694 return CP_ACCESS_OK; 6695 } 6696 6697 static const ARMCPRegInfo pauth_reginfo[] = { 6698 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6699 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6700 .access = PL1_RW, .accessfn = access_pauth, 6701 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6702 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6703 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6704 .access = PL1_RW, .accessfn = access_pauth, 6705 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6706 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6707 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6708 .access = PL1_RW, .accessfn = access_pauth, 6709 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6710 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6712 .access = PL1_RW, .accessfn = access_pauth, 6713 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6714 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6715 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6716 .access = PL1_RW, .accessfn = access_pauth, 6717 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6718 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6719 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6720 .access = PL1_RW, .accessfn = access_pauth, 6721 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6722 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6723 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6724 .access = PL1_RW, .accessfn = access_pauth, 6725 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6726 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6727 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6728 .access = PL1_RW, .accessfn = access_pauth, 6729 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6730 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6731 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6732 .access = PL1_RW, .accessfn = access_pauth, 6733 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6734 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6735 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6736 .access = PL1_RW, .accessfn = access_pauth, 6737 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6738 REGINFO_SENTINEL 6739 }; 6740 6741 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6742 { 6743 Error *err = NULL; 6744 uint64_t ret; 6745 6746 /* Success sets NZCV = 0000. */ 6747 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6748 6749 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6750 /* 6751 * ??? Failed, for unknown reasons in the crypto subsystem. 6752 * The best we can do is log the reason and return the 6753 * timed-out indication to the guest. There is no reason 6754 * we know to expect this failure to be transitory, so the 6755 * guest may well hang retrying the operation. 6756 */ 6757 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6758 ri->name, error_get_pretty(err)); 6759 error_free(err); 6760 6761 env->ZF = 0; /* NZCF = 0100 */ 6762 return 0; 6763 } 6764 return ret; 6765 } 6766 6767 /* We do not support re-seeding, so the two registers operate the same. */ 6768 static const ARMCPRegInfo rndr_reginfo[] = { 6769 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6770 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6771 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6772 .access = PL0_R, .readfn = rndr_readfn }, 6773 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6774 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6775 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6776 .access = PL0_R, .readfn = rndr_readfn }, 6777 REGINFO_SENTINEL 6778 }; 6779 6780 #ifndef CONFIG_USER_ONLY 6781 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6782 uint64_t value) 6783 { 6784 ARMCPU *cpu = env_archcpu(env); 6785 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6786 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6787 uint64_t vaddr_in = (uint64_t) value; 6788 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6789 void *haddr; 6790 int mem_idx = cpu_mmu_index(env, false); 6791 6792 /* This won't be crossing page boundaries */ 6793 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6794 if (haddr) { 6795 6796 ram_addr_t offset; 6797 MemoryRegion *mr; 6798 6799 /* RCU lock is already being held */ 6800 mr = memory_region_from_host(haddr, &offset); 6801 6802 if (mr) { 6803 memory_region_do_writeback(mr, offset, dline_size); 6804 } 6805 } 6806 } 6807 6808 static const ARMCPRegInfo dcpop_reg[] = { 6809 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6811 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6812 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6813 REGINFO_SENTINEL 6814 }; 6815 6816 static const ARMCPRegInfo dcpodp_reg[] = { 6817 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6819 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6820 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6821 REGINFO_SENTINEL 6822 }; 6823 #endif /*CONFIG_USER_ONLY*/ 6824 6825 #endif 6826 6827 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6828 bool isread) 6829 { 6830 int el = arm_current_el(env); 6831 6832 if (el == 0) { 6833 uint64_t sctlr = arm_sctlr(env, el); 6834 if (!(sctlr & SCTLR_EnRCTX)) { 6835 return CP_ACCESS_TRAP; 6836 } 6837 } else if (el == 1) { 6838 uint64_t hcr = arm_hcr_el2_eff(env); 6839 if (hcr & HCR_NV) { 6840 return CP_ACCESS_TRAP_EL2; 6841 } 6842 } 6843 return CP_ACCESS_OK; 6844 } 6845 6846 static const ARMCPRegInfo predinv_reginfo[] = { 6847 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6849 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6850 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6852 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6853 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6855 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6856 /* 6857 * Note the AArch32 opcodes have a different OPC1. 6858 */ 6859 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6860 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6861 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6862 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6863 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6864 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6865 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6866 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6867 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6868 REGINFO_SENTINEL 6869 }; 6870 6871 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6872 { 6873 /* Read the high 32 bits of the current CCSIDR */ 6874 return extract64(ccsidr_read(env, ri), 32, 32); 6875 } 6876 6877 static const ARMCPRegInfo ccsidr2_reginfo[] = { 6878 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 6879 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 6880 .access = PL1_R, 6881 .accessfn = access_aa64_tid2, 6882 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 6883 REGINFO_SENTINEL 6884 }; 6885 6886 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6887 bool isread) 6888 { 6889 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 6890 return CP_ACCESS_TRAP_EL2; 6891 } 6892 6893 return CP_ACCESS_OK; 6894 } 6895 6896 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6897 bool isread) 6898 { 6899 if (arm_feature(env, ARM_FEATURE_V8)) { 6900 return access_aa64_tid3(env, ri, isread); 6901 } 6902 6903 return CP_ACCESS_OK; 6904 } 6905 6906 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 6907 bool isread) 6908 { 6909 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 6910 return CP_ACCESS_TRAP_EL2; 6911 } 6912 6913 return CP_ACCESS_OK; 6914 } 6915 6916 static const ARMCPRegInfo jazelle_regs[] = { 6917 { .name = "JIDR", 6918 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 6919 .access = PL1_R, .accessfn = access_jazelle, 6920 .type = ARM_CP_CONST, .resetvalue = 0 }, 6921 { .name = "JOSCR", 6922 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 6923 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6924 { .name = "JMCR", 6925 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 6926 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6927 REGINFO_SENTINEL 6928 }; 6929 6930 static const ARMCPRegInfo vhe_reginfo[] = { 6931 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 6932 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 6933 .access = PL2_RW, 6934 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 6935 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 6937 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 6938 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 6939 #ifndef CONFIG_USER_ONLY 6940 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 6942 .fieldoffset = 6943 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 6944 .type = ARM_CP_IO, .access = PL2_RW, 6945 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 6946 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6947 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 6948 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6949 .resetfn = gt_hv_timer_reset, 6950 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 6951 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6952 .type = ARM_CP_IO, 6953 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 6954 .access = PL2_RW, 6955 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 6956 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 6957 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 6958 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 6959 .type = ARM_CP_IO | ARM_CP_ALIAS, 6960 .access = PL2_RW, .accessfn = e2h_access, 6961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 6962 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 6963 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 6965 .type = ARM_CP_IO | ARM_CP_ALIAS, 6966 .access = PL2_RW, .accessfn = e2h_access, 6967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 6968 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 6969 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 6971 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 6972 .access = PL2_RW, .accessfn = e2h_access, 6973 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 6974 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 6976 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 6977 .access = PL2_RW, .accessfn = e2h_access, 6978 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 6979 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 6981 .type = ARM_CP_IO | ARM_CP_ALIAS, 6982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 6983 .access = PL2_RW, .accessfn = e2h_access, 6984 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 6985 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 6987 .type = ARM_CP_IO | ARM_CP_ALIAS, 6988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 6989 .access = PL2_RW, .accessfn = e2h_access, 6990 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 6991 #endif 6992 REGINFO_SENTINEL 6993 }; 6994 6995 #ifndef CONFIG_USER_ONLY 6996 static const ARMCPRegInfo ats1e1_reginfo[] = { 6997 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 6999 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7000 .writefn = ats_write64 }, 7001 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7003 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7004 .writefn = ats_write64 }, 7005 REGINFO_SENTINEL 7006 }; 7007 7008 static const ARMCPRegInfo ats1cp_reginfo[] = { 7009 { .name = "ATS1CPRP", 7010 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7011 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7012 .writefn = ats_write }, 7013 { .name = "ATS1CPWP", 7014 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7015 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7016 .writefn = ats_write }, 7017 REGINFO_SENTINEL 7018 }; 7019 #endif 7020 7021 /* 7022 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7023 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7024 * is non-zero, which is never for ARMv7, optionally in ARMv8 7025 * and mandatorily for ARMv8.2 and up. 7026 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7027 * implementation is RAZ/WI we can ignore this detail, as we 7028 * do for ACTLR. 7029 */ 7030 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7031 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7032 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7033 .access = PL1_RW, .accessfn = access_tacr, 7034 .type = ARM_CP_CONST, .resetvalue = 0 }, 7035 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7036 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7037 .access = PL2_RW, .type = ARM_CP_CONST, 7038 .resetvalue = 0 }, 7039 REGINFO_SENTINEL 7040 }; 7041 7042 void register_cp_regs_for_features(ARMCPU *cpu) 7043 { 7044 /* Register all the coprocessor registers based on feature bits */ 7045 CPUARMState *env = &cpu->env; 7046 if (arm_feature(env, ARM_FEATURE_M)) { 7047 /* M profile has no coprocessor registers */ 7048 return; 7049 } 7050 7051 define_arm_cp_regs(cpu, cp_reginfo); 7052 if (!arm_feature(env, ARM_FEATURE_V8)) { 7053 /* Must go early as it is full of wildcards that may be 7054 * overridden by later definitions. 7055 */ 7056 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7057 } 7058 7059 if (arm_feature(env, ARM_FEATURE_V6)) { 7060 /* The ID registers all have impdef reset values */ 7061 ARMCPRegInfo v6_idregs[] = { 7062 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7064 .access = PL1_R, .type = ARM_CP_CONST, 7065 .accessfn = access_aa32_tid3, 7066 .resetvalue = cpu->id_pfr0 }, 7067 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7068 * the value of the GIC field until after we define these regs. 7069 */ 7070 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7072 .access = PL1_R, .type = ARM_CP_NO_RAW, 7073 .accessfn = access_aa32_tid3, 7074 .readfn = id_pfr1_read, 7075 .writefn = arm_cp_write_ignore }, 7076 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7078 .access = PL1_R, .type = ARM_CP_CONST, 7079 .accessfn = access_aa32_tid3, 7080 .resetvalue = cpu->isar.id_dfr0 }, 7081 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7083 .access = PL1_R, .type = ARM_CP_CONST, 7084 .accessfn = access_aa32_tid3, 7085 .resetvalue = cpu->id_afr0 }, 7086 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7088 .access = PL1_R, .type = ARM_CP_CONST, 7089 .accessfn = access_aa32_tid3, 7090 .resetvalue = cpu->isar.id_mmfr0 }, 7091 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7093 .access = PL1_R, .type = ARM_CP_CONST, 7094 .accessfn = access_aa32_tid3, 7095 .resetvalue = cpu->isar.id_mmfr1 }, 7096 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7098 .access = PL1_R, .type = ARM_CP_CONST, 7099 .accessfn = access_aa32_tid3, 7100 .resetvalue = cpu->isar.id_mmfr2 }, 7101 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7103 .access = PL1_R, .type = ARM_CP_CONST, 7104 .accessfn = access_aa32_tid3, 7105 .resetvalue = cpu->isar.id_mmfr3 }, 7106 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7108 .access = PL1_R, .type = ARM_CP_CONST, 7109 .accessfn = access_aa32_tid3, 7110 .resetvalue = cpu->isar.id_isar0 }, 7111 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7112 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7113 .access = PL1_R, .type = ARM_CP_CONST, 7114 .accessfn = access_aa32_tid3, 7115 .resetvalue = cpu->isar.id_isar1 }, 7116 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7118 .access = PL1_R, .type = ARM_CP_CONST, 7119 .accessfn = access_aa32_tid3, 7120 .resetvalue = cpu->isar.id_isar2 }, 7121 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7123 .access = PL1_R, .type = ARM_CP_CONST, 7124 .accessfn = access_aa32_tid3, 7125 .resetvalue = cpu->isar.id_isar3 }, 7126 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7128 .access = PL1_R, .type = ARM_CP_CONST, 7129 .accessfn = access_aa32_tid3, 7130 .resetvalue = cpu->isar.id_isar4 }, 7131 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7132 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7133 .access = PL1_R, .type = ARM_CP_CONST, 7134 .accessfn = access_aa32_tid3, 7135 .resetvalue = cpu->isar.id_isar5 }, 7136 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7138 .access = PL1_R, .type = ARM_CP_CONST, 7139 .accessfn = access_aa32_tid3, 7140 .resetvalue = cpu->isar.id_mmfr4 }, 7141 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7143 .access = PL1_R, .type = ARM_CP_CONST, 7144 .accessfn = access_aa32_tid3, 7145 .resetvalue = cpu->isar.id_isar6 }, 7146 REGINFO_SENTINEL 7147 }; 7148 define_arm_cp_regs(cpu, v6_idregs); 7149 define_arm_cp_regs(cpu, v6_cp_reginfo); 7150 } else { 7151 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7152 } 7153 if (arm_feature(env, ARM_FEATURE_V6K)) { 7154 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7155 } 7156 if (arm_feature(env, ARM_FEATURE_V7MP) && 7157 !arm_feature(env, ARM_FEATURE_PMSA)) { 7158 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7159 } 7160 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7161 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7162 } 7163 if (arm_feature(env, ARM_FEATURE_V7)) { 7164 ARMCPRegInfo clidr = { 7165 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7166 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7167 .access = PL1_R, .type = ARM_CP_CONST, 7168 .accessfn = access_aa64_tid2, 7169 .resetvalue = cpu->clidr 7170 }; 7171 define_one_arm_cp_reg(cpu, &clidr); 7172 define_arm_cp_regs(cpu, v7_cp_reginfo); 7173 define_debug_regs(cpu); 7174 define_pmu_regs(cpu); 7175 } else { 7176 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7177 } 7178 if (arm_feature(env, ARM_FEATURE_V8)) { 7179 /* AArch64 ID registers, which all have impdef reset values. 7180 * Note that within the ID register ranges the unused slots 7181 * must all RAZ, not UNDEF; future architecture versions may 7182 * define new registers here. 7183 */ 7184 ARMCPRegInfo v8_idregs[] = { 7185 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 7186 * know the right value for the GIC field until after we 7187 * define these regs. 7188 */ 7189 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7191 .access = PL1_R, .type = ARM_CP_NO_RAW, 7192 .accessfn = access_aa64_tid3, 7193 .readfn = id_aa64pfr0_read, 7194 .writefn = arm_cp_write_ignore }, 7195 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7197 .access = PL1_R, .type = ARM_CP_CONST, 7198 .accessfn = access_aa64_tid3, 7199 .resetvalue = cpu->isar.id_aa64pfr1}, 7200 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7202 .access = PL1_R, .type = ARM_CP_CONST, 7203 .accessfn = access_aa64_tid3, 7204 .resetvalue = 0 }, 7205 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7207 .access = PL1_R, .type = ARM_CP_CONST, 7208 .accessfn = access_aa64_tid3, 7209 .resetvalue = 0 }, 7210 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7212 .access = PL1_R, .type = ARM_CP_CONST, 7213 .accessfn = access_aa64_tid3, 7214 /* At present, only SVEver == 0 is defined anyway. */ 7215 .resetvalue = 0 }, 7216 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7218 .access = PL1_R, .type = ARM_CP_CONST, 7219 .accessfn = access_aa64_tid3, 7220 .resetvalue = 0 }, 7221 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7223 .access = PL1_R, .type = ARM_CP_CONST, 7224 .accessfn = access_aa64_tid3, 7225 .resetvalue = 0 }, 7226 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7228 .access = PL1_R, .type = ARM_CP_CONST, 7229 .accessfn = access_aa64_tid3, 7230 .resetvalue = 0 }, 7231 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7233 .access = PL1_R, .type = ARM_CP_CONST, 7234 .accessfn = access_aa64_tid3, 7235 .resetvalue = cpu->isar.id_aa64dfr0 }, 7236 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7238 .access = PL1_R, .type = ARM_CP_CONST, 7239 .accessfn = access_aa64_tid3, 7240 .resetvalue = cpu->isar.id_aa64dfr1 }, 7241 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7243 .access = PL1_R, .type = ARM_CP_CONST, 7244 .accessfn = access_aa64_tid3, 7245 .resetvalue = 0 }, 7246 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7248 .access = PL1_R, .type = ARM_CP_CONST, 7249 .accessfn = access_aa64_tid3, 7250 .resetvalue = 0 }, 7251 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7253 .access = PL1_R, .type = ARM_CP_CONST, 7254 .accessfn = access_aa64_tid3, 7255 .resetvalue = cpu->id_aa64afr0 }, 7256 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7258 .access = PL1_R, .type = ARM_CP_CONST, 7259 .accessfn = access_aa64_tid3, 7260 .resetvalue = cpu->id_aa64afr1 }, 7261 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7262 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7263 .access = PL1_R, .type = ARM_CP_CONST, 7264 .accessfn = access_aa64_tid3, 7265 .resetvalue = 0 }, 7266 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7268 .access = PL1_R, .type = ARM_CP_CONST, 7269 .accessfn = access_aa64_tid3, 7270 .resetvalue = 0 }, 7271 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7273 .access = PL1_R, .type = ARM_CP_CONST, 7274 .accessfn = access_aa64_tid3, 7275 .resetvalue = cpu->isar.id_aa64isar0 }, 7276 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7278 .access = PL1_R, .type = ARM_CP_CONST, 7279 .accessfn = access_aa64_tid3, 7280 .resetvalue = cpu->isar.id_aa64isar1 }, 7281 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7283 .access = PL1_R, .type = ARM_CP_CONST, 7284 .accessfn = access_aa64_tid3, 7285 .resetvalue = 0 }, 7286 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7288 .access = PL1_R, .type = ARM_CP_CONST, 7289 .accessfn = access_aa64_tid3, 7290 .resetvalue = 0 }, 7291 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7293 .access = PL1_R, .type = ARM_CP_CONST, 7294 .accessfn = access_aa64_tid3, 7295 .resetvalue = 0 }, 7296 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7298 .access = PL1_R, .type = ARM_CP_CONST, 7299 .accessfn = access_aa64_tid3, 7300 .resetvalue = 0 }, 7301 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7303 .access = PL1_R, .type = ARM_CP_CONST, 7304 .accessfn = access_aa64_tid3, 7305 .resetvalue = 0 }, 7306 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7308 .access = PL1_R, .type = ARM_CP_CONST, 7309 .accessfn = access_aa64_tid3, 7310 .resetvalue = 0 }, 7311 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7313 .access = PL1_R, .type = ARM_CP_CONST, 7314 .accessfn = access_aa64_tid3, 7315 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7316 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7318 .access = PL1_R, .type = ARM_CP_CONST, 7319 .accessfn = access_aa64_tid3, 7320 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7321 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7323 .access = PL1_R, .type = ARM_CP_CONST, 7324 .accessfn = access_aa64_tid3, 7325 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7326 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7328 .access = PL1_R, .type = ARM_CP_CONST, 7329 .accessfn = access_aa64_tid3, 7330 .resetvalue = 0 }, 7331 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7333 .access = PL1_R, .type = ARM_CP_CONST, 7334 .accessfn = access_aa64_tid3, 7335 .resetvalue = 0 }, 7336 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7338 .access = PL1_R, .type = ARM_CP_CONST, 7339 .accessfn = access_aa64_tid3, 7340 .resetvalue = 0 }, 7341 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7342 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7343 .access = PL1_R, .type = ARM_CP_CONST, 7344 .accessfn = access_aa64_tid3, 7345 .resetvalue = 0 }, 7346 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7348 .access = PL1_R, .type = ARM_CP_CONST, 7349 .accessfn = access_aa64_tid3, 7350 .resetvalue = 0 }, 7351 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7352 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7353 .access = PL1_R, .type = ARM_CP_CONST, 7354 .accessfn = access_aa64_tid3, 7355 .resetvalue = cpu->isar.mvfr0 }, 7356 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7358 .access = PL1_R, .type = ARM_CP_CONST, 7359 .accessfn = access_aa64_tid3, 7360 .resetvalue = cpu->isar.mvfr1 }, 7361 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7363 .access = PL1_R, .type = ARM_CP_CONST, 7364 .accessfn = access_aa64_tid3, 7365 .resetvalue = cpu->isar.mvfr2 }, 7366 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7368 .access = PL1_R, .type = ARM_CP_CONST, 7369 .accessfn = access_aa64_tid3, 7370 .resetvalue = 0 }, 7371 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7373 .access = PL1_R, .type = ARM_CP_CONST, 7374 .accessfn = access_aa64_tid3, 7375 .resetvalue = 0 }, 7376 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7378 .access = PL1_R, .type = ARM_CP_CONST, 7379 .accessfn = access_aa64_tid3, 7380 .resetvalue = 0 }, 7381 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7383 .access = PL1_R, .type = ARM_CP_CONST, 7384 .accessfn = access_aa64_tid3, 7385 .resetvalue = 0 }, 7386 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7388 .access = PL1_R, .type = ARM_CP_CONST, 7389 .accessfn = access_aa64_tid3, 7390 .resetvalue = 0 }, 7391 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7393 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7394 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7395 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7396 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7397 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7398 .resetvalue = cpu->pmceid0 }, 7399 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7400 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7401 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7402 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7403 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7404 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7405 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7406 .resetvalue = cpu->pmceid1 }, 7407 REGINFO_SENTINEL 7408 }; 7409 #ifdef CONFIG_USER_ONLY 7410 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7411 { .name = "ID_AA64PFR0_EL1", 7412 .exported_bits = 0x000f000f00ff0000, 7413 .fixed_bits = 0x0000000000000011 }, 7414 { .name = "ID_AA64PFR1_EL1", 7415 .exported_bits = 0x00000000000000f0 }, 7416 { .name = "ID_AA64PFR*_EL1_RESERVED", 7417 .is_glob = true }, 7418 { .name = "ID_AA64ZFR0_EL1" }, 7419 { .name = "ID_AA64MMFR0_EL1", 7420 .fixed_bits = 0x00000000ff000000 }, 7421 { .name = "ID_AA64MMFR1_EL1" }, 7422 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7423 .is_glob = true }, 7424 { .name = "ID_AA64DFR0_EL1", 7425 .fixed_bits = 0x0000000000000006 }, 7426 { .name = "ID_AA64DFR1_EL1" }, 7427 { .name = "ID_AA64DFR*_EL1_RESERVED", 7428 .is_glob = true }, 7429 { .name = "ID_AA64AFR*", 7430 .is_glob = true }, 7431 { .name = "ID_AA64ISAR0_EL1", 7432 .exported_bits = 0x00fffffff0fffff0 }, 7433 { .name = "ID_AA64ISAR1_EL1", 7434 .exported_bits = 0x000000f0ffffffff }, 7435 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7436 .is_glob = true }, 7437 REGUSERINFO_SENTINEL 7438 }; 7439 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7440 #endif 7441 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7442 if (!arm_feature(env, ARM_FEATURE_EL3) && 7443 !arm_feature(env, ARM_FEATURE_EL2)) { 7444 ARMCPRegInfo rvbar = { 7445 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7447 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7448 }; 7449 define_one_arm_cp_reg(cpu, &rvbar); 7450 } 7451 define_arm_cp_regs(cpu, v8_idregs); 7452 define_arm_cp_regs(cpu, v8_cp_reginfo); 7453 } 7454 if (arm_feature(env, ARM_FEATURE_EL2)) { 7455 uint64_t vmpidr_def = mpidr_read_val(env); 7456 ARMCPRegInfo vpidr_regs[] = { 7457 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7458 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7459 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7460 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7461 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7462 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7464 .access = PL2_RW, .resetvalue = cpu->midr, 7465 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7466 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7467 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7468 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7469 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7470 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7471 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7473 .access = PL2_RW, 7474 .resetvalue = vmpidr_def, 7475 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7476 REGINFO_SENTINEL 7477 }; 7478 define_arm_cp_regs(cpu, vpidr_regs); 7479 define_arm_cp_regs(cpu, el2_cp_reginfo); 7480 if (arm_feature(env, ARM_FEATURE_V8)) { 7481 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7482 } 7483 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7484 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7485 ARMCPRegInfo rvbar = { 7486 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7487 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7488 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7489 }; 7490 define_one_arm_cp_reg(cpu, &rvbar); 7491 } 7492 } else { 7493 /* If EL2 is missing but higher ELs are enabled, we need to 7494 * register the no_el2 reginfos. 7495 */ 7496 if (arm_feature(env, ARM_FEATURE_EL3)) { 7497 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7498 * of MIDR_EL1 and MPIDR_EL1. 7499 */ 7500 ARMCPRegInfo vpidr_regs[] = { 7501 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7502 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7503 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7504 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7505 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7506 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7507 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7508 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 7509 .type = ARM_CP_NO_RAW, 7510 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7511 REGINFO_SENTINEL 7512 }; 7513 define_arm_cp_regs(cpu, vpidr_regs); 7514 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7515 if (arm_feature(env, ARM_FEATURE_V8)) { 7516 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7517 } 7518 } 7519 } 7520 if (arm_feature(env, ARM_FEATURE_EL3)) { 7521 define_arm_cp_regs(cpu, el3_cp_reginfo); 7522 ARMCPRegInfo el3_regs[] = { 7523 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7525 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7526 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7528 .access = PL3_RW, 7529 .raw_writefn = raw_write, .writefn = sctlr_write, 7530 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7531 .resetvalue = cpu->reset_sctlr }, 7532 REGINFO_SENTINEL 7533 }; 7534 7535 define_arm_cp_regs(cpu, el3_regs); 7536 } 7537 /* The behaviour of NSACR is sufficiently various that we don't 7538 * try to describe it in a single reginfo: 7539 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7540 * reads as constant 0xc00 from NS EL1 and NS EL2 7541 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7542 * if v7 without EL3, register doesn't exist 7543 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7544 */ 7545 if (arm_feature(env, ARM_FEATURE_EL3)) { 7546 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7547 ARMCPRegInfo nsacr = { 7548 .name = "NSACR", .type = ARM_CP_CONST, 7549 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7550 .access = PL1_RW, .accessfn = nsacr_access, 7551 .resetvalue = 0xc00 7552 }; 7553 define_one_arm_cp_reg(cpu, &nsacr); 7554 } else { 7555 ARMCPRegInfo nsacr = { 7556 .name = "NSACR", 7557 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7558 .access = PL3_RW | PL1_R, 7559 .resetvalue = 0, 7560 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7561 }; 7562 define_one_arm_cp_reg(cpu, &nsacr); 7563 } 7564 } else { 7565 if (arm_feature(env, ARM_FEATURE_V8)) { 7566 ARMCPRegInfo nsacr = { 7567 .name = "NSACR", .type = ARM_CP_CONST, 7568 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7569 .access = PL1_R, 7570 .resetvalue = 0xc00 7571 }; 7572 define_one_arm_cp_reg(cpu, &nsacr); 7573 } 7574 } 7575 7576 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7577 if (arm_feature(env, ARM_FEATURE_V6)) { 7578 /* PMSAv6 not implemented */ 7579 assert(arm_feature(env, ARM_FEATURE_V7)); 7580 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7581 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7582 } else { 7583 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7584 } 7585 } else { 7586 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7587 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7588 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7589 if (cpu_isar_feature(aa32_hpd, cpu)) { 7590 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7591 } 7592 } 7593 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7594 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7595 } 7596 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7597 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7598 } 7599 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7600 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7601 } 7602 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7603 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7604 } 7605 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7606 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7607 } 7608 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7609 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7610 } 7611 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7612 define_arm_cp_regs(cpu, omap_cp_reginfo); 7613 } 7614 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7615 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7616 } 7617 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7618 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7619 } 7620 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7621 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7622 } 7623 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7624 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7625 } 7626 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7627 define_arm_cp_regs(cpu, jazelle_regs); 7628 } 7629 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7630 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7631 * be read-only (ie write causes UNDEF exception). 7632 */ 7633 { 7634 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7635 /* Pre-v8 MIDR space. 7636 * Note that the MIDR isn't a simple constant register because 7637 * of the TI925 behaviour where writes to another register can 7638 * cause the MIDR value to change. 7639 * 7640 * Unimplemented registers in the c15 0 0 0 space default to 7641 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7642 * and friends override accordingly. 7643 */ 7644 { .name = "MIDR", 7645 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7646 .access = PL1_R, .resetvalue = cpu->midr, 7647 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7648 .readfn = midr_read, 7649 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7650 .type = ARM_CP_OVERRIDE }, 7651 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7652 { .name = "DUMMY", 7653 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7654 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7655 { .name = "DUMMY", 7656 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7657 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7658 { .name = "DUMMY", 7659 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7660 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7661 { .name = "DUMMY", 7662 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7663 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7664 { .name = "DUMMY", 7665 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7666 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7667 REGINFO_SENTINEL 7668 }; 7669 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7670 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7672 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7673 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7674 .readfn = midr_read }, 7675 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7676 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7677 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7678 .access = PL1_R, .resetvalue = cpu->midr }, 7679 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7680 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7681 .access = PL1_R, .resetvalue = cpu->midr }, 7682 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7684 .access = PL1_R, 7685 .accessfn = access_aa64_tid1, 7686 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7687 REGINFO_SENTINEL 7688 }; 7689 ARMCPRegInfo id_cp_reginfo[] = { 7690 /* These are common to v8 and pre-v8 */ 7691 { .name = "CTR", 7692 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7693 .access = PL1_R, .accessfn = ctr_el0_access, 7694 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7695 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7696 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7697 .access = PL0_R, .accessfn = ctr_el0_access, 7698 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7699 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7700 { .name = "TCMTR", 7701 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7702 .access = PL1_R, 7703 .accessfn = access_aa32_tid1, 7704 .type = ARM_CP_CONST, .resetvalue = 0 }, 7705 REGINFO_SENTINEL 7706 }; 7707 /* TLBTR is specific to VMSA */ 7708 ARMCPRegInfo id_tlbtr_reginfo = { 7709 .name = "TLBTR", 7710 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7711 .access = PL1_R, 7712 .accessfn = access_aa32_tid1, 7713 .type = ARM_CP_CONST, .resetvalue = 0, 7714 }; 7715 /* MPUIR is specific to PMSA V6+ */ 7716 ARMCPRegInfo id_mpuir_reginfo = { 7717 .name = "MPUIR", 7718 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7719 .access = PL1_R, .type = ARM_CP_CONST, 7720 .resetvalue = cpu->pmsav7_dregion << 8 7721 }; 7722 ARMCPRegInfo crn0_wi_reginfo = { 7723 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7725 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7726 }; 7727 #ifdef CONFIG_USER_ONLY 7728 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7729 { .name = "MIDR_EL1", 7730 .exported_bits = 0x00000000ffffffff }, 7731 { .name = "REVIDR_EL1" }, 7732 REGUSERINFO_SENTINEL 7733 }; 7734 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7735 #endif 7736 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7737 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7738 ARMCPRegInfo *r; 7739 /* Register the blanket "writes ignored" value first to cover the 7740 * whole space. Then update the specific ID registers to allow write 7741 * access, so that they ignore writes rather than causing them to 7742 * UNDEF. 7743 */ 7744 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7745 for (r = id_pre_v8_midr_cp_reginfo; 7746 r->type != ARM_CP_SENTINEL; r++) { 7747 r->access = PL1_RW; 7748 } 7749 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7750 r->access = PL1_RW; 7751 } 7752 id_mpuir_reginfo.access = PL1_RW; 7753 id_tlbtr_reginfo.access = PL1_RW; 7754 } 7755 if (arm_feature(env, ARM_FEATURE_V8)) { 7756 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7757 } else { 7758 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7759 } 7760 define_arm_cp_regs(cpu, id_cp_reginfo); 7761 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7762 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7763 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7764 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7765 } 7766 } 7767 7768 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7769 ARMCPRegInfo mpidr_cp_reginfo[] = { 7770 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7771 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7772 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 7773 REGINFO_SENTINEL 7774 }; 7775 #ifdef CONFIG_USER_ONLY 7776 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 7777 { .name = "MPIDR_EL1", 7778 .fixed_bits = 0x0000000080000000 }, 7779 REGUSERINFO_SENTINEL 7780 }; 7781 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 7782 #endif 7783 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 7784 } 7785 7786 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 7787 ARMCPRegInfo auxcr_reginfo[] = { 7788 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 7789 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 7790 .access = PL1_RW, .accessfn = access_tacr, 7791 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 7792 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 7793 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 7794 .access = PL2_RW, .type = ARM_CP_CONST, 7795 .resetvalue = 0 }, 7796 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 7798 .access = PL3_RW, .type = ARM_CP_CONST, 7799 .resetvalue = 0 }, 7800 REGINFO_SENTINEL 7801 }; 7802 define_arm_cp_regs(cpu, auxcr_reginfo); 7803 if (cpu_isar_feature(aa32_ac2, cpu)) { 7804 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 7805 } 7806 } 7807 7808 if (arm_feature(env, ARM_FEATURE_CBAR)) { 7809 /* 7810 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 7811 * There are two flavours: 7812 * (1) older 32-bit only cores have a simple 32-bit CBAR 7813 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 7814 * 32-bit register visible to AArch32 at a different encoding 7815 * to the "flavour 1" register and with the bits rearranged to 7816 * be able to squash a 64-bit address into the 32-bit view. 7817 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 7818 * in future if we support AArch32-only configs of some of the 7819 * AArch64 cores we might need to add a specific feature flag 7820 * to indicate cores with "flavour 2" CBAR. 7821 */ 7822 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7823 /* 32 bit view is [31:18] 0...0 [43:32]. */ 7824 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 7825 | extract64(cpu->reset_cbar, 32, 12); 7826 ARMCPRegInfo cbar_reginfo[] = { 7827 { .name = "CBAR", 7828 .type = ARM_CP_CONST, 7829 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 7830 .access = PL1_R, .resetvalue = cbar32 }, 7831 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 7832 .type = ARM_CP_CONST, 7833 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 7834 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 7835 REGINFO_SENTINEL 7836 }; 7837 /* We don't implement a r/w 64 bit CBAR currently */ 7838 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 7839 define_arm_cp_regs(cpu, cbar_reginfo); 7840 } else { 7841 ARMCPRegInfo cbar = { 7842 .name = "CBAR", 7843 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 7844 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 7845 .fieldoffset = offsetof(CPUARMState, 7846 cp15.c15_config_base_address) 7847 }; 7848 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7849 cbar.access = PL1_R; 7850 cbar.fieldoffset = 0; 7851 cbar.type = ARM_CP_CONST; 7852 } 7853 define_one_arm_cp_reg(cpu, &cbar); 7854 } 7855 } 7856 7857 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7858 ARMCPRegInfo vbar_cp_reginfo[] = { 7859 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7860 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7861 .access = PL1_RW, .writefn = vbar_write, 7862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7863 offsetof(CPUARMState, cp15.vbar_ns) }, 7864 .resetvalue = 0 }, 7865 REGINFO_SENTINEL 7866 }; 7867 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7868 } 7869 7870 /* Generic registers whose values depend on the implementation */ 7871 { 7872 ARMCPRegInfo sctlr = { 7873 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 7874 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 7875 .access = PL1_RW, .accessfn = access_tvm_trvm, 7876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 7877 offsetof(CPUARMState, cp15.sctlr_ns) }, 7878 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 7879 .raw_writefn = raw_write, 7880 }; 7881 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7882 /* Normally we would always end the TB on an SCTLR write, but Linux 7883 * arch/arm/mach-pxa/sleep.S expects two instructions following 7884 * an MMU enable to execute from cache. Imitate this behaviour. 7885 */ 7886 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 7887 } 7888 define_one_arm_cp_reg(cpu, &sctlr); 7889 } 7890 7891 if (cpu_isar_feature(aa64_lor, cpu)) { 7892 define_arm_cp_regs(cpu, lor_reginfo); 7893 } 7894 if (cpu_isar_feature(aa64_pan, cpu)) { 7895 define_one_arm_cp_reg(cpu, &pan_reginfo); 7896 } 7897 #ifndef CONFIG_USER_ONLY 7898 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 7899 define_arm_cp_regs(cpu, ats1e1_reginfo); 7900 } 7901 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 7902 define_arm_cp_regs(cpu, ats1cp_reginfo); 7903 } 7904 #endif 7905 if (cpu_isar_feature(aa64_uao, cpu)) { 7906 define_one_arm_cp_reg(cpu, &uao_reginfo); 7907 } 7908 7909 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 7910 define_arm_cp_regs(cpu, vhe_reginfo); 7911 } 7912 7913 if (cpu_isar_feature(aa64_sve, cpu)) { 7914 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 7915 if (arm_feature(env, ARM_FEATURE_EL2)) { 7916 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 7917 } else { 7918 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 7919 } 7920 if (arm_feature(env, ARM_FEATURE_EL3)) { 7921 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 7922 } 7923 } 7924 7925 #ifdef TARGET_AARCH64 7926 if (cpu_isar_feature(aa64_pauth, cpu)) { 7927 define_arm_cp_regs(cpu, pauth_reginfo); 7928 } 7929 if (cpu_isar_feature(aa64_rndr, cpu)) { 7930 define_arm_cp_regs(cpu, rndr_reginfo); 7931 } 7932 #ifndef CONFIG_USER_ONLY 7933 /* Data Cache clean instructions up to PoP */ 7934 if (cpu_isar_feature(aa64_dcpop, cpu)) { 7935 define_one_arm_cp_reg(cpu, dcpop_reg); 7936 7937 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 7938 define_one_arm_cp_reg(cpu, dcpodp_reg); 7939 } 7940 } 7941 #endif /*CONFIG_USER_ONLY*/ 7942 #endif 7943 7944 if (cpu_isar_feature(any_predinv, cpu)) { 7945 define_arm_cp_regs(cpu, predinv_reginfo); 7946 } 7947 7948 if (cpu_isar_feature(any_ccidx, cpu)) { 7949 define_arm_cp_regs(cpu, ccsidr2_reginfo); 7950 } 7951 7952 #ifndef CONFIG_USER_ONLY 7953 /* 7954 * Register redirections and aliases must be done last, 7955 * after the registers from the other extensions have been defined. 