1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1860 value |= SCR_NS; 1861 } 1862 if (cpu_isar_feature(aa64_mte, cpu)) { 1863 valid_mask |= SCR_ATA; 1864 } 1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1866 valid_mask |= SCR_ENSCXT; 1867 } 1868 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1869 valid_mask |= SCR_EASE | SCR_NMEA; 1870 } 1871 if (cpu_isar_feature(aa64_sme, cpu)) { 1872 valid_mask |= SCR_ENTP2; 1873 } 1874 if (cpu_isar_feature(aa64_hcx, cpu)) { 1875 valid_mask |= SCR_HXEN; 1876 } 1877 if (cpu_isar_feature(aa64_fgt, cpu)) { 1878 valid_mask |= SCR_FGTEN; 1879 } 1880 if (cpu_isar_feature(aa64_rme, cpu)) { 1881 valid_mask |= SCR_NSE | SCR_GPF; 1882 } 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 if (cpu_isar_feature(aa32_ras, cpu)) { 1886 valid_mask |= SCR_TERR; 1887 } 1888 } 1889 1890 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1891 valid_mask &= ~SCR_HCE; 1892 1893 /* 1894 * On ARMv7, SMD (or SCD as it is called in v7) is only 1895 * supported if EL2 exists. The bit is UNK/SBZP when 1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1897 * when EL2 is unavailable. 1898 * On ARMv8, this bit is always available. 1899 */ 1900 if (arm_feature(env, ARM_FEATURE_V7) && 1901 !arm_feature(env, ARM_FEATURE_V8)) { 1902 valid_mask &= ~SCR_SMD; 1903 } 1904 } 1905 1906 /* Clear all-context RES0 bits. */ 1907 value &= valid_mask; 1908 changed = env->cp15.scr_el3 ^ value; 1909 env->cp15.scr_el3 = value; 1910 1911 /* 1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1913 * we must invalidate all TLBs below EL3. 1914 */ 1915 if (changed & (SCR_NS | SCR_NSE)) { 1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1917 ARMMMUIdxBit_E20_0 | 1918 ARMMMUIdxBit_E10_1 | 1919 ARMMMUIdxBit_E20_2 | 1920 ARMMMUIdxBit_E10_1_PAN | 1921 ARMMMUIdxBit_E20_2_PAN | 1922 ARMMMUIdxBit_E2)); 1923 } 1924 } 1925 1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1927 { 1928 /* 1929 * scr_write will set the RES1 bits on an AArch64-only CPU. 1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1931 */ 1932 scr_write(env, ri, 0); 1933 } 1934 1935 static CPAccessResult access_tid4(CPUARMState *env, 1936 const ARMCPRegInfo *ri, 1937 bool isread) 1938 { 1939 if (arm_current_el(env) == 1 && 1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1941 return CP_ACCESS_TRAP_EL2; 1942 } 1943 1944 return CP_ACCESS_OK; 1945 } 1946 1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 ARMCPU *cpu = env_archcpu(env); 1950 1951 /* 1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1953 * bank 1954 */ 1955 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1956 ri->secure & ARM_CP_SECSTATE_S); 1957 1958 return cpu->ccsidr[index]; 1959 } 1960 1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1962 uint64_t value) 1963 { 1964 raw_write(env, ri, value & 0xf); 1965 } 1966 1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1968 { 1969 CPUState *cs = env_cpu(env); 1970 bool el1 = arm_current_el(env) == 1; 1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1972 uint64_t ret = 0; 1973 1974 if (hcr_el2 & HCR_IMO) { 1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1976 ret |= CPSR_I; 1977 } 1978 } else { 1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1980 ret |= CPSR_I; 1981 } 1982 } 1983 1984 if (hcr_el2 & HCR_FMO) { 1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1986 ret |= CPSR_F; 1987 } 1988 } else { 1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1990 ret |= CPSR_F; 1991 } 1992 } 1993 1994 if (hcr_el2 & HCR_AMO) { 1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1996 ret |= CPSR_A; 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2004 bool isread) 2005 { 2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2007 return CP_ACCESS_TRAP_EL2; 2008 } 2009 2010 return CP_ACCESS_OK; 2011 } 2012 2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2014 bool isread) 2015 { 2016 if (arm_feature(env, ARM_FEATURE_V8)) { 2017 return access_aa64_tid1(env, ri, isread); 2018 } 2019 2020 return CP_ACCESS_OK; 2021 } 2022 2023 static const ARMCPRegInfo v7_cp_reginfo[] = { 2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2026 .access = PL1_W, .type = ARM_CP_NOP }, 2027 /* 2028 * Performance monitors are implementation defined in v7, 2029 * but with an ARM recommended set of registers, which we 2030 * follow. 2031 * 2032 * Performance registers fall into three categories: 2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2038 */ 2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2042 .writefn = pmcntenset_write, 2043 .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .raw_writefn = raw_write }, 2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2048 .access = PL0_RW, .accessfn = pmreg_access, 2049 .fgt = FGT_PMCNTEN, 2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2051 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2053 .access = PL0_RW, 2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2055 .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .writefn = pmcntenclr_write, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2061 .access = PL0_RW, .accessfn = pmreg_access, 2062 .fgt = FGT_PMCNTEN, 2063 .type = ARM_CP_ALIAS | ARM_CP_IO, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2065 .writefn = pmcntenclr_write }, 2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2067 .access = PL0_RW, .type = ARM_CP_IO, 2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2069 .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .writefn = pmovsr_write, 2072 .raw_writefn = raw_write }, 2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2075 .access = PL0_RW, .accessfn = pmreg_access, 2076 .fgt = FGT_PMOVS, 2077 .type = ARM_CP_ALIAS | ARM_CP_IO, 2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2079 .writefn = pmovsr_write, 2080 .raw_writefn = raw_write }, 2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2088 .access = PL0_W, .accessfn = pmreg_access_swinc, 2089 .fgt = FGT_PMSWINC_EL0, 2090 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .writefn = pmswinc_write }, 2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2093 .access = PL0_RW, .type = ARM_CP_ALIAS, 2094 .fgt = FGT_PMSELR_EL0, 2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2097 .raw_writefn = raw_write}, 2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2100 .access = PL0_RW, .accessfn = pmreg_access_selr, 2101 .fgt = FGT_PMSELR_EL0, 2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2103 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2108 .accessfn = pmreg_access_ccntr }, 2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2112 .fgt = FGT_PMCCNTR_EL0, 2113 .type = ARM_CP_IO, 2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2115 .readfn = pmccntr_read, .writefn = pmccntr_write, 2116 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2119 .access = PL0_RW, .accessfn = pmreg_access, 2120 .fgt = FGT_PMCCFILTR_EL0, 2121 .type = ARM_CP_ALIAS | ARM_CP_IO, 2122 .resetvalue = 0, }, 2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2126 .access = PL0_RW, .accessfn = pmreg_access, 2127 .fgt = FGT_PMCCFILTR_EL0, 2128 .type = ARM_CP_IO, 2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2130 .resetvalue = 0, }, 2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access, 2140 .fgt = FGT_PMEVTYPERN_EL0, 2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .accessfn = pmreg_access_xevcntr, 2151 .fgt = FGT_PMEVCNTRN_EL0, 2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2162 .resetvalue = 0, 2163 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2165 .access = PL1_RW, .accessfn = access_tpm, 2166 .fgt = FGT_PMINTEN, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2169 .resetvalue = 0, 2170 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2173 .access = PL1_RW, .accessfn = access_tpm, 2174 .fgt = FGT_PMINTEN, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2177 .writefn = pmintenset_write, .raw_writefn = raw_write, 2178 .resetvalue = 0x0 }, 2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2180 .access = PL1_RW, .accessfn = access_tpm, 2181 .fgt = FGT_PMINTEN, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2184 .writefn = pmintenclr_write, }, 2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2187 .access = PL1_RW, .accessfn = access_tpm, 2188 .fgt = FGT_PMINTEN, 2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2191 .writefn = pmintenclr_write }, 2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2194 .access = PL1_R, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CCSIDR_EL1, 2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2200 .access = PL1_RW, 2201 .accessfn = access_tid4, 2202 .fgt = FGT_CSSELR_EL1, 2203 .writefn = csselr_write, .resetvalue = 0, 2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2205 offsetof(CPUARMState, cp15.csselr_ns) } }, 2206 /* 2207 * Auxiliary ID register: this actually has an IMPDEF value but for now 2208 * just RAZ for all cores: 2209 */ 2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2212 .access = PL1_R, .type = ARM_CP_CONST, 2213 .accessfn = access_aa64_tid1, 2214 .fgt = FGT_AIDR_EL1, 2215 .resetvalue = 0 }, 2216 /* 2217 * Auxiliary fault status registers: these also are IMPDEF, and we 2218 * choose to RAZ/WI for all cores. 2219 */ 2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR0_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2227 .access = PL1_RW, .accessfn = access_tvm_trvm, 2228 .fgt = FGT_AFSR1_EL1, 2229 .type = ARM_CP_CONST, .resetvalue = 0 }, 2230 /* 2231 * MAIR can just read-as-written because we don't implement caches 2232 * and so don't need to care about memory attributes. 2233 */ 2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL1_RW, .accessfn = access_tvm_trvm, 2237 .fgt = FGT_MAIR_EL1, 2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2239 .resetvalue = 0 }, 2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2243 .resetvalue = 0 }, 2244 /* 2245 * For non-long-descriptor page tables these are PRRR and NMRR; 2246 * regardless they still act as reads-as-written for QEMU. 2247 */ 2248 /* 2249 * MAIR0/1 are defined separately from their 64-bit counterpart which 2250 * allows them to assign the correct fieldoffset based on the endianness 2251 * handled in the field definitions. 2252 */ 2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2257 offsetof(CPUARMState, cp15.mair0_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2261 .access = PL1_RW, .accessfn = access_tvm_trvm, 2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2263 offsetof(CPUARMState, cp15.mair1_ns) }, 2264 .resetfn = arm_cp_reset_ignore }, 2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2267 .fgt = FGT_ISR_EL1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2269 /* 32 bit ITLB invalidates */ 2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiall_write }, 2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2275 .writefn = tlbimva_write }, 2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2278 .writefn = tlbiasid_write }, 2279 /* 32 bit DTLB invalidates */ 2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiall_write }, 2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2285 .writefn = tlbimva_write }, 2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2288 .writefn = tlbiasid_write }, 2289 /* 32 bit TLB invalidates */ 2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiall_write }, 2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimva_write }, 2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2298 .writefn = tlbiasid_write }, 2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2301 .writefn = tlbimvaa_write }, 2302 }; 2303 2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2305 /* 32 bit TLB invalidates, Inner Shareable */ 2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiall_is_write }, 2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimva_is_write }, 2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2314 .writefn = tlbiasid_is_write }, 2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2317 .writefn = tlbimvaa_is_write }, 2318 }; 2319 2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2321 /* PMOVSSET is not implemented in v7 before v7ve */ 2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2323 .access = PL0_RW, .accessfn = pmreg_access, 2324 .fgt = FGT_PMOVS, 2325 .type = ARM_CP_ALIAS | ARM_CP_IO, 2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2327 .writefn = pmovsset_write, 2328 .raw_writefn = raw_write }, 2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2331 .access = PL0_RW, .accessfn = pmreg_access, 2332 .fgt = FGT_PMOVS, 2333 .type = ARM_CP_ALIAS | ARM_CP_IO, 2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2335 .writefn = pmovsset_write, 2336 .raw_writefn = raw_write }, 2337 }; 2338 2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2340 uint64_t value) 2341 { 2342 value &= 1; 2343 env->teecr = value; 2344 } 2345 2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2347 bool isread) 2348 { 2349 /* 2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2351 * at all, so we don't need to check whether we're v8A. 2352 */ 2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2354 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2355 return CP_ACCESS_TRAP_EL2; 2356 } 2357 return CP_ACCESS_OK; 2358 } 2359 2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2361 bool isread) 2362 { 2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 return teecr_access(env, ri, isread); 2367 } 2368 2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2372 .resetvalue = 0, 2373 .writefn = teecr_write, .accessfn = teecr_access }, 2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2376 .accessfn = teehbr_access, .resetvalue = 0 }, 2377 }; 2378 2379 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2382 .access = PL0_RW, 2383 .fgt = FGT_TPIDR_EL0, 2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2386 .access = PL0_RW, 2387 .fgt = FGT_TPIDR_EL0, 2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2396 .resetvalue = 0}, 2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2398 .access = PL0_R | PL1_W, 2399 .fgt = FGT_TPIDRRO_EL0, 2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2402 .resetfn = arm_cp_reset_ignore }, 2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2405 .access = PL1_RW, 2406 .fgt = FGT_TPIDR_EL1, 2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2409 .access = PL1_RW, 2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2412 .resetvalue = 0 }, 2413 }; 2414 2415 #ifndef CONFIG_USER_ONLY 2416 2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 /* 2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2422 * Writable only at the highest implemented exception level. 2423 */ 2424 int el = arm_current_el(env); 2425 uint64_t hcr; 2426 uint32_t cntkctl; 2427 2428 switch (el) { 2429 case 0: 2430 hcr = arm_hcr_el2_eff(env); 2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2432 cntkctl = env->cp15.cnthctl_el2; 2433 } else { 2434 cntkctl = env->cp15.c14_cntkctl; 2435 } 2436 if (!extract32(cntkctl, 0, 2)) { 2437 return CP_ACCESS_TRAP; 2438 } 2439 break; 2440 case 1: 2441 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2442 arm_is_secure_below_el3(env)) { 2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2444 return CP_ACCESS_TRAP_UNCATEGORIZED; 2445 } 2446 break; 2447 case 2: 2448 case 3: 2449 break; 2450 } 2451 2452 if (!isread && el < arm_highest_el(env)) { 2453 return CP_ACCESS_TRAP_UNCATEGORIZED; 2454 } 2455 2456 return CP_ACCESS_OK; 2457 } 2458 2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2460 bool isread) 2461 { 2462 unsigned int cur_el = arm_current_el(env); 2463 bool has_el2 = arm_is_el2_enabled(env); 2464 uint64_t hcr = arm_hcr_el2_eff(env); 2465 2466 switch (cur_el) { 2467 case 0: 2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2472 } 2473 2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 2479 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2480 if (hcr & HCR_E2H) { 2481 if (timeridx == GTIMER_PHYS && 2482 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2483 return CP_ACCESS_TRAP_EL2; 2484 } 2485 } else { 2486 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2487 if (has_el2 && timeridx == GTIMER_PHYS && 2488 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2489 return CP_ACCESS_TRAP_EL2; 2490 } 2491 } 2492 break; 2493 2494 case 1: 2495 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2496 if (has_el2 && timeridx == GTIMER_PHYS && 2497 (hcr & HCR_E2H 2498 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2499 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2500 return CP_ACCESS_TRAP_EL2; 2501 } 2502 break; 2503 } 2504 return CP_ACCESS_OK; 2505 } 2506 2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2508 bool isread) 2509 { 2510 unsigned int cur_el = arm_current_el(env); 2511 bool has_el2 = arm_is_el2_enabled(env); 2512 uint64_t hcr = arm_hcr_el2_eff(env); 2513 2514 switch (cur_el) { 2515 case 0: 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2518 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2519 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2520 } 2521 2522 /* 2523 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2524 * EL0 if EL0[PV]TEN is zero. 2525 */ 2526 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2527 return CP_ACCESS_TRAP; 2528 } 2529 /* fall through */ 2530 2531 case 1: 2532 if (has_el2 && timeridx == GTIMER_PHYS) { 2533 if (hcr & HCR_E2H) { 2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2535 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2536 return CP_ACCESS_TRAP_EL2; 2537 } 2538 } else { 2539 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2540 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2541 return CP_ACCESS_TRAP_EL2; 2542 } 2543 } 2544 } 2545 break; 2546 } 2547 return CP_ACCESS_OK; 2548 } 2549 2550 static CPAccessResult gt_pct_access(CPUARMState *env, 2551 const ARMCPRegInfo *ri, 2552 bool isread) 2553 { 2554 return gt_counter_access(env, GTIMER_PHYS, isread); 2555 } 2556 2557 static CPAccessResult gt_vct_access(CPUARMState *env, 2558 const ARMCPRegInfo *ri, 2559 bool isread) 2560 { 2561 return gt_counter_access(env, GTIMER_VIRT, isread); 2562 } 2563 2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_timer_access(env, GTIMER_PHYS, isread); 2568 } 2569 2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2571 bool isread) 2572 { 2573 return gt_timer_access(env, GTIMER_VIRT, isread); 2574 } 2575 2576 static CPAccessResult gt_stimer_access(CPUARMState *env, 2577 const ARMCPRegInfo *ri, 2578 bool isread) 2579 { 2580 /* 2581 * The AArch64 register view of the secure physical timer is 2582 * always accessible from EL3, and configurably accessible from 2583 * Secure EL1. 2584 */ 2585 switch (arm_current_el(env)) { 2586 case 1: 2587 if (!arm_is_secure(env)) { 2588 return CP_ACCESS_TRAP; 2589 } 2590 if (!(env->cp15.scr_el3 & SCR_ST)) { 2591 return CP_ACCESS_TRAP_EL3; 2592 } 2593 return CP_ACCESS_OK; 2594 case 0: 2595 case 2: 2596 return CP_ACCESS_TRAP; 2597 case 3: 2598 return CP_ACCESS_OK; 2599 default: 2600 g_assert_not_reached(); 2601 } 2602 } 2603 2604 static uint64_t gt_get_countervalue(CPUARMState *env) 2605 { 2606 ARMCPU *cpu = env_archcpu(env); 2607 2608 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2609 } 2610 2611 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2612 { 2613 CPUARMState *env = &cpu->env; 2614 uint64_t cnthctl = env->cp15.cnthctl_el2; 2615 ARMSecuritySpace ss = arm_security_space(env); 2616 /* ISTATUS && !IMASK */ 2617 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2618 2619 /* 2620 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2621 * It is RES0 in Secure and NonSecure state. 2622 */ 2623 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2624 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2625 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2626 irqstate = 0; 2627 } 2628 2629 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2630 trace_arm_gt_update_irq(timeridx, irqstate); 2631 } 2632 2633 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2634 { 2635 /* 2636 * Changing security state between Root and Secure/NonSecure, which may 2637 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2638 * mask bits. Update the IRQ state accordingly. 2639 */ 2640 gt_update_irq(cpu, GTIMER_VIRT); 2641 gt_update_irq(cpu, GTIMER_PHYS); 2642 } 2643 2644 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2645 { 2646 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2647 2648 if (gt->ctl & 1) { 2649 /* 2650 * Timer enabled: calculate and set current ISTATUS, irq, and 2651 * reset timer to when ISTATUS next has to change 2652 */ 2653 uint64_t offset = timeridx == GTIMER_VIRT ? 2654 cpu->env.cp15.cntvoff_el2 : 0; 2655 uint64_t count = gt_get_countervalue(&cpu->env); 2656 /* Note that this must be unsigned 64 bit arithmetic: */ 2657 int istatus = count - offset >= gt->cval; 2658 uint64_t nexttick; 2659 2660 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2661 2662 if (istatus) { 2663 /* Next transition is when count rolls back over to zero */ 2664 nexttick = UINT64_MAX; 2665 } else { 2666 /* Next transition is when we hit cval */ 2667 nexttick = gt->cval + offset; 2668 } 2669 /* 2670 * Note that the desired next expiry time might be beyond the 2671 * signed-64-bit range of a QEMUTimer -- in this case we just 2672 * set the timer for as far in the future as possible. When the 2673 * timer expires we will reset the timer for any remaining period. 2674 */ 2675 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2676 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2677 } else { 2678 timer_mod(cpu->gt_timer[timeridx], nexttick); 2679 } 2680 trace_arm_gt_recalc(timeridx, nexttick); 2681 } else { 2682 /* Timer disabled: ISTATUS and timer output always clear */ 2683 gt->ctl &= ~4; 2684 timer_del(cpu->gt_timer[timeridx]); 2685 trace_arm_gt_recalc_disabled(timeridx); 2686 } 2687 gt_update_irq(cpu, timeridx); 2688 } 2689 2690 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2691 int timeridx) 2692 { 2693 ARMCPU *cpu = env_archcpu(env); 2694 2695 timer_del(cpu->gt_timer[timeridx]); 2696 } 2697 2698 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 return gt_get_countervalue(env); 2701 } 2702 2703 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2704 { 2705 uint64_t hcr; 2706 2707 switch (arm_current_el(env)) { 2708 case 2: 2709 hcr = arm_hcr_el2_eff(env); 2710 if (hcr & HCR_E2H) { 2711 return 0; 2712 } 2713 break; 2714 case 0: 2715 hcr = arm_hcr_el2_eff(env); 2716 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2717 return 0; 2718 } 2719 break; 2720 } 2721 2722 return env->cp15.cntvoff_el2; 2723 } 2724 2725 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2726 { 2727 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2728 } 2729 2730 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2731 int timeridx, 2732 uint64_t value) 2733 { 2734 trace_arm_gt_cval_write(timeridx, value); 2735 env->cp15.c14_timer[timeridx].cval = value; 2736 gt_recalc_timer(env_archcpu(env), timeridx); 2737 } 2738 2739 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2740 int timeridx) 2741 { 2742 uint64_t offset = 0; 2743 2744 switch (timeridx) { 2745 case GTIMER_VIRT: 2746 case GTIMER_HYPVIRT: 2747 offset = gt_virt_cnt_offset(env); 2748 break; 2749 } 2750 2751 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2752 (gt_get_countervalue(env) - offset)); 2753 } 2754 2755 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 int timeridx, 2757 uint64_t value) 2758 { 2759 uint64_t offset = 0; 2760 2761 switch (timeridx) { 2762 case GTIMER_VIRT: 2763 case GTIMER_HYPVIRT: 2764 offset = gt_virt_cnt_offset(env); 2765 break; 2766 } 2767 2768 trace_arm_gt_tval_write(timeridx, value); 2769 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2770 sextract64(value, 0, 32); 2771 gt_recalc_timer(env_archcpu(env), timeridx); 2772 } 2773 2774 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2775 int timeridx, 2776 uint64_t value) 2777 { 2778 ARMCPU *cpu = env_archcpu(env); 2779 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2780 2781 trace_arm_gt_ctl_write(timeridx, value); 2782 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2783 if ((oldval ^ value) & 1) { 2784 /* Enable toggled */ 2785 gt_recalc_timer(cpu, timeridx); 2786 } else if ((oldval ^ value) & 2) { 2787 /* 2788 * IMASK toggled: don't need to recalculate, 2789 * just set the interrupt line based on ISTATUS 2790 */ 2791 trace_arm_gt_imask_toggle(timeridx); 2792 gt_update_irq(cpu, timeridx); 2793 } 2794 } 2795 2796 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2797 { 2798 gt_timer_reset(env, ri, GTIMER_PHYS); 2799 } 2800 2801 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2802 uint64_t value) 2803 { 2804 gt_cval_write(env, ri, GTIMER_PHYS, value); 2805 } 2806 2807 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2808 { 2809 return gt_tval_read(env, ri, GTIMER_PHYS); 2810 } 2811 2812 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 gt_tval_write(env, ri, GTIMER_PHYS, value); 2816 } 2817 2818 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2819 uint64_t value) 2820 { 2821 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2822 } 2823 2824 static int gt_phys_redir_timeridx(CPUARMState *env) 2825 { 2826 switch (arm_mmu_idx(env)) { 2827 case ARMMMUIdx_E20_0: 2828 case ARMMMUIdx_E20_2: 2829 case ARMMMUIdx_E20_2_PAN: 2830 return GTIMER_HYP; 2831 default: 2832 return GTIMER_PHYS; 2833 } 2834 } 2835 2836 static int gt_virt_redir_timeridx(CPUARMState *env) 2837 { 2838 switch (arm_mmu_idx(env)) { 2839 case ARMMMUIdx_E20_0: 2840 case ARMMMUIdx_E20_2: 2841 case ARMMMUIdx_E20_2_PAN: 2842 return GTIMER_HYPVIRT; 2843 default: 2844 return GTIMER_VIRT; 2845 } 2846 } 2847 2848 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2849 const ARMCPRegInfo *ri) 2850 { 2851 int timeridx = gt_phys_redir_timeridx(env); 2852 return env->cp15.c14_timer[timeridx].cval; 2853 } 2854 2855 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 int timeridx = gt_phys_redir_timeridx(env); 2859 gt_cval_write(env, ri, timeridx, value); 2860 } 2861 2862 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2863 const ARMCPRegInfo *ri) 2864 { 2865 int timeridx = gt_phys_redir_timeridx(env); 2866 return gt_tval_read(env, ri, timeridx); 2867 } 2868 2869 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2870 uint64_t value) 2871 { 2872 int timeridx = gt_phys_redir_timeridx(env); 2873 gt_tval_write(env, ri, timeridx, value); 2874 } 2875 2876 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2877 const ARMCPRegInfo *ri) 2878 { 2879 int timeridx = gt_phys_redir_timeridx(env); 2880 return env->cp15.c14_timer[timeridx].ctl; 2881 } 2882 2883 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2884 uint64_t value) 2885 { 2886 int timeridx = gt_phys_redir_timeridx(env); 2887 gt_ctl_write(env, ri, timeridx, value); 2888 } 2889 2890 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2891 { 2892 gt_timer_reset(env, ri, GTIMER_VIRT); 2893 } 2894 2895 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2896 uint64_t value) 2897 { 2898 gt_cval_write(env, ri, GTIMER_VIRT, value); 2899 } 2900 2901 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2902 { 2903 return gt_tval_read(env, ri, GTIMER_VIRT); 2904 } 2905 2906 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2907 uint64_t value) 2908 { 2909 gt_tval_write(env, ri, GTIMER_VIRT, value); 2910 } 2911 2912 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2913 uint64_t value) 2914 { 2915 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2916 } 2917 2918 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 ARMCPU *cpu = env_archcpu(env); 2922 uint32_t oldval = env->cp15.cnthctl_el2; 2923 2924 raw_write(env, ri, value); 2925 2926 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2927 gt_update_irq(cpu, GTIMER_VIRT); 2928 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2929 gt_update_irq(cpu, GTIMER_PHYS); 2930 } 2931 } 2932 2933 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 ARMCPU *cpu = env_archcpu(env); 2937 2938 trace_arm_gt_cntvoff_write(value); 2939 raw_write(env, ri, value); 2940 gt_recalc_timer(cpu, GTIMER_VIRT); 2941 } 2942 2943 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2944 const ARMCPRegInfo *ri) 2945 { 2946 int timeridx = gt_virt_redir_timeridx(env); 2947 return env->cp15.c14_timer[timeridx].cval; 2948 } 2949 2950 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 int timeridx = gt_virt_redir_timeridx(env); 2954 gt_cval_write(env, ri, timeridx, value); 2955 } 2956 2957 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2958 const ARMCPRegInfo *ri) 2959 { 2960 int timeridx = gt_virt_redir_timeridx(env); 2961 return gt_tval_read(env, ri, timeridx); 2962 } 2963 2964 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2965 uint64_t value) 2966 { 2967 int timeridx = gt_virt_redir_timeridx(env); 2968 gt_tval_write(env, ri, timeridx, value); 2969 } 2970 2971 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2972 const ARMCPRegInfo *ri) 2973 { 2974 int timeridx = gt_virt_redir_timeridx(env); 2975 return env->cp15.c14_timer[timeridx].ctl; 2976 } 2977 2978 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 int timeridx = gt_virt_redir_timeridx(env); 2982 gt_ctl_write(env, ri, timeridx, value); 2983 } 2984 2985 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2986 { 2987 gt_timer_reset(env, ri, GTIMER_HYP); 2988 } 2989 2990 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2991 uint64_t value) 2992 { 2993 gt_cval_write(env, ri, GTIMER_HYP, value); 2994 } 2995 2996 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2997 { 2998 return gt_tval_read(env, ri, GTIMER_HYP); 2999 } 3000 3001 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3002 uint64_t value) 3003 { 3004 gt_tval_write(env, ri, GTIMER_HYP, value); 3005 } 3006 3007 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3008 uint64_t value) 3009 { 3010 gt_ctl_write(env, ri, GTIMER_HYP, value); 3011 } 3012 3013 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3014 { 3015 gt_timer_reset(env, ri, GTIMER_SEC); 3016 } 3017 3018 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3019 uint64_t value) 3020 { 3021 gt_cval_write(env, ri, GTIMER_SEC, value); 3022 } 3023 3024 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3025 { 3026 return gt_tval_read(env, ri, GTIMER_SEC); 3027 } 3028 3029 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3030 uint64_t value) 3031 { 3032 gt_tval_write(env, ri, GTIMER_SEC, value); 3033 } 3034 3035 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_ctl_write(env, ri, GTIMER_SEC, value); 3039 } 3040 3041 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3044 } 3045 3046 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3050 } 3051 3052 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3053 { 3054 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3055 } 3056 3057 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3058 uint64_t value) 3059 { 3060 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3061 } 3062 3063 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3067 } 3068 3069 void arm_gt_ptimer_cb(void *opaque) 3070 { 3071 ARMCPU *cpu = opaque; 3072 3073 gt_recalc_timer(cpu, GTIMER_PHYS); 3074 } 3075 3076 void arm_gt_vtimer_cb(void *opaque) 3077 { 3078 ARMCPU *cpu = opaque; 3079 3080 gt_recalc_timer(cpu, GTIMER_VIRT); 3081 } 3082 3083 void arm_gt_htimer_cb(void *opaque) 3084 { 3085 ARMCPU *cpu = opaque; 3086 3087 gt_recalc_timer(cpu, GTIMER_HYP); 3088 } 3089 3090 void arm_gt_stimer_cb(void *opaque) 3091 { 3092 ARMCPU *cpu = opaque; 3093 3094 gt_recalc_timer(cpu, GTIMER_SEC); 3095 } 3096 3097 void arm_gt_hvtimer_cb(void *opaque) 3098 { 3099 ARMCPU *cpu = opaque; 3100 3101 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3102 } 3103 3104 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3105 { 3106 ARMCPU *cpu = env_archcpu(env); 3107 3108 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3109 } 3110 3111 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3112 /* 3113 * Note that CNTFRQ is purely reads-as-written for the benefit 3114 * of software; writing it doesn't actually change the timer frequency. 3115 * Our reset value matches the fixed frequency we implement the timer at. 3116 */ 3117 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3118 .type = ARM_CP_ALIAS, 3119 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3120 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3121 }, 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetfn = arm_gt_cntfrq_reset, 3127 }, 3128 /* overall control: mostly access permissions */ 3129 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3130 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3131 .access = PL1_RW, 3132 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3133 .resetvalue = 0, 3134 }, 3135 /* per-timer control */ 3136 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3137 .secure = ARM_CP_SECSTATE_NS, 3138 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3139 .accessfn = gt_ptimer_access, 3140 .fieldoffset = offsetoflow32(CPUARMState, 3141 cp15.c14_timer[GTIMER_PHYS].ctl), 3142 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3143 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3144 }, 3145 { .name = "CNTP_CTL_S", 3146 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3147 .secure = ARM_CP_SECSTATE_S, 3148 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3149 .accessfn = gt_ptimer_access, 3150 .fieldoffset = offsetoflow32(CPUARMState, 3151 cp15.c14_timer[GTIMER_SEC].ctl), 3152 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3153 }, 3154 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3156 .type = ARM_CP_IO, .access = PL0_RW, 3157 .accessfn = gt_ptimer_access, 3158 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3159 .resetvalue = 0, 3160 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3161 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3162 }, 3163 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3164 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3165 .accessfn = gt_vtimer_access, 3166 .fieldoffset = offsetoflow32(CPUARMState, 3167 cp15.c14_timer[GTIMER_VIRT].ctl), 3168 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3169 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3170 }, 3171 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3173 .type = ARM_CP_IO, .access = PL0_RW, 3174 .accessfn = gt_vtimer_access, 3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3176 .resetvalue = 0, 3177 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3178 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3179 }, 3180 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3181 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3182 .secure = ARM_CP_SECSTATE_NS, 3183 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3184 .accessfn = gt_ptimer_access, 3185 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3186 }, 3187 { .name = "CNTP_TVAL_S", 3188 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3189 .secure = ARM_CP_SECSTATE_S, 3190 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3191 .accessfn = gt_ptimer_access, 3192 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3193 }, 3194 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3196 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3197 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3198 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3199 }, 3200 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3201 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3202 .accessfn = gt_vtimer_access, 3203 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3204 }, 3205 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3206 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3209 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3210 }, 3211 /* The counter itself */ 3212 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3213 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3214 .accessfn = gt_pct_access, 3215 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3216 }, 3217 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3218 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3219 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3220 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3221 }, 3222 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3223 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3224 .accessfn = gt_vct_access, 3225 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3226 }, 3227 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3228 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3229 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3230 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3231 }, 3232 /* Comparison value, indicating when the timer goes off */ 3233 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3234 .secure = ARM_CP_SECSTATE_NS, 3235 .access = PL0_RW, 3236 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3237 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3238 .accessfn = gt_ptimer_access, 3239 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3240 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3241 }, 3242 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3243 .secure = ARM_CP_SECSTATE_S, 3244 .access = PL0_RW, 3245 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3246 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3247 .accessfn = gt_ptimer_access, 3248 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3249 }, 3250 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3251 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3252 .access = PL0_RW, 3253 .type = ARM_CP_IO, 3254 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3255 .resetvalue = 0, .accessfn = gt_ptimer_access, 3256 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3257 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3258 }, 3259 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3260 .access = PL0_RW, 3261 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3263 .accessfn = gt_vtimer_access, 3264 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3265 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3266 }, 3267 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3269 .access = PL0_RW, 3270 .type = ARM_CP_IO, 3271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3272 .resetvalue = 0, .accessfn = gt_vtimer_access, 3273 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3274 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3275 }, 3276 /* 3277 * Secure timer -- this is actually restricted to only EL3 3278 * and configurably Secure-EL1 via the accessfn. 3279 */ 3280 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3281 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3282 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3283 .accessfn = gt_stimer_access, 3284 .readfn = gt_sec_tval_read, 3285 .writefn = gt_sec_tval_write, 3286 .resetfn = gt_sec_timer_reset, 3287 }, 3288 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3289 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3290 .type = ARM_CP_IO, .access = PL1_RW, 3291 .accessfn = gt_stimer_access, 3292 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3293 .resetvalue = 0, 3294 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3295 }, 3296 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3297 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3298 .type = ARM_CP_IO, .access = PL1_RW, 3299 .accessfn = gt_stimer_access, 3300 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3301 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3302 }, 3303 }; 3304 3305 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3306 bool isread) 3307 { 3308 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3309 return CP_ACCESS_TRAP; 3310 } 3311 return CP_ACCESS_OK; 3312 } 3313 3314 #else 3315 3316 /* 3317 * In user-mode most of the generic timer registers are inaccessible 3318 * however modern kernels (4.12+) allow access to cntvct_el0 3319 */ 3320 3321 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3322 { 3323 ARMCPU *cpu = env_archcpu(env); 3324 3325 /* 3326 * Currently we have no support for QEMUTimer in linux-user so we 3327 * can't call gt_get_countervalue(env), instead we directly 3328 * call the lower level functions. 3329 */ 3330 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3331 } 3332 3333 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3334 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3336 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3337 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3338 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3339 }, 3340 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3341 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3342 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3343 .readfn = gt_virt_cnt_read, 3344 }, 3345 }; 3346 3347 #endif 3348 3349 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3350 { 3351 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3352 raw_write(env, ri, value); 3353 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3354 raw_write(env, ri, value & 0xfffff6ff); 3355 } else { 3356 raw_write(env, ri, value & 0xfffff1ff); 3357 } 3358 } 3359 3360 #ifndef CONFIG_USER_ONLY 3361 /* get_phys_addr() isn't present for user-mode-only targets */ 3362 3363 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3364 bool isread) 3365 { 3366 if (ri->opc2 & 4) { 3367 /* 3368 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3369 * Secure EL1 (which can only happen if EL3 is AArch64). 3370 * They are simply UNDEF if executed from NS EL1. 3371 * They function normally from EL2 or EL3. 3372 */ 3373 if (arm_current_el(env) == 1) { 3374 if (arm_is_secure_below_el3(env)) { 3375 if (env->cp15.scr_el3 & SCR_EEL2) { 3376 return CP_ACCESS_TRAP_EL2; 3377 } 3378 return CP_ACCESS_TRAP_EL3; 3379 } 3380 return CP_ACCESS_TRAP_UNCATEGORIZED; 3381 } 3382 } 3383 return CP_ACCESS_OK; 3384 } 3385 3386 #ifdef CONFIG_TCG 3387 static int par_el1_shareability(GetPhysAddrResult *res) 3388 { 3389 /* 3390 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3391 * memory -- see pseudocode PAREncodeShareability(). 