1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 static bool get_phys_addr(CPUARMState *env, target_ulong address, 23 int access_type, ARMMMUIdx mmu_idx, 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 25 target_ulong *page_size, uint32_t *fsr, 26 ARMMMUFaultInfo *fi); 27 28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 29 int access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 31 target_ulong *page_size_ptr, uint32_t *fsr, 32 ARMMMUFaultInfo *fi); 33 34 /* Definitions for the PMCCNTR and PMCR registers */ 35 #define PMCRD 0x8 36 #define PMCRC 0x4 37 #define PMCRE 0x1 38 #endif 39 40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 41 { 42 int nregs; 43 44 /* VFP data registers are always little-endian. */ 45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 46 if (reg < nregs) { 47 stfq_le_p(buf, env->vfp.regs[reg]); 48 return 8; 49 } 50 if (arm_feature(env, ARM_FEATURE_NEON)) { 51 /* Aliases for Q regs. */ 52 nregs += 16; 53 if (reg < nregs) { 54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 56 return 16; 57 } 58 } 59 switch (reg - nregs) { 60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 63 } 64 return 0; 65 } 66 67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 68 { 69 int nregs; 70 71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 72 if (reg < nregs) { 73 env->vfp.regs[reg] = ldfq_le_p(buf); 74 return 8; 75 } 76 if (arm_feature(env, ARM_FEATURE_NEON)) { 77 nregs += 16; 78 if (reg < nregs) { 79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 81 return 16; 82 } 83 } 84 switch (reg - nregs) { 85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 88 } 89 return 0; 90 } 91 92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 93 { 94 switch (reg) { 95 case 0 ... 31: 96 /* 128 bit FP register */ 97 stfq_le_p(buf, env->vfp.regs[reg * 2]); 98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 99 return 16; 100 case 32: 101 /* FPSR */ 102 stl_p(buf, vfp_get_fpsr(env)); 103 return 4; 104 case 33: 105 /* FPCR */ 106 stl_p(buf, vfp_get_fpcr(env)); 107 return 4; 108 default: 109 return 0; 110 } 111 } 112 113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 114 { 115 switch (reg) { 116 case 0 ... 31: 117 /* 128 bit FP register */ 118 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 120 return 16; 121 case 32: 122 /* FPSR */ 123 vfp_set_fpsr(env, ldl_p(buf)); 124 return 4; 125 case 33: 126 /* FPCR */ 127 vfp_set_fpcr(env, ldl_p(buf)); 128 return 4; 129 default: 130 return 0; 131 } 132 } 133 134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 135 { 136 assert(ri->fieldoffset); 137 if (cpreg_field_is_64bit(ri)) { 138 return CPREG_FIELD64(env, ri); 139 } else { 140 return CPREG_FIELD32(env, ri); 141 } 142 } 143 144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 145 uint64_t value) 146 { 147 assert(ri->fieldoffset); 148 if (cpreg_field_is_64bit(ri)) { 149 CPREG_FIELD64(env, ri) = value; 150 } else { 151 CPREG_FIELD32(env, ri) = value; 152 } 153 } 154 155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 156 { 157 return (char *)env + ri->fieldoffset; 158 } 159 160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 161 { 162 /* Raw read of a coprocessor register (as needed for migration, etc). */ 163 if (ri->type & ARM_CP_CONST) { 164 return ri->resetvalue; 165 } else if (ri->raw_readfn) { 166 return ri->raw_readfn(env, ri); 167 } else if (ri->readfn) { 168 return ri->readfn(env, ri); 169 } else { 170 return raw_read(env, ri); 171 } 172 } 173 174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 175 uint64_t v) 176 { 177 /* Raw write of a coprocessor register (as needed for migration, etc). 178 * Note that constant registers are treated as write-ignored; the 179 * caller should check for success by whether a readback gives the 180 * value written. 181 */ 182 if (ri->type & ARM_CP_CONST) { 183 return; 184 } else if (ri->raw_writefn) { 185 ri->raw_writefn(env, ri, v); 186 } else if (ri->writefn) { 187 ri->writefn(env, ri, v); 188 } else { 189 raw_write(env, ri, v); 190 } 191 } 192 193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 194 { 195 /* Return true if the regdef would cause an assertion if you called 196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 197 * program bug for it not to have the NO_RAW flag). 198 * NB that returning false here doesn't necessarily mean that calling 199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 200 * read/write access functions which are safe for raw use" from "has 201 * read/write access functions which have side effects but has forgotten 202 * to provide raw access functions". 203 * The tests here line up with the conditions in read/write_raw_cp_reg() 204 * and assertions in raw_read()/raw_write(). 205 */ 206 if ((ri->type & ARM_CP_CONST) || 207 ri->fieldoffset || 208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 209 return false; 210 } 211 return true; 212 } 213 214 bool write_cpustate_to_list(ARMCPU *cpu) 215 { 216 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 217 int i; 218 bool ok = true; 219 220 for (i = 0; i < cpu->cpreg_array_len; i++) { 221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 222 const ARMCPRegInfo *ri; 223 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 225 if (!ri) { 226 ok = false; 227 continue; 228 } 229 if (ri->type & ARM_CP_NO_RAW) { 230 continue; 231 } 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 233 } 234 return ok; 235 } 236 237 bool write_list_to_cpustate(ARMCPU *cpu) 238 { 239 int i; 240 bool ok = true; 241 242 for (i = 0; i < cpu->cpreg_array_len; i++) { 243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 244 uint64_t v = cpu->cpreg_values[i]; 245 const ARMCPRegInfo *ri; 246 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 248 if (!ri) { 249 ok = false; 250 continue; 251 } 252 if (ri->type & ARM_CP_NO_RAW) { 253 continue; 254 } 255 /* Write value and confirm it reads back as written 256 * (to catch read-only registers and partially read-only 257 * registers where the incoming migration value doesn't match) 258 */ 259 write_raw_cp_reg(&cpu->env, ri, v); 260 if (read_raw_cp_reg(&cpu->env, ri) != v) { 261 ok = false; 262 } 263 } 264 return ok; 265 } 266 267 static void add_cpreg_to_list(gpointer key, gpointer opaque) 268 { 269 ARMCPU *cpu = opaque; 270 uint64_t regidx; 271 const ARMCPRegInfo *ri; 272 273 regidx = *(uint32_t *)key; 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 275 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 278 /* The value array need not be initialized at this point */ 279 cpu->cpreg_array_len++; 280 } 281 } 282 283 static void count_cpreg(gpointer key, gpointer opaque) 284 { 285 ARMCPU *cpu = opaque; 286 uint64_t regidx; 287 const ARMCPRegInfo *ri; 288 289 regidx = *(uint32_t *)key; 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 291 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 293 cpu->cpreg_array_len++; 294 } 295 } 296 297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 298 { 299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 301 302 if (aidx > bidx) { 303 return 1; 304 } 305 if (aidx < bidx) { 306 return -1; 307 } 308 return 0; 309 } 310 311 void init_cpreg_list(ARMCPU *cpu) 312 { 313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 314 * Note that we require cpreg_tuples[] to be sorted by key ID. 315 */ 316 GList *keys; 317 int arraylen; 318 319 keys = g_hash_table_get_keys(cpu->cp_regs); 320 keys = g_list_sort(keys, cpreg_key_compare); 321 322 cpu->cpreg_array_len = 0; 323 324 g_list_foreach(keys, count_cpreg, cpu); 325 326 arraylen = cpu->cpreg_array_len; 327 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 328 cpu->cpreg_values = g_new(uint64_t, arraylen); 329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 332 cpu->cpreg_array_len = 0; 333 334 g_list_foreach(keys, add_cpreg_to_list, cpu); 335 336 assert(cpu->cpreg_array_len == arraylen); 337 338 g_list_free(keys); 339 } 340 341 /* 342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 344 * 345 * access_el3_aa32ns: Used to check AArch32 register views. 346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 347 */ 348 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 349 const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 bool secure = arm_is_secure_below_el3(env); 353 354 assert(!arm_el_is_aa64(env, 3)); 355 if (secure) { 356 return CP_ACCESS_TRAP_UNCATEGORIZED; 357 } 358 return CP_ACCESS_OK; 359 } 360 361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 362 const ARMCPRegInfo *ri, 363 bool isread) 364 { 365 if (!arm_el_is_aa64(env, 3)) { 366 return access_el3_aa32ns(env, ri, isread); 367 } 368 return CP_ACCESS_OK; 369 } 370 371 /* Some secure-only AArch32 registers trap to EL3 if used from 372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 374 * We assume that the .access field is set to PL1_RW. 375 */ 376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 377 const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 3) { 381 return CP_ACCESS_OK; 382 } 383 if (arm_is_secure_below_el3(env)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 387 return CP_ACCESS_TRAP_UNCATEGORIZED; 388 } 389 390 /* Check for traps to "powerdown debug" registers, which are controlled 391 * by MDCR.TDOSA 392 */ 393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 394 bool isread) 395 { 396 int el = arm_current_el(env); 397 398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 399 && !arm_is_secure_below_el3(env)) { 400 return CP_ACCESS_TRAP_EL2; 401 } 402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 403 return CP_ACCESS_TRAP_EL3; 404 } 405 return CP_ACCESS_OK; 406 } 407 408 /* Check for traps to "debug ROM" registers, which are controlled 409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 410 */ 411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 412 bool isread) 413 { 414 int el = arm_current_el(env); 415 416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 417 && !arm_is_secure_below_el3(env)) { 418 return CP_ACCESS_TRAP_EL2; 419 } 420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 421 return CP_ACCESS_TRAP_EL3; 422 } 423 return CP_ACCESS_OK; 424 } 425 426 /* Check for traps to general debug registers, which are controlled 427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 428 */ 429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 int el = arm_current_el(env); 433 434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 435 && !arm_is_secure_below_el3(env)) { 436 return CP_ACCESS_TRAP_EL2; 437 } 438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 439 return CP_ACCESS_TRAP_EL3; 440 } 441 return CP_ACCESS_OK; 442 } 443 444 /* Check for traps to performance monitor registers, which are controlled 445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 446 */ 447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 448 bool isread) 449 { 450 int el = arm_current_el(env); 451 452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 453 && !arm_is_secure_below_el3(env)) { 454 return CP_ACCESS_TRAP_EL2; 455 } 456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 457 return CP_ACCESS_TRAP_EL3; 458 } 459 return CP_ACCESS_OK; 460 } 461 462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 463 { 464 ARMCPU *cpu = arm_env_get_cpu(env); 465 466 raw_write(env, ri, value); 467 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ 468 } 469 470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 471 { 472 ARMCPU *cpu = arm_env_get_cpu(env); 473 474 if (raw_read(env, ri) != value) { 475 /* Unlike real hardware the qemu TLB uses virtual addresses, 476 * not modified virtual addresses, so this causes a TLB flush. 477 */ 478 tlb_flush(CPU(cpu), 1); 479 raw_write(env, ri, value); 480 } 481 } 482 483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 ARMCPU *cpu = arm_env_get_cpu(env); 487 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) 489 && !extended_addresses_enabled(env)) { 490 /* For VMSA (when not using the LPAE long descriptor page table 491 * format) this register includes the ASID, so do a TLB flush. 492 * For PMSA it is purely a process ID and no action is needed. 493 */ 494 tlb_flush(CPU(cpu), 1); 495 } 496 raw_write(env, ri, value); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 ARMCPU *cpu = arm_env_get_cpu(env); 504 505 tlb_flush(CPU(cpu), 1); 506 } 507 508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 512 ARMCPU *cpu = arm_env_get_cpu(env); 513 514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 515 } 516 517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 518 uint64_t value) 519 { 520 /* Invalidate by ASID (TLBIASID) */ 521 ARMCPU *cpu = arm_env_get_cpu(env); 522 523 tlb_flush(CPU(cpu), value == 0); 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 ARMCPU *cpu = arm_env_get_cpu(env); 531 532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 533 } 534 535 /* IS variants of TLB operations must affect all cores */ 536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 537 uint64_t value) 538 { 539 CPUState *other_cs; 540 541 CPU_FOREACH(other_cs) { 542 tlb_flush(other_cs, 1); 543 } 544 } 545 546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 CPUState *other_cs; 550 551 CPU_FOREACH(other_cs) { 552 tlb_flush(other_cs, value == 0); 553 } 554 } 555 556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *other_cs; 560 561 CPU_FOREACH(other_cs) { 562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); 563 } 564 } 565 566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *other_cs; 570 571 CPU_FOREACH(other_cs) { 572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); 573 } 574 } 575 576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 CPUState *cs = ENV_GET_CPU(env); 580 581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 582 ARMMMUIdx_S2NS, -1); 583 } 584 585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *other_cs; 589 590 CPU_FOREACH(other_cs) { 591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); 593 } 594 } 595 596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 597 uint64_t value) 598 { 599 /* Invalidate by IPA. This has to invalidate any structures that 600 * contain only stage 2 translation information, but does not need 601 * to apply to structures that contain combined stage 1 and stage 2 602 * translation information. 