7956 */ 7957 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 7958 define_arm_vh_e2h_redirects_aliases(cpu); 7959 } 7960 #endif 7961 } 7962 7963 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 7964 { 7965 CPUState *cs = CPU(cpu); 7966 CPUARMState *env = &cpu->env; 7967 7968 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7969 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 7970 aarch64_fpu_gdb_set_reg, 7971 34, "aarch64-fpu.xml", 0); 7972 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 7973 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7974 51, "arm-neon.xml", 0); 7975 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 7976 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7977 35, "arm-vfp3.xml", 0); 7978 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 7979 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7980 19, "arm-vfp.xml", 0); 7981 } 7982 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 7983 arm_gen_dynamic_xml(cs), 7984 "system-registers.xml", 0); 7985 } 7986 7987 /* Sort alphabetically by type name, except for "any". */ 7988 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 7989 { 7990 ObjectClass *class_a = (ObjectClass *)a; 7991 ObjectClass *class_b = (ObjectClass *)b; 7992 const char *name_a, *name_b; 7993 7994 name_a = object_class_get_name(class_a); 7995 name_b = object_class_get_name(class_b); 7996 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 7997 return 1; 7998 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 7999 return -1; 8000 } else { 8001 return strcmp(name_a, name_b); 8002 } 8003 } 8004 8005 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8006 { 8007 ObjectClass *oc = data; 8008 const char *typename; 8009 char *name; 8010 8011 typename = object_class_get_name(oc); 8012 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8013 qemu_printf(" %s\n", name); 8014 g_free(name); 8015 } 8016 8017 void arm_cpu_list(void) 8018 { 8019 GSList *list; 8020 8021 list = object_class_get_list(TYPE_ARM_CPU, false); 8022 list = g_slist_sort(list, arm_cpu_list_compare); 8023 qemu_printf("Available CPUs:\n"); 8024 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8025 g_slist_free(list); 8026 } 8027 8028 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8029 { 8030 ObjectClass *oc = data; 8031 CpuDefinitionInfoList **cpu_list = user_data; 8032 CpuDefinitionInfoList *entry; 8033 CpuDefinitionInfo *info; 8034 const char *typename; 8035 8036 typename = object_class_get_name(oc); 8037 info = g_malloc0(sizeof(*info)); 8038 info->name = g_strndup(typename, 8039 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8040 info->q_typename = g_strdup(typename); 8041 8042 entry = g_malloc0(sizeof(*entry)); 8043 entry->value = info; 8044 entry->next = *cpu_list; 8045 *cpu_list = entry; 8046 } 8047 8048 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8049 { 8050 CpuDefinitionInfoList *cpu_list = NULL; 8051 GSList *list; 8052 8053 list = object_class_get_list(TYPE_ARM_CPU, false); 8054 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8055 g_slist_free(list); 8056 8057 return cpu_list; 8058 } 8059 8060 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8061 void *opaque, int state, int secstate, 8062 int crm, int opc1, int opc2, 8063 const char *name) 8064 { 8065 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8066 * add a single reginfo struct to the hash table. 8067 */ 8068 uint32_t *key = g_new(uint32_t, 1); 8069 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8070 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8071 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8072 8073 r2->name = g_strdup(name); 8074 /* Reset the secure state to the specific incoming state. This is 8075 * necessary as the register may have been defined with both states. 8076 */ 8077 r2->secure = secstate; 8078 8079 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8080 /* Register is banked (using both entries in array). 8081 * Overwriting fieldoffset as the array is only used to define 8082 * banked registers but later only fieldoffset is used. 8083 */ 8084 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8085 } 8086 8087 if (state == ARM_CP_STATE_AA32) { 8088 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8089 /* If the register is banked then we don't need to migrate or 8090 * reset the 32-bit instance in certain cases: 8091 * 8092 * 1) If the register has both 32-bit and 64-bit instances then we 8093 * can count on the 64-bit instance taking care of the 8094 * non-secure bank. 8095 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8096 * taking care of the secure bank. This requires that separate 8097 * 32 and 64-bit definitions are provided. 8098 */ 8099 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8100 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8101 r2->type |= ARM_CP_ALIAS; 8102 } 8103 } else if ((secstate != r->secure) && !ns) { 8104 /* The register is not banked so we only want to allow migration of 8105 * the non-secure instance. 8106 */ 8107 r2->type |= ARM_CP_ALIAS; 8108 } 8109 8110 if (r->state == ARM_CP_STATE_BOTH) { 8111 /* We assume it is a cp15 register if the .cp field is left unset. 8112 */ 8113 if (r2->cp == 0) { 8114 r2->cp = 15; 8115 } 8116 8117 #ifdef HOST_WORDS_BIGENDIAN 8118 if (r2->fieldoffset) { 8119 r2->fieldoffset += sizeof(uint32_t); 8120 } 8121 #endif 8122 } 8123 } 8124 if (state == ARM_CP_STATE_AA64) { 8125 /* To allow abbreviation of ARMCPRegInfo 8126 * definitions, we treat cp == 0 as equivalent to 8127 * the value for "standard guest-visible sysreg". 8128 * STATE_BOTH definitions are also always "standard 8129 * sysreg" in their AArch64 view (the .cp value may 8130 * be non-zero for the benefit of the AArch32 view). 8131 */ 8132 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8133 r2->cp = CP_REG_ARM64_SYSREG_CP; 8134 } 8135 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8136 r2->opc0, opc1, opc2); 8137 } else { 8138 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8139 } 8140 if (opaque) { 8141 r2->opaque = opaque; 8142 } 8143 /* reginfo passed to helpers is correct for the actual access, 8144 * and is never ARM_CP_STATE_BOTH: 8145 */ 8146 r2->state = state; 8147 /* Make sure reginfo passed to helpers for wildcarded regs 8148 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8149 */ 8150 r2->crm = crm; 8151 r2->opc1 = opc1; 8152 r2->opc2 = opc2; 8153 /* By convention, for wildcarded registers only the first 8154 * entry is used for migration; the others are marked as 8155 * ALIAS so we don't try to transfer the register 8156 * multiple times. Special registers (ie NOP/WFI) are 8157 * never migratable and not even raw-accessible. 8158 */ 8159 if ((r->type & ARM_CP_SPECIAL)) { 8160 r2->type |= ARM_CP_NO_RAW; 8161 } 8162 if (((r->crm == CP_ANY) && crm != 0) || 8163 ((r->opc1 == CP_ANY) && opc1 != 0) || 8164 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8165 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8166 } 8167 8168 /* Check that raw accesses are either forbidden or handled. Note that 8169 * we can't assert this earlier because the setup of fieldoffset for 8170 * banked registers has to be done first. 8171 */ 8172 if (!(r2->type & ARM_CP_NO_RAW)) { 8173 assert(!raw_accessors_invalid(r2)); 8174 } 8175 8176 /* Overriding of an existing definition must be explicitly 8177 * requested. 8178 */ 8179 if (!(r->type & ARM_CP_OVERRIDE)) { 8180 ARMCPRegInfo *oldreg; 8181 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8182 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8183 fprintf(stderr, "Register redefined: cp=%d %d bit " 8184 "crn=%d crm=%d opc1=%d opc2=%d, " 8185 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8186 r2->crn, r2->crm, r2->opc1, r2->opc2, 8187 oldreg->name, r2->name); 8188 g_assert_not_reached(); 8189 } 8190 } 8191 g_hash_table_insert(cpu->cp_regs, key, r2); 8192 } 8193 8194 8195 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8196 const ARMCPRegInfo *r, void *opaque) 8197 { 8198 /* Define implementations of coprocessor registers. 8199 * We store these in a hashtable because typically 8200 * there are less than 150 registers in a space which 8201 * is 16*16*16*8*8 = 262144 in size. 8202 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8203 * If a register is defined twice then the second definition is 8204 * used, so this can be used to define some generic registers and 8205 * then override them with implementation specific variations. 8206 * At least one of the original and the second definition should 8207 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8208 * against accidental use. 8209 * 8210 * The state field defines whether the register is to be 8211 * visible in the AArch32 or AArch64 execution state. If the 8212 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8213 * reginfo structure for the AArch32 view, which sees the lower 8214 * 32 bits of the 64 bit register. 8215 * 8216 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8217 * be wildcarded. AArch64 registers are always considered to be 64 8218 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8219 * the register, if any. 8220 */ 8221 int crm, opc1, opc2, state; 8222 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8223 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8224 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8225 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8226 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8227 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8228 /* 64 bit registers have only CRm and Opc1 fields */ 8229 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8230 /* op0 only exists in the AArch64 encodings */ 8231 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8232 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8233 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8234 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8235 * encodes a minimum access level for the register. We roll this 8236 * runtime check into our general permission check code, so check 8237 * here that the reginfo's specified permissions are strict enough 8238 * to encompass the generic architectural permission check. 8239 */ 8240 if (r->state != ARM_CP_STATE_AA32) { 8241 int mask = 0; 8242 switch (r->opc1) { 8243 case 0: 8244 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8245 mask = PL0U_R | PL1_RW; 8246 break; 8247 case 1: case 2: 8248 /* min_EL EL1 */ 8249 mask = PL1_RW; 8250 break; 8251 case 3: 8252 /* min_EL EL0 */ 8253 mask = PL0_RW; 8254 break; 8255 case 4: 8256 case 5: 8257 /* min_EL EL2 */ 8258 mask = PL2_RW; 8259 break; 8260 case 6: 8261 /* min_EL EL3 */ 8262 mask = PL3_RW; 8263 break; 8264 case 7: 8265 /* min_EL EL1, secure mode only (we don't check the latter) */ 8266 mask = PL1_RW; 8267 break; 8268 default: 8269 /* broken reginfo with out-of-range opc1 */ 8270 assert(false); 8271 break; 8272 } 8273 /* assert our permissions are not too lax (stricter is fine) */ 8274 assert((r->access & ~mask) == 0); 8275 } 8276 8277 /* Check that the register definition has enough info to handle 8278 * reads and writes if they are permitted. 8279 */ 8280 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8281 if (r->access & PL3_R) { 8282 assert((r->fieldoffset || 8283 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8284 r->readfn); 8285 } 8286 if (r->access & PL3_W) { 8287 assert((r->fieldoffset || 8288 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8289 r->writefn); 8290 } 8291 } 8292 /* Bad type field probably means missing sentinel at end of reg list */ 8293 assert(cptype_valid(r->type)); 8294 for (crm = crmmin; crm <= crmmax; crm++) { 8295 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8296 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8297 for (state = ARM_CP_STATE_AA32; 8298 state <= ARM_CP_STATE_AA64; state++) { 8299 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8300 continue; 8301 } 8302 if (state == ARM_CP_STATE_AA32) { 8303 /* Under AArch32 CP registers can be common 8304 * (same for secure and non-secure world) or banked. 8305 */ 8306 char *name; 8307 8308 switch (r->secure) { 8309 case ARM_CP_SECSTATE_S: 8310 case ARM_CP_SECSTATE_NS: 8311 add_cpreg_to_hashtable(cpu, r, opaque, state, 8312 r->secure, crm, opc1, opc2, 8313 r->name); 8314 break; 8315 default: 8316 name = g_strdup_printf("%s_S", r->name); 8317 add_cpreg_to_hashtable(cpu, r, opaque, state, 8318 ARM_CP_SECSTATE_S, 8319 crm, opc1, opc2, name); 8320 g_free(name); 8321 add_cpreg_to_hashtable(cpu, r, opaque, state, 8322 ARM_CP_SECSTATE_NS, 8323 crm, opc1, opc2, r->name); 8324 break; 8325 } 8326 } else { 8327 /* AArch64 registers get mapped to non-secure instance 8328 * of AArch32 */ 8329 add_cpreg_to_hashtable(cpu, r, opaque, state, 8330 ARM_CP_SECSTATE_NS, 8331 crm, opc1, opc2, r->name); 8332 } 8333 } 8334 } 8335 } 8336 } 8337 } 8338 8339 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8340 const ARMCPRegInfo *regs, void *opaque) 8341 { 8342 /* Define a whole list of registers */ 8343 const ARMCPRegInfo *r; 8344 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8345 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8346 } 8347 } 8348 8349 /* 8350 * Modify ARMCPRegInfo for access from userspace. 8351 * 8352 * This is a data driven modification directed by 8353 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8354 * user-space cannot alter any values and dynamic values pertaining to 8355 * execution state are hidden from user space view anyway. 8356 */ 8357 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8358 { 8359 const ARMCPRegUserSpaceInfo *m; 8360 ARMCPRegInfo *r; 8361 8362 for (m = mods; m->name; m++) { 8363 GPatternSpec *pat = NULL; 8364 if (m->is_glob) { 8365 pat = g_pattern_spec_new(m->name); 8366 } 8367 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8368 if (pat && g_pattern_match_string(pat, r->name)) { 8369 r->type = ARM_CP_CONST; 8370 r->access = PL0U_R; 8371 r->resetvalue = 0; 8372 /* continue */ 8373 } else if (strcmp(r->name, m->name) == 0) { 8374 r->type = ARM_CP_CONST; 8375 r->access = PL0U_R; 8376 r->resetvalue &= m->exported_bits; 8377 r->resetvalue |= m->fixed_bits; 8378 break; 8379 } 8380 } 8381 if (pat) { 8382 g_pattern_spec_free(pat); 8383 } 8384 } 8385 } 8386 8387 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8388 { 8389 return g_hash_table_lookup(cpregs, &encoded_cp); 8390 } 8391 8392 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8393 uint64_t value) 8394 { 8395 /* Helper coprocessor write function for write-ignore registers */ 8396 } 8397 8398 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8399 { 8400 /* Helper coprocessor write function for read-as-zero registers */ 8401 return 0; 8402 } 8403 8404 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8405 { 8406 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8407 } 8408 8409 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8410 { 8411 /* Return true if it is not valid for us to switch to 8412 * this CPU mode (ie all the UNPREDICTABLE cases in 8413 * the ARM ARM CPSRWriteByInstr pseudocode). 8414 */ 8415 8416 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8417 if (write_type == CPSRWriteByInstr && 8418 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8419 mode == ARM_CPU_MODE_HYP)) { 8420 return 1; 8421 } 8422 8423 switch (mode) { 8424 case ARM_CPU_MODE_USR: 8425 return 0; 8426 case ARM_CPU_MODE_SYS: 8427 case ARM_CPU_MODE_SVC: 8428 case ARM_CPU_MODE_ABT: 8429 case ARM_CPU_MODE_UND: 8430 case ARM_CPU_MODE_IRQ: 8431 case ARM_CPU_MODE_FIQ: 8432 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8433 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8434 */ 8435 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8436 * and CPS are treated as illegal mode changes. 8437 */ 8438 if (write_type == CPSRWriteByInstr && 8439 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8440 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8441 return 1; 8442 } 8443 return 0; 8444 case ARM_CPU_MODE_HYP: 8445 return !arm_feature(env, ARM_FEATURE_EL2) 8446 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8447 case ARM_CPU_MODE_MON: 8448 return arm_current_el(env) < 3; 8449 default: 8450 return 1; 8451 } 8452 } 8453 8454 uint32_t cpsr_read(CPUARMState *env) 8455 { 8456 int ZF; 8457 ZF = (env->ZF == 0); 8458 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8459 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8460 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8461 | ((env->condexec_bits & 0xfc) << 8) 8462 | (env->GE << 16) | (env->daif & CPSR_AIF); 8463 } 8464 8465 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8466 CPSRWriteType write_type) 8467 { 8468 uint32_t changed_daif; 8469 8470 if (mask & CPSR_NZCV) { 8471 env->ZF = (~val) & CPSR_Z; 8472 env->NF = val; 8473 env->CF = (val >> 29) & 1; 8474 env->VF = (val << 3) & 0x80000000; 8475 } 8476 if (mask & CPSR_Q) 8477 env->QF = ((val & CPSR_Q) != 0); 8478 if (mask & CPSR_T) 8479 env->thumb = ((val & CPSR_T) != 0); 8480 if (mask & CPSR_IT_0_1) { 8481 env->condexec_bits &= ~3; 8482 env->condexec_bits |= (val >> 25) & 3; 8483 } 8484 if (mask & CPSR_IT_2_7) { 8485 env->condexec_bits &= 3; 8486 env->condexec_bits |= (val >> 8) & 0xfc; 8487 } 8488 if (mask & CPSR_GE) { 8489 env->GE = (val >> 16) & 0xf; 8490 } 8491 8492 /* In a V7 implementation that includes the security extensions but does 8493 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8494 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8495 * bits respectively. 8496 * 8497 * In a V8 implementation, it is permitted for privileged software to 8498 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8499 */ 8500 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8501 arm_feature(env, ARM_FEATURE_EL3) && 8502 !arm_feature(env, ARM_FEATURE_EL2) && 8503 !arm_is_secure(env)) { 8504 8505 changed_daif = (env->daif ^ val) & mask; 8506 8507 if (changed_daif & CPSR_A) { 8508 /* Check to see if we are allowed to change the masking of async 8509 * abort exceptions from a non-secure state. 8510 */ 8511 if (!(env->cp15.scr_el3 & SCR_AW)) { 8512 qemu_log_mask(LOG_GUEST_ERROR, 8513 "Ignoring attempt to switch CPSR_A flag from " 8514 "non-secure world with SCR.AW bit clear\n"); 8515 mask &= ~CPSR_A; 8516 } 8517 } 8518 8519 if (changed_daif & CPSR_F) { 8520 /* Check to see if we are allowed to change the masking of FIQ 8521 * exceptions from a non-secure state. 8522 */ 8523 if (!(env->cp15.scr_el3 & SCR_FW)) { 8524 qemu_log_mask(LOG_GUEST_ERROR, 8525 "Ignoring attempt to switch CPSR_F flag from " 8526 "non-secure world with SCR.FW bit clear\n"); 8527 mask &= ~CPSR_F; 8528 } 8529 8530 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8531 * If this bit is set software is not allowed to mask 8532 * FIQs, but is allowed to set CPSR_F to 0. 8533 */ 8534 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8535 (val & CPSR_F)) { 8536 qemu_log_mask(LOG_GUEST_ERROR, 8537 "Ignoring attempt to enable CPSR_F flag " 8538 "(non-maskable FIQ [NMFI] support enabled)\n"); 8539 mask &= ~CPSR_F; 8540 } 8541 } 8542 } 8543 8544 env->daif &= ~(CPSR_AIF & mask); 8545 env->daif |= val & CPSR_AIF & mask; 8546 8547 if (write_type != CPSRWriteRaw && 8548 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8549 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8550 /* Note that we can only get here in USR mode if this is a 8551 * gdb stub write; for this case we follow the architectural 8552 * behaviour for guest writes in USR mode of ignoring an attempt 8553 * to switch mode. (Those are caught by translate.c for writes 8554 * triggered by guest instructions.) 8555 */ 8556 mask &= ~CPSR_M; 8557 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8558 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8559 * v7, and has defined behaviour in v8: 8560 * + leave CPSR.M untouched 8561 * + allow changes to the other CPSR fields 8562 * + set PSTATE.IL 8563 * For user changes via the GDB stub, we don't set PSTATE.IL, 8564 * as this would be unnecessarily harsh for a user error. 8565 */ 8566 mask &= ~CPSR_M; 8567 if (write_type != CPSRWriteByGDBStub && 8568 arm_feature(env, ARM_FEATURE_V8)) { 8569 mask |= CPSR_IL; 8570 val |= CPSR_IL; 8571 } 8572 qemu_log_mask(LOG_GUEST_ERROR, 8573 "Illegal AArch32 mode switch attempt from %s to %s\n", 8574 aarch32_mode_name(env->uncached_cpsr), 8575 aarch32_mode_name(val)); 8576 } else { 8577 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8578 write_type == CPSRWriteExceptionReturn ? 8579 "Exception return from AArch32" : 8580 "AArch32 mode switch from", 8581 aarch32_mode_name(env->uncached_cpsr), 8582 aarch32_mode_name(val), env->regs[15]); 8583 switch_mode(env, val & CPSR_M); 8584 } 8585 } 8586 mask &= ~CACHED_CPSR_BITS; 8587 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8588 } 8589 8590 /* Sign/zero extend */ 8591 uint32_t HELPER(sxtb16)(uint32_t x) 8592 { 8593 uint32_t res; 8594 res = (uint16_t)(int8_t)x; 8595 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8596 return res; 8597 } 8598 8599 uint32_t HELPER(uxtb16)(uint32_t x) 8600 { 8601 uint32_t res; 8602 res = (uint16_t)(uint8_t)x; 8603 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8604 return res; 8605 } 8606 8607 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8608 { 8609 if (den == 0) 8610 return 0; 8611 if (num == INT_MIN && den == -1) 8612 return INT_MIN; 8613 return num / den; 8614 } 8615 8616 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8617 { 8618 if (den == 0) 8619 return 0; 8620 return num / den; 8621 } 8622 8623 uint32_t HELPER(rbit)(uint32_t x) 8624 { 8625 return revbit32(x); 8626 } 8627 8628 #ifdef CONFIG_USER_ONLY 8629 8630 static void switch_mode(CPUARMState *env, int mode) 8631 { 8632 ARMCPU *cpu = env_archcpu(env); 8633 8634 if (mode != ARM_CPU_MODE_USR) { 8635 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8636 } 8637 } 8638 8639 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8640 uint32_t cur_el, bool secure) 8641 { 8642 return 1; 8643 } 8644 8645 void aarch64_sync_64_to_32(CPUARMState *env) 8646 { 8647 g_assert_not_reached(); 8648 } 8649 8650 #else 8651 8652 static void switch_mode(CPUARMState *env, int mode) 8653 { 8654 int old_mode; 8655 int i; 8656 8657 old_mode = env->uncached_cpsr & CPSR_M; 8658 if (mode == old_mode) 8659 return; 8660 8661 if (old_mode == ARM_CPU_MODE_FIQ) { 8662 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8663 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8664 } else if (mode == ARM_CPU_MODE_FIQ) { 8665 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8666 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8667 } 8668 8669 i = bank_number(old_mode); 8670 env->banked_r13[i] = env->regs[13]; 8671 env->banked_spsr[i] = env->spsr; 8672 8673 i = bank_number(mode); 8674 env->regs[13] = env->banked_r13[i]; 8675 env->spsr = env->banked_spsr[i]; 8676 8677 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8678 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8679 } 8680 8681 /* Physical Interrupt Target EL Lookup Table 8682 * 8683 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8684 * 8685 * The below multi-dimensional table is used for looking up the target 8686 * exception level given numerous condition criteria. Specifically, the 8687 * target EL is based on SCR and HCR routing controls as well as the 8688 * currently executing EL and secure state. 8689 * 8690 * Dimensions: 8691 * target_el_table[2][2][2][2][2][4] 8692 * | | | | | +--- Current EL 8693 * | | | | +------ Non-secure(0)/Secure(1) 8694 * | | | +--------- HCR mask override 8695 * | | +------------ SCR exec state control 8696 * | +--------------- SCR mask override 8697 * +------------------ 32-bit(0)/64-bit(1) EL3 8698 * 8699 * The table values are as such: 8700 * 0-3 = EL0-EL3 8701 * -1 = Cannot occur 8702 * 8703 * The ARM ARM target EL table includes entries indicating that an "exception 8704 * is not taken". The two cases where this is applicable are: 8705 * 1) An exception is taken from EL3 but the SCR does not have the exception 8706 * routed to EL3. 8707 * 2) An exception is taken from EL2 but the HCR does not have the exception 8708 * routed to EL2. 8709 * In these two cases, the below table contain a target of EL1. This value is 8710 * returned as it is expected that the consumer of the table data will check 8711 * for "target EL >= current EL" to ensure the exception is not taken. 8712 * 8713 * SCR HCR 8714 * 64 EA AMO From 8715 * BIT IRQ IMO Non-secure Secure 8716 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8717 */ 8718 static const int8_t target_el_table[2][2][2][2][2][4] = { 8719 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8720 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 8721 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8722 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 8723 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8724 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 8725 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 8726 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 8727 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 8728 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 8729 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 8730 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 8731 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8732 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 8733 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 8734 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 8735 }; 8736 8737 /* 8738 * Determine the target EL for physical exceptions 8739 */ 8740 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8741 uint32_t cur_el, bool secure) 8742 { 8743 CPUARMState *env = cs->env_ptr; 8744 bool rw; 8745 bool scr; 8746 bool hcr; 8747 int target_el; 8748 /* Is the highest EL AArch64? */ 8749 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 8750 uint64_t hcr_el2; 8751 8752 if (arm_feature(env, ARM_FEATURE_EL3)) { 8753 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 8754 } else { 8755 /* Either EL2 is the highest EL (and so the EL2 register width 8756 * is given by is64); or there is no EL2 or EL3, in which case 8757 * the value of 'rw' does not affect the table lookup anyway. 