3392 */ 3393 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3394 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3395 return 2; 3396 } 3397 return res->cacheattrs.shareability; 3398 } 3399 3400 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3401 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3402 ARMSecuritySpace ss) 3403 { 3404 bool ret; 3405 uint64_t par64; 3406 bool format64 = false; 3407 ARMMMUFaultInfo fi = {}; 3408 GetPhysAddrResult res = {}; 3409 3410 /* 3411 * I_MXTJT: Granule protection checks are not performed on the final address 3412 * of a successful translation. 3413 */ 3414 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3415 &res, &fi); 3416 3417 /* 3418 * ATS operations only do S1 or S1+S2 translations, so we never 3419 * have to deal with the ARMCacheAttrs format for S2 only. 3420 */ 3421 assert(!res.cacheattrs.is_s2_format); 3422 3423 if (ret) { 3424 /* 3425 * Some kinds of translation fault must cause exceptions rather 3426 * than being reported in the PAR. 3427 */ 3428 int current_el = arm_current_el(env); 3429 int target_el; 3430 uint32_t syn, fsr, fsc; 3431 bool take_exc = false; 3432 3433 if (fi.s1ptw && current_el == 1 3434 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3435 /* 3436 * Synchronous stage 2 fault on an access made as part of the 3437 * translation table walk for AT S1E0* or AT S1E1* insn 3438 * executed from NS EL1. If this is a synchronous external abort 3439 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3440 * to EL3. Otherwise the fault is taken as an exception to EL2, 3441 * and HPFAR_EL2 holds the faulting IPA. 3442 */ 3443 if (fi.type == ARMFault_SyncExternalOnWalk && 3444 (env->cp15.scr_el3 & SCR_EA)) { 3445 target_el = 3; 3446 } else { 3447 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3448 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3449 env->cp15.hpfar_el2 |= HPFAR_NS; 3450 } 3451 target_el = 2; 3452 } 3453 take_exc = true; 3454 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3455 /* 3456 * Synchronous external aborts during a translation table walk 3457 * are taken as Data Abort exceptions. 3458 */ 3459 if (fi.stage2) { 3460 if (current_el == 3) { 3461 target_el = 3; 3462 } else { 3463 target_el = 2; 3464 } 3465 } else { 3466 target_el = exception_target_el(env); 3467 } 3468 take_exc = true; 3469 } 3470 3471 if (take_exc) { 3472 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3473 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3474 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3475 fsr = arm_fi_to_lfsc(&fi); 3476 fsc = extract32(fsr, 0, 6); 3477 } else { 3478 fsr = arm_fi_to_sfsc(&fi); 3479 fsc = 0x3f; 3480 } 3481 /* 3482 * Report exception with ESR indicating a fault due to a 3483 * translation table walk for a cache maintenance instruction. 3484 */ 3485 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3486 fi.ea, 1, fi.s1ptw, 1, fsc); 3487 env->exception.vaddress = value; 3488 env->exception.fsr = fsr; 3489 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3490 } 3491 } 3492 3493 if (is_a64(env)) { 3494 format64 = true; 3495 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3496 /* 3497 * ATS1Cxx: 3498 * * TTBCR.EAE determines whether the result is returned using the 3499 * 32-bit or the 64-bit PAR format 3500 * * Instructions executed in Hyp mode always use the 64bit format 3501 * 3502 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3503 * * The Non-secure TTBCR.EAE bit is set to 1 3504 * * The implementation includes EL2, and the value of HCR.VM is 1 3505 * 3506 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3507 * 3508 * ATS1Hx always uses the 64bit format. 3509 */ 3510 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3511 3512 if (arm_feature(env, ARM_FEATURE_EL2)) { 3513 if (mmu_idx == ARMMMUIdx_E10_0 || 3514 mmu_idx == ARMMMUIdx_E10_1 || 3515 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3516 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3517 } else { 3518 format64 |= arm_current_el(env) == 2; 3519 } 3520 } 3521 } 3522 3523 if (format64) { 3524 /* Create a 64-bit PAR */ 3525 par64 = (1 << 11); /* LPAE bit always set */ 3526 if (!ret) { 3527 par64 |= res.f.phys_addr & ~0xfffULL; 3528 if (!res.f.attrs.secure) { 3529 par64 |= (1 << 9); /* NS */ 3530 } 3531 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3532 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3533 } else { 3534 uint32_t fsr = arm_fi_to_lfsc(&fi); 3535 3536 par64 |= 1; /* F */ 3537 par64 |= (fsr & 0x3f) << 1; /* FS */ 3538 if (fi.stage2) { 3539 par64 |= (1 << 9); /* S */ 3540 } 3541 if (fi.s1ptw) { 3542 par64 |= (1 << 8); /* PTW */ 3543 } 3544 } 3545 } else { 3546 /* 3547 * fsr is a DFSR/IFSR value for the short descriptor 3548 * translation table format (with WnR always clear). 3549 * Convert it to a 32-bit PAR. 3550 */ 3551 if (!ret) { 3552 /* We do not set any attribute bits in the PAR */ 3553 if (res.f.lg_page_size == 24 3554 && arm_feature(env, ARM_FEATURE_V7)) { 3555 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3556 } else { 3557 par64 = res.f.phys_addr & 0xfffff000; 3558 } 3559 if (!res.f.attrs.secure) { 3560 par64 |= (1 << 9); /* NS */ 3561 } 3562 } else { 3563 uint32_t fsr = arm_fi_to_sfsc(&fi); 3564 3565 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3566 ((fsr & 0xf) << 1) | 1; 3567 } 3568 } 3569 return par64; 3570 } 3571 #endif /* CONFIG_TCG */ 3572 3573 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3574 { 3575 #ifdef CONFIG_TCG 3576 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3577 uint64_t par64; 3578 ARMMMUIdx mmu_idx; 3579 int el = arm_current_el(env); 3580 ARMSecuritySpace ss = arm_security_space(env); 3581 3582 switch (ri->opc2 & 6) { 3583 case 0: 3584 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3585 switch (el) { 3586 case 3: 3587 mmu_idx = ARMMMUIdx_E3; 3588 break; 3589 case 2: 3590 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3591 /* fall through */ 3592 case 1: 3593 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3594 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3595 } else { 3596 mmu_idx = ARMMMUIdx_Stage1_E1; 3597 } 3598 break; 3599 default: 3600 g_assert_not_reached(); 3601 } 3602 break; 3603 case 2: 3604 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3605 switch (el) { 3606 case 3: 3607 mmu_idx = ARMMMUIdx_E10_0; 3608 break; 3609 case 2: 3610 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3611 mmu_idx = ARMMMUIdx_Stage1_E0; 3612 break; 3613 case 1: 3614 mmu_idx = ARMMMUIdx_Stage1_E0; 3615 break; 3616 default: 3617 g_assert_not_reached(); 3618 } 3619 break; 3620 case 4: 3621 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3622 mmu_idx = ARMMMUIdx_E10_1; 3623 ss = ARMSS_NonSecure; 3624 break; 3625 case 6: 3626 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3627 mmu_idx = ARMMMUIdx_E10_0; 3628 ss = ARMSS_NonSecure; 3629 break; 3630 default: 3631 g_assert_not_reached(); 3632 } 3633 3634 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3635 3636 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3637 #else 3638 /* Handled by hardware accelerator. */ 3639 g_assert_not_reached(); 3640 #endif /* CONFIG_TCG */ 3641 } 3642 3643 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3644 uint64_t value) 3645 { 3646 #ifdef CONFIG_TCG 3647 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3648 uint64_t par64; 3649 3650 /* There is no SecureEL2 for AArch32. */ 3651 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3652 ARMSS_NonSecure); 3653 3654 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3655 #else 3656 /* Handled by hardware accelerator. */ 3657 g_assert_not_reached(); 3658 #endif /* CONFIG_TCG */ 3659 } 3660 3661 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3662 bool isread) 3663 { 3664 /* 3665 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3666 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3667 * only happen when executing at EL3 because that combination also causes an 3668 * illegal exception return. We don't need to check FEAT_RME either, because 3669 * scr_write() ensures that the NSE bit is not set otherwise. 3670 */ 3671 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3672 return CP_ACCESS_TRAP; 3673 } 3674 return CP_ACCESS_OK; 3675 } 3676 3677 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3678 bool isread) 3679 { 3680 if (arm_current_el(env) == 3 && 3681 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3682 return CP_ACCESS_TRAP; 3683 } 3684 return at_e012_access(env, ri, isread); 3685 } 3686 3687 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3688 uint64_t value) 3689 { 3690 #ifdef CONFIG_TCG 3691 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3692 ARMMMUIdx mmu_idx; 3693 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3694 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3695 3696 switch (ri->opc2 & 6) { 3697 case 0: 3698 switch (ri->opc1) { 3699 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3700 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3701 mmu_idx = regime_e20 ? 3702 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3703 } else { 3704 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3705 } 3706 break; 3707 case 4: /* AT S1E2R, AT S1E2W */ 3708 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3709 break; 3710 case 6: /* AT S1E3R, AT S1E3W */ 3711 mmu_idx = ARMMMUIdx_E3; 3712 break; 3713 default: 3714 g_assert_not_reached(); 3715 } 3716 break; 3717 case 2: /* AT S1E0R, AT S1E0W */ 3718 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3719 break; 3720 case 4: /* AT S12E1R, AT S12E1W */ 3721 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3722 break; 3723 case 6: /* AT S12E0R, AT S12E0W */ 3724 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3725 break; 3726 default: 3727 g_assert_not_reached(); 3728 } 3729 3730 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3731 mmu_idx, arm_security_space(env)); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 }; 3752 3753 /* Return basic MPU access permission bits. */ 3754 static uint32_t simple_mpu_ap_bits(uint32_t val) 3755 { 3756 uint32_t ret; 3757 uint32_t mask; 3758 int i; 3759 ret = 0; 3760 mask = 3; 3761 for (i = 0; i < 16; i += 2) { 3762 ret |= (val >> i) & mask; 3763 mask <<= 2; 3764 } 3765 return ret; 3766 } 3767 3768 /* Pad basic MPU access permission bits to extended format. */ 3769 static uint32_t extended_mpu_ap_bits(uint32_t val) 3770 { 3771 uint32_t ret; 3772 uint32_t mask; 3773 int i; 3774 ret = 0; 3775 mask = 3; 3776 for (i = 0; i < 16; i += 2) { 3777 ret |= (val & mask) << i; 3778 mask <<= 2; 3779 } 3780 return ret; 3781 } 3782 3783 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3787 } 3788 3789 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3790 { 3791 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3792 } 3793 3794 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3795 uint64_t value) 3796 { 3797 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3798 } 3799 3800 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3801 { 3802 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3803 } 3804 3805 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3806 { 3807 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3808 3809 if (!u32p) { 3810 return 0; 3811 } 3812 3813 u32p += env->pmsav7.rnr[M_REG_NS]; 3814 return *u32p; 3815 } 3816 3817 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3818 uint64_t value) 3819 { 3820 ARMCPU *cpu = env_archcpu(env); 3821 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3822 3823 if (!u32p) { 3824 return; 3825 } 3826 3827 u32p += env->pmsav7.rnr[M_REG_NS]; 3828 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3829 *u32p = value; 3830 } 3831 3832 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3833 uint64_t value) 3834 { 3835 ARMCPU *cpu = env_archcpu(env); 3836 uint32_t nrgs = cpu->pmsav7_dregion; 3837 3838 if (value >= nrgs) { 3839 qemu_log_mask(LOG_GUEST_ERROR, 3840 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3841 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3842 return; 3843 } 3844 3845 raw_write(env, ri, value); 3846 } 3847 3848 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 ARMCPU *cpu = env_archcpu(env); 3852 3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3854 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3855 } 3856 3857 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3858 { 3859 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3860 } 3861 3862 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3863 uint64_t value) 3864 { 3865 ARMCPU *cpu = env_archcpu(env); 3866 3867 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3868 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3869 } 3870 3871 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3872 { 3873 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3874 } 3875 3876 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 ARMCPU *cpu = env_archcpu(env); 3880 3881 /* 3882 * Ignore writes that would select not implemented region. 3883 * This is architecturally UNPREDICTABLE. 3884 */ 3885 if (value >= cpu->pmsav7_dregion) { 3886 return; 3887 } 3888 3889 env->pmsav7.rnr[M_REG_NS] = value; 3890 } 3891 3892 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 ARMCPU *cpu = env_archcpu(env); 3896 3897 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3898 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3899 } 3900 3901 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3902 { 3903 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3904 } 3905 3906 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3907 uint64_t value) 3908 { 3909 ARMCPU *cpu = env_archcpu(env); 3910 3911 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3912 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3913 } 3914 3915 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3916 { 3917 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3918 } 3919 3920 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3921 uint64_t value) 3922 { 3923 uint32_t n; 3924 uint32_t bit; 3925 ARMCPU *cpu = env_archcpu(env); 3926 3927 /* Ignore writes to unimplemented regions */ 3928 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3929 value &= MAKE_64BIT_MASK(0, rmax); 3930 3931 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3932 3933 /* Register alias is only valid for first 32 indexes */ 3934 for (n = 0; n < rmax; ++n) { 3935 bit = extract32(value, n, 1); 3936 env->pmsav8.hprlar[n] = deposit32( 3937 env->pmsav8.hprlar[n], 0, 1, bit); 3938 } 3939 } 3940 3941 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3942 { 3943 uint32_t n; 3944 uint32_t result = 0x0; 3945 ARMCPU *cpu = env_archcpu(env); 3946 3947 /* Register alias is only valid for first 32 indexes */ 3948 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3949 if (env->pmsav8.hprlar[n] & 0x1) { 3950 result |= (0x1 << n); 3951 } 3952 } 3953 return result; 3954 } 3955 3956 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3957 uint64_t value) 3958 { 3959 ARMCPU *cpu = env_archcpu(env); 3960 3961 /* 3962 * Ignore writes that would select not implemented region. 3963 * This is architecturally UNPREDICTABLE. 3964 */ 3965 if (value >= cpu->pmsav8r_hdregion) { 3966 return; 3967 } 3968 3969 env->pmsav8.hprselr = value; 3970 } 3971 3972 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3973 uint64_t value) 3974 { 3975 ARMCPU *cpu = env_archcpu(env); 3976 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3977 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3978 3979 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3980 3981 if (ri->opc1 & 4) { 3982 if (index >= cpu->pmsav8r_hdregion) { 3983 return; 3984 } 3985 if (ri->opc2 & 0x1) { 3986 env->pmsav8.hprlar[index] = value; 3987 } else { 3988 env->pmsav8.hprbar[index] = value; 3989 } 3990 } else { 3991 if (index >= cpu->pmsav7_dregion) { 3992 return; 3993 } 3994 if (ri->opc2 & 0x1) { 3995 env->pmsav8.rlar[M_REG_NS][index] = value; 3996 } else { 3997 env->pmsav8.rbar[M_REG_NS][index] = value; 3998 } 3999 } 4000 } 4001 4002 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4003 { 4004 ARMCPU *cpu = env_archcpu(env); 4005 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4006 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4007 4008 if (ri->opc1 & 4) { 4009 if (index >= cpu->pmsav8r_hdregion) { 4010 return 0x0; 4011 } 4012 if (ri->opc2 & 0x1) { 4013 return env->pmsav8.hprlar[index]; 4014 } else { 4015 return env->pmsav8.hprbar[index]; 4016 } 4017 } else { 4018 if (index >= cpu->pmsav7_dregion) { 4019 return 0x0; 4020 } 4021 if (ri->opc2 & 0x1) { 4022 return env->pmsav8.rlar[M_REG_NS][index]; 4023 } else { 4024 return env->pmsav8.rbar[M_REG_NS][index]; 4025 } 4026 } 4027 } 4028 4029 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4030 { .name = "PRBAR", 4031 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4032 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4033 .accessfn = access_tvm_trvm, 4034 .readfn = prbar_read, .writefn = prbar_write }, 4035 { .name = "PRLAR", 4036 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4037 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4038 .accessfn = access_tvm_trvm, 4039 .readfn = prlar_read, .writefn = prlar_write }, 4040 { .name = "PRSELR", .resetvalue = 0, 4041 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4042 .access = PL1_RW, .accessfn = access_tvm_trvm, 4043 .writefn = prselr_write, 4044 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4045 { .name = "HPRBAR", .resetvalue = 0, 4046 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4047 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4048 .readfn = hprbar_read, .writefn = hprbar_write }, 4049 { .name = "HPRLAR", 4050 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4051 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4052 .readfn = hprlar_read, .writefn = hprlar_write }, 4053 { .name = "HPRSELR", .resetvalue = 0, 4054 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4055 .access = PL2_RW, 4056 .writefn = hprselr_write, 4057 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4058 { .name = "HPRENR", 4059 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4060 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4061 .readfn = hprenr_read, .writefn = hprenr_write }, 4062 }; 4063 4064 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4065 /* 4066 * Reset for all these registers is handled in arm_cpu_reset(), 4067 * because the PMSAv7 is also used by M-profile CPUs, which do 4068 * not register cpregs but still need the state to be reset. 4069 */ 4070 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4071 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4072 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4073 .readfn = pmsav7_read, .writefn = pmsav7_write, 4074 .resetfn = arm_cp_reset_ignore }, 4075 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4076 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4077 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4078 .readfn = pmsav7_read, .writefn = pmsav7_write, 4079 .resetfn = arm_cp_reset_ignore }, 4080 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4081 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4082 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4083 .readfn = pmsav7_read, .writefn = pmsav7_write, 4084 .resetfn = arm_cp_reset_ignore }, 4085 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4086 .access = PL1_RW, 4087 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4088 .writefn = pmsav7_rgnr_write, 4089 .resetfn = arm_cp_reset_ignore }, 4090 }; 4091 4092 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4093 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4094 .access = PL1_RW, .type = ARM_CP_ALIAS, 4095 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4096 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4097 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4098 .access = PL1_RW, .type = ARM_CP_ALIAS, 4099 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4100 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4101 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4102 .access = PL1_RW, 4103 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4104 .resetvalue = 0, }, 4105 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4106 .access = PL1_RW, 4107 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4108 .resetvalue = 0, }, 4109 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4110 .access = PL1_RW, 4111 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4112 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4113 .access = PL1_RW, 4114 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4115 /* Protection region base and size registers */ 4116 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4117 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4118 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4119 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4120 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4121 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4122 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4123 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4124 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4125 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4126 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4127 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4128 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4129 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4130 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4131 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4132 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4133 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4134 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4135 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4136 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4137 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4138 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4139 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4140 }; 4141 4142 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4143 uint64_t value) 4144 { 4145 ARMCPU *cpu = env_archcpu(env); 4146 4147 if (!arm_feature(env, ARM_FEATURE_V8)) { 4148 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4149 /* 4150 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4151 * using Long-descriptor translation table format 4152 */ 4153 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4154 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4155 /* 4156 * In an implementation that includes the Security Extensions 4157 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4158 * Short-descriptor translation table format. 4159 */ 4160 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4161 } else { 4162 value &= TTBCR_N; 4163 } 4164 } 4165 4166 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4167 /* 4168 * With LPAE the TTBCR could result in a change of ASID 4169 * via the TTBCR.A1 bit, so do a TLB flush. 4170 */ 4171 tlb_flush(CPU(cpu)); 4172 } 4173 raw_write(env, ri, value); 4174 } 4175 4176 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4177 uint64_t value) 4178 { 4179 ARMCPU *cpu = env_archcpu(env); 4180 4181 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4182 tlb_flush(CPU(cpu)); 4183 raw_write(env, ri, value); 4184 } 4185 4186 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4187 uint64_t value) 4188 { 4189 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4190 if (cpreg_field_is_64bit(ri) && 4191 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4192 ARMCPU *cpu = env_archcpu(env); 4193 tlb_flush(CPU(cpu)); 4194 } 4195 raw_write(env, ri, value); 4196 } 4197 4198 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4199 uint64_t value) 4200 { 4201 /* 4202 * If we are running with E2&0 regime, then an ASID is active. 4203 * Flush if that might be changing. Note we're not checking 4204 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4205 * holds the active ASID, only checking the field that might. 4206 */ 4207 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4208 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4209 uint16_t mask = ARMMMUIdxBit_E20_2 | 4210 ARMMMUIdxBit_E20_2_PAN | 4211 ARMMMUIdxBit_E20_0; 4212 tlb_flush_by_mmuidx(env_cpu(env), mask); 4213 } 4214 raw_write(env, ri, value); 4215 } 4216 4217 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4218 uint64_t value) 4219 { 4220 ARMCPU *cpu = env_archcpu(env); 4221 CPUState *cs = CPU(cpu); 4222 4223 /* 4224 * A change in VMID to the stage2 page table (Stage2) invalidates 4225 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4226 */ 4227 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4228 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4229 } 4230 raw_write(env, ri, value); 4231 } 4232 4233 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4234 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4235 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4236 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4237 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4238 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4239 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4241 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4242 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4243 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4244 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4245 offsetof(CPUARMState, cp15.dfar_ns) } }, 4246 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4247 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4248 .access = PL1_RW, .accessfn = access_tvm_trvm, 4249 .fgt = FGT_FAR_EL1, 4250 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4251 .resetvalue = 0, }, 4252 }; 4253 4254 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4255 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4256 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4257 .access = PL1_RW, .accessfn = access_tvm_trvm, 4258 .fgt = FGT_ESR_EL1, 4259 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4260 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4261 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4262 .access = PL1_RW, .accessfn = access_tvm_trvm, 4263 .fgt = FGT_TTBR0_EL1, 4264 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4265 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4266 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4267 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4268 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4269 .access = PL1_RW, .accessfn = access_tvm_trvm, 4270 .fgt = FGT_TTBR1_EL1, 4271 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4272 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4273 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4274 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4275 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4276 .access = PL1_RW, .accessfn = access_tvm_trvm, 4277 .fgt = FGT_TCR_EL1, 4278 .writefn = vmsa_tcr_el12_write, 4279 .raw_writefn = raw_write, 4280 .resetvalue = 0, 4281 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4282 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4283 .access = PL1_RW, .accessfn = access_tvm_trvm, 4284 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4285 .raw_writefn = raw_write, 4286 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4287 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4288 }; 4289 4290 /* 4291 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4292 * qemu tlbs nor adjusting cached masks. 4293 */ 4294 static const ARMCPRegInfo ttbcr2_reginfo = { 4295 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4296 .access = PL1_RW, .accessfn = access_tvm_trvm, 4297 .type = ARM_CP_ALIAS, 4298 .bank_fieldoffsets = { 4299 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4300 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4301 }, 4302 }; 4303 4304 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4305 uint64_t value) 4306 { 4307 env->cp15.c15_ticonfig = value & 0xe7; 4308 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4309 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4310 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4311 } 4312 4313 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4314 uint64_t value) 4315 { 4316 env->cp15.c15_threadid = value & 0xffff; 4317 } 4318 4319 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4320 uint64_t value) 4321 { 4322 /* Wait-for-interrupt (deprecated) */ 4323 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4324 } 4325 4326 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4327 uint64_t value) 4328 { 4329 /* 4330 * On OMAP there are registers indicating the max/min index of dcache lines 4331 * containing a dirty line; cache flush operations have to reset these. 4332 */ 4333 env->cp15.c15_i_max = 0x000; 4334 env->cp15.c15_i_min = 0xff0; 4335 } 4336 4337 static const ARMCPRegInfo omap_cp_reginfo[] = { 4338 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4339 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4340 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4341 .resetvalue = 0, }, 4342 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4343 .access = PL1_RW, .type = ARM_CP_NOP }, 4344 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4345 .access = PL1_RW, 4346 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4347 .writefn = omap_ticonfig_write }, 4348 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4349 .access = PL1_RW, 4350 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4351 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4352 .access = PL1_RW, .resetvalue = 0xff0, 4353 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4354 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4355 .access = PL1_RW, 4356 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4357 .writefn = omap_threadid_write }, 4358 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4359 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4360 .type = ARM_CP_NO_RAW, 4361 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4362 /* 4363 * TODO: Peripheral port remap register: 4364 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4365 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4366 * when MMU is off. 4367 */ 4368 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4369 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4370 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4371 .writefn = omap_cachemaint_write }, 4372 { .name = "C9", .cp = 15, .crn = 9, 4373 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4374 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4375 }; 4376 4377 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 env->cp15.c15_cpar = value & 0x3fff; 4381 } 4382 4383 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4384 { .name = "XSCALE_CPAR", 4385 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4386 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4387 .writefn = xscale_cpar_write, }, 4388 { .name = "XSCALE_AUXCR", 4389 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4390 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4391 .resetvalue = 0, }, 4392 /* 4393 * XScale specific cache-lockdown: since we have no cache we NOP these 4394 * and hope the guest does not really rely on cache behaviour. 4395 */ 4396 { .name = "XSCALE_LOCK_ICACHE_LINE", 4397 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4398 .access = PL1_W, .type = ARM_CP_NOP }, 4399 { .name = "XSCALE_UNLOCK_ICACHE", 4400 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4401 .access = PL1_W, .type = ARM_CP_NOP }, 4402 { .name = "XSCALE_DCACHE_LOCK", 4403 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4404 .access = PL1_RW, .type = ARM_CP_NOP }, 4405 { .name = "XSCALE_UNLOCK_DCACHE", 4406 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4407 .access = PL1_W, .type = ARM_CP_NOP }, 4408 }; 4409 4410 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4411 /* 4412 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4413 * implementation of this implementation-defined space. 4414 * Ideally this should eventually disappear in favour of actually 4415 * implementing the correct behaviour for all cores. 4416 */ 4417 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4418 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4419 .access = PL1_RW, 4420 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4421 .resetvalue = 0 }, 4422 }; 4423 4424 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4425 /* Cache status: RAZ because we have no cache so it's always clean */ 4426 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4427 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4428 .resetvalue = 0 }, 4429 }; 4430 4431 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4432 /* We never have a block transfer operation in progress */ 4433 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4434 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4435 .resetvalue = 0 }, 4436 /* The cache ops themselves: these all NOP for QEMU */ 4437 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4438 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4439 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4440 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4441 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4442 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4443 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4444 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4445 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4446 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4447 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4448 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4449 }; 4450 4451 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4452 /* 4453 * The cache test-and-clean instructions always return (1 << 30) 4454 * to indicate that there are no dirty cache lines. 4455 */ 4456 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4457 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4458 .resetvalue = (1 << 30) }, 4459 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4460 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4461 .resetvalue = (1 << 30) }, 4462 }; 4463 4464 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4465 /* Ignore ReadBuffer accesses */ 4466 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4467 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4468 .access = PL1_RW, .resetvalue = 0, 4469 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4470 }; 4471 4472 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4473 { 4474 unsigned int cur_el = arm_current_el(env); 4475 4476 if (arm_is_el2_enabled(env) && cur_el == 1) { 4477 return env->cp15.vpidr_el2; 4478 } 4479 return raw_read(env, ri); 4480 } 4481 4482 static uint64_t mpidr_read_val(CPUARMState *env) 4483 { 4484 ARMCPU *cpu = env_archcpu(env); 4485 uint64_t mpidr = cpu->mp_affinity; 4486 4487 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4488 mpidr |= (1U << 31); 4489 /* 4490 * Cores which are uniprocessor (non-coherent) 4491 * but still implement the MP extensions set 4492 * bit 30. (For instance, Cortex-R5). 4493 */ 4494 if (cpu->mp_is_up) { 4495 mpidr |= (1u << 30); 4496 } 4497 } 4498 return mpidr; 4499 } 4500 4501 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4502 { 4503 unsigned int cur_el = arm_current_el(env); 4504 4505 if (arm_is_el2_enabled(env) && cur_el == 1) { 4506 return env->cp15.vmpidr_el2; 4507 } 4508 return mpidr_read_val(env); 4509 } 4510 4511 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4512 /* NOP AMAIR0/1 */ 4513 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4514 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4515 .access = PL1_RW, .accessfn = access_tvm_trvm, 4516 .fgt = FGT_AMAIR_EL1, 4517 .type = ARM_CP_CONST, .resetvalue = 0 }, 4518 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4519 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4520 .access = PL1_RW, .accessfn = access_tvm_trvm, 4521 .type = ARM_CP_CONST, .resetvalue = 0 }, 4522 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4523 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4524 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4525 offsetof(CPUARMState, cp15.par_ns)} }, 4526 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4527 .access = PL1_RW, .accessfn = access_tvm_trvm, 4528 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4529 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4530 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4531 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4532 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4533 .access = PL1_RW, .accessfn = access_tvm_trvm, 4534 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4535 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4536 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4537 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4538 }; 4539 4540 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4541 { 4542 return vfp_get_fpcr(env); 4543 } 4544 4545 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4546 uint64_t value) 4547 { 4548 vfp_set_fpcr(env, value); 4549 } 4550 4551 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4552 { 4553 return vfp_get_fpsr(env); 4554 } 4555 4556 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4557 uint64_t value) 4558 { 4559 vfp_set_fpsr(env, value); 4560 } 4561 4562 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4563 bool isread) 4564 { 4565 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4566 return CP_ACCESS_TRAP; 4567 } 4568 return CP_ACCESS_OK; 4569 } 4570 4571 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 env->daif = value & PSTATE_DAIF; 4575 } 4576 4577 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4578 { 4579 return env->pstate & PSTATE_PAN; 4580 } 4581 4582 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4583 uint64_t value) 4584 { 4585 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4586 } 4587 4588 static const ARMCPRegInfo pan_reginfo = { 4589 .name = "PAN", .state = ARM_CP_STATE_AA64, 4590 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4591 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4592 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4593 }; 4594 4595 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4596 { 4597 return env->pstate & PSTATE_UAO; 4598 } 4599 4600 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4604 } 4605 4606 static const ARMCPRegInfo uao_reginfo = { 4607 .name = "UAO", .state = ARM_CP_STATE_AA64, 4608 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4609 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4610 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4611 }; 4612 4613 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4614 { 4615 return env->pstate & PSTATE_DIT; 4616 } 4617 4618 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4622 } 4623 4624 static const ARMCPRegInfo dit_reginfo = { 4625 .name = "DIT", .state = ARM_CP_STATE_AA64, 4626 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4627 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4628 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4629 }; 4630 4631 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4632 { 4633 return env->pstate & PSTATE_SSBS; 4634 } 4635 4636 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4637 uint64_t value) 4638 { 4639 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4640 } 4641 4642 static const ARMCPRegInfo ssbs_reginfo = { 4643 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4644 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4645 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4646 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4647 }; 4648 4649 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4650 const ARMCPRegInfo *ri, 4651 bool isread) 4652 { 4653 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4654 switch (arm_current_el(env)) { 4655 case 0: 4656 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4657 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4658 return CP_ACCESS_TRAP; 4659 } 4660 /* fall through */ 4661 case 1: 4662 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4663 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4664 return CP_ACCESS_TRAP_EL2; 4665 } 4666 break; 4667 } 4668 return CP_ACCESS_OK; 4669 } 4670 4671 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4672 { 4673 /* Cache invalidate/clean to Point of Unification... */ 4674 switch (arm_current_el(env)) { 4675 case 0: 4676 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4677 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4678 return CP_ACCESS_TRAP; 4679 } 4680 /* fall through */ 4681 case 1: 4682 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4683 if (arm_hcr_el2_eff(env) & hcrflags) { 4684 return CP_ACCESS_TRAP_EL2; 4685 } 4686 break; 4687 } 4688 return CP_ACCESS_OK; 4689 } 4690 4691 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4692 bool isread) 4693 { 4694 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4695 } 4696 4697 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4698 bool isread) 4699 { 4700 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4701 } 4702 4703 /* 4704 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4705 * Page D4-1736 (DDI0487A.b) 4706 */ 4707 4708 static int vae1_tlbmask(CPUARMState *env) 4709 { 4710 uint64_t hcr = arm_hcr_el2_eff(env); 4711 uint16_t mask; 4712 4713 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4714 mask = ARMMMUIdxBit_E20_2 | 4715 ARMMMUIdxBit_E20_2_PAN | 4716 ARMMMUIdxBit_E20_0; 4717 } else { 4718 mask = ARMMMUIdxBit_E10_1 | 4719 ARMMMUIdxBit_E10_1_PAN | 4720 ARMMMUIdxBit_E10_0; 4721 } 4722 return mask; 4723 } 4724 4725 static int vae2_tlbmask(CPUARMState *env) 4726 { 4727 uint64_t hcr = arm_hcr_el2_eff(env); 4728 uint16_t mask; 4729 4730 if (hcr & HCR_E2H) { 4731 mask = ARMMMUIdxBit_E20_2 | 4732 ARMMMUIdxBit_E20_2_PAN | 4733 ARMMMUIdxBit_E20_0; 4734 } else { 4735 mask = ARMMMUIdxBit_E2; 4736 } 4737 return mask; 4738 } 4739 4740 /* Return 56 if TBI is enabled, 64 otherwise. */ 4741 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4742 uint64_t addr) 4743 { 4744 uint64_t tcr = regime_tcr(env, mmu_idx); 4745 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4746 int select = extract64(addr, 55, 1); 4747 4748 return (tbi >> select) & 1 ? 