603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 604 */ 605 CPUState *cs = ENV_GET_CPU(env); 606 uint64_t pageaddr; 607 608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 609 return; 610 } 611 612 pageaddr = sextract64(value << 12, 0, 40); 613 614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); 615 } 616 617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 CPUState *other_cs; 621 uint64_t pageaddr; 622 623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 624 return; 625 } 626 627 pageaddr = sextract64(value << 12, 0, 40); 628 629 CPU_FOREACH(other_cs) { 630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); 631 } 632 } 633 634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 635 uint64_t value) 636 { 637 CPUState *cs = ENV_GET_CPU(env); 638 639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); 640 } 641 642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 643 uint64_t value) 644 { 645 CPUState *other_cs; 646 647 CPU_FOREACH(other_cs) { 648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); 649 } 650 } 651 652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 653 uint64_t value) 654 { 655 CPUState *cs = ENV_GET_CPU(env); 656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 657 658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); 659 } 660 661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 662 uint64_t value) 663 { 664 CPUState *other_cs; 665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 666 667 CPU_FOREACH(other_cs) { 668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); 669 } 670 } 671 672 static const ARMCPRegInfo cp_reginfo[] = { 673 /* Define the secure and non-secure FCSE identifier CP registers 674 * separately because there is no secure bank in V8 (no _EL3). This allows 675 * the secure register to be properly reset and migrated. There is also no 676 * v8 EL1 version of the register so the non-secure instance stands alone. 677 */ 678 { .name = "FCSEIDR(NS)", 679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 683 { .name = "FCSEIDR(S)", 684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 688 /* Define the secure and non-secure context identifier CP registers 689 * separately because there is no secure bank in V8 (no _EL3). This allows 690 * the secure register to be properly reset and migrated. In the 691 * non-secure case, the 32-bit register will have reset and migration 692 * disabled during registration as it is handled by the 64-bit instance. 693 */ 694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 704 REGINFO_SENTINEL 705 }; 706 707 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 708 /* NB: Some of these registers exist in v8 but with more precise 709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 710 */ 711 /* MMU Domain access control / MPU write buffer control */ 712 { .name = "DACR", 713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 714 .access = PL1_RW, .resetvalue = 0, 715 .writefn = dacr_write, .raw_writefn = raw_write, 716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 717 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 719 * For v6 and v5, these mappings are overly broad. 720 */ 721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 729 /* Cache maintenance ops; some of this space may be overridden later. */ 730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 733 REGINFO_SENTINEL 734 }; 735 736 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 737 /* Not all pre-v6 cores implemented this WFI, so this is slightly 738 * over-broad. 739 */ 740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 741 .access = PL1_W, .type = ARM_CP_WFI }, 742 REGINFO_SENTINEL 743 }; 744 745 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 747 * is UNPREDICTABLE; we choose to NOP as most implementations do). 748 */ 749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 750 .access = PL1_W, .type = ARM_CP_WFI }, 751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 753 * OMAPCP will override this space. 754 */ 755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 757 .resetvalue = 0 }, 758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 760 .resetvalue = 0 }, 761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 764 .resetvalue = 0 }, 765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 766 * implementing it as RAZ means the "debug architecture version" bits 767 * will read as a reserved value, which should cause Linux to not try 768 * to use the debug hardware. 769 */ 770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 772 /* MMU TLB control. Note that the wildcarding means we cover not just 773 * the unified TLB ops but also the dside/iside/inner-shareable variants. 774 */ 775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 777 .type = ARM_CP_NO_RAW }, 778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 780 .type = ARM_CP_NO_RAW }, 781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 783 .type = ARM_CP_NO_RAW }, 784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 786 .type = ARM_CP_NO_RAW }, 787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 791 REGINFO_SENTINEL 792 }; 793 794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 795 uint64_t value) 796 { 797 uint32_t mask = 0; 798 799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 800 if (!arm_feature(env, ARM_FEATURE_V8)) { 801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 804 */ 805 if (arm_feature(env, ARM_FEATURE_VFP)) { 806 /* VFP coprocessor: cp10 & cp11 [23:20] */ 807 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 808 809 if (!arm_feature(env, ARM_FEATURE_NEON)) { 810 /* ASEDIS [31] bit is RAO/WI */ 811 value |= (1 << 31); 812 } 813 814 /* VFPv3 and upwards with NEON implement 32 double precision 815 * registers (D0-D31). 816 */ 817 if (!arm_feature(env, ARM_FEATURE_NEON) || 818 !arm_feature(env, ARM_FEATURE_VFP3)) { 819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 820 value |= (1 << 30); 821 } 822 } 823 value &= mask; 824 } 825 env->cp15.cpacr_el1 = value; 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && 834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 851 return CP_ACCESS_TRAP_EL3; 852 } 853 854 return CP_ACCESS_OK; 855 } 856 857 static const ARMCPRegInfo v6_cp_reginfo[] = { 858 /* prefetch by MVA in v6, NOP in v7 */ 859 { .name = "MVA_prefetch", 860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 861 .access = PL1_W, .type = ARM_CP_NOP }, 862 /* We need to break the TB after ISB to execute self-modifying code 863 * correctly and also to take any pending interrupts immediately. 864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 865 */ 866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NOP }, 870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 873 .access = PL1_RW, 874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 875 offsetof(CPUARMState, cp15.ifar_ns) }, 876 .resetvalue = 0, }, 877 /* Watchpoint Fault Address Register : should actually only be present 878 * for 1136, 1176, 11MPCore. 879 */ 880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 885 .resetvalue = 0, .writefn = cpacr_write }, 886 REGINFO_SENTINEL 887 }; 888 889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 890 bool isread) 891 { 892 /* Performance monitor registers user accessibility is controlled 893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 894 * trapping to EL2 or EL3 for other accesses. 895 */ 896 int el = arm_current_el(env); 897 898 if (el == 0 && !env->cp15.c9_pmuserenr) { 899 return CP_ACCESS_TRAP; 900 } 901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 902 && !arm_is_secure_below_el3(env)) { 903 return CP_ACCESS_TRAP_EL2; 904 } 905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 906 return CP_ACCESS_TRAP_EL3; 907 } 908 909 return CP_ACCESS_OK; 910 } 911 912 #ifndef CONFIG_USER_ONLY 913 914 static inline bool arm_ccnt_enabled(CPUARMState *env) 915 { 916 /* This does not support checking PMCCFILTR_EL0 register */ 917 918 if (!(env->cp15.c9_pmcr & PMCRE)) { 919 return false; 920 } 921 922 return true; 923 } 924 925 void pmccntr_sync(CPUARMState *env) 926 { 927 uint64_t temp_ticks; 928 929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 932 if (env->cp15.c9_pmcr & PMCRD) { 933 /* Increment once every 64 processor clock cycles */ 934 temp_ticks /= 64; 935 } 936 937 if (arm_ccnt_enabled(env)) { 938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 939 } 940 } 941 942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 943 uint64_t value) 944 { 945 pmccntr_sync(env); 946 947 if (value & PMCRC) { 948 /* The counter has been reset */ 949 env->cp15.c15_ccnt = 0; 950 } 951 952 /* only the DP, X, D and E bits are writable */ 953 env->cp15.c9_pmcr &= ~0x39; 954 env->cp15.c9_pmcr |= (value & 0x39); 955 956 pmccntr_sync(env); 957 } 958 959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 960 { 961 uint64_t total_ticks; 962 963 if (!arm_ccnt_enabled(env)) { 964 /* Counter is disabled, do not change value */ 965 return env->cp15.c15_ccnt; 966 } 967 968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 970 971 if (env->cp15.c9_pmcr & PMCRD) { 972 /* Increment once every 64 processor clock cycles */ 973 total_ticks /= 64; 974 } 975 return total_ticks - env->cp15.c15_ccnt; 976 } 977 978 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 979 uint64_t value) 980 { 981 uint64_t total_ticks; 982 983 if (!arm_ccnt_enabled(env)) { 984 /* Counter is disabled, set the absolute value */ 985 env->cp15.c15_ccnt = value; 986 return; 987 } 988 989 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 990 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 991 992 if (env->cp15.c9_pmcr & PMCRD) { 993 /* Increment once every 64 processor clock cycles */ 994 total_ticks /= 64; 995 } 996 env->cp15.c15_ccnt = total_ticks - value; 997 } 998 999 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1000 uint64_t value) 1001 { 1002 uint64_t cur_val = pmccntr_read(env, NULL); 1003 1004 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1005 } 1006 1007 #else /* CONFIG_USER_ONLY */ 1008 1009 void pmccntr_sync(CPUARMState *env) 1010 { 1011 } 1012 1013 #endif 1014 1015 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1016 uint64_t value) 1017 { 1018 pmccntr_sync(env); 1019 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1020 pmccntr_sync(env); 1021 } 1022 1023 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1024 uint64_t value) 1025 { 1026 value &= (1 << 31); 1027 env->cp15.c9_pmcnten |= value; 1028 } 1029 1030 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1031 uint64_t value) 1032 { 1033 value &= (1 << 31); 1034 env->cp15.c9_pmcnten &= ~value; 1035 } 1036 1037 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1038 uint64_t value) 1039 { 1040 env->cp15.c9_pmovsr &= ~value; 1041 } 1042 1043 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1044 uint64_t value) 1045 { 1046 env->cp15.c9_pmxevtyper = value & 0xff; 1047 } 1048 1049 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1050 uint64_t value) 1051 { 1052 env->cp15.c9_pmuserenr = value & 1; 1053 } 1054 1055 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1056 uint64_t value) 1057 { 1058 /* We have no event counters so only the C bit can be changed */ 1059 value &= (1 << 31); 1060 env->cp15.c9_pminten |= value; 1061 } 1062 1063 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1064 uint64_t value) 1065 { 1066 value &= (1 << 31); 1067 env->cp15.c9_pminten &= ~value; 1068 } 1069 1070 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1071 uint64_t value) 1072 { 1073 /* Note that even though the AArch64 view of this register has bits 1074 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1075 * architectural requirements for bits which are RES0 only in some 1076 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1077 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1078 */ 1079 raw_write(env, ri, value & ~0x1FULL); 1080 } 1081 1082 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1083 { 1084 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1085 * For bits that vary between AArch32/64, code needs to check the 1086 * current execution mode before directly using the feature bit. 1087 */ 1088 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1089 1090 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1091 valid_mask &= ~SCR_HCE; 1092 1093 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1094 * supported if EL2 exists. The bit is UNK/SBZP when 1095 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1096 * when EL2 is unavailable. 1097 * On ARMv8, this bit is always available. 1098 */ 1099 if (arm_feature(env, ARM_FEATURE_V7) && 1100 !arm_feature(env, ARM_FEATURE_V8)) { 1101 valid_mask &= ~SCR_SMD; 1102 } 1103 } 1104 1105 /* Clear all-context RES0 bits. */ 1106 value &= valid_mask; 1107 raw_write(env, ri, value); 1108 } 1109 1110 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1111 { 1112 ARMCPU *cpu = arm_env_get_cpu(env); 1113 1114 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1115 * bank 1116 */ 1117 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1118 ri->secure & ARM_CP_SECSTATE_S); 1119 1120 return cpu->ccsidr[index]; 1121 } 1122 1123 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1124 uint64_t value) 1125 { 1126 raw_write(env, ri, value & 0xf); 1127 } 1128 1129 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1130 { 1131 CPUState *cs = ENV_GET_CPU(env); 1132 uint64_t ret = 0; 1133 1134 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1135 ret |= CPSR_I; 1136 } 1137 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1138 ret |= CPSR_F; 1139 } 1140 /* External aborts are not possible in QEMU so A bit is always clear */ 1141 return ret; 1142 } 1143 1144 static const ARMCPRegInfo v7_cp_reginfo[] = { 1145 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1146 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1147 .access = PL1_W, .type = ARM_CP_NOP }, 1148 /* Performance monitors are implementation defined in v7, 1149 * but with an ARM recommended set of registers, which we 1150 * follow (although we don't actually implement any counters) 1151 * 1152 * Performance registers fall into three categories: 1153 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1154 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1155 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1156 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1157 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1158 */ 1159 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1160 .access = PL0_RW, .type = ARM_CP_ALIAS, 1161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1162 .writefn = pmcntenset_write, 1163 .accessfn = pmreg_access, 1164 .raw_writefn = raw_write }, 1165 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1167 .access = PL0_RW, .accessfn = pmreg_access, 1168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1169 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1170 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1171 .access = PL0_RW, 1172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1173 .accessfn = pmreg_access, 1174 .writefn = pmcntenclr_write, 1175 .type = ARM_CP_ALIAS }, 1176 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1177 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1178 .access = PL0_RW, .accessfn = pmreg_access, 1179 .type = ARM_CP_ALIAS, 1180 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1181 .writefn = pmcntenclr_write }, 1182 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1183 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1184 .accessfn = pmreg_access, 1185 .writefn = pmovsr_write, 1186 .raw_writefn = raw_write }, 1187 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1188 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1189 .access = PL0_RW, .accessfn = pmreg_access, 1190 .type = ARM_CP_ALIAS, 1191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1192 .writefn = pmovsr_write, 1193 .raw_writefn = raw_write }, 1194 /* Unimplemented so WI. */ 1195 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1196 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, 1197 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. 