8758 */ 8759 rw = is64; 8760 } 8761 8762 hcr_el2 = arm_hcr_el2_eff(env); 8763 switch (excp_idx) { 8764 case EXCP_IRQ: 8765 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 8766 hcr = hcr_el2 & HCR_IMO; 8767 break; 8768 case EXCP_FIQ: 8769 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 8770 hcr = hcr_el2 & HCR_FMO; 8771 break; 8772 default: 8773 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 8774 hcr = hcr_el2 & HCR_AMO; 8775 break; 8776 }; 8777 8778 /* 8779 * For these purposes, TGE and AMO/IMO/FMO both force the 8780 * interrupt to EL2. Fold TGE into the bit extracted above. 8781 */ 8782 hcr |= (hcr_el2 & HCR_TGE) != 0; 8783 8784 /* Perform a table-lookup for the target EL given the current state */ 8785 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 8786 8787 assert(target_el > 0); 8788 8789 return target_el; 8790 } 8791 8792 void arm_log_exception(int idx) 8793 { 8794 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8795 const char *exc = NULL; 8796 static const char * const excnames[] = { 8797 [EXCP_UDEF] = "Undefined Instruction", 8798 [EXCP_SWI] = "SVC", 8799 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8800 [EXCP_DATA_ABORT] = "Data Abort", 8801 [EXCP_IRQ] = "IRQ", 8802 [EXCP_FIQ] = "FIQ", 8803 [EXCP_BKPT] = "Breakpoint", 8804 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8805 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8806 [EXCP_HVC] = "Hypervisor Call", 8807 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8808 [EXCP_SMC] = "Secure Monitor Call", 8809 [EXCP_VIRQ] = "Virtual IRQ", 8810 [EXCP_VFIQ] = "Virtual FIQ", 8811 [EXCP_SEMIHOST] = "Semihosting call", 8812 [EXCP_NOCP] = "v7M NOCP UsageFault", 8813 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8814 [EXCP_STKOF] = "v8M STKOF UsageFault", 8815 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 8816 [EXCP_LSERR] = "v8M LSERR UsageFault", 8817 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 8818 }; 8819 8820 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8821 exc = excnames[idx]; 8822 } 8823 if (!exc) { 8824 exc = "unknown"; 8825 } 8826 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8827 } 8828 } 8829 8830 /* 8831 * Function used to synchronize QEMU's AArch64 register set with AArch32 8832 * register set. This is necessary when switching between AArch32 and AArch64 8833 * execution state. 8834 */ 8835 void aarch64_sync_32_to_64(CPUARMState *env) 8836 { 8837 int i; 8838 uint32_t mode = env->uncached_cpsr & CPSR_M; 8839 8840 /* We can blanket copy R[0:7] to X[0:7] */ 8841 for (i = 0; i < 8; i++) { 8842 env->xregs[i] = env->regs[i]; 8843 } 8844 8845 /* 8846 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8847 * Otherwise, they come from the banked user regs. 8848 */ 8849 if (mode == ARM_CPU_MODE_FIQ) { 8850 for (i = 8; i < 13; i++) { 8851 env->xregs[i] = env->usr_regs[i - 8]; 8852 } 8853 } else { 8854 for (i = 8; i < 13; i++) { 8855 env->xregs[i] = env->regs[i]; 8856 } 8857 } 8858 8859 /* 8860 * Registers x13-x23 are the various mode SP and FP registers. Registers 8861 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8862 * from the mode banked register. 8863 */ 8864 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8865 env->xregs[13] = env->regs[13]; 8866 env->xregs[14] = env->regs[14]; 8867 } else { 8868 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8869 /* HYP is an exception in that it is copied from r14 */ 8870 if (mode == ARM_CPU_MODE_HYP) { 8871 env->xregs[14] = env->regs[14]; 8872 } else { 8873 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8874 } 8875 } 8876 8877 if (mode == ARM_CPU_MODE_HYP) { 8878 env->xregs[15] = env->regs[13]; 8879 } else { 8880 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8881 } 8882 8883 if (mode == ARM_CPU_MODE_IRQ) { 8884 env->xregs[16] = env->regs[14]; 8885 env->xregs[17] = env->regs[13]; 8886 } else { 8887 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8888 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8889 } 8890 8891 if (mode == ARM_CPU_MODE_SVC) { 8892 env->xregs[18] = env->regs[14]; 8893 env->xregs[19] = env->regs[13]; 8894 } else { 8895 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8896 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8897 } 8898 8899 if (mode == ARM_CPU_MODE_ABT) { 8900 env->xregs[20] = env->regs[14]; 8901 env->xregs[21] = env->regs[13]; 8902 } else { 8903 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8904 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8905 } 8906 8907 if (mode == ARM_CPU_MODE_UND) { 8908 env->xregs[22] = env->regs[14]; 8909 env->xregs[23] = env->regs[13]; 8910 } else { 8911 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8912 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8913 } 8914 8915 /* 8916 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8917 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8918 * FIQ bank for r8-r14. 8919 */ 8920 if (mode == ARM_CPU_MODE_FIQ) { 8921 for (i = 24; i < 31; i++) { 8922 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8923 } 8924 } else { 8925 for (i = 24; i < 29; i++) { 8926 env->xregs[i] = env->fiq_regs[i - 24]; 8927 } 8928 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8929 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8930 } 8931 8932 env->pc = env->regs[15]; 8933 } 8934 8935 /* 8936 * Function used to synchronize QEMU's AArch32 register set with AArch64 8937 * register set. This is necessary when switching between AArch32 and AArch64 8938 * execution state. 8939 */ 8940 void aarch64_sync_64_to_32(CPUARMState *env) 8941 { 8942 int i; 8943 uint32_t mode = env->uncached_cpsr & CPSR_M; 8944 8945 /* We can blanket copy X[0:7] to R[0:7] */ 8946 for (i = 0; i < 8; i++) { 8947 env->regs[i] = env->xregs[i]; 8948 } 8949 8950 /* 8951 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8952 * Otherwise, we copy x8-x12 into the banked user regs. 8953 */ 8954 if (mode == ARM_CPU_MODE_FIQ) { 8955 for (i = 8; i < 13; i++) { 8956 env->usr_regs[i - 8] = env->xregs[i]; 8957 } 8958 } else { 8959 for (i = 8; i < 13; i++) { 8960 env->regs[i] = env->xregs[i]; 8961 } 8962 } 8963 8964 /* 8965 * Registers r13 & r14 depend on the current mode. 8966 * If we are in a given mode, we copy the corresponding x registers to r13 8967 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8968 * for the mode. 8969 */ 8970 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8971 env->regs[13] = env->xregs[13]; 8972 env->regs[14] = env->xregs[14]; 8973 } else { 8974 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8975 8976 /* 8977 * HYP is an exception in that it does not have its own banked r14 but 8978 * shares the USR r14 8979 */ 8980 if (mode == ARM_CPU_MODE_HYP) { 8981 env->regs[14] = env->xregs[14]; 8982 } else { 8983 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8984 } 8985 } 8986 8987 if (mode == ARM_CPU_MODE_HYP) { 8988 env->regs[13] = env->xregs[15]; 8989 } else { 8990 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8991 } 8992 8993 if (mode == ARM_CPU_MODE_IRQ) { 8994 env->regs[14] = env->xregs[16]; 8995 env->regs[13] = env->xregs[17]; 8996 } else { 8997 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8998 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8999 } 9000 9001 if (mode == ARM_CPU_MODE_SVC) { 9002 env->regs[14] = env->xregs[18]; 9003 env->regs[13] = env->xregs[19]; 9004 } else { 9005 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9006 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9007 } 9008 9009 if (mode == ARM_CPU_MODE_ABT) { 9010 env->regs[14] = env->xregs[20]; 9011 env->regs[13] = env->xregs[21]; 9012 } else { 9013 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9014 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9015 } 9016 9017 if (mode == ARM_CPU_MODE_UND) { 9018 env->regs[14] = env->xregs[22]; 9019 env->regs[13] = env->xregs[23]; 9020 } else { 9021 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9022 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9023 } 9024 9025 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9026 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9027 * FIQ bank for r8-r14. 9028 */ 9029 if (mode == ARM_CPU_MODE_FIQ) { 9030 for (i = 24; i < 31; i++) { 9031 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9032 } 9033 } else { 9034 for (i = 24; i < 29; i++) { 9035 env->fiq_regs[i - 24] = env->xregs[i]; 9036 } 9037 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9038 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9039 } 9040 9041 env->regs[15] = env->pc; 9042 } 9043 9044 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9045 uint32_t mask, uint32_t offset, 9046 uint32_t newpc) 9047 { 9048 int new_el; 9049 9050 /* Change the CPU state so as to actually take the exception. */ 9051 switch_mode(env, new_mode); 9052 new_el = arm_current_el(env); 9053 9054 /* 9055 * For exceptions taken to AArch32 we must clear the SS bit in both 9056 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9057 */ 9058 env->uncached_cpsr &= ~PSTATE_SS; 9059 env->spsr = cpsr_read(env); 9060 /* Clear IT bits. */ 9061 env->condexec_bits = 0; 9062 /* Switch to the new mode, and to the correct instruction set. */ 9063 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9064 /* Set new mode endianness */ 9065 env->uncached_cpsr &= ~CPSR_E; 9066 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9067 env->uncached_cpsr |= CPSR_E; 9068 } 9069 /* J and IL must always be cleared for exception entry */ 9070 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9071 env->daif |= mask; 9072 9073 if (new_mode == ARM_CPU_MODE_HYP) { 9074 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9075 env->elr_el[2] = env->regs[15]; 9076 } else { 9077 /* CPSR.PAN is normally preserved preserved unless... */ 9078 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9079 switch (new_el) { 9080 case 3: 9081 if (!arm_is_secure_below_el3(env)) { 9082 /* ... the target is EL3, from non-secure state. */ 9083 env->uncached_cpsr &= ~CPSR_PAN; 9084 break; 9085 } 9086 /* ... the target is EL3, from secure state ... */ 9087 /* fall through */ 9088 case 1: 9089 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9090 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9091 env->uncached_cpsr |= CPSR_PAN; 9092 } 9093 break; 9094 } 9095 } 9096 /* 9097 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9098 * and we should just guard the thumb mode on V4 9099 */ 9100 if (arm_feature(env, ARM_FEATURE_V4T)) { 9101 env->thumb = 9102 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9103 } 9104 env->regs[14] = env->regs[15] + offset; 9105 } 9106 env->regs[15] = newpc; 9107 arm_rebuild_hflags(env); 9108 } 9109 9110 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9111 { 9112 /* 9113 * Handle exception entry to Hyp mode; this is sufficiently 9114 * different to entry to other AArch32 modes that we handle it 9115 * separately here. 9116 * 9117 * The vector table entry used is always the 0x14 Hyp mode entry point, 9118 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9119 * The offset applied to the preferred return address is always zero 9120 * (see DDI0487C.a section G1.12.3). 9121 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9122 */ 9123 uint32_t addr, mask; 9124 ARMCPU *cpu = ARM_CPU(cs); 9125 CPUARMState *env = &cpu->env; 9126 9127 switch (cs->exception_index) { 9128 case EXCP_UDEF: 9129 addr = 0x04; 9130 break; 9131 case EXCP_SWI: 9132 addr = 0x14; 9133 break; 9134 case EXCP_BKPT: 9135 /* Fall through to prefetch abort. */ 9136 case EXCP_PREFETCH_ABORT: 9137 env->cp15.ifar_s = env->exception.vaddress; 9138 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9139 (uint32_t)env->exception.vaddress); 9140 addr = 0x0c; 9141 break; 9142 case EXCP_DATA_ABORT: 9143 env->cp15.dfar_s = env->exception.vaddress; 9144 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9145 (uint32_t)env->exception.vaddress); 9146 addr = 0x10; 9147 break; 9148 case EXCP_IRQ: 9149 addr = 0x18; 9150 break; 9151 case EXCP_FIQ: 9152 addr = 0x1c; 9153 break; 9154 case EXCP_HVC: 9155 addr = 0x08; 9156 break; 9157 case EXCP_HYP_TRAP: 9158 addr = 0x14; 9159 break; 9160 default: 9161 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9162 } 9163 9164 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9165 if (!arm_feature(env, ARM_FEATURE_V8)) { 9166 /* 9167 * QEMU syndrome values are v8-style. v7 has the IL bit 9168 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9169 * If this is a v7 CPU, squash the IL bit in those cases. 9170 */ 9171 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9172 (cs->exception_index == EXCP_DATA_ABORT && 9173 !(env->exception.syndrome & ARM_EL_ISV)) || 9174 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9175 env->exception.syndrome &= ~ARM_EL_IL; 9176 } 9177 } 9178 env->cp15.esr_el[2] = env->exception.syndrome; 9179 } 9180 9181 if (arm_current_el(env) != 2 && addr < 0x14) { 9182 addr = 0x14; 9183 } 9184 9185 mask = 0; 9186 if (!(env->cp15.scr_el3 & SCR_EA)) { 9187 mask |= CPSR_A; 9188 } 9189 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9190 mask |= CPSR_I; 9191 } 9192 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9193 mask |= CPSR_F; 9194 } 9195 9196 addr += env->cp15.hvbar; 9197 9198 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9199 } 9200 9201 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9202 { 9203 ARMCPU *cpu = ARM_CPU(cs); 9204 CPUARMState *env = &cpu->env; 9205 uint32_t addr; 9206 uint32_t mask; 9207 int new_mode; 9208 uint32_t offset; 9209 uint32_t moe; 9210 9211 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9212 switch (syn_get_ec(env->exception.syndrome)) { 9213 case EC_BREAKPOINT: 9214 case EC_BREAKPOINT_SAME_EL: 9215 moe = 1; 9216 break; 9217 case EC_WATCHPOINT: 9218 case EC_WATCHPOINT_SAME_EL: 9219 moe = 10; 9220 break; 9221 case EC_AA32_BKPT: 9222 moe = 3; 9223 break; 9224 case EC_VECTORCATCH: 9225 moe = 5; 9226 break; 9227 default: 9228 moe = 0; 9229 break; 9230 } 9231 9232 if (moe) { 9233 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9234 } 9235 9236 if (env->exception.target_el == 2) { 9237 arm_cpu_do_interrupt_aarch32_hyp(cs); 9238 return; 9239 } 9240 9241 switch (cs->exception_index) { 9242 case EXCP_UDEF: 9243 new_mode = ARM_CPU_MODE_UND; 9244 addr = 0x04; 9245 mask = CPSR_I; 9246 if (env->thumb) 9247 offset = 2; 9248 else 9249 offset = 4; 9250 break; 9251 case EXCP_SWI: 9252 new_mode = ARM_CPU_MODE_SVC; 9253 addr = 0x08; 9254 mask = CPSR_I; 9255 /* The PC already points to the next instruction. */ 9256 offset = 0; 9257 break; 9258 case EXCP_BKPT: 9259 /* Fall through to prefetch abort. */ 9260 case EXCP_PREFETCH_ABORT: 9261 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9262 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9263 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9264 env->exception.fsr, (uint32_t)env->exception.vaddress); 9265 new_mode = ARM_CPU_MODE_ABT; 9266 addr = 0x0c; 9267 mask = CPSR_A | CPSR_I; 9268 offset = 4; 9269 break; 9270 case EXCP_DATA_ABORT: 9271 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9272 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9273 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9274 env->exception.fsr, 9275 (uint32_t)env->exception.vaddress); 9276 new_mode = ARM_CPU_MODE_ABT; 9277 addr = 0x10; 9278 mask = CPSR_A | CPSR_I; 9279 offset = 8; 9280 break; 9281 case EXCP_IRQ: 9282 new_mode = ARM_CPU_MODE_IRQ; 9283 addr = 0x18; 9284 /* Disable IRQ and imprecise data aborts. */ 9285 mask = CPSR_A | CPSR_I; 9286 offset = 4; 9287 if (env->cp15.scr_el3 & SCR_IRQ) { 9288 /* IRQ routed to monitor mode */ 9289 new_mode = ARM_CPU_MODE_MON; 9290 mask |= CPSR_F; 9291 } 9292 break; 9293 case EXCP_FIQ: 9294 new_mode = ARM_CPU_MODE_FIQ; 9295 addr = 0x1c; 9296 /* Disable FIQ, IRQ and imprecise data aborts. */ 9297 mask = CPSR_A | CPSR_I | CPSR_F; 9298 if (env->cp15.scr_el3 & SCR_FIQ) { 9299 /* FIQ routed to monitor mode */ 9300 new_mode = ARM_CPU_MODE_MON; 9301 } 9302 offset = 4; 9303 break; 9304 case EXCP_VIRQ: 9305 new_mode = ARM_CPU_MODE_IRQ; 9306 addr = 0x18; 9307 /* Disable IRQ and imprecise data aborts. */ 9308 mask = CPSR_A | CPSR_I; 9309 offset = 4; 9310 break; 9311 case EXCP_VFIQ: 9312 new_mode = ARM_CPU_MODE_FIQ; 9313 addr = 0x1c; 9314 /* Disable FIQ, IRQ and imprecise data aborts. */ 9315 mask = CPSR_A | CPSR_I | CPSR_F; 9316 offset = 4; 9317 break; 9318 case EXCP_SMC: 9319 new_mode = ARM_CPU_MODE_MON; 9320 addr = 0x08; 9321 mask = CPSR_A | CPSR_I | CPSR_F; 9322 offset = 0; 9323 break; 9324 default: 9325 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9326 return; /* Never happens. Keep compiler happy. */ 9327 } 9328 9329 if (new_mode == ARM_CPU_MODE_MON) { 9330 addr += env->cp15.mvbar; 9331 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9332 /* High vectors. When enabled, base address cannot be remapped. */ 9333 addr += 0xffff0000; 9334 } else { 9335 /* ARM v7 architectures provide a vector base address register to remap 9336 * the interrupt vector table. 9337 * This register is only followed in non-monitor mode, and is banked. 9338 * Note: only bits 31:5 are valid. 9339 */ 9340 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9341 } 9342 9343 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9344 env->cp15.scr_el3 &= ~SCR_NS; 9345 } 9346 9347 take_aarch32_exception(env, new_mode, mask, offset, addr); 9348 } 9349 9350 /* Handle exception entry to a target EL which is using AArch64 */ 9351 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9352 { 9353 ARMCPU *cpu = ARM_CPU(cs); 9354 CPUARMState *env = &cpu->env; 9355 unsigned int new_el = env->exception.target_el; 9356 target_ulong addr = env->cp15.vbar_el[new_el]; 9357 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9358 unsigned int old_mode; 9359 unsigned int cur_el = arm_current_el(env); 9360 9361 /* 9362 * Note that new_el can never be 0. If cur_el is 0, then 9363 * el0_a64 is is_a64(), else el0_a64 is ignored. 9364 */ 9365 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9366 9367 if (cur_el < new_el) { 9368 /* Entry vector offset depends on whether the implemented EL 9369 * immediately lower than the target level is using AArch32 or AArch64 9370 */ 9371 bool is_aa64; 9372 uint64_t hcr; 9373 9374 switch (new_el) { 9375 case 3: 9376 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9377 break; 9378 case 2: 9379 hcr = arm_hcr_el2_eff(env); 9380 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9381 is_aa64 = (hcr & HCR_RW) != 0; 9382 break; 9383 } 9384 /* fall through */ 9385 case 1: 9386 is_aa64 = is_a64(env); 9387 break; 9388 default: 9389 g_assert_not_reached(); 9390 } 9391 9392 if (is_aa64) { 9393 addr += 0x400; 9394 } else { 9395 addr += 0x600; 9396 } 9397 } else if (pstate_read(env) & PSTATE_SP) { 9398 addr += 0x200; 9399 } 9400 9401 switch (cs->exception_index) { 9402 case EXCP_PREFETCH_ABORT: 9403 case EXCP_DATA_ABORT: 9404 env->cp15.far_el[new_el] = env->exception.vaddress; 9405 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9406 env->cp15.far_el[new_el]); 9407 /* fall through */ 9408 case EXCP_BKPT: 9409 case EXCP_UDEF: 9410 case EXCP_SWI: 9411 case EXCP_HVC: 9412 case EXCP_HYP_TRAP: 9413 case EXCP_SMC: 9414 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9415 /* 9416 * QEMU internal FP/SIMD syndromes from AArch32 include the 9417 * TA and coproc fields which are only exposed if the exception 9418 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9419 * AArch64 format syndrome. 9420 */ 9421 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9422 } 9423 env->cp15.esr_el[new_el] = env->exception.syndrome; 9424 break; 9425 case EXCP_IRQ: 9426 case EXCP_VIRQ: 9427 addr += 0x80; 9428 break; 9429 case EXCP_FIQ: 9430 case EXCP_VFIQ: 9431 addr += 0x100; 9432 break; 9433 default: 9434 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9435 } 9436 9437 if (is_a64(env)) { 9438 old_mode = pstate_read(env); 9439 aarch64_save_sp(env, arm_current_el(env)); 9440 env->elr_el[new_el] = env->pc; 9441 } else { 9442 old_mode = cpsr_read(env); 9443 env->elr_el[new_el] = env->regs[15]; 9444 9445 aarch64_sync_32_to_64(env); 9446 9447 env->condexec_bits = 0; 9448 } 9449 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9450 9451 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9452 env->elr_el[new_el]); 9453 9454 if (cpu_isar_feature(aa64_pan, cpu)) { 9455 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9456 new_mode |= old_mode & PSTATE_PAN; 9457 switch (new_el) { 9458 case 2: 9459 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9460 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9461 != (HCR_E2H | HCR_TGE)) { 9462 break; 9463 } 9464 /* fall through */ 9465 case 1: 9466 /* ... the target is EL1 ... */ 9467 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9468 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9469 new_mode |= PSTATE_PAN; 9470 } 9471 break; 9472 } 9473 } 9474 9475 pstate_write(env, PSTATE_DAIF | new_mode); 9476 env->aarch64 = 1; 9477 aarch64_restore_sp(env, new_el); 9478 helper_rebuild_hflags_a64(env, new_el); 9479 9480 env->pc = addr; 9481 9482 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9483 new_el, env->pc, pstate_read(env)); 9484 } 9485 9486 /* 9487 * Do semihosting call and set the appropriate return value. All the 9488 * permission and validity checks have been done at translate time. 9489 * 9490 * We only see semihosting exceptions in TCG only as they are not 9491 * trapped to the hypervisor in KVM. 9492 */ 9493 #ifdef CONFIG_TCG 9494 static void handle_semihosting(CPUState *cs) 9495 { 9496 ARMCPU *cpu = ARM_CPU(cs); 9497 CPUARMState *env = &cpu->env; 9498 9499 if (is_a64(env)) { 9500 qemu_log_mask(CPU_LOG_INT, 9501 "...handling as semihosting call 0x%" PRIx64 "\n", 9502 env->xregs[0]); 9503 env->xregs[0] = do_arm_semihosting(env); 9504 env->pc += 4; 9505 } else { 9506 qemu_log_mask(CPU_LOG_INT, 9507 "...handling as semihosting call 0x%x\n", 9508 env->regs[0]); 9509 env->regs[0] = do_arm_semihosting(env); 9510 env->regs[15] += env->thumb ? 2 : 4; 9511 } 9512 } 9513 #endif 9514 9515 /* Handle a CPU exception for A and R profile CPUs. 9516 * Do any appropriate logging, handle PSCI calls, and then hand off 9517 * to the AArch64-entry or AArch32-entry function depending on the 9518 * target exception level's register width. 9519 */ 9520 void arm_cpu_do_interrupt(CPUState *cs) 9521 { 9522 ARMCPU *cpu = ARM_CPU(cs); 9523 CPUARMState *env = &cpu->env; 9524 unsigned int new_el = env->exception.target_el; 9525 9526 assert(!arm_feature(env, ARM_FEATURE_M)); 9527 9528 arm_log_exception(cs->exception_index); 9529 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9530 new_el); 9531 if (qemu_loglevel_mask(CPU_LOG_INT) 9532 && !excp_is_internal(cs->exception_index)) { 9533 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9534 syn_get_ec(env->exception.syndrome), 9535 env->exception.syndrome); 9536 } 9537 9538 if (arm_is_psci_call(cpu, cs->exception_index)) { 9539 arm_handle_psci_call(cpu); 9540 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9541 return; 9542 } 9543 9544 /* 9545 * Semihosting semantics depend on the register width of the code 9546 * that caused the exception, not the target exception level, so 9547 * must be handled here. 9548 */ 9549 #ifdef CONFIG_TCG 9550 if (cs->exception_index == EXCP_SEMIHOST) { 9551 handle_semihosting(cs); 9552 return; 9553 } 9554 #endif 9555 9556 /* Hooks may change global state so BQL should be held, also the 9557 * BQL needs to be held for any modification of 9558 * cs->interrupt_request. 