56 : 64; 4749 } 4750 4751 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4752 { 4753 uint64_t hcr = arm_hcr_el2_eff(env); 4754 ARMMMUIdx mmu_idx; 4755 4756 /* Only the regime of the mmu_idx below is significant. */ 4757 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4758 mmu_idx = ARMMMUIdx_E20_0; 4759 } else { 4760 mmu_idx = ARMMMUIdx_E10_0; 4761 } 4762 4763 return tlbbits_for_regime(env, mmu_idx, addr); 4764 } 4765 4766 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4767 { 4768 uint64_t hcr = arm_hcr_el2_eff(env); 4769 ARMMMUIdx mmu_idx; 4770 4771 /* 4772 * Only the regime of the mmu_idx below is significant. 4773 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4774 * only has one. 4775 */ 4776 if (hcr & HCR_E2H) { 4777 mmu_idx = ARMMMUIdx_E20_2; 4778 } else { 4779 mmu_idx = ARMMMUIdx_E2; 4780 } 4781 4782 return tlbbits_for_regime(env, mmu_idx, addr); 4783 } 4784 4785 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4786 uint64_t value) 4787 { 4788 CPUState *cs = env_cpu(env); 4789 int mask = vae1_tlbmask(env); 4790 4791 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4792 } 4793 4794 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4795 uint64_t value) 4796 { 4797 CPUState *cs = env_cpu(env); 4798 int mask = vae1_tlbmask(env); 4799 4800 if (tlb_force_broadcast(env)) { 4801 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4802 } else { 4803 tlb_flush_by_mmuidx(cs, mask); 4804 } 4805 } 4806 4807 static int e2_tlbmask(CPUARMState *env) 4808 { 4809 return (ARMMMUIdxBit_E20_0 | 4810 ARMMMUIdxBit_E20_2 | 4811 ARMMMUIdxBit_E20_2_PAN | 4812 ARMMMUIdxBit_E2); 4813 } 4814 4815 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4816 uint64_t value) 4817 { 4818 CPUState *cs = env_cpu(env); 4819 int mask = alle1_tlbmask(env); 4820 4821 tlb_flush_by_mmuidx(cs, mask); 4822 } 4823 4824 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4825 uint64_t value) 4826 { 4827 CPUState *cs = env_cpu(env); 4828 int mask = e2_tlbmask(env); 4829 4830 tlb_flush_by_mmuidx(cs, mask); 4831 } 4832 4833 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4834 uint64_t value) 4835 { 4836 ARMCPU *cpu = env_archcpu(env); 4837 CPUState *cs = CPU(cpu); 4838 4839 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4840 } 4841 4842 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4843 uint64_t value) 4844 { 4845 CPUState *cs = env_cpu(env); 4846 int mask = alle1_tlbmask(env); 4847 4848 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4849 } 4850 4851 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4852 uint64_t value) 4853 { 4854 CPUState *cs = env_cpu(env); 4855 int mask = e2_tlbmask(env); 4856 4857 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4858 } 4859 4860 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4861 uint64_t value) 4862 { 4863 CPUState *cs = env_cpu(env); 4864 4865 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4866 } 4867 4868 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4869 uint64_t value) 4870 { 4871 /* 4872 * Invalidate by VA, EL2 4873 * Currently handles both VAE2 and VALE2, since we don't support 4874 * flush-last-level-only. 4875 */ 4876 CPUState *cs = env_cpu(env); 4877 int mask = vae2_tlbmask(env); 4878 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4879 int bits = vae2_tlbbits(env, pageaddr); 4880 4881 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4882 } 4883 4884 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4885 uint64_t value) 4886 { 4887 /* 4888 * Invalidate by VA, EL3 4889 * Currently handles both VAE3 and VALE3, since we don't support 4890 * flush-last-level-only. 4891 */ 4892 ARMCPU *cpu = env_archcpu(env); 4893 CPUState *cs = CPU(cpu); 4894 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4895 4896 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4897 } 4898 4899 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4900 uint64_t value) 4901 { 4902 CPUState *cs = env_cpu(env); 4903 int mask = vae1_tlbmask(env); 4904 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4905 int bits = vae1_tlbbits(env, pageaddr); 4906 4907 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4908 } 4909 4910 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4911 uint64_t value) 4912 { 4913 /* 4914 * Invalidate by VA, EL1&0 (AArch64 version). 4915 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4916 * since we don't support flush-for-specific-ASID-only or 4917 * flush-last-level-only. 4918 */ 4919 CPUState *cs = env_cpu(env); 4920 int mask = vae1_tlbmask(env); 4921 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4922 int bits = vae1_tlbbits(env, pageaddr); 4923 4924 if (tlb_force_broadcast(env)) { 4925 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4926 } else { 4927 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4928 } 4929 } 4930 4931 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4932 uint64_t value) 4933 { 4934 CPUState *cs = env_cpu(env); 4935 int mask = vae2_tlbmask(env); 4936 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4937 int bits = vae2_tlbbits(env, pageaddr); 4938 4939 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4940 } 4941 4942 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4943 uint64_t value) 4944 { 4945 CPUState *cs = env_cpu(env); 4946 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4947 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4948 4949 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4950 ARMMMUIdxBit_E3, bits); 4951 } 4952 4953 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4954 { 4955 /* 4956 * The MSB of value is the NS field, which only applies if SEL2 4957 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4958 */ 4959 return (value >= 0 4960 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4961 && arm_is_secure_below_el3(env) 4962 ? ARMMMUIdxBit_Stage2_S 4963 : ARMMMUIdxBit_Stage2); 4964 } 4965 4966 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4967 uint64_t value) 4968 { 4969 CPUState *cs = env_cpu(env); 4970 int mask = ipas2e1_tlbmask(env, value); 4971 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4972 4973 if (tlb_force_broadcast(env)) { 4974 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4975 } else { 4976 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4977 } 4978 } 4979 4980 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4981 uint64_t value) 4982 { 4983 CPUState *cs = env_cpu(env); 4984 int mask = ipas2e1_tlbmask(env, value); 4985 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4986 4987 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4988 } 4989 4990 #ifdef TARGET_AARCH64 4991 typedef struct { 4992 uint64_t base; 4993 uint64_t length; 4994 } TLBIRange; 4995 4996 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4997 { 4998 /* 4999 * Note that the TLBI range TG field encoding differs from both 5000 * TG0 and TG1 encodings. 5001 */ 5002 switch (tg) { 5003 case 1: 5004 return Gran4K; 5005 case 2: 5006 return Gran16K; 5007 case 3: 5008 return Gran64K; 5009 default: 5010 return GranInvalid; 5011 } 5012 } 5013 5014 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5015 uint64_t value) 5016 { 5017 unsigned int page_size_granule, page_shift, num, scale, exponent; 5018 /* Extract one bit to represent the va selector in use. */ 5019 uint64_t select = sextract64(value, 36, 1); 5020 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5021 TLBIRange ret = { }; 5022 ARMGranuleSize gran; 5023 5024 page_size_granule = extract64(value, 46, 2); 5025 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5026 5027 /* The granule encoded in value must match the granule in use. */ 5028 if (gran != param.gran) { 5029 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5030 page_size_granule); 5031 return ret; 5032 } 5033 5034 page_shift = arm_granule_bits(gran); 5035 num = extract64(value, 39, 5); 5036 scale = extract64(value, 44, 2); 5037 exponent = (5 * scale) + 1; 5038 5039 ret.length = (num + 1) << (exponent + page_shift); 5040 5041 if (param.select) { 5042 ret.base = sextract64(value, 0, 37); 5043 } else { 5044 ret.base = extract64(value, 0, 37); 5045 } 5046 if (param.ds) { 5047 /* 5048 * With DS=1, BaseADDR is always shifted 16 so that it is able 5049 * to address all 52 va bits. The input address is perforce 5050 * aligned on a 64k boundary regardless of translation granule. 5051 */ 5052 page_shift = 16; 5053 } 5054 ret.base <<= page_shift; 5055 5056 return ret; 5057 } 5058 5059 static void do_rvae_write(CPUARMState *env, uint64_t value, 5060 int idxmap, bool synced) 5061 { 5062 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5063 TLBIRange range; 5064 int bits; 5065 5066 range = tlbi_aa64_get_range(env, one_idx, value); 5067 bits = tlbbits_for_regime(env, one_idx, range.base); 5068 5069 if (synced) { 5070 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5071 range.base, 5072 range.length, 5073 idxmap, 5074 bits); 5075 } else { 5076 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5077 range.length, idxmap, bits); 5078 } 5079 } 5080 5081 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5082 const ARMCPRegInfo *ri, 5083 uint64_t value) 5084 { 5085 /* 5086 * Invalidate by VA range, EL1&0. 5087 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5088 * since we don't support flush-for-specific-ASID-only or 5089 * flush-last-level-only. 5090 */ 5091 5092 do_rvae_write(env, value, vae1_tlbmask(env), 5093 tlb_force_broadcast(env)); 5094 } 5095 5096 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5097 const ARMCPRegInfo *ri, 5098 uint64_t value) 5099 { 5100 /* 5101 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5102 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5103 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5104 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5105 * shareable specific flushes. 5106 */ 5107 5108 do_rvae_write(env, value, vae1_tlbmask(env), true); 5109 } 5110 5111 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5112 const ARMCPRegInfo *ri, 5113 uint64_t value) 5114 { 5115 /* 5116 * Invalidate by VA range, EL2. 5117 * Currently handles all of RVAE2 and RVALE2, 5118 * since we don't support flush-for-specific-ASID-only or 5119 * flush-last-level-only. 5120 */ 5121 5122 do_rvae_write(env, value, vae2_tlbmask(env), 5123 tlb_force_broadcast(env)); 5124 5125 5126 } 5127 5128 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5129 const ARMCPRegInfo *ri, 5130 uint64_t value) 5131 { 5132 /* 5133 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5134 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5135 * since we don't support flush-for-specific-ASID-only, 5136 * flush-last-level-only or inner/outer shareable specific flushes. 5137 */ 5138 5139 do_rvae_write(env, value, vae2_tlbmask(env), true); 5140 5141 } 5142 5143 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5144 const ARMCPRegInfo *ri, 5145 uint64_t value) 5146 { 5147 /* 5148 * Invalidate by VA range, EL3. 5149 * Currently handles all of RVAE3 and RVALE3, 5150 * since we don't support flush-for-specific-ASID-only or 5151 * flush-last-level-only. 5152 */ 5153 5154 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5155 } 5156 5157 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5158 const ARMCPRegInfo *ri, 5159 uint64_t value) 5160 { 5161 /* 5162 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5163 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5164 * since we don't support flush-for-specific-ASID-only, 5165 * flush-last-level-only or inner/outer specific flushes. 5166 */ 5167 5168 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5169 } 5170 5171 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5172 uint64_t value) 5173 { 5174 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5175 tlb_force_broadcast(env)); 5176 } 5177 5178 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5179 const ARMCPRegInfo *ri, 5180 uint64_t value) 5181 { 5182 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5183 } 5184 #endif 5185 5186 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5187 bool isread) 5188 { 5189 int cur_el = arm_current_el(env); 5190 5191 if (cur_el < 2) { 5192 uint64_t hcr = arm_hcr_el2_eff(env); 5193 5194 if (cur_el == 0) { 5195 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5196 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5197 return CP_ACCESS_TRAP_EL2; 5198 } 5199 } else { 5200 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5201 return CP_ACCESS_TRAP; 5202 } 5203 if (hcr & HCR_TDZ) { 5204 return CP_ACCESS_TRAP_EL2; 5205 } 5206 } 5207 } else if (hcr & HCR_TDZ) { 5208 return CP_ACCESS_TRAP_EL2; 5209 } 5210 } 5211 return CP_ACCESS_OK; 5212 } 5213 5214 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5215 { 5216 ARMCPU *cpu = env_archcpu(env); 5217 int dzp_bit = 1 << 4; 5218 5219 /* DZP indicates whether DC ZVA access is allowed */ 5220 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5221 dzp_bit = 0; 5222 } 5223 return cpu->dcz_blocksize | dzp_bit; 5224 } 5225 5226 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5227 bool isread) 5228 { 5229 if (!(env->pstate & PSTATE_SP)) { 5230 /* 5231 * Access to SP_EL0 is undefined if it's being used as 5232 * the stack pointer. 5233 */ 5234 return CP_ACCESS_TRAP_UNCATEGORIZED; 5235 } 5236 return CP_ACCESS_OK; 5237 } 5238 5239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5240 { 5241 return env->pstate & PSTATE_SP; 5242 } 5243 5244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5245 { 5246 update_spsel(env, val); 5247 } 5248 5249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5250 uint64_t value) 5251 { 5252 ARMCPU *cpu = env_archcpu(env); 5253 5254 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5255 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5256 value &= ~SCTLR_M; 5257 } 5258 5259 /* ??? Lots of these bits are not implemented. */ 5260 5261 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5262 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5263 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5264 } else { 5265 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5266 SCTLR_ATA0 | SCTLR_ATA); 5267 } 5268 } 5269 5270 if (raw_read(env, ri) == value) { 5271 /* 5272 * Skip the TLB flush if nothing actually changed; Linux likes 5273 * to do a lot of pointless SCTLR writes. 5274 */ 5275 return; 5276 } 5277 5278 raw_write(env, ri, value); 5279 5280 /* This may enable/disable the MMU, so do a TLB flush. */ 5281 tlb_flush(CPU(cpu)); 5282 5283 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5284 /* 5285 * Normally we would always end the TB on an SCTLR write; see the 5286 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5287 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5288 * of hflags from the translator, so do it here. 5289 */ 5290 arm_rebuild_hflags(env); 5291 } 5292 } 5293 5294 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5295 uint64_t value) 5296 { 5297 /* 5298 * Some MDCR_EL3 bits affect whether PMU counters are running: 5299 * if we are trying to change any of those then we must 5300 * bracket this update with PMU start/finish calls. 5301 */ 5302 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5303 5304 if (pmu_op) { 5305 pmu_op_start(env); 5306 } 5307 env->cp15.mdcr_el3 = value; 5308 if (pmu_op) { 5309 pmu_op_finish(env); 5310 } 5311 } 5312 5313 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5314 uint64_t value) 5315 { 5316 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5317 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5318 } 5319 5320 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5321 uint64_t value) 5322 { 5323 /* 5324 * Some MDCR_EL2 bits affect whether PMU counters are running: 5325 * if we are trying to change any of those then we must 5326 * bracket this update with PMU start/finish calls. 5327 */ 5328 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5329 5330 if (pmu_op) { 5331 pmu_op_start(env); 5332 } 5333 env->cp15.mdcr_el2 = value; 5334 if (pmu_op) { 5335 pmu_op_finish(env); 5336 } 5337 } 5338 5339 #ifdef CONFIG_USER_ONLY 5340 /* 5341 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5342 * code to get around W^X restrictions, where one region is writable and the 5343 * other is executable. 5344 * 5345 * Since the executable region is never written to we cannot detect code 5346 * changes when running in user mode, and rely on the emulated JIT telling us 5347 * that the code has changed by executing this instruction. 5348 */ 5349 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5350 uint64_t value) 5351 { 5352 uint64_t icache_line_mask, start_address, end_address; 5353 const ARMCPU *cpu; 5354 5355 cpu = env_archcpu(env); 5356 5357 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5358 start_address = value & ~icache_line_mask; 5359 end_address = value | icache_line_mask; 5360 5361 mmap_lock(); 5362 5363 tb_invalidate_phys_range(start_address, end_address); 5364 5365 mmap_unlock(); 5366 } 5367 #endif 5368 5369 static const ARMCPRegInfo v8_cp_reginfo[] = { 5370 /* 5371 * Minimal set of EL0-visible registers. This will need to be expanded 5372 * significantly for system emulation of AArch64 CPUs. 5373 */ 5374 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5375 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5376 .access = PL0_RW, .type = ARM_CP_NZCV }, 5377 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5378 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5379 .type = ARM_CP_NO_RAW, 5380 .access = PL0_RW, .accessfn = aa64_daif_access, 5381 .fieldoffset = offsetof(CPUARMState, daif), 5382 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5383 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5384 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5385 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5386 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5387 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5388 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5389 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5390 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5391 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5392 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5393 .access = PL0_R, .type = ARM_CP_NO_RAW, 5394 .fgt = FGT_DCZID_EL0, 5395 .readfn = aa64_dczid_read }, 5396 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5398 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5399 #ifndef CONFIG_USER_ONLY 5400 /* Avoid overhead of an access check that always passes in user-mode */ 5401 .accessfn = aa64_zva_access, 5402 .fgt = FGT_DCZVA, 5403 #endif 5404 }, 5405 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5406 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5407 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5408 /* 5409 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5410 * don't emulate caches. 5411 */ 5412 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5414 .access = PL1_W, .type = ARM_CP_NOP, 5415 .fgt = FGT_ICIALLUIS, 5416 .accessfn = access_ticab }, 5417 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5419 .access = PL1_W, .type = ARM_CP_NOP, 5420 .fgt = FGT_ICIALLU, 5421 .accessfn = access_tocu }, 5422 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5423 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5424 .access = PL0_W, 5425 .fgt = FGT_ICIVAU, 5426 .accessfn = access_tocu, 5427 #ifdef CONFIG_USER_ONLY 5428 .type = ARM_CP_NO_RAW, 5429 .writefn = ic_ivau_write 5430 #else 5431 .type = ARM_CP_NOP 5432 #endif 5433 }, 5434 /* Cache ops: all NOPs since we don't emulate caches */ 5435 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5437 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5438 .fgt = FGT_DCIVAC, 5439 .type = ARM_CP_NOP }, 5440 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5442 .fgt = FGT_DCISW, 5443 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5444 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5445 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5446 .access = PL0_W, .type = ARM_CP_NOP, 5447 .fgt = FGT_DCCVAC, 5448 .accessfn = aa64_cacheop_poc_access }, 5449 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5451 .fgt = FGT_DCCSW, 5452 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5453 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5454 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5455 .access = PL0_W, .type = ARM_CP_NOP, 5456 .fgt = FGT_DCCVAU, 5457 .accessfn = access_tocu }, 5458 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5460 .access = PL0_W, .type = ARM_CP_NOP, 5461 .fgt = FGT_DCCIVAC, 5462 .accessfn = aa64_cacheop_poc_access }, 5463 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5465 .fgt = FGT_DCCISW, 5466 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5467 /* TLBI operations */ 5468 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5469 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5470 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5471 .fgt = FGT_TLBIVMALLE1IS, 5472 .writefn = tlbi_aa64_vmalle1is_write }, 5473 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5475 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5476 .fgt = FGT_TLBIVAE1IS, 5477 .writefn = tlbi_aa64_vae1is_write }, 5478 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5479 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5480 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5481 .fgt = FGT_TLBIASIDE1IS, 5482 .writefn = tlbi_aa64_vmalle1is_write }, 5483 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5485 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5486 .fgt = FGT_TLBIVAAE1IS, 5487 .writefn = tlbi_aa64_vae1is_write }, 5488 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5490 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5491 .fgt = FGT_TLBIVALE1IS, 5492 .writefn = tlbi_aa64_vae1is_write }, 5493 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5495 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5496 .fgt = FGT_TLBIVAALE1IS, 5497 .writefn = tlbi_aa64_vae1is_write }, 5498 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5499 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5500 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5501 .fgt = FGT_TLBIVMALLE1, 5502 .writefn = tlbi_aa64_vmalle1_write }, 5503 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5504 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5505 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5506 .fgt = FGT_TLBIVAE1, 5507 .writefn = tlbi_aa64_vae1_write }, 5508 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5510 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5511 .fgt = FGT_TLBIASIDE1, 5512 .writefn = tlbi_aa64_vmalle1_write }, 5513 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5514 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5515 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5516 .fgt = FGT_TLBIVAAE1, 5517 .writefn = tlbi_aa64_vae1_write }, 5518 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5519 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5520 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5521 .fgt = FGT_TLBIVALE1, 5522 .writefn = tlbi_aa64_vae1_write }, 5523 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5525 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5526 .fgt = FGT_TLBIVAALE1, 5527 .writefn = tlbi_aa64_vae1_write }, 5528 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5529 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5530 .access = PL2_W, .type = ARM_CP_NO_RAW, 5531 .writefn = tlbi_aa64_ipas2e1is_write }, 5532 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5533 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5534 .access = PL2_W, .type = ARM_CP_NO_RAW, 5535 .writefn = tlbi_aa64_ipas2e1is_write }, 5536 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5537 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5538 .access = PL2_W, .type = ARM_CP_NO_RAW, 5539 .writefn = tlbi_aa64_alle1is_write }, 5540 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5542 .access = PL2_W, .type = ARM_CP_NO_RAW, 5543 .writefn = tlbi_aa64_alle1is_write }, 5544 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5546 .access = PL2_W, .type = ARM_CP_NO_RAW, 5547 .writefn = tlbi_aa64_ipas2e1_write }, 5548 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5550 .access = PL2_W, .type = ARM_CP_NO_RAW, 5551 .writefn = tlbi_aa64_ipas2e1_write }, 5552 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5554 .access = PL2_W, .type = ARM_CP_NO_RAW, 5555 .writefn = tlbi_aa64_alle1_write }, 5556 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5558 .access = PL2_W, .type = ARM_CP_NO_RAW, 5559 .writefn = tlbi_aa64_alle1is_write }, 5560 #ifndef CONFIG_USER_ONLY 5561 /* 64 bit address translation operations */ 5562 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5564 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5565 .fgt = FGT_ATS1E1R, 5566 .accessfn = at_e012_access, .writefn = ats_write64 }, 5567 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5569 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5570 .fgt = FGT_ATS1E1W, 5571 .accessfn = at_e012_access, .writefn = ats_write64 }, 5572 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5574 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5575 .fgt = FGT_ATS1E0R, 5576 .accessfn = at_e012_access, .writefn = ats_write64 }, 5577 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5579 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5580 .fgt = FGT_ATS1E0W, 5581 .accessfn = at_e012_access, .writefn = ats_write64 }, 5582 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5584 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5585 .accessfn = at_e012_access, .writefn = ats_write64 }, 5586 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5588 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5589 .accessfn = at_e012_access, .writefn = ats_write64 }, 5590 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5592 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5593 .accessfn = at_e012_access, .writefn = ats_write64 }, 5594 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5596 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5597 .accessfn = at_e012_access, .writefn = ats_write64 }, 5598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5601 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5602 .writefn = ats_write64 }, 5603 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5605 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5606 .writefn = ats_write64 }, 5607 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5608 .type = ARM_CP_ALIAS, 5609 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5610 .access = PL1_RW, .resetvalue = 0, 5611 .fgt = FGT_PAR_EL1, 5612 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5613 .writefn = par_write }, 5614 #endif 5615 /* TLB invalidate last level of translation table walk */ 5616 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5617 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5618 .writefn = tlbimva_is_write }, 5619 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5620 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5621 .writefn = tlbimvaa_is_write }, 5622 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5623 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5624 .writefn = tlbimva_write }, 5625 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5626 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5627 .writefn = tlbimvaa_write }, 5628 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5629 .type = ARM_CP_NO_RAW, .access = PL2_W, 5630 .writefn = tlbimva_hyp_write }, 5631 { .name = "TLBIMVALHIS", 5632 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5633 .type = ARM_CP_NO_RAW, .access = PL2_W, 5634 .writefn = tlbimva_hyp_is_write }, 5635 { .name = "TLBIIPAS2", 5636 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5637 .type = ARM_CP_NO_RAW, .access = PL2_W, 5638 .writefn = tlbiipas2_hyp_write }, 5639 { .name = "TLBIIPAS2IS", 5640 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5641 .type = ARM_CP_NO_RAW, .access = PL2_W, 5642 .writefn = tlbiipas2is_hyp_write }, 5643 { .name = "TLBIIPAS2L", 5644 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5645 .type = ARM_CP_NO_RAW, .access = PL2_W, 5646 .writefn = tlbiipas2_hyp_write }, 5647 { .name = "TLBIIPAS2LIS", 5648 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5649 .type = ARM_CP_NO_RAW, .access = PL2_W, 5650 .writefn = tlbiipas2is_hyp_write }, 5651 /* 32 bit cache operations */ 5652 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5653 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5654 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5655 .type = ARM_CP_NOP, .access = PL1_W }, 5656 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5657 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5658 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5659 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5660 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5661 .type = ARM_CP_NOP, .access = PL1_W }, 5662 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5663 .type = ARM_CP_NOP, .access = PL1_W }, 5664 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5665 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5666 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5667 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5668 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5669 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5670 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5671 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5672 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5673 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5674 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5675 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5676 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5677 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5678 /* MMU Domain access control / MPU write buffer control */ 5679 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5681 .writefn = dacr_write, .raw_writefn = raw_write, 5682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5684 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5685 .type = ARM_CP_ALIAS, 5686 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5687 .access = PL1_RW, 5688 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5689 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5690 .type = ARM_CP_ALIAS, 5691 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5692 .access = PL1_RW, 5693 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5694 /* 5695 * We rely on the access checks not allowing the guest to write to the 5696 * state field when SPSel indicates that it's being used as the stack 5697 * pointer. 5698 */ 5699 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5701 .access = PL1_RW, .accessfn = sp_el0_access, 5702 .type = ARM_CP_ALIAS, 5703 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5704 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5706 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5707 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5708 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5710 .type = ARM_CP_NO_RAW, 5711 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5712 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5714 .access = PL2_RW, 5715 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5716 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5717 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5719 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5720 .writefn = dacr_write, .raw_writefn = raw_write, 5721 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5722 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5724 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5725 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5726 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5727 .type = ARM_CP_ALIAS, 5728 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5729 .access = PL2_RW, 5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5731 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5732 .type = ARM_CP_ALIAS, 5733 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5734 .access = PL2_RW, 5735 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5736 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5737 .type = ARM_CP_ALIAS, 5738 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5739 .access = PL2_RW, 5740 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5741 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5742 .type = ARM_CP_ALIAS, 5743 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5744 .access = PL2_RW, 5745 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5746 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5747 .type = ARM_CP_IO, 5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5749 .resetvalue = 0, 5750 .access = PL3_RW, 5751 .writefn = mdcr_el3_write, 5752 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5753 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5754 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5755 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5756 .writefn = sdcr_write, 5757 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5758 }; 5759 5760 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5761 { 5762 ARMCPU *cpu = env_archcpu(env); 5763 5764 if (arm_feature(env, ARM_FEATURE_V8)) { 5765 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5766 } else { 5767 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5768 } 5769 5770 if (arm_feature(env, ARM_FEATURE_EL3)) { 5771 valid_mask &= ~HCR_HCD; 5772 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5773 /* 5774 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5775 * However, if we're using the SMC PSCI conduit then QEMU is 5776 * effectively acting like EL3 firmware and so the guest at 5777 * EL2 should retain the ability to prevent EL1 from being 5778 * able to make SMC calls into the ersatz firmware, so in 5779 * that case HCR.TSC should be read/write. 5780 */ 5781 valid_mask &= ~HCR_TSC; 5782 } 5783 5784 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5785 if (cpu_isar_feature(aa64_vh, cpu)) { 5786 valid_mask |= HCR_E2H; 5787 } 5788 if (cpu_isar_feature(aa64_ras, cpu)) { 5789 valid_mask |= HCR_TERR | HCR_TEA; 5790 } 5791 if (cpu_isar_feature(aa64_lor, cpu)) { 5792 valid_mask |= HCR_TLOR; 5793 } 5794 if (cpu_isar_feature(aa64_pauth, cpu)) { 5795 valid_mask |= HCR_API | HCR_APK; 5796 } 5797 if (cpu_isar_feature(aa64_mte, cpu)) { 5798 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5799 } 5800 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5801 valid_mask |= HCR_ENSCXT; 5802 } 5803 if (cpu_isar_feature(aa64_fwb, cpu)) { 5804 valid_mask |= HCR_FWB; 5805 } 5806 if (cpu_isar_feature(aa64_rme, cpu)) { 5807 valid_mask |= HCR_GPF; 5808 } 5809 } 5810 5811 if (cpu_isar_feature(any_evt, cpu)) { 5812 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5813 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5814 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5815 } 5816 5817 /* Clear RES0 bits. */ 5818 value &= valid_mask; 5819 5820 /* 5821 * These bits change the MMU setup: 5822 * HCR_VM enables stage 2 translation 5823 * HCR_PTW forbids certain page-table setups 5824 * HCR_DC disables stage1 and enables stage2 translation 5825 * HCR_DCT enables tagging on (disabled) stage1 translation 5826 * HCR_FWB changes the interpretation of stage2 descriptor bits 5827 */ 5828 if ((env->cp15.hcr_el2 ^ value) & 5829 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5830 tlb_flush(CPU(cpu)); 5831 } 5832 env->cp15.hcr_el2 = value; 5833 5834 /* 5835 * Updates to VI and VF require us to update the status of 5836 * virtual interrupts, which are the logical OR of these bits 5837 * and the state of the input lines from the GIC. (This requires 5838 * that we have the iothread lock, which is done by marking the 5839 * reginfo structs as ARM_CP_IO.) 5840 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5841 * possible for it to be taken immediately, because VIRQ and 5842 * VFIQ are masked unless running at EL0 or EL1, and HCR 5843 * can only be written at EL2. 5844 */ 5845 g_assert(qemu_mutex_iothread_locked()); 5846 arm_cpu_update_virq(cpu); 5847 arm_cpu_update_vfiq(cpu); 5848 arm_cpu_update_vserr(cpu); 5849 } 5850 5851 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5852 { 5853 do_hcr_write(env, value, 0); 5854 } 5855 5856 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5857 uint64_t value) 5858 { 5859 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5860 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5861 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5862 } 5863 5864 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5865 uint64_t value) 5866 { 5867 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5868 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5869 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5870 } 5871 5872 /* 5873 * Return the effective value of HCR_EL2, at the given security state. 5874 * Bits that are not included here: 5875 * RW (read from SCR_EL3.RW as needed) 5876 */ 5877 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5878 { 5879 uint64_t ret = env->cp15.hcr_el2; 5880 5881 assert(space != ARMSS_Root); 5882 5883 if (!arm_is_el2_enabled_secstate(env, space)) { 5884 /* 5885 * "This register has no effect if EL2 is not enabled in the 5886 * current Security state". This is ARMv8.4-SecEL2 speak for 5887 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5888 * 5889 * Prior to that, the language was "In an implementation that 5890 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5891 * as if this field is 0 for all purposes other than a direct 5892 * read or write access of HCR_EL2". With lots of enumeration 5893 * on a per-field basis. In current QEMU, this is condition 5894 * is arm_is_secure_below_el3. 5895 * 5896 * Since the v8.4 language applies to the entire register, and 5897 * appears to be backward compatible, use that. 5898 */ 5899 return 0; 5900 } 5901 5902 /* 5903 * For a cpu that supports both aarch64 and aarch32, we can set bits 5904 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5905 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5906 */ 5907 if (!arm_el_is_aa64(env, 2)) { 5908 uint64_t aa32_valid; 5909 5910 /* 5911 * These bits are up-to-date as of ARMv8.6. 5912 * For HCR, it's easiest to list just the 2 bits that are invalid. 5913 * For HCR2, list those that are valid. 5914 */ 5915 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5916 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5917 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5918 ret &= aa32_valid; 5919 } 5920 5921 if (ret & HCR_TGE) { 5922 /* These bits are up-to-date as of ARMv8.6. */ 5923 if (ret & HCR_E2H) { 5924 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5925 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5926 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5927 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5928 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5929 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5930 } else { 5931 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5932 } 5933 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5934 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5935 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5936 HCR_TLOR); 5937 } 5938 5939 return ret; 5940 } 5941 5942 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5943 { 5944 if (arm_feature(env, ARM_FEATURE_M)) { 5945 return 0; 5946 } 5947 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5948 } 5949 5950 /* 5951 * Corresponds to ARM pseudocode function ELIsInHost(). 5952 */ 5953 bool el_is_in_host(CPUARMState *env, int el) 5954 { 5955 uint64_t mask; 5956 5957 /* 5958 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5959 * Perform the simplest bit tests first, and validate EL2 afterward. 5960 */ 5961 if (el & 1) { 5962 return false; /* EL1 or EL3 */ 5963 } 5964 5965 /* 5966 * Note that hcr_write() checks isar_feature_aa64_vh(), 5967 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5968 */ 5969 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5970 if ((env->cp15.hcr_el2 & mask) != mask) { 5971 return false; 5972 } 5973 5974 /* TGE and/or E2H set: double check those bits are currently legal. */ 5975 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5976 } 5977 5978 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5979 uint64_t value) 5980 { 5981 uint64_t valid_mask = 0; 5982 5983 /* No features adding bits to HCRX are implemented. */ 5984 5985 /* Clear RES0 bits. */ 5986 env->cp15.hcrx_el2 = value & valid_mask; 5987 } 5988 5989 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5990 bool isread) 5991 { 5992 if (arm_current_el(env) < 3 5993 && arm_feature(env, ARM_FEATURE_EL3) 5994 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5995 return CP_ACCESS_TRAP_EL3; 5996 } 5997 return CP_ACCESS_OK; 5998 } 5999 6000 static const ARMCPRegInfo hcrx_el2_reginfo = { 6001 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6002 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6003 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6004 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6005 }; 6006 6007 /* Return the effective value of HCRX_EL2. */ 6008 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6009 { 6010 /* 6011 * The bits in this register behave as 0 for all purposes other than 6012 * direct reads of the register if: 6013 * - EL2 is not enabled in the current security state, 6014 * - SCR_EL3.HXEn is 0. 