xref: /openbmc/qemu/target/arm/helper.c (revision fcfe7616)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860             value |= SCR_NS;
1861         }
1862         if (cpu_isar_feature(aa64_mte, cpu)) {
1863             valid_mask |= SCR_ATA;
1864         }
1865         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866             valid_mask |= SCR_ENSCXT;
1867         }
1868         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869             valid_mask |= SCR_EASE | SCR_NMEA;
1870         }
1871         if (cpu_isar_feature(aa64_sme, cpu)) {
1872             valid_mask |= SCR_ENTP2;
1873         }
1874         if (cpu_isar_feature(aa64_hcx, cpu)) {
1875             valid_mask |= SCR_HXEN;
1876         }
1877         if (cpu_isar_feature(aa64_fgt, cpu)) {
1878             valid_mask |= SCR_FGTEN;
1879         }
1880         if (cpu_isar_feature(aa64_rme, cpu)) {
1881             valid_mask |= SCR_NSE | SCR_GPF;
1882         }
1883     } else {
1884         valid_mask &= ~(SCR_RW | SCR_ST);
1885         if (cpu_isar_feature(aa32_ras, cpu)) {
1886             valid_mask |= SCR_TERR;
1887         }
1888     }
1889 
1890     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891         valid_mask &= ~SCR_HCE;
1892 
1893         /*
1894          * On ARMv7, SMD (or SCD as it is called in v7) is only
1895          * supported if EL2 exists. The bit is UNK/SBZP when
1896          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897          * when EL2 is unavailable.
1898          * On ARMv8, this bit is always available.
1899          */
1900         if (arm_feature(env, ARM_FEATURE_V7) &&
1901             !arm_feature(env, ARM_FEATURE_V8)) {
1902             valid_mask &= ~SCR_SMD;
1903         }
1904     }
1905 
1906     /* Clear all-context RES0 bits.  */
1907     value &= valid_mask;
1908     changed = env->cp15.scr_el3 ^ value;
1909     env->cp15.scr_el3 = value;
1910 
1911     /*
1912      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913      * we must invalidate all TLBs below EL3.
1914      */
1915     if (changed & (SCR_NS | SCR_NSE)) {
1916         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917                                            ARMMMUIdxBit_E20_0 |
1918                                            ARMMMUIdxBit_E10_1 |
1919                                            ARMMMUIdxBit_E20_2 |
1920                                            ARMMMUIdxBit_E10_1_PAN |
1921                                            ARMMMUIdxBit_E20_2_PAN |
1922                                            ARMMMUIdxBit_E2));
1923     }
1924 }
1925 
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928     /*
1929      * scr_write will set the RES1 bits on an AArch64-only CPU.
1930      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931      */
1932     scr_write(env, ri, 0);
1933 }
1934 
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936                                   const ARMCPRegInfo *ri,
1937                                   bool isread)
1938 {
1939     if (arm_current_el(env) == 1 &&
1940         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941         return CP_ACCESS_TRAP_EL2;
1942     }
1943 
1944     return CP_ACCESS_OK;
1945 }
1946 
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949     ARMCPU *cpu = env_archcpu(env);
1950 
1951     /*
1952      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953      * bank
1954      */
1955     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956                                         ri->secure & ARM_CP_SECSTATE_S);
1957 
1958     return cpu->ccsidr[index];
1959 }
1960 
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962                          uint64_t value)
1963 {
1964     raw_write(env, ri, value & 0xf);
1965 }
1966 
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969     CPUState *cs = env_cpu(env);
1970     bool el1 = arm_current_el(env) == 1;
1971     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972     uint64_t ret = 0;
1973 
1974     if (hcr_el2 & HCR_IMO) {
1975         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976             ret |= CPSR_I;
1977         }
1978     } else {
1979         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980             ret |= CPSR_I;
1981         }
1982     }
1983 
1984     if (hcr_el2 & HCR_FMO) {
1985         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986             ret |= CPSR_F;
1987         }
1988     } else {
1989         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990             ret |= CPSR_F;
1991         }
1992     }
1993 
1994     if (hcr_el2 & HCR_AMO) {
1995         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996             ret |= CPSR_A;
1997         }
1998     }
1999 
2000     return ret;
2001 }
2002 
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004                                        bool isread)
2005 {
2006     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007         return CP_ACCESS_TRAP_EL2;
2008     }
2009 
2010     return CP_ACCESS_OK;
2011 }
2012 
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014                                        bool isread)
2015 {
2016     if (arm_feature(env, ARM_FEATURE_V8)) {
2017         return access_aa64_tid1(env, ri, isread);
2018     }
2019 
2020     return CP_ACCESS_OK;
2021 }
2022 
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026       .access = PL1_W, .type = ARM_CP_NOP },
2027     /*
2028      * Performance monitors are implementation defined in v7,
2029      * but with an ARM recommended set of registers, which we
2030      * follow.
2031      *
2032      * Performance registers fall into three categories:
2033      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038      */
2039     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042       .writefn = pmcntenset_write,
2043       .accessfn = pmreg_access,
2044       .fgt = FGT_PMCNTEN,
2045       .raw_writefn = raw_write },
2046     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048       .access = PL0_RW, .accessfn = pmreg_access,
2049       .fgt = FGT_PMCNTEN,
2050       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053       .access = PL0_RW,
2054       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055       .accessfn = pmreg_access,
2056       .fgt = FGT_PMCNTEN,
2057       .writefn = pmcntenclr_write,
2058       .type = ARM_CP_ALIAS | ARM_CP_IO },
2059     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061       .access = PL0_RW, .accessfn = pmreg_access,
2062       .fgt = FGT_PMCNTEN,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065       .writefn = pmcntenclr_write },
2066     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067       .access = PL0_RW, .type = ARM_CP_IO,
2068       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069       .accessfn = pmreg_access,
2070       .fgt = FGT_PMOVS,
2071       .writefn = pmovsr_write,
2072       .raw_writefn = raw_write },
2073     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075       .access = PL0_RW, .accessfn = pmreg_access,
2076       .fgt = FGT_PMOVS,
2077       .type = ARM_CP_ALIAS | ARM_CP_IO,
2078       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079       .writefn = pmovsr_write,
2080       .raw_writefn = raw_write },
2081     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082       .access = PL0_W, .accessfn = pmreg_access_swinc,
2083       .fgt = FGT_PMSWINC_EL0,
2084       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085       .writefn = pmswinc_write },
2086     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088       .access = PL0_W, .accessfn = pmreg_access_swinc,
2089       .fgt = FGT_PMSWINC_EL0,
2090       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091       .writefn = pmswinc_write },
2092     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093       .access = PL0_RW, .type = ARM_CP_ALIAS,
2094       .fgt = FGT_PMSELR_EL0,
2095       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097       .raw_writefn = raw_write},
2098     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100       .access = PL0_RW, .accessfn = pmreg_access_selr,
2101       .fgt = FGT_PMSELR_EL0,
2102       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103       .writefn = pmselr_write, .raw_writefn = raw_write, },
2104     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106       .fgt = FGT_PMCCNTR_EL0,
2107       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108       .accessfn = pmreg_access_ccntr },
2109     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112       .fgt = FGT_PMCCNTR_EL0,
2113       .type = ARM_CP_IO,
2114       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115       .readfn = pmccntr_read, .writefn = pmccntr_write,
2116       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119       .access = PL0_RW, .accessfn = pmreg_access,
2120       .fgt = FGT_PMCCFILTR_EL0,
2121       .type = ARM_CP_ALIAS | ARM_CP_IO,
2122       .resetvalue = 0, },
2123     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126       .access = PL0_RW, .accessfn = pmreg_access,
2127       .fgt = FGT_PMCCFILTR_EL0,
2128       .type = ARM_CP_IO,
2129       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130       .resetvalue = 0, },
2131     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133       .accessfn = pmreg_access,
2134       .fgt = FGT_PMEVTYPERN_EL0,
2135       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139       .accessfn = pmreg_access,
2140       .fgt = FGT_PMEVTYPERN_EL0,
2141       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .fgt = FGT_PMEVCNTRN_EL0,
2146       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150       .accessfn = pmreg_access_xevcntr,
2151       .fgt = FGT_PMEVCNTRN_EL0,
2152       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156       .resetvalue = 0,
2157       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162       .resetvalue = 0,
2163       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165       .access = PL1_RW, .accessfn = access_tpm,
2166       .fgt = FGT_PMINTEN,
2167       .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169       .resetvalue = 0,
2170       .writefn = pmintenset_write, .raw_writefn = raw_write },
2171     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173       .access = PL1_RW, .accessfn = access_tpm,
2174       .fgt = FGT_PMINTEN,
2175       .type = ARM_CP_IO,
2176       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177       .writefn = pmintenset_write, .raw_writefn = raw_write,
2178       .resetvalue = 0x0 },
2179     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180       .access = PL1_RW, .accessfn = access_tpm,
2181       .fgt = FGT_PMINTEN,
2182       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184       .writefn = pmintenclr_write, },
2185     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187       .access = PL1_RW, .accessfn = access_tpm,
2188       .fgt = FGT_PMINTEN,
2189       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191       .writefn = pmintenclr_write },
2192     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194       .access = PL1_R,
2195       .accessfn = access_tid4,
2196       .fgt = FGT_CCSIDR_EL1,
2197       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200       .access = PL1_RW,
2201       .accessfn = access_tid4,
2202       .fgt = FGT_CSSELR_EL1,
2203       .writefn = csselr_write, .resetvalue = 0,
2204       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205                              offsetof(CPUARMState, cp15.csselr_ns) } },
2206     /*
2207      * Auxiliary ID register: this actually has an IMPDEF value but for now
2208      * just RAZ for all cores:
2209      */
2210     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212       .access = PL1_R, .type = ARM_CP_CONST,
2213       .accessfn = access_aa64_tid1,
2214       .fgt = FGT_AIDR_EL1,
2215       .resetvalue = 0 },
2216     /*
2217      * Auxiliary fault status registers: these also are IMPDEF, and we
2218      * choose to RAZ/WI for all cores.
2219      */
2220     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222       .access = PL1_RW, .accessfn = access_tvm_trvm,
2223       .fgt = FGT_AFSR0_EL1,
2224       .type = ARM_CP_CONST, .resetvalue = 0 },
2225     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227       .access = PL1_RW, .accessfn = access_tvm_trvm,
2228       .fgt = FGT_AFSR1_EL1,
2229       .type = ARM_CP_CONST, .resetvalue = 0 },
2230     /*
2231      * MAIR can just read-as-written because we don't implement caches
2232      * and so don't need to care about memory attributes.
2233      */
2234     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236       .access = PL1_RW, .accessfn = access_tvm_trvm,
2237       .fgt = FGT_MAIR_EL1,
2238       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239       .resetvalue = 0 },
2240     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243       .resetvalue = 0 },
2244     /*
2245      * For non-long-descriptor page tables these are PRRR and NMRR;
2246      * regardless they still act as reads-as-written for QEMU.
2247      */
2248      /*
2249       * MAIR0/1 are defined separately from their 64-bit counterpart which
2250       * allows them to assign the correct fieldoffset based on the endianness
2251       * handled in the field definitions.
2252       */
2253     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255       .access = PL1_RW, .accessfn = access_tvm_trvm,
2256       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257                              offsetof(CPUARMState, cp15.mair0_ns) },
2258       .resetfn = arm_cp_reset_ignore },
2259     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261       .access = PL1_RW, .accessfn = access_tvm_trvm,
2262       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263                              offsetof(CPUARMState, cp15.mair1_ns) },
2264       .resetfn = arm_cp_reset_ignore },
2265     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267       .fgt = FGT_ISR_EL1,
2268       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269     /* 32 bit ITLB invalidates */
2270     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272       .writefn = tlbiall_write },
2273     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275       .writefn = tlbimva_write },
2276     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278       .writefn = tlbiasid_write },
2279     /* 32 bit DTLB invalidates */
2280     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282       .writefn = tlbiall_write },
2283     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285       .writefn = tlbimva_write },
2286     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288       .writefn = tlbiasid_write },
2289     /* 32 bit TLB invalidates */
2290     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292       .writefn = tlbiall_write },
2293     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295       .writefn = tlbimva_write },
2296     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298       .writefn = tlbiasid_write },
2299     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301       .writefn = tlbimvaa_write },
2302 };
2303 
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305     /* 32 bit TLB invalidates, Inner Shareable */
2306     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308       .writefn = tlbiall_is_write },
2309     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311       .writefn = tlbimva_is_write },
2312     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314       .writefn = tlbiasid_is_write },
2315     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317       .writefn = tlbimvaa_is_write },
2318 };
2319 
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321     /* PMOVSSET is not implemented in v7 before v7ve */
2322     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323       .access = PL0_RW, .accessfn = pmreg_access,
2324       .fgt = FGT_PMOVS,
2325       .type = ARM_CP_ALIAS | ARM_CP_IO,
2326       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327       .writefn = pmovsset_write,
2328       .raw_writefn = raw_write },
2329     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331       .access = PL0_RW, .accessfn = pmreg_access,
2332       .fgt = FGT_PMOVS,
2333       .type = ARM_CP_ALIAS | ARM_CP_IO,
2334       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335       .writefn = pmovsset_write,
2336       .raw_writefn = raw_write },
2337 };
2338 
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340                         uint64_t value)
2341 {
2342     value &= 1;
2343     env->teecr = value;
2344 }
2345 
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347                                    bool isread)
2348 {
2349     /*
2350      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351      * at all, so we don't need to check whether we're v8A.
2352      */
2353     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355         return CP_ACCESS_TRAP_EL2;
2356     }
2357     return CP_ACCESS_OK;
2358 }
2359 
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361                                     bool isread)
2362 {
2363     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364         return CP_ACCESS_TRAP;
2365     }
2366     return teecr_access(env, ri, isread);
2367 }
2368 
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372       .resetvalue = 0,
2373       .writefn = teecr_write, .accessfn = teecr_access },
2374     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376       .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378 
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382       .access = PL0_RW,
2383       .fgt = FGT_TPIDR_EL0,
2384       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386       .access = PL0_RW,
2387       .fgt = FGT_TPIDR_EL0,
2388       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390       .resetfn = arm_cp_reset_ignore },
2391     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393       .access = PL0_R | PL1_W,
2394       .fgt = FGT_TPIDRRO_EL0,
2395       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396       .resetvalue = 0},
2397     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398       .access = PL0_R | PL1_W,
2399       .fgt = FGT_TPIDRRO_EL0,
2400       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402       .resetfn = arm_cp_reset_ignore },
2403     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405       .access = PL1_RW,
2406       .fgt = FGT_TPIDR_EL1,
2407       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409       .access = PL1_RW,
2410       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412       .resetvalue = 0 },
2413 };
2414 
2415 #ifndef CONFIG_USER_ONLY
2416 
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418                                        bool isread)
2419 {
2420     /*
2421      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422      * Writable only at the highest implemented exception level.
2423      */
2424     int el = arm_current_el(env);
2425     uint64_t hcr;
2426     uint32_t cntkctl;
2427 
2428     switch (el) {
2429     case 0:
2430         hcr = arm_hcr_el2_eff(env);
2431         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432             cntkctl = env->cp15.cnthctl_el2;
2433         } else {
2434             cntkctl = env->cp15.c14_cntkctl;
2435         }
2436         if (!extract32(cntkctl, 0, 2)) {
2437             return CP_ACCESS_TRAP;
2438         }
2439         break;
2440     case 1:
2441         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442             arm_is_secure_below_el3(env)) {
2443             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444             return CP_ACCESS_TRAP_UNCATEGORIZED;
2445         }
2446         break;
2447     case 2:
2448     case 3:
2449         break;
2450     }
2451 
2452     if (!isread && el < arm_highest_el(env)) {
2453         return CP_ACCESS_TRAP_UNCATEGORIZED;
2454     }
2455 
2456     return CP_ACCESS_OK;
2457 }
2458 
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460                                         bool isread)
2461 {
2462     unsigned int cur_el = arm_current_el(env);
2463     bool has_el2 = arm_is_el2_enabled(env);
2464     uint64_t hcr = arm_hcr_el2_eff(env);
2465 
2466     switch (cur_el) {
2467     case 0:
2468         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472         }
2473 
2474         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476             return CP_ACCESS_TRAP;
2477         }
2478 
2479         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2480         if (hcr & HCR_E2H) {
2481             if (timeridx == GTIMER_PHYS &&
2482                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2483                 return CP_ACCESS_TRAP_EL2;
2484             }
2485         } else {
2486             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2487             if (has_el2 && timeridx == GTIMER_PHYS &&
2488                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2489                 return CP_ACCESS_TRAP_EL2;
2490             }
2491         }
2492         break;
2493 
2494     case 1:
2495         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2496         if (has_el2 && timeridx == GTIMER_PHYS &&
2497             (hcr & HCR_E2H
2498              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2499              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2500             return CP_ACCESS_TRAP_EL2;
2501         }
2502         break;
2503     }
2504     return CP_ACCESS_OK;
2505 }
2506 
2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2508                                       bool isread)
2509 {
2510     unsigned int cur_el = arm_current_el(env);
2511     bool has_el2 = arm_is_el2_enabled(env);
2512     uint64_t hcr = arm_hcr_el2_eff(env);
2513 
2514     switch (cur_el) {
2515     case 0:
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2518             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2519                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520         }
2521 
2522         /*
2523          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2524          * EL0 if EL0[PV]TEN is zero.
2525          */
2526         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2527             return CP_ACCESS_TRAP;
2528         }
2529         /* fall through */
2530 
2531     case 1:
2532         if (has_el2 && timeridx == GTIMER_PHYS) {
2533             if (hcr & HCR_E2H) {
2534                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2535                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2536                     return CP_ACCESS_TRAP_EL2;
2537                 }
2538             } else {
2539                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2540                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2541                     return CP_ACCESS_TRAP_EL2;
2542                 }
2543             }
2544         }
2545         break;
2546     }
2547     return CP_ACCESS_OK;
2548 }
2549 
2550 static CPAccessResult gt_pct_access(CPUARMState *env,
2551                                     const ARMCPRegInfo *ri,
2552                                     bool isread)
2553 {
2554     return gt_counter_access(env, GTIMER_PHYS, isread);
2555 }
2556 
2557 static CPAccessResult gt_vct_access(CPUARMState *env,
2558                                     const ARMCPRegInfo *ri,
2559                                     bool isread)
2560 {
2561     return gt_counter_access(env, GTIMER_VIRT, isread);
2562 }
2563 
2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_PHYS, isread);
2568 }
2569 
2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2571                                        bool isread)
2572 {
2573     return gt_timer_access(env, GTIMER_VIRT, isread);
2574 }
2575 
2576 static CPAccessResult gt_stimer_access(CPUARMState *env,
2577                                        const ARMCPRegInfo *ri,
2578                                        bool isread)
2579 {
2580     /*
2581      * The AArch64 register view of the secure physical timer is
2582      * always accessible from EL3, and configurably accessible from
2583      * Secure EL1.
2584      */
2585     switch (arm_current_el(env)) {
2586     case 1:
2587         if (!arm_is_secure(env)) {
2588             return CP_ACCESS_TRAP;
2589         }
2590         if (!(env->cp15.scr_el3 & SCR_ST)) {
2591             return CP_ACCESS_TRAP_EL3;
2592         }
2593         return CP_ACCESS_OK;
2594     case 0:
2595     case 2:
2596         return CP_ACCESS_TRAP;
2597     case 3:
2598         return CP_ACCESS_OK;
2599     default:
2600         g_assert_not_reached();
2601     }
2602 }
2603 
2604 static uint64_t gt_get_countervalue(CPUARMState *env)
2605 {
2606     ARMCPU *cpu = env_archcpu(env);
2607 
2608     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2609 }
2610 
2611 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2612 {
2613     CPUARMState *env = &cpu->env;
2614     uint64_t cnthctl = env->cp15.cnthctl_el2;
2615     ARMSecuritySpace ss = arm_security_space(env);
2616     /* ISTATUS && !IMASK */
2617     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2618 
2619     /*
2620      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2621      * It is RES0 in Secure and NonSecure state.
2622      */
2623     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2624         ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2625          (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2626         irqstate = 0;
2627     }
2628 
2629     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2630     trace_arm_gt_update_irq(timeridx, irqstate);
2631 }
2632 
2633 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2634 {
2635     /*
2636      * Changing security state between Root and Secure/NonSecure, which may
2637      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2638      * mask bits. Update the IRQ state accordingly.
2639      */
2640     gt_update_irq(cpu, GTIMER_VIRT);
2641     gt_update_irq(cpu, GTIMER_PHYS);
2642 }
2643 
2644 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2645 {
2646     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2647 
2648     if (gt->ctl & 1) {
2649         /*
2650          * Timer enabled: calculate and set current ISTATUS, irq, and
2651          * reset timer to when ISTATUS next has to change
2652          */
2653         uint64_t offset = timeridx == GTIMER_VIRT ?
2654                                       cpu->env.cp15.cntvoff_el2 : 0;
2655         uint64_t count = gt_get_countervalue(&cpu->env);
2656         /* Note that this must be unsigned 64 bit arithmetic: */
2657         int istatus = count - offset >= gt->cval;
2658         uint64_t nexttick;
2659 
2660         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2661 
2662         if (istatus) {
2663             /* Next transition is when count rolls back over to zero */
2664             nexttick = UINT64_MAX;
2665         } else {
2666             /* Next transition is when we hit cval */
2667             nexttick = gt->cval + offset;
2668         }
2669         /*
2670          * Note that the desired next expiry time might be beyond the
2671          * signed-64-bit range of a QEMUTimer -- in this case we just
2672          * set the timer for as far in the future as possible. When the
2673          * timer expires we will reset the timer for any remaining period.
2674          */
2675         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2676             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2677         } else {
2678             timer_mod(cpu->gt_timer[timeridx], nexttick);
2679         }
2680         trace_arm_gt_recalc(timeridx, nexttick);
2681     } else {
2682         /* Timer disabled: ISTATUS and timer output always clear */
2683         gt->ctl &= ~4;
2684         timer_del(cpu->gt_timer[timeridx]);
2685         trace_arm_gt_recalc_disabled(timeridx);
2686     }
2687     gt_update_irq(cpu, timeridx);
2688 }
2689 
2690 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2691                            int timeridx)
2692 {
2693     ARMCPU *cpu = env_archcpu(env);
2694 
2695     timer_del(cpu->gt_timer[timeridx]);
2696 }
2697 
2698 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2699 {
2700     return gt_get_countervalue(env);
2701 }
2702 
2703 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2704 {
2705     uint64_t hcr;
2706 
2707     switch (arm_current_el(env)) {
2708     case 2:
2709         hcr = arm_hcr_el2_eff(env);
2710         if (hcr & HCR_E2H) {
2711             return 0;
2712         }
2713         break;
2714     case 0:
2715         hcr = arm_hcr_el2_eff(env);
2716         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2717             return 0;
2718         }
2719         break;
2720     }
2721 
2722     return env->cp15.cntvoff_el2;
2723 }
2724 
2725 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2726 {
2727     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2728 }
2729 
2730 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2731                           int timeridx,
2732                           uint64_t value)
2733 {
2734     trace_arm_gt_cval_write(timeridx, value);
2735     env->cp15.c14_timer[timeridx].cval = value;
2736     gt_recalc_timer(env_archcpu(env), timeridx);
2737 }
2738 
2739 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2740                              int timeridx)
2741 {
2742     uint64_t offset = 0;
2743 
2744     switch (timeridx) {
2745     case GTIMER_VIRT:
2746     case GTIMER_HYPVIRT:
2747         offset = gt_virt_cnt_offset(env);
2748         break;
2749     }
2750 
2751     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2752                       (gt_get_countervalue(env) - offset));
2753 }
2754 
2755 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                           int timeridx,
2757                           uint64_t value)
2758 {
2759     uint64_t offset = 0;
2760 
2761     switch (timeridx) {
2762     case GTIMER_VIRT:
2763     case GTIMER_HYPVIRT:
2764         offset = gt_virt_cnt_offset(env);
2765         break;
2766     }
2767 
2768     trace_arm_gt_tval_write(timeridx, value);
2769     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2770                                          sextract64(value, 0, 32);
2771     gt_recalc_timer(env_archcpu(env), timeridx);
2772 }
2773 
2774 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775                          int timeridx,
2776                          uint64_t value)
2777 {
2778     ARMCPU *cpu = env_archcpu(env);
2779     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2780 
2781     trace_arm_gt_ctl_write(timeridx, value);
2782     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2783     if ((oldval ^ value) & 1) {
2784         /* Enable toggled */
2785         gt_recalc_timer(cpu, timeridx);
2786     } else if ((oldval ^ value) & 2) {
2787         /*
2788          * IMASK toggled: don't need to recalculate,
2789          * just set the interrupt line based on ISTATUS
2790          */
2791         trace_arm_gt_imask_toggle(timeridx);
2792         gt_update_irq(cpu, timeridx);
2793     }
2794 }
2795 
2796 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2797 {
2798     gt_timer_reset(env, ri, GTIMER_PHYS);
2799 }
2800 
2801 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2802                                uint64_t value)
2803 {
2804     gt_cval_write(env, ri, GTIMER_PHYS, value);
2805 }
2806 
2807 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2808 {
2809     return gt_tval_read(env, ri, GTIMER_PHYS);
2810 }
2811 
2812 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813                                uint64_t value)
2814 {
2815     gt_tval_write(env, ri, GTIMER_PHYS, value);
2816 }
2817 
2818 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2819                               uint64_t value)
2820 {
2821     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2822 }
2823 
2824 static int gt_phys_redir_timeridx(CPUARMState *env)
2825 {
2826     switch (arm_mmu_idx(env)) {
2827     case ARMMMUIdx_E20_0:
2828     case ARMMMUIdx_E20_2:
2829     case ARMMMUIdx_E20_2_PAN:
2830         return GTIMER_HYP;
2831     default:
2832         return GTIMER_PHYS;
2833     }
2834 }
2835 
2836 static int gt_virt_redir_timeridx(CPUARMState *env)
2837 {
2838     switch (arm_mmu_idx(env)) {
2839     case ARMMMUIdx_E20_0:
2840     case ARMMMUIdx_E20_2:
2841     case ARMMMUIdx_E20_2_PAN:
2842         return GTIMER_HYPVIRT;
2843     default:
2844         return GTIMER_VIRT;
2845     }
2846 }
2847 
2848 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2849                                         const ARMCPRegInfo *ri)
2850 {
2851     int timeridx = gt_phys_redir_timeridx(env);
2852     return env->cp15.c14_timer[timeridx].cval;
2853 }
2854 
2855 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                      uint64_t value)
2857 {
2858     int timeridx = gt_phys_redir_timeridx(env);
2859     gt_cval_write(env, ri, timeridx, value);
2860 }
2861 
2862 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2863                                         const ARMCPRegInfo *ri)
2864 {
2865     int timeridx = gt_phys_redir_timeridx(env);
2866     return gt_tval_read(env, ri, timeridx);
2867 }
2868 
2869 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870                                      uint64_t value)
2871 {
2872     int timeridx = gt_phys_redir_timeridx(env);
2873     gt_tval_write(env, ri, timeridx, value);
2874 }
2875 
2876 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2877                                        const ARMCPRegInfo *ri)
2878 {
2879     int timeridx = gt_phys_redir_timeridx(env);
2880     return env->cp15.c14_timer[timeridx].ctl;
2881 }
2882 
2883 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2884                                     uint64_t value)
2885 {
2886     int timeridx = gt_phys_redir_timeridx(env);
2887     gt_ctl_write(env, ri, timeridx, value);
2888 }
2889 
2890 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2891 {
2892     gt_timer_reset(env, ri, GTIMER_VIRT);
2893 }
2894 
2895 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2896                                uint64_t value)
2897 {
2898     gt_cval_write(env, ri, GTIMER_VIRT, value);
2899 }
2900 
2901 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2902 {
2903     return gt_tval_read(env, ri, GTIMER_VIRT);
2904 }
2905 
2906 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907                                uint64_t value)
2908 {
2909     gt_tval_write(env, ri, GTIMER_VIRT, value);
2910 }
2911 
2912 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2913                               uint64_t value)
2914 {
2915     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2916 }
2917 
2918 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919                              uint64_t value)
2920 {
2921     ARMCPU *cpu = env_archcpu(env);
2922     uint32_t oldval = env->cp15.cnthctl_el2;
2923 
2924     raw_write(env, ri, value);
2925 
2926     if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2927         gt_update_irq(cpu, GTIMER_VIRT);
2928     } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2929         gt_update_irq(cpu, GTIMER_PHYS);
2930     }
2931 }
2932 
2933 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934                               uint64_t value)
2935 {
2936     ARMCPU *cpu = env_archcpu(env);
2937 
2938     trace_arm_gt_cntvoff_write(value);
2939     raw_write(env, ri, value);
2940     gt_recalc_timer(cpu, GTIMER_VIRT);
2941 }
2942 
2943 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2944                                         const ARMCPRegInfo *ri)
2945 {
2946     int timeridx = gt_virt_redir_timeridx(env);
2947     return env->cp15.c14_timer[timeridx].cval;
2948 }
2949 
2950 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951                                      uint64_t value)
2952 {
2953     int timeridx = gt_virt_redir_timeridx(env);
2954     gt_cval_write(env, ri, timeridx, value);
2955 }
2956 
2957 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2958                                         const ARMCPRegInfo *ri)
2959 {
2960     int timeridx = gt_virt_redir_timeridx(env);
2961     return gt_tval_read(env, ri, timeridx);
2962 }
2963 
2964 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965                                      uint64_t value)
2966 {
2967     int timeridx = gt_virt_redir_timeridx(env);
2968     gt_tval_write(env, ri, timeridx, value);
2969 }
2970 
2971 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2972                                        const ARMCPRegInfo *ri)
2973 {
2974     int timeridx = gt_virt_redir_timeridx(env);
2975     return env->cp15.c14_timer[timeridx].ctl;
2976 }
2977 
2978 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                                     uint64_t value)
2980 {
2981     int timeridx = gt_virt_redir_timeridx(env);
2982     gt_ctl_write(env, ri, timeridx, value);
2983 }
2984 
2985 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2986 {
2987     gt_timer_reset(env, ri, GTIMER_HYP);
2988 }
2989 
2990 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2991                               uint64_t value)
2992 {
2993     gt_cval_write(env, ri, GTIMER_HYP, value);
2994 }
2995 
2996 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2997 {
2998     return gt_tval_read(env, ri, GTIMER_HYP);
2999 }
3000 
3001 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002                               uint64_t value)
3003 {
3004     gt_tval_write(env, ri, GTIMER_HYP, value);
3005 }
3006 
3007 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3008                               uint64_t value)
3009 {
3010     gt_ctl_write(env, ri, GTIMER_HYP, value);
3011 }
3012 
3013 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3014 {
3015     gt_timer_reset(env, ri, GTIMER_SEC);
3016 }
3017 
3018 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019                               uint64_t value)
3020 {
3021     gt_cval_write(env, ri, GTIMER_SEC, value);
3022 }
3023 
3024 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3025 {
3026     return gt_tval_read(env, ri, GTIMER_SEC);
3027 }
3028 
3029 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030                               uint64_t value)
3031 {
3032     gt_tval_write(env, ri, GTIMER_SEC, value);
3033 }
3034 
3035 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_ctl_write(env, ri, GTIMER_SEC, value);
3039 }
3040 
3041 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3044 }
3045 
3046 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                              uint64_t value)
3048 {
3049     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3050 }
3051 
3052 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3053 {
3054     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3055 }
3056 
3057 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3058                              uint64_t value)
3059 {
3060     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3061 }
3062 
3063 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                             uint64_t value)
3065 {
3066     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3067 }
3068 
3069 void arm_gt_ptimer_cb(void *opaque)
3070 {
3071     ARMCPU *cpu = opaque;
3072 
3073     gt_recalc_timer(cpu, GTIMER_PHYS);
3074 }
3075 
3076 void arm_gt_vtimer_cb(void *opaque)
3077 {
3078     ARMCPU *cpu = opaque;
3079 
3080     gt_recalc_timer(cpu, GTIMER_VIRT);
3081 }
3082 
3083 void arm_gt_htimer_cb(void *opaque)
3084 {
3085     ARMCPU *cpu = opaque;
3086 
3087     gt_recalc_timer(cpu, GTIMER_HYP);
3088 }
3089 
3090 void arm_gt_stimer_cb(void *opaque)
3091 {
3092     ARMCPU *cpu = opaque;
3093 
3094     gt_recalc_timer(cpu, GTIMER_SEC);
3095 }
3096 
3097 void arm_gt_hvtimer_cb(void *opaque)
3098 {
3099     ARMCPU *cpu = opaque;
3100 
3101     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3102 }
3103 
3104 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3105 {
3106     ARMCPU *cpu = env_archcpu(env);
3107 
3108     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3109 }
3110 
3111 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3112     /*
3113      * Note that CNTFRQ is purely reads-as-written for the benefit
3114      * of software; writing it doesn't actually change the timer frequency.
3115      * Our reset value matches the fixed frequency we implement the timer at.
3116      */
3117     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3118       .type = ARM_CP_ALIAS,
3119       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3120       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3121     },
3122     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3123       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3124       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3125       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3126       .resetfn = arm_gt_cntfrq_reset,
3127     },
3128     /* overall control: mostly access permissions */
3129     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3130       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3131       .access = PL1_RW,
3132       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3133       .resetvalue = 0,
3134     },
3135     /* per-timer control */
3136     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3137       .secure = ARM_CP_SECSTATE_NS,
3138       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3139       .accessfn = gt_ptimer_access,
3140       .fieldoffset = offsetoflow32(CPUARMState,
3141                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3142       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3143       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3144     },
3145     { .name = "CNTP_CTL_S",
3146       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3147       .secure = ARM_CP_SECSTATE_S,
3148       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3149       .accessfn = gt_ptimer_access,
3150       .fieldoffset = offsetoflow32(CPUARMState,
3151                                    cp15.c14_timer[GTIMER_SEC].ctl),
3152       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3153     },
3154     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3155       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3156       .type = ARM_CP_IO, .access = PL0_RW,
3157       .accessfn = gt_ptimer_access,
3158       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3159       .resetvalue = 0,
3160       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3161       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3162     },
3163     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3164       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3165       .accessfn = gt_vtimer_access,
3166       .fieldoffset = offsetoflow32(CPUARMState,
3167                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3168       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3169       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3170     },
3171     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3172       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3173       .type = ARM_CP_IO, .access = PL0_RW,
3174       .accessfn = gt_vtimer_access,
3175       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3176       .resetvalue = 0,
3177       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3178       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3179     },
3180     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3181     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3182       .secure = ARM_CP_SECSTATE_NS,
3183       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3184       .accessfn = gt_ptimer_access,
3185       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3186     },
3187     { .name = "CNTP_TVAL_S",
3188       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3189       .secure = ARM_CP_SECSTATE_S,
3190       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3191       .accessfn = gt_ptimer_access,
3192       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3193     },
3194     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3195       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3196       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3197       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3198       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3199     },
3200     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3201       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3202       .accessfn = gt_vtimer_access,
3203       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3204     },
3205     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3206       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3207       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3208       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3209       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3210     },
3211     /* The counter itself */
3212     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3213       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3214       .accessfn = gt_pct_access,
3215       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3216     },
3217     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3218       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3219       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3220       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3221     },
3222     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3223       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3224       .accessfn = gt_vct_access,
3225       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3226     },
3227     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3228       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3229       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3230       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3231     },
3232     /* Comparison value, indicating when the timer goes off */
3233     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3234       .secure = ARM_CP_SECSTATE_NS,
3235       .access = PL0_RW,
3236       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3237       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3238       .accessfn = gt_ptimer_access,
3239       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3240       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3241     },
3242     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3243       .secure = ARM_CP_SECSTATE_S,
3244       .access = PL0_RW,
3245       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3246       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3247       .accessfn = gt_ptimer_access,
3248       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3249     },
3250     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3251       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3252       .access = PL0_RW,
3253       .type = ARM_CP_IO,
3254       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3255       .resetvalue = 0, .accessfn = gt_ptimer_access,
3256       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3257       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3258     },
3259     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3260       .access = PL0_RW,
3261       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3262       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3263       .accessfn = gt_vtimer_access,
3264       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3265       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3266     },
3267     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3268       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3269       .access = PL0_RW,
3270       .type = ARM_CP_IO,
3271       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3272       .resetvalue = 0, .accessfn = gt_vtimer_access,
3273       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3274       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3275     },
3276     /*
3277      * Secure timer -- this is actually restricted to only EL3
3278      * and configurably Secure-EL1 via the accessfn.