9559 */ 9560 g_assert(qemu_mutex_iothread_locked()); 9561 9562 arm_call_pre_el_change_hook(cpu); 9563 9564 assert(!excp_is_internal(cs->exception_index)); 9565 if (arm_el_is_aa64(env, new_el)) { 9566 arm_cpu_do_interrupt_aarch64(cs); 9567 } else { 9568 arm_cpu_do_interrupt_aarch32(cs); 9569 } 9570 9571 arm_call_el_change_hook(cpu); 9572 9573 if (!kvm_enabled()) { 9574 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9575 } 9576 } 9577 #endif /* !CONFIG_USER_ONLY */ 9578 9579 /* Return the exception level which controls this address translation regime */ 9580 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9581 { 9582 switch (mmu_idx) { 9583 case ARMMMUIdx_E20_0: 9584 case ARMMMUIdx_E20_2: 9585 case ARMMMUIdx_E20_2_PAN: 9586 case ARMMMUIdx_Stage2: 9587 case ARMMMUIdx_E2: 9588 return 2; 9589 case ARMMMUIdx_SE3: 9590 return 3; 9591 case ARMMMUIdx_SE10_0: 9592 return arm_el_is_aa64(env, 3) ? 1 : 3; 9593 case ARMMMUIdx_SE10_1: 9594 case ARMMMUIdx_SE10_1_PAN: 9595 case ARMMMUIdx_Stage1_E0: 9596 case ARMMMUIdx_Stage1_E1: 9597 case ARMMMUIdx_Stage1_E1_PAN: 9598 case ARMMMUIdx_E10_0: 9599 case ARMMMUIdx_E10_1: 9600 case ARMMMUIdx_E10_1_PAN: 9601 case ARMMMUIdx_MPrivNegPri: 9602 case ARMMMUIdx_MUserNegPri: 9603 case ARMMMUIdx_MPriv: 9604 case ARMMMUIdx_MUser: 9605 case ARMMMUIdx_MSPrivNegPri: 9606 case ARMMMUIdx_MSUserNegPri: 9607 case ARMMMUIdx_MSPriv: 9608 case ARMMMUIdx_MSUser: 9609 return 1; 9610 default: 9611 g_assert_not_reached(); 9612 } 9613 } 9614 9615 uint64_t arm_sctlr(CPUARMState *env, int el) 9616 { 9617 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9618 if (el == 0) { 9619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9620 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9621 } 9622 return env->cp15.sctlr_el[el]; 9623 } 9624 9625 /* Return the SCTLR value which controls this address translation regime */ 9626 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9627 { 9628 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9629 } 9630 9631 #ifndef CONFIG_USER_ONLY 9632 9633 /* Return true if the specified stage of address translation is disabled */ 9634 static inline bool regime_translation_disabled(CPUARMState *env, 9635 ARMMMUIdx mmu_idx) 9636 { 9637 if (arm_feature(env, ARM_FEATURE_M)) { 9638 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9639 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9640 case R_V7M_MPU_CTRL_ENABLE_MASK: 9641 /* Enabled, but not for HardFault and NMI */ 9642 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9643 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9644 /* Enabled for all cases */ 9645 return false; 9646 case 0: 9647 default: 9648 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9649 * we warned about that in armv7m_nvic.c when the guest set it. 9650 */ 9651 return true; 9652 } 9653 } 9654 9655 if (mmu_idx == ARMMMUIdx_Stage2) { 9656 /* HCR.DC means HCR.VM behaves as 1 */ 9657 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9658 } 9659 9660 if (env->cp15.hcr_el2 & HCR_TGE) { 9661 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9662 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9663 return true; 9664 } 9665 } 9666 9667 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 9668 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9669 return true; 9670 } 9671 9672 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9673 } 9674 9675 static inline bool regime_translation_big_endian(CPUARMState *env, 9676 ARMMMUIdx mmu_idx) 9677 { 9678 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9679 } 9680 9681 /* Return the TTBR associated with this translation regime */ 9682 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9683 int ttbrn) 9684 { 9685 if (mmu_idx == ARMMMUIdx_Stage2) { 9686 return env->cp15.vttbr_el2; 9687 } 9688 if (ttbrn == 0) { 9689 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9690 } else { 9691 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9692 } 9693 } 9694 9695 #endif /* !CONFIG_USER_ONLY */ 9696 9697 /* Return the TCR controlling this translation regime */ 9698 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9699 { 9700 if (mmu_idx == ARMMMUIdx_Stage2) { 9701 return &env->cp15.vtcr_el2; 9702 } 9703 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9704 } 9705 9706 /* Convert a possible stage1+2 MMU index into the appropriate 9707 * stage 1 MMU index 9708 */ 9709 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9710 { 9711 switch (mmu_idx) { 9712 case ARMMMUIdx_E10_0: 9713 return ARMMMUIdx_Stage1_E0; 9714 case ARMMMUIdx_E10_1: 9715 return ARMMMUIdx_Stage1_E1; 9716 case ARMMMUIdx_E10_1_PAN: 9717 return ARMMMUIdx_Stage1_E1_PAN; 9718 default: 9719 return mmu_idx; 9720 } 9721 } 9722 9723 /* Return true if the translation regime is using LPAE format page tables */ 9724 static inline bool regime_using_lpae_format(CPUARMState *env, 9725 ARMMMUIdx mmu_idx) 9726 { 9727 int el = regime_el(env, mmu_idx); 9728 if (el == 2 || arm_el_is_aa64(env, el)) { 9729 return true; 9730 } 9731 if (arm_feature(env, ARM_FEATURE_LPAE) 9732 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9733 return true; 9734 } 9735 return false; 9736 } 9737 9738 /* Returns true if the stage 1 translation regime is using LPAE format page 9739 * tables. Used when raising alignment exceptions, whose FSR changes depending 9740 * on whether the long or short descriptor format is in use. */ 9741 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9742 { 9743 mmu_idx = stage_1_mmu_idx(mmu_idx); 9744 9745 return regime_using_lpae_format(env, mmu_idx); 9746 } 9747 9748 #ifndef CONFIG_USER_ONLY 9749 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9750 { 9751 switch (mmu_idx) { 9752 case ARMMMUIdx_SE10_0: 9753 case ARMMMUIdx_E20_0: 9754 case ARMMMUIdx_Stage1_E0: 9755 case ARMMMUIdx_MUser: 9756 case ARMMMUIdx_MSUser: 9757 case ARMMMUIdx_MUserNegPri: 9758 case ARMMMUIdx_MSUserNegPri: 9759 return true; 9760 default: 9761 return false; 9762 case ARMMMUIdx_E10_0: 9763 case ARMMMUIdx_E10_1: 9764 case ARMMMUIdx_E10_1_PAN: 9765 g_assert_not_reached(); 9766 } 9767 } 9768 9769 /* Translate section/page access permissions to page 9770 * R/W protection flags 9771 * 9772 * @env: CPUARMState 9773 * @mmu_idx: MMU index indicating required translation regime 9774 * @ap: The 3-bit access permissions (AP[2:0]) 9775 * @domain_prot: The 2-bit domain access permissions 9776 */ 9777 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9778 int ap, int domain_prot) 9779 { 9780 bool is_user = regime_is_user(env, mmu_idx); 9781 9782 if (domain_prot == 3) { 9783 return PAGE_READ | PAGE_WRITE; 9784 } 9785 9786 switch (ap) { 9787 case 0: 9788 if (arm_feature(env, ARM_FEATURE_V7)) { 9789 return 0; 9790 } 9791 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9792 case SCTLR_S: 9793 return is_user ? 0 : PAGE_READ; 9794 case SCTLR_R: 9795 return PAGE_READ; 9796 default: 9797 return 0; 9798 } 9799 case 1: 9800 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9801 case 2: 9802 if (is_user) { 9803 return PAGE_READ; 9804 } else { 9805 return PAGE_READ | PAGE_WRITE; 9806 } 9807 case 3: 9808 return PAGE_READ | PAGE_WRITE; 9809 case 4: /* Reserved. */ 9810 return 0; 9811 case 5: 9812 return is_user ? 0 : PAGE_READ; 9813 case 6: 9814 return PAGE_READ; 9815 case 7: 9816 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9817 return 0; 9818 } 9819 return PAGE_READ; 9820 default: 9821 g_assert_not_reached(); 9822 } 9823 } 9824 9825 /* Translate section/page access permissions to page 9826 * R/W protection flags. 9827 * 9828 * @ap: The 2-bit simple AP (AP[2:1]) 9829 * @is_user: TRUE if accessing from PL0 9830 */ 9831 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9832 { 9833 switch (ap) { 9834 case 0: 9835 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9836 case 1: 9837 return PAGE_READ | PAGE_WRITE; 9838 case 2: 9839 return is_user ? 0 : PAGE_READ; 9840 case 3: 9841 return PAGE_READ; 9842 default: 9843 g_assert_not_reached(); 9844 } 9845 } 9846 9847 static inline int 9848 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9849 { 9850 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9851 } 9852 9853 /* Translate S2 section/page access permissions to protection flags 9854 * 9855 * @env: CPUARMState 9856 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9857 * @xn: XN (execute-never) bit 9858 */ 9859 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9860 { 9861 int prot = 0; 9862 9863 if (s2ap & 1) { 9864 prot |= PAGE_READ; 9865 } 9866 if (s2ap & 2) { 9867 prot |= PAGE_WRITE; 9868 } 9869 if (!xn) { 9870 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9871 prot |= PAGE_EXEC; 9872 } 9873 } 9874 return prot; 9875 } 9876 9877 /* Translate section/page access permissions to protection flags 9878 * 9879 * @env: CPUARMState 9880 * @mmu_idx: MMU index indicating required translation regime 9881 * @is_aa64: TRUE if AArch64 9882 * @ap: The 2-bit simple AP (AP[2:1]) 9883 * @ns: NS (non-secure) bit 9884 * @xn: XN (execute-never) bit 9885 * @pxn: PXN (privileged execute-never) bit 9886 */ 9887 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 9888 int ap, int ns, int xn, int pxn) 9889 { 9890 bool is_user = regime_is_user(env, mmu_idx); 9891 int prot_rw, user_rw; 9892 bool have_wxn; 9893 int wxn = 0; 9894 9895 assert(mmu_idx != ARMMMUIdx_Stage2); 9896 9897 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 9898 if (is_user) { 9899 prot_rw = user_rw; 9900 } else { 9901 if (user_rw && regime_is_pan(env, mmu_idx)) { 9902 return 0; 9903 } 9904 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 9905 } 9906 9907 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 9908 return prot_rw; 9909 } 9910 9911 /* TODO have_wxn should be replaced with 9912 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 9913 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 9914 * compatible processors have EL2, which is required for [U]WXN. 9915 */ 9916 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9917 9918 if (have_wxn) { 9919 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9920 } 9921 9922 if (is_aa64) { 9923 if (regime_has_2_ranges(mmu_idx) && !is_user) { 9924 xn = pxn || (user_rw & PAGE_WRITE); 9925 } 9926 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9927 switch (regime_el(env, mmu_idx)) { 9928 case 1: 9929 case 3: 9930 if (is_user) { 9931 xn = xn || !(user_rw & PAGE_READ); 9932 } else { 9933 int uwxn = 0; 9934 if (have_wxn) { 9935 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9936 } 9937 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9938 (uwxn && (user_rw & PAGE_WRITE)); 9939 } 9940 break; 9941 case 2: 9942 break; 9943 } 9944 } else { 9945 xn = wxn = 0; 9946 } 9947 9948 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9949 return prot_rw; 9950 } 9951 return prot_rw | PAGE_EXEC; 9952 } 9953 9954 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9955 uint32_t *table, uint32_t address) 9956 { 9957 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9958 TCR *tcr = regime_tcr(env, mmu_idx); 9959 9960 if (address & tcr->mask) { 9961 if (tcr->raw_tcr & TTBCR_PD1) { 9962 /* Translation table walk disabled for TTBR1 */ 9963 return false; 9964 } 9965 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9966 } else { 9967 if (tcr->raw_tcr & TTBCR_PD0) { 9968 /* Translation table walk disabled for TTBR0 */ 9969 return false; 9970 } 9971 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9972 } 9973 *table |= (address >> 18) & 0x3ffc; 9974 return true; 9975 } 9976 9977 /* Translate a S1 pagetable walk through S2 if needed. */ 9978 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9979 hwaddr addr, MemTxAttrs txattrs, 9980 ARMMMUFaultInfo *fi) 9981 { 9982 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 9983 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 9984 target_ulong s2size; 9985 hwaddr s2pa; 9986 int s2prot; 9987 int ret; 9988 ARMCacheAttrs cacheattrs = {}; 9989 ARMCacheAttrs *pcacheattrs = NULL; 9990 9991 if (env->cp15.hcr_el2 & HCR_PTW) { 9992 /* 9993 * PTW means we must fault if this S1 walk touches S2 Device 9994 * memory; otherwise we don't care about the attributes and can 9995 * save the S2 translation the effort of computing them. 9996 */ 9997 pcacheattrs = &cacheattrs; 9998 } 9999 10000 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa, 10001 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 10002 if (ret) { 10003 assert(fi->type != ARMFault_None); 10004 fi->s2addr = addr; 10005 fi->stage2 = true; 10006 fi->s1ptw = true; 10007 return ~0; 10008 } 10009 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10010 /* Access was to Device memory: generate Permission fault */ 10011 fi->type = ARMFault_Permission; 10012 fi->s2addr = addr; 10013 fi->stage2 = true; 10014 fi->s1ptw = true; 10015 return ~0; 10016 } 10017 addr = s2pa; 10018 } 10019 return addr; 10020 } 10021 10022 /* All loads done in the course of a page table walk go through here. */ 10023 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10024 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10025 { 10026 ARMCPU *cpu = ARM_CPU(cs); 10027 CPUARMState *env = &cpu->env; 10028 MemTxAttrs attrs = {}; 10029 MemTxResult result = MEMTX_OK; 10030 AddressSpace *as; 10031 uint32_t data; 10032 10033 attrs.secure = is_secure; 10034 as = arm_addressspace(cs, attrs); 10035 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10036 if (fi->s1ptw) { 10037 return 0; 10038 } 10039 if (regime_translation_big_endian(env, mmu_idx)) { 10040 data = address_space_ldl_be(as, addr, attrs, &result); 10041 } else { 10042 data = address_space_ldl_le(as, addr, attrs, &result); 10043 } 10044 if (result == MEMTX_OK) { 10045 return data; 10046 } 10047 fi->type = ARMFault_SyncExternalOnWalk; 10048 fi->ea = arm_extabort_type(result); 10049 return 0; 10050 } 10051 10052 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10053 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10054 { 10055 ARMCPU *cpu = ARM_CPU(cs); 10056 CPUARMState *env = &cpu->env; 10057 MemTxAttrs attrs = {}; 10058 MemTxResult result = MEMTX_OK; 10059 AddressSpace *as; 10060 uint64_t data; 10061 10062 attrs.secure = is_secure; 10063 as = arm_addressspace(cs, attrs); 10064 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10065 if (fi->s1ptw) { 10066 return 0; 10067 } 10068 if (regime_translation_big_endian(env, mmu_idx)) { 10069 data = address_space_ldq_be(as, addr, attrs, &result); 10070 } else { 10071 data = address_space_ldq_le(as, addr, attrs, &result); 10072 } 10073 if (result == MEMTX_OK) { 10074 return data; 10075 } 10076 fi->type = ARMFault_SyncExternalOnWalk; 10077 fi->ea = arm_extabort_type(result); 10078 return 0; 10079 } 10080 10081 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10082 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10083 hwaddr *phys_ptr, int *prot, 10084 target_ulong *page_size, 10085 ARMMMUFaultInfo *fi) 10086 { 10087 CPUState *cs = env_cpu(env); 10088 int level = 1; 10089 uint32_t table; 10090 uint32_t desc; 10091 int type; 10092 int ap; 10093 int domain = 0; 10094 int domain_prot; 10095 hwaddr phys_addr; 10096 uint32_t dacr; 10097 10098 /* Pagetable walk. */ 10099 /* Lookup l1 descriptor. */ 10100 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10101 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10102 fi->type = ARMFault_Translation; 10103 goto do_fault; 10104 } 10105 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10106 mmu_idx, fi); 10107 if (fi->type != ARMFault_None) { 10108 goto do_fault; 10109 } 10110 type = (desc & 3); 10111 domain = (desc >> 5) & 0x0f; 10112 if (regime_el(env, mmu_idx) == 1) { 10113 dacr = env->cp15.dacr_ns; 10114 } else { 10115 dacr = env->cp15.dacr_s; 10116 } 10117 domain_prot = (dacr >> (domain * 2)) & 3; 10118 if (type == 0) { 10119 /* Section translation fault. */ 10120 fi->type = ARMFault_Translation; 10121 goto do_fault; 10122 } 10123 if (type != 2) { 10124 level = 2; 10125 } 10126 if (domain_prot == 0 || domain_prot == 2) { 10127 fi->type = ARMFault_Domain; 10128 goto do_fault; 10129 } 10130 if (type == 2) { 10131 /* 1Mb section. */ 10132 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10133 ap = (desc >> 10) & 3; 10134 *page_size = 1024 * 1024; 10135 } else { 10136 /* Lookup l2 entry. */ 10137 if (type == 1) { 10138 /* Coarse pagetable. */ 10139 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10140 } else { 10141 /* Fine pagetable. */ 10142 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10143 } 10144 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10145 mmu_idx, fi); 10146 if (fi->type != ARMFault_None) { 10147 goto do_fault; 10148 } 10149 switch (desc & 3) { 10150 case 0: /* Page translation fault. */ 10151 fi->type = ARMFault_Translation; 10152 goto do_fault; 10153 case 1: /* 64k page. */ 10154 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10155 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10156 *page_size = 0x10000; 10157 break; 10158 case 2: /* 4k page. */ 10159 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10160 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10161 *page_size = 0x1000; 10162 break; 10163 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10164 if (type == 1) { 10165 /* ARMv6/XScale extended small page format */ 10166 if (arm_feature(env, ARM_FEATURE_XSCALE) 10167 || arm_feature(env, ARM_FEATURE_V6)) { 10168 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10169 *page_size = 0x1000; 10170 } else { 10171 /* UNPREDICTABLE in ARMv5; we choose to take a 10172 * page translation fault. 10173 */ 10174 fi->type = ARMFault_Translation; 10175 goto do_fault; 10176 } 10177 } else { 10178 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10179 *page_size = 0x400; 10180 } 10181 ap = (desc >> 4) & 3; 10182 break; 10183 default: 10184 /* Never happens, but compiler isn't smart enough to tell. */ 10185 abort(); 10186 } 10187 } 10188 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10189 *prot |= *prot ? PAGE_EXEC : 0; 10190 if (!(*prot & (1 << access_type))) { 10191 /* Access permission fault. */ 10192 fi->type = ARMFault_Permission; 10193 goto do_fault; 10194 } 10195 *phys_ptr = phys_addr; 10196 return false; 10197 do_fault: 10198 fi->domain = domain; 10199 fi->level = level; 10200 return true; 10201 } 10202 10203 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10204 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10205 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10206 target_ulong *page_size, ARMMMUFaultInfo *fi) 10207 { 10208 CPUState *cs = env_cpu(env); 10209 int level = 1; 10210 uint32_t table; 10211 uint32_t desc; 10212 uint32_t xn; 10213 uint32_t pxn = 0; 10214 int type; 10215 int ap; 10216 int domain = 0; 10217 int domain_prot; 10218 hwaddr phys_addr; 10219 uint32_t dacr; 10220 bool ns; 10221 10222 /* Pagetable walk. */ 10223 /* Lookup l1 descriptor. */ 10224 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10225 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10226 fi->type = ARMFault_Translation; 10227 goto do_fault; 10228 } 10229 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10230 mmu_idx, fi); 10231 if (fi->type != ARMFault_None) { 10232 goto do_fault; 10233 } 10234 type = (desc & 3); 10235 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10236 /* Section translation fault, or attempt to use the encoding 10237 * which is Reserved on implementations without PXN. 10238 */ 10239 fi->type = ARMFault_Translation; 10240 goto do_fault; 10241 } 10242 if ((type == 1) || !(desc & (1 << 18))) { 10243 /* Page or Section. */ 10244 domain = (desc >> 5) & 0x0f; 10245 } 10246 if (regime_el(env, mmu_idx) == 1) { 10247 dacr = env->cp15.dacr_ns; 10248 } else { 10249 dacr = env->cp15.dacr_s; 10250 } 10251 if (type == 1) { 10252 level = 2; 10253 } 10254 domain_prot = (dacr >> (domain * 2)) & 3; 10255 if (domain_prot == 0 || domain_prot == 2) { 10256 /* Section or Page domain fault */ 10257 fi->type = ARMFault_Domain; 10258 goto do_fault; 10259 } 10260 if (type != 1) { 10261 if (desc & (1 << 18)) { 10262 /* Supersection. */ 10263 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10264 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10265 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10266 *page_size = 0x1000000; 10267 } else { 10268 /* Section. */ 10269 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10270 *page_size = 0x100000; 10271 } 10272 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10273 xn = desc & (1 << 4); 10274 pxn = desc & 1; 10275 ns = extract32(desc, 19, 1); 10276 } else { 10277 if (arm_feature(env, ARM_FEATURE_PXN)) { 10278 pxn = (desc >> 2) & 1; 10279 } 10280 ns = extract32(desc, 3, 1); 10281 /* Lookup l2 entry. */ 10282 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10283 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10284 mmu_idx, fi); 10285 if (fi->type != ARMFault_None) { 10286 goto do_fault; 10287 } 10288 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10289 switch (desc & 3) { 10290 case 0: /* Page translation fault. */ 10291 fi->type = ARMFault_Translation; 10292 goto do_fault; 10293 case 1: /* 64k page. */ 10294 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10295 xn = desc & (1 << 15); 10296 *page_size = 0x10000; 10297 break; 10298 case 2: case 3: /* 4k page. */ 10299 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10300 xn = desc & 1; 10301 *page_size = 0x1000; 10302 break; 10303 default: 10304 /* Never happens, but compiler isn't smart enough to tell. */ 10305 abort(); 10306 } 10307 } 10308 if (domain_prot == 3) { 10309 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10310 } else { 10311 if (pxn && !regime_is_user(env, mmu_idx)) { 10312 xn = 1; 10313 } 10314 if (xn && access_type == MMU_INST_FETCH) { 10315 fi->type = ARMFault_Permission; 10316 goto do_fault; 10317 } 10318 10319 if (arm_feature(env, ARM_FEATURE_V6K) && 10320 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10321 /* The simplified model uses AP[0] as an access control bit. */ 10322 if ((ap & 1) == 0) { 10323 /* Access flag fault. */ 10324 fi->type = ARMFault_AccessFlag; 10325 goto do_fault; 10326 } 10327 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10328 } else { 10329 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10330 } 10331 if (*prot && !xn) { 10332 *prot |= PAGE_EXEC; 10333 } 10334 if (!(*prot & (1 << access_type))) { 10335 /* Access permission fault. */ 10336 fi->type = ARMFault_Permission; 10337 goto do_fault; 10338 } 10339 } 10340 if (ns) { 10341 /* The NS bit will (as required by the architecture) have no effect if 10342 * the CPU doesn't support TZ or this is a non-secure translation 10343 * regime, because the attribute will already be non-secure. 10344 */ 10345 attrs->secure = false; 10346 } 10347 *phys_ptr = phys_addr; 10348 return false; 10349 do_fault: 10350 fi->domain = domain; 10351 fi->level = level; 10352 return true; 10353 } 10354 10355 /* 10356 * check_s2_mmu_setup 10357 * @cpu: ARMCPU 10358 * @is_aa64: True if the translation regime is in AArch64 state 10359 * @startlevel: Suggested starting level 10360 * @inputsize: Bitsize of IPAs 10361 * @stride: Page-table stride (See the ARM ARM) 10362 * 10363 * Returns true if the suggested S2 translation parameters are OK and 10364 * false otherwise. 