6015 */ 6016 if (!arm_is_el2_enabled(env) 6017 || (arm_feature(env, ARM_FEATURE_EL3) 6018 && !(env->cp15.scr_el3 & SCR_HXEN))) { 6019 return 0; 6020 } 6021 return env->cp15.hcrx_el2; 6022 } 6023 6024 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6025 uint64_t value) 6026 { 6027 /* 6028 * For A-profile AArch32 EL3, if NSACR.CP10 6029 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6030 */ 6031 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6032 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6033 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6034 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6035 } 6036 env->cp15.cptr_el[2] = value; 6037 } 6038 6039 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6040 { 6041 /* 6042 * For A-profile AArch32 EL3, if NSACR.CP10 6043 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6044 */ 6045 uint64_t value = env->cp15.cptr_el[2]; 6046 6047 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6048 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6049 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6050 } 6051 return value; 6052 } 6053 6054 static const ARMCPRegInfo el2_cp_reginfo[] = { 6055 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6056 .type = ARM_CP_IO, 6057 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6058 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6059 .writefn = hcr_write, .raw_writefn = raw_write }, 6060 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6061 .type = ARM_CP_ALIAS | ARM_CP_IO, 6062 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6063 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6064 .writefn = hcr_writelow }, 6065 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6066 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6067 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6068 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6069 .type = ARM_CP_ALIAS, 6070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6071 .access = PL2_RW, 6072 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6073 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6074 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6075 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6076 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6077 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6078 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6079 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6080 .type = ARM_CP_ALIAS, 6081 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6082 .access = PL2_RW, 6083 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6084 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6085 .type = ARM_CP_ALIAS, 6086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6087 .access = PL2_RW, 6088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6089 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6090 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6091 .access = PL2_RW, .writefn = vbar_write, 6092 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6093 .resetvalue = 0 }, 6094 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6095 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6096 .access = PL3_RW, .type = ARM_CP_ALIAS, 6097 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6098 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6099 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6100 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6101 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6102 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6103 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6104 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6105 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6106 .resetvalue = 0 }, 6107 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6108 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6109 .access = PL2_RW, .type = ARM_CP_ALIAS, 6110 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6111 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6112 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6113 .access = PL2_RW, .type = ARM_CP_CONST, 6114 .resetvalue = 0 }, 6115 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6116 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6117 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6118 .access = PL2_RW, .type = ARM_CP_CONST, 6119 .resetvalue = 0 }, 6120 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6121 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6122 .access = PL2_RW, .type = ARM_CP_CONST, 6123 .resetvalue = 0 }, 6124 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6125 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6126 .access = PL2_RW, .type = ARM_CP_CONST, 6127 .resetvalue = 0 }, 6128 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6129 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6130 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6131 .raw_writefn = raw_write, 6132 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6133 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6134 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6135 .type = ARM_CP_ALIAS, 6136 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6137 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6138 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6140 .access = PL2_RW, 6141 /* no .writefn needed as this can't cause an ASID change */ 6142 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6143 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6144 .cp = 15, .opc1 = 6, .crm = 2, 6145 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6146 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6147 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6148 .writefn = vttbr_write, .raw_writefn = raw_write }, 6149 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6151 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6152 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6153 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6154 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6155 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6156 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6157 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6158 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6159 .access = PL2_RW, .resetvalue = 0, 6160 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6161 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6162 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6163 .access = PL2_RW, .resetvalue = 0, 6164 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6165 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6166 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6167 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6168 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6169 { .name = "TLBIALLNSNH", 6170 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6171 .type = ARM_CP_NO_RAW, .access = PL2_W, 6172 .writefn = tlbiall_nsnh_write }, 6173 { .name = "TLBIALLNSNHIS", 6174 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6175 .type = ARM_CP_NO_RAW, .access = PL2_W, 6176 .writefn = tlbiall_nsnh_is_write }, 6177 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6178 .type = ARM_CP_NO_RAW, .access = PL2_W, 6179 .writefn = tlbiall_hyp_write }, 6180 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6181 .type = ARM_CP_NO_RAW, .access = PL2_W, 6182 .writefn = tlbiall_hyp_is_write }, 6183 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6184 .type = ARM_CP_NO_RAW, .access = PL2_W, 6185 .writefn = tlbimva_hyp_write }, 6186 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6187 .type = ARM_CP_NO_RAW, .access = PL2_W, 6188 .writefn = tlbimva_hyp_is_write }, 6189 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6190 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6191 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6192 .writefn = tlbi_aa64_alle2_write }, 6193 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6194 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6195 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6196 .writefn = tlbi_aa64_vae2_write }, 6197 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6198 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6199 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6200 .writefn = tlbi_aa64_vae2_write }, 6201 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6202 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6203 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6204 .writefn = tlbi_aa64_alle2is_write }, 6205 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6206 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6207 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6208 .writefn = tlbi_aa64_vae2is_write }, 6209 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6211 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6212 .writefn = tlbi_aa64_vae2is_write }, 6213 #ifndef CONFIG_USER_ONLY 6214 /* 6215 * Unlike the other EL2-related AT operations, these must 6216 * UNDEF from EL3 if EL2 is not implemented, which is why we 6217 * define them here rather than with the rest of the AT ops. 6218 */ 6219 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6220 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6221 .access = PL2_W, .accessfn = at_s1e2_access, 6222 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6223 .writefn = ats_write64 }, 6224 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6225 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6226 .access = PL2_W, .accessfn = at_s1e2_access, 6227 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6228 .writefn = ats_write64 }, 6229 /* 6230 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6231 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6232 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6233 * to behave as if SCR.NS was 1. 6234 */ 6235 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6236 .access = PL2_W, 6237 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6238 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6239 .access = PL2_W, 6240 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6241 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6242 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6243 /* 6244 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6245 * reset values as IMPDEF. We choose to reset to 3 to comply with 6246 * both ARMv7 and ARMv8. 6247 */ 6248 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6249 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6250 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6251 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6252 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6253 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6254 .writefn = gt_cntvoff_write, 6255 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6256 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6257 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6258 .writefn = gt_cntvoff_write, 6259 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6260 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6261 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6263 .type = ARM_CP_IO, .access = PL2_RW, 6264 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6265 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6266 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6267 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6268 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6269 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6270 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6271 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6272 .resetfn = gt_hyp_timer_reset, 6273 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6274 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6275 .type = ARM_CP_IO, 6276 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6277 .access = PL2_RW, 6278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6279 .resetvalue = 0, 6280 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6281 #endif 6282 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6283 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6284 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6285 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6286 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6287 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6288 .access = PL2_RW, 6289 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6290 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6291 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6292 .access = PL2_RW, 6293 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6294 }; 6295 6296 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6297 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6298 .type = ARM_CP_ALIAS | ARM_CP_IO, 6299 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6300 .access = PL2_RW, 6301 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6302 .writefn = hcr_writehigh }, 6303 }; 6304 6305 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6306 bool isread) 6307 { 6308 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6309 return CP_ACCESS_OK; 6310 } 6311 return CP_ACCESS_TRAP_UNCATEGORIZED; 6312 } 6313 6314 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6315 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6316 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6317 .access = PL2_RW, .accessfn = sel2_access, 6318 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6319 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6321 .access = PL2_RW, .accessfn = sel2_access, 6322 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6323 }; 6324 6325 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6326 bool isread) 6327 { 6328 /* 6329 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6330 * At Secure EL1 it traps to EL3 or EL2. 6331 */ 6332 if (arm_current_el(env) == 3) { 6333 return CP_ACCESS_OK; 6334 } 6335 if (arm_is_secure_below_el3(env)) { 6336 if (env->cp15.scr_el3 & SCR_EEL2) { 6337 return CP_ACCESS_TRAP_EL2; 6338 } 6339 return CP_ACCESS_TRAP_EL3; 6340 } 6341 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6342 if (isread) { 6343 return CP_ACCESS_OK; 6344 } 6345 return CP_ACCESS_TRAP_UNCATEGORIZED; 6346 } 6347 6348 static const ARMCPRegInfo el3_cp_reginfo[] = { 6349 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6350 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6351 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6352 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6353 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6354 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6355 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6356 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6357 .writefn = scr_write, .raw_writefn = raw_write }, 6358 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6359 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6360 .access = PL3_RW, .resetvalue = 0, 6361 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6362 { .name = "SDER", 6363 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6364 .access = PL3_RW, .resetvalue = 0, 6365 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6366 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6367 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6368 .writefn = vbar_write, .resetvalue = 0, 6369 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6370 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6371 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6372 .access = PL3_RW, .resetvalue = 0, 6373 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6374 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6376 .access = PL3_RW, 6377 /* no .writefn needed as this can't cause an ASID change */ 6378 .resetvalue = 0, 6379 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6380 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6381 .type = ARM_CP_ALIAS, 6382 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6383 .access = PL3_RW, 6384 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6385 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6386 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6387 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6388 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6389 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6390 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6391 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6392 .type = ARM_CP_ALIAS, 6393 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6394 .access = PL3_RW, 6395 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6396 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6397 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6398 .access = PL3_RW, .writefn = vbar_write, 6399 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6400 .resetvalue = 0 }, 6401 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6402 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6403 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6404 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6405 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6406 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6407 .access = PL3_RW, .resetvalue = 0, 6408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6409 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6410 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6411 .access = PL3_RW, .type = ARM_CP_CONST, 6412 .resetvalue = 0 }, 6413 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6414 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6415 .access = PL3_RW, .type = ARM_CP_CONST, 6416 .resetvalue = 0 }, 6417 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6418 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6419 .access = PL3_RW, .type = ARM_CP_CONST, 6420 .resetvalue = 0 }, 6421 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6422 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6423 .access = PL3_W, .type = ARM_CP_NO_RAW, 6424 .writefn = tlbi_aa64_alle3is_write }, 6425 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6426 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6427 .access = PL3_W, .type = ARM_CP_NO_RAW, 6428 .writefn = tlbi_aa64_vae3is_write }, 6429 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6430 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6431 .access = PL3_W, .type = ARM_CP_NO_RAW, 6432 .writefn = tlbi_aa64_vae3is_write }, 6433 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6434 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6435 .access = PL3_W, .type = ARM_CP_NO_RAW, 6436 .writefn = tlbi_aa64_alle3_write }, 6437 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6438 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6439 .access = PL3_W, .type = ARM_CP_NO_RAW, 6440 .writefn = tlbi_aa64_vae3_write }, 6441 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6442 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6443 .access = PL3_W, .type = ARM_CP_NO_RAW, 6444 .writefn = tlbi_aa64_vae3_write }, 6445 }; 6446 6447 #ifndef CONFIG_USER_ONLY 6448 /* Test if system register redirection is to occur in the current state. */ 6449 static bool redirect_for_e2h(CPUARMState *env) 6450 { 6451 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6452 } 6453 6454 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6455 { 6456 CPReadFn *readfn; 6457 6458 if (redirect_for_e2h(env)) { 6459 /* Switch to the saved EL2 version of the register. */ 6460 ri = ri->opaque; 6461 readfn = ri->readfn; 6462 } else { 6463 readfn = ri->orig_readfn; 6464 } 6465 if (readfn == NULL) { 6466 readfn = raw_read; 6467 } 6468 return readfn(env, ri); 6469 } 6470 6471 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6472 uint64_t value) 6473 { 6474 CPWriteFn *writefn; 6475 6476 if (redirect_for_e2h(env)) { 6477 /* Switch to the saved EL2 version of the register. */ 6478 ri = ri->opaque; 6479 writefn = ri->writefn; 6480 } else { 6481 writefn = ri->orig_writefn; 6482 } 6483 if (writefn == NULL) { 6484 writefn = raw_write; 6485 } 6486 writefn(env, ri, value); 6487 } 6488 6489 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6490 { 6491 struct E2HAlias { 6492 uint32_t src_key, dst_key, new_key; 6493 const char *src_name, *dst_name, *new_name; 6494 bool (*feature)(const ARMISARegisters *id); 6495 }; 6496 6497 #define K(op0, op1, crn, crm, op2) \ 6498 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6499 6500 static const struct E2HAlias aliases[] = { 6501 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6502 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6503 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6504 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6505 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6506 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6507 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6508 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6509 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6510 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6511 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6512 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6513 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6514 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6515 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6516 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6517 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6518 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6519 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6520 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6521 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6522 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6523 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6524 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6525 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6526 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6527 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6528 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6529 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6530 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6531 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6532 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6533 6534 /* 6535 * Note that redirection of ZCR is mentioned in the description 6536 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6537 * not in the summary table. 6538 */ 6539 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6540 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6541 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6542 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6543 6544 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6545 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6546 6547 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6548 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6549 isar_feature_aa64_scxtnum }, 6550 6551 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6552 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6553 }; 6554 #undef K 6555 6556 size_t i; 6557 6558 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6559 const struct E2HAlias *a = &aliases[i]; 6560 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6561 bool ok; 6562 6563 if (a->feature && !a->feature(&cpu->isar)) { 6564 continue; 6565 } 6566 6567 src_reg = g_hash_table_lookup(cpu->cp_regs, 6568 (gpointer)(uintptr_t)a->src_key); 6569 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6570 (gpointer)(uintptr_t)a->dst_key); 6571 g_assert(src_reg != NULL); 6572 g_assert(dst_reg != NULL); 6573 6574 /* Cross-compare names to detect typos in the keys. */ 6575 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6576 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6577 6578 /* None of the core system registers use opaque; we will. */ 6579 g_assert(src_reg->opaque == NULL); 6580 6581 /* Create alias before redirection so we dup the right data. */ 6582 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6583 6584 new_reg->name = a->new_name; 6585 new_reg->type |= ARM_CP_ALIAS; 6586 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6587 new_reg->access &= PL2_RW | PL3_RW; 6588 6589 ok = g_hash_table_insert(cpu->cp_regs, 6590 (gpointer)(uintptr_t)a->new_key, new_reg); 6591 g_assert(ok); 6592 6593 src_reg->opaque = dst_reg; 6594 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6595 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6596 if (!src_reg->raw_readfn) { 6597 src_reg->raw_readfn = raw_read; 6598 } 6599 if (!src_reg->raw_writefn) { 6600 src_reg->raw_writefn = raw_write; 6601 } 6602 src_reg->readfn = el2_e2h_read; 6603 src_reg->writefn = el2_e2h_write; 6604 } 6605 } 6606 #endif 6607 6608 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6609 bool isread) 6610 { 6611 int cur_el = arm_current_el(env); 6612 6613 if (cur_el < 2) { 6614 uint64_t hcr = arm_hcr_el2_eff(env); 6615 6616 if (cur_el == 0) { 6617 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6618 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6619 return CP_ACCESS_TRAP_EL2; 6620 } 6621 } else { 6622 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6623 return CP_ACCESS_TRAP; 6624 } 6625 if (hcr & HCR_TID2) { 6626 return CP_ACCESS_TRAP_EL2; 6627 } 6628 } 6629 } else if (hcr & HCR_TID2) { 6630 return CP_ACCESS_TRAP_EL2; 6631 } 6632 } 6633 6634 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6635 return CP_ACCESS_TRAP_EL2; 6636 } 6637 6638 return CP_ACCESS_OK; 6639 } 6640 6641 /* 6642 * Check for traps to RAS registers, which are controlled 6643 * by HCR_EL2.TERR and SCR_EL3.TERR. 6644 */ 6645 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6646 bool isread) 6647 { 6648 int el = arm_current_el(env); 6649 6650 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6651 return CP_ACCESS_TRAP_EL2; 6652 } 6653 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6654 return CP_ACCESS_TRAP_EL3; 6655 } 6656 return CP_ACCESS_OK; 6657 } 6658 6659 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6660 { 6661 int el = arm_current_el(env); 6662 6663 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6664 return env->cp15.vdisr_el2; 6665 } 6666 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6667 return 0; /* RAZ/WI */ 6668 } 6669 return env->cp15.disr_el1; 6670 } 6671 6672 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6673 { 6674 int el = arm_current_el(env); 6675 6676 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6677 env->cp15.vdisr_el2 = val; 6678 return; 6679 } 6680 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6681 return; /* RAZ/WI */ 6682 } 6683 env->cp15.disr_el1 = val; 6684 } 6685 6686 /* 6687 * Minimal RAS implementation with no Error Records. 6688 * Which means that all of the Error Record registers: 6689 * ERXADDR_EL1 6690 * ERXCTLR_EL1 6691 * ERXFR_EL1 6692 * ERXMISC0_EL1 6693 * ERXMISC1_EL1 6694 * ERXMISC2_EL1 6695 * ERXMISC3_EL1 6696 * ERXPFGCDN_EL1 (RASv1p1) 6697 * ERXPFGCTL_EL1 (RASv1p1) 6698 * ERXPFGF_EL1 (RASv1p1) 6699 * ERXSTATUS_EL1 6700 * and 6701 * ERRSELR_EL1 6702 * may generate UNDEFINED, which is the effect we get by not 6703 * listing them at all. 6704 * 6705 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6706 * is higher priority than FGT-to-EL2 so we do not need to list them 6707 * in order to check for an FGT. 6708 */ 6709 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6710 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6711 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6712 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6713 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6714 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6715 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6716 .access = PL1_R, .accessfn = access_terr, 6717 .fgt = FGT_ERRIDR_EL1, 6718 .type = ARM_CP_CONST, .resetvalue = 0 }, 6719 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6720 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6721 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6722 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6723 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6724 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6725 }; 6726 6727 /* 6728 * Return the exception level to which exceptions should be taken 6729 * via SVEAccessTrap. This excludes the check for whether the exception 6730 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6731 * be found by testing 0 < fp_exception_el < sve_exception_el. 6732 * 6733 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6734 * pseudocode does *not* separate out the FP trap checks, but has them 6735 * all in one function. 6736 */ 6737 int sve_exception_el(CPUARMState *env, int el) 6738 { 6739 #ifndef CONFIG_USER_ONLY 6740 if (el <= 1 && !el_is_in_host(env, el)) { 6741 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6742 case 1: 6743 if (el != 0) { 6744 break; 6745 } 6746 /* fall through */ 6747 case 0: 6748 case 2: 6749 return 1; 6750 } 6751 } 6752 6753 if (el <= 2 && arm_is_el2_enabled(env)) { 6754 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6755 if (env->cp15.hcr_el2 & HCR_E2H) { 6756 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6757 case 1: 6758 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6759 break; 6760 } 6761 /* fall through */ 6762 case 0: 6763 case 2: 6764 return 2; 6765 } 6766 } else { 6767 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6768 return 2; 6769 } 6770 } 6771 } 6772 6773 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6774 if (arm_feature(env, ARM_FEATURE_EL3) 6775 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6776 return 3; 6777 } 6778 #endif 6779 return 0; 6780 } 6781 6782 /* 6783 * Return the exception level to which exceptions should be taken for SME. 6784 * C.f. the ARM pseudocode function CheckSMEAccess. 6785 */ 6786 int sme_exception_el(CPUARMState *env, int el) 6787 { 6788 #ifndef CONFIG_USER_ONLY 6789 if (el <= 1 && !el_is_in_host(env, el)) { 6790 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6791 case 1: 6792 if (el != 0) { 6793 break; 6794 } 6795 /* fall through */ 6796 case 0: 6797 case 2: 6798 return 1; 6799 } 6800 } 6801 6802 if (el <= 2 && arm_is_el2_enabled(env)) { 6803 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6804 if (env->cp15.hcr_el2 & HCR_E2H) { 6805 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6806 case 1: 6807 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6808 break; 6809 } 6810 /* fall through */ 6811 case 0: 6812 case 2: 6813 return 2; 6814 } 6815 } else { 6816 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6817 return 2; 6818 } 6819 } 6820 } 6821 6822 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6823 if (arm_feature(env, ARM_FEATURE_EL3) 6824 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6825 return 3; 6826 } 6827 #endif 6828 return 0; 6829 } 6830 6831 /* 6832 * Given that SVE is enabled, return the vector length for EL. 6833 */ 6834 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6835 { 6836 ARMCPU *cpu = env_archcpu(env); 6837 uint64_t *cr = env->vfp.zcr_el; 6838 uint32_t map = cpu->sve_vq.map; 6839 uint32_t len = ARM_MAX_VQ - 1; 6840 6841 if (sm) { 6842 cr = env->vfp.smcr_el; 6843 map = cpu->sme_vq.map; 6844 } 6845 6846 if (el <= 1 && !el_is_in_host(env, el)) { 6847 len = MIN(len, 0xf & (uint32_t)cr[1]); 6848 } 6849 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6850 len = MIN(len, 0xf & (uint32_t)cr[2]); 6851 } 6852 if (arm_feature(env, ARM_FEATURE_EL3)) { 6853 len = MIN(len, 0xf & (uint32_t)cr[3]); 6854 } 6855 6856 map &= MAKE_64BIT_MASK(0, len + 1); 6857 if (map != 0) { 6858 return 31 - clz32(map); 6859 } 6860 6861 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6862 assert(sm); 6863 return ctz32(cpu->sme_vq.map); 6864 } 6865 6866 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6867 { 6868 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6869 } 6870 6871 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6872 uint64_t value) 6873 { 6874 int cur_el = arm_current_el(env); 6875 int old_len = sve_vqm1_for_el(env, cur_el); 6876 int new_len; 6877 6878 /* Bits other than [3:0] are RAZ/WI. */ 6879 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6880 raw_write(env, ri, value & 0xf); 6881 6882 /* 6883 * Because we arrived here, we know both FP and SVE are enabled; 6884 * otherwise we would have trapped access to the ZCR_ELn register. 6885 */ 6886 new_len = sve_vqm1_for_el(env, cur_el); 6887 if (new_len < old_len) { 6888 aarch64_sve_narrow_vq(env, new_len + 1); 6889 } 6890 } 6891 6892 static const ARMCPRegInfo zcr_reginfo[] = { 6893 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6895 .access = PL1_RW, .type = ARM_CP_SVE, 6896 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6897 .writefn = zcr_write, .raw_writefn = raw_write }, 6898 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6900 .access = PL2_RW, .type = ARM_CP_SVE, 6901 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6902 .writefn = zcr_write, .raw_writefn = raw_write }, 6903 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6904 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6905 .access = PL3_RW, .type = ARM_CP_SVE, 6906 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6907 .writefn = zcr_write, .raw_writefn = raw_write }, 6908 }; 6909 6910 #ifdef TARGET_AARCH64 6911 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6912 bool isread) 6913 { 6914 int el = arm_current_el(env); 6915 6916 if (el == 0) { 6917 uint64_t sctlr = arm_sctlr(env, el); 6918 if (!(sctlr & SCTLR_EnTP2)) { 6919 return CP_ACCESS_TRAP; 6920 } 6921 } 6922 /* TODO: FEAT_FGT */ 6923 if (el < 3 6924 && arm_feature(env, ARM_FEATURE_EL3) 6925 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6926 return CP_ACCESS_TRAP_EL3; 6927 } 6928 return CP_ACCESS_OK; 6929 } 6930 6931 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6932 bool isread) 6933 { 6934 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6935 if (arm_current_el(env) < 3 6936 && arm_feature(env, ARM_FEATURE_EL3) 6937 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6938 return CP_ACCESS_TRAP_EL3; 6939 } 6940 return CP_ACCESS_OK; 6941 } 6942 6943 /* ResetSVEState */ 6944 static void arm_reset_sve_state(CPUARMState *env) 6945 { 6946 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6947 /* Recall that FFR is stored as pregs[16]. */ 6948 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6949 vfp_set_fpcr(env, 0x0800009f); 6950 } 6951 6952 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6953 { 6954 uint64_t change = (env->svcr ^ new) & mask; 6955 6956 if (change == 0) { 6957 return; 6958 } 6959 env->svcr ^= change; 6960 6961 if (change & R_SVCR_SM_MASK) { 6962 arm_reset_sve_state(env); 6963 } 6964 6965 /* 6966 * ResetSMEState. 6967 * 6968 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6969 * on enable: while disabled, the storage is inaccessible and the 6970 * value does not matter. We're not saving the storage in vmstate 6971 * when disabled either. 6972 */ 6973 if (change & new & R_SVCR_ZA_MASK) { 6974 memset(env->zarray, 0, sizeof(env->zarray)); 6975 } 6976 6977 if (tcg_enabled()) { 6978 arm_rebuild_hflags(env); 6979 } 6980 } 6981 6982 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6983 uint64_t value) 6984 { 6985 aarch64_set_svcr(env, value, -1); 6986 } 6987 6988 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6989 uint64_t value) 6990 { 6991 int cur_el = arm_current_el(env); 6992 int old_len = sve_vqm1_for_el(env, cur_el); 6993 int new_len; 6994 6995 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6996 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6997 raw_write(env, ri, value); 6998 6999 /* 7000 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7001 * when SVL is widened (old values kept, or zeros). Choose to keep the 7002 * current values for simplicity. But for QEMU internals, we must still 7003 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7004 * above aarch64_sve_narrow_vq. 7005 */ 7006 new_len = sve_vqm1_for_el(env, cur_el); 7007 if (new_len < old_len) { 7008 aarch64_sve_narrow_vq(env, new_len + 1); 7009 } 7010 } 7011 7012 static const ARMCPRegInfo sme_reginfo[] = { 7013 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7015 .access = PL0_RW, .accessfn = access_tpidr2, 7016 .fgt = FGT_NTPIDR2_EL0, 7017 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7018 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7020 .access = PL0_RW, .type = ARM_CP_SME, 7021 .fieldoffset = offsetof(CPUARMState, svcr), 7022 .writefn = svcr_write, .raw_writefn = raw_write }, 7023 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7024 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7025 .access = PL1_RW, .type = ARM_CP_SME, 7026 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7027 .writefn = smcr_write, .raw_writefn = raw_write }, 7028 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7030 .access = PL2_RW, .type = ARM_CP_SME, 7031 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7032 .writefn = smcr_write, .raw_writefn = raw_write }, 7033 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7035 .access = PL3_RW, .type = ARM_CP_SME, 7036 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7037 .writefn = smcr_write, .raw_writefn = raw_write }, 7038 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7040 .access = PL1_R, .accessfn = access_aa64_tid1, 7041 /* 7042 * IMPLEMENTOR = 0 (software) 7043 * REVISION = 0 (implementation defined) 7044 * SMPS = 0 (no streaming execution priority in QEMU) 7045 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7046 */ 7047 .type = ARM_CP_CONST, .resetvalue = 0, }, 7048 /* 7049 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7050 */ 7051 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7053 .access = PL1_RW, .accessfn = access_esm, 7054 .fgt = FGT_NSMPRI_EL1, 7055 .type = ARM_CP_CONST, .resetvalue = 0 }, 7056 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7058 .access = PL2_RW, .accessfn = access_esm, 7059 .type = ARM_CP_CONST, .resetvalue = 0 }, 7060 }; 7061 7062 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7063 uint64_t value) 7064 { 7065 CPUState *cs = env_cpu(env); 7066 7067 tlb_flush(cs); 7068 } 7069 7070 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7071 uint64_t value) 7072 { 7073 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7074 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7075 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7076 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7077 7078 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7079 } 7080 7081 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7082 { 7083 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7084 env_archcpu(env)->reset_l0gptsz); 7085 } 7086 7087 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7088 uint64_t value) 7089 { 7090 CPUState *cs = env_cpu(env); 7091 7092 tlb_flush_all_cpus_synced(cs); 7093 } 7094 7095 static const ARMCPRegInfo rme_reginfo[] = { 7096 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7098 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7099 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7100 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7101 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7102 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7103 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7105 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7106 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7108 .access = PL3_W, .type = ARM_CP_NO_RAW, 7109 .writefn = tlbi_aa64_paall_write }, 7110 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7112 .access = PL3_W, .type = ARM_CP_NO_RAW, 7113 .writefn = tlbi_aa64_paallos_write }, 7114 /* 7115 * QEMU does not have a way to invalidate by physical address, thus 7116 * invalidating a range of physical addresses is accomplished by 7117 * flushing all tlb entries in the outer shareable domain, 7118 * just like PAALLOS. 7119 */ 7120 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7122 .access = PL3_W, .type = ARM_CP_NO_RAW, 7123 .writefn = tlbi_aa64_paallos_write }, 7124 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7126 .access = PL3_W, .type = ARM_CP_NO_RAW, 7127 .writefn = tlbi_aa64_paallos_write }, 7128 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7129 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7130 .access = PL3_W, .type = ARM_CP_NOP }, 7131 }; 7132 7133 static const ARMCPRegInfo rme_mte_reginfo[] = { 7134 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7136 .access = PL3_W, .type = ARM_CP_NOP }, 7137 }; 7138 #endif /* TARGET_AARCH64 */ 7139 7140 static void define_pmu_regs(ARMCPU *cpu) 7141 { 7142 /* 7143 * v7 performance monitor control register: same implementor 7144 * field as main ID register, and we implement four counters in 7145 * addition to the cycle count register. 