3279      */
3280     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3281       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3282       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3283       .accessfn = gt_stimer_access,
3284       .readfn = gt_sec_tval_read,
3285       .writefn = gt_sec_tval_write,
3286       .resetfn = gt_sec_timer_reset,
3287     },
3288     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3289       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3290       .type = ARM_CP_IO, .access = PL1_RW,
3291       .accessfn = gt_stimer_access,
3292       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3293       .resetvalue = 0,
3294       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3295     },
3296     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3297       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3298       .type = ARM_CP_IO, .access = PL1_RW,
3299       .accessfn = gt_stimer_access,
3300       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3301       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3302     },
3303 };
3304 
3305 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3306                                  bool isread)
3307 {
3308     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3309         return CP_ACCESS_TRAP;
3310     }
3311     return CP_ACCESS_OK;
3312 }
3313 
3314 #else
3315 
3316 /*
3317  * In user-mode most of the generic timer registers are inaccessible
3318  * however modern kernels (4.12+) allow access to cntvct_el0
3319  */
3320 
3321 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3322 {
3323     ARMCPU *cpu = env_archcpu(env);
3324 
3325     /*
3326      * Currently we have no support for QEMUTimer in linux-user so we
3327      * can't call gt_get_countervalue(env), instead we directly
3328      * call the lower level functions.
3329      */
3330     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3331 }
3332 
3333 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3334     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3335       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3336       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3337       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3338       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3339     },
3340     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3341       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3342       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3343       .readfn = gt_virt_cnt_read,
3344     },
3345 };
3346 
3347 #endif
3348 
3349 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3350 {
3351     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3352         raw_write(env, ri, value);
3353     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3354         raw_write(env, ri, value & 0xfffff6ff);
3355     } else {
3356         raw_write(env, ri, value & 0xfffff1ff);
3357     }
3358 }
3359 
3360 #ifndef CONFIG_USER_ONLY
3361 /* get_phys_addr() isn't present for user-mode-only targets */
3362 
3363 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3364                                  bool isread)
3365 {
3366     if (ri->opc2 & 4) {
3367         /*
3368          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3369          * Secure EL1 (which can only happen if EL3 is AArch64).
3370          * They are simply UNDEF if executed from NS EL1.
3371          * They function normally from EL2 or EL3.
3372          */
3373         if (arm_current_el(env) == 1) {
3374             if (arm_is_secure_below_el3(env)) {
3375                 if (env->cp15.scr_el3 & SCR_EEL2) {
3376                     return CP_ACCESS_TRAP_EL2;
3377                 }
3378                 return CP_ACCESS_TRAP_EL3;
3379             }
3380             return CP_ACCESS_TRAP_UNCATEGORIZED;
3381         }
3382     }
3383     return CP_ACCESS_OK;
3384 }
3385 
3386 #ifdef CONFIG_TCG
3387 static int par_el1_shareability(GetPhysAddrResult *res)
3388 {
3389     /*
3390      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3391      * memory -- see pseudocode PAREncodeShareability().
3392      */
3393     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3394         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3395         return 2;
3396     }
3397     return res->cacheattrs.shareability;
3398 }
3399 
3400 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3401                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3402                              ARMSecuritySpace ss)
3403 {
3404     bool ret;
3405     uint64_t par64;
3406     bool format64 = false;
3407     ARMMMUFaultInfo fi = {};
3408     GetPhysAddrResult res = {};
3409 
3410     /*
3411      * I_MXTJT: Granule protection checks are not performed on the final address
3412      * of a successful translation.
3413      */
3414     ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3415                                          &res, &fi);
3416 
3417     /*
3418      * ATS operations only do S1 or S1+S2 translations, so we never
3419      * have to deal with the ARMCacheAttrs format for S2 only.
3420      */
3421     assert(!res.cacheattrs.is_s2_format);
3422 
3423     if (ret) {
3424         /*
3425          * Some kinds of translation fault must cause exceptions rather
3426          * than being reported in the PAR.
3427          */
3428         int current_el = arm_current_el(env);
3429         int target_el;
3430         uint32_t syn, fsr, fsc;
3431         bool take_exc = false;
3432 
3433         if (fi.s1ptw && current_el == 1
3434             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3435             /*
3436              * Synchronous stage 2 fault on an access made as part of the
3437              * translation table walk for AT S1E0* or AT S1E1* insn
3438              * executed from NS EL1. If this is a synchronous external abort
3439              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3440              * to EL3. Otherwise the fault is taken as an exception to EL2,
3441              * and HPFAR_EL2 holds the faulting IPA.
3442              */
3443             if (fi.type == ARMFault_SyncExternalOnWalk &&
3444                 (env->cp15.scr_el3 & SCR_EA)) {
3445                 target_el = 3;
3446             } else {
3447                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3448                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3449                     env->cp15.hpfar_el2 |= HPFAR_NS;
3450                 }
3451                 target_el = 2;
3452             }
3453             take_exc = true;
3454         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3455             /*
3456              * Synchronous external aborts during a translation table walk
3457              * are taken as Data Abort exceptions.
3458              */
3459             if (fi.stage2) {
3460                 if (current_el == 3) {
3461                     target_el = 3;
3462                 } else {
3463                     target_el = 2;
3464                 }
3465             } else {
3466                 target_el = exception_target_el(env);
3467             }
3468             take_exc = true;
3469         }
3470 
3471         if (take_exc) {
3472             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3473             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3474                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3475                 fsr = arm_fi_to_lfsc(&fi);
3476                 fsc = extract32(fsr, 0, 6);
3477             } else {
3478                 fsr = arm_fi_to_sfsc(&fi);
3479                 fsc = 0x3f;
3480             }
3481             /*
3482              * Report exception with ESR indicating a fault due to a
3483              * translation table walk for a cache maintenance instruction.
3484              */
3485             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3486                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3487             env->exception.vaddress = value;
3488             env->exception.fsr = fsr;
3489             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3490         }
3491     }
3492 
3493     if (is_a64(env)) {
3494         format64 = true;
3495     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3496         /*
3497          * ATS1Cxx:
3498          * * TTBCR.EAE determines whether the result is returned using the
3499          *   32-bit or the 64-bit PAR format
3500          * * Instructions executed in Hyp mode always use the 64bit format
3501          *
3502          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3503          * * The Non-secure TTBCR.EAE bit is set to 1
3504          * * The implementation includes EL2, and the value of HCR.VM is 1
3505          *
3506          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3507          *
3508          * ATS1Hx always uses the 64bit format.
3509          */
3510         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3511 
3512         if (arm_feature(env, ARM_FEATURE_EL2)) {
3513             if (mmu_idx == ARMMMUIdx_E10_0 ||
3514                 mmu_idx == ARMMMUIdx_E10_1 ||
3515                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3516                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3517             } else {
3518                 format64 |= arm_current_el(env) == 2;
3519             }
3520         }
3521     }
3522 
3523     if (format64) {
3524         /* Create a 64-bit PAR */
3525         par64 = (1 << 11); /* LPAE bit always set */
3526         if (!ret) {
3527             par64 |= res.f.phys_addr & ~0xfffULL;
3528             if (!res.f.attrs.secure) {
3529                 par64 |= (1 << 9); /* NS */
3530             }
3531             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3532             par64 |= par_el1_shareability(&res) << 7; /* SH */
3533         } else {
3534             uint32_t fsr = arm_fi_to_lfsc(&fi);
3535 
3536             par64 |= 1; /* F */
3537             par64 |= (fsr & 0x3f) << 1; /* FS */
3538             if (fi.stage2) {
3539                 par64 |= (1 << 9); /* S */
3540             }
3541             if (fi.s1ptw) {
3542                 par64 |= (1 << 8); /* PTW */
3543             }
3544         }
3545     } else {
3546         /*
3547          * fsr is a DFSR/IFSR value for the short descriptor
3548          * translation table format (with WnR always clear).
3549          * Convert it to a 32-bit PAR.
3550          */
3551         if (!ret) {
3552             /* We do not set any attribute bits in the PAR */
3553             if (res.f.lg_page_size == 24
3554                 && arm_feature(env, ARM_FEATURE_V7)) {
3555                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3556             } else {
3557                 par64 = res.f.phys_addr & 0xfffff000;
3558             }
3559             if (!res.f.attrs.secure) {
3560                 par64 |= (1 << 9); /* NS */
3561             }
3562         } else {
3563             uint32_t fsr = arm_fi_to_sfsc(&fi);
3564 
3565             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3566                     ((fsr & 0xf) << 1) | 1;
3567         }
3568     }
3569     return par64;
3570 }
3571 #endif /* CONFIG_TCG */
3572 
3573 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3574 {
3575 #ifdef CONFIG_TCG
3576     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3577     uint64_t par64;
3578     ARMMMUIdx mmu_idx;
3579     int el = arm_current_el(env);
3580     ARMSecuritySpace ss = arm_security_space(env);
3581 
3582     switch (ri->opc2 & 6) {
3583     case 0:
3584         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3585         switch (el) {
3586         case 3:
3587             mmu_idx = ARMMMUIdx_E3;
3588             break;
3589         case 2:
3590             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3591             /* fall through */
3592         case 1:
3593             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3594                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3595             } else {
3596                 mmu_idx = ARMMMUIdx_Stage1_E1;
3597             }
3598             break;
3599         default:
3600             g_assert_not_reached();
3601         }
3602         break;
3603     case 2:
3604         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3605         switch (el) {
3606         case 3:
3607             mmu_idx = ARMMMUIdx_E10_0;
3608             break;
3609         case 2:
3610             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3611             mmu_idx = ARMMMUIdx_Stage1_E0;
3612             break;
3613         case 1:
3614             mmu_idx = ARMMMUIdx_Stage1_E0;
3615             break;
3616         default:
3617             g_assert_not_reached();
3618         }
3619         break;
3620     case 4:
3621         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3622         mmu_idx = ARMMMUIdx_E10_1;
3623         ss = ARMSS_NonSecure;
3624         break;
3625     case 6:
3626         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3627         mmu_idx = ARMMMUIdx_E10_0;
3628         ss = ARMSS_NonSecure;
3629         break;
3630     default:
3631         g_assert_not_reached();
3632     }
3633 
3634     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3635 
3636     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3637 #else
3638     /* Handled by hardware accelerator. */
3639     g_assert_not_reached();
3640 #endif /* CONFIG_TCG */
3641 }
3642 
3643 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3644                         uint64_t value)
3645 {
3646 #ifdef CONFIG_TCG
3647     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3648     uint64_t par64;
3649 
3650     /* There is no SecureEL2 for AArch32. */
3651     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3652                          ARMSS_NonSecure);
3653 
3654     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3655 #else
3656     /* Handled by hardware accelerator. */
3657     g_assert_not_reached();
3658 #endif /* CONFIG_TCG */
3659 }
3660 
3661 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3662                                      bool isread)
3663 {
3664     /*
3665      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3666      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3667      * only happen when executing at EL3 because that combination also causes an
3668      * illegal exception return. We don't need to check FEAT_RME either, because
3669      * scr_write() ensures that the NSE bit is not set otherwise.
3670      */
3671     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3672         return CP_ACCESS_TRAP;
3673     }
3674     return CP_ACCESS_OK;
3675 }
3676 
3677 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3678                                      bool isread)
3679 {
3680     if (arm_current_el(env) == 3 &&
3681         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3682         return CP_ACCESS_TRAP;
3683     }
3684     return at_e012_access(env, ri, isread);
3685 }
3686 
3687 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3688                         uint64_t value)
3689 {
3690 #ifdef CONFIG_TCG
3691     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3692     ARMMMUIdx mmu_idx;
3693     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3694     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3695 
3696     switch (ri->opc2 & 6) {
3697     case 0:
3698         switch (ri->opc1) {
3699         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3700             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3701                 mmu_idx = regime_e20 ?
3702                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3703             } else {
3704                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3705             }
3706             break;
3707         case 4: /* AT S1E2R, AT S1E2W */
3708             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3709             break;
3710         case 6: /* AT S1E3R, AT S1E3W */
3711             mmu_idx = ARMMMUIdx_E3;
3712             break;
3713         default:
3714             g_assert_not_reached();
3715         }
3716         break;
3717     case 2: /* AT S1E0R, AT S1E0W */
3718         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3719         break;
3720     case 4: /* AT S12E1R, AT S12E1W */
3721         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3722         break;
3723     case 6: /* AT S12E0R, AT S12E0W */
3724         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3725         break;
3726     default:
3727         g_assert_not_reached();
3728     }
3729 
3730     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3731                                        mmu_idx, arm_security_space(env));
3732 #else
3733     /* Handled by hardware accelerator. */
3734     g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3736 }
3737 #endif
3738 
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741       .access = PL1_RW, .resetvalue = 0,
3742       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                              offsetoflow32(CPUARMState, cp15.par_ns) },
3744       .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746     /* This underdecoding is safe because the reginfo is NO_RAW. */
3747     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748       .access = PL1_W, .accessfn = ats_access,
3749       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751 };
3752 
3753 /* Return basic MPU access permission bits.  */
3754 static uint32_t simple_mpu_ap_bits(uint32_t val)
3755 {
3756     uint32_t ret;
3757     uint32_t mask;
3758     int i;
3759     ret = 0;
3760     mask = 3;
3761     for (i = 0; i < 16; i += 2) {
3762         ret |= (val >> i) & mask;
3763         mask <<= 2;
3764     }
3765     return ret;
3766 }
3767 
3768 /* Pad basic MPU access permission bits to extended format.  */
3769 static uint32_t extended_mpu_ap_bits(uint32_t val)
3770 {
3771     uint32_t ret;
3772     uint32_t mask;
3773     int i;
3774     ret = 0;
3775     mask = 3;
3776     for (i = 0; i < 16; i += 2) {
3777         ret |= (val & mask) << i;
3778         mask <<= 2;
3779     }
3780     return ret;
3781 }
3782 
3783 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784                                  uint64_t value)
3785 {
3786     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3787 }
3788 
3789 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3790 {
3791     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3792 }
3793 
3794 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3795                                  uint64_t value)
3796 {
3797     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3798 }
3799 
3800 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3801 {
3802     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3803 }
3804 
3805 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3806 {
3807     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3808 
3809     if (!u32p) {
3810         return 0;
3811     }
3812 
3813     u32p += env->pmsav7.rnr[M_REG_NS];
3814     return *u32p;
3815 }
3816 
3817 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3818                          uint64_t value)
3819 {
3820     ARMCPU *cpu = env_archcpu(env);
3821     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3822 
3823     if (!u32p) {
3824         return;
3825     }
3826 
3827     u32p += env->pmsav7.rnr[M_REG_NS];
3828     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3829     *u32p = value;
3830 }
3831 
3832 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3833                               uint64_t value)
3834 {
3835     ARMCPU *cpu = env_archcpu(env);
3836     uint32_t nrgs = cpu->pmsav7_dregion;
3837 
3838     if (value >= nrgs) {
3839         qemu_log_mask(LOG_GUEST_ERROR,
3840                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3841                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3842         return;
3843     }
3844 
3845     raw_write(env, ri, value);
3846 }
3847 
3848 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849                           uint64_t value)
3850 {
3851     ARMCPU *cpu = env_archcpu(env);
3852 
3853     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3855 }
3856 
3857 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3858 {
3859     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3860 }
3861 
3862 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3863                           uint64_t value)
3864 {
3865     ARMCPU *cpu = env_archcpu(env);
3866 
3867     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3868     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3869 }
3870 
3871 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3872 {
3873     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3874 }
3875 
3876 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877                            uint64_t value)
3878 {
3879     ARMCPU *cpu = env_archcpu(env);
3880 
3881     /*
3882      * Ignore writes that would select not implemented region.
3883      * This is architecturally UNPREDICTABLE.
3884      */
3885     if (value >= cpu->pmsav7_dregion) {
3886         return;
3887     }
3888 
3889     env->pmsav7.rnr[M_REG_NS] = value;
3890 }
3891 
3892 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                           uint64_t value)
3894 {
3895     ARMCPU *cpu = env_archcpu(env);
3896 
3897     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3898     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3899 }
3900 
3901 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3902 {
3903     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3904 }
3905 
3906 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907                           uint64_t value)
3908 {
3909     ARMCPU *cpu = env_archcpu(env);
3910 
3911     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3912     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3913 }
3914 
3915 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3916 {
3917     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3918 }
3919 
3920 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921                           uint64_t value)
3922 {
3923     uint32_t n;
3924     uint32_t bit;
3925     ARMCPU *cpu = env_archcpu(env);
3926 
3927     /* Ignore writes to unimplemented regions */
3928     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3929     value &= MAKE_64BIT_MASK(0, rmax);
3930 
3931     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3932 
3933     /* Register alias is only valid for first 32 indexes */
3934     for (n = 0; n < rmax; ++n) {
3935         bit = extract32(value, n, 1);
3936         env->pmsav8.hprlar[n] = deposit32(
3937                     env->pmsav8.hprlar[n], 0, 1, bit);
3938     }
3939 }
3940 
3941 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3942 {
3943     uint32_t n;
3944     uint32_t result = 0x0;
3945     ARMCPU *cpu = env_archcpu(env);
3946 
3947     /* Register alias is only valid for first 32 indexes */
3948     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3949         if (env->pmsav8.hprlar[n] & 0x1) {
3950             result |= (0x1 << n);
3951         }
3952     }
3953     return result;
3954 }
3955 
3956 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3957                            uint64_t value)
3958 {
3959     ARMCPU *cpu = env_archcpu(env);
3960 
3961     /*
3962      * Ignore writes that would select not implemented region.
3963      * This is architecturally UNPREDICTABLE.
3964      */
3965     if (value >= cpu->pmsav8r_hdregion) {
3966         return;
3967     }
3968 
3969     env->pmsav8.hprselr = value;
3970 }
3971 
3972 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3973                           uint64_t value)
3974 {
3975     ARMCPU *cpu = env_archcpu(env);
3976     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3977                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3978 
3979     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3980 
3981     if (ri->opc1 & 4) {
3982         if (index >= cpu->pmsav8r_hdregion) {
3983             return;
3984         }
3985         if (ri->opc2 & 0x1) {
3986             env->pmsav8.hprlar[index] = value;
3987         } else {
3988             env->pmsav8.hprbar[index] = value;
3989         }
3990     } else {
3991         if (index >= cpu->pmsav7_dregion) {
3992             return;
3993         }
3994         if (ri->opc2 & 0x1) {
3995             env->pmsav8.rlar[M_REG_NS][index] = value;
3996         } else {
3997             env->pmsav8.rbar[M_REG_NS][index] = value;
3998         }
3999     }
4000 }
4001 
4002 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4003 {
4004     ARMCPU *cpu = env_archcpu(env);
4005     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4006                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4007 
4008     if (ri->opc1 & 4) {
4009         if (index >= cpu->pmsav8r_hdregion) {
4010             return 0x0;
4011         }
4012         if (ri->opc2 & 0x1) {
4013             return env->pmsav8.hprlar[index];
4014         } else {
4015             return env->pmsav8.hprbar[index];
4016         }
4017     } else {
4018         if (index >= cpu->pmsav7_dregion) {
4019             return 0x0;
4020         }
4021         if (ri->opc2 & 0x1) {
4022             return env->pmsav8.rlar[M_REG_NS][index];
4023         } else {
4024             return env->pmsav8.rbar[M_REG_NS][index];
4025         }
4026     }
4027 }
4028 
4029 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4030     { .name = "PRBAR",
4031       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4032       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4033       .accessfn = access_tvm_trvm,
4034       .readfn = prbar_read, .writefn = prbar_write },
4035     { .name = "PRLAR",
4036       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4037       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4038       .accessfn = access_tvm_trvm,
4039       .readfn = prlar_read, .writefn = prlar_write },
4040     { .name = "PRSELR", .resetvalue = 0,
4041       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4042       .access = PL1_RW, .accessfn = access_tvm_trvm,
4043       .writefn = prselr_write,
4044       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4045     { .name = "HPRBAR", .resetvalue = 0,
4046       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4047       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4048       .readfn = hprbar_read, .writefn = hprbar_write },
4049     { .name = "HPRLAR",
4050       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4051       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4052       .readfn = hprlar_read, .writefn = hprlar_write },
4053     { .name = "HPRSELR", .resetvalue = 0,
4054       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4055       .access = PL2_RW,
4056       .writefn = hprselr_write,
4057       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4058     { .name = "HPRENR",
4059       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4060       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4061       .readfn = hprenr_read, .writefn = hprenr_write },
4062 };
4063 
4064 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4065     /*
4066      * Reset for all these registers is handled in arm_cpu_reset(),
4067      * because the PMSAv7 is also used by M-profile CPUs, which do
4068      * not register cpregs but still need the state to be reset.
4069      */
4070     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4071       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4072       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4073       .readfn = pmsav7_read, .writefn = pmsav7_write,
4074       .resetfn = arm_cp_reset_ignore },
4075     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4076       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4077       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4078       .readfn = pmsav7_read, .writefn = pmsav7_write,
4079       .resetfn = arm_cp_reset_ignore },
4080     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4081       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4082       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4083       .readfn = pmsav7_read, .writefn = pmsav7_write,
4084       .resetfn = arm_cp_reset_ignore },
4085     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4086       .access = PL1_RW,
4087       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4088       .writefn = pmsav7_rgnr_write,
4089       .resetfn = arm_cp_reset_ignore },
4090 };
4091 
4092 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4093     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4094       .access = PL1_RW, .type = ARM_CP_ALIAS,
4095       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4096       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4097     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4098       .access = PL1_RW, .type = ARM_CP_ALIAS,
4099       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4100       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4101     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4102       .access = PL1_RW,
4103       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4104       .resetvalue = 0, },
4105     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4106       .access = PL1_RW,
4107       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4108       .resetvalue = 0, },
4109     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4110       .access = PL1_RW,
4111       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4112     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4113       .access = PL1_RW,
4114       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4115     /* Protection region base and size registers */
4116     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4117       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4118       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4119     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4120       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4121       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4122     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4123       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4124       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4125     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4126       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4127       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4128     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4129       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4130       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4131     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4132       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4133       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4134     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4135       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4136       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4137     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4138       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4139       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4140 };
4141 
4142 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4143                              uint64_t value)
4144 {
4145     ARMCPU *cpu = env_archcpu(env);
4146 
4147     if (!arm_feature(env, ARM_FEATURE_V8)) {
4148         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4149             /*
4150              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4151              * using Long-descriptor translation table format
4152              */
4153             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4154         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4155             /*
4156              * In an implementation that includes the Security Extensions
4157              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4158              * Short-descriptor translation table format.
4159              */
4160             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4161         } else {
4162             value &= TTBCR_N;
4163         }
4164     }
4165 
4166     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4167         /*
4168          * With LPAE the TTBCR could result in a change of ASID
4169          * via the TTBCR.A1 bit, so do a TLB flush.
4170          */
4171         tlb_flush(CPU(cpu));
4172     }
4173     raw_write(env, ri, value);
4174 }
4175 
4176 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4177                                uint64_t value)
4178 {
4179     ARMCPU *cpu = env_archcpu(env);
4180 
4181     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4182     tlb_flush(CPU(cpu));
4183     raw_write(env, ri, value);
4184 }
4185 
4186 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4187                             uint64_t value)
4188 {
4189     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4190     if (cpreg_field_is_64bit(ri) &&
4191         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4192         ARMCPU *cpu = env_archcpu(env);
4193         tlb_flush(CPU(cpu));
4194     }
4195     raw_write(env, ri, value);
4196 }
4197 
4198 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4199                                     uint64_t value)
4200 {
4201     /*
4202      * If we are running with E2&0 regime, then an ASID is active.
4203      * Flush if that might be changing.  Note we're not checking
4204      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4205      * holds the active ASID, only checking the field that might.
4206      */
4207     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4208         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4209         uint16_t mask = ARMMMUIdxBit_E20_2 |
4210                         ARMMMUIdxBit_E20_2_PAN |
4211                         ARMMMUIdxBit_E20_0;
4212         tlb_flush_by_mmuidx(env_cpu(env), mask);
4213     }
4214     raw_write(env, ri, value);
4215 }
4216 
4217 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4218                         uint64_t value)
4219 {
4220     ARMCPU *cpu = env_archcpu(env);
4221     CPUState *cs = CPU(cpu);
4222 
4223     /*
4224      * A change in VMID to the stage2 page table (Stage2) invalidates
4225      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4226      */
4227     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4228         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4229     }
4230     raw_write(env, ri, value);
4231 }
4232 
4233 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4234     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4235       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4236       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4237                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4238     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4239       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4240       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4241                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4242     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4243       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4244       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4245                              offsetof(CPUARMState, cp15.dfar_ns) } },
4246     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4247       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4248       .access = PL1_RW, .accessfn = access_tvm_trvm,
4249       .fgt = FGT_FAR_EL1,
4250       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4251       .resetvalue = 0, },
4252 };
4253 
4254 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4255     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4256       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4257       .access = PL1_RW, .accessfn = access_tvm_trvm,
4258       .fgt = FGT_ESR_EL1,
4259       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4260     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4261       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4262       .access = PL1_RW, .accessfn = access_tvm_trvm,
4263       .fgt = FGT_TTBR0_EL1,
4264       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4265       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4266                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4267     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4268       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4269       .access = PL1_RW, .accessfn = access_tvm_trvm,
4270       .fgt = FGT_TTBR1_EL1,
4271       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4272       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4273                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4274     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4275       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4276       .access = PL1_RW, .accessfn = access_tvm_trvm,
4277       .fgt = FGT_TCR_EL1,
4278       .writefn = vmsa_tcr_el12_write,
4279       .raw_writefn = raw_write,
4280       .resetvalue = 0,
4281       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4282     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4283       .access = PL1_RW, .accessfn = access_tvm_trvm,
4284       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4285       .raw_writefn = raw_write,
4286       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4287                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4288 };
4289 
4290 /*
4291  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4292  * qemu tlbs nor adjusting cached masks.
4293  */
4294 static const ARMCPRegInfo ttbcr2_reginfo = {
4295     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4296     .access = PL1_RW, .accessfn = access_tvm_trvm,
4297     .type = ARM_CP_ALIAS,
4298     .bank_fieldoffsets = {
4299         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4300         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4301     },
4302 };
4303 
4304 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4305                                 uint64_t value)
4306 {
4307     env->cp15.c15_ticonfig = value & 0xe7;
4308     /* The OS_TYPE bit in this register changes the reported CPUID! */
4309     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4310         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4311 }
4312 
4313 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4314                                 uint64_t value)
4315 {
4316     env->cp15.c15_threadid = value & 0xffff;
4317 }
4318 
4319 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4320                            uint64_t value)
4321 {
4322     /* Wait-for-interrupt (deprecated) */
4323     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4324 }
4325 
4326 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327                                   uint64_t value)
4328 {
4329     /*
4330      * On OMAP there are registers indicating the max/min index of dcache lines
4331      * containing a dirty line; cache flush operations have to reset these.
4332      */
4333     env->cp15.c15_i_max = 0x000;
4334     env->cp15.c15_i_min = 0xff0;
4335 }
4336 
4337 static const ARMCPRegInfo omap_cp_reginfo[] = {
4338     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4339       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4340       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4341       .resetvalue = 0, },
4342     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4343       .access = PL1_RW, .type = ARM_CP_NOP },
4344     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4345       .access = PL1_RW,
4346       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4347       .writefn = omap_ticonfig_write },
4348     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4349       .access = PL1_RW,
4350       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4351     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4352       .access = PL1_RW, .resetvalue = 0xff0,
4353       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4354     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4355       .access = PL1_RW,
4356       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4357       .writefn = omap_threadid_write },
4358     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4359       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4360       .type = ARM_CP_NO_RAW,
4361       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4362     /*
4363      * TODO: Peripheral port remap register:
4364      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4365      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4366      * when MMU is off.
4367      */
4368     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4369       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4370       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4371       .writefn = omap_cachemaint_write },
4372     { .name = "C9", .cp = 15, .crn = 9,
4373       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4374       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4375 };
4376 
4377 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4378                               uint64_t value)
4379 {
4380     env->cp15.c15_cpar = value & 0x3fff;
4381 }
4382 
4383 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4384     { .name = "XSCALE_CPAR",
4385       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4386       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4387       .writefn = xscale_cpar_write, },
4388     { .name = "XSCALE_AUXCR",
4389       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4390       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4391       .resetvalue = 0, },
4392     /*
4393      * XScale specific cache-lockdown: since we have no cache we NOP these
4394      * and hope the guest does not really rely on cache behaviour.
4395      */
4396     { .name = "XSCALE_LOCK_ICACHE_LINE",
4397       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4398       .access = PL1_W, .type = ARM_CP_NOP },
4399     { .name = "XSCALE_UNLOCK_ICACHE",
4400       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4401       .access = PL1_W, .type = ARM_CP_NOP },
4402     { .name = "XSCALE_DCACHE_LOCK",
4403       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4404       .access = PL1_RW, .type = ARM_CP_NOP },
4405     { .name = "XSCALE_UNLOCK_DCACHE",
4406       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4407       .access = PL1_W, .type = ARM_CP_NOP },
4408 };
4409 
4410 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4411     /*
4412      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4413      * implementation of this implementation-defined space.
4414      * Ideally this should eventually disappear in favour of actually
4415      * implementing the correct behaviour for all cores.
4416      */
4417     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4418       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4419       .access = PL1_RW,
4420       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4421       .resetvalue = 0 },
4422 };
4423 
4424 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4425     /* Cache status: RAZ because we have no cache so it's always clean */
4426     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4427       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4428       .resetvalue = 0 },
4429 };
4430 
4431 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4432     /* We never have a block transfer operation in progress */
4433     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4434       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4435       .resetvalue = 0 },
4436     /* The cache ops themselves: these all NOP for QEMU */
4437     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4438       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4439     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4440       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4441     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4442       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4443     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4444       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4445     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4446       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4447     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4448       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4449 };
4450 
4451 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4452     /*
4453      * The cache test-and-clean instructions always return (1 << 30)
4454      * to indicate that there are no dirty cache lines.
4455      */
4456     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4457       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4458       .resetvalue = (1 << 30) },
4459     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4460       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4461       .resetvalue = (1 << 30) },
4462 };
4463 
4464 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4465     /* Ignore ReadBuffer accesses */
4466     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4467       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4468       .access = PL1_RW, .resetvalue = 0,
4469       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4470 };
4471 
4472 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4473 {
4474     unsigned int cur_el = arm_current_el(env);
4475 
4476     if (arm_is_el2_enabled(env) && cur_el == 1) {
4477         return env->cp15.vpidr_el2;
4478     }
4479     return raw_read(env, ri);
4480 }
4481 
4482 static uint64_t mpidr_read_val(CPUARMState *env)
4483 {
4484     ARMCPU *cpu = env_archcpu(env);
4485     uint64_t mpidr = cpu->mp_affinity;
4486 
4487     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4488         mpidr |= (1U << 31);
4489         /*
4490          * Cores which are uniprocessor (non-coherent)
4491          * but still implement the MP extensions set
4492          * bit 30. (For instance, Cortex-R5).
4493          */
4494         if (cpu->mp_is_up) {
4495             mpidr |= (1u << 30);
4496         }
4497     }
4498     return mpidr;
4499 }
4500 
4501 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4502 {
4503     unsigned int cur_el = arm_current_el(env);
4504 
4505     if (arm_is_el2_enabled(env) && cur_el == 1) {
4506         return env->cp15.vmpidr_el2;
4507     }
4508     return mpidr_read_val(env);
4509 }
4510 
4511 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4512     /* NOP AMAIR0/1 */
4513     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4514       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4515       .access = PL1_RW, .accessfn = access_tvm_trvm,
4516       .fgt = FGT_AMAIR_EL1,
4517       .type = ARM_CP_CONST, .resetvalue = 0 },
4518     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4519     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4520       .access = PL1_RW, .accessfn = access_tvm_trvm,
4521       .type = ARM_CP_CONST, .resetvalue = 0 },
4522     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4523       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4524       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4525                              offsetof(CPUARMState, cp15.par_ns)} },
4526     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4527       .access = PL1_RW, .accessfn = access_tvm_trvm,
4528       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4529       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4530                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4531       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4532     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4533       .access = PL1_RW, .accessfn = access_tvm_trvm,
4534       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4535       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4536                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4537       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4538 };
4539 
4540 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4541 {
4542     return vfp_get_fpcr(env);
4543 }
4544 
4545 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546                             uint64_t value)
4547 {
4548     vfp_set_fpcr(env, value);
4549 }
4550 
4551 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4552 {
4553     return vfp_get_fpsr(env);
4554 }
4555 
4556 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4557                             uint64_t value)
4558 {
4559     vfp_set_fpsr(env, value);
4560 }
4561 
4562 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4563                                        bool isread)
4564 {
4565     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4566         return CP_ACCESS_TRAP;
4567     }
4568     return CP_ACCESS_OK;
4569 }
4570 
4571 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572                             uint64_t value)
4573 {
4574     env->daif = value & PSTATE_DAIF;
4575 }
4576 
4577 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4578 {
4579     return env->pstate & PSTATE_PAN;
4580 }
4581 
4582 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4583                            uint64_t value)
4584 {
4585     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4586 }
4587 
4588 static const ARMCPRegInfo pan_reginfo = {
4589     .name = "PAN", .state = ARM_CP_STATE_AA64,
4590     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4591     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4592     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4593 };
4594 
4595 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4596 {
4597     return env->pstate & PSTATE_UAO;
4598 }
4599 
4600 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4601                            uint64_t value)
4602 {
4603     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4604 }
4605 
4606 static const ARMCPRegInfo uao_reginfo = {
4607     .name = "UAO", .state = ARM_CP_STATE_AA64,
4608     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4609     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4610     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4611 };
4612 
4613 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4614 {
4615     return env->pstate & PSTATE_DIT;
4616 }
4617 
4618 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4619                            uint64_t value)
4620 {
4621     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4622 }
4623 
4624 static const ARMCPRegInfo dit_reginfo = {
4625     .name = "DIT", .state = ARM_CP_STATE_AA64,
4626     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4627     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4628     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4629 };
4630 
4631 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4632 {
4633     return env->pstate & PSTATE_SSBS;
4634 }
4635 
4636 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4637                            uint64_t value)
4638 {
4639     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4640 }
4641 
4642 static const ARMCPRegInfo ssbs_reginfo = {
4643     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4644     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4645     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4646     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4647 };
4648 
4649 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4650                                               const ARMCPRegInfo *ri,
4651                                               bool isread)
4652 {
4653     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4654     switch (arm_current_el(env)) {
4655     case 0:
4656         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4657         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4658             return CP_ACCESS_TRAP;
4659         }
4660         /* fall through */
4661     case 1:
4662         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4663         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4664             return CP_ACCESS_TRAP_EL2;
4665         }
4666         break;
4667     }
4668     return CP_ACCESS_OK;
4669 }
4670 
4671 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4672 {
4673     /* Cache invalidate/clean to Point of Unification... */
4674     switch (arm_current_el(env)) {
4675     case 0:
4676         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4677         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4678             return CP_ACCESS_TRAP;
4679         }
4680         /* fall through */
4681     case 1:
4682         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4683         if (arm_hcr_el2_eff(env) & hcrflags) {
4684             return CP_ACCESS_TRAP_EL2;
4685         }
4686         break;
4687     }
4688     return CP_ACCESS_OK;
4689 }
4690 
4691 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4692                                    bool isread)
4693 {
4694     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4695 }
4696 
4697 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4698                                   bool isread)
4699 {
4700     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4701 }
4702 
4703 /*
4704  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4705  * Page D4-1736 (DDI0487A.b)
4706  */
4707 
4708 static int vae1_tlbmask(CPUARMState *env)
4709 {
4710     uint64_t hcr = arm_hcr_el2_eff(env);
4711     uint16_t mask;
4712 
4713     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4714         mask = ARMMMUIdxBit_E20_2 |
4715                ARMMMUIdxBit_E20_2_PAN |
4716                ARMMMUIdxBit_E20_0;
4717     } else {
4718         mask = ARMMMUIdxBit_E10_1 |
4719                ARMMMUIdxBit_E10_1_PAN |
4720                ARMMMUIdxBit_E10_0;
4721     }
4722     return mask;
4723 }
4724 
4725 static int vae2_tlbmask(CPUARMState *env)
4726 {
4727     uint64_t hcr = arm_hcr_el2_eff(env);
4728     uint16_t mask;
4729 
4730     if (hcr & HCR_E2H) {
4731         mask = ARMMMUIdxBit_E20_2 |
4732                ARMMMUIdxBit_E20_2_PAN |
4733                ARMMMUIdxBit_E20_0;
4734     } else {
4735         mask = ARMMMUIdxBit_E2;
4736     }
4737     return mask;
4738 }
4739 
4740 /* Return 56 if TBI is enabled, 64 otherwise. */
4741 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4742                               uint64_t addr)
4743 {
4744     uint64_t tcr = regime_tcr(env, mmu_idx);
4745     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4746     int select = extract64(addr, 55, 1);
4747 
4748     return (tbi >> select) & 1 ? 56 : 64;
4749 }
4750 
4751 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4752 {
4753     uint64_t hcr = arm_hcr_el2_eff(env);
4754     ARMMMUIdx mmu_idx;
4755 
4756     /* Only the regime of the mmu_idx below is significant. */
4757     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4758         mmu_idx = ARMMMUIdx_E20_0;
4759     } else {
4760         mmu_idx = ARMMMUIdx_E10_0;
4761     }
4762 
4763     return tlbbits_for_regime(env, mmu_idx, addr);
4764 }
4765 
4766 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4767 {
4768     uint64_t hcr = arm_hcr_el2_eff(env);
4769     ARMMMUIdx mmu_idx;
4770 
4771     /*
4772      * Only the regime of the mmu_idx below is significant.