1198 * We choose to RAZ/WI. 1199 */ 1200 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1201 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1202 .accessfn = pmreg_access }, 1203 #ifndef CONFIG_USER_ONLY 1204 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1205 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1206 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1207 .accessfn = pmreg_access }, 1208 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1209 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1210 .access = PL0_RW, .accessfn = pmreg_access, 1211 .type = ARM_CP_IO, 1212 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1213 #endif 1214 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1215 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1216 .writefn = pmccfiltr_write, 1217 .access = PL0_RW, .accessfn = pmreg_access, 1218 .type = ARM_CP_IO, 1219 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1220 .resetvalue = 0, }, 1221 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1222 .access = PL0_RW, 1223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), 1224 .accessfn = pmreg_access, .writefn = pmxevtyper_write, 1225 .raw_writefn = raw_write }, 1226 /* Unimplemented, RAZ/WI. */ 1227 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1228 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1229 .accessfn = pmreg_access }, 1230 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1231 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1232 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1233 .resetvalue = 0, 1234 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1235 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1236 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1237 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1239 .resetvalue = 0, 1240 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1241 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1242 .access = PL1_RW, .accessfn = access_tpm, 1243 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1244 .resetvalue = 0, 1245 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1246 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1247 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1248 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1249 .writefn = pmintenclr_write, }, 1250 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1251 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1252 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1254 .writefn = pmintenclr_write }, 1255 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 1256 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 1257 .access = PL1_RW, .writefn = vbar_write, 1258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 1259 offsetof(CPUARMState, cp15.vbar_ns) }, 1260 .resetvalue = 0 }, 1261 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1262 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1263 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1264 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1265 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1266 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1267 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1268 offsetof(CPUARMState, cp15.csselr_ns) } }, 1269 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1270 * just RAZ for all cores: 1271 */ 1272 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1273 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1274 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1275 /* Auxiliary fault status registers: these also are IMPDEF, and we 1276 * choose to RAZ/WI for all cores. 1277 */ 1278 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1279 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1280 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1281 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1282 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1283 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1284 /* MAIR can just read-as-written because we don't implement caches 1285 * and so don't need to care about memory attributes. 1286 */ 1287 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1288 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1289 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1290 .resetvalue = 0 }, 1291 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1292 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1293 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1294 .resetvalue = 0 }, 1295 /* For non-long-descriptor page tables these are PRRR and NMRR; 1296 * regardless they still act as reads-as-written for QEMU. 1297 */ 1298 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1299 * allows them to assign the correct fieldoffset based on the endianness 1300 * handled in the field definitions. 1301 */ 1302 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1303 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1305 offsetof(CPUARMState, cp15.mair0_ns) }, 1306 .resetfn = arm_cp_reset_ignore }, 1307 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1308 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1309 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1310 offsetof(CPUARMState, cp15.mair1_ns) }, 1311 .resetfn = arm_cp_reset_ignore }, 1312 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1313 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1314 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1315 /* 32 bit ITLB invalidates */ 1316 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1317 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1318 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1319 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1320 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1321 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1322 /* 32 bit DTLB invalidates */ 1323 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1324 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1325 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1326 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1327 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1328 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1329 /* 32 bit TLB invalidates */ 1330 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1331 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1332 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1333 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1334 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1335 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1336 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1337 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1338 REGINFO_SENTINEL 1339 }; 1340 1341 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1342 /* 32 bit TLB invalidates, Inner Shareable */ 1343 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1344 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1345 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1346 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1347 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1348 .type = ARM_CP_NO_RAW, .access = PL1_W, 1349 .writefn = tlbiasid_is_write }, 1350 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1351 .type = ARM_CP_NO_RAW, .access = PL1_W, 1352 .writefn = tlbimvaa_is_write }, 1353 REGINFO_SENTINEL 1354 }; 1355 1356 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1357 uint64_t value) 1358 { 1359 value &= 1; 1360 env->teecr = value; 1361 } 1362 1363 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1364 bool isread) 1365 { 1366 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1367 return CP_ACCESS_TRAP; 1368 } 1369 return CP_ACCESS_OK; 1370 } 1371 1372 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1373 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1374 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1375 .resetvalue = 0, 1376 .writefn = teecr_write }, 1377 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1378 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1379 .accessfn = teehbr_access, .resetvalue = 0 }, 1380 REGINFO_SENTINEL 1381 }; 1382 1383 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1384 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1385 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1386 .access = PL0_RW, 1387 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1388 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1389 .access = PL0_RW, 1390 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1391 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1392 .resetfn = arm_cp_reset_ignore }, 1393 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1394 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1395 .access = PL0_R|PL1_W, 1396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1397 .resetvalue = 0}, 1398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1399 .access = PL0_R|PL1_W, 1400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1402 .resetfn = arm_cp_reset_ignore }, 1403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1405 .access = PL1_RW, 1406 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1407 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1408 .access = PL1_RW, 1409 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1410 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1411 .resetvalue = 0 }, 1412 REGINFO_SENTINEL 1413 }; 1414 1415 #ifndef CONFIG_USER_ONLY 1416 1417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1418 bool isread) 1419 { 1420 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1421 * Writable only at the highest implemented exception level. 1422 */ 1423 int el = arm_current_el(env); 1424 1425 switch (el) { 1426 case 0: 1427 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1428 return CP_ACCESS_TRAP; 1429 } 1430 break; 1431 case 1: 1432 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1433 arm_is_secure_below_el3(env)) { 1434 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1435 return CP_ACCESS_TRAP_UNCATEGORIZED; 1436 } 1437 break; 1438 case 2: 1439 case 3: 1440 break; 1441 } 1442 1443 if (!isread && el < arm_highest_el(env)) { 1444 return CP_ACCESS_TRAP_UNCATEGORIZED; 1445 } 1446 1447 return CP_ACCESS_OK; 1448 } 1449 1450 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1451 bool isread) 1452 { 1453 unsigned int cur_el = arm_current_el(env); 1454 bool secure = arm_is_secure(env); 1455 1456 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1457 if (cur_el == 0 && 1458 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1459 return CP_ACCESS_TRAP; 1460 } 1461 1462 if (arm_feature(env, ARM_FEATURE_EL2) && 1463 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1464 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1465 return CP_ACCESS_TRAP_EL2; 1466 } 1467 return CP_ACCESS_OK; 1468 } 1469 1470 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1471 bool isread) 1472 { 1473 unsigned int cur_el = arm_current_el(env); 1474 bool secure = arm_is_secure(env); 1475 1476 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1477 * EL0[PV]TEN is zero. 1478 */ 1479 if (cur_el == 0 && 1480 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1481 return CP_ACCESS_TRAP; 1482 } 1483 1484 if (arm_feature(env, ARM_FEATURE_EL2) && 1485 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1486 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1487 return CP_ACCESS_TRAP_EL2; 1488 } 1489 return CP_ACCESS_OK; 1490 } 1491 1492 static CPAccessResult gt_pct_access(CPUARMState *env, 1493 const ARMCPRegInfo *ri, 1494 bool isread) 1495 { 1496 return gt_counter_access(env, GTIMER_PHYS, isread); 1497 } 1498 1499 static CPAccessResult gt_vct_access(CPUARMState *env, 1500 const ARMCPRegInfo *ri, 1501 bool isread) 1502 { 1503 return gt_counter_access(env, GTIMER_VIRT, isread); 1504 } 1505 1506 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1507 bool isread) 1508 { 1509 return gt_timer_access(env, GTIMER_PHYS, isread); 1510 } 1511 1512 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1513 bool isread) 1514 { 1515 return gt_timer_access(env, GTIMER_VIRT, isread); 1516 } 1517 1518 static CPAccessResult gt_stimer_access(CPUARMState *env, 1519 const ARMCPRegInfo *ri, 1520 bool isread) 1521 { 1522 /* The AArch64 register view of the secure physical timer is 1523 * always accessible from EL3, and configurably accessible from 1524 * Secure EL1. 1525 */ 1526 switch (arm_current_el(env)) { 1527 case 1: 1528 if (!arm_is_secure(env)) { 1529 return CP_ACCESS_TRAP; 1530 } 1531 if (!(env->cp15.scr_el3 & SCR_ST)) { 1532 return CP_ACCESS_TRAP_EL3; 1533 } 1534 return CP_ACCESS_OK; 1535 case 0: 1536 case 2: 1537 return CP_ACCESS_TRAP; 1538 case 3: 1539 return CP_ACCESS_OK; 1540 default: 1541 g_assert_not_reached(); 1542 } 1543 } 1544 1545 static uint64_t gt_get_countervalue(CPUARMState *env) 1546 { 1547 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1548 } 1549 1550 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1551 { 1552 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1553 1554 if (gt->ctl & 1) { 1555 /* Timer enabled: calculate and set current ISTATUS, irq, and 1556 * reset timer to when ISTATUS next has to change 1557 */ 1558 uint64_t offset = timeridx == GTIMER_VIRT ? 