7146 */ 7147 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7148 ARMCPRegInfo pmcr = { 7149 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7150 .access = PL0_RW, 7151 .fgt = FGT_PMCR_EL0, 7152 .type = ARM_CP_IO | ARM_CP_ALIAS, 7153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7154 .accessfn = pmreg_access, .writefn = pmcr_write, 7155 .raw_writefn = raw_write, 7156 }; 7157 ARMCPRegInfo pmcr64 = { 7158 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7160 .access = PL0_RW, .accessfn = pmreg_access, 7161 .fgt = FGT_PMCR_EL0, 7162 .type = ARM_CP_IO, 7163 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7164 .resetvalue = cpu->isar.reset_pmcr_el0, 7165 .writefn = pmcr_write, .raw_writefn = raw_write, 7166 }; 7167 7168 define_one_arm_cp_reg(cpu, &pmcr); 7169 define_one_arm_cp_reg(cpu, &pmcr64); 7170 for (i = 0; i < pmcrn; i++) { 7171 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7172 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7173 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7174 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7175 ARMCPRegInfo pmev_regs[] = { 7176 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7177 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7178 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7179 .fgt = FGT_PMEVCNTRN_EL0, 7180 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7181 .accessfn = pmreg_access_xevcntr }, 7182 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7184 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7185 .type = ARM_CP_IO, 7186 .fgt = FGT_PMEVCNTRN_EL0, 7187 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7188 .raw_readfn = pmevcntr_rawread, 7189 .raw_writefn = pmevcntr_rawwrite }, 7190 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7191 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7192 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7193 .fgt = FGT_PMEVTYPERN_EL0, 7194 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7195 .accessfn = pmreg_access }, 7196 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7198 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7199 .fgt = FGT_PMEVTYPERN_EL0, 7200 .type = ARM_CP_IO, 7201 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7202 .raw_writefn = pmevtyper_rawwrite }, 7203 }; 7204 define_arm_cp_regs(cpu, pmev_regs); 7205 g_free(pmevcntr_name); 7206 g_free(pmevcntr_el0_name); 7207 g_free(pmevtyper_name); 7208 g_free(pmevtyper_el0_name); 7209 } 7210 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7211 ARMCPRegInfo v81_pmu_regs[] = { 7212 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7213 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7214 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7215 .fgt = FGT_PMCEIDN_EL0, 7216 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7217 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7218 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7219 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7220 .fgt = FGT_PMCEIDN_EL0, 7221 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7222 }; 7223 define_arm_cp_regs(cpu, v81_pmu_regs); 7224 } 7225 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7226 static const ARMCPRegInfo v84_pmmir = { 7227 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7228 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7229 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7230 .fgt = FGT_PMMIR_EL1, 7231 .resetvalue = 0 7232 }; 7233 define_one_arm_cp_reg(cpu, &v84_pmmir); 7234 } 7235 } 7236 7237 #ifndef CONFIG_USER_ONLY 7238 /* 7239 * We don't know until after realize whether there's a GICv3 7240 * attached, and that is what registers the gicv3 sysregs. 7241 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7242 * at runtime. 7243 */ 7244 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7245 { 7246 ARMCPU *cpu = env_archcpu(env); 7247 uint64_t pfr1 = cpu->isar.id_pfr1; 7248 7249 if (env->gicv3state) { 7250 pfr1 |= 1 << 28; 7251 } 7252 return pfr1; 7253 } 7254 7255 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7256 { 7257 ARMCPU *cpu = env_archcpu(env); 7258 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7259 7260 if (env->gicv3state) { 7261 pfr0 |= 1 << 24; 7262 } 7263 return pfr0; 7264 } 7265 #endif 7266 7267 /* 7268 * Shared logic between LORID and the rest of the LOR* registers. 7269 * Secure state exclusion has already been dealt with. 7270 */ 7271 static CPAccessResult access_lor_ns(CPUARMState *env, 7272 const ARMCPRegInfo *ri, bool isread) 7273 { 7274 int el = arm_current_el(env); 7275 7276 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7277 return CP_ACCESS_TRAP_EL2; 7278 } 7279 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7280 return CP_ACCESS_TRAP_EL3; 7281 } 7282 return CP_ACCESS_OK; 7283 } 7284 7285 static CPAccessResult access_lor_other(CPUARMState *env, 7286 const ARMCPRegInfo *ri, bool isread) 7287 { 7288 if (arm_is_secure_below_el3(env)) { 7289 /* Access denied in secure mode. */ 7290 return CP_ACCESS_TRAP; 7291 } 7292 return access_lor_ns(env, ri, isread); 7293 } 7294 7295 /* 7296 * A trivial implementation of ARMv8.1-LOR leaves all of these 7297 * registers fixed at 0, which indicates that there are zero 7298 * supported Limited Ordering regions. 7299 */ 7300 static const ARMCPRegInfo lor_reginfo[] = { 7301 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7303 .access = PL1_RW, .accessfn = access_lor_other, 7304 .fgt = FGT_LORSA_EL1, 7305 .type = ARM_CP_CONST, .resetvalue = 0 }, 7306 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7308 .access = PL1_RW, .accessfn = access_lor_other, 7309 .fgt = FGT_LOREA_EL1, 7310 .type = ARM_CP_CONST, .resetvalue = 0 }, 7311 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7313 .access = PL1_RW, .accessfn = access_lor_other, 7314 .fgt = FGT_LORN_EL1, 7315 .type = ARM_CP_CONST, .resetvalue = 0 }, 7316 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7318 .access = PL1_RW, .accessfn = access_lor_other, 7319 .fgt = FGT_LORC_EL1, 7320 .type = ARM_CP_CONST, .resetvalue = 0 }, 7321 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7323 .access = PL1_R, .accessfn = access_lor_ns, 7324 .fgt = FGT_LORID_EL1, 7325 .type = ARM_CP_CONST, .resetvalue = 0 }, 7326 }; 7327 7328 #ifdef TARGET_AARCH64 7329 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7330 bool isread) 7331 { 7332 int el = arm_current_el(env); 7333 7334 if (el < 2 && 7335 arm_is_el2_enabled(env) && 7336 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7337 return CP_ACCESS_TRAP_EL2; 7338 } 7339 if (el < 3 && 7340 arm_feature(env, ARM_FEATURE_EL3) && 7341 !(env->cp15.scr_el3 & SCR_APK)) { 7342 return CP_ACCESS_TRAP_EL3; 7343 } 7344 return CP_ACCESS_OK; 7345 } 7346 7347 static const ARMCPRegInfo pauth_reginfo[] = { 7348 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7349 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7350 .access = PL1_RW, .accessfn = access_pauth, 7351 .fgt = FGT_APDAKEY, 7352 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7353 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7355 .access = PL1_RW, .accessfn = access_pauth, 7356 .fgt = FGT_APDAKEY, 7357 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7358 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7359 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7360 .access = PL1_RW, .accessfn = access_pauth, 7361 .fgt = FGT_APDBKEY, 7362 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7363 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7364 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7365 .access = PL1_RW, .accessfn = access_pauth, 7366 .fgt = FGT_APDBKEY, 7367 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7368 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7369 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7370 .access = PL1_RW, .accessfn = access_pauth, 7371 .fgt = FGT_APGAKEY, 7372 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7373 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7375 .access = PL1_RW, .accessfn = access_pauth, 7376 .fgt = FGT_APGAKEY, 7377 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7378 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7380 .access = PL1_RW, .accessfn = access_pauth, 7381 .fgt = FGT_APIAKEY, 7382 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7383 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7384 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7385 .access = PL1_RW, .accessfn = access_pauth, 7386 .fgt = FGT_APIAKEY, 7387 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7388 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7389 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7390 .access = PL1_RW, .accessfn = access_pauth, 7391 .fgt = FGT_APIBKEY, 7392 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7393 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7394 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7395 .access = PL1_RW, .accessfn = access_pauth, 7396 .fgt = FGT_APIBKEY, 7397 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7398 }; 7399 7400 static const ARMCPRegInfo tlbirange_reginfo[] = { 7401 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7402 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7403 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7404 .fgt = FGT_TLBIRVAE1IS, 7405 .writefn = tlbi_aa64_rvae1is_write }, 7406 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7408 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7409 .fgt = FGT_TLBIRVAAE1IS, 7410 .writefn = tlbi_aa64_rvae1is_write }, 7411 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7412 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7413 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7414 .fgt = FGT_TLBIRVALE1IS, 7415 .writefn = tlbi_aa64_rvae1is_write }, 7416 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7418 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7419 .fgt = FGT_TLBIRVAALE1IS, 7420 .writefn = tlbi_aa64_rvae1is_write }, 7421 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7422 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7423 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7424 .fgt = FGT_TLBIRVAE1OS, 7425 .writefn = tlbi_aa64_rvae1is_write }, 7426 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7428 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7429 .fgt = FGT_TLBIRVAAE1OS, 7430 .writefn = tlbi_aa64_rvae1is_write }, 7431 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7433 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7434 .fgt = FGT_TLBIRVALE1OS, 7435 .writefn = tlbi_aa64_rvae1is_write }, 7436 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7438 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7439 .fgt = FGT_TLBIRVAALE1OS, 7440 .writefn = tlbi_aa64_rvae1is_write }, 7441 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7443 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7444 .fgt = FGT_TLBIRVAE1, 7445 .writefn = tlbi_aa64_rvae1_write }, 7446 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7448 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7449 .fgt = FGT_TLBIRVAAE1, 7450 .writefn = tlbi_aa64_rvae1_write }, 7451 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7453 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7454 .fgt = FGT_TLBIRVALE1, 7455 .writefn = tlbi_aa64_rvae1_write }, 7456 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7457 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7458 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7459 .fgt = FGT_TLBIRVAALE1, 7460 .writefn = tlbi_aa64_rvae1_write }, 7461 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7463 .access = PL2_W, .type = ARM_CP_NO_RAW, 7464 .writefn = tlbi_aa64_ripas2e1is_write }, 7465 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7467 .access = PL2_W, .type = ARM_CP_NO_RAW, 7468 .writefn = tlbi_aa64_ripas2e1is_write }, 7469 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7471 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7472 .writefn = tlbi_aa64_rvae2is_write }, 7473 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7475 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7476 .writefn = tlbi_aa64_rvae2is_write }, 7477 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7479 .access = PL2_W, .type = ARM_CP_NO_RAW, 7480 .writefn = tlbi_aa64_ripas2e1_write }, 7481 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7483 .access = PL2_W, .type = ARM_CP_NO_RAW, 7484 .writefn = tlbi_aa64_ripas2e1_write }, 7485 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7487 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7488 .writefn = tlbi_aa64_rvae2is_write }, 7489 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7491 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7492 .writefn = tlbi_aa64_rvae2is_write }, 7493 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7495 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7496 .writefn = tlbi_aa64_rvae2_write }, 7497 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7499 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7500 .writefn = tlbi_aa64_rvae2_write }, 7501 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7503 .access = PL3_W, .type = ARM_CP_NO_RAW, 7504 .writefn = tlbi_aa64_rvae3is_write }, 7505 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7507 .access = PL3_W, .type = ARM_CP_NO_RAW, 7508 .writefn = tlbi_aa64_rvae3is_write }, 7509 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7511 .access = PL3_W, .type = ARM_CP_NO_RAW, 7512 .writefn = tlbi_aa64_rvae3is_write }, 7513 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7515 .access = PL3_W, .type = ARM_CP_NO_RAW, 7516 .writefn = tlbi_aa64_rvae3is_write }, 7517 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7519 .access = PL3_W, .type = ARM_CP_NO_RAW, 7520 .writefn = tlbi_aa64_rvae3_write }, 7521 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7523 .access = PL3_W, .type = ARM_CP_NO_RAW, 7524 .writefn = tlbi_aa64_rvae3_write }, 7525 }; 7526 7527 static const ARMCPRegInfo tlbios_reginfo[] = { 7528 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7530 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7531 .fgt = FGT_TLBIVMALLE1OS, 7532 .writefn = tlbi_aa64_vmalle1is_write }, 7533 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7535 .fgt = FGT_TLBIVAE1OS, 7536 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7537 .writefn = tlbi_aa64_vae1is_write }, 7538 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7540 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7541 .fgt = FGT_TLBIASIDE1OS, 7542 .writefn = tlbi_aa64_vmalle1is_write }, 7543 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7544 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7545 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7546 .fgt = FGT_TLBIVAAE1OS, 7547 .writefn = tlbi_aa64_vae1is_write }, 7548 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7550 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7551 .fgt = FGT_TLBIVALE1OS, 7552 .writefn = tlbi_aa64_vae1is_write }, 7553 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7555 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7556 .fgt = FGT_TLBIVAALE1OS, 7557 .writefn = tlbi_aa64_vae1is_write }, 7558 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7561 .writefn = tlbi_aa64_alle2is_write }, 7562 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7565 .writefn = tlbi_aa64_vae2is_write }, 7566 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7568 .access = PL2_W, .type = ARM_CP_NO_RAW, 7569 .writefn = tlbi_aa64_alle1is_write }, 7570 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7572 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7573 .writefn = tlbi_aa64_vae2is_write }, 7574 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7575 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7576 .access = PL2_W, .type = ARM_CP_NO_RAW, 7577 .writefn = tlbi_aa64_alle1is_write }, 7578 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7580 .access = PL2_W, .type = ARM_CP_NOP }, 7581 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7583 .access = PL2_W, .type = ARM_CP_NOP }, 7584 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7586 .access = PL2_W, .type = ARM_CP_NOP }, 7587 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7589 .access = PL2_W, .type = ARM_CP_NOP }, 7590 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7592 .access = PL3_W, .type = ARM_CP_NO_RAW, 7593 .writefn = tlbi_aa64_alle3is_write }, 7594 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7595 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7596 .access = PL3_W, .type = ARM_CP_NO_RAW, 7597 .writefn = tlbi_aa64_vae3is_write }, 7598 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7600 .access = PL3_W, .type = ARM_CP_NO_RAW, 7601 .writefn = tlbi_aa64_vae3is_write }, 7602 }; 7603 7604 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7605 { 7606 Error *err = NULL; 7607 uint64_t ret; 7608 7609 /* Success sets NZCV = 0000. */ 7610 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7611 7612 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7613 /* 7614 * ??? Failed, for unknown reasons in the crypto subsystem. 7615 * The best we can do is log the reason and return the 7616 * timed-out indication to the guest. There is no reason 7617 * we know to expect this failure to be transitory, so the 7618 * guest may well hang retrying the operation. 7619 */ 7620 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7621 ri->name, error_get_pretty(err)); 7622 error_free(err); 7623 7624 env->ZF = 0; /* NZCF = 0100 */ 7625 return 0; 7626 } 7627 return ret; 7628 } 7629 7630 /* We do not support re-seeding, so the two registers operate the same. */ 7631 static const ARMCPRegInfo rndr_reginfo[] = { 7632 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7633 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7634 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7635 .access = PL0_R, .readfn = rndr_readfn }, 7636 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7637 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7638 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7639 .access = PL0_R, .readfn = rndr_readfn }, 7640 }; 7641 7642 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7643 uint64_t value) 7644 { 7645 ARMCPU *cpu = env_archcpu(env); 7646 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7647 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7648 uint64_t vaddr_in = (uint64_t) value; 7649 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7650 void *haddr; 7651 int mem_idx = cpu_mmu_index(env, false); 7652 7653 /* This won't be crossing page boundaries */ 7654 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7655 if (haddr) { 7656 #ifndef CONFIG_USER_ONLY 7657 7658 ram_addr_t offset; 7659 MemoryRegion *mr; 7660 7661 /* RCU lock is already being held */ 7662 mr = memory_region_from_host(haddr, &offset); 7663 7664 if (mr) { 7665 memory_region_writeback(mr, offset, dline_size); 7666 } 7667 #endif /*CONFIG_USER_ONLY*/ 7668 } 7669 } 7670 7671 static const ARMCPRegInfo dcpop_reg[] = { 7672 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7674 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7675 .fgt = FGT_DCCVAP, 7676 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7677 }; 7678 7679 static const ARMCPRegInfo dcpodp_reg[] = { 7680 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7682 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7683 .fgt = FGT_DCCVADP, 7684 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7685 }; 7686 7687 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7688 bool isread) 7689 { 7690 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7691 return CP_ACCESS_TRAP_EL2; 7692 } 7693 7694 return CP_ACCESS_OK; 7695 } 7696 7697 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7698 bool isread) 7699 { 7700 int el = arm_current_el(env); 7701 7702 if (el < 2 && arm_is_el2_enabled(env)) { 7703 uint64_t hcr = arm_hcr_el2_eff(env); 7704 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7705 return CP_ACCESS_TRAP_EL2; 7706 } 7707 } 7708 if (el < 3 && 7709 arm_feature(env, ARM_FEATURE_EL3) && 7710 !(env->cp15.scr_el3 & SCR_ATA)) { 7711 return CP_ACCESS_TRAP_EL3; 7712 } 7713 return CP_ACCESS_OK; 7714 } 7715 7716 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7717 { 7718 return env->pstate & PSTATE_TCO; 7719 } 7720 7721 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7722 { 7723 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7724 } 7725 7726 static const ARMCPRegInfo mte_reginfo[] = { 7727 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7729 .access = PL1_RW, .accessfn = access_mte, 7730 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7731 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7733 .access = PL1_RW, .accessfn = access_mte, 7734 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7735 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7737 .access = PL2_RW, .accessfn = access_mte, 7738 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7739 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7741 .access = PL3_RW, 7742 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7743 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7745 .access = PL1_RW, .accessfn = access_mte, 7746 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7747 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7749 .access = PL1_RW, .accessfn = access_mte, 7750 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7751 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7753 .access = PL1_R, .accessfn = access_aa64_tid5, 7754 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7755 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7757 .type = ARM_CP_NO_RAW, 7758 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7759 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7761 .type = ARM_CP_NOP, .access = PL1_W, 7762 .fgt = FGT_DCIVAC, 7763 .accessfn = aa64_cacheop_poc_access }, 7764 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7765 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7766 .fgt = FGT_DCISW, 7767 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7768 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7770 .type = ARM_CP_NOP, .access = PL1_W, 7771 .fgt = FGT_DCIVAC, 7772 .accessfn = aa64_cacheop_poc_access }, 7773 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7775 .fgt = FGT_DCISW, 7776 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7777 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7779 .fgt = FGT_DCCSW, 7780 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7781 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7783 .fgt = FGT_DCCSW, 7784 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7785 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7787 .fgt = FGT_DCCISW, 7788 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7789 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7791 .fgt = FGT_DCCISW, 7792 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7793 }; 7794 7795 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7796 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7798 .type = ARM_CP_CONST, .access = PL0_RW, }, 7799 }; 7800 7801 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7802 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7803 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7804 .type = ARM_CP_NOP, .access = PL0_W, 7805 .fgt = FGT_DCCVAC, 7806 .accessfn = aa64_cacheop_poc_access }, 7807 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7809 .type = ARM_CP_NOP, .access = PL0_W, 7810 .fgt = FGT_DCCVAC, 7811 .accessfn = aa64_cacheop_poc_access }, 7812 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7814 .type = ARM_CP_NOP, .access = PL0_W, 7815 .fgt = FGT_DCCVAP, 7816 .accessfn = aa64_cacheop_poc_access }, 7817 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7819 .type = ARM_CP_NOP, .access = PL0_W, 7820 .fgt = FGT_DCCVAP, 7821 .accessfn = aa64_cacheop_poc_access }, 7822 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7824 .type = ARM_CP_NOP, .access = PL0_W, 7825 .fgt = FGT_DCCVADP, 7826 .accessfn = aa64_cacheop_poc_access }, 7827 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7829 .type = ARM_CP_NOP, .access = PL0_W, 7830 .fgt = FGT_DCCVADP, 7831 .accessfn = aa64_cacheop_poc_access }, 7832 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7834 .type = ARM_CP_NOP, .access = PL0_W, 7835 .fgt = FGT_DCCIVAC, 7836 .accessfn = aa64_cacheop_poc_access }, 7837 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7839 .type = ARM_CP_NOP, .access = PL0_W, 7840 .fgt = FGT_DCCIVAC, 7841 .accessfn = aa64_cacheop_poc_access }, 7842 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7844 .access = PL0_W, .type = ARM_CP_DC_GVA, 7845 #ifndef CONFIG_USER_ONLY 7846 /* Avoid overhead of an access check that always passes in user-mode */ 7847 .accessfn = aa64_zva_access, 7848 .fgt = FGT_DCZVA, 7849 #endif 7850 }, 7851 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7853 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7854 #ifndef CONFIG_USER_ONLY 7855 /* Avoid overhead of an access check that always passes in user-mode */ 7856 .accessfn = aa64_zva_access, 7857 .fgt = FGT_DCZVA, 7858 #endif 7859 }, 7860 }; 7861 7862 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7863 bool isread) 7864 { 7865 uint64_t hcr = arm_hcr_el2_eff(env); 7866 int el = arm_current_el(env); 7867 7868 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7869 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7870 if (hcr & HCR_TGE) { 7871 return CP_ACCESS_TRAP_EL2; 7872 } 7873 return CP_ACCESS_TRAP; 7874 } 7875 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7876 return CP_ACCESS_TRAP_EL2; 7877 } 7878 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7879 return CP_ACCESS_TRAP_EL2; 7880 } 7881 if (el < 3 7882 && arm_feature(env, ARM_FEATURE_EL3) 7883 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7884 return CP_ACCESS_TRAP_EL3; 7885 } 7886 return CP_ACCESS_OK; 7887 } 7888 7889 static const ARMCPRegInfo scxtnum_reginfo[] = { 7890 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7892 .access = PL0_RW, .accessfn = access_scxtnum, 7893 .fgt = FGT_SCXTNUM_EL0, 7894 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7895 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7896 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7897 .access = PL1_RW, .accessfn = access_scxtnum, 7898 .fgt = FGT_SCXTNUM_EL1, 7899 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7900 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7902 .access = PL2_RW, .accessfn = access_scxtnum, 7903 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7904 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7906 .access = PL3_RW, 7907 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7908 }; 7909 7910 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7911 bool isread) 7912 { 7913 if (arm_current_el(env) == 2 && 7914 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7915 return CP_ACCESS_TRAP_EL3; 7916 } 7917 return CP_ACCESS_OK; 7918 } 7919 7920 static const ARMCPRegInfo fgt_reginfo[] = { 7921 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7923 .access = PL2_RW, .accessfn = access_fgt, 7924 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7925 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7926 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7927 .access = PL2_RW, .accessfn = access_fgt, 7928 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7929 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7930 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7931 .access = PL2_RW, .accessfn = access_fgt, 7932 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7933 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7935 .access = PL2_RW, .accessfn = access_fgt, 7936 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7937 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7938 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7939 .access = PL2_RW, .accessfn = access_fgt, 7940 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7941 }; 7942 #endif /* TARGET_AARCH64 */ 7943 7944 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7945 bool isread) 7946 { 7947 int el = arm_current_el(env); 7948 7949 if (el == 0) { 7950 uint64_t sctlr = arm_sctlr(env, el); 7951 if (!(sctlr & SCTLR_EnRCTX)) { 7952 return CP_ACCESS_TRAP; 7953 } 7954 } else if (el == 1) { 7955 uint64_t hcr = arm_hcr_el2_eff(env); 7956 if (hcr & HCR_NV) { 7957 return CP_ACCESS_TRAP_EL2; 7958 } 7959 } 7960 return CP_ACCESS_OK; 7961 } 7962 7963 static const ARMCPRegInfo predinv_reginfo[] = { 7964 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7965 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7966 .fgt = FGT_CFPRCTX, 7967 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7968 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7970 .fgt = FGT_DVPRCTX, 7971 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7972 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7973 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7974 .fgt = FGT_CPPRCTX, 7975 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7976 /* 7977 * Note the AArch32 opcodes have a different OPC1. 7978 */ 7979 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7980 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7981 .fgt = FGT_CFPRCTX, 7982 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7983 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7984 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7985 .fgt = FGT_DVPRCTX, 7986 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7987 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7988 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7989 .fgt = FGT_CPPRCTX, 7990 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7991 }; 7992 7993 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7994 { 7995 /* Read the high 32 bits of the current CCSIDR */ 7996 return extract64(ccsidr_read(env, ri), 32, 32); 7997 } 7998 7999 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8000 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8001 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8002 .access = PL1_R, 8003 .accessfn = access_tid4, 8004 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8005 }; 8006 8007 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8008 bool isread) 8009 { 8010 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8011 return CP_ACCESS_TRAP_EL2; 8012 } 8013 8014 return CP_ACCESS_OK; 8015 } 8016 8017 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8018 bool isread) 8019 { 8020 if (arm_feature(env, ARM_FEATURE_V8)) { 8021 return access_aa64_tid3(env, ri, isread); 8022 } 8023 8024 return CP_ACCESS_OK; 8025 } 8026 8027 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8028 bool isread) 8029 { 8030 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8031 return CP_ACCESS_TRAP_EL2; 8032 } 8033 8034 return CP_ACCESS_OK; 8035 } 8036 8037 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8038 const ARMCPRegInfo *ri, bool isread) 8039 { 8040 /* 8041 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8042 * in v7A, not in v8A. 8043 */ 8044 if (!arm_feature(env, ARM_FEATURE_V8) && 8045 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8046 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8047 return CP_ACCESS_TRAP_EL2; 8048 } 8049 return CP_ACCESS_OK; 8050 } 8051 8052 static const ARMCPRegInfo jazelle_regs[] = { 8053 { .name = "JIDR", 8054 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8055 .access = PL1_R, .accessfn = access_jazelle, 8056 .type = ARM_CP_CONST, .resetvalue = 0 }, 8057 { .name = "JOSCR", 8058 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8059 .accessfn = access_joscr_jmcr, 8060 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8061 { .name = "JMCR", 8062 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8063 .accessfn = access_joscr_jmcr, 8064 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8065 }; 8066 8067 static const ARMCPRegInfo contextidr_el2 = { 8068 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8069 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8070 .access = PL2_RW, 8071 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8072 }; 8073 8074 static const ARMCPRegInfo vhe_reginfo[] = { 8075 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8076 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8077 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8078 .raw_writefn = raw_write, 8079 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8080 #ifndef CONFIG_USER_ONLY 8081 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8082 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8083 .fieldoffset = 8084 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8085 .type = ARM_CP_IO, .access = PL2_RW, 8086 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8087 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8088 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8090 .resetfn = gt_hv_timer_reset, 8091 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8092 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8093 .type = ARM_CP_IO, 8094 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8095 .access = PL2_RW, 8096 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8097 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8098 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8099 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8100 .type = ARM_CP_IO | ARM_CP_ALIAS, 8101 .access = PL2_RW, .accessfn = e2h_access, 8102 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8103 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8104 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8105 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8106 .type = ARM_CP_IO | ARM_CP_ALIAS, 8107 .access = PL2_RW, .accessfn = e2h_access, 8108 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8109 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8110 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8111 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8112 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8113 .access = PL2_RW, .accessfn = e2h_access, 8114 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8115 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8116 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8117 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8118 .access = PL2_RW, .accessfn = e2h_access, 8119 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8120 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8121 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8122 .type = ARM_CP_IO | ARM_CP_ALIAS, 8123 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8124 .access = PL2_RW, .accessfn = e2h_access, 8125 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8126 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8127 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8128 .type = ARM_CP_IO | ARM_CP_ALIAS, 8129 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8130 .access = PL2_RW, .accessfn = e2h_access, 8131 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8132 #endif 8133 }; 8134 8135 #ifndef CONFIG_USER_ONLY 8136 static const ARMCPRegInfo ats1e1_reginfo[] = { 8137 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8138 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8139 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8140 .fgt = FGT_ATS1E1RP, 8141 .accessfn = at_e012_access, .writefn = ats_write64 }, 8142 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8143 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8144 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8145 .fgt = FGT_ATS1E1WP, 8146 .accessfn = at_e012_access, .writefn = ats_write64 }, 8147 }; 8148 8149 static const ARMCPRegInfo ats1cp_reginfo[] = { 8150 { .name = "ATS1CPRP", 8151 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8152 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8153 .writefn = ats_write }, 8154 { .name = "ATS1CPWP", 8155 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8156 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8157 .writefn = ats_write }, 8158 }; 8159 #endif 8160 8161 /* 8162 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8163 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8164 * is non-zero, which is never for ARMv7, optionally in ARMv8 8165 * and mandatorily for ARMv8.2 and up. 8166 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8167 * implementation is RAZ/WI we can ignore this detail, as we 8168 * do for ACTLR. 8169 */ 8170 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8171 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8172 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8173 .access = PL1_RW, .accessfn = access_tacr, 8174 .type = ARM_CP_CONST, .resetvalue = 0 }, 8175 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8176 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8177 .access = PL2_RW, .type = ARM_CP_CONST, 8178 .resetvalue = 0 }, 8179 }; 8180 8181 void register_cp_regs_for_features(ARMCPU *cpu) 8182 { 8183 /* Register all the coprocessor registers based on feature bits */ 8184 CPUARMState *env = &cpu->env; 8185 if (arm_feature(env, ARM_FEATURE_M)) { 8186 /* M profile has no coprocessor registers */ 8187 return; 8188 } 8189 8190 define_arm_cp_regs(cpu, cp_reginfo); 8191 if (!arm_feature(env, ARM_FEATURE_V8)) { 8192 /* 8193 * Must go early as it is full of wildcards that may be 8194 * overridden by later definitions. 8195 */ 8196 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8197 } 8198 8199 if (arm_feature(env, ARM_FEATURE_V6)) { 8200 /* The ID registers all have impdef reset values */ 8201 ARMCPRegInfo v6_idregs[] = { 8202 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8204 .access = PL1_R, .type = ARM_CP_CONST, 8205 .accessfn = access_aa32_tid3, 8206 .resetvalue = cpu->isar.id_pfr0 }, 8207 /* 8208 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8209 * the value of the GIC field until after we define these regs. 8210 */ 8211 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8213 .access = PL1_R, .type = ARM_CP_NO_RAW, 8214 .accessfn = access_aa32_tid3, 8215 #ifdef CONFIG_USER_ONLY 8216 .type = ARM_CP_CONST, 8217 .resetvalue = cpu->isar.id_pfr1, 8218 #else 8219 .type = ARM_CP_NO_RAW, 8220 .accessfn = access_aa32_tid3, 8221 .readfn = id_pfr1_read, 8222 .writefn = arm_cp_write_ignore 8223 #endif 8224 }, 8225 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8227 .access = PL1_R, .type = ARM_CP_CONST, 8228 .accessfn = access_aa32_tid3, 8229 .resetvalue = cpu->isar.id_dfr0 }, 8230 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8232 .access = PL1_R, .type = ARM_CP_CONST, 8233 .accessfn = access_aa32_tid3, 8234 .resetvalue = cpu->id_afr0 }, 8235 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8237 .access = PL1_R, .type = ARM_CP_CONST, 8238 .accessfn = access_aa32_tid3, 8239 .resetvalue = cpu->isar.id_mmfr0 }, 8240 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8242 .access = PL1_R, .type = ARM_CP_CONST, 8243 .accessfn = access_aa32_tid3, 8244 .resetvalue = cpu->isar.id_mmfr1 }, 8245 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8247 .access = PL1_R, .type = ARM_CP_CONST, 8248 .accessfn = access_aa32_tid3, 8249 .resetvalue = cpu->isar.id_mmfr2 }, 8250 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8252 .access = PL1_R, .type = ARM_CP_CONST, 8253 .accessfn = access_aa32_tid3, 8254 .resetvalue = cpu->isar.id_mmfr3 }, 8255 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8257 .access = PL1_R, .type = ARM_CP_CONST, 8258 .accessfn = access_aa32_tid3, 8259 .resetvalue = cpu->isar.id_isar0 }, 8260 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8262 .access = PL1_R, .type = ARM_CP_CONST, 8263 .accessfn = access_aa32_tid3, 8264 .resetvalue = cpu->isar.id_isar1 }, 8265 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8267 .access = PL1_R, .type = ARM_CP_CONST, 8268 .accessfn = access_aa32_tid3, 8269 .resetvalue = cpu->isar.id_isar2 }, 8270 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8272 .access = PL1_R, .type = ARM_CP_CONST, 8273 .accessfn = access_aa32_tid3, 8274 .resetvalue = cpu->isar.id_isar3 }, 8275 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8277 .access = PL1_R, .type = ARM_CP_CONST, 8278 .accessfn = access_aa32_tid3, 8279 .resetvalue = cpu->isar.id_isar4 }, 8280 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8282 .access = PL1_R, .type = ARM_CP_CONST, 8283 .accessfn = access_aa32_tid3, 8284 .resetvalue = cpu->isar.id_isar5 }, 8285 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8287 .access = PL1_R, .type = ARM_CP_CONST, 8288 .accessfn = access_aa32_tid3, 8289 .resetvalue = cpu->isar.id_mmfr4 }, 8290 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8292 .access = PL1_R, .type = ARM_CP_CONST, 8293 .accessfn = access_aa32_tid3, 8294 .resetvalue = cpu->isar.id_isar6 }, 8295 }; 8296 define_arm_cp_regs(cpu, v6_idregs); 8297 define_arm_cp_regs(cpu, v6_cp_reginfo); 8298 } else { 8299 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8300 } 8301 if (arm_feature(env, ARM_FEATURE_V6K)) { 8302 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8303 } 8304 if (arm_feature(env, ARM_FEATURE_V7MP) && 8305 !arm_feature(env, ARM_FEATURE_PMSA)) { 8306 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8307 } 8308 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8309 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8310 } 8311 if (arm_feature(env, ARM_FEATURE_V7)) { 8312 ARMCPRegInfo clidr = { 8313 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8314 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8315 .access = PL1_R, .type = ARM_CP_CONST, 8316 .accessfn = access_tid4, 8317 .fgt = FGT_CLIDR_EL1, 8318 .resetvalue = cpu->clidr 8319 }; 8320 define_one_arm_cp_reg(cpu, &clidr); 8321 define_arm_cp_regs(cpu, v7_cp_reginfo); 8322 define_debug_regs(cpu); 8323 define_pmu_regs(cpu); 8324 } else { 8325 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8326 } 8327 if (arm_feature(env, ARM_FEATURE_V8)) { 8328 /* 8329 * v8 ID registers, which all have impdef reset values. 8330 * Note that within the ID register ranges the unused slots 8331 * must all RAZ, not UNDEF; future architecture versions may 8332 * define new registers here. 8333 * ID registers which are AArch64 views of the AArch32 ID registers 8334 * which already existed in v6 and v7 are handled elsewhere, 8335 * in v6_idregs[]. 