4773      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4774      * only has one.
4775      */
4776     if (hcr & HCR_E2H) {
4777         mmu_idx = ARMMMUIdx_E20_2;
4778     } else {
4779         mmu_idx = ARMMMUIdx_E2;
4780     }
4781 
4782     return tlbbits_for_regime(env, mmu_idx, addr);
4783 }
4784 
4785 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4786                                       uint64_t value)
4787 {
4788     CPUState *cs = env_cpu(env);
4789     int mask = vae1_tlbmask(env);
4790 
4791     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4792 }
4793 
4794 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4795                                     uint64_t value)
4796 {
4797     CPUState *cs = env_cpu(env);
4798     int mask = vae1_tlbmask(env);
4799 
4800     if (tlb_force_broadcast(env)) {
4801         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4802     } else {
4803         tlb_flush_by_mmuidx(cs, mask);
4804     }
4805 }
4806 
4807 static int e2_tlbmask(CPUARMState *env)
4808 {
4809     return (ARMMMUIdxBit_E20_0 |
4810             ARMMMUIdxBit_E20_2 |
4811             ARMMMUIdxBit_E20_2_PAN |
4812             ARMMMUIdxBit_E2);
4813 }
4814 
4815 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4816                                   uint64_t value)
4817 {
4818     CPUState *cs = env_cpu(env);
4819     int mask = alle1_tlbmask(env);
4820 
4821     tlb_flush_by_mmuidx(cs, mask);
4822 }
4823 
4824 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825                                   uint64_t value)
4826 {
4827     CPUState *cs = env_cpu(env);
4828     int mask = e2_tlbmask(env);
4829 
4830     tlb_flush_by_mmuidx(cs, mask);
4831 }
4832 
4833 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4834                                   uint64_t value)
4835 {
4836     ARMCPU *cpu = env_archcpu(env);
4837     CPUState *cs = CPU(cpu);
4838 
4839     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4840 }
4841 
4842 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4843                                     uint64_t value)
4844 {
4845     CPUState *cs = env_cpu(env);
4846     int mask = alle1_tlbmask(env);
4847 
4848     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4849 }
4850 
4851 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4852                                     uint64_t value)
4853 {
4854     CPUState *cs = env_cpu(env);
4855     int mask = e2_tlbmask(env);
4856 
4857     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4858 }
4859 
4860 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4861                                     uint64_t value)
4862 {
4863     CPUState *cs = env_cpu(env);
4864 
4865     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4866 }
4867 
4868 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4869                                  uint64_t value)
4870 {
4871     /*
4872      * Invalidate by VA, EL2
4873      * Currently handles both VAE2 and VALE2, since we don't support
4874      * flush-last-level-only.
4875      */
4876     CPUState *cs = env_cpu(env);
4877     int mask = vae2_tlbmask(env);
4878     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4879     int bits = vae2_tlbbits(env, pageaddr);
4880 
4881     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4882 }
4883 
4884 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4885                                  uint64_t value)
4886 {
4887     /*
4888      * Invalidate by VA, EL3
4889      * Currently handles both VAE3 and VALE3, since we don't support
4890      * flush-last-level-only.
4891      */
4892     ARMCPU *cpu = env_archcpu(env);
4893     CPUState *cs = CPU(cpu);
4894     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4895 
4896     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4897 }
4898 
4899 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4900                                    uint64_t value)
4901 {
4902     CPUState *cs = env_cpu(env);
4903     int mask = vae1_tlbmask(env);
4904     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4905     int bits = vae1_tlbbits(env, pageaddr);
4906 
4907     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4908 }
4909 
4910 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4911                                  uint64_t value)
4912 {
4913     /*
4914      * Invalidate by VA, EL1&0 (AArch64 version).
4915      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4916      * since we don't support flush-for-specific-ASID-only or
4917      * flush-last-level-only.
4918      */
4919     CPUState *cs = env_cpu(env);
4920     int mask = vae1_tlbmask(env);
4921     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4922     int bits = vae1_tlbbits(env, pageaddr);
4923 
4924     if (tlb_force_broadcast(env)) {
4925         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4926     } else {
4927         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4928     }
4929 }
4930 
4931 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4932                                    uint64_t value)
4933 {
4934     CPUState *cs = env_cpu(env);
4935     int mask = vae2_tlbmask(env);
4936     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4937     int bits = vae2_tlbbits(env, pageaddr);
4938 
4939     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4940 }
4941 
4942 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4943                                    uint64_t value)
4944 {
4945     CPUState *cs = env_cpu(env);
4946     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4947     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4948 
4949     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4950                                                   ARMMMUIdxBit_E3, bits);
4951 }
4952 
4953 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4954 {
4955     /*
4956      * The MSB of value is the NS field, which only applies if SEL2
4957      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4958      */
4959     return (value >= 0
4960             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4961             && arm_is_secure_below_el3(env)
4962             ? ARMMMUIdxBit_Stage2_S
4963             : ARMMMUIdxBit_Stage2);
4964 }
4965 
4966 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4967                                     uint64_t value)
4968 {
4969     CPUState *cs = env_cpu(env);
4970     int mask = ipas2e1_tlbmask(env, value);
4971     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4972 
4973     if (tlb_force_broadcast(env)) {
4974         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4975     } else {
4976         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4977     }
4978 }
4979 
4980 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4981                                       uint64_t value)
4982 {
4983     CPUState *cs = env_cpu(env);
4984     int mask = ipas2e1_tlbmask(env, value);
4985     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4986 
4987     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4988 }
4989 
4990 #ifdef TARGET_AARCH64
4991 typedef struct {
4992     uint64_t base;
4993     uint64_t length;
4994 } TLBIRange;
4995 
4996 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4997 {
4998     /*
4999      * Note that the TLBI range TG field encoding differs from both
5000      * TG0 and TG1 encodings.
5001      */
5002     switch (tg) {
5003     case 1:
5004         return Gran4K;
5005     case 2:
5006         return Gran16K;
5007     case 3:
5008         return Gran64K;
5009     default:
5010         return GranInvalid;
5011     }
5012 }
5013 
5014 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5015                                      uint64_t value)
5016 {
5017     unsigned int page_size_granule, page_shift, num, scale, exponent;
5018     /* Extract one bit to represent the va selector in use. */
5019     uint64_t select = sextract64(value, 36, 1);
5020     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5021     TLBIRange ret = { };
5022     ARMGranuleSize gran;
5023 
5024     page_size_granule = extract64(value, 46, 2);
5025     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5026 
5027     /* The granule encoded in value must match the granule in use. */
5028     if (gran != param.gran) {
5029         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5030                       page_size_granule);
5031         return ret;
5032     }
5033 
5034     page_shift = arm_granule_bits(gran);
5035     num = extract64(value, 39, 5);
5036     scale = extract64(value, 44, 2);
5037     exponent = (5 * scale) + 1;
5038 
5039     ret.length = (num + 1) << (exponent + page_shift);
5040 
5041     if (param.select) {
5042         ret.base = sextract64(value, 0, 37);
5043     } else {
5044         ret.base = extract64(value, 0, 37);
5045     }
5046     if (param.ds) {
5047         /*
5048          * With DS=1, BaseADDR is always shifted 16 so that it is able
5049          * to address all 52 va bits.  The input address is perforce
5050          * aligned on a 64k boundary regardless of translation granule.
5051          */
5052         page_shift = 16;
5053     }
5054     ret.base <<= page_shift;
5055 
5056     return ret;
5057 }
5058 
5059 static void do_rvae_write(CPUARMState *env, uint64_t value,
5060                           int idxmap, bool synced)
5061 {
5062     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5063     TLBIRange range;
5064     int bits;
5065 
5066     range = tlbi_aa64_get_range(env, one_idx, value);
5067     bits = tlbbits_for_regime(env, one_idx, range.base);
5068 
5069     if (synced) {
5070         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5071                                                   range.base,
5072                                                   range.length,
5073                                                   idxmap,
5074                                                   bits);
5075     } else {
5076         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5077                                   range.length, idxmap, bits);
5078     }
5079 }
5080 
5081 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5082                                   const ARMCPRegInfo *ri,
5083                                   uint64_t value)
5084 {
5085     /*
5086      * Invalidate by VA range, EL1&0.
5087      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5088      * since we don't support flush-for-specific-ASID-only or
5089      * flush-last-level-only.
5090      */
5091 
5092     do_rvae_write(env, value, vae1_tlbmask(env),
5093                   tlb_force_broadcast(env));
5094 }
5095 
5096 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5097                                     const ARMCPRegInfo *ri,
5098                                     uint64_t value)
5099 {
5100     /*
5101      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5102      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5103      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5104      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5105      * shareable specific flushes.
5106      */
5107 
5108     do_rvae_write(env, value, vae1_tlbmask(env), true);
5109 }
5110 
5111 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5112                                   const ARMCPRegInfo *ri,
5113                                   uint64_t value)
5114 {
5115     /*
5116      * Invalidate by VA range, EL2.
5117      * Currently handles all of RVAE2 and RVALE2,
5118      * since we don't support flush-for-specific-ASID-only or
5119      * flush-last-level-only.
5120      */
5121 
5122     do_rvae_write(env, value, vae2_tlbmask(env),
5123                   tlb_force_broadcast(env));
5124 
5125 
5126 }
5127 
5128 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5129                                     const ARMCPRegInfo *ri,
5130                                     uint64_t value)
5131 {
5132     /*
5133      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5134      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5135      * since we don't support flush-for-specific-ASID-only,
5136      * flush-last-level-only or inner/outer shareable specific flushes.
5137      */
5138 
5139     do_rvae_write(env, value, vae2_tlbmask(env), true);
5140 
5141 }
5142 
5143 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5144                                   const ARMCPRegInfo *ri,
5145                                   uint64_t value)
5146 {
5147     /*
5148      * Invalidate by VA range, EL3.
5149      * Currently handles all of RVAE3 and RVALE3,
5150      * since we don't support flush-for-specific-ASID-only or
5151      * flush-last-level-only.
5152      */
5153 
5154     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5155 }
5156 
5157 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5158                                     const ARMCPRegInfo *ri,
5159                                     uint64_t value)
5160 {
5161     /*
5162      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5163      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5164      * since we don't support flush-for-specific-ASID-only,
5165      * flush-last-level-only or inner/outer specific flushes.
5166      */
5167 
5168     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5169 }
5170 
5171 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5172                                      uint64_t value)
5173 {
5174     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5175                   tlb_force_broadcast(env));
5176 }
5177 
5178 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5179                                        const ARMCPRegInfo *ri,
5180                                        uint64_t value)
5181 {
5182     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5183 }
5184 #endif
5185 
5186 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5187                                       bool isread)
5188 {
5189     int cur_el = arm_current_el(env);
5190 
5191     if (cur_el < 2) {
5192         uint64_t hcr = arm_hcr_el2_eff(env);
5193 
5194         if (cur_el == 0) {
5195             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5196                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5197                     return CP_ACCESS_TRAP_EL2;
5198                 }
5199             } else {
5200                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5201                     return CP_ACCESS_TRAP;
5202                 }
5203                 if (hcr & HCR_TDZ) {
5204                     return CP_ACCESS_TRAP_EL2;
5205                 }
5206             }
5207         } else if (hcr & HCR_TDZ) {
5208             return CP_ACCESS_TRAP_EL2;
5209         }
5210     }
5211     return CP_ACCESS_OK;
5212 }
5213 
5214 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5215 {
5216     ARMCPU *cpu = env_archcpu(env);
5217     int dzp_bit = 1 << 4;
5218 
5219     /* DZP indicates whether DC ZVA access is allowed */
5220     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5221         dzp_bit = 0;
5222     }
5223     return cpu->dcz_blocksize | dzp_bit;
5224 }
5225 
5226 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5227                                     bool isread)
5228 {
5229     if (!(env->pstate & PSTATE_SP)) {
5230         /*
5231          * Access to SP_EL0 is undefined if it's being used as
5232          * the stack pointer.
5233          */
5234         return CP_ACCESS_TRAP_UNCATEGORIZED;
5235     }
5236     return CP_ACCESS_OK;
5237 }
5238 
5239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5240 {
5241     return env->pstate & PSTATE_SP;
5242 }
5243 
5244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5245 {
5246     update_spsel(env, val);
5247 }
5248 
5249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5250                         uint64_t value)
5251 {
5252     ARMCPU *cpu = env_archcpu(env);
5253 
5254     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5255         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5256         value &= ~SCTLR_M;
5257     }
5258 
5259     /* ??? Lots of these bits are not implemented.  */
5260 
5261     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5262         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5263             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5264         } else {
5265             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5266                        SCTLR_ATA0 | SCTLR_ATA);
5267         }
5268     }
5269 
5270     if (raw_read(env, ri) == value) {
5271         /*
5272          * Skip the TLB flush if nothing actually changed; Linux likes
5273          * to do a lot of pointless SCTLR writes.
5274          */
5275         return;
5276     }
5277 
5278     raw_write(env, ri, value);
5279 
5280     /* This may enable/disable the MMU, so do a TLB flush.  */
5281     tlb_flush(CPU(cpu));
5282 
5283     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5284         /*
5285          * Normally we would always end the TB on an SCTLR write; see the
5286          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5287          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5288          * of hflags from the translator, so do it here.
5289          */
5290         arm_rebuild_hflags(env);
5291     }
5292 }
5293 
5294 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5295                            uint64_t value)
5296 {
5297     /*
5298      * Some MDCR_EL3 bits affect whether PMU counters are running:
5299      * if we are trying to change any of those then we must
5300      * bracket this update with PMU start/finish calls.
5301      */
5302     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5303 
5304     if (pmu_op) {
5305         pmu_op_start(env);
5306     }
5307     env->cp15.mdcr_el3 = value;
5308     if (pmu_op) {
5309         pmu_op_finish(env);
5310     }
5311 }
5312 
5313 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5314                        uint64_t value)
5315 {
5316     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5317     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5318 }
5319 
5320 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5321                            uint64_t value)
5322 {
5323     /*
5324      * Some MDCR_EL2 bits affect whether PMU counters are running:
5325      * if we are trying to change any of those then we must
5326      * bracket this update with PMU start/finish calls.
5327      */
5328     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5329 
5330     if (pmu_op) {
5331         pmu_op_start(env);
5332     }
5333     env->cp15.mdcr_el2 = value;
5334     if (pmu_op) {
5335         pmu_op_finish(env);
5336     }
5337 }
5338 
5339 #ifdef CONFIG_USER_ONLY
5340 /*
5341  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5342  * code to get around W^X restrictions, where one region is writable and the
5343  * other is executable.
5344  *
5345  * Since the executable region is never written to we cannot detect code
5346  * changes when running in user mode, and rely on the emulated JIT telling us
5347  * that the code has changed by executing this instruction.
5348  */
5349 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5350                           uint64_t value)
5351 {
5352     uint64_t icache_line_mask, start_address, end_address;
5353     const ARMCPU *cpu;
5354 
5355     cpu = env_archcpu(env);
5356 
5357     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5358     start_address = value & ~icache_line_mask;
5359     end_address = value | icache_line_mask;
5360 
5361     mmap_lock();
5362 
5363     tb_invalidate_phys_range(start_address, end_address);
5364 
5365     mmap_unlock();
5366 }
5367 #endif
5368 
5369 static const ARMCPRegInfo v8_cp_reginfo[] = {
5370     /*
5371      * Minimal set of EL0-visible registers. This will need to be expanded
5372      * significantly for system emulation of AArch64 CPUs.
5373      */
5374     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5375       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5376       .access = PL0_RW, .type = ARM_CP_NZCV },
5377     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5378       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5379       .type = ARM_CP_NO_RAW,
5380       .access = PL0_RW, .accessfn = aa64_daif_access,
5381       .fieldoffset = offsetof(CPUARMState, daif),
5382       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5383     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5384       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5385       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5386       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5387     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5388       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5389       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5390       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5391     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5392       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5393       .access = PL0_R, .type = ARM_CP_NO_RAW,
5394       .fgt = FGT_DCZID_EL0,
5395       .readfn = aa64_dczid_read },
5396     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5397       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5398       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5399 #ifndef CONFIG_USER_ONLY
5400       /* Avoid overhead of an access check that always passes in user-mode */
5401       .accessfn = aa64_zva_access,
5402       .fgt = FGT_DCZVA,
5403 #endif
5404     },
5405     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5406       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5407       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5408     /*
5409      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5410      * don't emulate caches.
5411      */
5412     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5413       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5414       .access = PL1_W, .type = ARM_CP_NOP,
5415       .fgt = FGT_ICIALLUIS,
5416       .accessfn = access_ticab },
5417     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5418       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5419       .access = PL1_W, .type = ARM_CP_NOP,
5420       .fgt = FGT_ICIALLU,
5421       .accessfn = access_tocu },
5422     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5423       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5424       .access = PL0_W,
5425       .fgt = FGT_ICIVAU,
5426       .accessfn = access_tocu,
5427 #ifdef CONFIG_USER_ONLY
5428       .type = ARM_CP_NO_RAW,
5429       .writefn = ic_ivau_write
5430 #else
5431       .type = ARM_CP_NOP
5432 #endif
5433     },
5434     /* Cache ops: all NOPs since we don't emulate caches */
5435     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5436       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5437       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5438       .fgt = FGT_DCIVAC,
5439       .type = ARM_CP_NOP },
5440     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5441       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5442       .fgt = FGT_DCISW,
5443       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5444     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5445       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5446       .access = PL0_W, .type = ARM_CP_NOP,
5447       .fgt = FGT_DCCVAC,
5448       .accessfn = aa64_cacheop_poc_access },
5449     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5450       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5451       .fgt = FGT_DCCSW,
5452       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5453     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5454       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5455       .access = PL0_W, .type = ARM_CP_NOP,
5456       .fgt = FGT_DCCVAU,
5457       .accessfn = access_tocu },
5458     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5459       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5460       .access = PL0_W, .type = ARM_CP_NOP,
5461       .fgt = FGT_DCCIVAC,
5462       .accessfn = aa64_cacheop_poc_access },
5463     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5464       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5465       .fgt = FGT_DCCISW,
5466       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5467     /* TLBI operations */
5468     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5469       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5470       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5471       .fgt = FGT_TLBIVMALLE1IS,
5472       .writefn = tlbi_aa64_vmalle1is_write },
5473     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5474       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5475       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5476       .fgt = FGT_TLBIVAE1IS,
5477       .writefn = tlbi_aa64_vae1is_write },
5478     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5479       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5480       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5481       .fgt = FGT_TLBIASIDE1IS,
5482       .writefn = tlbi_aa64_vmalle1is_write },
5483     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5484       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5485       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5486       .fgt = FGT_TLBIVAAE1IS,
5487       .writefn = tlbi_aa64_vae1is_write },
5488     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5489       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5490       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5491       .fgt = FGT_TLBIVALE1IS,
5492       .writefn = tlbi_aa64_vae1is_write },
5493     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5494       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5495       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5496       .fgt = FGT_TLBIVAALE1IS,
5497       .writefn = tlbi_aa64_vae1is_write },
5498     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5499       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5500       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5501       .fgt = FGT_TLBIVMALLE1,
5502       .writefn = tlbi_aa64_vmalle1_write },
5503     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5504       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5505       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5506       .fgt = FGT_TLBIVAE1,
5507       .writefn = tlbi_aa64_vae1_write },
5508     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5509       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5510       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5511       .fgt = FGT_TLBIASIDE1,
5512       .writefn = tlbi_aa64_vmalle1_write },
5513     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5514       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5515       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5516       .fgt = FGT_TLBIVAAE1,
5517       .writefn = tlbi_aa64_vae1_write },
5518     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5519       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5520       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5521       .fgt = FGT_TLBIVALE1,
5522       .writefn = tlbi_aa64_vae1_write },
5523     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5524       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5525       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5526       .fgt = FGT_TLBIVAALE1,
5527       .writefn = tlbi_aa64_vae1_write },
5528     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5529       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5530       .access = PL2_W, .type = ARM_CP_NO_RAW,
5531       .writefn = tlbi_aa64_ipas2e1is_write },
5532     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5533       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5534       .access = PL2_W, .type = ARM_CP_NO_RAW,
5535       .writefn = tlbi_aa64_ipas2e1is_write },
5536     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5537       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5538       .access = PL2_W, .type = ARM_CP_NO_RAW,
5539       .writefn = tlbi_aa64_alle1is_write },
5540     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5541       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5542       .access = PL2_W, .type = ARM_CP_NO_RAW,
5543       .writefn = tlbi_aa64_alle1is_write },
5544     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5545       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5546       .access = PL2_W, .type = ARM_CP_NO_RAW,
5547       .writefn = tlbi_aa64_ipas2e1_write },
5548     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5549       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5550       .access = PL2_W, .type = ARM_CP_NO_RAW,
5551       .writefn = tlbi_aa64_ipas2e1_write },
5552     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5553       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5554       .access = PL2_W, .type = ARM_CP_NO_RAW,
5555       .writefn = tlbi_aa64_alle1_write },
5556     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5557       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5558       .access = PL2_W, .type = ARM_CP_NO_RAW,
5559       .writefn = tlbi_aa64_alle1is_write },
5560 #ifndef CONFIG_USER_ONLY
5561     /* 64 bit address translation operations */
5562     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5563       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5564       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5565       .fgt = FGT_ATS1E1R,
5566       .accessfn = at_e012_access, .writefn = ats_write64 },
5567     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5568       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5569       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5570       .fgt = FGT_ATS1E1W,
5571       .accessfn = at_e012_access, .writefn = ats_write64 },
5572     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5573       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5574       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5575       .fgt = FGT_ATS1E0R,
5576       .accessfn = at_e012_access, .writefn = ats_write64 },
5577     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5578       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5579       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5580       .fgt = FGT_ATS1E0W,
5581       .accessfn = at_e012_access, .writefn = ats_write64 },
5582     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5583       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5584       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5585       .accessfn = at_e012_access, .writefn = ats_write64 },
5586     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5587       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5588       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5589       .accessfn = at_e012_access, .writefn = ats_write64 },
5590     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5591       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5592       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5593       .accessfn = at_e012_access, .writefn = ats_write64 },
5594     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5595       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5596       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5597       .accessfn = at_e012_access, .writefn = ats_write64 },
5598     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5599     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5600       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5601       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5602       .writefn = ats_write64 },
5603     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5604       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5605       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5606       .writefn = ats_write64 },
5607     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5608       .type = ARM_CP_ALIAS,
5609       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5610       .access = PL1_RW, .resetvalue = 0,
5611       .fgt = FGT_PAR_EL1,
5612       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5613       .writefn = par_write },
5614 #endif
5615     /* TLB invalidate last level of translation table walk */
5616     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5617       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5618       .writefn = tlbimva_is_write },
5619     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5620       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5621       .writefn = tlbimvaa_is_write },
5622     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5623       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5624       .writefn = tlbimva_write },
5625     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5626       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5627       .writefn = tlbimvaa_write },
5628     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5629       .type = ARM_CP_NO_RAW, .access = PL2_W,
5630       .writefn = tlbimva_hyp_write },
5631     { .name = "TLBIMVALHIS",
5632       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5633       .type = ARM_CP_NO_RAW, .access = PL2_W,
5634       .writefn = tlbimva_hyp_is_write },
5635     { .name = "TLBIIPAS2",
5636       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5637       .type = ARM_CP_NO_RAW, .access = PL2_W,
5638       .writefn = tlbiipas2_hyp_write },
5639     { .name = "TLBIIPAS2IS",
5640       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5641       .type = ARM_CP_NO_RAW, .access = PL2_W,
5642       .writefn = tlbiipas2is_hyp_write },
5643     { .name = "TLBIIPAS2L",
5644       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5645       .type = ARM_CP_NO_RAW, .access = PL2_W,
5646       .writefn = tlbiipas2_hyp_write },
5647     { .name = "TLBIIPAS2LIS",
5648       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5649       .type = ARM_CP_NO_RAW, .access = PL2_W,
5650       .writefn = tlbiipas2is_hyp_write },
5651     /* 32 bit cache operations */
5652     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5653       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5654     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5655       .type = ARM_CP_NOP, .access = PL1_W },
5656     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5657       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5658     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5659       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5660     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5661       .type = ARM_CP_NOP, .access = PL1_W },
5662     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5663       .type = ARM_CP_NOP, .access = PL1_W },
5664     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5665       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5666     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5667       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5668     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5669       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5670     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5671       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5672     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5673       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5674     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5675       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5676     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5677       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5678     /* MMU Domain access control / MPU write buffer control */
5679     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5680       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5681       .writefn = dacr_write, .raw_writefn = raw_write,
5682       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5683                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5684     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5685       .type = ARM_CP_ALIAS,
5686       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5687       .access = PL1_RW,
5688       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5689     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5690       .type = ARM_CP_ALIAS,
5691       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5692       .access = PL1_RW,
5693       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5694     /*
5695      * We rely on the access checks not allowing the guest to write to the
5696      * state field when SPSel indicates that it's being used as the stack
5697      * pointer.
5698      */
5699     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5700       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5701       .access = PL1_RW, .accessfn = sp_el0_access,
5702       .type = ARM_CP_ALIAS,
5703       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5704     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5705       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5706       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5707       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5708     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5709       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5710       .type = ARM_CP_NO_RAW,
5711       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5712     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5713       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5714       .access = PL2_RW,
5715       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5716       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5717     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5718       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5719       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5720       .writefn = dacr_write, .raw_writefn = raw_write,
5721       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5722     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5723       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5724       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5725       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5726     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5727       .type = ARM_CP_ALIAS,
5728       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5729       .access = PL2_RW,
5730       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5731     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5732       .type = ARM_CP_ALIAS,
5733       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5734       .access = PL2_RW,
5735       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5736     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5737       .type = ARM_CP_ALIAS,
5738       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5739       .access = PL2_RW,
5740       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5741     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5742       .type = ARM_CP_ALIAS,
5743       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5744       .access = PL2_RW,
5745       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5746     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5747       .type = ARM_CP_IO,
5748       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5749       .resetvalue = 0,
5750       .access = PL3_RW,
5751       .writefn = mdcr_el3_write,
5752       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5753     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5754       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5755       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5756       .writefn = sdcr_write,
5757       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5758 };
5759 
5760 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5761 {
5762     ARMCPU *cpu = env_archcpu(env);
5763 
5764     if (arm_feature(env, ARM_FEATURE_V8)) {
5765         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5766     } else {
5767         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5768     }
5769 
5770     if (arm_feature(env, ARM_FEATURE_EL3)) {
5771         valid_mask &= ~HCR_HCD;
5772     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5773         /*
5774          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5775          * However, if we're using the SMC PSCI conduit then QEMU is
5776          * effectively acting like EL3 firmware and so the guest at
5777          * EL2 should retain the ability to prevent EL1 from being
5778          * able to make SMC calls into the ersatz firmware, so in
5779          * that case HCR.TSC should be read/write.
5780          */
5781         valid_mask &= ~HCR_TSC;
5782     }
5783 
5784     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5785         if (cpu_isar_feature(aa64_vh, cpu)) {
5786             valid_mask |= HCR_E2H;
5787         }
5788         if (cpu_isar_feature(aa64_ras, cpu)) {
5789             valid_mask |= HCR_TERR | HCR_TEA;
5790         }
5791         if (cpu_isar_feature(aa64_lor, cpu)) {
5792             valid_mask |= HCR_TLOR;
5793         }
5794         if (cpu_isar_feature(aa64_pauth, cpu)) {
5795             valid_mask |= HCR_API | HCR_APK;
5796         }
5797         if (cpu_isar_feature(aa64_mte, cpu)) {
5798             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5799         }
5800         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5801             valid_mask |= HCR_ENSCXT;
5802         }
5803         if (cpu_isar_feature(aa64_fwb, cpu)) {
5804             valid_mask |= HCR_FWB;
5805         }
5806         if (cpu_isar_feature(aa64_rme, cpu)) {
5807             valid_mask |= HCR_GPF;
5808         }
5809     }
5810 
5811     if (cpu_isar_feature(any_evt, cpu)) {
5812         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5813     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5814         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5815     }
5816 
5817     /* Clear RES0 bits.  */
5818     value &= valid_mask;
5819 
5820     /*
5821      * These bits change the MMU setup:
5822      * HCR_VM enables stage 2 translation
5823      * HCR_PTW forbids certain page-table setups
5824      * HCR_DC disables stage1 and enables stage2 translation
5825      * HCR_DCT enables tagging on (disabled) stage1 translation
5826      * HCR_FWB changes the interpretation of stage2 descriptor bits
5827      */
5828     if ((env->cp15.hcr_el2 ^ value) &
5829         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5830         tlb_flush(CPU(cpu));
5831     }
5832     env->cp15.hcr_el2 = value;
5833 
5834     /*
5835      * Updates to VI and VF require us to update the status of
5836      * virtual interrupts, which are the logical OR of these bits
5837      * and the state of the input lines from the GIC. (This requires
5838      * that we have the iothread lock, which is done by marking the
5839      * reginfo structs as ARM_CP_IO.)
5840      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5841      * possible for it to be taken immediately, because VIRQ and
5842      * VFIQ are masked unless running at EL0 or EL1, and HCR
5843      * can only be written at EL2.
5844      */
5845     g_assert(qemu_mutex_iothread_locked());
5846     arm_cpu_update_virq(cpu);
5847     arm_cpu_update_vfiq(cpu);
5848     arm_cpu_update_vserr(cpu);
5849 }
5850 
5851 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5852 {
5853     do_hcr_write(env, value, 0);
5854 }
5855 
5856 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5857                           uint64_t value)
5858 {
5859     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5860     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5861     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5862 }
5863 
5864 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5865                          uint64_t value)
5866 {
5867     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5868     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5869     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5870 }
5871 
5872 /*
5873  * Return the effective value of HCR_EL2, at the given security state.
5874  * Bits that are not included here:
5875  * RW       (read from SCR_EL3.RW as needed)
5876  */
5877 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5878 {
5879     uint64_t ret = env->cp15.hcr_el2;
5880 
5881     assert(space != ARMSS_Root);
5882 
5883     if (!arm_is_el2_enabled_secstate(env, space)) {
5884         /*
5885          * "This register has no effect if EL2 is not enabled in the
5886          * current Security state".  This is ARMv8.4-SecEL2 speak for
5887          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5888          *
5889          * Prior to that, the language was "In an implementation that
5890          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5891          * as if this field is 0 for all purposes other than a direct
5892          * read or write access of HCR_EL2".  With lots of enumeration
5893          * on a per-field basis.  In current QEMU, this is condition
5894          * is arm_is_secure_below_el3.
5895          *
5896          * Since the v8.4 language applies to the entire register, and
5897          * appears to be backward compatible, use that.
5898          */
5899         return 0;
5900     }
5901 
5902     /*
5903      * For a cpu that supports both aarch64 and aarch32, we can set bits
5904      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5905      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5906      */
5907     if (!arm_el_is_aa64(env, 2)) {
5908         uint64_t aa32_valid;
5909 
5910         /*
5911          * These bits are up-to-date as of ARMv8.6.
5912          * For HCR, it's easiest to list just the 2 bits that are invalid.
5913          * For HCR2, list those that are valid.
5914          */
5915         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5916         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5917                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5918         ret &= aa32_valid;
5919     }
5920 
5921     if (ret & HCR_TGE) {
5922         /* These bits are up-to-date as of ARMv8.6.  */
5923         if (ret & HCR_E2H) {
5924             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5925                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5926                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5927                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5928                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5929                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5930         } else {
5931             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5932         }
5933         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5934                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5935                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5936                  HCR_TLOR);
5937     }
5938 
5939     return ret;
5940 }
5941 
5942 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5943 {
5944     if (arm_feature(env, ARM_FEATURE_M)) {
5945         return 0;
5946     }
5947     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5948 }
5949 
5950 /*
5951  * Corresponds to ARM pseudocode function ELIsInHost().
5952  */
5953 bool el_is_in_host(CPUARMState *env, int el)
5954 {
5955     uint64_t mask;
5956 
5957     /*
5958      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5959      * Perform the simplest bit tests first, and validate EL2 afterward.
5960      */
5961     if (el & 1) {
5962         return false; /* EL1 or EL3 */
5963     }
5964 
5965     /*
5966      * Note that hcr_write() checks isar_feature_aa64_vh(),
5967      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5968      */
5969     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5970     if ((env->cp15.hcr_el2 & mask) != mask) {
5971         return false;
5972     }
5973 
5974     /* TGE and/or E2H set: double check those bits are currently legal. */
5975     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5976 }
5977 
5978 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5979                        uint64_t value)
5980 {
5981     uint64_t valid_mask = 0;
5982 
5983     /* No features adding bits to HCRX are implemented. */
5984 
5985     /* Clear RES0 bits.  */
5986     env->cp15.hcrx_el2 = value & valid_mask;
5987 }
5988 
5989 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5990                                   bool isread)
5991 {
5992     if (arm_current_el(env) < 3
5993         && arm_feature(env, ARM_FEATURE_EL3)
5994         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5995         return CP_ACCESS_TRAP_EL3;
5996     }
5997     return CP_ACCESS_OK;
5998 }
5999 
6000 static const ARMCPRegInfo hcrx_el2_reginfo = {
6001     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6002     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6003     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6004     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6005 };
6006 
6007 /* Return the effective value of HCRX_EL2.  */
6008 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6009 {
6010     /*
6011      * The bits in this register behave as 0 for all purposes other than
6012      * direct reads of the register if:
6013      *   - EL2 is not enabled in the current security state,
6014      *   - SCR_EL3.HXEn is 0.