1559 cpu->env.cp15.cntvoff_el2 : 0; 1560 uint64_t count = gt_get_countervalue(&cpu->env); 1561 /* Note that this must be unsigned 64 bit arithmetic: */ 1562 int istatus = count - offset >= gt->cval; 1563 uint64_t nexttick; 1564 int irqstate; 1565 1566 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1567 1568 irqstate = (istatus && !(gt->ctl & 2)); 1569 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1570 1571 if (istatus) { 1572 /* Next transition is when count rolls back over to zero */ 1573 nexttick = UINT64_MAX; 1574 } else { 1575 /* Next transition is when we hit cval */ 1576 nexttick = gt->cval + offset; 1577 } 1578 /* Note that the desired next expiry time might be beyond the 1579 * signed-64-bit range of a QEMUTimer -- in this case we just 1580 * set the timer for as far in the future as possible. When the 1581 * timer expires we will reset the timer for any remaining period. 1582 */ 1583 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1584 nexttick = INT64_MAX / GTIMER_SCALE; 1585 } 1586 timer_mod(cpu->gt_timer[timeridx], nexttick); 1587 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1588 } else { 1589 /* Timer disabled: ISTATUS and timer output always clear */ 1590 gt->ctl &= ~4; 1591 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1592 timer_del(cpu->gt_timer[timeridx]); 1593 trace_arm_gt_recalc_disabled(timeridx); 1594 } 1595 } 1596 1597 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1598 int timeridx) 1599 { 1600 ARMCPU *cpu = arm_env_get_cpu(env); 1601 1602 timer_del(cpu->gt_timer[timeridx]); 1603 } 1604 1605 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1606 { 1607 return gt_get_countervalue(env); 1608 } 1609 1610 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1611 { 1612 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1613 } 1614 1615 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1616 int timeridx, 1617 uint64_t value) 1618 { 1619 trace_arm_gt_cval_write(timeridx, value); 1620 env->cp15.c14_timer[timeridx].cval = value; 1621 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1622 } 1623 1624 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1625 int timeridx) 1626 { 1627 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1628 1629 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1630 (gt_get_countervalue(env) - offset)); 1631 } 1632 1633 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1634 int timeridx, 1635 uint64_t value) 1636 { 1637 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1638 1639 trace_arm_gt_tval_write(timeridx, value); 1640 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1641 sextract64(value, 0, 32); 1642 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1643 } 1644 1645 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1646 int timeridx, 1647 uint64_t value) 1648 { 1649 ARMCPU *cpu = arm_env_get_cpu(env); 1650 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1651 1652 trace_arm_gt_ctl_write(timeridx, value); 1653 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1654 if ((oldval ^ value) & 1) { 1655 /* Enable toggled */ 1656 gt_recalc_timer(cpu, timeridx); 1657 } else if ((oldval ^ value) & 2) { 1658 /* IMASK toggled: don't need to recalculate, 1659 * just set the interrupt line based on ISTATUS 1660 */ 1661 int irqstate = (oldval & 4) && !(value & 2); 1662 1663 trace_arm_gt_imask_toggle(timeridx, irqstate); 1664 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1665 } 1666 } 1667 1668 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1669 { 1670 gt_timer_reset(env, ri, GTIMER_PHYS); 1671 } 1672 1673 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1674 uint64_t value) 1675 { 1676 gt_cval_write(env, ri, GTIMER_PHYS, value); 1677 } 1678 1679 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1680 { 1681 return gt_tval_read(env, ri, GTIMER_PHYS); 1682 } 1683 1684 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1685 uint64_t value) 1686 { 1687 gt_tval_write(env, ri, GTIMER_PHYS, value); 1688 } 1689 1690 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1691 uint64_t value) 1692 { 1693 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1694 } 1695 1696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1697 { 1698 gt_timer_reset(env, ri, GTIMER_VIRT); 1699 } 1700 1701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1702 uint64_t value) 1703 { 1704 gt_cval_write(env, ri, GTIMER_VIRT, value); 1705 } 1706 1707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1708 { 1709 return gt_tval_read(env, ri, GTIMER_VIRT); 1710 } 1711 1712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1713 uint64_t value) 1714 { 1715 gt_tval_write(env, ri, GTIMER_VIRT, value); 1716 } 1717 1718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1722 } 1723 1724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 ARMCPU *cpu = arm_env_get_cpu(env); 1728 1729 trace_arm_gt_cntvoff_write(value); 1730 raw_write(env, ri, value); 1731 gt_recalc_timer(cpu, GTIMER_VIRT); 1732 } 1733 1734 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1735 { 1736 gt_timer_reset(env, ri, GTIMER_HYP); 1737 } 1738 1739 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 gt_cval_write(env, ri, GTIMER_HYP, value); 1743 } 1744 1745 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return gt_tval_read(env, ri, GTIMER_HYP); 1748 } 1749 1750 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value) 1752 { 1753 gt_tval_write(env, ri, GTIMER_HYP, value); 1754 } 1755 1756 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1757 uint64_t value) 1758 { 1759 gt_ctl_write(env, ri, GTIMER_HYP, value); 1760 } 1761 1762 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1763 { 1764 gt_timer_reset(env, ri, GTIMER_SEC); 1765 } 1766 1767 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1768 uint64_t value) 1769 { 1770 gt_cval_write(env, ri, GTIMER_SEC, value); 1771 } 1772 1773 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1774 { 1775 return gt_tval_read(env, ri, GTIMER_SEC); 1776 } 1777 1778 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1779 uint64_t value) 1780 { 1781 gt_tval_write(env, ri, GTIMER_SEC, value); 1782 } 1783 1784 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1785 uint64_t value) 1786 { 1787 gt_ctl_write(env, ri, GTIMER_SEC, value); 1788 } 1789 1790 void arm_gt_ptimer_cb(void *opaque) 1791 { 1792 ARMCPU *cpu = opaque; 1793 1794 gt_recalc_timer(cpu, GTIMER_PHYS); 1795 } 1796 1797 void arm_gt_vtimer_cb(void *opaque) 1798 { 1799 ARMCPU *cpu = opaque; 1800 1801 gt_recalc_timer(cpu, GTIMER_VIRT); 1802 } 1803 1804 void arm_gt_htimer_cb(void *opaque) 1805 { 1806 ARMCPU *cpu = opaque; 1807 1808 gt_recalc_timer(cpu, GTIMER_HYP); 1809 } 1810 1811 void arm_gt_stimer_cb(void *opaque) 1812 { 1813 ARMCPU *cpu = opaque; 1814 1815 gt_recalc_timer(cpu, GTIMER_SEC); 1816 } 1817 1818 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1819 /* Note that CNTFRQ is purely reads-as-written for the benefit 1820 * of software; writing it doesn't actually change the timer frequency. 1821 * Our reset value matches the fixed frequency we implement the timer at. 1822 */ 1823 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1824 .type = ARM_CP_ALIAS, 1825 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1826 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1827 }, 1828 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1829 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1830 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1831 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1832 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1833 }, 1834 /* overall control: mostly access permissions */ 1835 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1836 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1837 .access = PL1_RW, 1838 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1839 .resetvalue = 0, 1840 }, 1841 /* per-timer control */ 1842 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1843 .secure = ARM_CP_SECSTATE_NS, 1844 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1845 .accessfn = gt_ptimer_access, 1846 .fieldoffset = offsetoflow32(CPUARMState, 1847 cp15.c14_timer[GTIMER_PHYS].ctl), 1848 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1849 }, 1850 { .name = "CNTP_CTL(S)", 1851 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1852 .secure = ARM_CP_SECSTATE_S, 1853 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1854 .accessfn = gt_ptimer_access, 1855 .fieldoffset = offsetoflow32(CPUARMState, 1856 cp15.c14_timer[GTIMER_SEC].ctl), 1857 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1858 }, 1859 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1860 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1861 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1862 .accessfn = gt_ptimer_access, 1863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1864 .resetvalue = 0, 1865 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1866 }, 1867 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1868 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1869 .accessfn = gt_vtimer_access, 1870 .fieldoffset = offsetoflow32(CPUARMState, 1871 cp15.c14_timer[GTIMER_VIRT].ctl), 1872 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1873 }, 1874 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1875 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1876 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1877 .accessfn = gt_vtimer_access, 1878 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1879 .resetvalue = 0, 1880 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1881 }, 1882 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1883 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1884 .secure = ARM_CP_SECSTATE_NS, 1885 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1886 .accessfn = gt_ptimer_access, 1887 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1888 }, 1889 { .name = "CNTP_TVAL(S)", 1890 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1891 .secure = ARM_CP_SECSTATE_S, 1892 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1893 .accessfn = gt_ptimer_access, 1894 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 1895 }, 1896 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1897 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 1898 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1899 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 1900 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1901 }, 1902 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 1903 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1904 .accessfn = gt_vtimer_access, 1905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1906 }, 1907 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1908 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 1909 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1910 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 1911 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1912 }, 1913 /* The counter itself */ 1914 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 1915 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 1916 .accessfn = gt_pct_access, 1917 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 1918 }, 1919 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 1920 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 1921 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1922 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 1923 }, 1924 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 1925 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 1926 .accessfn = gt_vct_access, 1927 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 1928 }, 1929 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 1930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 1931 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1932 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 1933 }, 1934 /* Comparison value, indicating when the timer goes off */ 1935 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 1936 .secure = ARM_CP_SECSTATE_NS, 1937 .access = PL1_RW | PL0_R, 1938 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1939 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 1940 .accessfn = gt_ptimer_access, 1941 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 1942 }, 1943 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 1944 .secure = ARM_CP_SECSTATE_S, 1945 .access = PL1_RW | PL0_R, 1946 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1947 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 1948 .accessfn = gt_ptimer_access, 1949 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 1950 }, 1951 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 1952 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 1953 .access = PL1_RW | PL0_R, 1954 .type = ARM_CP_IO, 1955 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 1956 .resetvalue = 0, .accessfn = gt_ptimer_access, 1957 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 1958 }, 1959 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 1960 .access = PL1_RW | PL0_R, 1961 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 1963 .accessfn = gt_vtimer_access, 1964 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 1965 }, 1966 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 1967 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 1968 .access = PL1_RW | PL0_R, 1969 .type = ARM_CP_IO, 1970 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 1971 .resetvalue = 0, .accessfn = gt_vtimer_access, 1972 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 1973 }, 1974 /* Secure timer -- this is actually restricted to only EL3 1975 * and configurably Secure-EL1 via the accessfn. 1976 */ 1977 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 1978 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 1979 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 1980 .accessfn = gt_stimer_access, 1981 .readfn = gt_sec_tval_read, 1982 .writefn = gt_sec_tval_write, 1983 .resetfn = gt_sec_timer_reset, 1984 }, 1985 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 1986 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 1987 .type = ARM_CP_IO, .access = PL1_RW, 1988 .accessfn = gt_stimer_access, 1989 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 1990 .resetvalue = 0, 1991 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1992 }, 1993 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 1994 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 1995 .type = ARM_CP_IO, .access = PL1_RW, 1996 .accessfn = gt_stimer_access, 1997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 1998 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 1999 }, 2000 REGINFO_SENTINEL 2001 }; 2002 2003 #else 2004 /* In user-mode none of the generic timer registers are accessible, 2005 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2006 * so instead just don't register any of them. 2007 */ 2008 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2009 REGINFO_SENTINEL 2010 }; 2011 2012 #endif 2013 2014 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2015 { 2016 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2017 raw_write(env, ri, value); 2018 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2019 raw_write(env, ri, value & 0xfffff6ff); 2020 } else { 2021 raw_write(env, ri, value & 0xfffff1ff); 2022 } 2023 } 2024 2025 #ifndef CONFIG_USER_ONLY 2026 /* get_phys_addr() isn't present for user-mode-only targets */ 2027 2028 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2029 bool isread) 2030 { 2031 if (ri->opc2 & 4) { 2032 /* The ATS12NSO* operations must trap to EL3 if executed in 2033 * Secure EL1 (which can only happen if EL3 is AArch64). 