8336 */ 8337 int i; 8338 ARMCPRegInfo v8_idregs[] = { 8339 /* 8340 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8341 * emulation because we don't know the right value for the 8342 * GIC field until after we define these regs. 8343 */ 8344 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8346 .access = PL1_R, 8347 #ifdef CONFIG_USER_ONLY 8348 .type = ARM_CP_CONST, 8349 .resetvalue = cpu->isar.id_aa64pfr0 8350 #else 8351 .type = ARM_CP_NO_RAW, 8352 .accessfn = access_aa64_tid3, 8353 .readfn = id_aa64pfr0_read, 8354 .writefn = arm_cp_write_ignore 8355 #endif 8356 }, 8357 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8359 .access = PL1_R, .type = ARM_CP_CONST, 8360 .accessfn = access_aa64_tid3, 8361 .resetvalue = cpu->isar.id_aa64pfr1}, 8362 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8364 .access = PL1_R, .type = ARM_CP_CONST, 8365 .accessfn = access_aa64_tid3, 8366 .resetvalue = 0 }, 8367 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8369 .access = PL1_R, .type = ARM_CP_CONST, 8370 .accessfn = access_aa64_tid3, 8371 .resetvalue = 0 }, 8372 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8374 .access = PL1_R, .type = ARM_CP_CONST, 8375 .accessfn = access_aa64_tid3, 8376 .resetvalue = cpu->isar.id_aa64zfr0 }, 8377 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8379 .access = PL1_R, .type = ARM_CP_CONST, 8380 .accessfn = access_aa64_tid3, 8381 .resetvalue = cpu->isar.id_aa64smfr0 }, 8382 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8384 .access = PL1_R, .type = ARM_CP_CONST, 8385 .accessfn = access_aa64_tid3, 8386 .resetvalue = 0 }, 8387 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8389 .access = PL1_R, .type = ARM_CP_CONST, 8390 .accessfn = access_aa64_tid3, 8391 .resetvalue = 0 }, 8392 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8394 .access = PL1_R, .type = ARM_CP_CONST, 8395 .accessfn = access_aa64_tid3, 8396 .resetvalue = cpu->isar.id_aa64dfr0 }, 8397 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8399 .access = PL1_R, .type = ARM_CP_CONST, 8400 .accessfn = access_aa64_tid3, 8401 .resetvalue = cpu->isar.id_aa64dfr1 }, 8402 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8404 .access = PL1_R, .type = ARM_CP_CONST, 8405 .accessfn = access_aa64_tid3, 8406 .resetvalue = 0 }, 8407 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8409 .access = PL1_R, .type = ARM_CP_CONST, 8410 .accessfn = access_aa64_tid3, 8411 .resetvalue = 0 }, 8412 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8414 .access = PL1_R, .type = ARM_CP_CONST, 8415 .accessfn = access_aa64_tid3, 8416 .resetvalue = cpu->id_aa64afr0 }, 8417 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8419 .access = PL1_R, .type = ARM_CP_CONST, 8420 .accessfn = access_aa64_tid3, 8421 .resetvalue = cpu->id_aa64afr1 }, 8422 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8424 .access = PL1_R, .type = ARM_CP_CONST, 8425 .accessfn = access_aa64_tid3, 8426 .resetvalue = 0 }, 8427 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8429 .access = PL1_R, .type = ARM_CP_CONST, 8430 .accessfn = access_aa64_tid3, 8431 .resetvalue = 0 }, 8432 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8434 .access = PL1_R, .type = ARM_CP_CONST, 8435 .accessfn = access_aa64_tid3, 8436 .resetvalue = cpu->isar.id_aa64isar0 }, 8437 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8439 .access = PL1_R, .type = ARM_CP_CONST, 8440 .accessfn = access_aa64_tid3, 8441 .resetvalue = cpu->isar.id_aa64isar1 }, 8442 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8444 .access = PL1_R, .type = ARM_CP_CONST, 8445 .accessfn = access_aa64_tid3, 8446 .resetvalue = 0 }, 8447 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8449 .access = PL1_R, .type = ARM_CP_CONST, 8450 .accessfn = access_aa64_tid3, 8451 .resetvalue = 0 }, 8452 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8454 .access = PL1_R, .type = ARM_CP_CONST, 8455 .accessfn = access_aa64_tid3, 8456 .resetvalue = 0 }, 8457 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8459 .access = PL1_R, .type = ARM_CP_CONST, 8460 .accessfn = access_aa64_tid3, 8461 .resetvalue = 0 }, 8462 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8464 .access = PL1_R, .type = ARM_CP_CONST, 8465 .accessfn = access_aa64_tid3, 8466 .resetvalue = 0 }, 8467 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8469 .access = PL1_R, .type = ARM_CP_CONST, 8470 .accessfn = access_aa64_tid3, 8471 .resetvalue = 0 }, 8472 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8474 .access = PL1_R, .type = ARM_CP_CONST, 8475 .accessfn = access_aa64_tid3, 8476 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8477 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8479 .access = PL1_R, .type = ARM_CP_CONST, 8480 .accessfn = access_aa64_tid3, 8481 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8482 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8484 .access = PL1_R, .type = ARM_CP_CONST, 8485 .accessfn = access_aa64_tid3, 8486 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8487 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8489 .access = PL1_R, .type = ARM_CP_CONST, 8490 .accessfn = access_aa64_tid3, 8491 .resetvalue = 0 }, 8492 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8494 .access = PL1_R, .type = ARM_CP_CONST, 8495 .accessfn = access_aa64_tid3, 8496 .resetvalue = 0 }, 8497 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8499 .access = PL1_R, .type = ARM_CP_CONST, 8500 .accessfn = access_aa64_tid3, 8501 .resetvalue = 0 }, 8502 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8504 .access = PL1_R, .type = ARM_CP_CONST, 8505 .accessfn = access_aa64_tid3, 8506 .resetvalue = 0 }, 8507 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8509 .access = PL1_R, .type = ARM_CP_CONST, 8510 .accessfn = access_aa64_tid3, 8511 .resetvalue = 0 }, 8512 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8514 .access = PL1_R, .type = ARM_CP_CONST, 8515 .accessfn = access_aa64_tid3, 8516 .resetvalue = cpu->isar.mvfr0 }, 8517 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8519 .access = PL1_R, .type = ARM_CP_CONST, 8520 .accessfn = access_aa64_tid3, 8521 .resetvalue = cpu->isar.mvfr1 }, 8522 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8524 .access = PL1_R, .type = ARM_CP_CONST, 8525 .accessfn = access_aa64_tid3, 8526 .resetvalue = cpu->isar.mvfr2 }, 8527 /* 8528 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8529 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8530 * as RAZ, since it is in the "reserved for future ID 8531 * registers, RAZ" part of the AArch32 encoding space. 8532 */ 8533 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8534 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8535 .access = PL1_R, .type = ARM_CP_CONST, 8536 .accessfn = access_aa64_tid3, 8537 .resetvalue = 0 }, 8538 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8539 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8540 .access = PL1_R, .type = ARM_CP_CONST, 8541 .accessfn = access_aa64_tid3, 8542 .resetvalue = 0 }, 8543 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8544 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8545 .access = PL1_R, .type = ARM_CP_CONST, 8546 .accessfn = access_aa64_tid3, 8547 .resetvalue = 0 }, 8548 /* 8549 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8550 * they're also RAZ for AArch64, and in v8 are gradually 8551 * being filled with AArch64-view-of-AArch32-ID-register 8552 * for new ID registers. 8553 */ 8554 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8556 .access = PL1_R, .type = ARM_CP_CONST, 8557 .accessfn = access_aa64_tid3, 8558 .resetvalue = 0 }, 8559 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8561 .access = PL1_R, .type = ARM_CP_CONST, 8562 .accessfn = access_aa64_tid3, 8563 .resetvalue = cpu->isar.id_pfr2 }, 8564 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8566 .access = PL1_R, .type = ARM_CP_CONST, 8567 .accessfn = access_aa64_tid3, 8568 .resetvalue = cpu->isar.id_dfr1 }, 8569 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8571 .access = PL1_R, .type = ARM_CP_CONST, 8572 .accessfn = access_aa64_tid3, 8573 .resetvalue = cpu->isar.id_mmfr5 }, 8574 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8576 .access = PL1_R, .type = ARM_CP_CONST, 8577 .accessfn = access_aa64_tid3, 8578 .resetvalue = 0 }, 8579 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8580 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8581 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8582 .fgt = FGT_PMCEIDN_EL0, 8583 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8584 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8585 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8586 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8587 .fgt = FGT_PMCEIDN_EL0, 8588 .resetvalue = cpu->pmceid0 }, 8589 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8590 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8591 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8592 .fgt = FGT_PMCEIDN_EL0, 8593 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8594 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8595 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8596 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8597 .fgt = FGT_PMCEIDN_EL0, 8598 .resetvalue = cpu->pmceid1 }, 8599 }; 8600 #ifdef CONFIG_USER_ONLY 8601 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8602 { .name = "ID_AA64PFR0_EL1", 8603 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8604 R_ID_AA64PFR0_ADVSIMD_MASK | 8605 R_ID_AA64PFR0_SVE_MASK | 8606 R_ID_AA64PFR0_DIT_MASK, 8607 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8608 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8609 { .name = "ID_AA64PFR1_EL1", 8610 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8611 R_ID_AA64PFR1_SSBS_MASK | 8612 R_ID_AA64PFR1_MTE_MASK | 8613 R_ID_AA64PFR1_SME_MASK }, 8614 { .name = "ID_AA64PFR*_EL1_RESERVED", 8615 .is_glob = true }, 8616 { .name = "ID_AA64ZFR0_EL1", 8617 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8618 R_ID_AA64ZFR0_AES_MASK | 8619 R_ID_AA64ZFR0_BITPERM_MASK | 8620 R_ID_AA64ZFR0_BFLOAT16_MASK | 8621 R_ID_AA64ZFR0_SHA3_MASK | 8622 R_ID_AA64ZFR0_SM4_MASK | 8623 R_ID_AA64ZFR0_I8MM_MASK | 8624 R_ID_AA64ZFR0_F32MM_MASK | 8625 R_ID_AA64ZFR0_F64MM_MASK }, 8626 { .name = "ID_AA64SMFR0_EL1", 8627 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8628 R_ID_AA64SMFR0_B16F32_MASK | 8629 R_ID_AA64SMFR0_F16F32_MASK | 8630 R_ID_AA64SMFR0_I8I32_MASK | 8631 R_ID_AA64SMFR0_F64F64_MASK | 8632 R_ID_AA64SMFR0_I16I64_MASK | 8633 R_ID_AA64SMFR0_FA64_MASK }, 8634 { .name = "ID_AA64MMFR0_EL1", 8635 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8636 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8637 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8638 { .name = "ID_AA64MMFR1_EL1", 8639 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8640 { .name = "ID_AA64MMFR2_EL1", 8641 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8642 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8643 .is_glob = true }, 8644 { .name = "ID_AA64DFR0_EL1", 8645 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8646 { .name = "ID_AA64DFR1_EL1" }, 8647 { .name = "ID_AA64DFR*_EL1_RESERVED", 8648 .is_glob = true }, 8649 { .name = "ID_AA64AFR*", 8650 .is_glob = true }, 8651 { .name = "ID_AA64ISAR0_EL1", 8652 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8653 R_ID_AA64ISAR0_SHA1_MASK | 8654 R_ID_AA64ISAR0_SHA2_MASK | 8655 R_ID_AA64ISAR0_CRC32_MASK | 8656 R_ID_AA64ISAR0_ATOMIC_MASK | 8657 R_ID_AA64ISAR0_RDM_MASK | 8658 R_ID_AA64ISAR0_SHA3_MASK | 8659 R_ID_AA64ISAR0_SM3_MASK | 8660 R_ID_AA64ISAR0_SM4_MASK | 8661 R_ID_AA64ISAR0_DP_MASK | 8662 R_ID_AA64ISAR0_FHM_MASK | 8663 R_ID_AA64ISAR0_TS_MASK | 8664 R_ID_AA64ISAR0_RNDR_MASK }, 8665 { .name = "ID_AA64ISAR1_EL1", 8666 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8667 R_ID_AA64ISAR1_APA_MASK | 8668 R_ID_AA64ISAR1_API_MASK | 8669 R_ID_AA64ISAR1_JSCVT_MASK | 8670 R_ID_AA64ISAR1_FCMA_MASK | 8671 R_ID_AA64ISAR1_LRCPC_MASK | 8672 R_ID_AA64ISAR1_GPA_MASK | 8673 R_ID_AA64ISAR1_GPI_MASK | 8674 R_ID_AA64ISAR1_FRINTTS_MASK | 8675 R_ID_AA64ISAR1_SB_MASK | 8676 R_ID_AA64ISAR1_BF16_MASK | 8677 R_ID_AA64ISAR1_DGH_MASK | 8678 R_ID_AA64ISAR1_I8MM_MASK }, 8679 { .name = "ID_AA64ISAR2_EL1", 8680 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8681 R_ID_AA64ISAR2_RPRES_MASK | 8682 R_ID_AA64ISAR2_GPA3_MASK | 8683 R_ID_AA64ISAR2_APA3_MASK }, 8684 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8685 .is_glob = true }, 8686 }; 8687 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8688 #endif 8689 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8690 if (!arm_feature(env, ARM_FEATURE_EL3) && 8691 !arm_feature(env, ARM_FEATURE_EL2)) { 8692 ARMCPRegInfo rvbar = { 8693 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8694 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8695 .access = PL1_R, 8696 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8697 }; 8698 define_one_arm_cp_reg(cpu, &rvbar); 8699 } 8700 define_arm_cp_regs(cpu, v8_idregs); 8701 define_arm_cp_regs(cpu, v8_cp_reginfo); 8702 8703 for (i = 4; i < 16; i++) { 8704 /* 8705 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8706 * For pre-v8 cores there are RAZ patterns for these in 8707 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8708 * v8 extends the "must RAZ" part of the ID register space 8709 * to also cover c0, 0, c{8-15}, {0-7}. 8710 * These are STATE_AA32 because in the AArch64 sysreg space 8711 * c4-c7 is where the AArch64 ID registers live (and we've 8712 * already defined those in v8_idregs[]), and c8-c15 are not 8713 * "must RAZ" for AArch64. 8714 */ 8715 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8716 ARMCPRegInfo v8_aa32_raz_idregs = { 8717 .name = name, 8718 .state = ARM_CP_STATE_AA32, 8719 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8720 .access = PL1_R, .type = ARM_CP_CONST, 8721 .accessfn = access_aa64_tid3, 8722 .resetvalue = 0 }; 8723 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8724 } 8725 } 8726 8727 /* 8728 * Register the base EL2 cpregs. 8729 * Pre v8, these registers are implemented only as part of the 8730 * Virtualization Extensions (EL2 present). Beginning with v8, 8731 * if EL2 is missing but EL3 is enabled, mostly these become 8732 * RES0 from EL3, with some specific exceptions. 8733 */ 8734 if (arm_feature(env, ARM_FEATURE_EL2) 8735 || (arm_feature(env, ARM_FEATURE_EL3) 8736 && arm_feature(env, ARM_FEATURE_V8))) { 8737 uint64_t vmpidr_def = mpidr_read_val(env); 8738 ARMCPRegInfo vpidr_regs[] = { 8739 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8740 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8741 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8742 .resetvalue = cpu->midr, 8743 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8744 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8745 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8746 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8747 .access = PL2_RW, .resetvalue = cpu->midr, 8748 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8749 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8750 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8751 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8752 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8753 .resetvalue = vmpidr_def, 8754 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8755 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8756 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8757 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8758 .access = PL2_RW, .resetvalue = vmpidr_def, 8759 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8760 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8761 }; 8762 /* 8763 * The only field of MDCR_EL2 that has a defined architectural reset 8764 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8765 */ 8766 ARMCPRegInfo mdcr_el2 = { 8767 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8769 .writefn = mdcr_el2_write, 8770 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8771 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8772 }; 8773 define_one_arm_cp_reg(cpu, &mdcr_el2); 8774 define_arm_cp_regs(cpu, vpidr_regs); 8775 define_arm_cp_regs(cpu, el2_cp_reginfo); 8776 if (arm_feature(env, ARM_FEATURE_V8)) { 8777 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8778 } 8779 if (cpu_isar_feature(aa64_sel2, cpu)) { 8780 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8781 } 8782 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8783 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8784 ARMCPRegInfo rvbar[] = { 8785 { 8786 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8787 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8788 .access = PL2_R, 8789 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8790 }, 8791 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8792 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8793 .access = PL2_R, 8794 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8795 }, 8796 }; 8797 define_arm_cp_regs(cpu, rvbar); 8798 } 8799 } 8800 8801 /* Register the base EL3 cpregs. */ 8802 if (arm_feature(env, ARM_FEATURE_EL3)) { 8803 define_arm_cp_regs(cpu, el3_cp_reginfo); 8804 ARMCPRegInfo el3_regs[] = { 8805 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8806 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8807 .access = PL3_R, 8808 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8809 }, 8810 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8811 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8812 .access = PL3_RW, 8813 .raw_writefn = raw_write, .writefn = sctlr_write, 8814 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8815 .resetvalue = cpu->reset_sctlr }, 8816 }; 8817 8818 define_arm_cp_regs(cpu, el3_regs); 8819 } 8820 /* 8821 * The behaviour of NSACR is sufficiently various that we don't 8822 * try to describe it in a single reginfo: 8823 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8824 * reads as constant 0xc00 from NS EL1 and NS EL2 8825 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8826 * if v7 without EL3, register doesn't exist 8827 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8828 */ 8829 if (arm_feature(env, ARM_FEATURE_EL3)) { 8830 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8831 static const ARMCPRegInfo nsacr = { 8832 .name = "NSACR", .type = ARM_CP_CONST, 8833 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8834 .access = PL1_RW, .accessfn = nsacr_access, 8835 .resetvalue = 0xc00 8836 }; 8837 define_one_arm_cp_reg(cpu, &nsacr); 8838 } else { 8839 static const ARMCPRegInfo nsacr = { 8840 .name = "NSACR", 8841 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8842 .access = PL3_RW | PL1_R, 8843 .resetvalue = 0, 8844 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8845 }; 8846 define_one_arm_cp_reg(cpu, &nsacr); 8847 } 8848 } else { 8849 if (arm_feature(env, ARM_FEATURE_V8)) { 8850 static const ARMCPRegInfo nsacr = { 8851 .name = "NSACR", .type = ARM_CP_CONST, 8852 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8853 .access = PL1_R, 8854 .resetvalue = 0xc00 8855 }; 8856 define_one_arm_cp_reg(cpu, &nsacr); 8857 } 8858 } 8859 8860 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8861 if (arm_feature(env, ARM_FEATURE_V6)) { 8862 /* PMSAv6 not implemented */ 8863 assert(arm_feature(env, ARM_FEATURE_V7)); 8864 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8865 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8866 } else { 8867 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8868 } 8869 } else { 8870 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8871 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8872 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8873 if (cpu_isar_feature(aa32_hpd, cpu)) { 8874 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8875 } 8876 } 8877 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8878 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8879 } 8880 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8881 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8882 } 8883 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8884 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8885 } 8886 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8887 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8888 } 8889 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8890 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8891 } 8892 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8893 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8894 } 8895 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8896 define_arm_cp_regs(cpu, omap_cp_reginfo); 8897 } 8898 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8899 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8900 } 8901 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8902 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8903 } 8904 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8905 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8906 } 8907 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8908 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8909 } 8910 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8911 define_arm_cp_regs(cpu, jazelle_regs); 8912 } 8913 /* 8914 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8915 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8916 * be read-only (ie write causes UNDEF exception). 8917 */ 8918 { 8919 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8920 /* 8921 * Pre-v8 MIDR space. 8922 * Note that the MIDR isn't a simple constant register because 8923 * of the TI925 behaviour where writes to another register can 8924 * cause the MIDR value to change. 8925 * 8926 * Unimplemented registers in the c15 0 0 0 space default to 8927 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8928 * and friends override accordingly. 8929 */ 8930 { .name = "MIDR", 8931 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8932 .access = PL1_R, .resetvalue = cpu->midr, 8933 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8934 .readfn = midr_read, 8935 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8936 .type = ARM_CP_OVERRIDE }, 8937 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8938 { .name = "DUMMY", 8939 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8940 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8941 { .name = "DUMMY", 8942 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8943 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8944 { .name = "DUMMY", 8945 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8946 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8947 { .name = "DUMMY", 8948 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8949 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8950 { .name = "DUMMY", 8951 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8952 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8953 }; 8954 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8955 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8957 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8958 .fgt = FGT_MIDR_EL1, 8959 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8960 .readfn = midr_read }, 8961 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8962 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8963 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8964 .access = PL1_R, .resetvalue = cpu->midr }, 8965 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8967 .access = PL1_R, 8968 .accessfn = access_aa64_tid1, 8969 .fgt = FGT_REVIDR_EL1, 8970 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8971 }; 8972 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8973 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8974 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8975 .access = PL1_R, .resetvalue = cpu->midr 8976 }; 8977 ARMCPRegInfo id_cp_reginfo[] = { 8978 /* These are common to v8 and pre-v8 */ 8979 { .name = "CTR", 8980 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8981 .access = PL1_R, .accessfn = ctr_el0_access, 8982 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8983 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8984 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8985 .access = PL0_R, .accessfn = ctr_el0_access, 8986 .fgt = FGT_CTR_EL0, 8987 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8988 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8989 { .name = "TCMTR", 8990 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8991 .access = PL1_R, 8992 .accessfn = access_aa32_tid1, 8993 .type = ARM_CP_CONST, .resetvalue = 0 }, 8994 }; 8995 /* TLBTR is specific to VMSA */ 8996 ARMCPRegInfo id_tlbtr_reginfo = { 8997 .name = "TLBTR", 8998 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8999 .access = PL1_R, 9000 .accessfn = access_aa32_tid1, 9001 .type = ARM_CP_CONST, .resetvalue = 0, 9002 }; 9003 /* MPUIR is specific to PMSA V6+ */ 9004 ARMCPRegInfo id_mpuir_reginfo = { 9005 .name = "MPUIR", 9006 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9007 .access = PL1_R, .type = ARM_CP_CONST, 9008 .resetvalue = cpu->pmsav7_dregion << 8 9009 }; 9010 /* HMPUIR is specific to PMSA V8 */ 9011 ARMCPRegInfo id_hmpuir_reginfo = { 9012 .name = "HMPUIR", 9013 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9014 .access = PL2_R, .type = ARM_CP_CONST, 9015 .resetvalue = cpu->pmsav8r_hdregion 9016 }; 9017 static const ARMCPRegInfo crn0_wi_reginfo = { 9018 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9019 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9020 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9021 }; 9022 #ifdef CONFIG_USER_ONLY 9023 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9024 { .name = "MIDR_EL1", 9025 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9026 R_MIDR_EL1_PARTNUM_MASK | 9027 R_MIDR_EL1_ARCHITECTURE_MASK | 9028 R_MIDR_EL1_VARIANT_MASK | 9029 R_MIDR_EL1_IMPLEMENTER_MASK }, 9030 { .name = "REVIDR_EL1" }, 9031 }; 9032 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9033 #endif 9034 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9035 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9036 size_t i; 9037 /* 9038 * Register the blanket "writes ignored" value first to cover the 9039 * whole space. Then update the specific ID registers to allow write 9040 * access, so that they ignore writes rather than causing them to 9041 * UNDEF. 9042 */ 9043 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9044 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9045 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9046 } 9047 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9048 id_cp_reginfo[i].access = PL1_RW; 9049 } 9050 id_mpuir_reginfo.access = PL1_RW; 9051 id_tlbtr_reginfo.access = PL1_RW; 9052 } 9053 if (arm_feature(env, ARM_FEATURE_V8)) { 9054 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9055 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9056 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9057 } 9058 } else { 9059 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9060 } 9061 define_arm_cp_regs(cpu, id_cp_reginfo); 9062 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9063 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9064 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9065 arm_feature(env, ARM_FEATURE_V8)) { 9066 uint32_t i = 0; 9067 char *tmp_string; 9068 9069 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9070 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9071 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9072 9073 /* Register alias is only valid for first 32 indexes */ 9074 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9075 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9076 uint8_t opc1 = extract32(i, 4, 1); 9077 uint8_t opc2 = extract32(i, 0, 1) << 2; 9078 9079 tmp_string = g_strdup_printf("PRBAR%u", i); 9080 ARMCPRegInfo tmp_prbarn_reginfo = { 9081 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9082 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9083 .access = PL1_RW, .resetvalue = 0, 9084 .accessfn = access_tvm_trvm, 9085 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9086 }; 9087 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9088 g_free(tmp_string); 9089 9090 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9091 tmp_string = g_strdup_printf("PRLAR%u", i); 9092 ARMCPRegInfo tmp_prlarn_reginfo = { 9093 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9094 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9095 .access = PL1_RW, .resetvalue = 0, 9096 .accessfn = access_tvm_trvm, 9097 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9098 }; 9099 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9100 g_free(tmp_string); 9101 } 9102 9103 /* Register alias is only valid for first 32 indexes */ 9104 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9105 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9106 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9107 uint8_t opc2 = extract32(i, 0, 1) << 2; 9108 9109 tmp_string = g_strdup_printf("HPRBAR%u", i); 9110 ARMCPRegInfo tmp_hprbarn_reginfo = { 9111 .name = tmp_string, 9112 .type = ARM_CP_NO_RAW, 9113 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9114 .access = PL2_RW, .resetvalue = 0, 9115 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9116 }; 9117 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9118 g_free(tmp_string); 9119 9120 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9121 tmp_string = g_strdup_printf("HPRLAR%u", i); 9122 ARMCPRegInfo tmp_hprlarn_reginfo = { 9123 .name = tmp_string, 9124 .type = ARM_CP_NO_RAW, 9125 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9126 .access = PL2_RW, .resetvalue = 0, 9127 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9128 }; 9129 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9130 g_free(tmp_string); 9131 } 9132 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9133 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9134 } 9135 } 9136 9137 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9138 ARMCPRegInfo mpidr_cp_reginfo[] = { 9139 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9140 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9141 .fgt = FGT_MPIDR_EL1, 9142 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9143 }; 9144 #ifdef CONFIG_USER_ONLY 9145 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9146 { .name = "MPIDR_EL1", 9147 .fixed_bits = 0x0000000080000000 }, 9148 }; 9149 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9150 #endif 9151 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9152 } 9153 9154 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9155 ARMCPRegInfo auxcr_reginfo[] = { 9156 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9157 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9158 .access = PL1_RW, .accessfn = access_tacr, 9159 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9160 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9161 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9162 .access = PL2_RW, .type = ARM_CP_CONST, 9163 .resetvalue = 0 }, 9164 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9165 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9166 .access = PL3_RW, .type = ARM_CP_CONST, 9167 .resetvalue = 0 }, 9168 }; 9169 define_arm_cp_regs(cpu, auxcr_reginfo); 9170 if (cpu_isar_feature(aa32_ac2, cpu)) { 9171 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9172 } 9173 } 9174 9175 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9176 /* 9177 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9178 * There are two flavours: 9179 * (1) older 32-bit only cores have a simple 32-bit CBAR 9180 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9181 * 32-bit register visible to AArch32 at a different encoding 9182 * to the "flavour 1" register and with the bits rearranged to 9183 * be able to squash a 64-bit address into the 32-bit view. 9184 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9185 * in future if we support AArch32-only configs of some of the 9186 * AArch64 cores we might need to add a specific feature flag 9187 * to indicate cores with "flavour 2" CBAR. 9188 */ 9189 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9190 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9191 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9192 | extract64(cpu->reset_cbar, 32, 12); 9193 ARMCPRegInfo cbar_reginfo[] = { 9194 { .name = "CBAR", 9195 .type = ARM_CP_CONST, 9196 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9197 .access = PL1_R, .resetvalue = cbar32 }, 9198 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9199 .type = ARM_CP_CONST, 9200 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9201 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9202 }; 9203 /* We don't implement a r/w 64 bit CBAR currently */ 9204 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9205 define_arm_cp_regs(cpu, cbar_reginfo); 9206 } else { 9207 ARMCPRegInfo cbar = { 9208 .name = "CBAR", 9209 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9210 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9211 .fieldoffset = offsetof(CPUARMState, 9212 cp15.c15_config_base_address) 9213 }; 9214 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9215 cbar.access = PL1_R; 9216 cbar.fieldoffset = 0; 9217 cbar.type = ARM_CP_CONST; 9218 } 9219 define_one_arm_cp_reg(cpu, &cbar); 9220 } 9221 } 9222 9223 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9224 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9225 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9226 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9227 .access = PL1_RW, .writefn = vbar_write, 9228 .fgt = FGT_VBAR_EL1, 9229 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9230 offsetof(CPUARMState, cp15.vbar_ns) }, 9231 .resetvalue = 0 }, 9232 }; 9233 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9234 } 9235 9236 /* Generic registers whose values depend on the implementation */ 9237 { 9238 ARMCPRegInfo sctlr = { 9239 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9240 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9241 .access = PL1_RW, .accessfn = access_tvm_trvm, 9242 .fgt = FGT_SCTLR_EL1, 9243 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9244 offsetof(CPUARMState, cp15.sctlr_ns) }, 9245 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9246 .raw_writefn = raw_write, 9247 }; 9248 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9249 /* 9250 * Normally we would always end the TB on an SCTLR write, but Linux 9251 * arch/arm/mach-pxa/sleep.S expects two instructions following 9252 * an MMU enable to execute from cache. Imitate this behaviour. 9253 */ 9254 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9255 } 9256 define_one_arm_cp_reg(cpu, &sctlr); 9257 9258 if (arm_feature(env, ARM_FEATURE_PMSA) && 9259 arm_feature(env, ARM_FEATURE_V8)) { 9260 ARMCPRegInfo vsctlr = { 9261 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9262 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9263 .access = PL2_RW, .resetvalue = 0x0, 9264 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9265 }; 9266 define_one_arm_cp_reg(cpu, &vsctlr); 9267 } 9268 } 9269 9270 if (cpu_isar_feature(aa64_lor, cpu)) { 9271 define_arm_cp_regs(cpu, lor_reginfo); 9272 } 9273 if (cpu_isar_feature(aa64_pan, cpu)) { 9274 define_one_arm_cp_reg(cpu, &pan_reginfo); 9275 } 9276 #ifndef CONFIG_USER_ONLY 9277 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9278 define_arm_cp_regs(cpu, ats1e1_reginfo); 9279 } 9280 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9281 define_arm_cp_regs(cpu, ats1cp_reginfo); 9282 } 9283 #endif 9284 if (cpu_isar_feature(aa64_uao, cpu)) { 9285 define_one_arm_cp_reg(cpu, &uao_reginfo); 9286 } 9287 9288 if (cpu_isar_feature(aa64_dit, cpu)) { 9289 define_one_arm_cp_reg(cpu, &dit_reginfo); 9290 } 9291 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9292 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9293 } 9294 if (cpu_isar_feature(any_ras, cpu)) { 9295 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9296 } 9297 9298 if (cpu_isar_feature(aa64_vh, cpu) || 9299 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9300 define_one_arm_cp_reg(cpu, &contextidr_el2); 9301 } 9302 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9303 define_arm_cp_regs(cpu, vhe_reginfo); 9304 } 9305 9306 if (cpu_isar_feature(aa64_sve, cpu)) { 9307 define_arm_cp_regs(cpu, zcr_reginfo); 9308 } 9309 9310 if (cpu_isar_feature(aa64_hcx, cpu)) { 9311 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9312 } 9313 9314 #ifdef TARGET_AARCH64 9315 if (cpu_isar_feature(aa64_sme, cpu)) { 9316 define_arm_cp_regs(cpu, sme_reginfo); 9317 } 9318 if (cpu_isar_feature(aa64_pauth, cpu)) { 9319 define_arm_cp_regs(cpu, pauth_reginfo); 9320 } 9321 if (cpu_isar_feature(aa64_rndr, cpu)) { 9322 define_arm_cp_regs(cpu, rndr_reginfo); 9323 } 9324 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9325 define_arm_cp_regs(cpu, tlbirange_reginfo); 9326 } 9327 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9328 define_arm_cp_regs(cpu, tlbios_reginfo); 9329 } 9330 /* Data Cache clean instructions up to PoP */ 9331 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9332 define_one_arm_cp_reg(cpu, dcpop_reg); 9333 9334 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9335 define_one_arm_cp_reg(cpu, dcpodp_reg); 9336 } 9337 } 9338 9339 /* 9340 * If full MTE is enabled, add all of the system registers. 9341 * If only "instructions available at EL0" are enabled, 9342 * then define only a RAZ/WI version of PSTATE.TCO. 9343 */ 9344 if (cpu_isar_feature(aa64_mte, cpu)) { 9345 define_arm_cp_regs(cpu, mte_reginfo); 9346 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9347 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9348 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9349 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9350 } 9351 9352 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9353 define_arm_cp_regs(cpu, scxtnum_reginfo); 9354 } 9355 9356 if (cpu_isar_feature(aa64_fgt, cpu)) { 9357 define_arm_cp_regs(cpu, fgt_reginfo); 9358 } 9359 9360 if (cpu_isar_feature(aa64_rme, cpu)) { 9361 define_arm_cp_regs(cpu, rme_reginfo); 9362 if (cpu_isar_feature(aa64_mte, cpu)) { 9363 define_arm_cp_regs(cpu, rme_mte_reginfo); 9364 } 9365 } 9366 #endif 9367 9368 if (cpu_isar_feature(any_predinv, cpu)) { 9369 define_arm_cp_regs(cpu, predinv_reginfo); 9370 } 9371 9372 if (cpu_isar_feature(any_ccidx, cpu)) { 9373 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9374 } 9375 9376 #ifndef CONFIG_USER_ONLY 9377 /* 9378 * Register redirections and aliases must be done last, 9379 * after the registers from the other extensions have been defined. 9380 */ 9381 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9382 define_arm_vh_e2h_redirects_aliases(cpu); 9383 } 9384 #endif 9385 } 9386 9387 /* Sort alphabetically by type name, except for "any". */ 9388 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9389 { 9390 ObjectClass *class_a = (ObjectClass *)a; 9391 ObjectClass *class_b = (ObjectClass *)b; 9392 const char *name_a, *name_b; 9393 9394 name_a = object_class_get_name(class_a); 9395 name_b = object_class_get_name(class_b); 9396 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9397 return 1; 9398 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9399 return -1; 9400 } else { 9401 return strcmp(name_a, name_b); 9402 } 9403 } 9404 9405 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9406 { 9407 ObjectClass *oc = data; 9408 CPUClass *cc = CPU_CLASS(oc); 9409 const char *typename; 9410 char *name; 9411 9412 typename = object_class_get_name(oc); 9413 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9414 if (cc->deprecation_note) { 9415 qemu_printf(" %s (deprecated)\n", name); 9416 } else { 9417 qemu_printf(" %s\n", name); 9418 } 9419 g_free(name); 9420 } 9421 9422 void arm_cpu_list(void) 9423 { 9424 GSList *list; 9425 9426 list = object_class_get_list(TYPE_ARM_CPU, false); 9427 list = g_slist_sort(list, arm_cpu_list_compare); 9428 qemu_printf("Available CPUs:\n"); 9429 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9430 g_slist_free(list); 9431 } 9432 9433 /* 9434 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9435 * add a single reginfo struct to the hash table. 9436 */ 9437 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9438 void *opaque, CPState state, 9439 CPSecureState secstate, 9440 int crm, int opc1, int opc2, 9441 const char *name) 9442 { 9443 CPUARMState *env = &cpu->env; 9444 uint32_t key; 9445 ARMCPRegInfo *r2; 9446 bool is64 = r->type & ARM_CP_64BIT; 9447 bool ns = secstate & ARM_CP_SECSTATE_NS; 9448 int cp = r->cp; 9449 size_t name_len; 9450 bool make_const; 9451 9452 switch (state) { 9453 case ARM_CP_STATE_AA32: 9454 /* We assume it is a cp15 register if the .cp field is left unset. */ 9455 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9456 cp = 15; 9457 } 9458 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9459 break; 9460 case ARM_CP_STATE_AA64: 9461 /* 9462 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9463 * cp == 0 as equivalent to the value for "standard guest-visible 9464 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9465 * in their AArch64 view (the .cp value may be non-zero for the 9466 * benefit of the AArch32 view). 9467 */ 9468 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9469 cp = CP_REG_ARM64_SYSREG_CP; 9470 } 9471 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9472 break; 9473 default: 9474 g_assert_not_reached(); 9475 } 9476 9477 /* Overriding of an existing definition must be explicitly requested. */ 9478 if (!(r->type & ARM_CP_OVERRIDE)) { 9479 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9480 if (oldreg) { 9481 assert(oldreg->type & ARM_CP_OVERRIDE); 9482 } 9483 } 9484 9485 /* 9486 * Eliminate registers that are not present because the EL is missing. 