10365 */ 10366 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10367 int inputsize, int stride) 10368 { 10369 const int grainsize = stride + 3; 10370 int startsizecheck; 10371 10372 /* Negative levels are never allowed. */ 10373 if (level < 0) { 10374 return false; 10375 } 10376 10377 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10378 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10379 return false; 10380 } 10381 10382 if (is_aa64) { 10383 CPUARMState *env = &cpu->env; 10384 unsigned int pamax = arm_pamax(cpu); 10385 10386 switch (stride) { 10387 case 13: /* 64KB Pages. */ 10388 if (level == 0 || (level == 1 && pamax <= 42)) { 10389 return false; 10390 } 10391 break; 10392 case 11: /* 16KB Pages. */ 10393 if (level == 0 || (level == 1 && pamax <= 40)) { 10394 return false; 10395 } 10396 break; 10397 case 9: /* 4KB Pages. */ 10398 if (level == 0 && pamax <= 42) { 10399 return false; 10400 } 10401 break; 10402 default: 10403 g_assert_not_reached(); 10404 } 10405 10406 /* Inputsize checks. */ 10407 if (inputsize > pamax && 10408 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10409 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10410 return false; 10411 } 10412 } else { 10413 /* AArch32 only supports 4KB pages. Assert on that. */ 10414 assert(stride == 9); 10415 10416 if (level == 0) { 10417 return false; 10418 } 10419 } 10420 return true; 10421 } 10422 10423 /* Translate from the 4-bit stage 2 representation of 10424 * memory attributes (without cache-allocation hints) to 10425 * the 8-bit representation of the stage 1 MAIR registers 10426 * (which includes allocation hints). 10427 * 10428 * ref: shared/translation/attrs/S2AttrDecode() 10429 * .../S2ConvertAttrsHints() 10430 */ 10431 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10432 { 10433 uint8_t hiattr = extract32(s2attrs, 2, 2); 10434 uint8_t loattr = extract32(s2attrs, 0, 2); 10435 uint8_t hihint = 0, lohint = 0; 10436 10437 if (hiattr != 0) { /* normal memory */ 10438 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10439 hiattr = loattr = 1; /* non-cacheable */ 10440 } else { 10441 if (hiattr != 1) { /* Write-through or write-back */ 10442 hihint = 3; /* RW allocate */ 10443 } 10444 if (loattr != 1) { /* Write-through or write-back */ 10445 lohint = 3; /* RW allocate */ 10446 } 10447 } 10448 } 10449 10450 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10451 } 10452 #endif /* !CONFIG_USER_ONLY */ 10453 10454 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10455 { 10456 if (regime_has_2_ranges(mmu_idx)) { 10457 return extract64(tcr, 37, 2); 10458 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10459 return 0; /* VTCR_EL2 */ 10460 } else { 10461 /* Replicate the single TBI bit so we always have 2 bits. */ 10462 return extract32(tcr, 20, 1) * 3; 10463 } 10464 } 10465 10466 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10467 { 10468 if (regime_has_2_ranges(mmu_idx)) { 10469 return extract64(tcr, 51, 2); 10470 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10471 return 0; /* VTCR_EL2 */ 10472 } else { 10473 /* Replicate the single TBID bit so we always have 2 bits. */ 10474 return extract32(tcr, 29, 1) * 3; 10475 } 10476 } 10477 10478 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10479 ARMMMUIdx mmu_idx, bool data) 10480 { 10481 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10482 bool epd, hpd, using16k, using64k; 10483 int select, tsz, tbi; 10484 10485 if (!regime_has_2_ranges(mmu_idx)) { 10486 select = 0; 10487 tsz = extract32(tcr, 0, 6); 10488 using64k = extract32(tcr, 14, 1); 10489 using16k = extract32(tcr, 15, 1); 10490 if (mmu_idx == ARMMMUIdx_Stage2) { 10491 /* VTCR_EL2 */ 10492 hpd = false; 10493 } else { 10494 hpd = extract32(tcr, 24, 1); 10495 } 10496 epd = false; 10497 } else { 10498 /* 10499 * Bit 55 is always between the two regions, and is canonical for 10500 * determining if address tagging is enabled. 10501 */ 10502 select = extract64(va, 55, 1); 10503 if (!select) { 10504 tsz = extract32(tcr, 0, 6); 10505 epd = extract32(tcr, 7, 1); 10506 using64k = extract32(tcr, 14, 1); 10507 using16k = extract32(tcr, 15, 1); 10508 hpd = extract64(tcr, 41, 1); 10509 } else { 10510 int tg = extract32(tcr, 30, 2); 10511 using16k = tg == 1; 10512 using64k = tg == 3; 10513 tsz = extract32(tcr, 16, 6); 10514 epd = extract32(tcr, 23, 1); 10515 hpd = extract64(tcr, 42, 1); 10516 } 10517 } 10518 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10519 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10520 10521 /* Present TBI as a composite with TBID. */ 10522 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10523 if (!data) { 10524 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10525 } 10526 tbi = (tbi >> select) & 1; 10527 10528 return (ARMVAParameters) { 10529 .tsz = tsz, 10530 .select = select, 10531 .tbi = tbi, 10532 .epd = epd, 10533 .hpd = hpd, 10534 .using16k = using16k, 10535 .using64k = using64k, 10536 }; 10537 } 10538 10539 #ifndef CONFIG_USER_ONLY 10540 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10541 ARMMMUIdx mmu_idx) 10542 { 10543 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10544 uint32_t el = regime_el(env, mmu_idx); 10545 int select, tsz; 10546 bool epd, hpd; 10547 10548 if (mmu_idx == ARMMMUIdx_Stage2) { 10549 /* VTCR */ 10550 bool sext = extract32(tcr, 4, 1); 10551 bool sign = extract32(tcr, 3, 1); 10552 10553 /* 10554 * If the sign-extend bit is not the same as t0sz[3], the result 10555 * is unpredictable. Flag this as a guest error. 10556 */ 10557 if (sign != sext) { 10558 qemu_log_mask(LOG_GUEST_ERROR, 10559 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10560 } 10561 tsz = sextract32(tcr, 0, 4) + 8; 10562 select = 0; 10563 hpd = false; 10564 epd = false; 10565 } else if (el == 2) { 10566 /* HTCR */ 10567 tsz = extract32(tcr, 0, 3); 10568 select = 0; 10569 hpd = extract64(tcr, 24, 1); 10570 epd = false; 10571 } else { 10572 int t0sz = extract32(tcr, 0, 3); 10573 int t1sz = extract32(tcr, 16, 3); 10574 10575 if (t1sz == 0) { 10576 select = va > (0xffffffffu >> t0sz); 10577 } else { 10578 /* Note that we will detect errors later. */ 10579 select = va >= ~(0xffffffffu >> t1sz); 10580 } 10581 if (!select) { 10582 tsz = t0sz; 10583 epd = extract32(tcr, 7, 1); 10584 hpd = extract64(tcr, 41, 1); 10585 } else { 10586 tsz = t1sz; 10587 epd = extract32(tcr, 23, 1); 10588 hpd = extract64(tcr, 42, 1); 10589 } 10590 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10591 hpd &= extract32(tcr, 6, 1); 10592 } 10593 10594 return (ARMVAParameters) { 10595 .tsz = tsz, 10596 .select = select, 10597 .epd = epd, 10598 .hpd = hpd, 10599 }; 10600 } 10601 10602 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10603 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10604 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10605 target_ulong *page_size_ptr, 10606 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10607 { 10608 ARMCPU *cpu = env_archcpu(env); 10609 CPUState *cs = CPU(cpu); 10610 /* Read an LPAE long-descriptor translation table. */ 10611 ARMFaultType fault_type = ARMFault_Translation; 10612 uint32_t level; 10613 ARMVAParameters param; 10614 uint64_t ttbr; 10615 hwaddr descaddr, indexmask, indexmask_grainsize; 10616 uint32_t tableattrs; 10617 target_ulong page_size; 10618 uint32_t attrs; 10619 int32_t stride; 10620 int addrsize, inputsize; 10621 TCR *tcr = regime_tcr(env, mmu_idx); 10622 int ap, ns, xn, pxn; 10623 uint32_t el = regime_el(env, mmu_idx); 10624 uint64_t descaddrmask; 10625 bool aarch64 = arm_el_is_aa64(env, el); 10626 bool guarded = false; 10627 10628 /* TODO: 10629 * This code does not handle the different format TCR for VTCR_EL2. 10630 * This code also does not support shareability levels. 10631 * Attribute and permission bit handling should also be checked when adding 10632 * support for those page table walks. 10633 */ 10634 if (aarch64) { 10635 param = aa64_va_parameters(env, address, mmu_idx, 10636 access_type != MMU_INST_FETCH); 10637 level = 0; 10638 addrsize = 64 - 8 * param.tbi; 10639 inputsize = 64 - param.tsz; 10640 } else { 10641 param = aa32_va_parameters(env, address, mmu_idx); 10642 level = 1; 10643 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 10644 inputsize = addrsize - param.tsz; 10645 } 10646 10647 /* 10648 * We determined the region when collecting the parameters, but we 10649 * have not yet validated that the address is valid for the region. 10650 * Extract the top bits and verify that they all match select. 10651 * 10652 * For aa32, if inputsize == addrsize, then we have selected the 10653 * region by exclusion in aa32_va_parameters and there is no more 10654 * validation to do here. 10655 */ 10656 if (inputsize < addrsize) { 10657 target_ulong top_bits = sextract64(address, inputsize, 10658 addrsize - inputsize); 10659 if (-top_bits != param.select) { 10660 /* The gap between the two regions is a Translation fault */ 10661 fault_type = ARMFault_Translation; 10662 goto do_fault; 10663 } 10664 } 10665 10666 if (param.using64k) { 10667 stride = 13; 10668 } else if (param.using16k) { 10669 stride = 11; 10670 } else { 10671 stride = 9; 10672 } 10673 10674 /* Note that QEMU ignores shareability and cacheability attributes, 10675 * so we don't need to do anything with the SH, ORGN, IRGN fields 10676 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10677 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10678 * implement any ASID-like capability so we can ignore it (instead 10679 * we will always flush the TLB any time the ASID is changed). 10680 */ 10681 ttbr = regime_ttbr(env, mmu_idx, param.select); 10682 10683 /* Here we should have set up all the parameters for the translation: 10684 * inputsize, ttbr, epd, stride, tbi 10685 */ 10686 10687 if (param.epd) { 10688 /* Translation table walk disabled => Translation fault on TLB miss 10689 * Note: This is always 0 on 64-bit EL2 and EL3. 10690 */ 10691 goto do_fault; 10692 } 10693 10694 if (mmu_idx != ARMMMUIdx_Stage2) { 10695 /* The starting level depends on the virtual address size (which can 10696 * be up to 48 bits) and the translation granule size. It indicates 10697 * the number of strides (stride bits at a time) needed to 10698 * consume the bits of the input address. In the pseudocode this is: 10699 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10700 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10701 * our 'stride + 3' and 'stride' is our 'stride'. 10702 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10703 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10704 * = 4 - (inputsize - 4) / stride; 10705 */ 10706 level = 4 - (inputsize - 4) / stride; 10707 } else { 10708 /* For stage 2 translations the starting level is specified by the 10709 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10710 */ 10711 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10712 uint32_t startlevel; 10713 bool ok; 10714 10715 if (!aarch64 || stride == 9) { 10716 /* AArch32 or 4KB pages */ 10717 startlevel = 2 - sl0; 10718 } else { 10719 /* 16KB or 64KB pages */ 10720 startlevel = 3 - sl0; 10721 } 10722 10723 /* Check that the starting level is valid. */ 10724 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10725 inputsize, stride); 10726 if (!ok) { 10727 fault_type = ARMFault_Translation; 10728 goto do_fault; 10729 } 10730 level = startlevel; 10731 } 10732 10733 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10734 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10735 10736 /* Now we can extract the actual base address from the TTBR */ 10737 descaddr = extract64(ttbr, 0, 48); 10738 /* 10739 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 10740 * and also to mask out CnP (bit 0) which could validly be non-zero. 10741 */ 10742 descaddr &= ~indexmask; 10743 10744 /* The address field in the descriptor goes up to bit 39 for ARMv7 10745 * but up to bit 47 for ARMv8, but we use the descaddrmask 10746 * up to bit 39 for AArch32, because we don't need other bits in that case 10747 * to construct next descriptor address (anyway they should be all zeroes). 10748 */ 10749 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10750 ~indexmask_grainsize; 10751 10752 /* Secure accesses start with the page table in secure memory and 10753 * can be downgraded to non-secure at any step. Non-secure accesses 10754 * remain non-secure. We implement this by just ORing in the NSTable/NS 10755 * bits at each step. 10756 */ 10757 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10758 for (;;) { 10759 uint64_t descriptor; 10760 bool nstable; 10761 10762 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10763 descaddr &= ~7ULL; 10764 nstable = extract32(tableattrs, 4, 1); 10765 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10766 if (fi->type != ARMFault_None) { 10767 goto do_fault; 10768 } 10769 10770 if (!(descriptor & 1) || 10771 (!(descriptor & 2) && (level == 3))) { 10772 /* Invalid, or the Reserved level 3 encoding */ 10773 goto do_fault; 10774 } 10775 descaddr = descriptor & descaddrmask; 10776 10777 if ((descriptor & 2) && (level < 3)) { 10778 /* Table entry. The top five bits are attributes which may 10779 * propagate down through lower levels of the table (and 10780 * which are all arranged so that 0 means "no effect", so 10781 * we can gather them up by ORing in the bits at each level). 10782 */ 10783 tableattrs |= extract64(descriptor, 59, 5); 10784 level++; 10785 indexmask = indexmask_grainsize; 10786 continue; 10787 } 10788 /* Block entry at level 1 or 2, or page entry at level 3. 10789 * These are basically the same thing, although the number 10790 * of bits we pull in from the vaddr varies. 10791 */ 10792 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10793 descaddr |= (address & (page_size - 1)); 10794 /* Extract attributes from the descriptor */ 10795 attrs = extract64(descriptor, 2, 10) 10796 | (extract64(descriptor, 52, 12) << 10); 10797 10798 if (mmu_idx == ARMMMUIdx_Stage2) { 10799 /* Stage 2 table descriptors do not include any attribute fields */ 10800 break; 10801 } 10802 /* Merge in attributes from table descriptors */ 10803 attrs |= nstable << 3; /* NS */ 10804 guarded = extract64(descriptor, 50, 1); /* GP */ 10805 if (param.hpd) { 10806 /* HPD disables all the table attributes except NSTable. */ 10807 break; 10808 } 10809 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10810 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10811 * means "force PL1 access only", which means forcing AP[1] to 0. 10812 */ 10813 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10814 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10815 break; 10816 } 10817 /* Here descaddr is the final physical address, and attributes 10818 * are all in attrs. 10819 */ 10820 fault_type = ARMFault_AccessFlag; 10821 if ((attrs & (1 << 8)) == 0) { 10822 /* Access flag */ 10823 goto do_fault; 10824 } 10825 10826 ap = extract32(attrs, 4, 2); 10827 xn = extract32(attrs, 12, 1); 10828 10829 if (mmu_idx == ARMMMUIdx_Stage2) { 10830 ns = true; 10831 *prot = get_S2prot(env, ap, xn); 10832 } else { 10833 ns = extract32(attrs, 3, 1); 10834 pxn = extract32(attrs, 11, 1); 10835 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10836 } 10837 10838 fault_type = ARMFault_Permission; 10839 if (!(*prot & (1 << access_type))) { 10840 goto do_fault; 10841 } 10842 10843 if (ns) { 10844 /* The NS bit will (as required by the architecture) have no effect if 10845 * the CPU doesn't support TZ or this is a non-secure translation 10846 * regime, because the attribute will already be non-secure. 10847 */ 10848 txattrs->secure = false; 10849 } 10850 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 10851 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 10852 txattrs->target_tlb_bit0 = true; 10853 } 10854 10855 if (cacheattrs != NULL) { 10856 if (mmu_idx == ARMMMUIdx_Stage2) { 10857 cacheattrs->attrs = convert_stage2_attrs(env, 10858 extract32(attrs, 0, 4)); 10859 } else { 10860 /* Index into MAIR registers for cache attributes */ 10861 uint8_t attrindx = extract32(attrs, 0, 3); 10862 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10863 assert(attrindx <= 7); 10864 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10865 } 10866 cacheattrs->shareability = extract32(attrs, 6, 2); 10867 } 10868 10869 *phys_ptr = descaddr; 10870 *page_size_ptr = page_size; 10871 return false; 10872 10873 do_fault: 10874 fi->type = fault_type; 10875 fi->level = level; 10876 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 10877 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 10878 return true; 10879 } 10880 10881 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 10882 ARMMMUIdx mmu_idx, 10883 int32_t address, int *prot) 10884 { 10885 if (!arm_feature(env, ARM_FEATURE_M)) { 10886 *prot = PAGE_READ | PAGE_WRITE; 10887 switch (address) { 10888 case 0xF0000000 ... 0xFFFFFFFF: 10889 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 10890 /* hivecs execing is ok */ 10891 *prot |= PAGE_EXEC; 10892 } 10893 break; 10894 case 0x00000000 ... 0x7FFFFFFF: 10895 *prot |= PAGE_EXEC; 10896 break; 10897 } 10898 } else { 10899 /* Default system address map for M profile cores. 10900 * The architecture specifies which regions are execute-never; 10901 * at the MPU level no other checks are defined. 10902 */ 10903 switch (address) { 10904 case 0x00000000 ... 0x1fffffff: /* ROM */ 10905 case 0x20000000 ... 0x3fffffff: /* SRAM */ 10906 case 0x60000000 ... 0x7fffffff: /* RAM */ 10907 case 0x80000000 ... 0x9fffffff: /* RAM */ 10908 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10909 break; 10910 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 10911 case 0xa0000000 ... 0xbfffffff: /* Device */ 10912 case 0xc0000000 ... 0xdfffffff: /* Device */ 10913 case 0xe0000000 ... 0xffffffff: /* System */ 10914 *prot = PAGE_READ | PAGE_WRITE; 10915 break; 10916 default: 10917 g_assert_not_reached(); 10918 } 10919 } 10920 } 10921 10922 static bool pmsav7_use_background_region(ARMCPU *cpu, 10923 ARMMMUIdx mmu_idx, bool is_user) 10924 { 10925 /* Return true if we should use the default memory map as a 10926 * "background" region if there are no hits against any MPU regions. 10927 */ 10928 CPUARMState *env = &cpu->env; 10929 10930 if (is_user) { 10931 return false; 10932 } 10933 10934 if (arm_feature(env, ARM_FEATURE_M)) { 10935 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10936 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10937 } else { 10938 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10939 } 10940 } 10941 10942 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10943 { 10944 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10945 return arm_feature(env, ARM_FEATURE_M) && 10946 extract32(address, 20, 12) == 0xe00; 10947 } 10948 10949 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10950 { 10951 /* True if address is in the M profile system region 10952 * 0xe0000000 - 0xffffffff 10953 */ 10954 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10955 } 10956 10957 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10958 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10959 hwaddr *phys_ptr, int *prot, 10960 target_ulong *page_size, 10961 ARMMMUFaultInfo *fi) 10962 { 10963 ARMCPU *cpu = env_archcpu(env); 10964 int n; 10965 bool is_user = regime_is_user(env, mmu_idx); 10966 10967 *phys_ptr = address; 10968 *page_size = TARGET_PAGE_SIZE; 10969 *prot = 0; 10970 10971 if (regime_translation_disabled(env, mmu_idx) || 10972 m_is_ppb_region(env, address)) { 10973 /* MPU disabled or M profile PPB access: use default memory map. 10974 * The other case which uses the default memory map in the 10975 * v7M ARM ARM pseudocode is exception vector reads from the vector 10976 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10977 * which always does a direct read using address_space_ldl(), rather 10978 * than going via this function, so we don't need to check that here. 10979 */ 10980 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10981 } else { /* MPU enabled */ 10982 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10983 /* region search */ 10984 uint32_t base = env->pmsav7.drbar[n]; 10985 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10986 uint32_t rmask; 10987 bool srdis = false; 10988 10989 if (!(env->pmsav7.drsr[n] & 0x1)) { 10990 continue; 10991 } 10992 10993 if (!rsize) { 10994 qemu_log_mask(LOG_GUEST_ERROR, 10995 "DRSR[%d]: Rsize field cannot be 0\n", n); 10996 continue; 10997 } 10998 rsize++; 10999 rmask = (1ull << rsize) - 1; 11000 11001 if (base & rmask) { 11002 qemu_log_mask(LOG_GUEST_ERROR, 11003 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11004 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11005 n, base, rmask); 11006 continue; 11007 } 11008 11009 if (address < base || address > base + rmask) { 11010 /* 11011 * Address not in this region. We must check whether the 11012 * region covers addresses in the same page as our address. 11013 * In that case we must not report a size that covers the 11014 * whole page for a subsequent hit against a different MPU 11015 * region or the background region, because it would result in 11016 * incorrect TLB hits for subsequent accesses to addresses that 11017 * are in this MPU region. 11018 */ 11019 if (ranges_overlap(base, rmask, 11020 address & TARGET_PAGE_MASK, 11021 TARGET_PAGE_SIZE)) { 11022 *page_size = 1; 11023 } 11024 continue; 11025 } 11026 11027 /* Region matched */ 11028 11029 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11030 int i, snd; 11031 uint32_t srdis_mask; 11032 11033 rsize -= 3; /* sub region size (power of 2) */ 11034 snd = ((address - base) >> rsize) & 0x7; 11035 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11036 11037 srdis_mask = srdis ? 0x3 : 0x0; 11038 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11039 /* This will check in groups of 2, 4 and then 8, whether 11040 * the subregion bits are consistent. rsize is incremented 11041 * back up to give the region size, considering consistent 11042 * adjacent subregions as one region. Stop testing if rsize 11043 * is already big enough for an entire QEMU page. 11044 */ 11045 int snd_rounded = snd & ~(i - 1); 11046 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11047 snd_rounded + 8, i); 11048 if (srdis_mask ^ srdis_multi) { 11049 break; 11050 } 11051 srdis_mask = (srdis_mask << i) | srdis_mask; 11052 rsize++; 11053 } 11054 } 11055 if (srdis) { 11056 continue; 11057 } 11058 if (rsize < TARGET_PAGE_BITS) { 11059 *page_size = 1 << rsize; 11060 } 11061 break; 11062 } 11063 11064 if (n == -1) { /* no hits */ 11065 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11066 /* background fault */ 11067 fi->type = ARMFault_Background; 11068 return true; 11069 } 11070 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11071 } else { /* a MPU hit! */ 11072 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11073 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11074 11075 if (m_is_system_region(env, address)) { 11076 /* System space is always execute never */ 11077 xn = 1; 11078 } 11079 11080 if (is_user) { /* User mode AP bit decoding */ 11081 switch (ap) { 11082 case 0: 11083 case 1: 11084 case 5: 11085 break; /* no access */ 11086 case 3: 11087 *prot |= PAGE_WRITE; 11088 /* fall through */ 11089 case 2: 11090 case 6: 11091 *prot |= PAGE_READ | PAGE_EXEC; 11092 break; 11093 case 7: 11094 /* for v7M, same as 6; for R profile a reserved value */ 11095 if (arm_feature(env, ARM_FEATURE_M)) { 11096 *prot |= PAGE_READ | PAGE_EXEC; 11097 break; 11098 } 11099 /* fall through */ 11100 default: 11101 qemu_log_mask(LOG_GUEST_ERROR, 11102 "DRACR[%d]: Bad value for AP bits: 0x%" 11103 PRIx32 "\n", n, ap); 11104 } 11105 } else { /* Priv. mode AP bits decoding */ 11106 switch (ap) { 11107 case 0: 11108 break; /* no access */ 11109 case 1: 11110 case 2: 11111 case 3: 11112 *prot |= PAGE_WRITE; 11113 /* fall through */ 11114 case 5: 11115 case 6: 11116 *prot |= PAGE_READ | PAGE_EXEC; 11117 break; 11118 case 7: 11119 /* for v7M, same as 6; for R profile a reserved value */ 11120 if (arm_feature(env, ARM_FEATURE_M)) { 11121 *prot |= PAGE_READ | PAGE_EXEC; 11122 break; 11123 } 11124 /* fall through */ 11125 default: 11126 qemu_log_mask(LOG_GUEST_ERROR, 11127 "DRACR[%d]: Bad value for AP bits: 0x%" 11128 PRIx32 "\n", n, ap); 11129 } 11130 } 11131 11132 /* execute never */ 11133 if (xn) { 11134 *prot &= ~PAGE_EXEC; 11135 } 11136 } 11137 } 11138 11139 fi->type = ARMFault_Permission; 11140 fi->level = 1; 11141 return !