2034 * They are simply UNDEF if executed from NS EL1. 2035 * They function normally from EL2 or EL3. 2036 */ 2037 if (arm_current_el(env) == 1) { 2038 if (arm_is_secure_below_el3(env)) { 2039 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2040 } 2041 return CP_ACCESS_TRAP_UNCATEGORIZED; 2042 } 2043 } 2044 return CP_ACCESS_OK; 2045 } 2046 2047 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2048 int access_type, ARMMMUIdx mmu_idx) 2049 { 2050 hwaddr phys_addr; 2051 target_ulong page_size; 2052 int prot; 2053 uint32_t fsr; 2054 bool ret; 2055 uint64_t par64; 2056 MemTxAttrs attrs = {}; 2057 ARMMMUFaultInfo fi = {}; 2058 2059 ret = get_phys_addr(env, value, access_type, mmu_idx, 2060 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); 2061 if (extended_addresses_enabled(env)) { 2062 /* fsr is a DFSR/IFSR value for the long descriptor 2063 * translation table format, but with WnR always clear. 2064 * Convert it to a 64-bit PAR. 2065 */ 2066 par64 = (1 << 11); /* LPAE bit always set */ 2067 if (!ret) { 2068 par64 |= phys_addr & ~0xfffULL; 2069 if (!attrs.secure) { 2070 par64 |= (1 << 9); /* NS */ 2071 } 2072 /* We don't set the ATTR or SH fields in the PAR. */ 2073 } else { 2074 par64 |= 1; /* F */ 2075 par64 |= (fsr & 0x3f) << 1; /* FS */ 2076 /* Note that S2WLK and FSTAGE are always zero, because we don't 2077 * implement virtualization and therefore there can't be a stage 2 2078 * fault. 2079 */ 2080 } 2081 } else { 2082 /* fsr is a DFSR/IFSR value for the short descriptor 2083 * translation table format (with WnR always clear). 2084 * Convert it to a 32-bit PAR. 2085 */ 2086 if (!ret) { 2087 /* We do not set any attribute bits in the PAR */ 2088 if (page_size == (1 << 24) 2089 && arm_feature(env, ARM_FEATURE_V7)) { 2090 par64 = (phys_addr & 0xff000000) | (1 << 1); 2091 } else { 2092 par64 = phys_addr & 0xfffff000; 2093 } 2094 if (!attrs.secure) { 2095 par64 |= (1 << 9); /* NS */ 2096 } 2097 } else { 2098 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2099 ((fsr & 0xf) << 1) | 1; 2100 } 2101 } 2102 return par64; 2103 } 2104 2105 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2106 { 2107 int access_type = ri->opc2 & 1; 2108 uint64_t par64; 2109 ARMMMUIdx mmu_idx; 2110 int el = arm_current_el(env); 2111 bool secure = arm_is_secure_below_el3(env); 2112 2113 switch (ri->opc2 & 6) { 2114 case 0: 2115 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2116 switch (el) { 2117 case 3: 2118 mmu_idx = ARMMMUIdx_S1E3; 2119 break; 2120 case 2: 2121 mmu_idx = ARMMMUIdx_S1NSE1; 2122 break; 2123 case 1: 2124 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2125 break; 2126 default: 2127 g_assert_not_reached(); 2128 } 2129 break; 2130 case 2: 2131 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2132 switch (el) { 2133 case 3: 2134 mmu_idx = ARMMMUIdx_S1SE0; 2135 break; 2136 case 2: 2137 mmu_idx = ARMMMUIdx_S1NSE0; 2138 break; 2139 case 1: 2140 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2141 break; 2142 default: 2143 g_assert_not_reached(); 2144 } 2145 break; 2146 case 4: 2147 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2148 mmu_idx = ARMMMUIdx_S12NSE1; 2149 break; 2150 case 6: 2151 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2152 mmu_idx = ARMMMUIdx_S12NSE0; 2153 break; 2154 default: 2155 g_assert_not_reached(); 2156 } 2157 2158 par64 = do_ats_write(env, value, access_type, mmu_idx); 2159 2160 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2161 } 2162 2163 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2164 uint64_t value) 2165 { 2166 int access_type = ri->opc2 & 1; 2167 uint64_t par64; 2168 2169 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2170 2171 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2172 } 2173 2174 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2175 bool isread) 2176 { 2177 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2178 return CP_ACCESS_TRAP; 2179 } 2180 return CP_ACCESS_OK; 2181 } 2182 2183 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2184 uint64_t value) 2185 { 2186 int access_type = ri->opc2 & 1; 2187 ARMMMUIdx mmu_idx; 2188 int secure = arm_is_secure_below_el3(env); 2189 2190 switch (ri->opc2 & 6) { 2191 case 0: 2192 switch (ri->opc1) { 2193 case 0: /* AT S1E1R, AT S1E1W */ 2194 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2195 break; 2196 case 4: /* AT S1E2R, AT S1E2W */ 2197 mmu_idx = ARMMMUIdx_S1E2; 2198 break; 2199 case 6: /* AT S1E3R, AT S1E3W */ 2200 mmu_idx = ARMMMUIdx_S1E3; 2201 break; 2202 default: 2203 g_assert_not_reached(); 2204 } 2205 break; 2206 case 2: /* AT S1E0R, AT S1E0W */ 2207 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2208 break; 2209 case 4: /* AT S12E1R, AT S12E1W */ 2210 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2211 break; 2212 case 6: /* AT S12E0R, AT S12E0W */ 2213 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2214 break; 2215 default: 2216 g_assert_not_reached(); 2217 } 2218 2219 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2220 } 2221 #endif 2222 2223 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2224 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2225 .access = PL1_RW, .resetvalue = 0, 2226 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2227 offsetoflow32(CPUARMState, cp15.par_ns) }, 2228 .writefn = par_write }, 2229 #ifndef CONFIG_USER_ONLY 2230 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2231 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2232 .access = PL1_W, .accessfn = ats_access, 2233 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2234 #endif 2235 REGINFO_SENTINEL 2236 }; 2237 2238 /* Return basic MPU access permission bits. */ 2239 static uint32_t simple_mpu_ap_bits(uint32_t val) 2240 { 2241 uint32_t ret; 2242 uint32_t mask; 2243 int i; 2244 ret = 0; 2245 mask = 3; 2246 for (i = 0; i < 16; i += 2) { 2247 ret |= (val >> i) & mask; 2248 mask <<= 2; 2249 } 2250 return ret; 2251 } 2252 2253 /* Pad basic MPU access permission bits to extended format. */ 2254 static uint32_t extended_mpu_ap_bits(uint32_t val) 2255 { 2256 uint32_t ret; 2257 uint32_t mask; 2258 int i; 2259 ret = 0; 2260 mask = 3; 2261 for (i = 0; i < 16; i += 2) { 2262 ret |= (val & mask) << i; 2263 mask <<= 2; 2264 } 2265 return ret; 2266 } 2267 2268 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2269 uint64_t value) 2270 { 2271 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2272 } 2273 2274 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2275 { 2276 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2277 } 2278 2279 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2280 uint64_t value) 2281 { 2282 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2283 } 2284 2285 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2286 { 2287 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2288 } 2289 2290 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2291 { 2292 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2293 2294 if (!u32p) { 2295 return 0; 2296 } 2297 2298 u32p += env->cp15.c6_rgnr; 2299 return *u32p; 2300 } 2301 2302 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2303 uint64_t value) 2304 { 2305 ARMCPU *cpu = arm_env_get_cpu(env); 2306 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2307 2308 if (!u32p) { 2309 return; 2310 } 2311 2312 u32p += env->cp15.c6_rgnr; 2313 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ 2314 *u32p = value; 2315 } 2316 2317 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2318 { 2319 ARMCPU *cpu = arm_env_get_cpu(env); 2320 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2321 2322 if (!u32p) { 2323 return; 2324 } 2325 2326 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); 2327 } 2328 2329 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2330 uint64_t value) 2331 { 2332 ARMCPU *cpu = arm_env_get_cpu(env); 2333 uint32_t nrgs = cpu->pmsav7_dregion; 2334 2335 if (value >= nrgs) { 2336 qemu_log_mask(LOG_GUEST_ERROR, 2337 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2338 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2339 return; 2340 } 2341 2342 raw_write(env, ri, value); 2343 } 2344 2345 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2346 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2347 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2348 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2349 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2350 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2351 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2352 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2353 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2354 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2355 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2356 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2357 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2358 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2359 .access = PL1_RW, 2360 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), 2361 .writefn = pmsav7_rgnr_write }, 2362 REGINFO_SENTINEL 2363 }; 2364 2365 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2366 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2367 .access = PL1_RW, .type = ARM_CP_ALIAS, 2368 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2369 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2370 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2371 .access = PL1_RW, .type = ARM_CP_ALIAS, 2372 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2373 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2374 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2375 .access = PL1_RW, 2376 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2377 .resetvalue = 0, }, 2378 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2379 .access = PL1_RW, 2380 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2381 .resetvalue = 0, }, 2382 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2383 .access = PL1_RW, 2384 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2385 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2386 .access = PL1_RW, 2387 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2388 /* Protection region base and size registers */ 2389 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2390 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2391 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2392 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2393 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2394 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2395 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2396 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2398 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2399 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2400 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2401 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2402 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2403 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2404 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2405 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2406 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2407 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2408 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2409 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2410 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2411 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2412 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2413 REGINFO_SENTINEL 2414 }; 2415 2416 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2417 uint64_t value) 2418 { 2419 TCR *tcr = raw_ptr(env, ri); 2420 int maskshift = extract32(value, 0, 3); 2421 2422 if (!arm_feature(env, ARM_FEATURE_V8)) { 2423 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2424 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2425 * using Long-desciptor translation table format */ 2426 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2427 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2428 /* In an implementation that includes the Security Extensions 2429 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2430 * Short-descriptor translation table format. 2431 */ 2432 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2433 } else { 2434 value &= TTBCR_N; 2435 } 2436 } 2437 2438 /* Update the masks corresponding to the TCR bank being written 2439 * Note that we always calculate mask and base_mask, but 2440 * they are only used for short-descriptor tables (ie if EAE is 0); 2441 * for long-descriptor tables the TCR fields are used differently 2442 * and the mask and base_mask values are meaningless. 2443 */ 2444 tcr->raw_tcr = value; 2445 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2446 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2447 } 2448 2449 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2450 uint64_t value) 2451 { 2452 ARMCPU *cpu = arm_env_get_cpu(env); 2453 2454 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2455 /* With LPAE the TTBCR could result in a change of ASID 2456 * via the TTBCR.A1 bit, so do a TLB flush. 2457 */ 2458 tlb_flush(CPU(cpu), 1); 2459 } 2460 vmsa_ttbcr_raw_write(env, ri, value); 2461 } 2462 2463 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2464 { 2465 TCR *tcr = raw_ptr(env, ri); 2466 2467 /* Reset both the TCR as well as the masks corresponding to the bank of 2468 * the TCR being reset. 