6015      */
6016     if (!arm_is_el2_enabled(env)
6017         || (arm_feature(env, ARM_FEATURE_EL3)
6018             && !(env->cp15.scr_el3 & SCR_HXEN))) {
6019         return 0;
6020     }
6021     return env->cp15.hcrx_el2;
6022 }
6023 
6024 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6025                            uint64_t value)
6026 {
6027     /*
6028      * For A-profile AArch32 EL3, if NSACR.CP10
6029      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6030      */
6031     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6032         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6033         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6034         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6035     }
6036     env->cp15.cptr_el[2] = value;
6037 }
6038 
6039 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6040 {
6041     /*
6042      * For A-profile AArch32 EL3, if NSACR.CP10
6043      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6044      */
6045     uint64_t value = env->cp15.cptr_el[2];
6046 
6047     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6048         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6049         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6050     }
6051     return value;
6052 }
6053 
6054 static const ARMCPRegInfo el2_cp_reginfo[] = {
6055     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6056       .type = ARM_CP_IO,
6057       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6058       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6059       .writefn = hcr_write, .raw_writefn = raw_write },
6060     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6061       .type = ARM_CP_ALIAS | ARM_CP_IO,
6062       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6063       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6064       .writefn = hcr_writelow },
6065     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6066       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6067       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6068     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6069       .type = ARM_CP_ALIAS,
6070       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6071       .access = PL2_RW,
6072       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6073     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6074       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6075       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6076     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6077       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6078       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6079     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6080       .type = ARM_CP_ALIAS,
6081       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6082       .access = PL2_RW,
6083       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6084     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6085       .type = ARM_CP_ALIAS,
6086       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6087       .access = PL2_RW,
6088       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6089     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6090       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6091       .access = PL2_RW, .writefn = vbar_write,
6092       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6093       .resetvalue = 0 },
6094     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6095       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6096       .access = PL3_RW, .type = ARM_CP_ALIAS,
6097       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6098     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6099       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6100       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6101       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6102       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6103     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6104       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6105       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6106       .resetvalue = 0 },
6107     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6108       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6109       .access = PL2_RW, .type = ARM_CP_ALIAS,
6110       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6111     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6112       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6113       .access = PL2_RW, .type = ARM_CP_CONST,
6114       .resetvalue = 0 },
6115     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6116     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6117       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6118       .access = PL2_RW, .type = ARM_CP_CONST,
6119       .resetvalue = 0 },
6120     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6121       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6122       .access = PL2_RW, .type = ARM_CP_CONST,
6123       .resetvalue = 0 },
6124     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6125       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6126       .access = PL2_RW, .type = ARM_CP_CONST,
6127       .resetvalue = 0 },
6128     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6129       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6130       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6131       .raw_writefn = raw_write,
6132       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6133     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6134       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6135       .type = ARM_CP_ALIAS,
6136       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6137       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6138     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6139       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6140       .access = PL2_RW,
6141       /* no .writefn needed as this can't cause an ASID change */
6142       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6143     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6144       .cp = 15, .opc1 = 6, .crm = 2,
6145       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6146       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6147       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6148       .writefn = vttbr_write, .raw_writefn = raw_write },
6149     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6150       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6151       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6152       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6153     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6154       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6155       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6156       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6157     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6158       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6159       .access = PL2_RW, .resetvalue = 0,
6160       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6161     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6162       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6163       .access = PL2_RW, .resetvalue = 0,
6164       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6165       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6166     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6167       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6168       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6169     { .name = "TLBIALLNSNH",
6170       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6171       .type = ARM_CP_NO_RAW, .access = PL2_W,
6172       .writefn = tlbiall_nsnh_write },
6173     { .name = "TLBIALLNSNHIS",
6174       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6175       .type = ARM_CP_NO_RAW, .access = PL2_W,
6176       .writefn = tlbiall_nsnh_is_write },
6177     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6178       .type = ARM_CP_NO_RAW, .access = PL2_W,
6179       .writefn = tlbiall_hyp_write },
6180     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6181       .type = ARM_CP_NO_RAW, .access = PL2_W,
6182       .writefn = tlbiall_hyp_is_write },
6183     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6184       .type = ARM_CP_NO_RAW, .access = PL2_W,
6185       .writefn = tlbimva_hyp_write },
6186     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6187       .type = ARM_CP_NO_RAW, .access = PL2_W,
6188       .writefn = tlbimva_hyp_is_write },
6189     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6190       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6191       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6192       .writefn = tlbi_aa64_alle2_write },
6193     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6194       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6195       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6196       .writefn = tlbi_aa64_vae2_write },
6197     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6198       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6199       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6200       .writefn = tlbi_aa64_vae2_write },
6201     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6202       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6203       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6204       .writefn = tlbi_aa64_alle2is_write },
6205     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6206       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6207       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6208       .writefn = tlbi_aa64_vae2is_write },
6209     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6210       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6211       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6212       .writefn = tlbi_aa64_vae2is_write },
6213 #ifndef CONFIG_USER_ONLY
6214     /*
6215      * Unlike the other EL2-related AT operations, these must
6216      * UNDEF from EL3 if EL2 is not implemented, which is why we
6217      * define them here rather than with the rest of the AT ops.
6218      */
6219     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6220       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6221       .access = PL2_W, .accessfn = at_s1e2_access,
6222       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6223       .writefn = ats_write64 },
6224     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6225       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6226       .access = PL2_W, .accessfn = at_s1e2_access,
6227       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6228       .writefn = ats_write64 },
6229     /*
6230      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6231      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6232      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6233      * to behave as if SCR.NS was 1.
6234      */
6235     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6236       .access = PL2_W,
6237       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6238     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6239       .access = PL2_W,
6240       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6241     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6242       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6243       /*
6244        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6245        * reset values as IMPDEF. We choose to reset to 3 to comply with
6246        * both ARMv7 and ARMv8.
6247        */
6248       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6249       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6250       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6251     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6252       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6253       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6254       .writefn = gt_cntvoff_write,
6255       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6256     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6257       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6258       .writefn = gt_cntvoff_write,
6259       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6260     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6261       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6262       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6263       .type = ARM_CP_IO, .access = PL2_RW,
6264       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6265     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6266       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6267       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6268       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6269     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6270       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6271       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6272       .resetfn = gt_hyp_timer_reset,
6273       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6274     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6275       .type = ARM_CP_IO,
6276       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6277       .access = PL2_RW,
6278       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6279       .resetvalue = 0,
6280       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6281 #endif
6282     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6283       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6284       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6285       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6286     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6287       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6288       .access = PL2_RW,
6289       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6290     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6291       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6292       .access = PL2_RW,
6293       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6294 };
6295 
6296 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6297     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6298       .type = ARM_CP_ALIAS | ARM_CP_IO,
6299       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6300       .access = PL2_RW,
6301       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6302       .writefn = hcr_writehigh },
6303 };
6304 
6305 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6306                                   bool isread)
6307 {
6308     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6309         return CP_ACCESS_OK;
6310     }
6311     return CP_ACCESS_TRAP_UNCATEGORIZED;
6312 }
6313 
6314 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6315     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6316       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6317       .access = PL2_RW, .accessfn = sel2_access,
6318       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6319     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6320       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6321       .access = PL2_RW, .accessfn = sel2_access,
6322       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6323 };
6324 
6325 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6326                                    bool isread)
6327 {
6328     /*
6329      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6330      * At Secure EL1 it traps to EL3 or EL2.
6331      */
6332     if (arm_current_el(env) == 3) {
6333         return CP_ACCESS_OK;
6334     }
6335     if (arm_is_secure_below_el3(env)) {
6336         if (env->cp15.scr_el3 & SCR_EEL2) {
6337             return CP_ACCESS_TRAP_EL2;
6338         }
6339         return CP_ACCESS_TRAP_EL3;
6340     }
6341     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6342     if (isread) {
6343         return CP_ACCESS_OK;
6344     }
6345     return CP_ACCESS_TRAP_UNCATEGORIZED;
6346 }
6347 
6348 static const ARMCPRegInfo el3_cp_reginfo[] = {
6349     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6350       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6351       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6352       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6353     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6354       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6355       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6356       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6357       .writefn = scr_write, .raw_writefn = raw_write },
6358     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6359       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6360       .access = PL3_RW, .resetvalue = 0,
6361       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6362     { .name = "SDER",
6363       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6364       .access = PL3_RW, .resetvalue = 0,
6365       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6366     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6367       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6368       .writefn = vbar_write, .resetvalue = 0,
6369       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6370     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6371       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6372       .access = PL3_RW, .resetvalue = 0,
6373       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6374     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6375       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6376       .access = PL3_RW,
6377       /* no .writefn needed as this can't cause an ASID change */
6378       .resetvalue = 0,
6379       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6380     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6381       .type = ARM_CP_ALIAS,
6382       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6383       .access = PL3_RW,
6384       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6385     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6386       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6387       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6388     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6389       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6390       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6391     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6392       .type = ARM_CP_ALIAS,
6393       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6394       .access = PL3_RW,
6395       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6396     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6397       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6398       .access = PL3_RW, .writefn = vbar_write,
6399       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6400       .resetvalue = 0 },
6401     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6402       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6403       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6404       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6405     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6406       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6407       .access = PL3_RW, .resetvalue = 0,
6408       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6409     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6410       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6411       .access = PL3_RW, .type = ARM_CP_CONST,
6412       .resetvalue = 0 },
6413     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6414       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6415       .access = PL3_RW, .type = ARM_CP_CONST,
6416       .resetvalue = 0 },
6417     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6418       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6419       .access = PL3_RW, .type = ARM_CP_CONST,
6420       .resetvalue = 0 },
6421     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6422       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6423       .access = PL3_W, .type = ARM_CP_NO_RAW,
6424       .writefn = tlbi_aa64_alle3is_write },
6425     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6426       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6427       .access = PL3_W, .type = ARM_CP_NO_RAW,
6428       .writefn = tlbi_aa64_vae3is_write },
6429     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6430       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6431       .access = PL3_W, .type = ARM_CP_NO_RAW,
6432       .writefn = tlbi_aa64_vae3is_write },
6433     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6434       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6435       .access = PL3_W, .type = ARM_CP_NO_RAW,
6436       .writefn = tlbi_aa64_alle3_write },
6437     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6438       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6439       .access = PL3_W, .type = ARM_CP_NO_RAW,
6440       .writefn = tlbi_aa64_vae3_write },
6441     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6442       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6443       .access = PL3_W, .type = ARM_CP_NO_RAW,
6444       .writefn = tlbi_aa64_vae3_write },
6445 };
6446 
6447 #ifndef CONFIG_USER_ONLY
6448 /* Test if system register redirection is to occur in the current state.  */
6449 static bool redirect_for_e2h(CPUARMState *env)
6450 {
6451     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6452 }
6453 
6454 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6455 {
6456     CPReadFn *readfn;
6457 
6458     if (redirect_for_e2h(env)) {
6459         /* Switch to the saved EL2 version of the register.  */
6460         ri = ri->opaque;
6461         readfn = ri->readfn;
6462     } else {
6463         readfn = ri->orig_readfn;
6464     }
6465     if (readfn == NULL) {
6466         readfn = raw_read;
6467     }
6468     return readfn(env, ri);
6469 }
6470 
6471 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6472                           uint64_t value)
6473 {
6474     CPWriteFn *writefn;
6475 
6476     if (redirect_for_e2h(env)) {
6477         /* Switch to the saved EL2 version of the register.  */
6478         ri = ri->opaque;
6479         writefn = ri->writefn;
6480     } else {
6481         writefn = ri->orig_writefn;
6482     }
6483     if (writefn == NULL) {
6484         writefn = raw_write;
6485     }
6486     writefn(env, ri, value);
6487 }
6488 
6489 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6490 {
6491     struct E2HAlias {
6492         uint32_t src_key, dst_key, new_key;
6493         const char *src_name, *dst_name, *new_name;
6494         bool (*feature)(const ARMISARegisters *id);
6495     };
6496 
6497 #define K(op0, op1, crn, crm, op2) \
6498     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6499 
6500     static const struct E2HAlias aliases[] = {
6501         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6502           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6503         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6504           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6505         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6506           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6507         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6508           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6509         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6510           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6511         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6512           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6513         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6514           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6515         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6516           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6517         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6518           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6519         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6520           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6521         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6522           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6523         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6524           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6525         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6526           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6527         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6528           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6529         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6530           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6531         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6532           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6533 
6534         /*
6535          * Note that redirection of ZCR is mentioned in the description
6536          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6537          * not in the summary table.
6538          */
6539         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6540           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6541         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6542           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6543 
6544         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6545           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6546 
6547         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6548           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6549           isar_feature_aa64_scxtnum },
6550 
6551         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6552         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6553     };
6554 #undef K
6555 
6556     size_t i;
6557 
6558     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6559         const struct E2HAlias *a = &aliases[i];
6560         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6561         bool ok;
6562 
6563         if (a->feature && !a->feature(&cpu->isar)) {
6564             continue;
6565         }
6566 
6567         src_reg = g_hash_table_lookup(cpu->cp_regs,
6568                                       (gpointer)(uintptr_t)a->src_key);
6569         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6570                                       (gpointer)(uintptr_t)a->dst_key);
6571         g_assert(src_reg != NULL);
6572         g_assert(dst_reg != NULL);
6573 
6574         /* Cross-compare names to detect typos in the keys.  */
6575         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6576         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6577 
6578         /* None of the core system registers use opaque; we will.  */
6579         g_assert(src_reg->opaque == NULL);
6580 
6581         /* Create alias before redirection so we dup the right data. */
6582         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6583 
6584         new_reg->name = a->new_name;
6585         new_reg->type |= ARM_CP_ALIAS;
6586         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6587         new_reg->access &= PL2_RW | PL3_RW;
6588 
6589         ok = g_hash_table_insert(cpu->cp_regs,
6590                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6591         g_assert(ok);
6592 
6593         src_reg->opaque = dst_reg;
6594         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6595         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6596         if (!src_reg->raw_readfn) {
6597             src_reg->raw_readfn = raw_read;
6598         }
6599         if (!src_reg->raw_writefn) {
6600             src_reg->raw_writefn = raw_write;
6601         }
6602         src_reg->readfn = el2_e2h_read;
6603         src_reg->writefn = el2_e2h_write;
6604     }
6605 }
6606 #endif
6607 
6608 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6609                                      bool isread)
6610 {
6611     int cur_el = arm_current_el(env);
6612 
6613     if (cur_el < 2) {
6614         uint64_t hcr = arm_hcr_el2_eff(env);
6615 
6616         if (cur_el == 0) {
6617             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6618                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6619                     return CP_ACCESS_TRAP_EL2;
6620                 }
6621             } else {
6622                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6623                     return CP_ACCESS_TRAP;
6624                 }
6625                 if (hcr & HCR_TID2) {
6626                     return CP_ACCESS_TRAP_EL2;
6627                 }
6628             }
6629         } else if (hcr & HCR_TID2) {
6630             return CP_ACCESS_TRAP_EL2;
6631         }
6632     }
6633 
6634     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6635         return CP_ACCESS_TRAP_EL2;
6636     }
6637 
6638     return CP_ACCESS_OK;
6639 }
6640 
6641 /*
6642  * Check for traps to RAS registers, which are controlled
6643  * by HCR_EL2.TERR and SCR_EL3.TERR.
6644  */
6645 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6646                                   bool isread)
6647 {
6648     int el = arm_current_el(env);
6649 
6650     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6651         return CP_ACCESS_TRAP_EL2;
6652     }
6653     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6654         return CP_ACCESS_TRAP_EL3;
6655     }
6656     return CP_ACCESS_OK;
6657 }
6658 
6659 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6660 {
6661     int el = arm_current_el(env);
6662 
6663     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6664         return env->cp15.vdisr_el2;
6665     }
6666     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6667         return 0; /* RAZ/WI */
6668     }
6669     return env->cp15.disr_el1;
6670 }
6671 
6672 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6673 {
6674     int el = arm_current_el(env);
6675 
6676     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6677         env->cp15.vdisr_el2 = val;
6678         return;
6679     }
6680     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6681         return; /* RAZ/WI */
6682     }
6683     env->cp15.disr_el1 = val;
6684 }
6685 
6686 /*
6687  * Minimal RAS implementation with no Error Records.
6688  * Which means that all of the Error Record registers:
6689  *   ERXADDR_EL1
6690  *   ERXCTLR_EL1
6691  *   ERXFR_EL1
6692  *   ERXMISC0_EL1
6693  *   ERXMISC1_EL1
6694  *   ERXMISC2_EL1
6695  *   ERXMISC3_EL1
6696  *   ERXPFGCDN_EL1  (RASv1p1)
6697  *   ERXPFGCTL_EL1  (RASv1p1)
6698  *   ERXPFGF_EL1    (RASv1p1)
6699  *   ERXSTATUS_EL1
6700  * and
6701  *   ERRSELR_EL1
6702  * may generate UNDEFINED, which is the effect we get by not
6703  * listing them at all.
6704  *
6705  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6706  * is higher priority than FGT-to-EL2 so we do not need to list them
6707  * in order to check for an FGT.
6708  */
6709 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6710     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6711       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6712       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6713       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6714     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6715       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6716       .access = PL1_R, .accessfn = access_terr,
6717       .fgt = FGT_ERRIDR_EL1,
6718       .type = ARM_CP_CONST, .resetvalue = 0 },
6719     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6720       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6721       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6722     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6723       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6724       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6725 };
6726 
6727 /*
6728  * Return the exception level to which exceptions should be taken
6729  * via SVEAccessTrap.  This excludes the check for whether the exception
6730  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6731  * be found by testing 0 < fp_exception_el < sve_exception_el.
6732  *
6733  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6734  * pseudocode does *not* separate out the FP trap checks, but has them
6735  * all in one function.
6736  */
6737 int sve_exception_el(CPUARMState *env, int el)
6738 {
6739 #ifndef CONFIG_USER_ONLY
6740     if (el <= 1 && !el_is_in_host(env, el)) {
6741         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6742         case 1:
6743             if (el != 0) {
6744                 break;
6745             }
6746             /* fall through */
6747         case 0:
6748         case 2:
6749             return 1;
6750         }
6751     }
6752 
6753     if (el <= 2 && arm_is_el2_enabled(env)) {
6754         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6755         if (env->cp15.hcr_el2 & HCR_E2H) {
6756             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6757             case 1:
6758                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6759                     break;
6760                 }
6761                 /* fall through */
6762             case 0:
6763             case 2:
6764                 return 2;
6765             }
6766         } else {
6767             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6768                 return 2;
6769             }
6770         }
6771     }
6772 
6773     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6774     if (arm_feature(env, ARM_FEATURE_EL3)
6775         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6776         return 3;
6777     }
6778 #endif
6779     return 0;
6780 }
6781 
6782 /*
6783  * Return the exception level to which exceptions should be taken for SME.
6784  * C.f. the ARM pseudocode function CheckSMEAccess.
6785  */
6786 int sme_exception_el(CPUARMState *env, int el)
6787 {
6788 #ifndef CONFIG_USER_ONLY
6789     if (el <= 1 && !el_is_in_host(env, el)) {
6790         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6791         case 1:
6792             if (el != 0) {
6793                 break;
6794             }
6795             /* fall through */
6796         case 0:
6797         case 2:
6798             return 1;
6799         }
6800     }
6801 
6802     if (el <= 2 && arm_is_el2_enabled(env)) {
6803         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6804         if (env->cp15.hcr_el2 & HCR_E2H) {
6805             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6806             case 1:
6807                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6808                     break;
6809                 }
6810                 /* fall through */
6811             case 0:
6812             case 2:
6813                 return 2;
6814             }
6815         } else {
6816             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6817                 return 2;
6818             }
6819         }
6820     }
6821 
6822     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6823     if (arm_feature(env, ARM_FEATURE_EL3)
6824         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6825         return 3;
6826     }
6827 #endif
6828     return 0;
6829 }
6830 
6831 /*
6832  * Given that SVE is enabled, return the vector length for EL.
6833  */
6834 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6835 {
6836     ARMCPU *cpu = env_archcpu(env);
6837     uint64_t *cr = env->vfp.zcr_el;
6838     uint32_t map = cpu->sve_vq.map;
6839     uint32_t len = ARM_MAX_VQ - 1;
6840 
6841     if (sm) {
6842         cr = env->vfp.smcr_el;
6843         map = cpu->sme_vq.map;
6844     }
6845 
6846     if (el <= 1 && !el_is_in_host(env, el)) {
6847         len = MIN(len, 0xf & (uint32_t)cr[1]);
6848     }
6849     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6850         len = MIN(len, 0xf & (uint32_t)cr[2]);
6851     }
6852     if (arm_feature(env, ARM_FEATURE_EL3)) {
6853         len = MIN(len, 0xf & (uint32_t)cr[3]);
6854     }
6855 
6856     map &= MAKE_64BIT_MASK(0, len + 1);
6857     if (map != 0) {
6858         return 31 - clz32(map);
6859     }
6860 
6861     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6862     assert(sm);
6863     return ctz32(cpu->sme_vq.map);
6864 }
6865 
6866 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6867 {
6868     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6869 }
6870 
6871 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6872                       uint64_t value)
6873 {
6874     int cur_el = arm_current_el(env);
6875     int old_len = sve_vqm1_for_el(env, cur_el);
6876     int new_len;
6877 
6878     /* Bits other than [3:0] are RAZ/WI.  */
6879     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6880     raw_write(env, ri, value & 0xf);
6881 
6882     /*
6883      * Because we arrived here, we know both FP and SVE are enabled;
6884      * otherwise we would have trapped access to the ZCR_ELn register.
6885      */
6886     new_len = sve_vqm1_for_el(env, cur_el);
6887     if (new_len < old_len) {
6888         aarch64_sve_narrow_vq(env, new_len + 1);
6889     }
6890 }
6891 
6892 static const ARMCPRegInfo zcr_reginfo[] = {
6893     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6894       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6895       .access = PL1_RW, .type = ARM_CP_SVE,
6896       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6897       .writefn = zcr_write, .raw_writefn = raw_write },
6898     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6899       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6900       .access = PL2_RW, .type = ARM_CP_SVE,
6901       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6902       .writefn = zcr_write, .raw_writefn = raw_write },
6903     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6904       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6905       .access = PL3_RW, .type = ARM_CP_SVE,
6906       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6907       .writefn = zcr_write, .raw_writefn = raw_write },
6908 };
6909 
6910 #ifdef TARGET_AARCH64
6911 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6912                                     bool isread)
6913 {
6914     int el = arm_current_el(env);
6915 
6916     if (el == 0) {
6917         uint64_t sctlr = arm_sctlr(env, el);
6918         if (!(sctlr & SCTLR_EnTP2)) {
6919             return CP_ACCESS_TRAP;
6920         }
6921     }
6922     /* TODO: FEAT_FGT */
6923     if (el < 3
6924         && arm_feature(env, ARM_FEATURE_EL3)
6925         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6926         return CP_ACCESS_TRAP_EL3;
6927     }
6928     return CP_ACCESS_OK;
6929 }
6930 
6931 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6932                                  bool isread)
6933 {
6934     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6935     if (arm_current_el(env) < 3
6936         && arm_feature(env, ARM_FEATURE_EL3)
6937         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6938         return CP_ACCESS_TRAP_EL3;
6939     }
6940     return CP_ACCESS_OK;
6941 }
6942 
6943 /* ResetSVEState */
6944 static void arm_reset_sve_state(CPUARMState *env)
6945 {
6946     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6947     /* Recall that FFR is stored as pregs[16]. */
6948     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6949     vfp_set_fpcr(env, 0x0800009f);
6950 }
6951 
6952 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6953 {
6954     uint64_t change = (env->svcr ^ new) & mask;
6955 
6956     if (change == 0) {
6957         return;
6958     }
6959     env->svcr ^= change;
6960 
6961     if (change & R_SVCR_SM_MASK) {
6962         arm_reset_sve_state(env);
6963     }
6964 
6965     /*
6966      * ResetSMEState.
6967      *
6968      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6969      * on enable: while disabled, the storage is inaccessible and the
6970      * value does not matter.  We're not saving the storage in vmstate
6971      * when disabled either.
6972      */
6973     if (change & new & R_SVCR_ZA_MASK) {
6974         memset(env->zarray, 0, sizeof(env->zarray));
6975     }
6976 
6977     if (tcg_enabled()) {
6978         arm_rebuild_hflags(env);
6979     }
6980 }
6981 
6982 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6983                        uint64_t value)
6984 {
6985     aarch64_set_svcr(env, value, -1);
6986 }
6987 
6988 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6989                        uint64_t value)
6990 {
6991     int cur_el = arm_current_el(env);
6992     int old_len = sve_vqm1_for_el(env, cur_el);
6993     int new_len;
6994 
6995     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6996     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6997     raw_write(env, ri, value);
6998 
6999     /*
7000      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7001      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7002      * current values for simplicity.  But for QEMU internals, we must still
7003      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7004      * above aarch64_sve_narrow_vq.
7005      */
7006     new_len = sve_vqm1_for_el(env, cur_el);
7007     if (new_len < old_len) {
7008         aarch64_sve_narrow_vq(env, new_len + 1);
7009     }
7010 }
7011 
7012 static const ARMCPRegInfo sme_reginfo[] = {
7013     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7014       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7015       .access = PL0_RW, .accessfn = access_tpidr2,
7016       .fgt = FGT_NTPIDR2_EL0,
7017       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7018     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7019       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7020       .access = PL0_RW, .type = ARM_CP_SME,
7021       .fieldoffset = offsetof(CPUARMState, svcr),
7022       .writefn = svcr_write, .raw_writefn = raw_write },
7023     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7024       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7025       .access = PL1_RW, .type = ARM_CP_SME,
7026       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7027       .writefn = smcr_write, .raw_writefn = raw_write },
7028     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7029       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7030       .access = PL2_RW, .type = ARM_CP_SME,
7031       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7032       .writefn = smcr_write, .raw_writefn = raw_write },
7033     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7034       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7035       .access = PL3_RW, .type = ARM_CP_SME,
7036       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7037       .writefn = smcr_write, .raw_writefn = raw_write },
7038     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7039       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7040       .access = PL1_R, .accessfn = access_aa64_tid1,
7041       /*
7042        * IMPLEMENTOR = 0 (software)
7043        * REVISION    = 0 (implementation defined)
7044        * SMPS        = 0 (no streaming execution priority in QEMU)
7045        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7046        */
7047       .type = ARM_CP_CONST, .resetvalue = 0, },
7048     /*
7049      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7050      */
7051     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7052       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7053       .access = PL1_RW, .accessfn = access_esm,
7054       .fgt = FGT_NSMPRI_EL1,
7055       .type = ARM_CP_CONST, .resetvalue = 0 },
7056     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7057       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7058       .access = PL2_RW, .accessfn = access_esm,
7059       .type = ARM_CP_CONST, .resetvalue = 0 },
7060 };
7061 
7062 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7063                                   uint64_t value)
7064 {
7065     CPUState *cs = env_cpu(env);
7066 
7067     tlb_flush(cs);
7068 }
7069 
7070 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7071                         uint64_t value)
7072 {
7073     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7074     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7075         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7076         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7077 
7078     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7079 }
7080 
7081 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7082 {
7083     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7084                                      env_archcpu(env)->reset_l0gptsz);
7085 }
7086 
7087 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7088                                     uint64_t value)
7089 {
7090     CPUState *cs = env_cpu(env);
7091 
7092     tlb_flush_all_cpus_synced(cs);
7093 }
7094 
7095 static const ARMCPRegInfo rme_reginfo[] = {
7096     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7097       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7098       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7099       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7100     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7101       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7102       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7103     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7104       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7105       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7106     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7107       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7108       .access = PL3_W, .type = ARM_CP_NO_RAW,
7109       .writefn = tlbi_aa64_paall_write },
7110     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7111       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7112       .access = PL3_W, .type = ARM_CP_NO_RAW,
7113       .writefn = tlbi_aa64_paallos_write },
7114     /*
7115      * QEMU does not have a way to invalidate by physical address, thus
7116      * invalidating a range of physical addresses is accomplished by
7117      * flushing all tlb entries in the outer shareable domain,
7118      * just like PAALLOS.
7119      */
7120     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7121       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7122       .access = PL3_W, .type = ARM_CP_NO_RAW,
7123       .writefn = tlbi_aa64_paallos_write },
7124     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7125       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7126       .access = PL3_W, .type = ARM_CP_NO_RAW,
7127       .writefn = tlbi_aa64_paallos_write },
7128     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7129       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7130       .access = PL3_W, .type = ARM_CP_NOP },
7131 };
7132 
7133 static const ARMCPRegInfo rme_mte_reginfo[] = {
7134     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7135       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7136       .access = PL3_W, .type = ARM_CP_NOP },
7137 };
7138 #endif /* TARGET_AARCH64 */
7139 
7140 static void define_pmu_regs(ARMCPU *cpu)
7141 {
7142     /*
7143      * v7 performance monitor control register: same implementor
7144      * field as main ID register, and we implement four counters in
7145      * addition to the cycle count register.
7146      */
7147     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7148     ARMCPRegInfo pmcr = {
7149         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7150         .access = PL0_RW,
7151         .fgt = FGT_PMCR_EL0,
7152         .type = ARM_CP_IO | ARM_CP_ALIAS,
7153         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7154         .accessfn = pmreg_access, .writefn = pmcr_write,
7155         .raw_writefn = raw_write,
7156     };
7157     ARMCPRegInfo pmcr64 = {
7158         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7159         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7160         .access = PL0_RW, .accessfn = pmreg_access,
7161         .fgt = FGT_PMCR_EL0,
7162         .type = ARM_CP_IO,
7163         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7164         .resetvalue = cpu->isar.reset_pmcr_el0,
7165         .writefn = pmcr_write, .raw_writefn = raw_write,
7166     };
7167 
7168     define_one_arm_cp_reg(cpu, &pmcr);
7169     define_one_arm_cp_reg(cpu, &pmcr64);
7170     for (i = 0; i < pmcrn; i++) {
7171         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7172         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7173         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7174         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7175         ARMCPRegInfo pmev_regs[] = {
7176             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7177               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7178               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7179               .fgt = FGT_PMEVCNTRN_EL0,
7180               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7181               .accessfn = pmreg_access_xevcntr },
7182             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7183               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7184               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7185               .type = ARM_CP_IO,
7186               .fgt = FGT_PMEVCNTRN_EL0,
7187               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7188               .raw_readfn = pmevcntr_rawread,
7189               .raw_writefn = pmevcntr_rawwrite },
7190             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7191               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7192               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7193               .fgt = FGT_PMEVTYPERN_EL0,
7194               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7195               .accessfn = pmreg_access },
7196             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7197               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7198               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7199               .fgt = FGT_PMEVTYPERN_EL0,
7200               .type = ARM_CP_IO,
7201               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7202               .raw_writefn = pmevtyper_rawwrite },
7203         };
7204         define_arm_cp_regs(cpu, pmev_regs);
7205         g_free(pmevcntr_name);
7206         g_free(pmevcntr_el0_name);
7207         g_free(pmevtyper_name);
7208         g_free(pmevtyper_el0_name);
7209     }
7210     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7211         ARMCPRegInfo v81_pmu_regs[] = {
7212             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7213               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7214               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7215               .fgt = FGT_PMCEIDN_EL0,
7216               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7217             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7218               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7219               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7220               .fgt = FGT_PMCEIDN_EL0,
7221               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7222         };
7223         define_arm_cp_regs(cpu, v81_pmu_regs);
7224     }
7225     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7226         static const ARMCPRegInfo v84_pmmir = {
7227             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7228             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7229             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7230             .fgt = FGT_PMMIR_EL1,
7231             .resetvalue = 0
7232         };
7233         define_one_arm_cp_reg(cpu, &v84_pmmir);
7234     }
7235 }
7236 
7237 #ifndef CONFIG_USER_ONLY
7238 /*
7239  * We don't know until after realize whether there's a GICv3
7240  * attached, and that is what registers the gicv3 sysregs.
7241  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7242  * at runtime.
7243  */
7244 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7245 {
7246     ARMCPU *cpu = env_archcpu(env);
7247     uint64_t pfr1 = cpu->isar.id_pfr1;
7248 
7249     if (env->gicv3state) {
7250         pfr1 |= 1 << 28;
7251     }
7252     return pfr1;
7253 }
7254 
7255 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7256 {
7257     ARMCPU *cpu = env_archcpu(env);
7258     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7259 
7260     if (env->gicv3state) {
7261         pfr0 |= 1 << 24;
7262     }
7263     return pfr0;
7264 }
7265 #endif
7266 
7267 /*
7268  * Shared logic between LORID and the rest of the LOR* registers.
7269  * Secure state exclusion has already been dealt with.
7270  */
7271 static CPAccessResult access_lor_ns(CPUARMState *env,
7272                                     const ARMCPRegInfo *ri, bool isread)
7273 {
7274     int el = arm_current_el(env);
7275 
7276     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7277         return CP_ACCESS_TRAP_EL2;
7278     }
7279     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7280         return CP_ACCESS_TRAP_EL3;
7281     }
7282     return CP_ACCESS_OK;
7283 }
7284 
7285 static CPAccessResult access_lor_other(CPUARMState *env,
7286                                        const ARMCPRegInfo *ri, bool isread)
7287 {
7288     if (arm_is_secure_below_el3(env)) {
7289         /* Access denied in secure mode.  */
7290         return CP_ACCESS_TRAP;
7291     }
7292     return access_lor_ns(env, ri, isread);
7293 }
7294 
7295 /*
7296  * A trivial implementation of ARMv8.1-LOR leaves all of these
7297  * registers fixed at 0, which indicates that there are zero
7298  * supported Limited Ordering regions.
7299  */
7300 static const ARMCPRegInfo lor_reginfo[] = {
7301     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7302       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7303       .access = PL1_RW, .accessfn = access_lor_other,
7304       .fgt = FGT_LORSA_EL1,
7305       .type = ARM_CP_CONST, .resetvalue = 0 },
7306     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7307       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7308       .access = PL1_RW, .accessfn = access_lor_other,
7309       .fgt = FGT_LOREA_EL1,
7310       .type = ARM_CP_CONST, .resetvalue = 0 },
7311     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7312       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7313       .access = PL1_RW, .accessfn = access_lor_other,
7314       .fgt = FGT_LORN_EL1,
7315       .type = ARM_CP_CONST, .resetvalue = 0 },
7316     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7317       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7318       .access = PL1_RW, .accessfn = access_lor_other,
7319       .fgt = FGT_LORC_EL1,
7320       .type = ARM_CP_CONST, .resetvalue = 0 },
7321     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7322       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7323       .access = PL1_R, .accessfn = access_lor_ns,
7324       .fgt = FGT_LORID_EL1,
7325       .type = ARM_CP_CONST, .resetvalue = 0 },
7326 };
7327 
7328 #ifdef TARGET_AARCH64
7329 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7330                                    bool isread)
7331 {
7332     int el = arm_current_el(env);
7333 
7334     if (el < 2 &&
7335         arm_is_el2_enabled(env) &&
7336         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7337         return CP_ACCESS_TRAP_EL2;
7338     }
7339     if (el < 3 &&
7340         arm_feature(env, ARM_FEATURE_EL3) &&
7341         !(env->cp15.scr_el3 & SCR_APK)) {
7342         return CP_ACCESS_TRAP_EL3;
7343     }
7344     return CP_ACCESS_OK;
7345 }
7346 
7347 static const ARMCPRegInfo pauth_reginfo[] = {
7348     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7349       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7350       .access = PL1_RW, .accessfn = access_pauth,
7351       .fgt = FGT_APDAKEY,
7352       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7353     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7354       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7355       .access = PL1_RW, .accessfn = access_pauth,
7356       .fgt = FGT_APDAKEY,
7357       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7358     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7359       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7360       .access = PL1_RW, .accessfn = access_pauth,
7361       .fgt = FGT_APDBKEY,
7362       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7363     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7364       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7365       .access = PL1_RW, .accessfn = access_pauth,
7366       .fgt = FGT_APDBKEY,
7367       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7368     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7369       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7370       .access = PL1_RW, .accessfn = access_pauth,
7371       .fgt = FGT_APGAKEY,
7372       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7373     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7374       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7375       .access = PL1_RW, .accessfn = access_pauth,
7376       .fgt = FGT_APGAKEY,
7377       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7378     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7379       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7380       .access = PL1_RW, .accessfn = access_pauth,
7381       .fgt = FGT_APIAKEY,
7382       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7383     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7384       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7385       .access = PL1_RW, .accessfn = access_pauth,
7386       .fgt = FGT_APIAKEY,
7387       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7388     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7389       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7390       .access = PL1_RW, .accessfn = access_pauth,
7391       .fgt = FGT_APIBKEY,
7392       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7393     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7394       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7395       .access = PL1_RW, .accessfn = access_pauth,
7396       .fgt = FGT_APIBKEY,
7397       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7398 };
7399 
7400 static const ARMCPRegInfo tlbirange_reginfo[] = {
7401     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7402       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7403       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7404       .fgt = FGT_TLBIRVAE1IS,
7405       .writefn = tlbi_aa64_rvae1is_write },
7406     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7407       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7408       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7409       .fgt = FGT_TLBIRVAAE1IS,
7410       .writefn = tlbi_aa64_rvae1is_write },
7411    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7412       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7413       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7414       .fgt = FGT_TLBIRVALE1IS,
7415       .writefn = tlbi_aa64_rvae1is_write },
7416     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7417       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7418       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7419       .fgt = FGT_TLBIRVAALE1IS,
7420       .writefn = tlbi_aa64_rvae1is_write },
7421     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7422       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7423       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7424       .fgt = FGT_TLBIRVAE1OS,
7425       .writefn = tlbi_aa64_rvae1is_write },
7426     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7427       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7428       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7429       .fgt = FGT_TLBIRVAAE1OS,
7430       .writefn = tlbi_aa64_rvae1is_write },
7431    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7432       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7433       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7434       .fgt = FGT_TLBIRVALE1OS,
7435       .writefn = tlbi_aa64_rvae1is_write },
7436     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7437       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7438       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7439       .fgt = FGT_TLBIRVAALE1OS,
7440       .writefn = tlbi_aa64_rvae1is_write },
7441     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7442       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7443       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7444       .fgt = FGT_TLBIRVAE1,
7445       .writefn = tlbi_aa64_rvae1_write },
7446     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7447       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7448       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7449       .fgt = FGT_TLBIRVAAE1,
7450       .writefn = tlbi_aa64_rvae1_write },
7451    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7452       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7453       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7454       .fgt = FGT_TLBIRVALE1,
7455       .writefn = tlbi_aa64_rvae1_write },
7456     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7457       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7458       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7459       .fgt = FGT_TLBIRVAALE1,
7460       .writefn = tlbi_aa64_rvae1_write },
7461     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7462       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7463       .access = PL2_W, .type = ARM_CP_NO_RAW,
7464       .writefn = tlbi_aa64_ripas2e1is_write },
7465     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7466       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7467       .access = PL2_W, .type = ARM_CP_NO_RAW,
7468       .writefn = tlbi_aa64_ripas2e1is_write },
7469     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7470       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7471       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7472       .writefn = tlbi_aa64_rvae2is_write },
7473    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7474       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7475       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7476       .writefn = tlbi_aa64_rvae2is_write },
7477     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7478       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7479       .access = PL2_W, .type = ARM_CP_NO_RAW,
7480       .writefn = tlbi_aa64_ripas2e1_write },
7481     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7482       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7483       .access = PL2_W, .type = ARM_CP_NO_RAW,
7484       .writefn = tlbi_aa64_ripas2e1_write },
7485    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7486       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7487       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7488       .writefn = tlbi_aa64_rvae2is_write },
7489    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7490       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7491       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7492       .writefn = tlbi_aa64_rvae2is_write },
7493     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7494       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7495       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7496       .writefn = tlbi_aa64_rvae2_write },
7497    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7498       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7499       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7500       .writefn = tlbi_aa64_rvae2_write },
7501    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7502       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7503       .access = PL3_W, .type = ARM_CP_NO_RAW,
7504       .writefn = tlbi_aa64_rvae3is_write },
7505    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7506       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7507       .access = PL3_W, .type = ARM_CP_NO_RAW,
7508       .writefn = tlbi_aa64_rvae3is_write },
7509    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7510       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7511       .access = PL3_W, .type = ARM_CP_NO_RAW,
7512       .writefn = tlbi_aa64_rvae3is_write },
7513    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7514       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7515       .access = PL3_W, .type = ARM_CP_NO_RAW,
7516       .writefn = tlbi_aa64_rvae3is_write },
7517    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7518       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7519       .access = PL3_W, .type = ARM_CP_NO_RAW,
7520       .writefn = tlbi_aa64_rvae3_write },
7521    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7522       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7523       .access = PL3_W, .type = ARM_CP_NO_RAW,
7524       .writefn = tlbi_aa64_rvae3_write },
7525 };
7526 
7527 static const ARMCPRegInfo tlbios_reginfo[] = {
7528     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7529       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7530       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7531       .fgt = FGT_TLBIVMALLE1OS,
7532       .writefn = tlbi_aa64_vmalle1is_write },
7533     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7534       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7535       .fgt = FGT_TLBIVAE1OS,
7536       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7537       .writefn = tlbi_aa64_vae1is_write },
7538     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7539       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7540       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7541       .fgt = FGT_TLBIASIDE1OS,
7542       .writefn = tlbi_aa64_vmalle1is_write },
7543     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7544       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7545       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7546       .fgt = FGT_TLBIVAAE1OS,
7547       .writefn = tlbi_aa64_vae1is_write },
7548     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7549       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7550       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7551       .fgt = FGT_TLBIVALE1OS,
7552       .writefn = tlbi_aa64_vae1is_write },
7553     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7554       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7555       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7556       .fgt = FGT_TLBIVAALE1OS,
7557       .writefn = tlbi_aa64_vae1is_write },
7558     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7559       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7560       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7561       .writefn = tlbi_aa64_alle2is_write },
7562     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7563       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7564       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7565       .writefn = tlbi_aa64_vae2is_write },
7566    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7567       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7568       .access = PL2_W, .type = ARM_CP_NO_RAW,
7569       .writefn = tlbi_aa64_alle1is_write },
7570     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7571       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7572       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7573       .writefn = tlbi_aa64_vae2is_write },
7574     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7575       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7576       .access = PL2_W, .type = ARM_CP_NO_RAW,
7577       .writefn = tlbi_aa64_alle1is_write },
7578     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7579       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7580       .access = PL2_W, .type = ARM_CP_NOP },
7581     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7582       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7583       .access = PL2_W, .type = ARM_CP_NOP },
7584     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7585       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7586       .access = PL2_W, .type = ARM_CP_NOP },
7587     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7588       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7589       .access = PL2_W, .type = ARM_CP_NOP },
7590     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7591       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7592       .access = PL3_W, .type = ARM_CP_NO_RAW,
7593       .writefn = tlbi_aa64_alle3is_write },
7594     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7595       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7596       .access = PL3_W, .type = ARM_CP_NO_RAW,
7597       .writefn = tlbi_aa64_vae3is_write },
7598     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7599       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7600       .access = PL3_W, .type = ARM_CP_NO_RAW,
7601       .writefn = tlbi_aa64_vae3is_write },
7602 };
7603 
7604 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7605 {
7606     Error *err = NULL;
7607     uint64_t ret;
7608 
7609     /* Success sets NZCV = 0000.  */
7610     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7611 
7612     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7613         /*
7614          * ??? Failed, for unknown reasons in the crypto subsystem.