9487 * Doing this here makes it easier to put all registers for a given 9488 * feature into the same ARMCPRegInfo array and define them all at once. 9489 */ 9490 make_const = false; 9491 if (arm_feature(env, ARM_FEATURE_EL3)) { 9492 /* 9493 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9494 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9495 */ 9496 int min_el = ctz32(r->access) / 2; 9497 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9498 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9499 return; 9500 } 9501 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9502 } 9503 } else { 9504 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9505 ? PL2_RW : PL1_RW); 9506 if ((r->access & max_el) == 0) { 9507 return; 9508 } 9509 } 9510 9511 /* Combine cpreg and name into one allocation. */ 9512 name_len = strlen(name) + 1; 9513 r2 = g_malloc(sizeof(*r2) + name_len); 9514 *r2 = *r; 9515 r2->name = memcpy(r2 + 1, name, name_len); 9516 9517 /* 9518 * Update fields to match the instantiation, overwiting wildcards 9519 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9520 */ 9521 r2->cp = cp; 9522 r2->crm = crm; 9523 r2->opc1 = opc1; 9524 r2->opc2 = opc2; 9525 r2->state = state; 9526 r2->secure = secstate; 9527 if (opaque) { 9528 r2->opaque = opaque; 9529 } 9530 9531 if (make_const) { 9532 /* This should not have been a very special register to begin. */ 9533 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9534 assert(old_special == 0 || old_special == ARM_CP_NOP); 9535 /* 9536 * Set the special function to CONST, retaining the other flags. 9537 * This is important for e.g. ARM_CP_SVE so that we still 9538 * take the SVE trap if CPTR_EL3.EZ == 0. 9539 */ 9540 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9541 /* 9542 * Usually, these registers become RES0, but there are a few 9543 * special cases like VPIDR_EL2 which have a constant non-zero 9544 * value with writes ignored. 9545 */ 9546 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9547 r2->resetvalue = 0; 9548 } 9549 /* 9550 * ARM_CP_CONST has precedence, so removing the callbacks and 9551 * offsets are not strictly necessary, but it is potentially 9552 * less confusing to debug later. 9553 */ 9554 r2->readfn = NULL; 9555 r2->writefn = NULL; 9556 r2->raw_readfn = NULL; 9557 r2->raw_writefn = NULL; 9558 r2->resetfn = NULL; 9559 r2->fieldoffset = 0; 9560 r2->bank_fieldoffsets[0] = 0; 9561 r2->bank_fieldoffsets[1] = 0; 9562 } else { 9563 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9564 9565 if (isbanked) { 9566 /* 9567 * Register is banked (using both entries in array). 9568 * Overwriting fieldoffset as the array is only used to define 9569 * banked registers but later only fieldoffset is used. 9570 */ 9571 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9572 } 9573 if (state == ARM_CP_STATE_AA32) { 9574 if (isbanked) { 9575 /* 9576 * If the register is banked then we don't need to migrate or 9577 * reset the 32-bit instance in certain cases: 9578 * 9579 * 1) If the register has both 32-bit and 64-bit instances 9580 * then we can count on the 64-bit instance taking care 9581 * of the non-secure bank. 9582 * 2) If ARMv8 is enabled then we can count on a 64-bit 9583 * version taking care of the secure bank. This requires 9584 * that separate 32 and 64-bit definitions are provided. 9585 */ 9586 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9587 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9588 r2->type |= ARM_CP_ALIAS; 9589 } 9590 } else if ((secstate != r->secure) && !ns) { 9591 /* 9592 * The register is not banked so we only want to allow 9593 * migration of the non-secure instance. 9594 */ 9595 r2->type |= ARM_CP_ALIAS; 9596 } 9597 9598 if (HOST_BIG_ENDIAN && 9599 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9600 r2->fieldoffset += sizeof(uint32_t); 9601 } 9602 } 9603 } 9604 9605 /* 9606 * By convention, for wildcarded registers only the first 9607 * entry is used for migration; the others are marked as 9608 * ALIAS so we don't try to transfer the register 9609 * multiple times. Special registers (ie NOP/WFI) are 9610 * never migratable and not even raw-accessible. 9611 */ 9612 if (r2->type & ARM_CP_SPECIAL_MASK) { 9613 r2->type |= ARM_CP_NO_RAW; 9614 } 9615 if (((r->crm == CP_ANY) && crm != 0) || 9616 ((r->opc1 == CP_ANY) && opc1 != 0) || 9617 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9618 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9619 } 9620 9621 /* 9622 * Check that raw accesses are either forbidden or handled. Note that 9623 * we can't assert this earlier because the setup of fieldoffset for 9624 * banked registers has to be done first. 9625 */ 9626 if (!(r2->type & ARM_CP_NO_RAW)) { 9627 assert(!raw_accessors_invalid(r2)); 9628 } 9629 9630 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9631 } 9632 9633 9634 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9635 const ARMCPRegInfo *r, void *opaque) 9636 { 9637 /* 9638 * Define implementations of coprocessor registers. 9639 * We store these in a hashtable because typically 9640 * there are less than 150 registers in a space which 9641 * is 16*16*16*8*8 = 262144 in size. 9642 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9643 * If a register is defined twice then the second definition is 9644 * used, so this can be used to define some generic registers and 9645 * then override them with implementation specific variations. 9646 * At least one of the original and the second definition should 9647 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9648 * against accidental use. 9649 * 9650 * The state field defines whether the register is to be 9651 * visible in the AArch32 or AArch64 execution state. If the 9652 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9653 * reginfo structure for the AArch32 view, which sees the lower 9654 * 32 bits of the 64 bit register. 9655 * 9656 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9657 * be wildcarded. AArch64 registers are always considered to be 64 9658 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9659 * the register, if any. 9660 */ 9661 int crm, opc1, opc2; 9662 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9663 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9664 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9665 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9666 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9667 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9668 CPState state; 9669 9670 /* 64 bit registers have only CRm and Opc1 fields */ 9671 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9672 /* op0 only exists in the AArch64 encodings */ 9673 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9674 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9675 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9676 /* 9677 * This API is only for Arm's system coprocessors (14 and 15) or 9678 * (M-profile or v7A-and-earlier only) for implementation defined 9679 * coprocessors in the range 0..7. Our decode assumes this, since 9680 * 8..13 can be used for other insns including VFP and Neon. See 9681 * valid_cp() in translate.c. Assert here that we haven't tried 9682 * to use an invalid coprocessor number. 9683 */ 9684 switch (r->state) { 9685 case ARM_CP_STATE_BOTH: 9686 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9687 if (r->cp == 0) { 9688 break; 9689 } 9690 /* fall through */ 9691 case ARM_CP_STATE_AA32: 9692 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9693 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9694 assert(r->cp >= 14 && r->cp <= 15); 9695 } else { 9696 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9697 } 9698 break; 9699 case ARM_CP_STATE_AA64: 9700 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9701 break; 9702 default: 9703 g_assert_not_reached(); 9704 } 9705 /* 9706 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9707 * encodes a minimum access level for the register. We roll this 9708 * runtime check into our general permission check code, so check 9709 * here that the reginfo's specified permissions are strict enough 9710 * to encompass the generic architectural permission check. 9711 */ 9712 if (r->state != ARM_CP_STATE_AA32) { 9713 CPAccessRights mask; 9714 switch (r->opc1) { 9715 case 0: 9716 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9717 mask = PL0U_R | PL1_RW; 9718 break; 9719 case 1: case 2: 9720 /* min_EL EL1 */ 9721 mask = PL1_RW; 9722 break; 9723 case 3: 9724 /* min_EL EL0 */ 9725 mask = PL0_RW; 9726 break; 9727 case 4: 9728 case 5: 9729 /* min_EL EL2 */ 9730 mask = PL2_RW; 9731 break; 9732 case 6: 9733 /* min_EL EL3 */ 9734 mask = PL3_RW; 9735 break; 9736 case 7: 9737 /* min_EL EL1, secure mode only (we don't check the latter) */ 9738 mask = PL1_RW; 9739 break; 9740 default: 9741 /* broken reginfo with out-of-range opc1 */ 9742 g_assert_not_reached(); 9743 } 9744 /* assert our permissions are not too lax (stricter is fine) */ 9745 assert((r->access & ~mask) == 0); 9746 } 9747 9748 /* 9749 * Check that the register definition has enough info to handle 9750 * reads and writes if they are permitted. 9751 */ 9752 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9753 if (r->access & PL3_R) { 9754 assert((r->fieldoffset || 9755 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9756 r->readfn); 9757 } 9758 if (r->access & PL3_W) { 9759 assert((r->fieldoffset || 9760 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9761 r->writefn); 9762 } 9763 } 9764 9765 for (crm = crmmin; crm <= crmmax; crm++) { 9766 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9767 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9768 for (state = ARM_CP_STATE_AA32; 9769 state <= ARM_CP_STATE_AA64; state++) { 9770 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9771 continue; 9772 } 9773 if (state == ARM_CP_STATE_AA32) { 9774 /* 9775 * Under AArch32 CP registers can be common 9776 * (same for secure and non-secure world) or banked. 9777 */ 9778 char *name; 9779 9780 switch (r->secure) { 9781 case ARM_CP_SECSTATE_S: 9782 case ARM_CP_SECSTATE_NS: 9783 add_cpreg_to_hashtable(cpu, r, opaque, state, 9784 r->secure, crm, opc1, opc2, 9785 r->name); 9786 break; 9787 case ARM_CP_SECSTATE_BOTH: 9788 name = g_strdup_printf("%s_S", r->name); 9789 add_cpreg_to_hashtable(cpu, r, opaque, state, 9790 ARM_CP_SECSTATE_S, 9791 crm, opc1, opc2, name); 9792 g_free(name); 9793 add_cpreg_to_hashtable(cpu, r, opaque, state, 9794 ARM_CP_SECSTATE_NS, 9795 crm, opc1, opc2, r->name); 9796 break; 9797 default: 9798 g_assert_not_reached(); 9799 } 9800 } else { 9801 /* 9802 * AArch64 registers get mapped to non-secure instance 9803 * of AArch32 9804 */ 9805 add_cpreg_to_hashtable(cpu, r, opaque, state, 9806 ARM_CP_SECSTATE_NS, 9807 crm, opc1, opc2, r->name); 9808 } 9809 } 9810 } 9811 } 9812 } 9813 } 9814 9815 /* Define a whole list of registers */ 9816 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9817 void *opaque, size_t len) 9818 { 9819 size_t i; 9820 for (i = 0; i < len; ++i) { 9821 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9822 } 9823 } 9824 9825 /* 9826 * Modify ARMCPRegInfo for access from userspace. 9827 * 9828 * This is a data driven modification directed by 9829 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9830 * user-space cannot alter any values and dynamic values pertaining to 9831 * execution state are hidden from user space view anyway. 9832 */ 9833 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9834 const ARMCPRegUserSpaceInfo *mods, 9835 size_t mods_len) 9836 { 9837 for (size_t mi = 0; mi < mods_len; ++mi) { 9838 const ARMCPRegUserSpaceInfo *m = mods + mi; 9839 GPatternSpec *pat = NULL; 9840 9841 if (m->is_glob) { 9842 pat = g_pattern_spec_new(m->name); 9843 } 9844 for (size_t ri = 0; ri < regs_len; ++ri) { 9845 ARMCPRegInfo *r = regs + ri; 9846 9847 if (pat && g_pattern_match_string(pat, r->name)) { 9848 r->type = ARM_CP_CONST; 9849 r->access = PL0U_R; 9850 r->resetvalue = 0; 9851 /* continue */ 9852 } else if (strcmp(r->name, m->name) == 0) { 9853 r->type = ARM_CP_CONST; 9854 r->access = PL0U_R; 9855 r->resetvalue &= m->exported_bits; 9856 r->resetvalue |= m->fixed_bits; 9857 break; 9858 } 9859 } 9860 if (pat) { 9861 g_pattern_spec_free(pat); 9862 } 9863 } 9864 } 9865 9866 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9867 { 9868 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9869 } 9870 9871 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9872 uint64_t value) 9873 { 9874 /* Helper coprocessor write function for write-ignore registers */ 9875 } 9876 9877 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9878 { 9879 /* Helper coprocessor write function for read-as-zero registers */ 9880 return 0; 9881 } 9882 9883 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9884 { 9885 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9886 } 9887 9888 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9889 { 9890 /* 9891 * Return true if it is not valid for us to switch to 9892 * this CPU mode (ie all the UNPREDICTABLE cases in 9893 * the ARM ARM CPSRWriteByInstr pseudocode). 9894 */ 9895 9896 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9897 if (write_type == CPSRWriteByInstr && 9898 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9899 mode == ARM_CPU_MODE_HYP)) { 9900 return 1; 9901 } 9902 9903 switch (mode) { 9904 case ARM_CPU_MODE_USR: 9905 return 0; 9906 case ARM_CPU_MODE_SYS: 9907 case ARM_CPU_MODE_SVC: 9908 case ARM_CPU_MODE_ABT: 9909 case ARM_CPU_MODE_UND: 9910 case ARM_CPU_MODE_IRQ: 9911 case ARM_CPU_MODE_FIQ: 9912 /* 9913 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9914 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9915 */ 9916 /* 9917 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9918 * and CPS are treated as illegal mode changes. 9919 */ 9920 if (write_type == CPSRWriteByInstr && 9921 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9922 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9923 return 1; 9924 } 9925 return 0; 9926 case ARM_CPU_MODE_HYP: 9927 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9928 case ARM_CPU_MODE_MON: 9929 return arm_current_el(env) < 3; 9930 default: 9931 return 1; 9932 } 9933 } 9934 9935 uint32_t cpsr_read(CPUARMState *env) 9936 { 9937 int ZF; 9938 ZF = (env->ZF == 0); 9939 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9940 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9941 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9942 | ((env->condexec_bits & 0xfc) << 8) 9943 | (env->GE << 16) | (env->daif & CPSR_AIF); 9944 } 9945 9946 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9947 CPSRWriteType write_type) 9948 { 9949 uint32_t changed_daif; 9950 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9951 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9952 9953 if (mask & CPSR_NZCV) { 9954 env->ZF = (~val) & CPSR_Z; 9955 env->NF = val; 9956 env->CF = (val >> 29) & 1; 9957 env->VF = (val << 3) & 0x80000000; 9958 } 9959 if (mask & CPSR_Q) { 9960 env->QF = ((val & CPSR_Q) != 0); 9961 } 9962 if (mask & CPSR_T) { 9963 env->thumb = ((val & CPSR_T) != 0); 9964 } 9965 if (mask & CPSR_IT_0_1) { 9966 env->condexec_bits &= ~3; 9967 env->condexec_bits |= (val >> 25) & 3; 9968 } 9969 if (mask & CPSR_IT_2_7) { 9970 env->condexec_bits &= 3; 9971 env->condexec_bits |= (val >> 8) & 0xfc; 9972 } 9973 if (mask & CPSR_GE) { 9974 env->GE = (val >> 16) & 0xf; 9975 } 9976 9977 /* 9978 * In a V7 implementation that includes the security extensions but does 9979 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9980 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9981 * bits respectively. 9982 * 9983 * In a V8 implementation, it is permitted for privileged software to 9984 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9985 */ 9986 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9987 arm_feature(env, ARM_FEATURE_EL3) && 9988 !arm_feature(env, ARM_FEATURE_EL2) && 9989 !arm_is_secure(env)) { 9990 9991 changed_daif = (env->daif ^ val) & mask; 9992 9993 if (changed_daif & CPSR_A) { 9994 /* 9995 * Check to see if we are allowed to change the masking of async 9996 * abort exceptions from a non-secure state. 9997 */ 9998 if (!(env->cp15.scr_el3 & SCR_AW)) { 9999 qemu_log_mask(LOG_GUEST_ERROR, 10000 "Ignoring attempt to switch CPSR_A flag from " 10001 "non-secure world with SCR.AW bit clear\n"); 10002 mask &= ~CPSR_A; 10003 } 10004 } 10005 10006 if (changed_daif & CPSR_F) { 10007 /* 10008 * Check to see if we are allowed to change the masking of FIQ 10009 * exceptions from a non-secure state. 10010 */ 10011 if (!(env->cp15.scr_el3 & SCR_FW)) { 10012 qemu_log_mask(LOG_GUEST_ERROR, 10013 "Ignoring attempt to switch CPSR_F flag from " 10014 "non-secure world with SCR.FW bit clear\n"); 10015 mask &= ~CPSR_F; 10016 } 10017 10018 /* 10019 * Check whether non-maskable FIQ (NMFI) support is enabled. 10020 * If this bit is set software is not allowed to mask 10021 * FIQs, but is allowed to set CPSR_F to 0. 10022 */ 10023 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10024 (val & CPSR_F)) { 10025 qemu_log_mask(LOG_GUEST_ERROR, 10026 "Ignoring attempt to enable CPSR_F flag " 10027 "(non-maskable FIQ [NMFI] support enabled)\n"); 10028 mask &= ~CPSR_F; 10029 } 10030 } 10031 } 10032 10033 env->daif &= ~(CPSR_AIF & mask); 10034 env->daif |= val & CPSR_AIF & mask; 10035 10036 if (write_type != CPSRWriteRaw && 10037 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10038 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10039 /* 10040 * Note that we can only get here in USR mode if this is a 10041 * gdb stub write; for this case we follow the architectural 10042 * behaviour for guest writes in USR mode of ignoring an attempt 10043 * to switch mode. (Those are caught by translate.c for writes 10044 * triggered by guest instructions.) 10045 */ 10046 mask &= ~CPSR_M; 10047 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10048 /* 10049 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10050 * v7, and has defined behaviour in v8: 10051 * + leave CPSR.M untouched 10052 * + allow changes to the other CPSR fields 10053 * + set PSTATE.IL 10054 * For user changes via the GDB stub, we don't set PSTATE.IL, 10055 * as this would be unnecessarily harsh for a user error. 10056 */ 10057 mask &= ~CPSR_M; 10058 if (write_type != CPSRWriteByGDBStub && 10059 arm_feature(env, ARM_FEATURE_V8)) { 10060 mask |= CPSR_IL; 10061 val |= CPSR_IL; 10062 } 10063 qemu_log_mask(LOG_GUEST_ERROR, 10064 "Illegal AArch32 mode switch attempt from %s to %s\n", 10065 aarch32_mode_name(env->uncached_cpsr), 10066 aarch32_mode_name(val)); 10067 } else { 10068 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10069 write_type == CPSRWriteExceptionReturn ? 10070 "Exception return from AArch32" : 10071 "AArch32 mode switch from", 10072 aarch32_mode_name(env->uncached_cpsr), 10073 aarch32_mode_name(val), env->regs[15]); 10074 switch_mode(env, val & CPSR_M); 10075 } 10076 } 10077 mask &= ~CACHED_CPSR_BITS; 10078 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10079 if (tcg_enabled() && rebuild_hflags) { 10080 arm_rebuild_hflags(env); 10081 } 10082 } 10083 10084 /* Sign/zero extend */ 10085 uint32_t HELPER(sxtb16)(uint32_t x) 10086 { 10087 uint32_t res; 10088 res = (uint16_t)(int8_t)x; 10089 res |= (uint32_t)(int8_t)(x >> 16) << 16; 10090 return res; 10091 } 10092 10093 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 10094 { 10095 /* 10096 * Take a division-by-zero exception if necessary; otherwise return 10097 * to get the usual non-trapping division behaviour (result of 0) 10098 */ 10099 if (arm_feature(env, ARM_FEATURE_M) 10100 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 10101 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 10102 } 10103 } 10104 10105 uint32_t HELPER(uxtb16)(uint32_t x) 10106 { 10107 uint32_t res; 10108 res = (uint16_t)(uint8_t)x; 10109 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10110 return res; 10111 } 10112 10113 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10114 { 10115 if (den == 0) { 10116 handle_possible_div0_trap(env, GETPC()); 10117 return 0; 10118 } 10119 if (num == INT_MIN && den == -1) { 10120 return INT_MIN; 10121 } 10122 return num / den; 10123 } 10124 10125 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10126 { 10127 if (den == 0) { 10128 handle_possible_div0_trap(env, GETPC()); 10129 return 0; 10130 } 10131 return num / den; 10132 } 10133 10134 uint32_t HELPER(rbit)(uint32_t x) 10135 { 10136 return revbit32(x); 10137 } 10138 10139 #ifdef CONFIG_USER_ONLY 10140 10141 static void switch_mode(CPUARMState *env, int mode) 10142 { 10143 ARMCPU *cpu = env_archcpu(env); 10144 10145 if (mode != ARM_CPU_MODE_USR) { 10146 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10147 } 10148 } 10149 10150 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10151 uint32_t cur_el, bool secure) 10152 { 10153 return 1; 10154 } 10155 10156 void aarch64_sync_64_to_32(CPUARMState *env) 10157 { 10158 g_assert_not_reached(); 10159 } 10160 10161 #else 10162 10163 static void switch_mode(CPUARMState *env, int mode) 10164 { 10165 int old_mode; 10166 int i; 10167 10168 old_mode = env->uncached_cpsr & CPSR_M; 10169 if (mode == old_mode) { 10170 return; 10171 } 10172 10173 if (old_mode == ARM_CPU_MODE_FIQ) { 10174 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10175 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10176 } else if (mode == ARM_CPU_MODE_FIQ) { 10177 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10178 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10179 } 10180 10181 i = bank_number(old_mode); 10182 env->banked_r13[i] = env->regs[13]; 10183 env->banked_spsr[i] = env->spsr; 10184 10185 i = bank_number(mode); 10186 env->regs[13] = env->banked_r13[i]; 10187 env->spsr = env->banked_spsr[i]; 10188 10189 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10190 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10191 } 10192 10193 /* 10194 * Physical Interrupt Target EL Lookup Table 10195 * 10196 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10197 * 10198 * The below multi-dimensional table is used for looking up the target 10199 * exception level given numerous condition criteria. Specifically, the 10200 * target EL is based on SCR and HCR routing controls as well as the 10201 * currently executing EL and secure state. 10202 * 10203 * Dimensions: 10204 * target_el_table[2][2][2][2][2][4] 10205 * | | | | | +--- Current EL 10206 * | | | | +------ Non-secure(0)/Secure(1) 10207 * | | | +--------- HCR mask override 10208 * | | +------------ SCR exec state control 10209 * | +--------------- SCR mask override 10210 * +------------------ 32-bit(0)/64-bit(1) EL3 10211 * 10212 * The table values are as such: 10213 * 0-3 = EL0-EL3 10214 * -1 = Cannot occur 10215 * 10216 * The ARM ARM target EL table includes entries indicating that an "exception 10217 * is not taken". The two cases where this is applicable are: 10218 * 1) An exception is taken from EL3 but the SCR does not have the exception 10219 * routed to EL3. 10220 * 2) An exception is taken from EL2 but the HCR does not have the exception 10221 * routed to EL2. 10222 * In these two cases, the below table contain a target of EL1. This value is 10223 * returned as it is expected that the consumer of the table data will check 10224 * for "target EL >= current EL" to ensure the exception is not taken. 10225 * 10226 * SCR HCR 10227 * 64 EA AMO From 10228 * BIT IRQ IMO Non-secure Secure 10229 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10230 */ 10231 static const int8_t target_el_table[2][2][2][2][2][4] = { 10232 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10233 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10234 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10235 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10236 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10237 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10238 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10239 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10240 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10241 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10242 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10243 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10244 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10245 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10246 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10247 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10248 }; 10249 10250 /* 10251 * Determine the target EL for physical exceptions 10252 */ 10253 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10254 uint32_t cur_el, bool secure) 10255 { 10256 CPUARMState *env = cs->env_ptr; 10257 bool rw; 10258 bool scr; 10259 bool hcr; 10260 int target_el; 10261 /* Is the highest EL AArch64? */ 10262 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10263 uint64_t hcr_el2; 10264 10265 if (arm_feature(env, ARM_FEATURE_EL3)) { 10266 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10267 } else { 10268 /* 10269 * Either EL2 is the highest EL (and so the EL2 register width 10270 * is given by is64); or there is no EL2 or EL3, in which case 10271 * the value of 'rw' does not affect the table lookup anyway. 10272 */ 10273 rw = is64; 10274 } 10275 10276 hcr_el2 = arm_hcr_el2_eff(env); 10277 switch (excp_idx) { 10278 case EXCP_IRQ: 10279 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10280 hcr = hcr_el2 & HCR_IMO; 10281 break; 10282 case EXCP_FIQ: 10283 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10284 hcr = hcr_el2 & HCR_FMO; 10285 break; 10286 default: 10287 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10288 hcr = hcr_el2 & HCR_AMO; 10289 break; 10290 }; 10291 10292 /* 10293 * For these purposes, TGE and AMO/IMO/FMO both force the 10294 * interrupt to EL2. Fold TGE into the bit extracted above. 10295 */ 10296 hcr |= (hcr_el2 & HCR_TGE) != 0; 10297 10298 /* Perform a table-lookup for the target EL given the current state */ 10299 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10300 10301 assert(target_el > 0); 10302 10303 return target_el; 10304 } 10305 10306 void arm_log_exception(CPUState *cs) 10307 { 10308 int idx = cs->exception_index; 10309 10310 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10311 const char *exc = NULL; 10312 static const char * const excnames[] = { 10313 [EXCP_UDEF] = "Undefined Instruction", 10314 [EXCP_SWI] = "SVC", 10315 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10316 [EXCP_DATA_ABORT] = "Data Abort", 10317 [EXCP_IRQ] = "IRQ", 10318 [EXCP_FIQ] = "FIQ", 10319 [EXCP_BKPT] = "Breakpoint", 10320 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10321 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10322 [EXCP_HVC] = "Hypervisor Call", 10323 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10324 [EXCP_SMC] = "Secure Monitor Call", 10325 [EXCP_VIRQ] = "Virtual IRQ", 10326 [EXCP_VFIQ] = "Virtual FIQ", 10327 [EXCP_SEMIHOST] = "Semihosting call", 10328 [EXCP_NOCP] = "v7M NOCP UsageFault", 10329 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10330 [EXCP_STKOF] = "v8M STKOF UsageFault", 10331 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10332 [EXCP_LSERR] = "v8M LSERR UsageFault", 10333 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10334 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10335 [EXCP_VSERR] = "Virtual SERR", 10336 [EXCP_GPC] = "Granule Protection Check", 10337 }; 10338 10339 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10340 exc = excnames[idx]; 10341 } 10342 if (!exc) { 10343 exc = "unknown"; 10344 } 10345 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10346 idx, exc, cs->cpu_index); 10347 } 10348 } 10349 10350 /* 10351 * Function used to synchronize QEMU's AArch64 register set with AArch32 10352 * register set. This is necessary when switching between AArch32 and AArch64 10353 * execution state. 10354 */ 10355 void aarch64_sync_32_to_64(CPUARMState *env) 10356 { 10357 int i; 10358 uint32_t mode = env->uncached_cpsr & CPSR_M; 10359 10360 /* We can blanket copy R[0:7] to X[0:7] */ 10361 for (i = 0; i < 8; i++) { 10362 env->xregs[i] = env->regs[i]; 10363 } 10364 10365 /* 10366 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10367 * Otherwise, they come from the banked user regs. 10368 */ 10369 if (mode == ARM_CPU_MODE_FIQ) { 10370 for (i = 8; i < 13; i++) { 10371 env->xregs[i] = env->usr_regs[i - 8]; 10372 } 10373 } else { 10374 for (i = 8; i < 13; i++) { 10375 env->xregs[i] = env->regs[i]; 10376 } 10377 } 10378 10379 /* 10380 * Registers x13-x23 are the various mode SP and FP registers. Registers 10381 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10382 * from the mode banked register. 10383 */ 10384 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10385 env->xregs[13] = env->regs[13]; 10386 env->xregs[14] = env->regs[14]; 10387 } else { 10388 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10389 /* HYP is an exception in that it is copied from r14 */ 10390 if (mode == ARM_CPU_MODE_HYP) { 10391 env->xregs[14] = env->regs[14]; 10392 } else { 10393 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10394 } 10395 } 10396 10397 if (mode == ARM_CPU_MODE_HYP) { 10398 env->xregs[15] = env->regs[13]; 10399 } else { 10400 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10401 } 10402 10403 if (mode == ARM_CPU_MODE_IRQ) { 10404 env->xregs[16] = env->regs[14]; 10405 env->xregs[17] = env->regs[13]; 10406 } else { 10407 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10408 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10409 } 10410 10411 if (mode == ARM_CPU_MODE_SVC) { 10412 env->xregs[18] = env->regs[14]; 10413 env->xregs[19] = env->regs[13]; 10414 } else { 10415 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10416 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10417 } 10418 10419 if (mode == ARM_CPU_MODE_ABT) { 10420 env->xregs[20] = env->regs[14]; 10421 env->xregs[21] = env->regs[13]; 10422 } else { 10423 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10424 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10425 } 10426 10427 if (mode == ARM_CPU_MODE_UND) { 10428 env->xregs[22] = env->regs[14]; 10429 env->xregs[23] = env->regs[13]; 10430 } else { 10431 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10432 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10433 } 10434 10435 /* 10436 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10437 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10438 * FIQ bank for r8-r14. 10439 */ 10440 if (mode == ARM_CPU_MODE_FIQ) { 10441 for (i = 24; i < 31; i++) { 10442 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10443 } 10444 } else { 10445 for (i = 24; i < 29; i++) { 10446 env->xregs[i] = env->fiq_regs[i - 24]; 10447 } 10448 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10449 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10450 } 10451 10452 env->pc = env->regs[15]; 10453 } 10454 10455 /* 10456 * Function used to synchronize QEMU's AArch32 register set with AArch64 10457 * register set. This is necessary when switching between AArch32 and AArch64 10458 * execution state. 10459 */ 10460 void aarch64_sync_64_to_32(CPUARMState *env) 10461 { 10462 int i; 10463 uint32_t mode = env->uncached_cpsr & CPSR_M; 10464 10465 /* We can blanket copy X[0:7] to R[0:7] */ 10466 for (i = 0; i < 8; i++) { 10467 env->regs[i] = env->xregs[i]; 10468 } 10469 10470 /* 10471 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10472 * Otherwise, we copy x8-x12 into the banked user regs. 10473 */ 10474 if (mode == ARM_CPU_MODE_FIQ) { 10475 for (i = 8; i < 13; i++) { 10476 env->usr_regs[i - 8] = env->xregs[i]; 10477 } 10478 } else { 10479 for (i = 8; i < 13; i++) { 10480 env->regs[i] = env->xregs[i]; 10481 } 10482 } 10483 10484 /* 10485 * Registers r13 & r14 depend on the current mode. 10486 * If we are in a given mode, we copy the corresponding x registers to r13 10487 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10488 * for the mode. 10489 */ 10490 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10491 env->regs[13] = env->xregs[13]; 10492 env->regs[14] = env->xregs[14]; 10493 } else { 10494 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10495 10496 /* 10497 * HYP is an exception in that it does not have its own banked r14 but 10498 * shares the USR r14 10499 */ 10500 if (mode == ARM_CPU_MODE_HYP) { 10501 env->regs[14] = env->xregs[14]; 10502 } else { 10503 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10504 } 10505 } 10506 10507 if (mode == ARM_CPU_MODE_HYP) { 10508 env->regs[13] = env->xregs[15]; 10509 } else { 10510 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10511 } 10512 10513 if (mode == ARM_CPU_MODE_IRQ) { 10514 env->regs[14] = env->xregs[16]; 10515 env->regs[13] = env->xregs[17]; 10516 } else { 10517 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10518 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10519 } 10520 10521 if (mode == ARM_CPU_MODE_SVC) { 10522 env->regs[14] = env->xregs[18]; 10523 env->regs[13] = env->xregs[19]; 10524 } else { 10525 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10526 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10527 } 10528 10529 if (mode == ARM_CPU_MODE_ABT) { 10530 env->regs[14] = env->xregs[20]; 10531 env->regs[13] = env->xregs[21]; 10532 } else { 10533 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10534 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10535 } 10536 10537 if (mode == ARM_CPU_MODE_UND) { 10538 env->regs[14] = env->xregs[22]; 10539 env->regs[13] = env->xregs[23]; 10540 } else { 10541 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10542 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10543 } 10544 10545 /* 10546 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10547 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10548 * FIQ bank for r8-r14. 10549 */ 10550 if (mode == ARM_CPU_MODE_FIQ) { 10551 for (i = 24; i < 31; i++) { 10552 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10553 } 10554 } else { 10555 for (i = 24; i < 29; i++) { 10556 env->fiq_regs[i - 24] = env->xregs[i]; 10557 } 10558 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10559 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10560 } 10561 10562 env->regs[15] = env->pc; 10563 } 10564 10565 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10566 uint32_t mask, uint32_t offset, 10567 uint32_t newpc) 10568 { 10569 int new_el; 10570 10571 /* Change the CPU state so as to actually take the exception. */ 10572 switch_mode(env, new_mode); 10573 10574 /* 10575 * For exceptions taken to AArch32 we must clear the SS bit in both 10576 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10577 */ 10578 env->pstate &= ~PSTATE_SS; 10579 env->spsr = cpsr_read(env); 10580 /* Clear IT bits. */ 10581 env->condexec_bits = 0; 10582 /* Switch to the new mode, and to the correct instruction set. */ 10583 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10584 10585 /* This must be after mode switching. */ 10586 new_el = arm_current_el(env); 10587 10588 /* Set new mode endianness */ 10589 env->uncached_cpsr &= ~CPSR_E; 10590 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10591 env->uncached_cpsr |= CPSR_E; 10592 } 10593 /* J and IL must always be cleared for exception entry */ 10594 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10595 env->daif |= mask; 10596 10597 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10598 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10599 env->uncached_cpsr |= CPSR_SSBS; 10600 } else { 10601 env->uncached_cpsr &= ~CPSR_SSBS; 10602 } 10603 } 10604 10605 if (new_mode == ARM_CPU_MODE_HYP) { 10606 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10607 env->elr_el[2] = env->regs[15]; 10608 } else { 10609 /* CPSR.PAN is normally preserved preserved unless... */ 10610 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10611 switch (new_el) { 10612 case 3: 10613 if (!arm_is_secure_below_el3(env)) { 10614 /* ... the target is EL3, from non-secure state. */ 10615 env->uncached_cpsr &= ~CPSR_PAN; 10616 break; 10617 } 10618 /* ... the target is EL3, from secure state ... */ 10619 /* fall through */ 10620 case 1: 10621 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10622 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10623 env->uncached_cpsr |= CPSR_PAN; 10624 } 10625 break; 10626 } 10627 } 10628 /* 10629 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10630 * and we should just guard the thumb mode on V4 10631 */ 10632 if (arm_feature(env, ARM_FEATURE_V4T)) { 10633 env->thumb = 10634 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10635 } 10636 env->regs[14] = env->regs[15] + offset; 10637 } 10638 env->regs[15] = newpc; 10639 10640 if (tcg_enabled()) { 10641 arm_rebuild_hflags(env); 10642 } 10643 } 10644 10645 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10646 { 10647 /* 10648 * Handle exception entry to Hyp mode; this is sufficiently 10649 * different to entry to other AArch32 modes that we handle it 10650 * separately here. 10651 * 10652 * The vector table entry used is always the 0x14 Hyp mode entry point, 10653 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10654 * The offset applied to the preferred return address is always zero 10655 * (see DDI0487C.a section G1.12.3). 10656 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10657 */ 10658 uint32_t addr, mask; 10659 ARMCPU *cpu = ARM_CPU(cs); 10660 CPUARMState *env = &cpu->env; 10661 10662 switch (cs->exception_index) { 10663 case EXCP_UDEF: 10664 addr = 0x04; 10665 break; 10666 case EXCP_SWI: 10667 addr = 0x08; 10668 break; 10669 case EXCP_BKPT: 10670 /* Fall through to prefetch abort. */ 10671 case EXCP_PREFETCH_ABORT: 10672 env->cp15.ifar_s = env->exception.vaddress; 10673 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10674 (uint32_t)env->exception.vaddress); 10675 addr = 0x0c; 10676 break; 10677 case EXCP_DATA_ABORT: 10678 env->cp15.dfar_s = env->exception.vaddress; 10679 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10680 (uint32_t)env->exception.vaddress); 10681 addr = 0x10; 10682 break; 10683 case EXCP_IRQ: 10684 addr = 0x18; 10685 break; 10686 case EXCP_FIQ: 10687 addr = 0x1c; 10688 break; 10689 case EXCP_HVC: 10690 addr = 0x08; 10691 break; 10692 case EXCP_HYP_TRAP: 10693 addr = 0x14; 10694 break; 10695 default: 10696 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10697 } 10698 10699 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10700 if (!arm_feature(env, ARM_FEATURE_V8)) { 10701 /* 10702 * QEMU syndrome values are v8-style. v7 has the IL bit 10703 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10704 * If this is a v7 CPU, squash the IL bit in those cases. 10705 */ 10706 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10707 (cs->exception_index == EXCP_DATA_ABORT && 10708 !(env->exception.syndrome & ARM_EL_ISV)) || 10709 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10710 env->exception.syndrome &= ~ARM_EL_IL; 10711 } 10712 } 10713 env->cp15.esr_el[2] = env->exception.syndrome; 10714 } 10715 10716 if (arm_current_el(env) != 2 && addr < 0x14) { 10717 addr = 0x14; 10718 } 10719 10720 mask = 0; 10721 if (!(env->cp15.scr_el3 & SCR_EA)) { 10722 mask |= CPSR_A; 10723 } 10724 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10725 mask |= CPSR_I; 10726 } 10727 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10728 mask |= CPSR_F; 10729 } 10730 10731 addr += env->cp15.hvbar; 10732 10733 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10734 } 10735 10736 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10737 { 10738 ARMCPU *cpu = ARM_CPU(cs); 10739 CPUARMState *env = &cpu->env; 10740 uint32_t addr; 10741 uint32_t mask; 10742 int new_mode; 10743 uint32_t offset; 10744 uint32_t moe; 10745 10746 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10747 switch (syn_get_ec(env->exception.syndrome)) { 10748 case EC_BREAKPOINT: 10749 case EC_BREAKPOINT_SAME_EL: 10750 moe = 1; 10751 break; 10752 case EC_WATCHPOINT: 10753 case EC_WATCHPOINT_SAME_EL: 10754 moe = 10; 10755 break; 10756 case EC_AA32_BKPT: 10757 moe = 3; 10758 break; 10759 case EC_VECTORCATCH: 10760 moe = 5; 10761 break; 10762 default: 10763 moe = 0; 10764 break; 10765 } 10766 10767 if (moe) { 10768 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10769 } 10770 10771 if (env->exception.target_el == 2) { 10772 arm_cpu_do_interrupt_aarch32_hyp(cs); 10773 return; 10774 } 10775 10776 switch (cs->exception_index) { 10777 case EXCP_UDEF: 10778 new_mode = ARM_CPU_MODE_UND; 10779 addr = 0x04; 10780 mask = CPSR_I; 10781 if (env->thumb) { 10782 offset = 2; 10783 } else { 10784 offset = 4; 10785 } 10786 break; 10787 case EXCP_SWI: 10788 new_mode = ARM_CPU_MODE_SVC; 10789 addr = 0x08; 10790 mask = CPSR_I; 10791 /* The PC already points to the next instruction. */ 10792 offset = 0; 10793 break; 10794 case EXCP_BKPT: 10795 /* Fall through to prefetch abort. */ 10796 case EXCP_PREFETCH_ABORT: 10797 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10798 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10799 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10800 env->exception.fsr, (uint32_t)env->exception.vaddress); 10801 new_mode = ARM_CPU_MODE_ABT; 10802 addr = 0x0c; 10803 mask = CPSR_A | CPSR_I; 10804 offset = 4; 10805 break; 10806 case EXCP_DATA_ABORT: 10807 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10808 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10809 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10810 env->exception.fsr, 10811 (uint32_t)env->exception.vaddress); 10812 new_mode = ARM_CPU_MODE_ABT; 10813 addr = 0x10; 10814 mask = CPSR_A | CPSR_I; 10815 offset = 8; 10816 break; 10817 case EXCP_IRQ: 10818 new_mode = ARM_CPU_MODE_IRQ; 10819 addr = 0x18; 10820 /* Disable IRQ and imprecise data aborts. */ 10821 mask = CPSR_A | CPSR_I; 10822 offset = 4; 10823 if (env->cp15.scr_el3 & SCR_IRQ) { 10824 /* IRQ routed to monitor mode */ 10825 new_mode = ARM_CPU_MODE_MON; 10826 mask |= CPSR_F; 10827 } 10828 break; 10829 case EXCP_FIQ: 10830 new_mode = ARM_CPU_MODE_FIQ; 10831 addr = 0x1c; 10832 /* Disable FIQ, IRQ and imprecise data aborts. */ 10833 mask = CPSR_A | CPSR_I | CPSR_F; 10834 if (env->cp15.scr_el3 & SCR_FIQ) { 10835 /* FIQ routed to monitor mode */ 10836 new_mode = ARM_CPU_MODE_MON; 10837 } 10838 offset = 4; 10839 break; 10840 case EXCP_VIRQ: 10841 new_mode = ARM_CPU_MODE_IRQ; 10842 addr = 0x18; 10843 /* Disable IRQ and imprecise data aborts. */ 10844 mask = CPSR_A | CPSR_I; 10845 offset = 4; 10846 break; 10847 case EXCP_VFIQ: 10848 new_mode = ARM_CPU_MODE_FIQ; 10849 addr = 0x1c; 10850 /* Disable FIQ, IRQ and imprecise data aborts. */ 10851 mask = CPSR_A | CPSR_I | CPSR_F; 10852 offset = 4; 10853 break; 10854 case EXCP_VSERR: 10855 { 10856 /* 10857 * Note that this is reported as a data abort, but the DFAR 10858 * has an UNKNOWN value. Construct the SError syndrome from 10859 * AET and ExT fields. 