2469 */ 2470 tcr->raw_tcr = 0; 2471 tcr->mask = 0; 2472 tcr->base_mask = 0xffffc000u; 2473 } 2474 2475 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2476 uint64_t value) 2477 { 2478 ARMCPU *cpu = arm_env_get_cpu(env); 2479 TCR *tcr = raw_ptr(env, ri); 2480 2481 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2482 tlb_flush(CPU(cpu), 1); 2483 tcr->raw_tcr = value; 2484 } 2485 2486 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2487 uint64_t value) 2488 { 2489 /* 64 bit accesses to the TTBRs can change the ASID and so we 2490 * must flush the TLB. 2491 */ 2492 if (cpreg_field_is_64bit(ri)) { 2493 ARMCPU *cpu = arm_env_get_cpu(env); 2494 2495 tlb_flush(CPU(cpu), 1); 2496 } 2497 raw_write(env, ri, value); 2498 } 2499 2500 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2501 uint64_t value) 2502 { 2503 ARMCPU *cpu = arm_env_get_cpu(env); 2504 CPUState *cs = CPU(cpu); 2505 2506 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2507 if (raw_read(env, ri) != value) { 2508 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 2509 ARMMMUIdx_S2NS, -1); 2510 raw_write(env, ri, value); 2511 } 2512 } 2513 2514 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2515 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2516 .access = PL1_RW, .type = ARM_CP_ALIAS, 2517 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2518 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2519 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2520 .access = PL1_RW, .resetvalue = 0, 2521 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2522 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2523 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2524 .access = PL1_RW, .resetvalue = 0, 2525 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2526 offsetof(CPUARMState, cp15.dfar_ns) } }, 2527 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2528 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2529 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2530 .resetvalue = 0, }, 2531 REGINFO_SENTINEL 2532 }; 2533 2534 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2535 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2536 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2537 .access = PL1_RW, 2538 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2539 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2540 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2541 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2542 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2543 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2544 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2545 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2546 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2547 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2548 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2549 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2550 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2551 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2552 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2553 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2554 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2555 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2556 .raw_writefn = vmsa_ttbcr_raw_write, 2557 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2558 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2559 REGINFO_SENTINEL 2560 }; 2561 2562 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2563 uint64_t value) 2564 { 2565 env->cp15.c15_ticonfig = value & 0xe7; 2566 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2567 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2568 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2569 } 2570 2571 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2572 uint64_t value) 2573 { 2574 env->cp15.c15_threadid = value & 0xffff; 2575 } 2576 2577 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2578 uint64_t value) 2579 { 2580 /* Wait-for-interrupt (deprecated) */ 2581 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2582 } 2583 2584 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2585 uint64_t value) 2586 { 2587 /* On OMAP there are registers indicating the max/min index of dcache lines 2588 * containing a dirty line; cache flush operations have to reset these. 2589 */ 2590 env->cp15.c15_i_max = 0x000; 2591 env->cp15.c15_i_min = 0xff0; 2592 } 2593 2594 static const ARMCPRegInfo omap_cp_reginfo[] = { 2595 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2596 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2597 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2598 .resetvalue = 0, }, 2599 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2600 .access = PL1_RW, .type = ARM_CP_NOP }, 2601 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2602 .access = PL1_RW, 2603 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2604 .writefn = omap_ticonfig_write }, 2605 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2606 .access = PL1_RW, 2607 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2608 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2609 .access = PL1_RW, .resetvalue = 0xff0, 2610 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2611 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2612 .access = PL1_RW, 2613 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2614 .writefn = omap_threadid_write }, 2615 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2616 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2617 .type = ARM_CP_NO_RAW, 2618 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2619 /* TODO: Peripheral port remap register: 2620 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2621 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2622 * when MMU is off. 2623 */ 2624 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2625 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2626 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2627 .writefn = omap_cachemaint_write }, 2628 { .name = "C9", .cp = 15, .crn = 9, 2629 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2630 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2631 REGINFO_SENTINEL 2632 }; 2633 2634 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2635 uint64_t value) 2636 { 2637 env->cp15.c15_cpar = value & 0x3fff; 2638 } 2639 2640 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2641 { .name = "XSCALE_CPAR", 2642 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2643 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2644 .writefn = xscale_cpar_write, }, 2645 { .name = "XSCALE_AUXCR", 2646 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2647 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2648 .resetvalue = 0, }, 2649 /* XScale specific cache-lockdown: since we have no cache we NOP these 2650 * and hope the guest does not really rely on cache behaviour. 2651 */ 2652 { .name = "XSCALE_LOCK_ICACHE_LINE", 2653 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2654 .access = PL1_W, .type = ARM_CP_NOP }, 2655 { .name = "XSCALE_UNLOCK_ICACHE", 2656 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2657 .access = PL1_W, .type = ARM_CP_NOP }, 2658 { .name = "XSCALE_DCACHE_LOCK", 2659 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2660 .access = PL1_RW, .type = ARM_CP_NOP }, 2661 { .name = "XSCALE_UNLOCK_DCACHE", 2662 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2663 .access = PL1_W, .type = ARM_CP_NOP }, 2664 REGINFO_SENTINEL 2665 }; 2666 2667 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2668 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2669 * implementation of this implementation-defined space. 2670 * Ideally this should eventually disappear in favour of actually 2671 * implementing the correct behaviour for all cores. 2672 */ 2673 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2674 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2675 .access = PL1_RW, 2676 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2677 .resetvalue = 0 }, 2678 REGINFO_SENTINEL 2679 }; 2680 2681 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2682 /* Cache status: RAZ because we have no cache so it's always clean */ 2683 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2684 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2685 .resetvalue = 0 }, 2686 REGINFO_SENTINEL 2687 }; 2688 2689 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2690 /* We never have a a block transfer operation in progress */ 2691 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2692 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2693 .resetvalue = 0 }, 2694 /* The cache ops themselves: these all NOP for QEMU */ 2695 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2696 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2697 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2698 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2699 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2700 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2701 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2702 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2703 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2704 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2705 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2706 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2707 REGINFO_SENTINEL 2708 }; 2709 2710 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2711 /* The cache test-and-clean instructions always return (1 << 30) 2712 * to indicate that there are no dirty cache lines. 2713 */ 2714 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2715 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2716 .resetvalue = (1 << 30) }, 2717 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2718 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2719 .resetvalue = (1 << 30) }, 2720 REGINFO_SENTINEL 2721 }; 2722 2723 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2724 /* Ignore ReadBuffer accesses */ 2725 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2726 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2727 .access = PL1_RW, .resetvalue = 0, 2728 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2729 REGINFO_SENTINEL 2730 }; 2731 2732 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2733 { 2734 ARMCPU *cpu = arm_env_get_cpu(env); 2735 unsigned int cur_el = arm_current_el(env); 2736 bool secure = arm_is_secure(env); 2737 2738 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2739 return env->cp15.vpidr_el2; 2740 } 2741 return raw_read(env, ri); 2742 } 2743 2744 static uint64_t mpidr_read_val(CPUARMState *env) 2745 { 2746 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2747 uint64_t mpidr = cpu->mp_affinity; 2748 2749 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2750 mpidr |= (1U << 31); 2751 /* Cores which are uniprocessor (non-coherent) 2752 * but still implement the MP extensions set 2753 * bit 30. (For instance, Cortex-R5). 2754 */ 2755 if (cpu->mp_is_up) { 2756 mpidr |= (1u << 30); 2757 } 2758 } 2759 return mpidr; 2760 } 2761 2762 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2763 { 2764 unsigned int cur_el = arm_current_el(env); 2765 bool secure = arm_is_secure(env); 2766 2767 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2768 return env->cp15.vmpidr_el2; 2769 } 2770 return mpidr_read_val(env); 2771 } 2772 2773 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2774 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2775 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2776 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2777 REGINFO_SENTINEL 2778 }; 2779 2780 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2781 /* NOP AMAIR0/1 */ 2782 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2783 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2784 .access = PL1_RW, .type = ARM_CP_CONST, 2785 .resetvalue = 0 }, 2786 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2787 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2788 .access = PL1_RW, .type = ARM_CP_CONST, 2789 .resetvalue = 0 }, 2790 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2791 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2792 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2793 offsetof(CPUARMState, cp15.par_ns)} }, 2794 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2795 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2796 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2797 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2798 .writefn = vmsa_ttbr_write, }, 2799 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2800 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2801 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2802 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2803 .writefn = vmsa_ttbr_write, }, 2804 REGINFO_SENTINEL 2805 }; 2806 2807 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2808 { 2809 return vfp_get_fpcr(env); 2810 } 2811 2812 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 vfp_set_fpcr(env, value); 2816 } 2817 2818 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2819 { 2820 return vfp_get_fpsr(env); 2821 } 2822 2823 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2824 uint64_t value) 2825 { 2826 vfp_set_fpsr(env, value); 2827 } 2828 2829 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2830 bool isread) 2831 { 2832 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2833 return CP_ACCESS_TRAP; 2834 } 2835 return CP_ACCESS_OK; 2836 } 2837 2838 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 env->daif = value & PSTATE_DAIF; 2842 } 2843 2844 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2845 const ARMCPRegInfo *ri, 2846 bool isread) 2847 { 2848 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2849 * SCTLR_EL1.UCI is set. 2850 */ 2851 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2852 return CP_ACCESS_TRAP; 2853 } 2854 return CP_ACCESS_OK; 2855 } 2856 2857 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2858 * Page D4-1736 (DDI0487A.b) 2859 */ 2860 2861 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2862 uint64_t value) 2863 { 2864 ARMCPU *cpu = arm_env_get_cpu(env); 2865 CPUState *cs = CPU(cpu); 2866 2867 if (arm_is_secure_below_el3(env)) { 2868 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2869 } else { 2870 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); 2871 } 2872 } 2873 2874 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2875 uint64_t value) 2876 { 2877 bool sec = arm_is_secure_below_el3(env); 2878 CPUState *other_cs; 2879 2880 CPU_FOREACH(other_cs) { 2881 if (sec) { 2882 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2883 } else { 2884 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2885 ARMMMUIdx_S12NSE0, -1); 2886 } 2887 } 2888 } 2889 2890 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2891 uint64_t value) 2892 { 2893 /* Note that the 'ALL' scope must invalidate both stage 1 and 2894 * stage 2 translations, whereas most other scopes only invalidate 2895 * stage 1 translations. 