7615          * The best we can do is log the reason and return the
7616          * timed-out indication to the guest.  There is no reason
7617          * we know to expect this failure to be transitory, so the
7618          * guest may well hang retrying the operation.
7619          */
7620         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7621                       ri->name, error_get_pretty(err));
7622         error_free(err);
7623 
7624         env->ZF = 0; /* NZCF = 0100 */
7625         return 0;
7626     }
7627     return ret;
7628 }
7629 
7630 /* We do not support re-seeding, so the two registers operate the same.  */
7631 static const ARMCPRegInfo rndr_reginfo[] = {
7632     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7633       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7634       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7635       .access = PL0_R, .readfn = rndr_readfn },
7636     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7637       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7638       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7639       .access = PL0_R, .readfn = rndr_readfn },
7640 };
7641 
7642 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7643                           uint64_t value)
7644 {
7645     ARMCPU *cpu = env_archcpu(env);
7646     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7647     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7648     uint64_t vaddr_in = (uint64_t) value;
7649     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7650     void *haddr;
7651     int mem_idx = cpu_mmu_index(env, false);
7652 
7653     /* This won't be crossing page boundaries */
7654     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7655     if (haddr) {
7656 #ifndef CONFIG_USER_ONLY
7657 
7658         ram_addr_t offset;
7659         MemoryRegion *mr;
7660 
7661         /* RCU lock is already being held */
7662         mr = memory_region_from_host(haddr, &offset);
7663 
7664         if (mr) {
7665             memory_region_writeback(mr, offset, dline_size);
7666         }
7667 #endif /*CONFIG_USER_ONLY*/
7668     }
7669 }
7670 
7671 static const ARMCPRegInfo dcpop_reg[] = {
7672     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7673       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7674       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7675       .fgt = FGT_DCCVAP,
7676       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7677 };
7678 
7679 static const ARMCPRegInfo dcpodp_reg[] = {
7680     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7681       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7682       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7683       .fgt = FGT_DCCVADP,
7684       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7685 };
7686 
7687 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7688                                        bool isread)
7689 {
7690     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7691         return CP_ACCESS_TRAP_EL2;
7692     }
7693 
7694     return CP_ACCESS_OK;
7695 }
7696 
7697 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7698                                  bool isread)
7699 {
7700     int el = arm_current_el(env);
7701 
7702     if (el < 2 && arm_is_el2_enabled(env)) {
7703         uint64_t hcr = arm_hcr_el2_eff(env);
7704         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7705             return CP_ACCESS_TRAP_EL2;
7706         }
7707     }
7708     if (el < 3 &&
7709         arm_feature(env, ARM_FEATURE_EL3) &&
7710         !(env->cp15.scr_el3 & SCR_ATA)) {
7711         return CP_ACCESS_TRAP_EL3;
7712     }
7713     return CP_ACCESS_OK;
7714 }
7715 
7716 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7717 {
7718     return env->pstate & PSTATE_TCO;
7719 }
7720 
7721 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7722 {
7723     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7724 }
7725 
7726 static const ARMCPRegInfo mte_reginfo[] = {
7727     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7728       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7729       .access = PL1_RW, .accessfn = access_mte,
7730       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7731     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7732       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7733       .access = PL1_RW, .accessfn = access_mte,
7734       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7735     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7736       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7737       .access = PL2_RW, .accessfn = access_mte,
7738       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7739     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7740       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7741       .access = PL3_RW,
7742       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7743     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7744       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7745       .access = PL1_RW, .accessfn = access_mte,
7746       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7747     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7748       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7749       .access = PL1_RW, .accessfn = access_mte,
7750       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7751     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7752       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7753       .access = PL1_R, .accessfn = access_aa64_tid5,
7754       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7755     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7756       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7757       .type = ARM_CP_NO_RAW,
7758       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7759     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7760       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7761       .type = ARM_CP_NOP, .access = PL1_W,
7762       .fgt = FGT_DCIVAC,
7763       .accessfn = aa64_cacheop_poc_access },
7764     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7765       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7766       .fgt = FGT_DCISW,
7767       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7768     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7769       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7770       .type = ARM_CP_NOP, .access = PL1_W,
7771       .fgt = FGT_DCIVAC,
7772       .accessfn = aa64_cacheop_poc_access },
7773     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7774       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7775       .fgt = FGT_DCISW,
7776       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7777     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7778       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7779       .fgt = FGT_DCCSW,
7780       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7781     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7782       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7783       .fgt = FGT_DCCSW,
7784       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7785     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7786       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7787       .fgt = FGT_DCCISW,
7788       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7789     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7790       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7791       .fgt = FGT_DCCISW,
7792       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7793 };
7794 
7795 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7796     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7797       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7798       .type = ARM_CP_CONST, .access = PL0_RW, },
7799 };
7800 
7801 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7802     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7803       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7804       .type = ARM_CP_NOP, .access = PL0_W,
7805       .fgt = FGT_DCCVAC,
7806       .accessfn = aa64_cacheop_poc_access },
7807     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7808       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7809       .type = ARM_CP_NOP, .access = PL0_W,
7810       .fgt = FGT_DCCVAC,
7811       .accessfn = aa64_cacheop_poc_access },
7812     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7813       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7814       .type = ARM_CP_NOP, .access = PL0_W,
7815       .fgt = FGT_DCCVAP,
7816       .accessfn = aa64_cacheop_poc_access },
7817     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7818       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7819       .type = ARM_CP_NOP, .access = PL0_W,
7820       .fgt = FGT_DCCVAP,
7821       .accessfn = aa64_cacheop_poc_access },
7822     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7823       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7824       .type = ARM_CP_NOP, .access = PL0_W,
7825       .fgt = FGT_DCCVADP,
7826       .accessfn = aa64_cacheop_poc_access },
7827     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7828       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7829       .type = ARM_CP_NOP, .access = PL0_W,
7830       .fgt = FGT_DCCVADP,
7831       .accessfn = aa64_cacheop_poc_access },
7832     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7833       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7834       .type = ARM_CP_NOP, .access = PL0_W,
7835       .fgt = FGT_DCCIVAC,
7836       .accessfn = aa64_cacheop_poc_access },
7837     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7838       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7839       .type = ARM_CP_NOP, .access = PL0_W,
7840       .fgt = FGT_DCCIVAC,
7841       .accessfn = aa64_cacheop_poc_access },
7842     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7843       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7844       .access = PL0_W, .type = ARM_CP_DC_GVA,
7845 #ifndef CONFIG_USER_ONLY
7846       /* Avoid overhead of an access check that always passes in user-mode */
7847       .accessfn = aa64_zva_access,
7848       .fgt = FGT_DCZVA,
7849 #endif
7850     },
7851     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7852       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7853       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7854 #ifndef CONFIG_USER_ONLY
7855       /* Avoid overhead of an access check that always passes in user-mode */
7856       .accessfn = aa64_zva_access,
7857       .fgt = FGT_DCZVA,
7858 #endif
7859     },
7860 };
7861 
7862 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7863                                      bool isread)
7864 {
7865     uint64_t hcr = arm_hcr_el2_eff(env);
7866     int el = arm_current_el(env);
7867 
7868     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7869         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7870             if (hcr & HCR_TGE) {
7871                 return CP_ACCESS_TRAP_EL2;
7872             }
7873             return CP_ACCESS_TRAP;
7874         }
7875     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7876         return CP_ACCESS_TRAP_EL2;
7877     }
7878     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7879         return CP_ACCESS_TRAP_EL2;
7880     }
7881     if (el < 3
7882         && arm_feature(env, ARM_FEATURE_EL3)
7883         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7884         return CP_ACCESS_TRAP_EL3;
7885     }
7886     return CP_ACCESS_OK;
7887 }
7888 
7889 static const ARMCPRegInfo scxtnum_reginfo[] = {
7890     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7891       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7892       .access = PL0_RW, .accessfn = access_scxtnum,
7893       .fgt = FGT_SCXTNUM_EL0,
7894       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7895     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7896       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7897       .access = PL1_RW, .accessfn = access_scxtnum,
7898       .fgt = FGT_SCXTNUM_EL1,
7899       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7900     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7901       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7902       .access = PL2_RW, .accessfn = access_scxtnum,
7903       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7904     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7905       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7906       .access = PL3_RW,
7907       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7908 };
7909 
7910 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7911                                  bool isread)
7912 {
7913     if (arm_current_el(env) == 2 &&
7914         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7915         return CP_ACCESS_TRAP_EL3;
7916     }
7917     return CP_ACCESS_OK;
7918 }
7919 
7920 static const ARMCPRegInfo fgt_reginfo[] = {
7921     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7922       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7923       .access = PL2_RW, .accessfn = access_fgt,
7924       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7925     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7926       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7927       .access = PL2_RW, .accessfn = access_fgt,
7928       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7929     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7930       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7931       .access = PL2_RW, .accessfn = access_fgt,
7932       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7933     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7934       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7935       .access = PL2_RW, .accessfn = access_fgt,
7936       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7937     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7938       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7939       .access = PL2_RW, .accessfn = access_fgt,
7940       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7941 };
7942 #endif /* TARGET_AARCH64 */
7943 
7944 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7945                                      bool isread)
7946 {
7947     int el = arm_current_el(env);
7948 
7949     if (el == 0) {
7950         uint64_t sctlr = arm_sctlr(env, el);
7951         if (!(sctlr & SCTLR_EnRCTX)) {
7952             return CP_ACCESS_TRAP;
7953         }
7954     } else if (el == 1) {
7955         uint64_t hcr = arm_hcr_el2_eff(env);
7956         if (hcr & HCR_NV) {
7957             return CP_ACCESS_TRAP_EL2;
7958         }
7959     }
7960     return CP_ACCESS_OK;
7961 }
7962 
7963 static const ARMCPRegInfo predinv_reginfo[] = {
7964     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7965       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7966       .fgt = FGT_CFPRCTX,
7967       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7968     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7969       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7970       .fgt = FGT_DVPRCTX,
7971       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7972     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7973       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7974       .fgt = FGT_CPPRCTX,
7975       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7976     /*
7977      * Note the AArch32 opcodes have a different OPC1.
7978      */
7979     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7980       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7981       .fgt = FGT_CFPRCTX,
7982       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7983     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7984       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7985       .fgt = FGT_DVPRCTX,
7986       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7987     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7988       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7989       .fgt = FGT_CPPRCTX,
7990       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7991 };
7992 
7993 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7994 {
7995     /* Read the high 32 bits of the current CCSIDR */
7996     return extract64(ccsidr_read(env, ri), 32, 32);
7997 }
7998 
7999 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8000     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8001       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8002       .access = PL1_R,
8003       .accessfn = access_tid4,
8004       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8005 };
8006 
8007 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8008                                        bool isread)
8009 {
8010     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8011         return CP_ACCESS_TRAP_EL2;
8012     }
8013 
8014     return CP_ACCESS_OK;
8015 }
8016 
8017 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8018                                        bool isread)
8019 {
8020     if (arm_feature(env, ARM_FEATURE_V8)) {
8021         return access_aa64_tid3(env, ri, isread);
8022     }
8023 
8024     return CP_ACCESS_OK;
8025 }
8026 
8027 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8028                                      bool isread)
8029 {
8030     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8031         return CP_ACCESS_TRAP_EL2;
8032     }
8033 
8034     return CP_ACCESS_OK;
8035 }
8036 
8037 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8038                                         const ARMCPRegInfo *ri, bool isread)
8039 {
8040     /*
8041      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8042      * in v7A, not in v8A.
8043      */
8044     if (!arm_feature(env, ARM_FEATURE_V8) &&
8045         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8046         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8047         return CP_ACCESS_TRAP_EL2;
8048     }
8049     return CP_ACCESS_OK;
8050 }
8051 
8052 static const ARMCPRegInfo jazelle_regs[] = {
8053     { .name = "JIDR",
8054       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8055       .access = PL1_R, .accessfn = access_jazelle,
8056       .type = ARM_CP_CONST, .resetvalue = 0 },
8057     { .name = "JOSCR",
8058       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8059       .accessfn = access_joscr_jmcr,
8060       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8061     { .name = "JMCR",
8062       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8063       .accessfn = access_joscr_jmcr,
8064       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8065 };
8066 
8067 static const ARMCPRegInfo contextidr_el2 = {
8068     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8069     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8070     .access = PL2_RW,
8071     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8072 };
8073 
8074 static const ARMCPRegInfo vhe_reginfo[] = {
8075     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8076       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8077       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8078       .raw_writefn = raw_write,
8079       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8080 #ifndef CONFIG_USER_ONLY
8081     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8082       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8083       .fieldoffset =
8084         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8085       .type = ARM_CP_IO, .access = PL2_RW,
8086       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8087     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8088       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8089       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8090       .resetfn = gt_hv_timer_reset,
8091       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8092     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8093       .type = ARM_CP_IO,
8094       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8095       .access = PL2_RW,
8096       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8097       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8098     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8099       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8100       .type = ARM_CP_IO | ARM_CP_ALIAS,
8101       .access = PL2_RW, .accessfn = e2h_access,
8102       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8103       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8104     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8105       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8106       .type = ARM_CP_IO | ARM_CP_ALIAS,
8107       .access = PL2_RW, .accessfn = e2h_access,
8108       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8109       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8110     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8111       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8112       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8113       .access = PL2_RW, .accessfn = e2h_access,
8114       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8115     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8116       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8117       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8118       .access = PL2_RW, .accessfn = e2h_access,
8119       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8120     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8121       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8122       .type = ARM_CP_IO | ARM_CP_ALIAS,
8123       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8124       .access = PL2_RW, .accessfn = e2h_access,
8125       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8126     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8127       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8128       .type = ARM_CP_IO | ARM_CP_ALIAS,
8129       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8130       .access = PL2_RW, .accessfn = e2h_access,
8131       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8132 #endif
8133 };
8134 
8135 #ifndef CONFIG_USER_ONLY
8136 static const ARMCPRegInfo ats1e1_reginfo[] = {
8137     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8138       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8139       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8140       .fgt = FGT_ATS1E1RP,
8141       .accessfn = at_e012_access, .writefn = ats_write64 },
8142     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8143       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8144       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8145       .fgt = FGT_ATS1E1WP,
8146       .accessfn = at_e012_access, .writefn = ats_write64 },
8147 };
8148 
8149 static const ARMCPRegInfo ats1cp_reginfo[] = {
8150     { .name = "ATS1CPRP",
8151       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8152       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8153       .writefn = ats_write },
8154     { .name = "ATS1CPWP",
8155       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8156       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8157       .writefn = ats_write },
8158 };
8159 #endif
8160 
8161 /*
8162  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8163  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8164  * is non-zero, which is never for ARMv7, optionally in ARMv8
8165  * and mandatorily for ARMv8.2 and up.
8166  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8167  * implementation is RAZ/WI we can ignore this detail, as we
8168  * do for ACTLR.
8169  */
8170 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8171     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8172       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8173       .access = PL1_RW, .accessfn = access_tacr,
8174       .type = ARM_CP_CONST, .resetvalue = 0 },
8175     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8176       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8177       .access = PL2_RW, .type = ARM_CP_CONST,
8178       .resetvalue = 0 },
8179 };
8180 
8181 void register_cp_regs_for_features(ARMCPU *cpu)
8182 {
8183     /* Register all the coprocessor registers based on feature bits */
8184     CPUARMState *env = &cpu->env;
8185     if (arm_feature(env, ARM_FEATURE_M)) {
8186         /* M profile has no coprocessor registers */
8187         return;
8188     }
8189 
8190     define_arm_cp_regs(cpu, cp_reginfo);
8191     if (!arm_feature(env, ARM_FEATURE_V8)) {
8192         /*
8193          * Must go early as it is full of wildcards that may be
8194          * overridden by later definitions.
8195          */
8196         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8197     }
8198 
8199     if (arm_feature(env, ARM_FEATURE_V6)) {
8200         /* The ID registers all have impdef reset values */
8201         ARMCPRegInfo v6_idregs[] = {
8202             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8203               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8204               .access = PL1_R, .type = ARM_CP_CONST,
8205               .accessfn = access_aa32_tid3,
8206               .resetvalue = cpu->isar.id_pfr0 },
8207             /*
8208              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8209              * the value of the GIC field until after we define these regs.
8210              */
8211             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8212               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8213               .access = PL1_R, .type = ARM_CP_NO_RAW,
8214               .accessfn = access_aa32_tid3,
8215 #ifdef CONFIG_USER_ONLY
8216               .type = ARM_CP_CONST,
8217               .resetvalue = cpu->isar.id_pfr1,
8218 #else
8219               .type = ARM_CP_NO_RAW,
8220               .accessfn = access_aa32_tid3,
8221               .readfn = id_pfr1_read,
8222               .writefn = arm_cp_write_ignore
8223 #endif
8224             },
8225             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8226               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8227               .access = PL1_R, .type = ARM_CP_CONST,
8228               .accessfn = access_aa32_tid3,
8229               .resetvalue = cpu->isar.id_dfr0 },
8230             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8231               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8232               .access = PL1_R, .type = ARM_CP_CONST,
8233               .accessfn = access_aa32_tid3,
8234               .resetvalue = cpu->id_afr0 },
8235             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8236               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8237               .access = PL1_R, .type = ARM_CP_CONST,
8238               .accessfn = access_aa32_tid3,
8239               .resetvalue = cpu->isar.id_mmfr0 },
8240             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8241               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8242               .access = PL1_R, .type = ARM_CP_CONST,
8243               .accessfn = access_aa32_tid3,
8244               .resetvalue = cpu->isar.id_mmfr1 },
8245             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8246               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8247               .access = PL1_R, .type = ARM_CP_CONST,
8248               .accessfn = access_aa32_tid3,
8249               .resetvalue = cpu->isar.id_mmfr2 },
8250             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8251               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8252               .access = PL1_R, .type = ARM_CP_CONST,
8253               .accessfn = access_aa32_tid3,
8254               .resetvalue = cpu->isar.id_mmfr3 },
8255             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8256               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8257               .access = PL1_R, .type = ARM_CP_CONST,
8258               .accessfn = access_aa32_tid3,
8259               .resetvalue = cpu->isar.id_isar0 },
8260             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8261               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8262               .access = PL1_R, .type = ARM_CP_CONST,
8263               .accessfn = access_aa32_tid3,
8264               .resetvalue = cpu->isar.id_isar1 },
8265             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8266               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8267               .access = PL1_R, .type = ARM_CP_CONST,
8268               .accessfn = access_aa32_tid3,
8269               .resetvalue = cpu->isar.id_isar2 },
8270             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8271               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8272               .access = PL1_R, .type = ARM_CP_CONST,
8273               .accessfn = access_aa32_tid3,
8274               .resetvalue = cpu->isar.id_isar3 },
8275             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8276               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8277               .access = PL1_R, .type = ARM_CP_CONST,
8278               .accessfn = access_aa32_tid3,
8279               .resetvalue = cpu->isar.id_isar4 },
8280             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8281               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8282               .access = PL1_R, .type = ARM_CP_CONST,
8283               .accessfn = access_aa32_tid3,
8284               .resetvalue = cpu->isar.id_isar5 },
8285             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8286               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8287               .access = PL1_R, .type = ARM_CP_CONST,
8288               .accessfn = access_aa32_tid3,
8289               .resetvalue = cpu->isar.id_mmfr4 },
8290             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8291               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8292               .access = PL1_R, .type = ARM_CP_CONST,
8293               .accessfn = access_aa32_tid3,
8294               .resetvalue = cpu->isar.id_isar6 },
8295         };
8296         define_arm_cp_regs(cpu, v6_idregs);
8297         define_arm_cp_regs(cpu, v6_cp_reginfo);
8298     } else {
8299         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8300     }
8301     if (arm_feature(env, ARM_FEATURE_V6K)) {
8302         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8303     }
8304     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8305         !arm_feature(env, ARM_FEATURE_PMSA)) {
8306         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8307     }
8308     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8309         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8310     }
8311     if (arm_feature(env, ARM_FEATURE_V7)) {
8312         ARMCPRegInfo clidr = {
8313             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8314             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8315             .access = PL1_R, .type = ARM_CP_CONST,
8316             .accessfn = access_tid4,
8317             .fgt = FGT_CLIDR_EL1,
8318             .resetvalue = cpu->clidr
8319         };
8320         define_one_arm_cp_reg(cpu, &clidr);
8321         define_arm_cp_regs(cpu, v7_cp_reginfo);
8322         define_debug_regs(cpu);
8323         define_pmu_regs(cpu);
8324     } else {
8325         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8326     }
8327     if (arm_feature(env, ARM_FEATURE_V8)) {
8328         /*
8329          * v8 ID registers, which all have impdef reset values.
8330          * Note that within the ID register ranges the unused slots
8331          * must all RAZ, not UNDEF; future architecture versions may
8332          * define new registers here.
8333          * ID registers which are AArch64 views of the AArch32 ID registers
8334          * which already existed in v6 and v7 are handled elsewhere,
8335          * in v6_idregs[].
8336          */
8337         int i;
8338         ARMCPRegInfo v8_idregs[] = {
8339             /*
8340              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8341              * emulation because we don't know the right value for the
8342              * GIC field until after we define these regs.
8343              */
8344             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8345               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8346               .access = PL1_R,
8347 #ifdef CONFIG_USER_ONLY
8348               .type = ARM_CP_CONST,
8349               .resetvalue = cpu->isar.id_aa64pfr0
8350 #else
8351               .type = ARM_CP_NO_RAW,
8352               .accessfn = access_aa64_tid3,
8353               .readfn = id_aa64pfr0_read,
8354               .writefn = arm_cp_write_ignore
8355 #endif
8356             },
8357             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8358               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8359               .access = PL1_R, .type = ARM_CP_CONST,
8360               .accessfn = access_aa64_tid3,
8361               .resetvalue = cpu->isar.id_aa64pfr1},
8362             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8363               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8364               .access = PL1_R, .type = ARM_CP_CONST,
8365               .accessfn = access_aa64_tid3,
8366               .resetvalue = 0 },
8367             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8368               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8369               .access = PL1_R, .type = ARM_CP_CONST,
8370               .accessfn = access_aa64_tid3,
8371               .resetvalue = 0 },
8372             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8373               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8374               .access = PL1_R, .type = ARM_CP_CONST,
8375               .accessfn = access_aa64_tid3,
8376               .resetvalue = cpu->isar.id_aa64zfr0 },
8377             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8378               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8379               .access = PL1_R, .type = ARM_CP_CONST,
8380               .accessfn = access_aa64_tid3,
8381               .resetvalue = cpu->isar.id_aa64smfr0 },
8382             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8383               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8384               .access = PL1_R, .type = ARM_CP_CONST,
8385               .accessfn = access_aa64_tid3,
8386               .resetvalue = 0 },
8387             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8388               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8389               .access = PL1_R, .type = ARM_CP_CONST,
8390               .accessfn = access_aa64_tid3,
8391               .resetvalue = 0 },
8392             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8393               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8394               .access = PL1_R, .type = ARM_CP_CONST,
8395               .accessfn = access_aa64_tid3,
8396               .resetvalue = cpu->isar.id_aa64dfr0 },
8397             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8398               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8399               .access = PL1_R, .type = ARM_CP_CONST,
8400               .accessfn = access_aa64_tid3,
8401               .resetvalue = cpu->isar.id_aa64dfr1 },
8402             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8403               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8404               .access = PL1_R, .type = ARM_CP_CONST,
8405               .accessfn = access_aa64_tid3,
8406               .resetvalue = 0 },
8407             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8408               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8409               .access = PL1_R, .type = ARM_CP_CONST,
8410               .accessfn = access_aa64_tid3,
8411               .resetvalue = 0 },
8412             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8413               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8414               .access = PL1_R, .type = ARM_CP_CONST,
8415               .accessfn = access_aa64_tid3,
8416               .resetvalue = cpu->id_aa64afr0 },
8417             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8418               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8419               .access = PL1_R, .type = ARM_CP_CONST,
8420               .accessfn = access_aa64_tid3,
8421               .resetvalue = cpu->id_aa64afr1 },
8422             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8423               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8424               .access = PL1_R, .type = ARM_CP_CONST,
8425               .accessfn = access_aa64_tid3,
8426               .resetvalue = 0 },
8427             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8428               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8429               .access = PL1_R, .type = ARM_CP_CONST,
8430               .accessfn = access_aa64_tid3,
8431               .resetvalue = 0 },
8432             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8433               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8434               .access = PL1_R, .type = ARM_CP_CONST,
8435               .accessfn = access_aa64_tid3,
8436               .resetvalue = cpu->isar.id_aa64isar0 },
8437             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8438               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8439               .access = PL1_R, .type = ARM_CP_CONST,
8440               .accessfn = access_aa64_tid3,
8441               .resetvalue = cpu->isar.id_aa64isar1 },
8442             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8443               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8444               .access = PL1_R, .type = ARM_CP_CONST,
8445               .accessfn = access_aa64_tid3,
8446               .resetvalue = 0 },
8447             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8448               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8449               .access = PL1_R, .type = ARM_CP_CONST,
8450               .accessfn = access_aa64_tid3,
8451               .resetvalue = 0 },
8452             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8453               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8454               .access = PL1_R, .type = ARM_CP_CONST,
8455               .accessfn = access_aa64_tid3,
8456               .resetvalue = 0 },
8457             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8458               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8459               .access = PL1_R, .type = ARM_CP_CONST,
8460               .accessfn = access_aa64_tid3,
8461               .resetvalue = 0 },
8462             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8463               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8464               .access = PL1_R, .type = ARM_CP_CONST,
8465               .accessfn = access_aa64_tid3,
8466               .resetvalue = 0 },
8467             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8468               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8469               .access = PL1_R, .type = ARM_CP_CONST,
8470               .accessfn = access_aa64_tid3,
8471               .resetvalue = 0 },
8472             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8473               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8474               .access = PL1_R, .type = ARM_CP_CONST,
8475               .accessfn = access_aa64_tid3,
8476               .resetvalue = cpu->isar.id_aa64mmfr0 },
8477             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8478               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8479               .access = PL1_R, .type = ARM_CP_CONST,
8480               .accessfn = access_aa64_tid3,
8481               .resetvalue = cpu->isar.id_aa64mmfr1 },
8482             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8483               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8484               .access = PL1_R, .type = ARM_CP_CONST,
8485               .accessfn = access_aa64_tid3,
8486               .resetvalue = cpu->isar.id_aa64mmfr2 },
8487             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8488               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8489               .access = PL1_R, .type = ARM_CP_CONST,
8490               .accessfn = access_aa64_tid3,
8491               .resetvalue = 0 },
8492             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8493               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8494               .access = PL1_R, .type = ARM_CP_CONST,
8495               .accessfn = access_aa64_tid3,
8496               .resetvalue = 0 },
8497             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8498               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8499               .access = PL1_R, .type = ARM_CP_CONST,
8500               .accessfn = access_aa64_tid3,
8501               .resetvalue = 0 },
8502             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8503               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8504               .access = PL1_R, .type = ARM_CP_CONST,
8505               .accessfn = access_aa64_tid3,
8506               .resetvalue = 0 },
8507             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8508               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8509               .access = PL1_R, .type = ARM_CP_CONST,
8510               .accessfn = access_aa64_tid3,
8511               .resetvalue = 0 },
8512             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8513               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8514               .access = PL1_R, .type = ARM_CP_CONST,
8515               .accessfn = access_aa64_tid3,
8516               .resetvalue = cpu->isar.mvfr0 },
8517             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8518               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8519               .access = PL1_R, .type = ARM_CP_CONST,
8520               .accessfn = access_aa64_tid3,
8521               .resetvalue = cpu->isar.mvfr1 },
8522             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8523               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8524               .access = PL1_R, .type = ARM_CP_CONST,
8525               .accessfn = access_aa64_tid3,
8526               .resetvalue = cpu->isar.mvfr2 },
8527             /*
8528              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8529              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8530              * as RAZ, since it is in the "reserved for future ID
8531              * registers, RAZ" part of the AArch32 encoding space.
8532              */
8533             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8534               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8535               .access = PL1_R, .type = ARM_CP_CONST,
8536               .accessfn = access_aa64_tid3,
8537               .resetvalue = 0 },
8538             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8539               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8540               .access = PL1_R, .type = ARM_CP_CONST,
8541               .accessfn = access_aa64_tid3,
8542               .resetvalue = 0 },
8543             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8544               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8545               .access = PL1_R, .type = ARM_CP_CONST,
8546               .accessfn = access_aa64_tid3,
8547               .resetvalue = 0 },
8548             /*
8549              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8550              * they're also RAZ for AArch64, and in v8 are gradually
8551              * being filled with AArch64-view-of-AArch32-ID-register
8552              * for new ID registers.