(*prot & (1 << access_type)); 11142 } 11143 11144 static bool v8m_is_sau_exempt(CPUARMState *env, 11145 uint32_t address, MMUAccessType access_type) 11146 { 11147 /* The architecture specifies that certain address ranges are 11148 * exempt from v8M SAU/IDAU checks. 11149 */ 11150 return 11151 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11152 (address >= 0xe0000000 && address <= 0xe0002fff) || 11153 (address >= 0xe000e000 && address <= 0xe000efff) || 11154 (address >= 0xe002e000 && address <= 0xe002efff) || 11155 (address >= 0xe0040000 && address <= 0xe0041fff) || 11156 (address >= 0xe00ff000 && address <= 0xe00fffff); 11157 } 11158 11159 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11160 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11161 V8M_SAttributes *sattrs) 11162 { 11163 /* Look up the security attributes for this address. Compare the 11164 * pseudocode SecurityCheck() function. 11165 * We assume the caller has zero-initialized *sattrs. 11166 */ 11167 ARMCPU *cpu = env_archcpu(env); 11168 int r; 11169 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11170 int idau_region = IREGION_NOTVALID; 11171 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11172 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11173 11174 if (cpu->idau) { 11175 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11176 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11177 11178 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11179 &idau_nsc); 11180 } 11181 11182 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11183 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11184 return; 11185 } 11186 11187 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11188 sattrs->ns = !regime_is_secure(env, mmu_idx); 11189 return; 11190 } 11191 11192 if (idau_region != IREGION_NOTVALID) { 11193 sattrs->irvalid = true; 11194 sattrs->iregion = idau_region; 11195 } 11196 11197 switch (env->sau.ctrl & 3) { 11198 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11199 break; 11200 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11201 sattrs->ns = true; 11202 break; 11203 default: /* SAU.ENABLE == 1 */ 11204 for (r = 0; r < cpu->sau_sregion; r++) { 11205 if (env->sau.rlar[r] & 1) { 11206 uint32_t base = env->sau.rbar[r] & ~0x1f; 11207 uint32_t limit = env->sau.rlar[r] | 0x1f; 11208 11209 if (base <= address && limit >= address) { 11210 if (base > addr_page_base || limit < addr_page_limit) { 11211 sattrs->subpage = true; 11212 } 11213 if (sattrs->srvalid) { 11214 /* If we hit in more than one region then we must report 11215 * as Secure, not NS-Callable, with no valid region 11216 * number info. 11217 */ 11218 sattrs->ns = false; 11219 sattrs->nsc = false; 11220 sattrs->sregion = 0; 11221 sattrs->srvalid = false; 11222 break; 11223 } else { 11224 if (env->sau.rlar[r] & 2) { 11225 sattrs->nsc = true; 11226 } else { 11227 sattrs->ns = true; 11228 } 11229 sattrs->srvalid = true; 11230 sattrs->sregion = r; 11231 } 11232 } else { 11233 /* 11234 * Address not in this region. We must check whether the 11235 * region covers addresses in the same page as our address. 11236 * In that case we must not report a size that covers the 11237 * whole page for a subsequent hit against a different MPU 11238 * region or the background region, because it would result 11239 * in incorrect TLB hits for subsequent accesses to 11240 * addresses that are in this MPU region. 11241 */ 11242 if (limit >= base && 11243 ranges_overlap(base, limit - base + 1, 11244 addr_page_base, 11245 TARGET_PAGE_SIZE)) { 11246 sattrs->subpage = true; 11247 } 11248 } 11249 } 11250 } 11251 break; 11252 } 11253 11254 /* 11255 * The IDAU will override the SAU lookup results if it specifies 11256 * higher security than the SAU does. 11257 */ 11258 if (!idau_ns) { 11259 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11260 sattrs->ns = false; 11261 sattrs->nsc = idau_nsc; 11262 } 11263 } 11264 } 11265 11266 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11267 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11268 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11269 int *prot, bool *is_subpage, 11270 ARMMMUFaultInfo *fi, uint32_t *mregion) 11271 { 11272 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11273 * that a full phys-to-virt translation does). 11274 * mregion is (if not NULL) set to the region number which matched, 11275 * or -1 if no region number is returned (MPU off, address did not 11276 * hit a region, address hit in multiple regions). 11277 * We set is_subpage to true if the region hit doesn't cover the 11278 * entire TARGET_PAGE the address is within. 11279 */ 11280 ARMCPU *cpu = env_archcpu(env); 11281 bool is_user = regime_is_user(env, mmu_idx); 11282 uint32_t secure = regime_is_secure(env, mmu_idx); 11283 int n; 11284 int matchregion = -1; 11285 bool hit = false; 11286 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11287 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11288 11289 *is_subpage = false; 11290 *phys_ptr = address; 11291 *prot = 0; 11292 if (mregion) { 11293 *mregion = -1; 11294 } 11295 11296 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11297 * was an exception vector read from the vector table (which is always 11298 * done using the default system address map), because those accesses 11299 * are done in arm_v7m_load_vector(), which always does a direct 11300 * read using address_space_ldl(), rather than going via this function. 11301 */ 11302 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11303 hit = true; 11304 } else if (m_is_ppb_region(env, address)) { 11305 hit = true; 11306 } else { 11307 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11308 hit = true; 11309 } 11310 11311 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11312 /* region search */ 11313 /* Note that the base address is bits [31:5] from the register 11314 * with bits [4:0] all zeroes, but the limit address is bits 11315 * [31:5] from the register with bits [4:0] all ones. 11316 */ 11317 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11318 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11319 11320 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11321 /* Region disabled */ 11322 continue; 11323 } 11324 11325 if (address < base || address > limit) { 11326 /* 11327 * Address not in this region. We must check whether the 11328 * region covers addresses in the same page as our address. 11329 * In that case we must not report a size that covers the 11330 * whole page for a subsequent hit against a different MPU 11331 * region or the background region, because it would result in 11332 * incorrect TLB hits for subsequent accesses to addresses that 11333 * are in this MPU region. 11334 */ 11335 if (limit >= base && 11336 ranges_overlap(base, limit - base + 1, 11337 addr_page_base, 11338 TARGET_PAGE_SIZE)) { 11339 *is_subpage = true; 11340 } 11341 continue; 11342 } 11343 11344 if (base > addr_page_base || limit < addr_page_limit) { 11345 *is_subpage = true; 11346 } 11347 11348 if (matchregion != -1) { 11349 /* Multiple regions match -- always a failure (unlike 11350 * PMSAv7 where highest-numbered-region wins) 11351 */ 11352 fi->type = ARMFault_Permission; 11353 fi->level = 1; 11354 return true; 11355 } 11356 11357 matchregion = n; 11358 hit = true; 11359 } 11360 } 11361 11362 if (!hit) { 11363 /* background fault */ 11364 fi->type = ARMFault_Background; 11365 return true; 11366 } 11367 11368 if (matchregion == -1) { 11369 /* hit using the background region */ 11370 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11371 } else { 11372 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11373 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11374 11375 if (m_is_system_region(env, address)) { 11376 /* System space is always execute never */ 11377 xn = 1; 11378 } 11379 11380 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11381 if (*prot && !xn) { 11382 *prot |= PAGE_EXEC; 11383 } 11384 /* We don't need to look the attribute up in the MAIR0/MAIR1 11385 * registers because that only tells us about cacheability. 11386 */ 11387 if (mregion) { 11388 *mregion = matchregion; 11389 } 11390 } 11391 11392 fi->type = ARMFault_Permission; 11393 fi->level = 1; 11394 return !(*prot & (1 << access_type)); 11395 } 11396 11397 11398 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11399 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11400 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11401 int *prot, target_ulong *page_size, 11402 ARMMMUFaultInfo *fi) 11403 { 11404 uint32_t secure = regime_is_secure(env, mmu_idx); 11405 V8M_SAttributes sattrs = {}; 11406 bool ret; 11407 bool mpu_is_subpage; 11408 11409 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11410 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11411 if (access_type == MMU_INST_FETCH) { 11412 /* Instruction fetches always use the MMU bank and the 11413 * transaction attribute determined by the fetch address, 11414 * regardless of CPU state. This is painful for QEMU 11415 * to handle, because it would mean we need to encode 11416 * into the mmu_idx not just the (user, negpri) information 11417 * for the current security state but also that for the 11418 * other security state, which would balloon the number 11419 * of mmu_idx values needed alarmingly. 11420 * Fortunately we can avoid this because it's not actually 11421 * possible to arbitrarily execute code from memory with 11422 * the wrong security attribute: it will always generate 11423 * an exception of some kind or another, apart from the 11424 * special case of an NS CPU executing an SG instruction 11425 * in S&NSC memory. So we always just fail the translation 11426 * here and sort things out in the exception handler 11427 * (including possibly emulating an SG instruction). 11428 */ 11429 if (sattrs.ns != !secure) { 11430 if (sattrs.nsc) { 11431 fi->type = ARMFault_QEMU_NSCExec; 11432 } else { 11433 fi->type = ARMFault_QEMU_SFault; 11434 } 11435 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11436 *phys_ptr = address; 11437 *prot = 0; 11438 return true; 11439 } 11440 } else { 11441 /* For data accesses we always use the MMU bank indicated 11442 * by the current CPU state, but the security attributes 11443 * might downgrade a secure access to nonsecure. 11444 */ 11445 if (sattrs.ns) { 11446 txattrs->secure = false; 11447 } else if (!secure) { 11448 /* NS access to S memory must fault. 11449 * Architecturally we should first check whether the 11450 * MPU information for this address indicates that we 11451 * are doing an unaligned access to Device memory, which 11452 * should generate a UsageFault instead. QEMU does not 11453 * currently check for that kind of unaligned access though. 11454 * If we added it we would need to do so as a special case 11455 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11456 */ 11457 fi->type = ARMFault_QEMU_SFault; 11458 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11459 *phys_ptr = address; 11460 *prot = 0; 11461 return true; 11462 } 11463 } 11464 } 11465 11466 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11467 txattrs, prot, &mpu_is_subpage, fi, NULL); 11468 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11469 return ret; 11470 } 11471 11472 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11473 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11474 hwaddr *phys_ptr, int *prot, 11475 ARMMMUFaultInfo *fi) 11476 { 11477 int n; 11478 uint32_t mask; 11479 uint32_t base; 11480 bool is_user = regime_is_user(env, mmu_idx); 11481 11482 if (regime_translation_disabled(env, mmu_idx)) { 11483 /* MPU disabled. */ 11484 *phys_ptr = address; 11485 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11486 return false; 11487 } 11488 11489 *phys_ptr = address; 11490 for (n = 7; n >= 0; n--) { 11491 base = env->cp15.c6_region[n]; 11492 if ((base & 1) == 0) { 11493 continue; 11494 } 11495 mask = 1 << ((base >> 1) & 0x1f); 11496 /* Keep this shift separate from the above to avoid an 11497 (undefined) << 32. */ 11498 mask = (mask << 1) - 1; 11499 if (((base ^ address) & ~mask) == 0) { 11500 break; 11501 } 11502 } 11503 if (n < 0) { 11504 fi->type = ARMFault_Background; 11505 return true; 11506 } 11507 11508 if (access_type == MMU_INST_FETCH) { 11509 mask = env->cp15.pmsav5_insn_ap; 11510 } else { 11511 mask = env->cp15.pmsav5_data_ap; 11512 } 11513 mask = (mask >> (n * 4)) & 0xf; 11514 switch (mask) { 11515 case 0: 11516 fi->type = ARMFault_Permission; 11517 fi->level = 1; 11518 return true; 11519 case 1: 11520 if (is_user) { 11521 fi->type = ARMFault_Permission; 11522 fi->level = 1; 11523 return true; 11524 } 11525 *prot = PAGE_READ | PAGE_WRITE; 11526 break; 11527 case 2: 11528 *prot = PAGE_READ; 11529 if (!is_user) { 11530 *prot |= PAGE_WRITE; 11531 } 11532 break; 11533 case 3: 11534 *prot = PAGE_READ | PAGE_WRITE; 11535 break; 11536 case 5: 11537 if (is_user) { 11538 fi->type = ARMFault_Permission; 11539 fi->level = 1; 11540 return true; 11541 } 11542 *prot = PAGE_READ; 11543 break; 11544 case 6: 11545 *prot = PAGE_READ; 11546 break; 11547 default: 11548 /* Bad permission. */ 11549 fi->type = ARMFault_Permission; 11550 fi->level = 1; 11551 return true; 11552 } 11553 *prot |= PAGE_EXEC; 11554 return false; 11555 } 11556 11557 /* Combine either inner or outer cacheability attributes for normal 11558 * memory, according to table D4-42 and pseudocode procedure 11559 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11560 * 11561 * NB: only stage 1 includes allocation hints (RW bits), leading to 11562 * some asymmetry. 11563 */ 11564 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11565 { 11566 if (s1 == 4 || s2 == 4) { 11567 /* non-cacheable has precedence */ 11568 return 4; 11569 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11570 /* stage 1 write-through takes precedence */ 11571 return s1; 11572 } else if (extract32(s2, 2, 2) == 2) { 11573 /* stage 2 write-through takes precedence, but the allocation hint 11574 * is still taken from stage 1 11575 */ 11576 return (2 << 2) | extract32(s1, 0, 2); 11577 } else { /* write-back */ 11578 return s1; 11579 } 11580 } 11581 11582 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11583 * and CombineS1S2Desc() 11584 * 11585 * @s1: Attributes from stage 1 walk 11586 * @s2: Attributes from stage 2 walk 11587 */ 11588 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11589 { 11590 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11591 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11592 ARMCacheAttrs ret; 11593 11594 /* Combine shareability attributes (table D4-43) */ 11595 if (s1.shareability == 2 || s2.shareability == 2) { 11596 /* if either are outer-shareable, the result is outer-shareable */ 11597 ret.shareability = 2; 11598 } else if (s1.shareability == 3 || s2.shareability == 3) { 11599 /* if either are inner-shareable, the result is inner-shareable */ 11600 ret.shareability = 3; 11601 } else { 11602 /* both non-shareable */ 11603 ret.shareability = 0; 11604 } 11605 11606 /* Combine memory type and cacheability attributes */ 11607 if (s1hi == 0 || s2hi == 0) { 11608 /* Device has precedence over normal */ 11609 if (s1lo == 0 || s2lo == 0) { 11610 /* nGnRnE has precedence over anything */ 11611 ret.attrs = 0; 11612 } else if (s1lo == 4 || s2lo == 4) { 11613 /* non-Reordering has precedence over Reordering */ 11614 ret.attrs = 4; /* nGnRE */ 11615 } else if (s1lo == 8 || s2lo == 8) { 11616 /* non-Gathering has precedence over Gathering */ 11617 ret.attrs = 8; /* nGRE */ 11618 } else { 11619 ret.attrs = 0xc; /* GRE */ 11620 } 11621 11622 /* Any location for which the resultant memory type is any 11623 * type of Device memory is always treated as Outer Shareable. 11624 */ 11625 ret.shareability = 2; 11626 } else { /* Normal memory */ 11627 /* Outer/inner cacheability combine independently */ 11628 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11629 | combine_cacheattr_nibble(s1lo, s2lo); 11630 11631 if (ret.attrs == 0x44) { 11632 /* Any location for which the resultant memory type is Normal 11633 * Inner Non-cacheable, Outer Non-cacheable is always treated 11634 * as Outer Shareable. 11635 */ 11636 ret.shareability = 2; 11637 } 11638 } 11639 11640 return ret; 11641 } 11642 11643 11644 /* get_phys_addr - get the physical address for this virtual address 11645 * 11646 * Find the physical address corresponding to the given virtual address, 11647 * by doing a translation table walk on MMU based systems or using the 11648 * MPU state on MPU based systems. 11649 * 11650 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11651 * prot and page_size may not be filled in, and the populated fsr value provides 11652 * information on why the translation aborted, in the format of a 11653 * DFSR/IFSR fault register, with the following caveats: 11654 * * we honour the short vs long DFSR format differences. 11655 * * the WnR bit is never set (the caller must do this). 11656 * * for PSMAv5 based systems we don't bother to return a full FSR format 11657 * value. 11658 * 11659 * @env: CPUARMState 11660 * @address: virtual address to get physical address for 11661 * @access_type: 0 for read, 1 for write, 2 for execute 11662 * @mmu_idx: MMU index indicating required translation regime 11663 * @phys_ptr: set to the physical address corresponding to the virtual address 11664 * @attrs: set to the memory transaction attributes to use 11665 * @prot: set to the permissions for the page containing phys_ptr 11666 * @page_size: set to the size of the page containing phys_ptr 11667 * @fi: set to fault info if the translation fails 11668 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11669 */ 11670 bool get_phys_addr(CPUARMState *env, target_ulong address, 11671 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11672 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11673 target_ulong *page_size, 11674 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11675 { 11676 if (mmu_idx == ARMMMUIdx_E10_0 || 11677 mmu_idx == ARMMMUIdx_E10_1 || 11678 mmu_idx == ARMMMUIdx_E10_1_PAN) { 11679 /* Call ourselves recursively to do the stage 1 and then stage 2 11680 * translations. 11681 */ 11682 if (arm_feature(env, ARM_FEATURE_EL2)) { 11683 hwaddr ipa; 11684 int s2_prot; 11685 int ret; 11686 ARMCacheAttrs cacheattrs2 = {}; 11687 11688 ret = get_phys_addr(env, address, access_type, 11689 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11690 prot, page_size, fi, cacheattrs); 11691 11692 /* If S1 fails or S2 is disabled, return early. */ 11693 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 11694 *phys_ptr = ipa; 11695 return ret; 11696 } 11697 11698 /* S1 is done. Now do S2 translation. */ 11699 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 11700 phys_ptr, attrs, &s2_prot, 11701 page_size, fi, 11702 cacheattrs != NULL ? &cacheattrs2 : NULL); 11703 fi->s2addr = ipa; 11704 /* Combine the S1 and S2 perms. */ 11705 *prot &= s2_prot; 11706 11707 /* Combine the S1 and S2 cache attributes, if needed */ 11708 if (!ret && cacheattrs != NULL) { 11709 if (env->cp15.hcr_el2 & HCR_DC) { 11710 /* 11711 * HCR.DC forces the first stage attributes to 11712 * Normal Non-Shareable, 11713 * Inner Write-Back Read-Allocate Write-Allocate, 11714 * Outer Write-Back Read-Allocate Write-Allocate. 11715 */ 11716 cacheattrs->attrs = 0xff; 11717 cacheattrs->shareability = 0; 11718 } 11719 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11720 } 11721 11722 return ret; 11723 } else { 11724 /* 11725 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11726 */ 11727 mmu_idx = stage_1_mmu_idx(mmu_idx); 11728 } 11729 } 11730 11731 /* The page table entries may downgrade secure to non-secure, but 11732 * cannot upgrade an non-secure translation regime's attributes 11733 * to secure. 11734 */ 11735 attrs->secure = regime_is_secure(env, mmu_idx); 11736 attrs->user = regime_is_user(env, mmu_idx); 11737 11738 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11739 * In v7 and earlier it affects all stage 1 translations. 11740 */ 11741 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 11742 && !arm_feature(env, ARM_FEATURE_V8)) { 11743 if (regime_el(env, mmu_idx) == 3) { 11744 address += env->cp15.fcseidr_s; 11745 } else { 11746 address += env->cp15.fcseidr_ns; 11747 } 11748 } 11749 11750 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11751 bool ret; 11752 *page_size = TARGET_PAGE_SIZE; 11753 11754 if (arm_feature(env, ARM_FEATURE_V8)) { 11755 /* PMSAv8 */ 11756 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11757 phys_ptr, attrs, prot, page_size, fi); 11758 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11759 /* PMSAv7 */ 11760 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11761 phys_ptr, prot, page_size, fi); 11762 } else { 11763 /* Pre-v7 MPU */ 11764 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11765 phys_ptr, prot, fi); 11766 } 11767 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11768 " mmu_idx %u -> %s (prot %c%c%c)\n", 11769 access_type == MMU_DATA_LOAD ? "reading" : 11770 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11771 (uint32_t)address, mmu_idx, 11772 ret ? "Miss" : "Hit", 11773 *prot & PAGE_READ ? 'r' : '-', 11774 *prot & PAGE_WRITE ? 'w' : '-', 11775 *prot & PAGE_EXEC ? 'x' : '-'); 11776 11777 return ret; 11778 } 11779 11780 /* Definitely a real MMU, not an MPU */ 11781 11782 if (regime_translation_disabled(env, mmu_idx)) { 11783 /* MMU disabled. */ 11784 *phys_ptr = address; 11785 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11786 *page_size = TARGET_PAGE_SIZE; 11787 return 0; 11788 } 11789 11790 if (regime_using_lpae_format(env, mmu_idx)) { 11791 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11792 phys_ptr, attrs, prot, page_size, 11793 fi, cacheattrs); 11794 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11795 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11796 phys_ptr, attrs, prot, page_size, fi); 11797 } else { 11798 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11799 phys_ptr, prot, page_size, fi); 11800 } 11801 } 11802 11803 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11804 MemTxAttrs *attrs) 11805 { 11806 ARMCPU *cpu = ARM_CPU(cs); 11807 CPUARMState *env = &cpu->env; 11808 hwaddr phys_addr; 11809 target_ulong page_size; 11810 int prot; 11811 bool ret; 11812 ARMMMUFaultInfo fi = {}; 11813 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11814 11815 *attrs = (MemTxAttrs) {}; 11816 11817 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11818 attrs, &prot, &page_size, &fi, NULL); 11819 11820 if (ret) { 11821 return -1; 11822 } 11823 return phys_addr; 11824 } 11825 11826 #endif 11827 11828 /* Note that signed overflow is undefined in C. The following routines are 11829 careful to use unsigned types where modulo arithmetic is required. 