10860 */ 10861 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10862 10863 if (extended_addresses_enabled(env)) { 10864 env->exception.fsr = arm_fi_to_lfsc(&fi); 10865 } else { 10866 env->exception.fsr = arm_fi_to_sfsc(&fi); 10867 } 10868 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10869 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10870 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10871 env->exception.fsr); 10872 10873 new_mode = ARM_CPU_MODE_ABT; 10874 addr = 0x10; 10875 mask = CPSR_A | CPSR_I; 10876 offset = 8; 10877 } 10878 break; 10879 case EXCP_SMC: 10880 new_mode = ARM_CPU_MODE_MON; 10881 addr = 0x08; 10882 mask = CPSR_A | CPSR_I | CPSR_F; 10883 offset = 0; 10884 break; 10885 default: 10886 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10887 return; /* Never happens. Keep compiler happy. */ 10888 } 10889 10890 if (new_mode == ARM_CPU_MODE_MON) { 10891 addr += env->cp15.mvbar; 10892 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10893 /* High vectors. When enabled, base address cannot be remapped. */ 10894 addr += 0xffff0000; 10895 } else { 10896 /* 10897 * ARM v7 architectures provide a vector base address register to remap 10898 * the interrupt vector table. 10899 * This register is only followed in non-monitor mode, and is banked. 10900 * Note: only bits 31:5 are valid. 10901 */ 10902 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10903 } 10904 10905 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10906 env->cp15.scr_el3 &= ~SCR_NS; 10907 } 10908 10909 take_aarch32_exception(env, new_mode, mask, offset, addr); 10910 } 10911 10912 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10913 { 10914 /* 10915 * Return the register number of the AArch64 view of the AArch32 10916 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10917 * be that of the AArch32 mode the exception came from. 10918 */ 10919 int mode = env->uncached_cpsr & CPSR_M; 10920 10921 switch (aarch32_reg) { 10922 case 0 ... 7: 10923 return aarch32_reg; 10924 case 8 ... 12: 10925 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10926 case 13: 10927 switch (mode) { 10928 case ARM_CPU_MODE_USR: 10929 case ARM_CPU_MODE_SYS: 10930 return 13; 10931 case ARM_CPU_MODE_HYP: 10932 return 15; 10933 case ARM_CPU_MODE_IRQ: 10934 return 17; 10935 case ARM_CPU_MODE_SVC: 10936 return 19; 10937 case ARM_CPU_MODE_ABT: 10938 return 21; 10939 case ARM_CPU_MODE_UND: 10940 return 23; 10941 case ARM_CPU_MODE_FIQ: 10942 return 29; 10943 default: 10944 g_assert_not_reached(); 10945 } 10946 case 14: 10947 switch (mode) { 10948 case ARM_CPU_MODE_USR: 10949 case ARM_CPU_MODE_SYS: 10950 case ARM_CPU_MODE_HYP: 10951 return 14; 10952 case ARM_CPU_MODE_IRQ: 10953 return 16; 10954 case ARM_CPU_MODE_SVC: 10955 return 18; 10956 case ARM_CPU_MODE_ABT: 10957 return 20; 10958 case ARM_CPU_MODE_UND: 10959 return 22; 10960 case ARM_CPU_MODE_FIQ: 10961 return 30; 10962 default: 10963 g_assert_not_reached(); 10964 } 10965 case 15: 10966 return 31; 10967 default: 10968 g_assert_not_reached(); 10969 } 10970 } 10971 10972 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10973 { 10974 uint32_t ret = cpsr_read(env); 10975 10976 /* Move DIT to the correct location for SPSR_ELx */ 10977 if (ret & CPSR_DIT) { 10978 ret &= ~CPSR_DIT; 10979 ret |= PSTATE_DIT; 10980 } 10981 /* Merge PSTATE.SS into SPSR_ELx */ 10982 ret |= env->pstate & PSTATE_SS; 10983 10984 return ret; 10985 } 10986 10987 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10988 { 10989 /* Return true if this syndrome value is a synchronous external abort */ 10990 switch (syn_get_ec(syndrome)) { 10991 case EC_INSNABORT: 10992 case EC_INSNABORT_SAME_EL: 10993 case EC_DATAABORT: 10994 case EC_DATAABORT_SAME_EL: 10995 /* Look at fault status code for all the synchronous ext abort cases */ 10996 switch (syndrome & 0x3f) { 10997 case 0x10: 10998 case 0x13: 10999 case 0x14: 11000 case 0x15: 11001 case 0x16: 11002 case 0x17: 11003 return true; 11004 default: 11005 return false; 11006 } 11007 default: 11008 return false; 11009 } 11010 } 11011 11012 /* Handle exception entry to a target EL which is using AArch64 */ 11013 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11014 { 11015 ARMCPU *cpu = ARM_CPU(cs); 11016 CPUARMState *env = &cpu->env; 11017 unsigned int new_el = env->exception.target_el; 11018 target_ulong addr = env->cp15.vbar_el[new_el]; 11019 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11020 unsigned int old_mode; 11021 unsigned int cur_el = arm_current_el(env); 11022 int rt; 11023 11024 if (tcg_enabled()) { 11025 /* 11026 * Note that new_el can never be 0. If cur_el is 0, then 11027 * el0_a64 is is_a64(), else el0_a64 is ignored. 11028 */ 11029 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11030 } 11031 11032 if (cur_el < new_el) { 11033 /* 11034 * Entry vector offset depends on whether the implemented EL 11035 * immediately lower than the target level is using AArch32 or AArch64 11036 */ 11037 bool is_aa64; 11038 uint64_t hcr; 11039 11040 switch (new_el) { 11041 case 3: 11042 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11043 break; 11044 case 2: 11045 hcr = arm_hcr_el2_eff(env); 11046 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11047 is_aa64 = (hcr & HCR_RW) != 0; 11048 break; 11049 } 11050 /* fall through */ 11051 case 1: 11052 is_aa64 = is_a64(env); 11053 break; 11054 default: 11055 g_assert_not_reached(); 11056 } 11057 11058 if (is_aa64) { 11059 addr += 0x400; 11060 } else { 11061 addr += 0x600; 11062 } 11063 } else if (pstate_read(env) & PSTATE_SP) { 11064 addr += 0x200; 11065 } 11066 11067 switch (cs->exception_index) { 11068 case EXCP_GPC: 11069 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11070 env->cp15.mfar_el3); 11071 /* fall through */ 11072 case EXCP_PREFETCH_ABORT: 11073 case EXCP_DATA_ABORT: 11074 /* 11075 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11076 * to be taken to the SError vector entrypoint. 11077 */ 11078 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11079 syndrome_is_sync_extabt(env->exception.syndrome)) { 11080 addr += 0x180; 11081 } 11082 env->cp15.far_el[new_el] = env->exception.vaddress; 11083 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11084 env->cp15.far_el[new_el]); 11085 /* fall through */ 11086 case EXCP_BKPT: 11087 case EXCP_UDEF: 11088 case EXCP_SWI: 11089 case EXCP_HVC: 11090 case EXCP_HYP_TRAP: 11091 case EXCP_SMC: 11092 switch (syn_get_ec(env->exception.syndrome)) { 11093 case EC_ADVSIMDFPACCESSTRAP: 11094 /* 11095 * QEMU internal FP/SIMD syndromes from AArch32 include the 11096 * TA and coproc fields which are only exposed if the exception 11097 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11098 * AArch64 format syndrome. 11099 */ 11100 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11101 break; 11102 case EC_CP14RTTRAP: 11103 case EC_CP15RTTRAP: 11104 case EC_CP14DTTRAP: 11105 /* 11106 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11107 * the raw register field from the insn; when taking this to 11108 * AArch64 we must convert it to the AArch64 view of the register 11109 * number. Notice that we read a 4-bit AArch32 register number and 11110 * write back a 5-bit AArch64 one. 11111 */ 11112 rt = extract32(env->exception.syndrome, 5, 4); 11113 rt = aarch64_regnum(env, rt); 11114 env->exception.syndrome = deposit32(env->exception.syndrome, 11115 5, 5, rt); 11116 break; 11117 case EC_CP15RRTTRAP: 11118 case EC_CP14RRTTRAP: 11119 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11120 rt = extract32(env->exception.syndrome, 5, 4); 11121 rt = aarch64_regnum(env, rt); 11122 env->exception.syndrome = deposit32(env->exception.syndrome, 11123 5, 5, rt); 11124 rt = extract32(env->exception.syndrome, 10, 4); 11125 rt = aarch64_regnum(env, rt); 11126 env->exception.syndrome = deposit32(env->exception.syndrome, 11127 10, 5, rt); 11128 break; 11129 } 11130 env->cp15.esr_el[new_el] = env->exception.syndrome; 11131 break; 11132 case EXCP_IRQ: 11133 case EXCP_VIRQ: 11134 addr += 0x80; 11135 break; 11136 case EXCP_FIQ: 11137 case EXCP_VFIQ: 11138 addr += 0x100; 11139 break; 11140 case EXCP_VSERR: 11141 addr += 0x180; 11142 /* Construct the SError syndrome from IDS and ISS fields. */ 11143 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11144 env->cp15.esr_el[new_el] = env->exception.syndrome; 11145 break; 11146 default: 11147 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11148 } 11149 11150 if (is_a64(env)) { 11151 old_mode = pstate_read(env); 11152 aarch64_save_sp(env, arm_current_el(env)); 11153 env->elr_el[new_el] = env->pc; 11154 } else { 11155 old_mode = cpsr_read_for_spsr_elx(env); 11156 env->elr_el[new_el] = env->regs[15]; 11157 11158 aarch64_sync_32_to_64(env); 11159 11160 env->condexec_bits = 0; 11161 } 11162 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11163 11164 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11165 env->elr_el[new_el]); 11166 11167 if (cpu_isar_feature(aa64_pan, cpu)) { 11168 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11169 new_mode |= old_mode & PSTATE_PAN; 11170 switch (new_el) { 11171 case 2: 11172 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11173 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11174 != (HCR_E2H | HCR_TGE)) { 11175 break; 11176 } 11177 /* fall through */ 11178 case 1: 11179 /* ... the target is EL1 ... */ 11180 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11181 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11182 new_mode |= PSTATE_PAN; 11183 } 11184 break; 11185 } 11186 } 11187 if (cpu_isar_feature(aa64_mte, cpu)) { 11188 new_mode |= PSTATE_TCO; 11189 } 11190 11191 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11192 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11193 new_mode |= PSTATE_SSBS; 11194 } else { 11195 new_mode &= ~PSTATE_SSBS; 11196 } 11197 } 11198 11199 pstate_write(env, PSTATE_DAIF | new_mode); 11200 env->aarch64 = true; 11201 aarch64_restore_sp(env, new_el); 11202 11203 if (tcg_enabled()) { 11204 helper_rebuild_hflags_a64(env, new_el); 11205 } 11206 11207 env->pc = addr; 11208 11209 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11210 new_el, env->pc, pstate_read(env)); 11211 } 11212 11213 /* 11214 * Do semihosting call and set the appropriate return value. All the 11215 * permission and validity checks have been done at translate time. 11216 * 11217 * We only see semihosting exceptions in TCG only as they are not 11218 * trapped to the hypervisor in KVM. 11219 */ 11220 #ifdef CONFIG_TCG 11221 static void tcg_handle_semihosting(CPUState *cs) 11222 { 11223 ARMCPU *cpu = ARM_CPU(cs); 11224 CPUARMState *env = &cpu->env; 11225 11226 if (is_a64(env)) { 11227 qemu_log_mask(CPU_LOG_INT, 11228 "...handling as semihosting call 0x%" PRIx64 "\n", 11229 env->xregs[0]); 11230 do_common_semihosting(cs); 11231 env->pc += 4; 11232 } else { 11233 qemu_log_mask(CPU_LOG_INT, 11234 "...handling as semihosting call 0x%x\n", 11235 env->regs[0]); 11236 do_common_semihosting(cs); 11237 env->regs[15] += env->thumb ? 2 : 4; 11238 } 11239 } 11240 #endif 11241 11242 /* 11243 * Handle a CPU exception for A and R profile CPUs. 11244 * Do any appropriate logging, handle PSCI calls, and then hand off 11245 * to the AArch64-entry or AArch32-entry function depending on the 11246 * target exception level's register width. 11247 * 11248 * Note: this is used for both TCG (as the do_interrupt tcg op), 11249 * and KVM to re-inject guest debug exceptions, and to 11250 * inject a Synchronous-External-Abort. 11251 */ 11252 void arm_cpu_do_interrupt(CPUState *cs) 11253 { 11254 ARMCPU *cpu = ARM_CPU(cs); 11255 CPUARMState *env = &cpu->env; 11256 unsigned int new_el = env->exception.target_el; 11257 11258 assert(!arm_feature(env, ARM_FEATURE_M)); 11259 11260 arm_log_exception(cs); 11261 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11262 new_el); 11263 if (qemu_loglevel_mask(CPU_LOG_INT) 11264 && !excp_is_internal(cs->exception_index)) { 11265 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11266 syn_get_ec(env->exception.syndrome), 11267 env->exception.syndrome); 11268 } 11269 11270 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11271 arm_handle_psci_call(cpu); 11272 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11273 return; 11274 } 11275 11276 /* 11277 * Semihosting semantics depend on the register width of the code 11278 * that caused the exception, not the target exception level, so 11279 * must be handled here. 11280 */ 11281 #ifdef CONFIG_TCG 11282 if (cs->exception_index == EXCP_SEMIHOST) { 11283 tcg_handle_semihosting(cs); 11284 return; 11285 } 11286 #endif 11287 11288 /* 11289 * Hooks may change global state so BQL should be held, also the 11290 * BQL needs to be held for any modification of 11291 * cs->interrupt_request. 11292 */ 11293 g_assert(qemu_mutex_iothread_locked()); 11294 11295 arm_call_pre_el_change_hook(cpu); 11296 11297 assert(!excp_is_internal(cs->exception_index)); 11298 if (arm_el_is_aa64(env, new_el)) { 11299 arm_cpu_do_interrupt_aarch64(cs); 11300 } else { 11301 arm_cpu_do_interrupt_aarch32(cs); 11302 } 11303 11304 arm_call_el_change_hook(cpu); 11305 11306 if (!kvm_enabled()) { 11307 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11308 } 11309 } 11310 #endif /* !CONFIG_USER_ONLY */ 11311 11312 uint64_t arm_sctlr(CPUARMState *env, int el) 11313 { 11314 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11315 if (el == 0) { 11316 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11317 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11318 } 11319 return env->cp15.sctlr_el[el]; 11320 } 11321 11322 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11323 { 11324 if (regime_has_2_ranges(mmu_idx)) { 11325 return extract64(tcr, 37, 2); 11326 } else if (regime_is_stage2(mmu_idx)) { 11327 return 0; /* VTCR_EL2 */ 11328 } else { 11329 /* Replicate the single TBI bit so we always have 2 bits. */ 11330 return extract32(tcr, 20, 1) * 3; 11331 } 11332 } 11333 11334 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11335 { 11336 if (regime_has_2_ranges(mmu_idx)) { 11337 return extract64(tcr, 51, 2); 11338 } else if (regime_is_stage2(mmu_idx)) { 11339 return 0; /* VTCR_EL2 */ 11340 } else { 11341 /* Replicate the single TBID bit so we always have 2 bits. */ 11342 return extract32(tcr, 29, 1) * 3; 11343 } 11344 } 11345 11346 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11347 { 11348 if (regime_has_2_ranges(mmu_idx)) { 11349 return extract64(tcr, 57, 2); 11350 } else { 11351 /* Replicate the single TCMA bit so we always have 2 bits. */ 11352 return extract32(tcr, 30, 1) * 3; 11353 } 11354 } 11355 11356 static ARMGranuleSize tg0_to_gran_size(int tg) 11357 { 11358 switch (tg) { 11359 case 0: 11360 return Gran4K; 11361 case 1: 11362 return Gran64K; 11363 case 2: 11364 return Gran16K; 11365 default: 11366 return GranInvalid; 11367 } 11368 } 11369 11370 static ARMGranuleSize tg1_to_gran_size(int tg) 11371 { 11372 switch (tg) { 11373 case 1: 11374 return Gran16K; 11375 case 2: 11376 return Gran4K; 11377 case 3: 11378 return Gran64K; 11379 default: 11380 return GranInvalid; 11381 } 11382 } 11383 11384 static inline bool have4k(ARMCPU *cpu, bool stage2) 11385 { 11386 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11387 : cpu_isar_feature(aa64_tgran4, cpu); 11388 } 11389 11390 static inline bool have16k(ARMCPU *cpu, bool stage2) 11391 { 11392 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11393 : cpu_isar_feature(aa64_tgran16, cpu); 11394 } 11395 11396 static inline bool have64k(ARMCPU *cpu, bool stage2) 11397 { 11398 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11399 : cpu_isar_feature(aa64_tgran64, cpu); 11400 } 11401 11402 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11403 bool stage2) 11404 { 11405 switch (gran) { 11406 case Gran4K: 11407 if (have4k(cpu, stage2)) { 11408 return gran; 11409 } 11410 break; 11411 case Gran16K: 11412 if (have16k(cpu, stage2)) { 11413 return gran; 11414 } 11415 break; 11416 case Gran64K: 11417 if (have64k(cpu, stage2)) { 11418 return gran; 11419 } 11420 break; 11421 case GranInvalid: 11422 break; 11423 } 11424 /* 11425 * If the guest selects a granule size that isn't implemented, 11426 * the architecture requires that we behave as if it selected one 11427 * that is (with an IMPDEF choice of which one to pick). We choose 11428 * to implement the smallest supported granule size. 11429 */ 11430 if (have4k(cpu, stage2)) { 11431 return Gran4K; 11432 } 11433 if (have16k(cpu, stage2)) { 11434 return Gran16K; 11435 } 11436 assert(have64k(cpu, stage2)); 11437 return Gran64K; 11438 } 11439 11440 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11441 ARMMMUIdx mmu_idx, bool data, 11442 bool el1_is_aa32) 11443 { 11444 uint64_t tcr = regime_tcr(env, mmu_idx); 11445 bool epd, hpd, tsz_oob, ds, ha, hd; 11446 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11447 ARMGranuleSize gran; 11448 ARMCPU *cpu = env_archcpu(env); 11449 bool stage2 = regime_is_stage2(mmu_idx); 11450 11451 if (!regime_has_2_ranges(mmu_idx)) { 11452 select = 0; 11453 tsz = extract32(tcr, 0, 6); 11454 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11455 if (stage2) { 11456 /* VTCR_EL2 */ 11457 hpd = false; 11458 } else { 11459 hpd = extract32(tcr, 24, 1); 11460 } 11461 epd = false; 11462 sh = extract32(tcr, 12, 2); 11463 ps = extract32(tcr, 16, 3); 11464 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11465 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11466 ds = extract64(tcr, 32, 1); 11467 } else { 11468 bool e0pd; 11469 11470 /* 11471 * Bit 55 is always between the two regions, and is canonical for 11472 * determining if address tagging is enabled. 11473 */ 11474 select = extract64(va, 55, 1); 11475 if (!select) { 11476 tsz = extract32(tcr, 0, 6); 11477 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11478 epd = extract32(tcr, 7, 1); 11479 sh = extract32(tcr, 12, 2); 11480 hpd = extract64(tcr, 41, 1); 11481 e0pd = extract64(tcr, 55, 1); 11482 } else { 11483 tsz = extract32(tcr, 16, 6); 11484 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11485 epd = extract32(tcr, 23, 1); 11486 sh = extract32(tcr, 28, 2); 11487 hpd = extract64(tcr, 42, 1); 11488 e0pd = extract64(tcr, 56, 1); 11489 } 11490 ps = extract64(tcr, 32, 3); 11491 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11492 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11493 ds = extract64(tcr, 59, 1); 11494 11495 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11496 regime_is_user(env, mmu_idx)) { 11497 epd = true; 11498 } 11499 } 11500 11501 gran = sanitize_gran_size(cpu, gran, stage2); 11502 11503 if (cpu_isar_feature(aa64_st, cpu)) { 11504 max_tsz = 48 - (gran == Gran64K); 11505 } else { 11506 max_tsz = 39; 11507 } 11508 11509 /* 11510 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11511 * adjust the effective value of DS, as documented. 11512 */ 11513 min_tsz = 16; 11514 if (gran == Gran64K) { 11515 if (cpu_isar_feature(aa64_lva, cpu)) { 11516 min_tsz = 12; 11517 } 11518 ds = false; 11519 } else if (ds) { 11520 if (regime_is_stage2(mmu_idx)) { 11521 if (gran == Gran16K) { 11522 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11523 } else { 11524 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11525 } 11526 } else { 11527 if (gran == Gran16K) { 11528 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11529 } else { 11530 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11531 } 11532 } 11533 if (ds) { 11534 min_tsz = 12; 11535 } 11536 } 11537 11538 if (stage2 && el1_is_aa32) { 11539 /* 11540 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11541 * are loosened: a configured IPA of 40 bits is permitted even if 11542 * the implemented PA is less than that (and so a 40 bit IPA would 11543 * fault for an AArch64 EL1). See R_DTLMN. 11544 */ 11545 min_tsz = MIN(min_tsz, 24); 11546 } 11547 11548 if (tsz > max_tsz) { 11549 tsz = max_tsz; 11550 tsz_oob = true; 11551 } else if (tsz < min_tsz) { 11552 tsz = min_tsz; 11553 tsz_oob = true; 11554 } else { 11555 tsz_oob = false; 11556 } 11557 11558 /* Present TBI as a composite with TBID. */ 11559 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11560 if (!data) { 11561 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11562 } 11563 tbi = (tbi >> select) & 1; 11564 11565 return (ARMVAParameters) { 11566 .tsz = tsz, 11567 .ps = ps, 11568 .sh = sh, 11569 .select = select, 11570 .tbi = tbi, 11571 .epd = epd, 11572 .hpd = hpd, 11573 .tsz_oob = tsz_oob, 11574 .ds = ds, 11575 .ha = ha, 11576 .hd = ha && hd, 11577 .gran = gran, 11578 }; 11579 } 11580 11581 /* 11582 * Note that signed overflow is undefined in C. The following routines are 11583 * careful to use unsigned types where modulo arithmetic is required. 11584 * Failure to do so _will_ break on newer gcc. 11585 */ 11586 11587 /* Signed saturating arithmetic. */ 11588 11589 /* Perform 16-bit signed saturating addition. */ 11590 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11591 { 11592 uint16_t res; 11593 11594 res = a + b; 11595 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11596 if (a & 0x8000) { 11597 res = 0x8000; 11598 } else { 11599 res = 0x7fff; 11600 } 11601 } 11602 return res; 11603 } 11604 11605 /* Perform 8-bit signed saturating addition. */ 11606 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11607 { 11608 uint8_t res; 11609 11610 res = a + b; 11611 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11612 if (a & 0x80) { 11613 res = 0x80; 11614 } else { 11615 res = 0x7f; 11616 } 11617 } 11618 return res; 11619 } 11620 11621 /* Perform 16-bit signed saturating subtraction. */ 11622 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11623 { 11624 uint16_t res; 11625 11626 res = a - b; 11627 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11628 if (a & 0x8000) { 11629 res = 0x8000; 11630 } else { 11631 res = 0x7fff; 11632 } 11633 } 11634 return res; 11635 } 11636 11637 /* Perform 8-bit signed saturating subtraction. */ 11638 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11639 { 11640 uint8_t res; 11641 11642 res = a - b; 11643 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11644 if (a & 0x80) { 11645 res = 0x80; 11646 } else { 11647 res = 0x7f; 11648 } 11649 } 11650 return res; 11651 } 11652 11653 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11654 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11655 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11656 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11657 #define PFX q 11658 11659 #include "op_addsub.h" 11660 11661 /* Unsigned saturating arithmetic. */ 11662 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11663 { 11664 uint16_t res; 11665 res = a + b; 11666 if (res < a) { 11667 res = 0xffff; 11668 } 11669 return res; 11670 } 11671 11672 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11673 { 11674 if (a > b) { 11675 return a - b; 11676 } else { 11677 return 0; 11678 } 11679 } 11680 11681 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11682 { 11683 uint8_t res; 11684 res = a + b; 11685 if (res < a) { 11686 res = 0xff; 11687 } 11688 return res; 11689 } 11690 11691 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11692 { 11693 if (a > b) { 11694 return a - b; 11695 } else { 11696 return 0; 11697 } 11698 } 11699 11700 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11701 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11702 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11703 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11704 #define PFX uq 11705 11706 #include "op_addsub.h" 11707 11708 /* Signed modulo arithmetic. */ 11709 #define SARITH16(a, b, n, op) do { \ 11710 int32_t sum; \ 11711 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11712 RESULT(sum, n, 16); \ 11713 if (sum >= 0) \ 11714 ge |= 3 << (n * 2); \ 11715 } while (0) 11716 11717 #define SARITH8(a, b, n, op) do { \ 11718 int32_t sum; \ 11719 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11720 RESULT(sum, n, 8); \ 11721 if (sum >= 0) \ 11722 ge |= 1 << n; \ 11723 } while (0) 11724 11725 11726 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11727 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11728 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11729 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11730 #define PFX s 11731 #define ARITH_GE 11732 11733 #include "op_addsub.h" 11734 11735 /* Unsigned modulo arithmetic. */ 11736 #define ADD16(a, b, n) do { \ 11737 uint32_t sum; \ 11738 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11739 RESULT(sum, n, 16); \ 11740 if ((sum >> 16) == 1) \ 11741 ge |= 3 << (n * 2); \ 11742 } while (0) 11743 11744 #define ADD8(a, b, n) do { \ 11745 uint32_t sum; \ 11746 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11747 RESULT(sum, n, 8); \ 11748 if ((sum >> 8) == 1) \ 11749 ge |= 1 << n; \ 11750 } while (0) 11751 11752 #define SUB16(a, b, n) do { \ 11753 uint32_t sum; \ 11754 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11755 RESULT(sum, n, 16); \ 11756 if ((sum >> 16) == 0) \ 11757 ge |= 3 << (n * 2); \ 11758 } while (0) 11759 11760 #define SUB8(a, b, n) do { \ 11761 uint32_t sum; \ 11762 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11763 RESULT(sum, n, 8); \ 11764 if ((sum >> 8) == 0) \ 11765 ge |= 1 << n; \ 11766 } while (0) 11767 11768 #define PFX u 11769 #define ARITH_GE 11770 11771 #include "op_addsub.h" 11772 11773 /* Halved signed arithmetic. */ 11774 #define ADD16(a, b, n) \ 11775 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11776 #define SUB16(a, b, n) \ 11777 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11778 #define ADD8(a, b, n) \ 11779 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11780 #define SUB8(a, b, n) \ 11781 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11782 #define PFX sh 11783 11784 #include "op_addsub.h" 11785 11786 /* Halved unsigned arithmetic. */ 11787 #define ADD16(a, b, n) \ 11788 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11789 #define SUB16(a, b, n) \ 11790 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11791 #define ADD8(a, b, n) \ 11792 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11793 #define SUB8(a, b, n) \ 11794 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11795 #define PFX uh 11796 11797 #include "op_addsub.h" 11798 11799 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11800 { 11801 if (a > b) { 11802 return a - b; 11803 } else { 11804 return b - a; 11805 } 11806 } 11807 11808 /* Unsigned sum of absolute byte differences. */ 11809 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11810 { 11811 uint32_t sum; 11812 sum = do_usad(a, b); 11813 sum += do_usad(a >> 8, b >> 8); 11814 sum += do_usad(a >> 16, b >> 16); 11815 sum += do_usad(a >> 24, b >> 24); 11816 return sum; 11817 } 11818 11819 /* For ARMv6 SEL instruction. */ 11820 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11821 { 11822 uint32_t mask; 11823 11824 mask = 0; 11825 if (flags & 1) { 11826 mask |= 0xff; 11827 } 11828 if (flags & 2) { 11829 mask |= 0xff00; 11830 } 11831 if (flags & 4) { 11832 mask |= 0xff0000; 11833 } 11834 if (flags & 8) { 11835 mask |= 0xff000000; 11836 } 11837 return (a & mask) | (b & ~mask); 11838 } 11839 11840 /* 11841 * CRC helpers. 11842 * The upper bytes of val (above the number specified by 'bytes') must have 11843 * been zeroed out by the caller. 11844 */ 11845 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11846 { 11847 uint8_t buf[4]; 11848 11849 stl_le_p(buf, val); 11850 11851 /* zlib crc32 converts the accumulator and output to one's complement. */ 11852 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11853 } 11854 11855 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11856 { 11857 uint8_t buf[4]; 11858 11859 stl_le_p(buf, val); 11860 11861 /* Linux crc32c converts the output to one's complement. */ 11862 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11863 } 11864 11865 /* 11866 * Return the exception level to which FP-disabled exceptions should 11867 * be taken, or 0 if FP is enabled. 11868 */ 11869 int fp_exception_el(CPUARMState *env, int cur_el) 11870 { 11871 #ifndef CONFIG_USER_ONLY 11872 uint64_t hcr_el2; 11873 11874 /* 11875 * CPACR and the CPTR registers don't exist before v6, so FP is 11876 * always accessible 11877 */ 11878 if (!arm_feature(env, ARM_FEATURE_V6)) { 11879 return 0; 11880 } 11881 11882 if (arm_feature(env, ARM_FEATURE_M)) { 11883 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11884 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11885 return 1; 11886 } 11887 11888 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11889 if (!extract32(env->v7m.nsacr, 10, 1)) { 11890 /* FP insns cause a NOCP UsageFault taken to Secure */ 11891 return 3; 11892 } 11893 } 11894 11895 return 0; 11896 } 11897 11898 hcr_el2 = arm_hcr_el2_eff(env); 11899 11900 /* 11901 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11902 * 0, 2 : trap EL0 and EL1/PL1 accesses 11903 * 1 : trap only EL0 accesses 11904 * 3 : trap no accesses 11905 * This register is ignored if E2H+TGE are both set. 11906 */ 11907 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11908 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11909 11910 switch (fpen) { 11911 case 1: 11912 if (cur_el != 0) { 11913 break; 11914 } 11915 /* fall through */ 11916 case 0: 11917 case 2: 11918 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11919 if (!arm_el_is_aa64(env, 3) 11920 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11921 return 3; 11922 } 11923 if (cur_el <= 1) { 11924 return 1; 11925 } 11926 break; 11927 } 11928 } 11929 11930 /* 11931 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11932 * to control non-secure access to the FPU. It doesn't have any 11933 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11934 */ 11935 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11936 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11937 if (!extract32(env->cp15.nsacr, 10, 1)) { 11938 /* FP insns act as UNDEF */ 11939 return cur_el == 2 ? 2 : 1; 11940 } 11941 } 11942 11943 /* 11944 * CPTR_EL2 is present in v7VE or v8, and changes format 11945 * with HCR_EL2.E2H (regardless of TGE). 11946 */ 11947 if (cur_el <= 2) { 11948 if (hcr_el2 & HCR_E2H) { 11949 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11950 case 1: 11951 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11952 break; 11953 } 11954 /* fall through */ 11955 case 0: 11956 case 2: 11957 return 2; 11958 } 11959 } else if (arm_is_el2_enabled(env)) { 11960 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11961 return 2; 11962 } 11963 } 11964 } 11965 11966 /* CPTR_EL3 : present in v8 */ 11967 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11968 /* Trap all FP ops to EL3 */ 11969 return 3; 11970 } 11971 #endif 11972 return 0; 11973 } 11974 11975 /* Return the exception level we're running at if this is our mmu_idx */ 11976 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11977 { 11978 if (mmu_idx & ARM_MMU_IDX_M) { 11979 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11980 } 11981 11982 switch (mmu_idx) { 11983 case ARMMMUIdx_E10_0: 11984 case ARMMMUIdx_E20_0: 11985 return 0; 11986 case ARMMMUIdx_E10_1: 11987 case ARMMMUIdx_E10_1_PAN: 11988 return 1; 11989 case ARMMMUIdx_E2: 11990 case ARMMMUIdx_E20_2: 11991 case ARMMMUIdx_E20_2_PAN: 11992 return 2; 11993 case ARMMMUIdx_E3: 11994 return 3; 11995 default: 11996 g_assert_not_reached(); 11997 } 11998 } 11999 12000 #ifndef CONFIG_TCG 12001 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12002 { 12003 g_assert_not_reached(); 12004 } 12005 #endif 12006 12007 static bool arm_pan_enabled(CPUARMState *env) 12008 { 12009 if (is_a64(env)) { 12010 return env->pstate & PSTATE_PAN; 12011 } else { 12012 return env->uncached_cpsr & CPSR_PAN; 12013 } 12014 } 12015 12016 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12017 { 12018 ARMMMUIdx idx; 12019 uint64_t hcr; 12020 12021 if (arm_feature(env, ARM_FEATURE_M)) { 12022 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12023 } 12024 12025 /* See ARM pseudo-function ELIsInHost. */ 12026 switch (el) { 12027 case 0: 12028 hcr = arm_hcr_el2_eff(env); 12029 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12030 idx = ARMMMUIdx_E20_0; 12031 } else { 12032 idx = ARMMMUIdx_E10_0; 12033 } 12034 break; 12035 case 1: 12036 if (arm_pan_enabled(env)) { 12037 idx = ARMMMUIdx_E10_1_PAN; 12038 } else { 12039 idx = ARMMMUIdx_E10_1; 12040 } 12041 break; 12042 case 2: 12043 /* Note that TGE does not apply at EL2. */ 12044 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12045 if (arm_pan_enabled(env)) { 12046 idx = ARMMMUIdx_E20_2_PAN; 12047 } else { 12048 idx = ARMMMUIdx_E20_2; 12049 } 12050 } else { 12051 idx = ARMMMUIdx_E2; 12052 } 12053 break; 12054 case 3: 12055 return ARMMMUIdx_E3; 12056 default: 12057 g_assert_not_reached(); 12058 } 12059 12060 return idx; 12061 } 12062 12063 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12064 { 12065 return arm_mmu_idx_el(env, arm_current_el(env)); 12066 } 12067 12068 static bool mve_no_pred(CPUARMState *env) 12069 { 12070 /* 12071 * Return true if there is definitely no predication of MVE 12072 * instructions by VPR or LTPSIZE. (Returning false even if there 12073 * isn't any predication is OK; generated code will just be 12074 * a little worse.) 12075 * If the CPU does not implement MVE then this TB flag is always 0. 12076 * 12077 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12078 * logic in gen_update_fp_context() needs to be updated to match. 12079 * 12080 * We do not include the effect of the ECI bits here -- they are 12081 * tracked in other TB flags. This simplifies the logic for 12082 * "when did we emit code that changes the MVE_NO_PRED TB flag 12083 * and thus need to end the TB?". 12084 */ 12085 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12086 return false; 12087 } 12088 if (env->v7m.vpr) { 12089 return false; 12090 } 12091 if (env->v7m.ltpsize < 4) { 12092 return false; 12093 } 12094 return true; 12095 } 12096 12097 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12098 uint64_t *cs_base, uint32_t *pflags) 12099 { 12100 CPUARMTBFlags flags; 12101 12102 assert_hflags_rebuild_correctly(env); 12103 flags = env->hflags; 12104 12105 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12106 *pc = env->pc; 12107 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12108 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12109 } 12110 } else { 12111 *pc = env->regs[15]; 12112 12113 if (arm_feature(env, ARM_FEATURE_M)) { 12114 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12115 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12116 != env->v7m.secure) { 12117 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12118 } 12119 12120 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12121 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12122 (env->v7m.secure && 12123 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12124 /* 12125 * ASPEN is set, but FPCA/SFPA indicate that there is no 12126 * active FP context; we must create a new FP context before 12127 * executing any FP insn. 12128 */ 12129 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12130 } 12131 12132 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12133 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12134 DP_TBFLAG_M32(flags, LSPACT, 1); 12135 } 12136 12137 if (mve_no_pred(env)) { 12138 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12139 } 12140 } else { 12141 /* 12142 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12143 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12144 */ 12145 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12146 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12147 } else { 12148 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12149 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12150 } 12151 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12152 DP_TBFLAG_A32(flags, VFPEN, 1); 12153 } 12154 } 12155 12156 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12157 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12158 } 12159 12160 /* 12161 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12162 * states defined in the ARM ARM for software singlestep: 12163 * SS_ACTIVE PSTATE.SS State 12164 * 0 x Inactive (the TB flag for SS is always 0) 12165 * 1 0 Active-pending 12166 * 1 1 Active-not-pending 12167 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12168 */ 12169 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12170 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12171 } 12172 12173 *pflags = flags.flags; 12174 *cs_base = flags.flags2; 12175 } 12176 12177 #ifdef TARGET_AARCH64 12178 /* 12179 * The manual says that when SVE is enabled and VQ is widened the 12180 * implementation is allowed to zero the previously inaccessible 12181 * portion of the registers. The corollary to that is that when 12182 * SVE is enabled and VQ is narrowed we are also allowed to zero 12183 * the now inaccessible portion of the registers. 12184 * 12185 * The intent of this is that no predicate bit beyond VQ is ever set. 12186 * Which means that some operations on predicate registers themselves 12187 * may operate on full uint64_t or even unrolled across the maximum 12188 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12189 * may well be cheaper than conditionals to restrict the operation 12190 * to the relevant portion of a uint16_t[16]. 12191 */ 12192 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12193 { 12194 int i, j; 12195 uint64_t pmask; 12196 12197 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12198 assert(vq <= env_archcpu(env)->sve_max_vq); 12199 12200 /* Zap the high bits of the zregs. */ 12201 for (i = 0; i < 32; i++) { 12202 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12203 } 12204 12205 /* Zap the high bits of the pregs and ffr. */ 12206 pmask = 0; 12207 if (vq & 3) { 12208 pmask = ~(-1ULL << (16 * (vq & 3))); 12209 } 12210 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12211 for (i = 0; i < 17; ++i) { 12212 env->vfp.pregs[i].p[j] &= pmask; 12213 } 12214 pmask = 0; 12215 } 12216 } 12217 12218 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12219 { 12220 int exc_el; 12221 12222 if (sm) { 12223 exc_el = sme_exception_el(env, el); 12224 } else { 12225 exc_el = sve_exception_el(env, el); 12226 } 12227 if (exc_el) { 12228 return 0; /* disabled */ 12229 } 12230 return sve_vqm1_for_el_sm(env, el, sm); 12231 } 12232 12233 /* 12234 * Notice a change in SVE vector size when changing EL. 12235 */ 12236 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12237 int new_el, bool el0_a64) 12238 { 12239 ARMCPU *cpu = env_archcpu(env); 12240 int old_len, new_len; 12241 bool old_a64, new_a64, sm; 12242 12243 /* Nothing to do if no SVE. */ 12244 if (!cpu_isar_feature(aa64_sve, cpu)) { 12245 return; 12246 } 12247 12248 /* Nothing to do if FP is disabled in either EL. */ 12249 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12250 return; 12251 } 12252 12253 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12254 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12255 12256 /* 12257 * Both AArch64.TakeException and AArch64.ExceptionReturn 12258 * invoke ResetSVEState when taking an exception from, or 12259 * returning to, AArch32 state when PSTATE.SM is enabled. 12260 */ 12261 sm = FIELD_EX64(env->svcr, SVCR, SM); 12262 if (old_a64 != new_a64 && sm) { 12263 arm_reset_sve_state(env); 12264 return; 12265 } 12266 12267 /* 12268 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12269 * at ELx, or not available because the EL is in AArch32 state, then 12270 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12271 * has an effective value of 0". 12272 * 12273 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12274 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12275 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12276 * we already have the correct register contents when encountering the 12277 * vq0->vq0 transition between EL0->EL1. 12278 */ 12279 old_len = new_len = 0; 12280 if (old_a64) { 12281 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12282 } 12283 if (new_a64) { 12284 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12285 } 12286 12287 /* When changing vector length, clear inaccessible state. */ 12288 if (new_len < old_len) { 12289 aarch64_sve_narrow_vq(env, new_len + 1); 12290 } 12291 } 12292 #endif 12293 12294 #ifndef CONFIG_USER_ONLY 12295 ARMSecuritySpace arm_security_space(CPUARMState *env) 12296 { 12297 if (arm_feature(env, ARM_FEATURE_M)) { 12298 return arm_secure_to_space(env->v7m.secure); 12299 } 12300 12301 /* 12302 * If EL3 is not supported then the secure state is implementation 12303 * defined, in which case QEMU defaults to non-secure. 12304 */ 12305 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12306 return ARMSS_NonSecure; 12307 } 12308 12309 /* Check for AArch64 EL3 or AArch32 Mon. */ 12310 if (is_a64(env)) { 12311 if (extract32(env->pstate, 2, 2) == 3) { 12312 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12313 return ARMSS_Root; 12314 } else { 12315 return ARMSS_Secure; 12316 } 12317 } 12318 } else { 12319 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12320 return ARMSS_Secure; 12321 } 12322 } 12323 12324 return arm_security_space_below_el3(env); 12325 } 12326 12327 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12328 { 12329 assert(!arm_feature(env, ARM_FEATURE_M)); 12330 12331 /* 12332 * If EL3 is not supported then the secure state is implementation 12333 * defined, in which case QEMU defaults to non-secure. 12334 */ 12335 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12336 return ARMSS_NonSecure; 12337 } 12338 12339 /* 12340 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12341 * Ignoring NSE when !NS retains consistency without having to 12342 * modify other predicates. 12343 */ 12344 if (!(env->cp15.scr_el3 & SCR_NS)) { 12345 return ARMSS_Secure; 12346 } else if (env->cp15.scr_el3 & SCR_NSE) { 12347 return ARMSS_Realm; 12348 } else { 12349 return ARMSS_NonSecure; 12350 } 12351 } 12352 #endif /* !CONFIG_USER_ONLY */ 12353