8553              */
8554             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8555               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8556               .access = PL1_R, .type = ARM_CP_CONST,
8557               .accessfn = access_aa64_tid3,
8558               .resetvalue = 0 },
8559             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8561               .access = PL1_R, .type = ARM_CP_CONST,
8562               .accessfn = access_aa64_tid3,
8563               .resetvalue = cpu->isar.id_pfr2 },
8564             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8565               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8566               .access = PL1_R, .type = ARM_CP_CONST,
8567               .accessfn = access_aa64_tid3,
8568               .resetvalue = cpu->isar.id_dfr1 },
8569             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8570               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8571               .access = PL1_R, .type = ARM_CP_CONST,
8572               .accessfn = access_aa64_tid3,
8573               .resetvalue = cpu->isar.id_mmfr5 },
8574             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8575               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8576               .access = PL1_R, .type = ARM_CP_CONST,
8577               .accessfn = access_aa64_tid3,
8578               .resetvalue = 0 },
8579             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8580               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8581               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8582               .fgt = FGT_PMCEIDN_EL0,
8583               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8584             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8585               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8586               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8587               .fgt = FGT_PMCEIDN_EL0,
8588               .resetvalue = cpu->pmceid0 },
8589             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8590               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8591               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8592               .fgt = FGT_PMCEIDN_EL0,
8593               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8594             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8595               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8596               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8597               .fgt = FGT_PMCEIDN_EL0,
8598               .resetvalue = cpu->pmceid1 },
8599         };
8600 #ifdef CONFIG_USER_ONLY
8601         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8602             { .name = "ID_AA64PFR0_EL1",
8603               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8604                                R_ID_AA64PFR0_ADVSIMD_MASK |
8605                                R_ID_AA64PFR0_SVE_MASK |
8606                                R_ID_AA64PFR0_DIT_MASK,
8607               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8608                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8609             { .name = "ID_AA64PFR1_EL1",
8610               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8611                                R_ID_AA64PFR1_SSBS_MASK |
8612                                R_ID_AA64PFR1_MTE_MASK |
8613                                R_ID_AA64PFR1_SME_MASK },
8614             { .name = "ID_AA64PFR*_EL1_RESERVED",
8615               .is_glob = true },
8616             { .name = "ID_AA64ZFR0_EL1",
8617               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8618                                R_ID_AA64ZFR0_AES_MASK |
8619                                R_ID_AA64ZFR0_BITPERM_MASK |
8620                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8621                                R_ID_AA64ZFR0_SHA3_MASK |
8622                                R_ID_AA64ZFR0_SM4_MASK |
8623                                R_ID_AA64ZFR0_I8MM_MASK |
8624                                R_ID_AA64ZFR0_F32MM_MASK |
8625                                R_ID_AA64ZFR0_F64MM_MASK },
8626             { .name = "ID_AA64SMFR0_EL1",
8627               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8628                                R_ID_AA64SMFR0_B16F32_MASK |
8629                                R_ID_AA64SMFR0_F16F32_MASK |
8630                                R_ID_AA64SMFR0_I8I32_MASK |
8631                                R_ID_AA64SMFR0_F64F64_MASK |
8632                                R_ID_AA64SMFR0_I16I64_MASK |
8633                                R_ID_AA64SMFR0_FA64_MASK },
8634             { .name = "ID_AA64MMFR0_EL1",
8635               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8636               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8637                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8638             { .name = "ID_AA64MMFR1_EL1",
8639               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8640             { .name = "ID_AA64MMFR2_EL1",
8641               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8642             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8643               .is_glob = true },
8644             { .name = "ID_AA64DFR0_EL1",
8645               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8646             { .name = "ID_AA64DFR1_EL1" },
8647             { .name = "ID_AA64DFR*_EL1_RESERVED",
8648               .is_glob = true },
8649             { .name = "ID_AA64AFR*",
8650               .is_glob = true },
8651             { .name = "ID_AA64ISAR0_EL1",
8652               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8653                                R_ID_AA64ISAR0_SHA1_MASK |
8654                                R_ID_AA64ISAR0_SHA2_MASK |
8655                                R_ID_AA64ISAR0_CRC32_MASK |
8656                                R_ID_AA64ISAR0_ATOMIC_MASK |
8657                                R_ID_AA64ISAR0_RDM_MASK |
8658                                R_ID_AA64ISAR0_SHA3_MASK |
8659                                R_ID_AA64ISAR0_SM3_MASK |
8660                                R_ID_AA64ISAR0_SM4_MASK |
8661                                R_ID_AA64ISAR0_DP_MASK |
8662                                R_ID_AA64ISAR0_FHM_MASK |
8663                                R_ID_AA64ISAR0_TS_MASK |
8664                                R_ID_AA64ISAR0_RNDR_MASK },
8665             { .name = "ID_AA64ISAR1_EL1",
8666               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8667                                R_ID_AA64ISAR1_APA_MASK |
8668                                R_ID_AA64ISAR1_API_MASK |
8669                                R_ID_AA64ISAR1_JSCVT_MASK |
8670                                R_ID_AA64ISAR1_FCMA_MASK |
8671                                R_ID_AA64ISAR1_LRCPC_MASK |
8672                                R_ID_AA64ISAR1_GPA_MASK |
8673                                R_ID_AA64ISAR1_GPI_MASK |
8674                                R_ID_AA64ISAR1_FRINTTS_MASK |
8675                                R_ID_AA64ISAR1_SB_MASK |
8676                                R_ID_AA64ISAR1_BF16_MASK |
8677                                R_ID_AA64ISAR1_DGH_MASK |
8678                                R_ID_AA64ISAR1_I8MM_MASK },
8679             { .name = "ID_AA64ISAR2_EL1",
8680               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8681                                R_ID_AA64ISAR2_RPRES_MASK |
8682                                R_ID_AA64ISAR2_GPA3_MASK |
8683                                R_ID_AA64ISAR2_APA3_MASK },
8684             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8685               .is_glob = true },
8686         };
8687         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8688 #endif
8689         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8690         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8691             !arm_feature(env, ARM_FEATURE_EL2)) {
8692             ARMCPRegInfo rvbar = {
8693                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8694                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8695                 .access = PL1_R,
8696                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8697             };
8698             define_one_arm_cp_reg(cpu, &rvbar);
8699         }
8700         define_arm_cp_regs(cpu, v8_idregs);
8701         define_arm_cp_regs(cpu, v8_cp_reginfo);
8702 
8703         for (i = 4; i < 16; i++) {
8704             /*
8705              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8706              * For pre-v8 cores there are RAZ patterns for these in
8707              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8708              * v8 extends the "must RAZ" part of the ID register space
8709              * to also cover c0, 0, c{8-15}, {0-7}.
8710              * These are STATE_AA32 because in the AArch64 sysreg space
8711              * c4-c7 is where the AArch64 ID registers live (and we've
8712              * already defined those in v8_idregs[]), and c8-c15 are not
8713              * "must RAZ" for AArch64.
8714              */
8715             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8716             ARMCPRegInfo v8_aa32_raz_idregs = {
8717                 .name = name,
8718                 .state = ARM_CP_STATE_AA32,
8719                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8720                 .access = PL1_R, .type = ARM_CP_CONST,
8721                 .accessfn = access_aa64_tid3,
8722                 .resetvalue = 0 };
8723             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8724         }
8725     }
8726 
8727     /*
8728      * Register the base EL2 cpregs.
8729      * Pre v8, these registers are implemented only as part of the
8730      * Virtualization Extensions (EL2 present).  Beginning with v8,
8731      * if EL2 is missing but EL3 is enabled, mostly these become
8732      * RES0 from EL3, with some specific exceptions.
8733      */
8734     if (arm_feature(env, ARM_FEATURE_EL2)
8735         || (arm_feature(env, ARM_FEATURE_EL3)
8736             && arm_feature(env, ARM_FEATURE_V8))) {
8737         uint64_t vmpidr_def = mpidr_read_val(env);
8738         ARMCPRegInfo vpidr_regs[] = {
8739             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8740               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8741               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8742               .resetvalue = cpu->midr,
8743               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8744               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8745             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8746               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8747               .access = PL2_RW, .resetvalue = cpu->midr,
8748               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8749               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8750             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8751               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8752               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8753               .resetvalue = vmpidr_def,
8754               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8755               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8756             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8757               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8758               .access = PL2_RW, .resetvalue = vmpidr_def,
8759               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8760               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8761         };
8762         /*
8763          * The only field of MDCR_EL2 that has a defined architectural reset
8764          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8765          */
8766         ARMCPRegInfo mdcr_el2 = {
8767             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8768             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8769             .writefn = mdcr_el2_write,
8770             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8771             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8772         };
8773         define_one_arm_cp_reg(cpu, &mdcr_el2);
8774         define_arm_cp_regs(cpu, vpidr_regs);
8775         define_arm_cp_regs(cpu, el2_cp_reginfo);
8776         if (arm_feature(env, ARM_FEATURE_V8)) {
8777             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8778         }
8779         if (cpu_isar_feature(aa64_sel2, cpu)) {
8780             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8781         }
8782         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8783         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8784             ARMCPRegInfo rvbar[] = {
8785                 {
8786                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8787                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8788                     .access = PL2_R,
8789                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8790                 },
8791                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8792                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8793                     .access = PL2_R,
8794                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8795                 },
8796             };
8797             define_arm_cp_regs(cpu, rvbar);
8798         }
8799     }
8800 
8801     /* Register the base EL3 cpregs. */
8802     if (arm_feature(env, ARM_FEATURE_EL3)) {
8803         define_arm_cp_regs(cpu, el3_cp_reginfo);
8804         ARMCPRegInfo el3_regs[] = {
8805             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8806               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8807               .access = PL3_R,
8808               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8809             },
8810             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8811               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8812               .access = PL3_RW,
8813               .raw_writefn = raw_write, .writefn = sctlr_write,
8814               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8815               .resetvalue = cpu->reset_sctlr },
8816         };
8817 
8818         define_arm_cp_regs(cpu, el3_regs);
8819     }
8820     /*
8821      * The behaviour of NSACR is sufficiently various that we don't
8822      * try to describe it in a single reginfo:
8823      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8824      *     reads as constant 0xc00 from NS EL1 and NS EL2
8825      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8826      *  if v7 without EL3, register doesn't exist
8827      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8828      */
8829     if (arm_feature(env, ARM_FEATURE_EL3)) {
8830         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8831             static const ARMCPRegInfo nsacr = {
8832                 .name = "NSACR", .type = ARM_CP_CONST,
8833                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8834                 .access = PL1_RW, .accessfn = nsacr_access,
8835                 .resetvalue = 0xc00
8836             };
8837             define_one_arm_cp_reg(cpu, &nsacr);
8838         } else {
8839             static const ARMCPRegInfo nsacr = {
8840                 .name = "NSACR",
8841                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8842                 .access = PL3_RW | PL1_R,
8843                 .resetvalue = 0,
8844                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8845             };
8846             define_one_arm_cp_reg(cpu, &nsacr);
8847         }
8848     } else {
8849         if (arm_feature(env, ARM_FEATURE_V8)) {
8850             static const ARMCPRegInfo nsacr = {
8851                 .name = "NSACR", .type = ARM_CP_CONST,
8852                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8853                 .access = PL1_R,
8854                 .resetvalue = 0xc00
8855             };
8856             define_one_arm_cp_reg(cpu, &nsacr);
8857         }
8858     }
8859 
8860     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8861         if (arm_feature(env, ARM_FEATURE_V6)) {
8862             /* PMSAv6 not implemented */
8863             assert(arm_feature(env, ARM_FEATURE_V7));
8864             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8865             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8866         } else {
8867             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8868         }
8869     } else {
8870         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8871         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8872         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8873         if (cpu_isar_feature(aa32_hpd, cpu)) {
8874             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8875         }
8876     }
8877     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8878         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8879     }
8880     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8881         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8882     }
8883     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8884         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8885     }
8886     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8887         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8888     }
8889     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8890         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8891     }
8892     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8893         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8894     }
8895     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8896         define_arm_cp_regs(cpu, omap_cp_reginfo);
8897     }
8898     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8899         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8900     }
8901     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8902         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8903     }
8904     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8905         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8906     }
8907     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8908         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8909     }
8910     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8911         define_arm_cp_regs(cpu, jazelle_regs);
8912     }
8913     /*
8914      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8915      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8916      * be read-only (ie write causes UNDEF exception).
8917      */
8918     {
8919         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8920             /*
8921              * Pre-v8 MIDR space.
8922              * Note that the MIDR isn't a simple constant register because
8923              * of the TI925 behaviour where writes to another register can
8924              * cause the MIDR value to change.
8925              *
8926              * Unimplemented registers in the c15 0 0 0 space default to
8927              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8928              * and friends override accordingly.
8929              */
8930             { .name = "MIDR",
8931               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8932               .access = PL1_R, .resetvalue = cpu->midr,
8933               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8934               .readfn = midr_read,
8935               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8936               .type = ARM_CP_OVERRIDE },
8937             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8938             { .name = "DUMMY",
8939               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8940               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8941             { .name = "DUMMY",
8942               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8943               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8944             { .name = "DUMMY",
8945               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8946               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8947             { .name = "DUMMY",
8948               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8949               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8950             { .name = "DUMMY",
8951               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8952               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8953         };
8954         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8955             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8956               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8957               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8958               .fgt = FGT_MIDR_EL1,
8959               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8960               .readfn = midr_read },
8961             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8962             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8963               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8964               .access = PL1_R, .resetvalue = cpu->midr },
8965             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8966               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8967               .access = PL1_R,
8968               .accessfn = access_aa64_tid1,
8969               .fgt = FGT_REVIDR_EL1,
8970               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8971         };
8972         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8973             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8974             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8975             .access = PL1_R, .resetvalue = cpu->midr
8976         };
8977         ARMCPRegInfo id_cp_reginfo[] = {
8978             /* These are common to v8 and pre-v8 */
8979             { .name = "CTR",
8980               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8981               .access = PL1_R, .accessfn = ctr_el0_access,
8982               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8983             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8984               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8985               .access = PL0_R, .accessfn = ctr_el0_access,
8986               .fgt = FGT_CTR_EL0,
8987               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8988             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8989             { .name = "TCMTR",
8990               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8991               .access = PL1_R,
8992               .accessfn = access_aa32_tid1,
8993               .type = ARM_CP_CONST, .resetvalue = 0 },
8994         };
8995         /* TLBTR is specific to VMSA */
8996         ARMCPRegInfo id_tlbtr_reginfo = {
8997               .name = "TLBTR",
8998               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8999               .access = PL1_R,
9000               .accessfn = access_aa32_tid1,
9001               .type = ARM_CP_CONST, .resetvalue = 0,
9002         };
9003         /* MPUIR is specific to PMSA V6+ */
9004         ARMCPRegInfo id_mpuir_reginfo = {
9005               .name = "MPUIR",
9006               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9007               .access = PL1_R, .type = ARM_CP_CONST,
9008               .resetvalue = cpu->pmsav7_dregion << 8
9009         };
9010         /* HMPUIR is specific to PMSA V8 */
9011         ARMCPRegInfo id_hmpuir_reginfo = {
9012             .name = "HMPUIR",
9013             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9014             .access = PL2_R, .type = ARM_CP_CONST,
9015             .resetvalue = cpu->pmsav8r_hdregion
9016         };
9017         static const ARMCPRegInfo crn0_wi_reginfo = {
9018             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9019             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9020             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9021         };
9022 #ifdef CONFIG_USER_ONLY
9023         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9024             { .name = "MIDR_EL1",
9025               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9026                                R_MIDR_EL1_PARTNUM_MASK |
9027                                R_MIDR_EL1_ARCHITECTURE_MASK |
9028                                R_MIDR_EL1_VARIANT_MASK |
9029                                R_MIDR_EL1_IMPLEMENTER_MASK },
9030             { .name = "REVIDR_EL1" },
9031         };
9032         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9033 #endif
9034         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9035             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9036             size_t i;
9037             /*
9038              * Register the blanket "writes ignored" value first to cover the
9039              * whole space. Then update the specific ID registers to allow write
9040              * access, so that they ignore writes rather than causing them to
9041              * UNDEF.
9042              */
9043             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9044             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9045                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9046             }
9047             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9048                 id_cp_reginfo[i].access = PL1_RW;
9049             }
9050             id_mpuir_reginfo.access = PL1_RW;
9051             id_tlbtr_reginfo.access = PL1_RW;
9052         }
9053         if (arm_feature(env, ARM_FEATURE_V8)) {
9054             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9055             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9056                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9057             }
9058         } else {
9059             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9060         }
9061         define_arm_cp_regs(cpu, id_cp_reginfo);
9062         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9063             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9064         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9065                    arm_feature(env, ARM_FEATURE_V8)) {
9066             uint32_t i = 0;
9067             char *tmp_string;
9068 
9069             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9070             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9071             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9072 
9073             /* Register alias is only valid for first 32 indexes */
9074             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9075                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9076                 uint8_t opc1 = extract32(i, 4, 1);
9077                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9078 
9079                 tmp_string = g_strdup_printf("PRBAR%u", i);
9080                 ARMCPRegInfo tmp_prbarn_reginfo = {
9081                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9082                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9083                     .access = PL1_RW, .resetvalue = 0,
9084                     .accessfn = access_tvm_trvm,
9085                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9086                 };
9087                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9088                 g_free(tmp_string);
9089 
9090                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9091                 tmp_string = g_strdup_printf("PRLAR%u", i);
9092                 ARMCPRegInfo tmp_prlarn_reginfo = {
9093                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9094                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9095                     .access = PL1_RW, .resetvalue = 0,
9096                     .accessfn = access_tvm_trvm,
9097                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9098                 };
9099                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9100                 g_free(tmp_string);
9101             }
9102 
9103             /* Register alias is only valid for first 32 indexes */
9104             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9105                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9106                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9107                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9108 
9109                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9110                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9111                     .name = tmp_string,
9112                     .type = ARM_CP_NO_RAW,
9113                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9114                     .access = PL2_RW, .resetvalue = 0,
9115                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9116                 };
9117                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9118                 g_free(tmp_string);
9119 
9120                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9121                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9122                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9123                     .name = tmp_string,
9124                     .type = ARM_CP_NO_RAW,
9125                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9126                     .access = PL2_RW, .resetvalue = 0,
9127                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9128                 };
9129                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9130                 g_free(tmp_string);
9131             }
9132         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9133             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9134         }
9135     }
9136 
9137     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9138         ARMCPRegInfo mpidr_cp_reginfo[] = {
9139             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9140               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9141               .fgt = FGT_MPIDR_EL1,
9142               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9143         };
9144 #ifdef CONFIG_USER_ONLY
9145         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9146             { .name = "MPIDR_EL1",
9147               .fixed_bits = 0x0000000080000000 },
9148         };
9149         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9150 #endif
9151         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9152     }
9153 
9154     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9155         ARMCPRegInfo auxcr_reginfo[] = {
9156             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9157               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9158               .access = PL1_RW, .accessfn = access_tacr,
9159               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9160             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9161               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9162               .access = PL2_RW, .type = ARM_CP_CONST,
9163               .resetvalue = 0 },
9164             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9165               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9166               .access = PL3_RW, .type = ARM_CP_CONST,
9167               .resetvalue = 0 },
9168         };
9169         define_arm_cp_regs(cpu, auxcr_reginfo);
9170         if (cpu_isar_feature(aa32_ac2, cpu)) {
9171             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9172         }
9173     }
9174 
9175     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9176         /*
9177          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9178          * There are two flavours:
9179          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9180          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9181          *      32-bit register visible to AArch32 at a different encoding
9182          *      to the "flavour 1" register and with the bits rearranged to
9183          *      be able to squash a 64-bit address into the 32-bit view.
9184          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9185          * in future if we support AArch32-only configs of some of the
9186          * AArch64 cores we might need to add a specific feature flag
9187          * to indicate cores with "flavour 2" CBAR.
9188          */
9189         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9190             /* 32 bit view is [31:18] 0...0 [43:32]. */
9191             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9192                 | extract64(cpu->reset_cbar, 32, 12);
9193             ARMCPRegInfo cbar_reginfo[] = {
9194                 { .name = "CBAR",
9195                   .type = ARM_CP_CONST,
9196                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9197                   .access = PL1_R, .resetvalue = cbar32 },
9198                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9199                   .type = ARM_CP_CONST,
9200                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9201                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9202             };
9203             /* We don't implement a r/w 64 bit CBAR currently */
9204             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9205             define_arm_cp_regs(cpu, cbar_reginfo);
9206         } else {
9207             ARMCPRegInfo cbar = {
9208                 .name = "CBAR",
9209                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9210                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9211                 .fieldoffset = offsetof(CPUARMState,
9212                                         cp15.c15_config_base_address)
9213             };
9214             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9215                 cbar.access = PL1_R;
9216                 cbar.fieldoffset = 0;
9217                 cbar.type = ARM_CP_CONST;
9218             }
9219             define_one_arm_cp_reg(cpu, &cbar);
9220         }
9221     }
9222 
9223     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9224         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9225             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9226               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9227               .access = PL1_RW, .writefn = vbar_write,
9228               .fgt = FGT_VBAR_EL1,
9229               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9230                                      offsetof(CPUARMState, cp15.vbar_ns) },
9231               .resetvalue = 0 },
9232         };
9233         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9234     }
9235 
9236     /* Generic registers whose values depend on the implementation */
9237     {
9238         ARMCPRegInfo sctlr = {
9239             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9240             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9241             .access = PL1_RW, .accessfn = access_tvm_trvm,
9242             .fgt = FGT_SCTLR_EL1,
9243             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9244                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9245             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9246             .raw_writefn = raw_write,
9247         };
9248         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9249             /*
9250              * Normally we would always end the TB on an SCTLR write, but Linux
9251              * arch/arm/mach-pxa/sleep.S expects two instructions following
9252              * an MMU enable to execute from cache.  Imitate this behaviour.
9253              */
9254             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9255         }
9256         define_one_arm_cp_reg(cpu, &sctlr);
9257 
9258         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9259             arm_feature(env, ARM_FEATURE_V8)) {
9260             ARMCPRegInfo vsctlr = {
9261                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9262                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9263                 .access = PL2_RW, .resetvalue = 0x0,
9264                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9265             };
9266             define_one_arm_cp_reg(cpu, &vsctlr);
9267         }
9268     }
9269 
9270     if (cpu_isar_feature(aa64_lor, cpu)) {
9271         define_arm_cp_regs(cpu, lor_reginfo);
9272     }
9273     if (cpu_isar_feature(aa64_pan, cpu)) {
9274         define_one_arm_cp_reg(cpu, &pan_reginfo);
9275     }
9276 #ifndef CONFIG_USER_ONLY
9277     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9278         define_arm_cp_regs(cpu, ats1e1_reginfo);
9279     }
9280     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9281         define_arm_cp_regs(cpu, ats1cp_reginfo);
9282     }
9283 #endif
9284     if (cpu_isar_feature(aa64_uao, cpu)) {
9285         define_one_arm_cp_reg(cpu, &uao_reginfo);
9286     }
9287 
9288     if (cpu_isar_feature(aa64_dit, cpu)) {
9289         define_one_arm_cp_reg(cpu, &dit_reginfo);
9290     }
9291     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9292         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9293     }
9294     if (cpu_isar_feature(any_ras, cpu)) {
9295         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9296     }
9297 
9298     if (cpu_isar_feature(aa64_vh, cpu) ||
9299         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9300         define_one_arm_cp_reg(cpu, &contextidr_el2);
9301     }
9302     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9303         define_arm_cp_regs(cpu, vhe_reginfo);
9304     }
9305 
9306     if (cpu_isar_feature(aa64_sve, cpu)) {
9307         define_arm_cp_regs(cpu, zcr_reginfo);
9308     }
9309 
9310     if (cpu_isar_feature(aa64_hcx, cpu)) {
9311         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9312     }
9313 
9314 #ifdef TARGET_AARCH64
9315     if (cpu_isar_feature(aa64_sme, cpu)) {
9316         define_arm_cp_regs(cpu, sme_reginfo);
9317     }
9318     if (cpu_isar_feature(aa64_pauth, cpu)) {
9319         define_arm_cp_regs(cpu, pauth_reginfo);
9320     }
9321     if (cpu_isar_feature(aa64_rndr, cpu)) {
9322         define_arm_cp_regs(cpu, rndr_reginfo);
9323     }
9324     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9325         define_arm_cp_regs(cpu, tlbirange_reginfo);
9326     }
9327     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9328         define_arm_cp_regs(cpu, tlbios_reginfo);
9329     }
9330     /* Data Cache clean instructions up to PoP */
9331     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9332         define_one_arm_cp_reg(cpu, dcpop_reg);
9333 
9334         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9335             define_one_arm_cp_reg(cpu, dcpodp_reg);
9336         }
9337     }
9338 
9339     /*
9340      * If full MTE is enabled, add all of the system registers.
9341      * If only "instructions available at EL0" are enabled,
9342      * then define only a RAZ/WI version of PSTATE.TCO.
9343      */
9344     if (cpu_isar_feature(aa64_mte, cpu)) {
9345         define_arm_cp_regs(cpu, mte_reginfo);
9346         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9347     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9348         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9349         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9350     }
9351 
9352     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9353         define_arm_cp_regs(cpu, scxtnum_reginfo);
9354     }
9355 
9356     if (cpu_isar_feature(aa64_fgt, cpu)) {
9357         define_arm_cp_regs(cpu, fgt_reginfo);
9358     }
9359 
9360     if (cpu_isar_feature(aa64_rme, cpu)) {
9361         define_arm_cp_regs(cpu, rme_reginfo);
9362         if (cpu_isar_feature(aa64_mte, cpu)) {
9363             define_arm_cp_regs(cpu, rme_mte_reginfo);
9364         }
9365     }
9366 #endif
9367 
9368     if (cpu_isar_feature(any_predinv, cpu)) {
9369         define_arm_cp_regs(cpu, predinv_reginfo);
9370     }
9371 
9372     if (cpu_isar_feature(any_ccidx, cpu)) {
9373         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9374     }
9375 
9376 #ifndef CONFIG_USER_ONLY
9377     /*
9378      * Register redirections and aliases must be done last,
9379      * after the registers from the other extensions have been defined.
9380      */
9381     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9382         define_arm_vh_e2h_redirects_aliases(cpu);
9383     }
9384 #endif
9385 }
9386 
9387 /* Sort alphabetically by type name, except for "any". */
9388 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9389 {
9390     ObjectClass *class_a = (ObjectClass *)a;
9391     ObjectClass *class_b = (ObjectClass *)b;
9392     const char *name_a, *name_b;
9393 
9394     name_a = object_class_get_name(class_a);
9395     name_b = object_class_get_name(class_b);
9396     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9397         return 1;
9398     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9399         return -1;
9400     } else {
9401         return strcmp(name_a, name_b);
9402     }
9403 }
9404 
9405 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9406 {
9407     ObjectClass *oc = data;
9408     CPUClass *cc = CPU_CLASS(oc);
9409     const char *typename;
9410     char *name;
9411 
9412     typename = object_class_get_name(oc);
9413     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9414     if (cc->deprecation_note) {
9415         qemu_printf("  %s (deprecated)\n", name);
9416     } else {
9417         qemu_printf("  %s\n", name);
9418     }
9419     g_free(name);
9420 }
9421 
9422 void arm_cpu_list(void)
9423 {
9424     GSList *list;
9425 
9426     list = object_class_get_list(TYPE_ARM_CPU, false);
9427     list = g_slist_sort(list, arm_cpu_list_compare);
9428     qemu_printf("Available CPUs:\n");
9429     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9430     g_slist_free(list);
9431 }
9432 
9433 /*
9434  * Private utility function for define_one_arm_cp_reg_with_opaque():
9435  * add a single reginfo struct to the hash table.
9436  */
9437 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9438                                    void *opaque, CPState state,
9439                                    CPSecureState secstate,
9440                                    int crm, int opc1, int opc2,
9441                                    const char *name)
9442 {
9443     CPUARMState *env = &cpu->env;
9444     uint32_t key;
9445     ARMCPRegInfo *r2;
9446     bool is64 = r->type & ARM_CP_64BIT;
9447     bool ns = secstate & ARM_CP_SECSTATE_NS;
9448     int cp = r->cp;
9449     size_t name_len;
9450     bool make_const;
9451 
9452     switch (state) {
9453     case ARM_CP_STATE_AA32:
9454         /* We assume it is a cp15 register if the .cp field is left unset. */
9455         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9456             cp = 15;
9457         }
9458         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9459         break;
9460     case ARM_CP_STATE_AA64:
9461         /*
9462          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9463          * cp == 0 as equivalent to the value for "standard guest-visible
9464          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9465          * in their AArch64 view (the .cp value may be non-zero for the
9466          * benefit of the AArch32 view).
9467          */
9468         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9469             cp = CP_REG_ARM64_SYSREG_CP;
9470         }
9471         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9472         break;
9473     default:
9474         g_assert_not_reached();
9475     }
9476 
9477     /* Overriding of an existing definition must be explicitly requested. */
9478     if (!(r->type & ARM_CP_OVERRIDE)) {
9479         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9480         if (oldreg) {
9481             assert(oldreg->type & ARM_CP_OVERRIDE);
9482         }
9483     }
9484 
9485     /*
9486      * Eliminate registers that are not present because the EL is missing.
9487      * Doing this here makes it easier to put all registers for a given
9488      * feature into the same ARMCPRegInfo array and define them all at once.
9489      */
9490     make_const = false;
9491     if (arm_feature(env, ARM_FEATURE_EL3)) {
9492         /*
9493          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9494          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9495          */
9496         int min_el = ctz32(r->access) / 2;
9497         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9498             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9499                 return;
9500             }
9501             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9502         }
9503     } else {
9504         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9505                                  ? PL2_RW : PL1_RW);
9506         if ((r->access & max_el) == 0) {
9507             return;
9508         }
9509     }
9510 
9511     /* Combine cpreg and name into one allocation. */
9512     name_len = strlen(name) + 1;
9513     r2 = g_malloc(sizeof(*r2) + name_len);
9514     *r2 = *r;
9515     r2->name = memcpy(r2 + 1, name, name_len);
9516 
9517     /*
9518      * Update fields to match the instantiation, overwiting wildcards
9519      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9520      */
9521     r2->cp = cp;
9522     r2->crm = crm;
9523     r2->opc1 = opc1;
9524     r2->opc2 = opc2;
9525     r2->state = state;
9526     r2->secure = secstate;
9527     if (opaque) {
9528         r2->opaque = opaque;
9529     }
9530 
9531     if (make_const) {
9532         /* This should not have been a very special register to begin. */
9533         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9534         assert(old_special == 0 || old_special == ARM_CP_NOP);
9535         /*
9536          * Set the special function to CONST, retaining the other flags.
9537          * This is important for e.g. ARM_CP_SVE so that we still
9538          * take the SVE trap if CPTR_EL3.EZ == 0.
9539          */
9540         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9541         /*
9542          * Usually, these registers become RES0, but there are a few
9543          * special cases like VPIDR_EL2 which have a constant non-zero
9544          * value with writes ignored.
9545          */
9546         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9547             r2->resetvalue = 0;
9548         }
9549         /*
9550          * ARM_CP_CONST has precedence, so removing the callbacks and
9551          * offsets are not strictly necessary, but it is potentially
9552          * less confusing to debug later.
9553          */
9554         r2->readfn = NULL;
9555         r2->writefn = NULL;
9556         r2->raw_readfn = NULL;
9557         r2->raw_writefn = NULL;
9558         r2->resetfn = NULL;
9559         r2->fieldoffset = 0;
9560         r2->bank_fieldoffsets[0] = 0;
9561         r2->bank_fieldoffsets[1] = 0;
9562     } else {
9563         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9564 
9565         if (isbanked) {
9566             /*
9567              * Register is banked (using both entries in array).
9568              * Overwriting fieldoffset as the array is only used to define
9569              * banked registers but later only fieldoffset is used.
9570              */
9571             r2->fieldoffset = r->bank_fieldoffsets[ns];
9572         }
9573         if (state == ARM_CP_STATE_AA32) {
9574             if (isbanked) {
9575                 /*
9576                  * If the register is banked then we don't need to migrate or
9577                  * reset the 32-bit instance in certain cases:
9578                  *
9579                  * 1) If the register has both 32-bit and 64-bit instances
9580                  *    then we can count on the 64-bit instance taking care
9581                  *    of the non-secure bank.
9582                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9583                  *    version taking care of the secure bank.  This requires
9584                  *    that separate 32 and 64-bit definitions are provided.
9585                  */
9586                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9587                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9588                     r2->type |= ARM_CP_ALIAS;
9589                 }
9590             } else if ((secstate != r->secure) && !ns) {
9591                 /*
9592                  * The register is not banked so we only want to allow
9593                  * migration of the non-secure instance.
9594                  */
9595                 r2->type |= ARM_CP_ALIAS;
9596             }
9597 
9598             if (HOST_BIG_ENDIAN &&
9599                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9600                 r2->fieldoffset += sizeof(uint32_t);
9601             }
9602         }
9603     }
9604 
9605     /*
9606      * By convention, for wildcarded registers only the first
9607      * entry is used for migration; the others are marked as
9608      * ALIAS so we don't try to transfer the register
9609      * multiple times. Special registers (ie NOP/WFI) are
9610      * never migratable and not even raw-accessible.
9611      */
9612     if (r2->type & ARM_CP_SPECIAL_MASK) {
9613         r2->type |= ARM_CP_NO_RAW;
9614     }
9615     if (((r->crm == CP_ANY) && crm != 0) ||
9616         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9617         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9618         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9619     }
9620 
9621     /*
9622      * Check that raw accesses are either forbidden or handled. Note that
9623      * we can't assert this earlier because the setup of fieldoffset for
9624      * banked registers has to be done first.
9625      */
9626     if (!(r2->type & ARM_CP_NO_RAW)) {
9627         assert(!raw_accessors_invalid(r2));
9628     }
9629 
9630     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9631 }
9632 
9633 
9634 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9635                                        const ARMCPRegInfo *r, void *opaque)
9636 {
9637     /*
9638      * Define implementations of coprocessor registers.
9639      * We store these in a hashtable because typically
9640      * there are less than 150 registers in a space which
9641      * is 16*16*16*8*8 = 262144 in size.
9642      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9643      * If a register is defined twice then the second definition is
9644      * used, so this can be used to define some generic registers and
9645      * then override them with implementation specific variations.
9646      * At least one of the original and the second definition should
9647      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9648      * against accidental use.
9649      *
9650      * The state field defines whether the register is to be
9651      * visible in the AArch32 or AArch64 execution state. If the
9652      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9653      * reginfo structure for the AArch32 view, which sees the lower
9654      * 32 bits of the 64 bit register.
9655      *
9656      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9657      * be wildcarded. AArch64 registers are always considered to be 64
9658      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9659      * the register, if any.
9660      */
9661     int crm, opc1, opc2;
9662     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9663     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9664     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9665     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9666     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9667     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9668     CPState state;
9669 
9670     /* 64 bit registers have only CRm and Opc1 fields */
9671     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9672     /* op0 only exists in the AArch64 encodings */
9673     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9674     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9675     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9676     /*
9677      * This API is only for Arm's system coprocessors (14 and 15) or
9678      * (M-profile or v7A-and-earlier only) for implementation defined
9679      * coprocessors in the range 0..7.  Our decode assumes this, since
9680      * 8..13 can be used for other insns including VFP and Neon. See
9681      * valid_cp() in translate.c.  Assert here that we haven't tried
9682      * to use an invalid coprocessor number.
9683      */
9684     switch (r->state) {
9685     case ARM_CP_STATE_BOTH:
9686         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9687         if (r->cp == 0) {
9688             break;
9689         }
9690         /* fall through */
9691     case ARM_CP_STATE_AA32:
9692         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9693             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9694             assert(r->cp >= 14 && r->cp <= 15);
9695         } else {
9696             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9697         }
9698         break;
9699     case ARM_CP_STATE_AA64:
9700         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9701         break;
9702     default:
9703         g_assert_not_reached();
9704     }
9705     /*
9706      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9707      * encodes a minimum access level for the register. We roll this
9708      * runtime check into our general permission check code, so check
9709      * here that the reginfo's specified permissions are strict enough
9710      * to encompass the generic architectural permission check.
9711      */
9712     if (r->state != ARM_CP_STATE_AA32) {
9713         CPAccessRights mask;
9714         switch (r->opc1) {
9715         case 0:
9716             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9717             mask = PL0U_R | PL1_RW;
9718             break;
9719         case 1: case 2:
9720             /* min_EL EL1 */
9721             mask = PL1_RW;
9722             break;
9723         case 3:
9724             /* min_EL EL0 */
9725             mask = PL0_RW;
9726             break;
9727         case 4:
9728         case 5:
9729             /* min_EL EL2 */
9730             mask = PL2_RW;
9731             break;
9732         case 6:
9733             /* min_EL EL3 */
9734             mask = PL3_RW;
9735             break;
9736         case 7:
9737             /* min_EL EL1, secure mode only (we don't check the latter) */
9738             mask = PL1_RW;
9739             break;
9740         default:
9741             /* broken reginfo with out-of-range opc1 */
9742             g_assert_not_reached();
9743         }
9744         /* assert our permissions are not too lax (stricter is fine) */
9745         assert((r->access & ~mask) == 0);
9746     }
9747 
9748     /*
9749      * Check that the register definition has enough info to handle
9750      * reads and writes if they are permitted.
9751      */
9752     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9753         if (r->access & PL3_R) {
9754             assert((r->fieldoffset ||
9755                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9756                    r->readfn);
9757         }
9758         if (r->access & PL3_W) {
9759             assert((r->fieldoffset ||
9760                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9761                    r->writefn);
9762         }
9763     }
9764 
9765     for (crm = crmmin; crm <= crmmax; crm++) {
9766         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9767             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9768                 for (state = ARM_CP_STATE_AA32;
9769                      state <= ARM_CP_STATE_AA64; state++) {
9770                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9771                         continue;
9772                     }
9773                     if (state == ARM_CP_STATE_AA32) {
9774                         /*
9775                          * Under AArch32 CP registers can be common
9776                          * (same for secure and non-secure world) or banked.
9777                          */
9778                         char *name;
9779 
9780                         switch (r->secure) {
9781                         case ARM_CP_SECSTATE_S:
9782                         case ARM_CP_SECSTATE_NS:
9783                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9784                                                    r->secure, crm, opc1, opc2,
9785                                                    r->name);
9786                             break;
9787                         case ARM_CP_SECSTATE_BOTH:
9788                             name = g_strdup_printf("%s_S", r->name);
9789                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9790                                                    ARM_CP_SECSTATE_S,
9791                                                    crm, opc1, opc2, name);
9792                             g_free(name);
9793                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9794                                                    ARM_CP_SECSTATE_NS,
9795                                                    crm, opc1, opc2, r->name);
9796                             break;
9797                         default:
9798                             g_assert_not_reached();
9799                         }
9800                     } else {
9801                         /*
9802                          * AArch64 registers get mapped to non-secure instance
9803                          * of AArch32
9804                          */
9805                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9806                                                ARM_CP_SECSTATE_NS,
9807                                                crm, opc1, opc2, r->name);
9808                     }
9809                 }
9810             }
9811         }
9812     }
9813 }
9814 
9815 /* Define a whole list of registers */
9816 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9817                                         void *opaque, size_t len)
9818 {
9819     size_t i;
9820     for (i = 0; i < len; ++i) {
9821         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9822     }
9823 }
9824 
9825 /*
9826  * Modify ARMCPRegInfo for access from userspace.
9827  *
9828  * This is a data driven modification directed by
9829  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9830  * user-space cannot alter any values and dynamic values pertaining to
9831  * execution state are hidden from user space view anyway.