11830 Failure to do so _will_ break on newer gcc. */ 11831 11832 /* Signed saturating arithmetic. */ 11833 11834 /* Perform 16-bit signed saturating addition. */ 11835 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11836 { 11837 uint16_t res; 11838 11839 res = a + b; 11840 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11841 if (a & 0x8000) 11842 res = 0x8000; 11843 else 11844 res = 0x7fff; 11845 } 11846 return res; 11847 } 11848 11849 /* Perform 8-bit signed saturating addition. */ 11850 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11851 { 11852 uint8_t res; 11853 11854 res = a + b; 11855 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11856 if (a & 0x80) 11857 res = 0x80; 11858 else 11859 res = 0x7f; 11860 } 11861 return res; 11862 } 11863 11864 /* Perform 16-bit signed saturating subtraction. */ 11865 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11866 { 11867 uint16_t res; 11868 11869 res = a - b; 11870 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11871 if (a & 0x8000) 11872 res = 0x8000; 11873 else 11874 res = 0x7fff; 11875 } 11876 return res; 11877 } 11878 11879 /* Perform 8-bit signed saturating subtraction. */ 11880 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11881 { 11882 uint8_t res; 11883 11884 res = a - b; 11885 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11886 if (a & 0x80) 11887 res = 0x80; 11888 else 11889 res = 0x7f; 11890 } 11891 return res; 11892 } 11893 11894 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11895 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11896 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11897 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11898 #define PFX q 11899 11900 #include "op_addsub.h" 11901 11902 /* Unsigned saturating arithmetic. */ 11903 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11904 { 11905 uint16_t res; 11906 res = a + b; 11907 if (res < a) 11908 res = 0xffff; 11909 return res; 11910 } 11911 11912 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11913 { 11914 if (a > b) 11915 return a - b; 11916 else 11917 return 0; 11918 } 11919 11920 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11921 { 11922 uint8_t res; 11923 res = a + b; 11924 if (res < a) 11925 res = 0xff; 11926 return res; 11927 } 11928 11929 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11930 { 11931 if (a > b) 11932 return a - b; 11933 else 11934 return 0; 11935 } 11936 11937 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11938 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11939 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11940 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11941 #define PFX uq 11942 11943 #include "op_addsub.h" 11944 11945 /* Signed modulo arithmetic. */ 11946 #define SARITH16(a, b, n, op) do { \ 11947 int32_t sum; \ 11948 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11949 RESULT(sum, n, 16); \ 11950 if (sum >= 0) \ 11951 ge |= 3 << (n * 2); \ 11952 } while(0) 11953 11954 #define SARITH8(a, b, n, op) do { \ 11955 int32_t sum; \ 11956 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11957 RESULT(sum, n, 8); \ 11958 if (sum >= 0) \ 11959 ge |= 1 << n; \ 11960 } while(0) 11961 11962 11963 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11964 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11965 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11966 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11967 #define PFX s 11968 #define ARITH_GE 11969 11970 #include "op_addsub.h" 11971 11972 /* Unsigned modulo arithmetic. */ 11973 #define ADD16(a, b, n) do { \ 11974 uint32_t sum; \ 11975 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11976 RESULT(sum, n, 16); \ 11977 if ((sum >> 16) == 1) \ 11978 ge |= 3 << (n * 2); \ 11979 } while(0) 11980 11981 #define ADD8(a, b, n) do { \ 11982 uint32_t sum; \ 11983 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11984 RESULT(sum, n, 8); \ 11985 if ((sum >> 8) == 1) \ 11986 ge |= 1 << n; \ 11987 } while(0) 11988 11989 #define SUB16(a, b, n) do { \ 11990 uint32_t sum; \ 11991 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11992 RESULT(sum, n, 16); \ 11993 if ((sum >> 16) == 0) \ 11994 ge |= 3 << (n * 2); \ 11995 } while(0) 11996 11997 #define SUB8(a, b, n) do { \ 11998 uint32_t sum; \ 11999 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12000 RESULT(sum, n, 8); \ 12001 if ((sum >> 8) == 0) \ 12002 ge |= 1 << n; \ 12003 } while(0) 12004 12005 #define PFX u 12006 #define ARITH_GE 12007 12008 #include "op_addsub.h" 12009 12010 /* Halved signed arithmetic. */ 12011 #define ADD16(a, b, n) \ 12012 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12013 #define SUB16(a, b, n) \ 12014 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12015 #define ADD8(a, b, n) \ 12016 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12017 #define SUB8(a, b, n) \ 12018 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12019 #define PFX sh 12020 12021 #include "op_addsub.h" 12022 12023 /* Halved unsigned arithmetic. */ 12024 #define ADD16(a, b, n) \ 12025 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12026 #define SUB16(a, b, n) \ 12027 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12028 #define ADD8(a, b, n) \ 12029 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12030 #define SUB8(a, b, n) \ 12031 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12032 #define PFX uh 12033 12034 #include "op_addsub.h" 12035 12036 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12037 { 12038 if (a > b) 12039 return a - b; 12040 else 12041 return b - a; 12042 } 12043 12044 /* Unsigned sum of absolute byte differences. */ 12045 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12046 { 12047 uint32_t sum; 12048 sum = do_usad(a, b); 12049 sum += do_usad(a >> 8, b >> 8); 12050 sum += do_usad(a >> 16, b >>16); 12051 sum += do_usad(a >> 24, b >> 24); 12052 return sum; 12053 } 12054 12055 /* For ARMv6 SEL instruction. */ 12056 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12057 { 12058 uint32_t mask; 12059 12060 mask = 0; 12061 if (flags & 1) 12062 mask |= 0xff; 12063 if (flags & 2) 12064 mask |= 0xff00; 12065 if (flags & 4) 12066 mask |= 0xff0000; 12067 if (flags & 8) 12068 mask |= 0xff000000; 12069 return (a & mask) | (b & ~mask); 12070 } 12071 12072 /* CRC helpers. 12073 * The upper bytes of val (above the number specified by 'bytes') must have 12074 * been zeroed out by the caller. 12075 */ 12076 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12077 { 12078 uint8_t buf[4]; 12079 12080 stl_le_p(buf, val); 12081 12082 /* zlib crc32 converts the accumulator and output to one's complement. */ 12083 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12084 } 12085 12086 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12087 { 12088 uint8_t buf[4]; 12089 12090 stl_le_p(buf, val); 12091 12092 /* Linux crc32c converts the output to one's complement. */ 12093 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12094 } 12095 12096 /* Return the exception level to which FP-disabled exceptions should 12097 * be taken, or 0 if FP is enabled. 12098 */ 12099 int fp_exception_el(CPUARMState *env, int cur_el) 12100 { 12101 #ifndef CONFIG_USER_ONLY 12102 /* CPACR and the CPTR registers don't exist before v6, so FP is 12103 * always accessible 12104 */ 12105 if (!arm_feature(env, ARM_FEATURE_V6)) { 12106 return 0; 12107 } 12108 12109 if (arm_feature(env, ARM_FEATURE_M)) { 12110 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12111 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12112 return 1; 12113 } 12114 12115 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12116 if (!extract32(env->v7m.nsacr, 10, 1)) { 12117 /* FP insns cause a NOCP UsageFault taken to Secure */ 12118 return 3; 12119 } 12120 } 12121 12122 return 0; 12123 } 12124 12125 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12126 * 0, 2 : trap EL0 and EL1/PL1 accesses 12127 * 1 : trap only EL0 accesses 12128 * 3 : trap no accesses 12129 * This register is ignored if E2H+TGE are both set. 12130 */ 12131 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12132 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12133 12134 switch (fpen) { 12135 case 0: 12136 case 2: 12137 if (cur_el == 0 || cur_el == 1) { 12138 /* Trap to PL1, which might be EL1 or EL3 */ 12139 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12140 return 3; 12141 } 12142 return 1; 12143 } 12144 if (cur_el == 3 && !is_a64(env)) { 12145 /* Secure PL1 running at EL3 */ 12146 return 3; 12147 } 12148 break; 12149 case 1: 12150 if (cur_el == 0) { 12151 return 1; 12152 } 12153 break; 12154 case 3: 12155 break; 12156 } 12157 } 12158 12159 /* 12160 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12161 * to control non-secure access to the FPU. It doesn't have any 12162 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12163 */ 12164 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12165 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12166 if (!extract32(env->cp15.nsacr, 10, 1)) { 12167 /* FP insns act as UNDEF */ 12168 return cur_el == 2 ? 2 : 1; 12169 } 12170 } 12171 12172 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12173 * check because zero bits in the registers mean "don't trap". 12174 */ 12175 12176 /* CPTR_EL2 : present in v7VE or v8 */ 12177 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12178 && !arm_is_secure_below_el3(env)) { 12179 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12180 return 2; 12181 } 12182 12183 /* CPTR_EL3 : present in v8 */ 12184 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12185 /* Trap all FP ops to EL3 */ 12186 return 3; 12187 } 12188 #endif 12189 return 0; 12190 } 12191 12192 /* Return the exception level we're running at if this is our mmu_idx */ 12193 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12194 { 12195 if (mmu_idx & ARM_MMU_IDX_M) { 12196 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12197 } 12198 12199 switch (mmu_idx) { 12200 case ARMMMUIdx_E10_0: 12201 case ARMMMUIdx_E20_0: 12202 case ARMMMUIdx_SE10_0: 12203 return 0; 12204 case ARMMMUIdx_E10_1: 12205 case ARMMMUIdx_E10_1_PAN: 12206 case ARMMMUIdx_SE10_1: 12207 case ARMMMUIdx_SE10_1_PAN: 12208 return 1; 12209 case ARMMMUIdx_E2: 12210 case ARMMMUIdx_E20_2: 12211 case ARMMMUIdx_E20_2_PAN: 12212 return 2; 12213 case ARMMMUIdx_SE3: 12214 return 3; 12215 default: 12216 g_assert_not_reached(); 12217 } 12218 } 12219 12220 #ifndef CONFIG_TCG 12221 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12222 { 12223 g_assert_not_reached(); 12224 } 12225 #endif 12226 12227 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12228 { 12229 if (arm_feature(env, ARM_FEATURE_M)) { 12230 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12231 } 12232 12233 /* See ARM pseudo-function ELIsInHost. */ 12234 switch (el) { 12235 case 0: 12236 if (arm_is_secure_below_el3(env)) { 12237 return ARMMMUIdx_SE10_0; 12238 } 12239 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12240 && arm_el_is_aa64(env, 2)) { 12241 return ARMMMUIdx_E20_0; 12242 } 12243 return ARMMMUIdx_E10_0; 12244 case 1: 12245 if (arm_is_secure_below_el3(env)) { 12246 if (env->pstate & PSTATE_PAN) { 12247 return ARMMMUIdx_SE10_1_PAN; 12248 } 12249 return ARMMMUIdx_SE10_1; 12250 } 12251 if (env->pstate & PSTATE_PAN) { 12252 return ARMMMUIdx_E10_1_PAN; 12253 } 12254 return ARMMMUIdx_E10_1; 12255 case 2: 12256 /* TODO: ARMv8.4-SecEL2 */ 12257 /* Note that TGE does not apply at EL2. */ 12258 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12259 if (env->pstate & PSTATE_PAN) { 12260 return ARMMMUIdx_E20_2_PAN; 12261 } 12262 return ARMMMUIdx_E20_2; 12263 } 12264 return ARMMMUIdx_E2; 12265 case 3: 12266 return ARMMMUIdx_SE3; 12267 default: 12268 g_assert_not_reached(); 12269 } 12270 } 12271 12272 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12273 { 12274 return arm_mmu_idx_el(env, arm_current_el(env)); 12275 } 12276 12277 #ifndef CONFIG_USER_ONLY 12278 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12279 { 12280 return stage_1_mmu_idx(arm_mmu_idx(env)); 12281 } 12282 #endif 12283 12284 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12285 ARMMMUIdx mmu_idx, uint32_t flags) 12286 { 12287 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12288 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12289 arm_to_core_mmu_idx(mmu_idx)); 12290 12291 if (arm_singlestep_active(env)) { 12292 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12293 } 12294 return flags; 12295 } 12296 12297 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12298 ARMMMUIdx mmu_idx, uint32_t flags) 12299 { 12300 bool sctlr_b = arm_sctlr_b(env); 12301 12302 if (sctlr_b) { 12303 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12304 } 12305 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12306 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12307 } 12308 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12309 12310 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12311 } 12312 12313 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12314 ARMMMUIdx mmu_idx) 12315 { 12316 uint32_t flags = 0; 12317 12318 if (arm_v7m_is_handler_mode(env)) { 12319 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12320 } 12321 12322 /* 12323 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12324 * is suppressing them because the requested execution priority 12325 * is less than 0. 12326 */ 12327 if (arm_feature(env, ARM_FEATURE_V8) && 12328 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12329 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12330 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12331 } 12332 12333 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12334 } 12335 12336 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12337 { 12338 int flags = 0; 12339 12340 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12341 arm_debug_target_el(env)); 12342 return flags; 12343 } 12344 12345 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12346 ARMMMUIdx mmu_idx) 12347 { 12348 uint32_t flags = rebuild_hflags_aprofile(env); 12349 12350 if (arm_el_is_aa64(env, 1)) { 12351 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12352 } 12353 12354 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12355 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12356 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12357 } 12358 12359 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12360 } 12361 12362 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12363 ARMMMUIdx mmu_idx) 12364 { 12365 uint32_t flags = rebuild_hflags_aprofile(env); 12366 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12367 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12368 uint64_t sctlr; 12369 int tbii, tbid; 12370 12371 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12372 12373 /* Get control bits for tagged addresses. */ 12374 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12375 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12376 12377 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12378 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12379 12380 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12381 int sve_el = sve_exception_el(env, el); 12382 uint32_t zcr_len; 12383 12384 /* 12385 * If SVE is disabled, but FP is enabled, 12386 * then the effective len is 0. 12387 */ 12388 if (sve_el != 0 && fp_el == 0) { 12389 zcr_len = 0; 12390 } else { 12391 zcr_len = sve_zcr_len_for_el(env, el); 12392 } 12393 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12394 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12395 } 12396 12397 sctlr = regime_sctlr(env, stage1); 12398 12399 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12400 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12401 } 12402 12403 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12404 /* 12405 * In order to save space in flags, we record only whether 12406 * pauth is "inactive", meaning all insns are implemented as 12407 * a nop, or "active" when some action must be performed. 12408 * The decision of which action to take is left to a helper. 12409 */ 12410 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12411 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12412 } 12413 } 12414 12415 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12416 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12417 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12418 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12419 } 12420 } 12421 12422 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12423 if (!(env->pstate & PSTATE_UAO)) { 12424 switch (mmu_idx) { 12425 case ARMMMUIdx_E10_1: 12426 case ARMMMUIdx_E10_1_PAN: 12427 case ARMMMUIdx_SE10_1: 12428 case ARMMMUIdx_SE10_1_PAN: 12429 /* TODO: ARMv8.3-NV */ 12430 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12431 break; 12432 case ARMMMUIdx_E20_2: 12433 case ARMMMUIdx_E20_2_PAN: 12434 /* TODO: ARMv8.4-SecEL2 */ 12435 /* 12436 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12437 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12438 */ 12439 if (env->cp15.hcr_el2 & HCR_TGE) { 12440 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12441 } 12442 break; 12443 default: 12444 break; 12445 } 12446 } 12447 12448 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12449 } 12450 12451 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12452 { 12453 int el = arm_current_el(env); 12454 int fp_el = fp_exception_el(env, el); 12455 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12456 12457 if (is_a64(env)) { 12458 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12459 } else if (arm_feature(env, ARM_FEATURE_M)) { 12460 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12461 } else { 12462 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12463 } 12464 } 12465 12466 void arm_rebuild_hflags(CPUARMState *env) 12467 { 12468 env->hflags = rebuild_hflags_internal(env); 12469 } 12470 12471 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12472 { 12473 int fp_el = fp_exception_el(env, el); 12474 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12475 12476 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12477 } 12478 12479 /* 12480 * If we have triggered a EL state change we can't rely on the 12481 * translator having passed it too us, we need to recompute. 12482 */ 12483 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12484 { 12485 int el = arm_current_el(env); 12486 int fp_el = fp_exception_el(env, el); 12487 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12488 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12489 } 12490 12491 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12492 { 12493 int fp_el = fp_exception_el(env, el); 12494 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12495 12496 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12497 } 12498 12499 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12500 { 12501 int fp_el = fp_exception_el(env, el); 12502 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12503 12504 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12505 } 12506 12507 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12508 { 12509 #ifdef CONFIG_DEBUG_TCG 12510 uint32_t env_flags_current = env->hflags; 12511 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 12512 12513 if (unlikely(env_flags_current != env_flags_rebuilt)) { 12514 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 12515 env_flags_current, env_flags_rebuilt); 12516 abort(); 12517 } 12518 #endif 12519 } 12520 12521 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12522 target_ulong *cs_base, uint32_t *pflags) 12523 { 12524 uint32_t flags = env->hflags; 12525 uint32_t pstate_for_ss; 12526 12527 *cs_base = 0; 12528 assert_hflags_rebuild_correctly(env); 12529 12530 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 12531 *pc = env->pc; 12532 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12533 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 12534 } 12535 pstate_for_ss = env->pstate; 12536 } else { 12537 *pc = env->regs[15]; 12538 12539 if (arm_feature(env, ARM_FEATURE_M)) { 12540 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12541 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12542 != env->v7m.secure) { 12543 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 12544 } 12545 12546 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12547 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12548 (env->v7m.secure && 12549 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12550 /* 12551 * ASPEN is set, but FPCA/SFPA indicate that there is no 12552 * active FP context; we must create a new FP context before 12553 * executing any FP insn. 12554 */ 12555 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 12556 } 12557 12558 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12559 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12560 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 12561 } 12562 } else { 12563 /* 12564 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12565 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12566 */ 12567 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12568 flags = FIELD_DP32(flags, TBFLAG_A32, 12569 XSCALE_CPAR, env->cp15.c15_cpar); 12570 } else { 12571 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 12572 env->vfp.vec_len); 12573 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 12574 env->vfp.vec_stride); 12575 } 12576 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12577 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12578 } 12579 } 12580 12581 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 12582 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 12583 pstate_for_ss = env->uncached_cpsr; 12584 } 12585 12586 /* 12587 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12588 * states defined in the ARM ARM for software singlestep: 12589 * SS_ACTIVE PSTATE.SS State 12590 * 0 x Inactive (the TB flag for SS is always 0) 12591 * 1 0 Active-pending 12592 * 1 1 Active-not-pending 12593 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 12594 */ 12595 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 12596 (pstate_for_ss & PSTATE_SS)) { 12597 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12598 } 12599 12600 *pflags = flags; 12601 } 12602 12603 #ifdef TARGET_AARCH64 12604 /* 12605 * The manual says that when SVE is enabled and VQ is widened the 12606 * implementation is allowed to zero the previously inaccessible 12607 * portion of the registers. The corollary to that is that when 12608 * SVE is enabled and VQ is narrowed we are also allowed to zero 12609 * the now inaccessible portion of the registers. 12610 * 12611 * The intent of this is that no predicate bit beyond VQ is ever set. 12612 * Which means that some operations on predicate registers themselves 12613 * may operate on full uint64_t or even unrolled across the maximum 12614 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12615 * may well be cheaper than conditionals to restrict the operation 12616 * to the relevant portion of a uint16_t[16]. 12617 */ 12618 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12619 { 12620 int i, j; 12621 uint64_t pmask; 12622 12623 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12624 assert(vq <= env_archcpu(env)->sve_max_vq); 12625 12626 /* Zap the high bits of the zregs. */ 12627 for (i = 0; i < 32; i++) { 12628 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12629 } 12630 12631 /* Zap the high bits of the pregs and ffr. */ 12632 pmask = 0; 12633 if (vq & 3) { 12634 pmask = ~(-1ULL << (16 * (vq & 3))); 12635 } 12636 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12637 for (i = 0; i < 17; ++i) { 12638 env->vfp.pregs[i].p[j] &= pmask; 12639 } 12640 pmask = 0; 12641 } 12642 } 12643 12644 /* 12645 * Notice a change in SVE vector size when changing EL. 12646 */ 12647 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12648 int new_el, bool el0_a64) 12649 { 12650 ARMCPU *cpu = env_archcpu(env); 12651 int old_len, new_len; 12652 bool old_a64, new_a64; 12653 12654 /* Nothing to do if no SVE. */ 12655 if (!cpu_isar_feature(aa64_sve, cpu)) { 12656 return; 12657 } 12658 12659 /* Nothing to do if FP is disabled in either EL. */ 12660 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12661 return; 12662 } 12663 12664 /* 12665 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12666 * at ELx, or not available because the EL is in AArch32 state, then 12667 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12668 * has an effective value of 0". 12669 * 12670 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12671 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12672 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12673 * we already have the correct register contents when encountering the 12674 * vq0->vq0 transition between EL0->EL1. 12675 */ 12676 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12677 old_len = (old_a64 && !sve_exception_el(env, old_el) 12678 ? sve_zcr_len_for_el(env, old_el) : 0); 12679 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12680 new_len = (new_a64 && !sve_exception_el(env, new_el) 12681 ? sve_zcr_len_for_el(env, new_el) : 0); 12682 12683 /* When changing vector length, clear inaccessible state. */ 12684 if (new_len < old_len) { 12685 aarch64_sve_narrow_vq(env, new_len + 1); 12686 } 12687 } 12688 #endif 12689