9832  */
9833 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9834                                  const ARMCPRegUserSpaceInfo *mods,
9835                                  size_t mods_len)
9836 {
9837     for (size_t mi = 0; mi < mods_len; ++mi) {
9838         const ARMCPRegUserSpaceInfo *m = mods + mi;
9839         GPatternSpec *pat = NULL;
9840 
9841         if (m->is_glob) {
9842             pat = g_pattern_spec_new(m->name);
9843         }
9844         for (size_t ri = 0; ri < regs_len; ++ri) {
9845             ARMCPRegInfo *r = regs + ri;
9846 
9847             if (pat && g_pattern_match_string(pat, r->name)) {
9848                 r->type = ARM_CP_CONST;
9849                 r->access = PL0U_R;
9850                 r->resetvalue = 0;
9851                 /* continue */
9852             } else if (strcmp(r->name, m->name) == 0) {
9853                 r->type = ARM_CP_CONST;
9854                 r->access = PL0U_R;
9855                 r->resetvalue &= m->exported_bits;
9856                 r->resetvalue |= m->fixed_bits;
9857                 break;
9858             }
9859         }
9860         if (pat) {
9861             g_pattern_spec_free(pat);
9862         }
9863     }
9864 }
9865 
9866 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9867 {
9868     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9869 }
9870 
9871 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9872                          uint64_t value)
9873 {
9874     /* Helper coprocessor write function for write-ignore registers */
9875 }
9876 
9877 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9878 {
9879     /* Helper coprocessor write function for read-as-zero registers */
9880     return 0;
9881 }
9882 
9883 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9884 {
9885     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9886 }
9887 
9888 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9889 {
9890     /*
9891      * Return true if it is not valid for us to switch to
9892      * this CPU mode (ie all the UNPREDICTABLE cases in
9893      * the ARM ARM CPSRWriteByInstr pseudocode).
9894      */
9895 
9896     /* Changes to or from Hyp via MSR and CPS are illegal. */
9897     if (write_type == CPSRWriteByInstr &&
9898         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9899          mode == ARM_CPU_MODE_HYP)) {
9900         return 1;
9901     }
9902 
9903     switch (mode) {
9904     case ARM_CPU_MODE_USR:
9905         return 0;
9906     case ARM_CPU_MODE_SYS:
9907     case ARM_CPU_MODE_SVC:
9908     case ARM_CPU_MODE_ABT:
9909     case ARM_CPU_MODE_UND:
9910     case ARM_CPU_MODE_IRQ:
9911     case ARM_CPU_MODE_FIQ:
9912         /*
9913          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9914          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9915          */
9916         /*
9917          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9918          * and CPS are treated as illegal mode changes.
9919          */
9920         if (write_type == CPSRWriteByInstr &&
9921             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9922             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9923             return 1;
9924         }
9925         return 0;
9926     case ARM_CPU_MODE_HYP:
9927         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9928     case ARM_CPU_MODE_MON:
9929         return arm_current_el(env) < 3;
9930     default:
9931         return 1;
9932     }
9933 }
9934 
9935 uint32_t cpsr_read(CPUARMState *env)
9936 {
9937     int ZF;
9938     ZF = (env->ZF == 0);
9939     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9940         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9941         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9942         | ((env->condexec_bits & 0xfc) << 8)
9943         | (env->GE << 16) | (env->daif & CPSR_AIF);
9944 }
9945 
9946 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9947                 CPSRWriteType write_type)
9948 {
9949     uint32_t changed_daif;
9950     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9951         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9952 
9953     if (mask & CPSR_NZCV) {
9954         env->ZF = (~val) & CPSR_Z;
9955         env->NF = val;
9956         env->CF = (val >> 29) & 1;
9957         env->VF = (val << 3) & 0x80000000;
9958     }
9959     if (mask & CPSR_Q) {
9960         env->QF = ((val & CPSR_Q) != 0);
9961     }
9962     if (mask & CPSR_T) {
9963         env->thumb = ((val & CPSR_T) != 0);
9964     }
9965     if (mask & CPSR_IT_0_1) {
9966         env->condexec_bits &= ~3;
9967         env->condexec_bits |= (val >> 25) & 3;
9968     }
9969     if (mask & CPSR_IT_2_7) {
9970         env->condexec_bits &= 3;
9971         env->condexec_bits |= (val >> 8) & 0xfc;
9972     }
9973     if (mask & CPSR_GE) {
9974         env->GE = (val >> 16) & 0xf;
9975     }
9976 
9977     /*
9978      * In a V7 implementation that includes the security extensions but does
9979      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9980      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9981      * bits respectively.
9982      *
9983      * In a V8 implementation, it is permitted for privileged software to
9984      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9985      */
9986     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9987         arm_feature(env, ARM_FEATURE_EL3) &&
9988         !arm_feature(env, ARM_FEATURE_EL2) &&
9989         !arm_is_secure(env)) {
9990 
9991         changed_daif = (env->daif ^ val) & mask;
9992 
9993         if (changed_daif & CPSR_A) {
9994             /*
9995              * Check to see if we are allowed to change the masking of async
9996              * abort exceptions from a non-secure state.
9997              */
9998             if (!(env->cp15.scr_el3 & SCR_AW)) {
9999                 qemu_log_mask(LOG_GUEST_ERROR,
10000                               "Ignoring attempt to switch CPSR_A flag from "
10001                               "non-secure world with SCR.AW bit clear\n");
10002                 mask &= ~CPSR_A;
10003             }
10004         }
10005 
10006         if (changed_daif & CPSR_F) {
10007             /*
10008              * Check to see if we are allowed to change the masking of FIQ
10009              * exceptions from a non-secure state.
10010              */
10011             if (!(env->cp15.scr_el3 & SCR_FW)) {
10012                 qemu_log_mask(LOG_GUEST_ERROR,
10013                               "Ignoring attempt to switch CPSR_F flag from "
10014                               "non-secure world with SCR.FW bit clear\n");
10015                 mask &= ~CPSR_F;
10016             }
10017 
10018             /*
10019              * Check whether non-maskable FIQ (NMFI) support is enabled.
10020              * If this bit is set software is not allowed to mask
10021              * FIQs, but is allowed to set CPSR_F to 0.
10022              */
10023             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10024                 (val & CPSR_F)) {
10025                 qemu_log_mask(LOG_GUEST_ERROR,
10026                               "Ignoring attempt to enable CPSR_F flag "
10027                               "(non-maskable FIQ [NMFI] support enabled)\n");
10028                 mask &= ~CPSR_F;
10029             }
10030         }
10031     }
10032 
10033     env->daif &= ~(CPSR_AIF & mask);
10034     env->daif |= val & CPSR_AIF & mask;
10035 
10036     if (write_type != CPSRWriteRaw &&
10037         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10038         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10039             /*
10040              * Note that we can only get here in USR mode if this is a
10041              * gdb stub write; for this case we follow the architectural
10042              * behaviour for guest writes in USR mode of ignoring an attempt
10043              * to switch mode. (Those are caught by translate.c for writes
10044              * triggered by guest instructions.)
10045              */
10046             mask &= ~CPSR_M;
10047         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10048             /*
10049              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10050              * v7, and has defined behaviour in v8:
10051              *  + leave CPSR.M untouched
10052              *  + allow changes to the other CPSR fields
10053              *  + set PSTATE.IL
10054              * For user changes via the GDB stub, we don't set PSTATE.IL,
10055              * as this would be unnecessarily harsh for a user error.
10056              */
10057             mask &= ~CPSR_M;
10058             if (write_type != CPSRWriteByGDBStub &&
10059                 arm_feature(env, ARM_FEATURE_V8)) {
10060                 mask |= CPSR_IL;
10061                 val |= CPSR_IL;
10062             }
10063             qemu_log_mask(LOG_GUEST_ERROR,
10064                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10065                           aarch32_mode_name(env->uncached_cpsr),
10066                           aarch32_mode_name(val));
10067         } else {
10068             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10069                           write_type == CPSRWriteExceptionReturn ?
10070                           "Exception return from AArch32" :
10071                           "AArch32 mode switch from",
10072                           aarch32_mode_name(env->uncached_cpsr),
10073                           aarch32_mode_name(val), env->regs[15]);
10074             switch_mode(env, val & CPSR_M);
10075         }
10076     }
10077     mask &= ~CACHED_CPSR_BITS;
10078     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10079     if (tcg_enabled() && rebuild_hflags) {
10080         arm_rebuild_hflags(env);
10081     }
10082 }
10083 
10084 /* Sign/zero extend */
10085 uint32_t HELPER(sxtb16)(uint32_t x)
10086 {
10087     uint32_t res;
10088     res = (uint16_t)(int8_t)x;
10089     res |= (uint32_t)(int8_t)(x >> 16) << 16;
10090     return res;
10091 }
10092 
10093 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10094 {
10095     /*
10096      * Take a division-by-zero exception if necessary; otherwise return
10097      * to get the usual non-trapping division behaviour (result of 0)
10098      */
10099     if (arm_feature(env, ARM_FEATURE_M)
10100         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10101         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10102     }
10103 }
10104 
10105 uint32_t HELPER(uxtb16)(uint32_t x)
10106 {
10107     uint32_t res;
10108     res = (uint16_t)(uint8_t)x;
10109     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10110     return res;
10111 }
10112 
10113 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10114 {
10115     if (den == 0) {
10116         handle_possible_div0_trap(env, GETPC());
10117         return 0;
10118     }
10119     if (num == INT_MIN && den == -1) {
10120         return INT_MIN;
10121     }
10122     return num / den;
10123 }
10124 
10125 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10126 {
10127     if (den == 0) {
10128         handle_possible_div0_trap(env, GETPC());
10129         return 0;
10130     }
10131     return num / den;
10132 }
10133 
10134 uint32_t HELPER(rbit)(uint32_t x)
10135 {
10136     return revbit32(x);
10137 }
10138 
10139 #ifdef CONFIG_USER_ONLY
10140 
10141 static void switch_mode(CPUARMState *env, int mode)
10142 {
10143     ARMCPU *cpu = env_archcpu(env);
10144 
10145     if (mode != ARM_CPU_MODE_USR) {
10146         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10147     }
10148 }
10149 
10150 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10151                                  uint32_t cur_el, bool secure)
10152 {
10153     return 1;
10154 }
10155 
10156 void aarch64_sync_64_to_32(CPUARMState *env)
10157 {
10158     g_assert_not_reached();
10159 }
10160 
10161 #else
10162 
10163 static void switch_mode(CPUARMState *env, int mode)
10164 {
10165     int old_mode;
10166     int i;
10167 
10168     old_mode = env->uncached_cpsr & CPSR_M;
10169     if (mode == old_mode) {
10170         return;
10171     }
10172 
10173     if (old_mode == ARM_CPU_MODE_FIQ) {
10174         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10175         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10176     } else if (mode == ARM_CPU_MODE_FIQ) {
10177         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10178         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10179     }
10180 
10181     i = bank_number(old_mode);
10182     env->banked_r13[i] = env->regs[13];
10183     env->banked_spsr[i] = env->spsr;
10184 
10185     i = bank_number(mode);
10186     env->regs[13] = env->banked_r13[i];
10187     env->spsr = env->banked_spsr[i];
10188 
10189     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10190     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10191 }
10192 
10193 /*
10194  * Physical Interrupt Target EL Lookup Table
10195  *
10196  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10197  *
10198  * The below multi-dimensional table is used for looking up the target
10199  * exception level given numerous condition criteria.  Specifically, the
10200  * target EL is based on SCR and HCR routing controls as well as the
10201  * currently executing EL and secure state.
10202  *
10203  *    Dimensions:
10204  *    target_el_table[2][2][2][2][2][4]
10205  *                    |  |  |  |  |  +--- Current EL
10206  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10207  *                    |  |  |  +--------- HCR mask override
10208  *                    |  |  +------------ SCR exec state control
10209  *                    |  +--------------- SCR mask override
10210  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10211  *
10212  *    The table values are as such:
10213  *    0-3 = EL0-EL3
10214  *     -1 = Cannot occur
10215  *
10216  * The ARM ARM target EL table includes entries indicating that an "exception
10217  * is not taken".  The two cases where this is applicable are:
10218  *    1) An exception is taken from EL3 but the SCR does not have the exception
10219  *    routed to EL3.
10220  *    2) An exception is taken from EL2 but the HCR does not have the exception
10221  *    routed to EL2.
10222  * In these two cases, the below table contain a target of EL1.  This value is
10223  * returned as it is expected that the consumer of the table data will check
10224  * for "target EL >= current EL" to ensure the exception is not taken.
10225  *
10226  *            SCR     HCR
10227  *         64  EA     AMO                 From
10228  *        BIT IRQ     IMO      Non-secure         Secure
10229  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10230  */
10231 static const int8_t target_el_table[2][2][2][2][2][4] = {
10232     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10233        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10234       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10235        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10236      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10237        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10238       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10239        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10240     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10241        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10242       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10243        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10244      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10245        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10246       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10247        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10248 };
10249 
10250 /*
10251  * Determine the target EL for physical exceptions
10252  */
10253 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10254                                  uint32_t cur_el, bool secure)
10255 {
10256     CPUARMState *env = cs->env_ptr;
10257     bool rw;
10258     bool scr;
10259     bool hcr;
10260     int target_el;
10261     /* Is the highest EL AArch64? */
10262     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10263     uint64_t hcr_el2;
10264 
10265     if (arm_feature(env, ARM_FEATURE_EL3)) {
10266         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10267     } else {
10268         /*
10269          * Either EL2 is the highest EL (and so the EL2 register width
10270          * is given by is64); or there is no EL2 or EL3, in which case
10271          * the value of 'rw' does not affect the table lookup anyway.
10272          */
10273         rw = is64;
10274     }
10275 
10276     hcr_el2 = arm_hcr_el2_eff(env);
10277     switch (excp_idx) {
10278     case EXCP_IRQ:
10279         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10280         hcr = hcr_el2 & HCR_IMO;
10281         break;
10282     case EXCP_FIQ:
10283         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10284         hcr = hcr_el2 & HCR_FMO;
10285         break;
10286     default:
10287         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10288         hcr = hcr_el2 & HCR_AMO;
10289         break;
10290     };
10291 
10292     /*
10293      * For these purposes, TGE and AMO/IMO/FMO both force the
10294      * interrupt to EL2.  Fold TGE into the bit extracted above.
10295      */
10296     hcr |= (hcr_el2 & HCR_TGE) != 0;
10297 
10298     /* Perform a table-lookup for the target EL given the current state */
10299     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10300 
10301     assert(target_el > 0);
10302 
10303     return target_el;
10304 }
10305 
10306 void arm_log_exception(CPUState *cs)
10307 {
10308     int idx = cs->exception_index;
10309 
10310     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10311         const char *exc = NULL;
10312         static const char * const excnames[] = {
10313             [EXCP_UDEF] = "Undefined Instruction",
10314             [EXCP_SWI] = "SVC",
10315             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10316             [EXCP_DATA_ABORT] = "Data Abort",
10317             [EXCP_IRQ] = "IRQ",
10318             [EXCP_FIQ] = "FIQ",
10319             [EXCP_BKPT] = "Breakpoint",
10320             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10321             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10322             [EXCP_HVC] = "Hypervisor Call",
10323             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10324             [EXCP_SMC] = "Secure Monitor Call",
10325             [EXCP_VIRQ] = "Virtual IRQ",
10326             [EXCP_VFIQ] = "Virtual FIQ",
10327             [EXCP_SEMIHOST] = "Semihosting call",
10328             [EXCP_NOCP] = "v7M NOCP UsageFault",
10329             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10330             [EXCP_STKOF] = "v8M STKOF UsageFault",
10331             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10332             [EXCP_LSERR] = "v8M LSERR UsageFault",
10333             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10334             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10335             [EXCP_VSERR] = "Virtual SERR",
10336             [EXCP_GPC] = "Granule Protection Check",
10337         };
10338 
10339         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10340             exc = excnames[idx];
10341         }
10342         if (!exc) {
10343             exc = "unknown";
10344         }
10345         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10346                       idx, exc, cs->cpu_index);
10347     }
10348 }
10349 
10350 /*
10351  * Function used to synchronize QEMU's AArch64 register set with AArch32
10352  * register set.  This is necessary when switching between AArch32 and AArch64
10353  * execution state.
10354  */
10355 void aarch64_sync_32_to_64(CPUARMState *env)
10356 {
10357     int i;
10358     uint32_t mode = env->uncached_cpsr & CPSR_M;
10359 
10360     /* We can blanket copy R[0:7] to X[0:7] */
10361     for (i = 0; i < 8; i++) {
10362         env->xregs[i] = env->regs[i];
10363     }
10364 
10365     /*
10366      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10367      * Otherwise, they come from the banked user regs.
10368      */
10369     if (mode == ARM_CPU_MODE_FIQ) {
10370         for (i = 8; i < 13; i++) {
10371             env->xregs[i] = env->usr_regs[i - 8];
10372         }
10373     } else {
10374         for (i = 8; i < 13; i++) {
10375             env->xregs[i] = env->regs[i];
10376         }
10377     }
10378 
10379     /*
10380      * Registers x13-x23 are the various mode SP and FP registers. Registers
10381      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10382      * from the mode banked register.
10383      */
10384     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10385         env->xregs[13] = env->regs[13];
10386         env->xregs[14] = env->regs[14];
10387     } else {
10388         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10389         /* HYP is an exception in that it is copied from r14 */
10390         if (mode == ARM_CPU_MODE_HYP) {
10391             env->xregs[14] = env->regs[14];
10392         } else {
10393             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10394         }
10395     }
10396 
10397     if (mode == ARM_CPU_MODE_HYP) {
10398         env->xregs[15] = env->regs[13];
10399     } else {
10400         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10401     }
10402 
10403     if (mode == ARM_CPU_MODE_IRQ) {
10404         env->xregs[16] = env->regs[14];
10405         env->xregs[17] = env->regs[13];
10406     } else {
10407         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10408         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10409     }
10410 
10411     if (mode == ARM_CPU_MODE_SVC) {
10412         env->xregs[18] = env->regs[14];
10413         env->xregs[19] = env->regs[13];
10414     } else {
10415         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10416         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10417     }
10418 
10419     if (mode == ARM_CPU_MODE_ABT) {
10420         env->xregs[20] = env->regs[14];
10421         env->xregs[21] = env->regs[13];
10422     } else {
10423         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10424         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10425     }
10426 
10427     if (mode == ARM_CPU_MODE_UND) {
10428         env->xregs[22] = env->regs[14];
10429         env->xregs[23] = env->regs[13];
10430     } else {
10431         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10432         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10433     }
10434 
10435     /*
10436      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10437      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10438      * FIQ bank for r8-r14.
10439      */
10440     if (mode == ARM_CPU_MODE_FIQ) {
10441         for (i = 24; i < 31; i++) {
10442             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10443         }
10444     } else {
10445         for (i = 24; i < 29; i++) {
10446             env->xregs[i] = env->fiq_regs[i - 24];
10447         }
10448         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10449         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10450     }
10451 
10452     env->pc = env->regs[15];
10453 }
10454 
10455 /*
10456  * Function used to synchronize QEMU's AArch32 register set with AArch64
10457  * register set.  This is necessary when switching between AArch32 and AArch64
10458  * execution state.
10459  */
10460 void aarch64_sync_64_to_32(CPUARMState *env)
10461 {
10462     int i;
10463     uint32_t mode = env->uncached_cpsr & CPSR_M;
10464 
10465     /* We can blanket copy X[0:7] to R[0:7] */
10466     for (i = 0; i < 8; i++) {
10467         env->regs[i] = env->xregs[i];
10468     }
10469 
10470     /*
10471      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10472      * Otherwise, we copy x8-x12 into the banked user regs.
10473      */
10474     if (mode == ARM_CPU_MODE_FIQ) {
10475         for (i = 8; i < 13; i++) {
10476             env->usr_regs[i - 8] = env->xregs[i];
10477         }
10478     } else {
10479         for (i = 8; i < 13; i++) {
10480             env->regs[i] = env->xregs[i];
10481         }
10482     }
10483 
10484     /*
10485      * Registers r13 & r14 depend on the current mode.
10486      * If we are in a given mode, we copy the corresponding x registers to r13
10487      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10488      * for the mode.
10489      */
10490     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10491         env->regs[13] = env->xregs[13];
10492         env->regs[14] = env->xregs[14];
10493     } else {
10494         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10495 
10496         /*
10497          * HYP is an exception in that it does not have its own banked r14 but
10498          * shares the USR r14
10499          */
10500         if (mode == ARM_CPU_MODE_HYP) {
10501             env->regs[14] = env->xregs[14];
10502         } else {
10503             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10504         }
10505     }
10506 
10507     if (mode == ARM_CPU_MODE_HYP) {
10508         env->regs[13] = env->xregs[15];
10509     } else {
10510         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10511     }
10512 
10513     if (mode == ARM_CPU_MODE_IRQ) {
10514         env->regs[14] = env->xregs[16];
10515         env->regs[13] = env->xregs[17];
10516     } else {
10517         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10518         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10519     }
10520 
10521     if (mode == ARM_CPU_MODE_SVC) {
10522         env->regs[14] = env->xregs[18];
10523         env->regs[13] = env->xregs[19];
10524     } else {
10525         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10526         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10527     }
10528 
10529     if (mode == ARM_CPU_MODE_ABT) {
10530         env->regs[14] = env->xregs[20];
10531         env->regs[13] = env->xregs[21];
10532     } else {
10533         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10534         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10535     }
10536 
10537     if (mode == ARM_CPU_MODE_UND) {
10538         env->regs[14] = env->xregs[22];
10539         env->regs[13] = env->xregs[23];
10540     } else {
10541         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10542         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10543     }
10544 
10545     /*
10546      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10547      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10548      * FIQ bank for r8-r14.
10549      */
10550     if (mode == ARM_CPU_MODE_FIQ) {
10551         for (i = 24; i < 31; i++) {
10552             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10553         }
10554     } else {
10555         for (i = 24; i < 29; i++) {
10556             env->fiq_regs[i - 24] = env->xregs[i];
10557         }
10558         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10559         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10560     }
10561 
10562     env->regs[15] = env->pc;
10563 }
10564 
10565 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10566                                    uint32_t mask, uint32_t offset,
10567                                    uint32_t newpc)
10568 {
10569     int new_el;
10570 
10571     /* Change the CPU state so as to actually take the exception. */
10572     switch_mode(env, new_mode);
10573 
10574     /*
10575      * For exceptions taken to AArch32 we must clear the SS bit in both
10576      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10577      */
10578     env->pstate &= ~PSTATE_SS;
10579     env->spsr = cpsr_read(env);
10580     /* Clear IT bits.  */
10581     env->condexec_bits = 0;
10582     /* Switch to the new mode, and to the correct instruction set.  */
10583     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10584 
10585     /* This must be after mode switching. */
10586     new_el = arm_current_el(env);
10587 
10588     /* Set new mode endianness */
10589     env->uncached_cpsr &= ~CPSR_E;
10590     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10591         env->uncached_cpsr |= CPSR_E;
10592     }
10593     /* J and IL must always be cleared for exception entry */
10594     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10595     env->daif |= mask;
10596 
10597     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10598         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10599             env->uncached_cpsr |= CPSR_SSBS;
10600         } else {
10601             env->uncached_cpsr &= ~CPSR_SSBS;
10602         }
10603     }
10604 
10605     if (new_mode == ARM_CPU_MODE_HYP) {
10606         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10607         env->elr_el[2] = env->regs[15];
10608     } else {
10609         /* CPSR.PAN is normally preserved preserved unless...  */
10610         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10611             switch (new_el) {
10612             case 3:
10613                 if (!arm_is_secure_below_el3(env)) {
10614                     /* ... the target is EL3, from non-secure state.  */
10615                     env->uncached_cpsr &= ~CPSR_PAN;
10616                     break;
10617                 }
10618                 /* ... the target is EL3, from secure state ... */
10619                 /* fall through */
10620             case 1:
10621                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10622                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10623                     env->uncached_cpsr |= CPSR_PAN;
10624                 }
10625                 break;
10626             }
10627         }
10628         /*
10629          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10630          * and we should just guard the thumb mode on V4
10631          */
10632         if (arm_feature(env, ARM_FEATURE_V4T)) {
10633             env->thumb =
10634                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10635         }
10636         env->regs[14] = env->regs[15] + offset;
10637     }
10638     env->regs[15] = newpc;
10639 
10640     if (tcg_enabled()) {
10641         arm_rebuild_hflags(env);
10642     }
10643 }
10644 
10645 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10646 {
10647     /*
10648      * Handle exception entry to Hyp mode; this is sufficiently
10649      * different to entry to other AArch32 modes that we handle it
10650      * separately here.
10651      *
10652      * The vector table entry used is always the 0x14 Hyp mode entry point,
10653      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10654      * The offset applied to the preferred return address is always zero
10655      * (see DDI0487C.a section G1.12.3).
10656      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10657      */
10658     uint32_t addr, mask;
10659     ARMCPU *cpu = ARM_CPU(cs);
10660     CPUARMState *env = &cpu->env;
10661 
10662     switch (cs->exception_index) {
10663     case EXCP_UDEF:
10664         addr = 0x04;
10665         break;
10666     case EXCP_SWI:
10667         addr = 0x08;
10668         break;
10669     case EXCP_BKPT:
10670         /* Fall through to prefetch abort.  */
10671     case EXCP_PREFETCH_ABORT:
10672         env->cp15.ifar_s = env->exception.vaddress;
10673         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10674                       (uint32_t)env->exception.vaddress);
10675         addr = 0x0c;
10676         break;
10677     case EXCP_DATA_ABORT:
10678         env->cp15.dfar_s = env->exception.vaddress;
10679         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10680                       (uint32_t)env->exception.vaddress);
10681         addr = 0x10;
10682         break;
10683     case EXCP_IRQ:
10684         addr = 0x18;
10685         break;
10686     case EXCP_FIQ:
10687         addr = 0x1c;
10688         break;
10689     case EXCP_HVC:
10690         addr = 0x08;
10691         break;
10692     case EXCP_HYP_TRAP:
10693         addr = 0x14;
10694         break;
10695     default:
10696         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10697     }
10698 
10699     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10700         if (!arm_feature(env, ARM_FEATURE_V8)) {
10701             /*
10702              * QEMU syndrome values are v8-style. v7 has the IL bit
10703              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10704              * If this is a v7 CPU, squash the IL bit in those cases.
10705              */
10706             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10707                 (cs->exception_index == EXCP_DATA_ABORT &&
10708                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10709                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10710                 env->exception.syndrome &= ~ARM_EL_IL;
10711             }
10712         }
10713         env->cp15.esr_el[2] = env->exception.syndrome;
10714     }
10715 
10716     if (arm_current_el(env) != 2 && addr < 0x14) {
10717         addr = 0x14;
10718     }
10719 
10720     mask = 0;
10721     if (!(env->cp15.scr_el3 & SCR_EA)) {
10722         mask |= CPSR_A;
10723     }
10724     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10725         mask |= CPSR_I;
10726     }
10727     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10728         mask |= CPSR_F;
10729     }
10730 
10731     addr += env->cp15.hvbar;
10732 
10733     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10734 }
10735 
10736 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10737 {
10738     ARMCPU *cpu = ARM_CPU(cs);
10739     CPUARMState *env = &cpu->env;
10740     uint32_t addr;
10741     uint32_t mask;
10742     int new_mode;
10743     uint32_t offset;
10744     uint32_t moe;
10745 
10746     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10747     switch (syn_get_ec(env->exception.syndrome)) {
10748     case EC_BREAKPOINT:
10749     case EC_BREAKPOINT_SAME_EL:
10750         moe = 1;
10751         break;
10752     case EC_WATCHPOINT:
10753     case EC_WATCHPOINT_SAME_EL:
10754         moe = 10;
10755         break;
10756     case EC_AA32_BKPT:
10757         moe = 3;
10758         break;
10759     case EC_VECTORCATCH:
10760         moe = 5;
10761         break;
10762     default:
10763         moe = 0;
10764         break;
10765     }
10766 
10767     if (moe) {
10768         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10769     }
10770 
10771     if (env->exception.target_el == 2) {
10772         arm_cpu_do_interrupt_aarch32_hyp(cs);
10773         return;
10774     }
10775 
10776     switch (cs->exception_index) {
10777     case EXCP_UDEF:
10778         new_mode = ARM_CPU_MODE_UND;
10779         addr = 0x04;
10780         mask = CPSR_I;
10781         if (env->thumb) {
10782             offset = 2;
10783         } else {
10784             offset = 4;
10785         }
10786         break;
10787     case EXCP_SWI:
10788         new_mode = ARM_CPU_MODE_SVC;
10789         addr = 0x08;
10790         mask = CPSR_I;
10791         /* The PC already points to the next instruction.  */
10792         offset = 0;
10793         break;
10794     case EXCP_BKPT:
10795         /* Fall through to prefetch abort.  */
10796     case EXCP_PREFETCH_ABORT:
10797         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10798         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10799         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10800                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10801         new_mode = ARM_CPU_MODE_ABT;
10802         addr = 0x0c;
10803         mask = CPSR_A | CPSR_I;
10804         offset = 4;
10805         break;
10806     case EXCP_DATA_ABORT:
10807         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10808         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10809         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10810                       env->exception.fsr,
10811                       (uint32_t)env->exception.vaddress);
10812         new_mode = ARM_CPU_MODE_ABT;
10813         addr = 0x10;
10814         mask = CPSR_A | CPSR_I;
10815         offset = 8;
10816         break;
10817     case EXCP_IRQ:
10818         new_mode = ARM_CPU_MODE_IRQ;
10819         addr = 0x18;
10820         /* Disable IRQ and imprecise data aborts.  */
10821         mask = CPSR_A | CPSR_I;
10822         offset = 4;
10823         if (env->cp15.scr_el3 & SCR_IRQ) {
10824             /* IRQ routed to monitor mode */
10825             new_mode = ARM_CPU_MODE_MON;
10826             mask |= CPSR_F;
10827         }
10828         break;
10829     case EXCP_FIQ:
10830         new_mode = ARM_CPU_MODE_FIQ;
10831         addr = 0x1c;
10832         /* Disable FIQ, IRQ and imprecise data aborts.  */
10833         mask = CPSR_A | CPSR_I | CPSR_F;
10834         if (env->cp15.scr_el3 & SCR_FIQ) {
10835             /* FIQ routed to monitor mode */
10836             new_mode = ARM_CPU_MODE_MON;
10837         }
10838         offset = 4;
10839         break;
10840     case EXCP_VIRQ:
10841         new_mode = ARM_CPU_MODE_IRQ;
10842         addr = 0x18;
10843         /* Disable IRQ and imprecise data aborts.  */
10844         mask = CPSR_A | CPSR_I;
10845         offset = 4;
10846         break;
10847     case EXCP_VFIQ:
10848         new_mode = ARM_CPU_MODE_FIQ;
10849         addr = 0x1c;
10850         /* Disable FIQ, IRQ and imprecise data aborts.  */
10851         mask = CPSR_A | CPSR_I | CPSR_F;
10852         offset = 4;
10853         break;
10854     case EXCP_VSERR:
10855         {
10856             /*
10857              * Note that this is reported as a data abort, but the DFAR
10858              * has an UNKNOWN value.  Construct the SError syndrome from
10859              * AET and ExT fields.
10860              */
10861             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10862 
10863             if (extended_addresses_enabled(env)) {
10864                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10865             } else {
10866                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10867             }
10868             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10869             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10870             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10871                           env->exception.fsr);
10872 
10873             new_mode = ARM_CPU_MODE_ABT;
10874             addr = 0x10;
10875             mask = CPSR_A | CPSR_I;
10876             offset = 8;
10877         }
10878         break;
10879     case EXCP_SMC:
10880         new_mode = ARM_CPU_MODE_MON;
10881         addr = 0x08;
10882         mask = CPSR_A | CPSR_I | CPSR_F;
10883         offset = 0;
10884         break;
10885     default:
10886         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10887         return; /* Never happens.  Keep compiler happy.  */
10888     }
10889 
10890     if (new_mode == ARM_CPU_MODE_MON) {
10891         addr += env->cp15.mvbar;
10892     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10893         /* High vectors. When enabled, base address cannot be remapped. */
10894         addr += 0xffff0000;
10895     } else {
10896         /*
10897          * ARM v7 architectures provide a vector base address register to remap
10898          * the interrupt vector table.
10899          * This register is only followed in non-monitor mode, and is banked.
10900          * Note: only bits 31:5 are valid.
10901          */
10902         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10903     }
10904 
10905     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10906         env->cp15.scr_el3 &= ~SCR_NS;
10907     }
10908 
10909     take_aarch32_exception(env, new_mode, mask, offset, addr);
10910 }
10911 
10912 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10913 {
10914     /*
10915      * Return the register number of the AArch64 view of the AArch32
10916      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10917      * be that of the AArch32 mode the exception came from.
10918      */
10919     int mode = env->uncached_cpsr & CPSR_M;
10920 
10921     switch (aarch32_reg) {
10922     case 0 ... 7:
10923         return aarch32_reg;
10924     case 8 ... 12:
10925         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10926     case 13:
10927         switch (mode) {
10928         case ARM_CPU_MODE_USR:
10929         case ARM_CPU_MODE_SYS:
10930             return 13;
10931         case ARM_CPU_MODE_HYP:
10932             return 15;
10933         case ARM_CPU_MODE_IRQ:
10934             return 17;
10935         case ARM_CPU_MODE_SVC:
10936             return 19;
10937         case ARM_CPU_MODE_ABT:
10938             return 21;
10939         case ARM_CPU_MODE_UND:
10940             return 23;
10941         case ARM_CPU_MODE_FIQ:
10942             return 29;
10943         default:
10944             g_assert_not_reached();
10945         }
10946     case 14:
10947         switch (mode) {
10948         case ARM_CPU_MODE_USR:
10949         case ARM_CPU_MODE_SYS:
10950         case ARM_CPU_MODE_HYP:
10951             return 14;
10952         case ARM_CPU_MODE_IRQ:
10953             return 16;
10954         case ARM_CPU_MODE_SVC:
10955             return 18;
10956         case ARM_CPU_MODE_ABT:
10957             return 20;
10958         case ARM_CPU_MODE_UND:
10959             return 22;
10960         case ARM_CPU_MODE_FIQ:
10961             return 30;
10962         default:
10963             g_assert_not_reached();
10964         }
10965     case 15:
10966         return 31;
10967     default:
10968         g_assert_not_reached();
10969     }
10970 }
10971 
10972 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10973 {
10974     uint32_t ret = cpsr_read(env);
10975 
10976     /* Move DIT to the correct location for SPSR_ELx */
10977     if (ret & CPSR_DIT) {
10978         ret &= ~CPSR_DIT;
10979         ret |= PSTATE_DIT;
10980     }
10981     /* Merge PSTATE.SS into SPSR_ELx */
10982     ret |= env->pstate & PSTATE_SS;
10983 
10984     return ret;
10985 }
10986 
10987 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10988 {
10989     /* Return true if this syndrome value is a synchronous external abort */
10990     switch (syn_get_ec(syndrome)) {
10991     case EC_INSNABORT:
10992     case EC_INSNABORT_SAME_EL:
10993     case EC_DATAABORT:
10994     case EC_DATAABORT_SAME_EL:
10995         /* Look at fault status code for all the synchronous ext abort cases */
10996         switch (syndrome & 0x3f) {
10997         case 0x10:
10998         case 0x13:
10999         case 0x14:
11000         case 0x15:
11001         case 0x16:
11002         case 0x17:
11003             return true;
11004         default:
11005             return false;
11006         }
11007     default:
11008         return false;
11009     }
11010 }
11011 
11012 /* Handle exception entry to a target EL which is using AArch64 */
11013 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11014 {
11015     ARMCPU *cpu = ARM_CPU(cs);
11016     CPUARMState *env = &cpu->env;
11017     unsigned int new_el = env->exception.target_el;
11018     target_ulong addr = env->cp15.vbar_el[new_el];
11019     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11020     unsigned int old_mode;
11021     unsigned int cur_el = arm_current_el(env);
11022     int rt;
11023 
11024     if (tcg_enabled()) {
11025         /*
11026          * Note that new_el can never be 0.  If cur_el is 0, then
11027          * el0_a64 is is_a64(), else el0_a64 is ignored.
11028          */
11029         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11030     }
11031 
11032     if (cur_el < new_el) {
11033         /*
11034          * Entry vector offset depends on whether the implemented EL
11035          * immediately lower than the target level is using AArch32 or AArch64
11036          */
11037         bool is_aa64;
11038         uint64_t hcr;
11039 
11040         switch (new_el) {
11041         case 3:
11042             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11043             break;
11044         case 2:
11045             hcr = arm_hcr_el2_eff(env);
11046             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11047                 is_aa64 = (hcr & HCR_RW) != 0;
11048                 break;
11049             }
11050             /* fall through */
11051         case 1:
11052             is_aa64 = is_a64(env);
11053             break;
11054         default:
11055             g_assert_not_reached();
11056         }
11057 
11058         if (is_aa64) {
11059             addr += 0x400;
11060         } else {
11061             addr += 0x600;
11062         }
11063     } else if (pstate_read(env) & PSTATE_SP) {
11064         addr += 0x200;
11065     }
11066 
11067     switch (cs->exception_index) {
11068     case EXCP_GPC:
11069         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11070                       env->cp15.mfar_el3);
11071         /* fall through */
11072     case EXCP_PREFETCH_ABORT:
11073     case EXCP_DATA_ABORT:
11074         /*
11075          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11076          * to be taken to the SError vector entrypoint.
11077          */
11078         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11079             syndrome_is_sync_extabt(env->exception.syndrome)) {
11080             addr += 0x180;
11081         }
11082         env->cp15.far_el[new_el] = env->exception.vaddress;
11083         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11084                       env->cp15.far_el[new_el]);
11085         /* fall through */
11086     case EXCP_BKPT:
11087     case EXCP_UDEF:
11088     case EXCP_SWI:
11089     case EXCP_HVC:
11090     case EXCP_HYP_TRAP:
11091     case EXCP_SMC:
11092         switch (syn_get_ec(env->exception.syndrome)) {
11093         case EC_ADVSIMDFPACCESSTRAP:
11094             /*
11095              * QEMU internal FP/SIMD syndromes from AArch32 include the
11096              * TA and coproc fields which are only exposed if the exception
11097              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11098              * AArch64 format syndrome.
11099              */
11100             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11101             break;
11102         case EC_CP14RTTRAP:
11103         case EC_CP15RTTRAP:
11104         case EC_CP14DTTRAP:
11105             /*
11106              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11107              * the raw register field from the insn; when taking this to
11108              * AArch64 we must convert it to the AArch64 view of the register
11109              * number. Notice that we read a 4-bit AArch32 register number and
11110              * write back a 5-bit AArch64 one.
11111              */
11112             rt = extract32(env->exception.syndrome, 5, 4);
11113             rt = aarch64_regnum(env, rt);
11114             env->exception.syndrome = deposit32(env->exception.syndrome,
11115                                                 5, 5, rt);
11116             break;
11117         case EC_CP15RRTTRAP:
11118         case EC_CP14RRTTRAP:
11119             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11120             rt = extract32(env->exception.syndrome, 5, 4);
11121             rt = aarch64_regnum(env, rt);
11122             env->exception.syndrome = deposit32(env->exception.syndrome,
11123                                                 5, 5, rt);
11124             rt = extract32(env->exception.syndrome, 10, 4);
11125             rt = aarch64_regnum(env, rt);
11126             env->exception.syndrome = deposit32(env->exception.syndrome,
11127                                                 10, 5, rt);
11128             break;
11129         }
11130         env->cp15.esr_el[new_el] = env->exception.syndrome;
11131         break;
11132     case EXCP_IRQ:
11133     case EXCP_VIRQ:
11134         addr += 0x80;
11135         break;
11136     case EXCP_FIQ:
11137     case EXCP_VFIQ:
11138         addr += 0x100;
11139         break;
11140     case EXCP_VSERR:
11141         addr += 0x180;
11142         /* Construct the SError syndrome from IDS and ISS fields. */
11143         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11144         env->cp15.esr_el[new_el] = env->exception.syndrome;
11145         break;
11146     default:
11147         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11148     }
11149 
11150     if (is_a64(env)) {
11151         old_mode = pstate_read(env);
11152         aarch64_save_sp(env, arm_current_el(env));
11153         env->elr_el[new_el] = env->pc;
11154     } else {
11155         old_mode = cpsr_read_for_spsr_elx(env);
11156         env->elr_el[new_el] = env->regs[15];
11157 
11158         aarch64_sync_32_to_64(env);
11159 
11160         env->condexec_bits = 0;
11161     }
11162     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11163 
11164     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11165                   env->elr_el[new_el]);
11166 
11167     if (cpu_isar_feature(aa64_pan, cpu)) {
11168         /* The value of PSTATE.PAN is normally preserved, except when ... */
11169         new_mode |= old_mode & PSTATE_PAN;
11170         switch (new_el) {
11171         case 2:
11172             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11173             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11174                 != (HCR_E2H | HCR_TGE)) {
11175                 break;
11176             }
11177             /* fall through */
11178         case 1:
11179             /* ... the target is EL1 ... */
11180             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11181             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11182                 new_mode |= PSTATE_PAN;
11183             }
11184             break;
11185         }
11186     }
11187     if (cpu_isar_feature(aa64_mte, cpu)) {
11188         new_mode |= PSTATE_TCO;
11189     }
11190 
11191     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11192         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11193             new_mode |= PSTATE_SSBS;
11194         } else {
11195             new_mode &= ~PSTATE_SSBS;
11196         }
11197     }
11198 
11199     pstate_write(env, PSTATE_DAIF | new_mode);
11200     env->aarch64 = true;
11201     aarch64_restore_sp(env, new_el);
11202 
11203     if (tcg_enabled()) {
11204         helper_rebuild_hflags_a64(env, new_el);
11205     }
11206 
11207     env->pc = addr;
11208 
11209     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11210                   new_el, env->pc, pstate_read(env));
11211 }
11212 
11213 /*
11214  * Do semihosting call and set the appropriate return value. All the
11215  * permission and validity checks have been done at translate time.
11216  *
11217  * We only see semihosting exceptions in TCG only as they are not
11218  * trapped to the hypervisor in KVM.
11219  */
11220 #ifdef CONFIG_TCG
11221 static void tcg_handle_semihosting(CPUState *cs)
11222 {
11223     ARMCPU *cpu = ARM_CPU(cs);
11224     CPUARMState *env = &cpu->env;
11225 
11226     if (is_a64(env)) {
11227         qemu_log_mask(CPU_LOG_INT,
11228                       "...handling as semihosting call 0x%" PRIx64 "\n",
11229                       env->xregs[0]);
11230         do_common_semihosting(cs);
11231         env->pc += 4;
11232     } else {
11233         qemu_log_mask(CPU_LOG_INT,
11234                       "...handling as semihosting call 0x%x\n",
11235                       env->regs[0]);
11236         do_common_semihosting(cs);
11237         env->regs[15] += env->thumb ? 2 : 4;
11238     }
11239 }
11240 #endif
11241 
11242 /*
11243  * Handle a CPU exception for A and R profile CPUs.
11244  * Do any appropriate logging, handle PSCI calls, and then hand off
11245  * to the AArch64-entry or AArch32-entry function depending on the
11246  * target exception level's register width.
11247  *
11248  * Note: this is used for both TCG (as the do_interrupt tcg op),
11249  *       and KVM to re-inject guest debug exceptions, and to
11250  *       inject a Synchronous-External-Abort.
11251  */
11252 void arm_cpu_do_interrupt(CPUState *cs)
11253 {
11254     ARMCPU *cpu = ARM_CPU(cs);
11255     CPUARMState *env = &cpu->env;
11256     unsigned int new_el = env->exception.target_el;
11257 
11258     assert(!arm_feature(env, ARM_FEATURE_M));
11259 
11260     arm_log_exception(cs);
11261     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11262                   new_el);
11263     if (qemu_loglevel_mask(CPU_LOG_INT)
11264         && !excp_is_internal(cs->exception_index)) {
11265         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11266                       syn_get_ec(env->exception.syndrome),
11267                       env->exception.syndrome);
11268     }
11269 
11270     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11271         arm_handle_psci_call(cpu);
11272         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11273         return;
11274     }
11275 
11276     /*
11277      * Semihosting semantics depend on the register width of the code
11278      * that caused the exception, not the target exception level, so
11279      * must be handled here.
11280      */
11281 #ifdef CONFIG_TCG
11282     if (cs->exception_index == EXCP_SEMIHOST) {
11283         tcg_handle_semihosting(cs);
11284         return;
11285     }
11286 #endif
11287 
11288     /*
11289      * Hooks may change global state so BQL should be held, also the
11290      * BQL needs to be held for any modification of
11291      * cs->interrupt_request.
11292      */
11293     g_assert(qemu_mutex_iothread_locked());
11294 
11295     arm_call_pre_el_change_hook(cpu);
11296 
11297     assert(!excp_is_internal(cs->exception_index));
11298     if (arm_el_is_aa64(env, new_el)) {
11299         arm_cpu_do_interrupt_aarch64(cs);
11300     } else {
11301         arm_cpu_do_interrupt_aarch32(cs);
11302     }
11303 
11304     arm_call_el_change_hook(cpu);
11305 
11306     if (!kvm_enabled()) {
11307         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11308     }
11309 }
11310 #endif /* !CONFIG_USER_ONLY */
11311 
11312 uint64_t arm_sctlr(CPUARMState *env, int el)
11313 {
11314     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11315     if (el == 0) {
11316         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11317         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11318     }
11319     return env->cp15.sctlr_el[el];
11320 }
11321 
11322 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11323 {
11324     if (regime_has_2_ranges(mmu_idx)) {
11325         return extract64(tcr, 37, 2);
11326     } else if (regime_is_stage2(mmu_idx)) {
11327         return 0; /* VTCR_EL2 */
11328     } else {
11329         /* Replicate the single TBI bit so we always have 2 bits.  */
11330         return extract32(tcr, 20, 1) * 3;
11331     }
11332 }
11333 
11334 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11335 {
11336     if (regime_has_2_ranges(mmu_idx)) {
11337         return extract64(tcr, 51, 2);
11338     } else if (regime_is_stage2(mmu_idx)) {
11339         return 0; /* VTCR_EL2 */
11340     } else {
11341         /* Replicate the single TBID bit so we always have 2 bits.  */
11342         return extract32(tcr, 29, 1) * 3;
11343     }
11344 }
11345 
11346 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11347 {
11348     if (regime_has_2_ranges(mmu_idx)) {
11349         return extract64(tcr, 57, 2);
11350     } else {
11351         /* Replicate the single TCMA bit so we always have 2 bits.  */
11352         return extract32(tcr, 30, 1) * 3;
11353     }
11354 }
11355 
11356 static ARMGranuleSize tg0_to_gran_size(int tg)
11357 {
11358     switch (tg) {
11359     case 0:
11360         return Gran4K;
11361     case 1:
11362         return Gran64K;
11363     case 2:
11364         return Gran16K;
11365     default:
11366         return GranInvalid;
11367     }
11368 }
11369 
11370 static ARMGranuleSize tg1_to_gran_size(int tg)
11371 {
11372     switch (tg) {
11373     case 1:
11374         return Gran16K;
11375     case 2:
11376         return Gran4K;
11377     case 3:
11378         return Gran64K;
11379     default:
11380         return GranInvalid;
11381     }
11382 }
11383 
11384 static inline bool have4k(ARMCPU *cpu, bool stage2)
11385 {
11386     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11387         : cpu_isar_feature(aa64_tgran4, cpu);
11388 }
11389 
11390 static inline bool have16k(ARMCPU *cpu, bool stage2)
11391 {
11392     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11393         : cpu_isar_feature(aa64_tgran16, cpu);
11394 }
11395 
11396 static inline bool have64k(ARMCPU *cpu, bool stage2)
11397 {
11398     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11399         : cpu_isar_feature(aa64_tgran64, cpu);
11400 }
11401 
11402 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11403                                          bool stage2)
11404 {
11405     switch (gran) {
11406     case Gran4K:
11407         if (have4k(cpu, stage2)) {
11408             return gran;
11409         }
11410         break;
11411     case Gran16K:
11412         if (have16k(cpu, stage2)) {
11413             return gran;
11414         }
11415         break;
11416     case Gran64K:
11417         if (have64k(cpu, stage2)) {
11418             return gran;
11419         }
11420         break;
11421     case GranInvalid:
11422         break;
11423     }
11424     /*
11425      * If the guest selects a granule size that isn't implemented,
11426      * the architecture requires that we behave as if it selected one
11427      * that is (with an IMPDEF choice of which one to pick). We choose
11428      * to implement the smallest supported granule size.
11429      */
11430     if (have4k(cpu, stage2)) {
11431         return Gran4K;
11432     }
11433     if (have16k(cpu, stage2)) {
11434         return Gran16K;
11435     }
11436     assert(have64k(cpu, stage2));
11437     return Gran64K;
11438 }
11439 
11440 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11441                                    ARMMMUIdx mmu_idx, bool data,
11442                                    bool el1_is_aa32)
11443 {
11444     uint64_t tcr = regime_tcr(env, mmu_idx);
11445     bool epd, hpd, tsz_oob, ds, ha, hd;
11446     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11447     ARMGranuleSize gran;
11448     ARMCPU *cpu = env_archcpu(env);
11449     bool stage2 = regime_is_stage2(mmu_idx);
11450 
11451     if (!regime_has_2_ranges(mmu_idx)) {
11452         select = 0;
11453         tsz = extract32(tcr, 0, 6);
11454         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11455         if (stage2) {
11456             /* VTCR_EL2 */
11457             hpd = false;
11458         } else {
11459             hpd = extract32(tcr, 24, 1);
11460         }
11461         epd = false;
11462         sh = extract32(tcr, 12, 2);
11463         ps = extract32(tcr, 16, 3);
11464         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11465         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11466         ds = extract64(tcr, 32, 1);
11467     } else {
11468         bool e0pd;
11469 
11470         /*
11471          * Bit 55 is always between the two regions, and is canonical for
11472          * determining if address tagging is enabled.
11473          */
11474         select = extract64(va, 55, 1);
11475         if (!select) {
11476             tsz = extract32(tcr, 0, 6);
11477             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11478             epd = extract32(tcr, 7, 1);
11479             sh = extract32(tcr, 12, 2);
11480             hpd = extract64(tcr, 41, 1);
11481             e0pd = extract64(tcr, 55, 1);
11482         } else {
11483             tsz = extract32(tcr, 16, 6);
11484             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11485             epd = extract32(tcr, 23, 1);
11486             sh = extract32(tcr, 28, 2);
11487             hpd = extract64(tcr, 42, 1);
11488             e0pd = extract64(tcr, 56, 1);
11489         }
11490         ps = extract64(tcr, 32, 3);
11491         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11492         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11493         ds = extract64(tcr, 59, 1);
11494 
11495         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11496             regime_is_user(env, mmu_idx)) {
11497             epd = true;
11498         }
11499     }
11500 
11501     gran = sanitize_gran_size(cpu, gran, stage2);
11502 
11503     if (cpu_isar_feature(aa64_st, cpu)) {
11504         max_tsz = 48 - (gran == Gran64K);
11505     } else {
11506         max_tsz = 39;
11507     }
11508 
11509     /*
11510      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11511      * adjust the effective value of DS, as documented.
11512      */
11513     min_tsz = 16;
11514     if (gran == Gran64K) {
11515         if (cpu_isar_feature(aa64_lva, cpu)) {
11516             min_tsz = 12;
11517         }
11518         ds = false;
11519     } else if (ds) {
11520         if (regime_is_stage2(mmu_idx)) {
11521             if (gran == Gran16K) {
11522                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11523             } else {
11524                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11525             }
11526         } else {
11527             if (gran == Gran16K) {
11528                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11529             } else {
11530                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11531             }
11532         }
11533         if (ds) {
11534             min_tsz = 12;
11535         }
11536     }
11537 
11538     if (stage2 && el1_is_aa32) {
11539         /*
11540          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11541          * are loosened: a configured IPA of 40 bits is permitted even if
11542          * the implemented PA is less than that (and so a 40 bit IPA would
11543          * fault for an AArch64 EL1). See R_DTLMN.
11544          */
11545         min_tsz = MIN(min_tsz, 24);
11546     }
11547 
11548     if (tsz > max_tsz) {
11549         tsz = max_tsz;
11550         tsz_oob = true;
11551     } else if (tsz < min_tsz) {
11552         tsz = min_tsz;
11553         tsz_oob = true;
11554     } else {
11555         tsz_oob = false;
11556     }
11557 
11558     /* Present TBI as a composite with TBID.  */
11559     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11560     if (!data) {
11561         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11562     }
11563     tbi = (tbi >> select) & 1;
11564 
11565     return (ARMVAParameters) {
11566         .tsz = tsz,
11567         .ps = ps,
11568         .sh = sh,
11569         .select = select,
11570         .tbi = tbi,
11571         .epd = epd,
11572         .hpd = hpd,
11573         .tsz_oob = tsz_oob,
11574         .ds = ds,
11575         .ha = ha,
11576         .hd = ha && hd,
11577         .gran = gran,
11578     };
11579 }
11580 
11581 /*
11582  * Note that signed overflow is undefined in C.  The following routines are
11583  * careful to use unsigned types where modulo arithmetic is required.
11584  * Failure to do so _will_ break on newer gcc.
11585  */
11586 
11587 /* Signed saturating arithmetic.  */
11588 
11589 /* Perform 16-bit signed saturating addition.  */
11590 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11591 {
11592     uint16_t res;
11593 
11594     res = a + b;
11595     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11596         if (a & 0x8000) {
11597             res = 0x8000;
11598         } else {
11599             res = 0x7fff;
11600         }
11601     }
11602     return res;
11603 }
11604 
11605 /* Perform 8-bit signed saturating addition.  */
11606 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11607 {
11608     uint8_t res;
11609 
11610     res = a + b;
11611     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11612         if (a & 0x80) {
11613             res = 0x80;
11614         } else {
11615             res = 0x7f;
11616         }
11617     }
11618     return res;
11619 }
11620 
11621 /* Perform 16-bit signed saturating subtraction.  */
11622 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11623 {
11624     uint16_t res;
11625 
11626     res = a - b;
11627     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11628         if (a & 0x8000) {
11629             res = 0x8000;
11630         } else {
11631             res = 0x7fff;
11632         }
11633     }
11634     return res;
11635 }
11636 
11637 /* Perform 8-bit signed saturating subtraction.  */
11638 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11639 {
11640     uint8_t res;
11641 
11642     res = a - b;
11643     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11644         if (a & 0x80) {
11645             res = 0x80;
11646         } else {
11647             res = 0x7f;
11648         }
11649     }
11650     return res;
11651 }
11652 
11653 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11654 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11655 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11656 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11657 #define PFX q
11658 
11659 #include "op_addsub.h"
11660 
11661 /* Unsigned saturating arithmetic.  */
11662 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11663 {
11664     uint16_t res;
11665     res = a + b;
11666     if (res < a) {
11667         res = 0xffff;
11668     }
11669     return res;
11670 }
11671 
11672 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11673 {
11674     if (a > b) {
11675         return a - b;
11676     } else {
11677         return 0;
11678     }
11679 }
11680 
11681 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11682 {
11683     uint8_t res;
11684     res = a + b;
11685     if (res < a) {
11686         res = 0xff;
11687     }
11688     return res;
11689 }
11690 
11691 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11692 {
11693     if (a > b) {
11694         return a - b;
11695     } else {
11696         return 0;
11697     }
11698 }
11699 
11700 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11701 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11702 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11703 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11704 #define PFX uq
11705 
11706 #include "op_addsub.h"
11707 
11708 /* Signed modulo arithmetic.  */
11709 #define SARITH16(a, b, n, op) do { \
11710     int32_t sum; \
11711     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11712     RESULT(sum, n, 16); \
11713     if (sum >= 0) \
11714         ge |= 3 << (n * 2); \
11715     } while (0)
11716 
11717 #define SARITH8(a, b, n, op) do { \
11718     int32_t sum; \
11719     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11720     RESULT(sum, n, 8); \
11721     if (sum >= 0) \
11722         ge |= 1 << n; \
11723     } while (0)
11724 
11725 
11726 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11727 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11728 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11729 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11730 #define PFX s
11731 #define ARITH_GE
11732 
11733 #include "op_addsub.h"
11734 
11735 /* Unsigned modulo arithmetic.  */
11736 #define ADD16(a, b, n) do { \
11737     uint32_t sum; \
11738     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11739     RESULT(sum, n, 16); \
11740     if ((sum >> 16) == 1) \
11741         ge |= 3 << (n * 2); \
11742     } while (0)
11743 
11744 #define ADD8(a, b, n) do { \
11745     uint32_t sum; \
11746     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11747     RESULT(sum, n, 8); \
11748     if ((sum >> 8) == 1) \
11749         ge |= 1 << n; \
11750     } while (0)
11751 
11752 #define SUB16(a, b, n) do { \
11753     uint32_t sum; \
11754     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11755     RESULT(sum, n, 16); \
11756     if ((sum >> 16) == 0) \
11757         ge |= 3 << (n * 2); \
11758     } while (0)
11759 
11760 #define SUB8(a, b, n) do { \
11761     uint32_t sum; \
11762     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11763     RESULT(sum, n, 8); \
11764     if ((sum >> 8) == 0) \
11765         ge |= 1 << n; \
11766     } while (0)
11767 
11768 #define PFX u
11769 #define ARITH_GE
11770 
11771 #include "op_addsub.h"
11772 
11773 /* Halved signed arithmetic.  */
11774 #define ADD16(a, b, n) \
11775   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11776 #define SUB16(a, b, n) \
11777   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11778 #define ADD8(a, b, n) \
11779   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11780 #define SUB8(a, b, n) \
11781   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11782 #define PFX sh
11783 
11784 #include "op_addsub.h"
11785 
11786 /* Halved unsigned arithmetic.  */
11787 #define ADD16(a, b, n) \
11788   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11789 #define SUB16(a, b, n) \
11790   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11791 #define ADD8(a, b, n) \
11792   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11793 #define SUB8(a, b, n) \
11794   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11795 #define PFX uh
11796 
11797 #include "op_addsub.h"
11798 
11799 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11800 {
11801     if (a > b) {
11802         return a - b;
11803     } else {
11804         return b - a;
11805     }
11806 }
11807 
11808 /* Unsigned sum of absolute byte differences.  */
11809 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11810 {
11811     uint32_t sum;
11812     sum = do_usad(a, b);
11813     sum += do_usad(a >> 8, b >> 8);
11814     sum += do_usad(a >> 16, b >> 16);
11815     sum += do_usad(a >> 24, b >> 24);
11816     return sum;
11817 }
11818 
11819 /* For ARMv6 SEL instruction.  */
11820 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11821 {
11822     uint32_t mask;
11823 
11824     mask = 0;
11825     if (flags & 1) {
11826         mask |= 0xff;
11827     }
11828     if (flags & 2) {
11829         mask |= 0xff00;
11830     }
11831     if (flags & 4) {
11832         mask |= 0xff0000;
11833     }
11834     if (flags & 8) {
11835         mask |= 0xff000000;
11836     }
11837     return (a & mask) | (b & ~mask);
11838 }
11839 
11840 /*
11841  * CRC helpers.
11842  * The upper bytes of val (above the number specified by 'bytes') must have
11843  * been zeroed out by the caller.
11844  */
11845 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11846 {
11847     uint8_t buf[4];
11848 
11849     stl_le_p(buf, val);
11850 
11851     /* zlib crc32 converts the accumulator and output to one's complement.  */
11852     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11853 }
11854 
11855 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11856 {
11857     uint8_t buf[4];
11858 
11859     stl_le_p(buf, val);
11860 
11861     /* Linux crc32c converts the output to one's complement.  */
11862     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11863 }
11864 
11865 /*
11866  * Return the exception level to which FP-disabled exceptions should
11867  * be taken, or 0 if FP is enabled.
11868  */
11869 int fp_exception_el(CPUARMState *env, int cur_el)
11870 {
11871 #ifndef CONFIG_USER_ONLY
11872     uint64_t hcr_el2;
11873 
11874     /*
11875      * CPACR and the CPTR registers don't exist before v6, so FP is
11876      * always accessible
11877      */
11878     if (!arm_feature(env, ARM_FEATURE_V6)) {
11879         return 0;
11880     }
11881 
11882     if (arm_feature(env, ARM_FEATURE_M)) {
11883         /* CPACR can cause a NOCP UsageFault taken to current security state */
11884         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11885             return 1;
11886         }
11887 
11888         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11889             if (!extract32(env->v7m.nsacr, 10, 1)) {
11890                 /* FP insns cause a NOCP UsageFault taken to Secure */
11891                 return 3;
11892             }
11893         }
11894 
11895         return 0;
11896     }
11897 
11898     hcr_el2 = arm_hcr_el2_eff(env);
11899 
11900     /*
11901      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11902      * 0, 2 : trap EL0 and EL1/PL1 accesses
11903      * 1    : trap only EL0 accesses
11904      * 3    : trap no accesses
11905      * This register is ignored if E2H+TGE are both set.
11906      */
11907     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11908         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11909 
11910         switch (fpen) {
11911         case 1:
11912             if (cur_el != 0) {
11913                 break;
11914             }
11915             /* fall through */
11916         case 0:
11917         case 2:
11918             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11919             if (!arm_el_is_aa64(env, 3)
11920                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11921                 return 3;
11922             }
11923             if (cur_el <= 1) {
11924                 return 1;
11925             }
11926             break;
11927         }
11928     }
11929 
11930     /*
11931      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11932      * to control non-secure access to the FPU. It doesn't have any
11933      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11934      */
11935     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11936          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11937         if (!extract32(env->cp15.nsacr, 10, 1)) {
11938             /* FP insns act as UNDEF */
11939             return cur_el == 2 ? 2 : 1;
11940         }
11941     }
11942 
11943     /*
11944      * CPTR_EL2 is present in v7VE or v8, and changes format
11945      * with HCR_EL2.E2H (regardless of TGE).
11946      */
11947     if (cur_el <= 2) {
11948         if (hcr_el2 & HCR_E2H) {
11949             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11950             case 1:
11951                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11952                     break;
11953                 }
11954                 /* fall through */
11955             case 0:
11956             case 2:
11957                 return 2;
11958             }
11959         } else if (arm_is_el2_enabled(env)) {
11960             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11961                 return 2;
11962             }
11963         }
11964     }
11965 
11966     /* CPTR_EL3 : present in v8 */
11967     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11968         /* Trap all FP ops to EL3 */
11969         return 3;
11970     }
11971 #endif
11972     return 0;
11973 }
11974 
11975 /* Return the exception level we're running at if this is our mmu_idx */
11976 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11977 {
11978     if (mmu_idx & ARM_MMU_IDX_M) {
11979         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11980     }
11981 
11982     switch (mmu_idx) {
11983     case ARMMMUIdx_E10_0:
11984     case ARMMMUIdx_E20_0:
11985         return 0;
11986     case ARMMMUIdx_E10_1:
11987     case ARMMMUIdx_E10_1_PAN:
11988         return 1;
11989     case ARMMMUIdx_E2:
11990     case ARMMMUIdx_E20_2:
11991     case ARMMMUIdx_E20_2_PAN:
11992         return 2;
11993     case ARMMMUIdx_E3:
11994         return 3;
11995     default:
11996         g_assert_not_reached();
11997     }
11998 }
11999 
12000 #ifndef CONFIG_TCG
12001 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12002 {
12003     g_assert_not_reached();
12004 }
12005 #endif
12006 
12007 static bool arm_pan_enabled(CPUARMState *env)
12008 {
12009     if (is_a64(env)) {
12010         return env->pstate & PSTATE_PAN;
12011     } else {
12012         return env->uncached_cpsr & CPSR_PAN;
12013     }
12014 }
12015 
12016 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12017 {
12018     ARMMMUIdx idx;
12019     uint64_t hcr;
12020 
12021     if (arm_feature(env, ARM_FEATURE_M)) {
12022         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12023     }
12024 
12025     /* See ARM pseudo-function ELIsInHost.  */
12026     switch (el) {
12027     case 0:
12028         hcr = arm_hcr_el2_eff(env);
12029         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12030             idx = ARMMMUIdx_E20_0;
12031         } else {
12032             idx = ARMMMUIdx_E10_0;
12033         }
12034         break;
12035     case 1:
12036         if (arm_pan_enabled(env)) {
12037             idx = ARMMMUIdx_E10_1_PAN;
12038         } else {
12039             idx = ARMMMUIdx_E10_1;
12040         }
12041         break;
12042     case 2:
12043         /* Note that TGE does not apply at EL2.  */
12044         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12045             if (arm_pan_enabled(env)) {
12046                 idx = ARMMMUIdx_E20_2_PAN;
12047             } else {
12048                 idx = ARMMMUIdx_E20_2;
12049             }
12050         } else {
12051             idx = ARMMMUIdx_E2;
12052         }
12053         break;
12054     case 3:
12055         return ARMMMUIdx_E3;
12056     default:
12057         g_assert_not_reached();
12058     }
12059 
12060     return idx;
12061 }
12062 
12063 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12064 {
12065     return arm_mmu_idx_el(env, arm_current_el(env));
12066 }
12067 
12068 static bool mve_no_pred(CPUARMState *env)
12069 {
12070     /*
12071      * Return true if there is definitely no predication of MVE
12072      * instructions by VPR or LTPSIZE. (Returning false even if there
12073      * isn't any predication is OK; generated code will just be
12074      * a little worse.)
12075      * If the CPU does not implement MVE then this TB flag is always 0.
12076      *
12077      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12078      * logic in gen_update_fp_context() needs to be updated to match.
12079      *
12080      * We do not include the effect of the ECI bits here -- they are
12081      * tracked in other TB flags. This simplifies the logic for
12082      * "when did we emit code that changes the MVE_NO_PRED TB flag
12083      * and thus need to end the TB?".
12084      */
12085     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12086         return false;
12087     }
12088     if (env->v7m.vpr) {
12089         return false;
12090     }
12091     if (env->v7m.ltpsize < 4) {
12092         return false;
12093     }
12094     return true;
12095 }
12096 
12097 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12098                           uint64_t *cs_base, uint32_t *pflags)
12099 {
12100     CPUARMTBFlags flags;
12101 
12102     assert_hflags_rebuild_correctly(env);
12103     flags = env->hflags;
12104 
12105     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12106         *pc = env->pc;
12107         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12108             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12109         }
12110     } else {
12111         *pc = env->regs[15];
12112 
12113         if (arm_feature(env, ARM_FEATURE_M)) {
12114             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12115                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12116                 != env->v7m.secure) {
12117                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12118             }
12119 
12120             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12121                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12122                  (env->v7m.secure &&
12123                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12124                 /*
12125                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12126                  * active FP context; we must create a new FP context before
12127                  * executing any FP insn.
12128                  */
12129                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12130             }
12131 
12132             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12133             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12134                 DP_TBFLAG_M32(flags, LSPACT, 1);
12135             }
12136 
12137             if (mve_no_pred(env)) {
12138                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12139             }
12140         } else {
12141             /*
12142              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12143              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12144              */
12145             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12146                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12147             } else {
12148                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12149                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12150             }
12151             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12152                 DP_TBFLAG_A32(flags, VFPEN, 1);
12153             }
12154         }
12155 
12156         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12157         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12158     }
12159 
12160     /*
12161      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12162      * states defined in the ARM ARM for software singlestep:
12163      *  SS_ACTIVE   PSTATE.SS   State
12164      *     0            x       Inactive (the TB flag for SS is always 0)
12165      *     1            0       Active-pending
12166      *     1            1       Active-not-pending
12167      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12168      */
12169     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12170         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12171     }
12172 
12173     *pflags = flags.flags;
12174     *cs_base = flags.flags2;
12175 }
12176 
12177 #ifdef TARGET_AARCH64
12178 /*
12179  * The manual says that when SVE is enabled and VQ is widened the
12180  * implementation is allowed to zero the previously inaccessible
12181  * portion of the registers.  The corollary to that is that when
12182  * SVE is enabled and VQ is narrowed we are also allowed to zero
12183  * the now inaccessible portion of the registers.
12184  *
12185  * The intent of this is that no predicate bit beyond VQ is ever set.
12186  * Which means that some operations on predicate registers themselves
12187  * may operate on full uint64_t or even unrolled across the maximum
12188  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12189  * may well be cheaper than conditionals to restrict the operation
12190  * to the relevant portion of a uint16_t[16].
12191  */
12192 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12193 {
12194     int i, j;
12195     uint64_t pmask;
12196 
12197     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12198     assert(vq <= env_archcpu(env)->sve_max_vq);
12199 
12200     /* Zap the high bits of the zregs.  */
12201     for (i = 0; i < 32; i++) {
12202         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12203     }
12204 
12205     /* Zap the high bits of the pregs and ffr.  */
12206     pmask = 0;
12207     if (vq & 3) {
12208         pmask = ~(-1ULL << (16 * (vq & 3)));
12209     }
12210     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12211         for (i = 0; i < 17; ++i) {
12212             env->vfp.pregs[i].p[j] &= pmask;
12213         }
12214         pmask = 0;
12215     }
12216 }
12217 
12218 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12219 {
12220     int exc_el;
12221 
12222     if (sm) {
12223         exc_el = sme_exception_el(env, el);
12224     } else {
12225         exc_el = sve_exception_el(env, el);
12226     }
12227     if (exc_el) {
12228         return 0; /* disabled */
12229     }
12230     return sve_vqm1_for_el_sm(env, el, sm);
12231 }
12232 
12233 /*
12234  * Notice a change in SVE vector size when changing EL.
12235  */
12236 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12237                            int new_el, bool el0_a64)
12238 {
12239     ARMCPU *cpu = env_archcpu(env);
12240     int old_len, new_len;
12241     bool old_a64, new_a64, sm;
12242 
12243     /* Nothing to do if no SVE.  */
12244     if (!cpu_isar_feature(aa64_sve, cpu)) {
12245         return;
12246     }
12247 
12248     /* Nothing to do if FP is disabled in either EL.  */
12249     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12250         return;
12251     }
12252 
12253     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12254     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12255 
12256     /*
12257      * Both AArch64.TakeException and AArch64.ExceptionReturn
12258      * invoke ResetSVEState when taking an exception from, or
12259      * returning to, AArch32 state when PSTATE.SM is enabled.
12260      */
12261     sm = FIELD_EX64(env->svcr, SVCR, SM);
12262     if (old_a64 != new_a64 && sm) {
12263         arm_reset_sve_state(env);
12264         return;
12265     }
12266 
12267     /*
12268      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12269      * at ELx, or not available because the EL is in AArch32 state, then
12270      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12271      * has an effective value of 0".
12272      *
12273      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12274      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12275      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12276      * we already have the correct register contents when encountering the
12277      * vq0->vq0 transition between EL0->EL1.
12278      */
12279     old_len = new_len = 0;
12280     if (old_a64) {
12281         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12282     }
12283     if (new_a64) {
12284         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12285     }
12286 
12287     /* When changing vector length, clear inaccessible state.  */
12288     if (new_len < old_len) {
12289         aarch64_sve_narrow_vq(env, new_len + 1);
12290     }
12291 }
12292 #endif
12293 
12294 #ifndef CONFIG_USER_ONLY
12295 ARMSecuritySpace arm_security_space(CPUARMState *env)
12296 {
12297     if (arm_feature(env, ARM_FEATURE_M)) {
12298         return arm_secure_to_space(env->v7m.secure);
12299     }
12300 
12301     /*
12302      * If EL3 is not supported then the secure state is implementation
12303      * defined, in which case QEMU defaults to non-secure.
12304      */
12305     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12306         return ARMSS_NonSecure;
12307     }
12308 
12309     /* Check for AArch64 EL3 or AArch32 Mon. */
12310     if (is_a64(env)) {
12311         if (extract32(env->pstate, 2, 2) == 3) {
12312             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12313                 return ARMSS_Root;
12314             } else {
12315                 return ARMSS_Secure;
12316             }
12317         }
12318     } else {
12319         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12320             return ARMSS_Secure;
12321         }
12322     }
12323 
12324     return arm_security_space_below_el3(env);
12325 }
12326 
12327 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12328 {
12329     assert(!arm_feature(env, ARM_FEATURE_M));
12330 
12331     /*
12332      * If EL3 is not supported then the secure state is implementation
12333      * defined, in which case QEMU defaults to non-secure.
12334      */
12335     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12336         return ARMSS_NonSecure;
12337     }
12338 
12339     /*
12340      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12341      * Ignoring NSE when !NS retains consistency without having to
12342      * modify other predicates.
12343      */
12344     if (!(env->cp15.scr_el3 & SCR_NS)) {
12345         return ARMSS_Secure;
12346     } else if (env->cp15.scr_el3 & SCR_NSE) {
12347         return ARMSS_Realm;
12348     } else {
12349         return ARMSS_NonSecure;
12350     }
12351 }
12352 #endif /* !CONFIG_USER_ONLY */
12353