2896 */ 2897 ARMCPU *cpu = arm_env_get_cpu(env); 2898 CPUState *cs = CPU(cpu); 2899 2900 if (arm_is_secure_below_el3(env)) { 2901 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2902 } else { 2903 if (arm_feature(env, ARM_FEATURE_EL2)) { 2904 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 2905 ARMMMUIdx_S2NS, -1); 2906 } else { 2907 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); 2908 } 2909 } 2910 } 2911 2912 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 2913 uint64_t value) 2914 { 2915 ARMCPU *cpu = arm_env_get_cpu(env); 2916 CPUState *cs = CPU(cpu); 2917 2918 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); 2919 } 2920 2921 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2922 uint64_t value) 2923 { 2924 ARMCPU *cpu = arm_env_get_cpu(env); 2925 CPUState *cs = CPU(cpu); 2926 2927 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); 2928 } 2929 2930 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 /* Note that the 'ALL' scope must invalidate both stage 1 and 2934 * stage 2 translations, whereas most other scopes only invalidate 2935 * stage 1 translations. 2936 */ 2937 bool sec = arm_is_secure_below_el3(env); 2938 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 2939 CPUState *other_cs; 2940 2941 CPU_FOREACH(other_cs) { 2942 if (sec) { 2943 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2944 } else if (has_el2) { 2945 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2946 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); 2947 } else { 2948 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2949 ARMMMUIdx_S12NSE0, -1); 2950 } 2951 } 2952 } 2953 2954 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 CPUState *other_cs; 2958 2959 CPU_FOREACH(other_cs) { 2960 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); 2961 } 2962 } 2963 2964 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2965 uint64_t value) 2966 { 2967 CPUState *other_cs; 2968 2969 CPU_FOREACH(other_cs) { 2970 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); 2971 } 2972 } 2973 2974 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2975 uint64_t value) 2976 { 2977 /* Invalidate by VA, EL1&0 (AArch64 version). 2978 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 2979 * since we don't support flush-for-specific-ASID-only or 2980 * flush-last-level-only. 2981 */ 2982 ARMCPU *cpu = arm_env_get_cpu(env); 2983 CPUState *cs = CPU(cpu); 2984 uint64_t pageaddr = sextract64(value << 12, 0, 56); 2985 2986 if (arm_is_secure_below_el3(env)) { 2987 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, 2988 ARMMMUIdx_S1SE0, -1); 2989 } else { 2990 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, 2991 ARMMMUIdx_S12NSE0, -1); 2992 } 2993 } 2994 2995 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 /* Invalidate by VA, EL2 2999 * Currently handles both VAE2 and VALE2, since we don't support 3000 * flush-last-level-only. 3001 */ 3002 ARMCPU *cpu = arm_env_get_cpu(env); 3003 CPUState *cs = CPU(cpu); 3004 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3005 3006 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); 3007 } 3008 3009 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 /* Invalidate by VA, EL3 3013 * Currently handles both VAE3 and VALE3, since we don't support 3014 * flush-last-level-only. 3015 */ 3016 ARMCPU *cpu = arm_env_get_cpu(env); 3017 CPUState *cs = CPU(cpu); 3018 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3019 3020 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); 3021 } 3022 3023 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 bool sec = arm_is_secure_below_el3(env); 3027 CPUState *other_cs; 3028 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3029 3030 CPU_FOREACH(other_cs) { 3031 if (sec) { 3032 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, 3033 ARMMMUIdx_S1SE0, -1); 3034 } else { 3035 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, 3036 ARMMMUIdx_S12NSE0, -1); 3037 } 3038 } 3039 } 3040 3041 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3042 uint64_t value) 3043 { 3044 CPUState *other_cs; 3045 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3046 3047 CPU_FOREACH(other_cs) { 3048 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); 3049 } 3050 } 3051 3052 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3053 uint64_t value) 3054 { 3055 CPUState *other_cs; 3056 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3057 3058 CPU_FOREACH(other_cs) { 3059 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); 3060 } 3061 } 3062 3063 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 /* Invalidate by IPA. This has to invalidate any structures that 3067 * contain only stage 2 translation information, but does not need 3068 * to apply to structures that contain combined stage 1 and stage 2 3069 * translation information. 3070 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3071 */ 3072 ARMCPU *cpu = arm_env_get_cpu(env); 3073 CPUState *cs = CPU(cpu); 3074 uint64_t pageaddr; 3075 3076 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3077 return; 3078 } 3079 3080 pageaddr = sextract64(value << 12, 0, 48); 3081 3082 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); 3083 } 3084 3085 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3086 uint64_t value) 3087 { 3088 CPUState *other_cs; 3089 uint64_t pageaddr; 3090 3091 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3092 return; 3093 } 3094 3095 pageaddr = sextract64(value << 12, 0, 48); 3096 3097 CPU_FOREACH(other_cs) { 3098 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); 3099 } 3100 } 3101 3102 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3103 bool isread) 3104 { 3105 /* We don't implement EL2, so the only control on DC ZVA is the 3106 * bit in the SCTLR which can prohibit access for EL0. 3107 */ 3108 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3109 return CP_ACCESS_TRAP; 3110 } 3111 return CP_ACCESS_OK; 3112 } 3113 3114 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3115 { 3116 ARMCPU *cpu = arm_env_get_cpu(env); 3117 int dzp_bit = 1 << 4; 3118 3119 /* DZP indicates whether DC ZVA access is allowed */ 3120 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3121 dzp_bit = 0; 3122 } 3123 return cpu->dcz_blocksize | dzp_bit; 3124 } 3125 3126 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3127 bool isread) 3128 { 3129 if (!(env->pstate & PSTATE_SP)) { 3130 /* Access to SP_EL0 is undefined if it's being used as 3131 * the stack pointer. 3132 */ 3133 return CP_ACCESS_TRAP_UNCATEGORIZED; 3134 } 3135 return CP_ACCESS_OK; 3136 } 3137 3138 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3139 { 3140 return env->pstate & PSTATE_SP; 3141 } 3142 3143 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3144 { 3145 update_spsel(env, val); 3146 } 3147 3148 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3149 uint64_t value) 3150 { 3151 ARMCPU *cpu = arm_env_get_cpu(env); 3152 3153 if (raw_read(env, ri) == value) { 3154 /* Skip the TLB flush if nothing actually changed; Linux likes 3155 * to do a lot of pointless SCTLR writes. 3156 */ 3157 return; 3158 } 3159 3160 raw_write(env, ri, value); 3161 /* ??? Lots of these bits are not implemented. */ 3162 /* This may enable/disable the MMU, so do a TLB flush. */ 3163 tlb_flush(CPU(cpu), 1); 3164 } 3165 3166 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3167 bool isread) 3168 { 3169 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3170 return CP_ACCESS_TRAP_FP_EL2; 3171 } 3172 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3173 return CP_ACCESS_TRAP_FP_EL3; 3174 } 3175 return CP_ACCESS_OK; 3176 } 3177 3178 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3179 uint64_t value) 3180 { 3181 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3182 } 3183 3184 static const ARMCPRegInfo v8_cp_reginfo[] = { 3185 /* Minimal set of EL0-visible registers. This will need to be expanded 3186 * significantly for system emulation of AArch64 CPUs. 3187 */ 3188 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3189 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3190 .access = PL0_RW, .type = ARM_CP_NZCV }, 3191 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3192 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3193 .type = ARM_CP_NO_RAW, 3194 .access = PL0_RW, .accessfn = aa64_daif_access, 3195 .fieldoffset = offsetof(CPUARMState, daif), 3196 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3197 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3198 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3199 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3200 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3201 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3202 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3203 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3204 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3205 .access = PL0_R, .type = ARM_CP_NO_RAW, 3206 .readfn = aa64_dczid_read }, 3207 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3208 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3209 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3210 #ifndef CONFIG_USER_ONLY 3211 /* Avoid overhead of an access check that always passes in user-mode */ 3212 .accessfn = aa64_zva_access, 3213 #endif 3214 }, 3215 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3216 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3217 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3218 /* Cache ops: all NOPs since we don't emulate caches */ 3219 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3220 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3221 .access = PL1_W, .type = ARM_CP_NOP }, 3222 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3224 .access = PL1_W, .type = ARM_CP_NOP }, 3225 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3226 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3227 .access = PL0_W, .type = ARM_CP_NOP, 3228 .accessfn = aa64_cacheop_access }, 3229 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3230 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3231 .access = PL1_W, .type = ARM_CP_NOP }, 3232 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3233 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3234 .access = PL1_W, .type = ARM_CP_NOP }, 3235 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3236 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3237 .access = PL0_W, .type = ARM_CP_NOP, 3238 .accessfn = aa64_cacheop_access }, 3239 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3241 .access = PL1_W, .type = ARM_CP_NOP }, 3242 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3243 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3244 .access = PL0_W, .type = ARM_CP_NOP, 3245 .accessfn = aa64_cacheop_access }, 3246 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3247 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3248 .access = PL0_W, .type = ARM_CP_NOP, 3249 .accessfn = aa64_cacheop_access }, 3250 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3252 .access = PL1_W, .type = ARM_CP_NOP }, 3253 /* TLBI operations */ 3254 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3255 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3256 .access = PL1_W, .type = ARM_CP_NO_RAW, 3257 .writefn = tlbi_aa64_vmalle1is_write }, 3258 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3259 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3260 .access = PL1_W, .type = ARM_CP_NO_RAW, 3261 .writefn = tlbi_aa64_vae1is_write }, 3262 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3263 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3264 .access = PL1_W, .type = ARM_CP_NO_RAW, 3265 .writefn = tlbi_aa64_vmalle1is_write }, 3266 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3267 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3268 .access = PL1_W, .type = ARM_CP_NO_RAW, 3269 .writefn = tlbi_aa64_vae1is_write }, 3270 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3271 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3272 .access = PL1_W, .type = ARM_CP_NO_RAW, 3273 .writefn = tlbi_aa64_vae1is_write }, 3274 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3275 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3276 .access = PL1_W, .type = ARM_CP_NO_RAW, 3277 .writefn = tlbi_aa64_vae1is_write }, 3278 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3279 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3280 .access = PL1_W, .type = ARM_CP_NO_RAW, 3281 .writefn = tlbi_aa64_vmalle1_write }, 3282 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3283 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3284 .access = PL1_W, .type = ARM_CP_NO_RAW, 3285 .writefn = tlbi_aa64_vae1_write }, 3286 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3287 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3288 .access = PL1_W, .type = ARM_CP_NO_RAW, 3289 .writefn = tlbi_aa64_vmalle1_write }, 3290 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3291 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3292 .access = PL1_W, .type = ARM_CP_NO_RAW, 3293 .writefn = tlbi_aa64_vae1_write }, 3294 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3295 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3296 .access = PL1_W, .type = ARM_CP_NO_RAW, 3297 .writefn = tlbi_aa64_vae1_write }, 3298 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3299 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3300 .access = PL1_W, .type = ARM_CP_NO_RAW, 3301 .writefn = tlbi_aa64_vae1_write }, 3302 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3303 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3304 .access = PL2_W, .type = ARM_CP_NO_RAW, 3305 .writefn = tlbi_aa64_ipas2e1is_write }, 3306 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3307 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3308 .access = PL2_W, .type = ARM_CP_NO_RAW, 3309 .writefn = tlbi_aa64_ipas2e1is_write }, 3310 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3311 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3312 .access = PL2_W, .type = ARM_CP_NO_RAW, 3313 .writefn = tlbi_aa64_alle1is_write }, 3314 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3315 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3316 .access = PL2_W, .type = ARM_CP_NO_RAW, 3317 .writefn = tlbi_aa64_alle1is_write }, 3318 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3319 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3320 .access = PL2_W, .type = ARM_CP_NO_RAW, 3321 .writefn = tlbi_aa64_ipas2e1_write }, 3322 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3323 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3324 .access = PL2_W, .type = ARM_CP_NO_RAW, 3325 .writefn = tlbi_aa64_ipas2e1_write }, 3326 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3327 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3328 .access = PL2_W, .type = ARM_CP_NO_RAW, 3329 .writefn = tlbi_aa64_alle1_write }, 3330 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3331 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3332 .access = PL2_W, .type = ARM_CP_NO_RAW, 3333 .writefn = tlbi_aa64_alle1is_write }, 3334 #ifndef CONFIG_USER_ONLY 3335 /* 64 bit address translation operations */ 3336 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3337 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3338 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3339 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3341 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3342 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3343 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3344 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3345 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3346 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3347 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3348 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3350 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3351 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3353 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3354 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3355 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3356 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3357 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3358 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3359 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3360 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3361 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3362 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3363 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3364 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3365 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3366 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3367 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3368 .type = ARM_CP_ALIAS, 3369 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3370 .access = PL1_RW, .resetvalue = 0, 3371 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3372 .writefn = par_write }, 3373 #endif 3374 /* TLB invalidate last level of translation table walk */ 3375 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3376 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3377 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3378 .type = ARM_CP_NO_RAW, .access = PL1_W, 3379 .writefn = tlbimvaa_is_write }, 3380 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3381 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3382 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3383 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3384 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3385 .type = ARM_CP_NO_RAW, .access = PL2_W, 3386 .writefn = tlbimva_hyp_write }, 3387 { .name = "TLBIMVALHIS", 3388 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3389 .type = ARM_CP_NO_RAW, .access = PL2_W, 3390 .writefn = tlbimva_hyp_is_write }, 3391 { .name = "TLBIIPAS2", 3392 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3393 .type = ARM_CP_NO_RAW, .access = PL2_W, 3394 .writefn = tlbiipas2_write }, 3395 { .name = "TLBIIPAS2IS", 3396 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3397 .type = ARM_CP_NO_RAW, .access = PL2_W, 3398 .writefn = tlbiipas2_is_write }, 3399 { .name = "TLBIIPAS2L", 3400 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3401 .type = ARM_CP_NO_RAW, .access = PL2_W, 3402 .writefn = tlbiipas2_write }, 3403 { .name = "TLBIIPAS2LIS", 3404 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3405 .type = ARM_CP_NO_RAW, .access = PL2_W, 3406 .writefn = tlbiipas2_is_write }, 3407 /* 32 bit cache operations */ 3408 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3409 .type = ARM_CP_NOP, .access = PL1_W }, 3410 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3411 .type = ARM_CP_NOP, .access = PL1_W }, 3412 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3413 .type = ARM_CP_NOP, .access = PL1_W }, 3414 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3415 .type = ARM_CP_NOP, .access = PL1_W }, 3416 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3417 .type = ARM_CP_NOP, .access = PL1_W }, 3418 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3419 .type = ARM_CP_NOP, .access = PL1_W }, 3420 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3421 .type = ARM_CP_NOP, .access = PL1_W }, 3422 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3423 .type = ARM_CP_NOP, .access = PL1_W }, 3424 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3425 .type = ARM_CP_NOP, .access = PL1_W }, 3426 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3427 .type = ARM_CP_NOP, .access = PL1_W }, 3428 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3429 .type = ARM_CP_NOP, .access = PL1_W }, 3430 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3431 .type = ARM_CP_NOP, .access = PL1_W }, 3432 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3433 .type = ARM_CP_NOP, .access = PL1_W }, 3434 /* MMU Domain access control / MPU write buffer control */ 3435 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3436 .access = PL1_RW, .resetvalue = 0, 3437 .writefn = dacr_write, .raw_writefn = raw_write, 3438 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3439 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3440 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3441 .type = ARM_CP_ALIAS, 3442 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3443 .access = PL1_RW, 3444 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3445 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3446 .type = ARM_CP_ALIAS, 3447 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3448 .access = PL1_RW, 3449 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3450 /* We rely on the access checks not allowing the guest to write to the 3451 * state field when SPSel indicates that it's being used as the stack 3452 * pointer. 3453 */ 3454 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3455 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3456 .access = PL1_RW, .accessfn = sp_el0_access, 3457 .type = ARM_CP_ALIAS, 3458 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3459 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3460 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3461 .access = PL2_RW, .type = ARM_CP_ALIAS, 3462 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3463 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3465 .type = ARM_CP_NO_RAW, 3466 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3467 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3469 .type = ARM_CP_ALIAS, 3470 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3471 .access = PL2_RW, .accessfn = fpexc32_access }, 3472 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3473 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3474 .access = PL2_RW, .resetvalue = 0, 3475 .writefn = dacr_write, .raw_writefn = raw_write, 3476 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3477 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3478 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3479 .access = PL2_RW, .resetvalue = 0, 3480 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3481 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3482 .type = ARM_CP_ALIAS, 3483 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3484 .access = PL2_RW, 3485 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3486 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3487 .type = ARM_CP_ALIAS, 3488 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3489 .access = PL2_RW, 3490 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3491 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3492 .type = ARM_CP_ALIAS, 3493 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3494 .access = PL2_RW, 3495 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3496 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3497 .type = ARM_CP_ALIAS, 3498 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3499 .access = PL2_RW, 3500 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3501 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3502 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3503 .resetvalue = 0, 3504 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3505 { .name = "SDCR", .type = ARM_CP_ALIAS, 3506 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3507 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3508 .writefn = sdcr_write, 3509 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3510 REGINFO_SENTINEL 3511 }; 3512 3513 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3514 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3515 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3516 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3517 .access = PL2_RW, 3518 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3519 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3520 .type = ARM_CP_NO_RAW, 3521 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3522 .access = PL2_RW, 3523 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3524 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3525 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3527 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3528 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3529 .access = PL2_RW, .type = ARM_CP_CONST, 3530 .resetvalue = 0 }, 3531 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3532 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3533 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3534 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3535 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3536 .access = PL2_RW, .type = ARM_CP_CONST, 3537 .resetvalue = 0 }, 3538 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3539 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3540 .access = PL2_RW, .type = ARM_CP_CONST, 3541 .resetvalue = 0 }, 3542 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3543 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3544 .access = PL2_RW, .type = ARM_CP_CONST, 3545 .resetvalue = 0 }, 3546 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3547 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3548 .access = PL2_RW, .type = ARM_CP_CONST, 3549 .resetvalue = 0 }, 3550 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3551 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3552 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3553 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3554 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3555 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3556 .type = ARM_CP_CONST, .resetvalue = 0 }, 3557 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3558 .cp = 15, .opc1 = 6, .crm = 2, 3559 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3560 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3561 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3564 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3565 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3566 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3567 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3568 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3569 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3570 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3571 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3572 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3573 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3574 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3575 .resetvalue = 0 }, 3576 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3577 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3578 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3579 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3580 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3581 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3582 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3583 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3584 .resetvalue = 0 }, 3585 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3586 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3587 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3588 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3589 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3590 .resetvalue = 0 }, 3591 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3592 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3593 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3594 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3595 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3596 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3597 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3598 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3599 .access = PL2_RW, .accessfn = access_tda, 3600 .type = ARM_CP_CONST, .resetvalue = 0 }, 3601 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3602 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3603 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3604 .type = ARM_CP_CONST, .resetvalue = 0 }, 3605 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3606 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3607 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3608 REGINFO_SENTINEL 3609 }; 3610 3611 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3612 { 3613 ARMCPU *cpu = arm_env_get_cpu(env); 3614 uint64_t valid_mask = HCR_MASK; 3615 3616 if (arm_feature(env, ARM_FEATURE_EL3)) { 3617 valid_mask &= ~HCR_HCD; 3618 } else { 3619 valid_mask &= ~HCR_TSC; 3620 } 3621 3622 /* Clear RES0 bits. */ 3623 value &= valid_mask; 3624 3625 /* These bits change the MMU setup: 3626 * HCR_VM enables stage 2 translation 3627 * HCR_PTW forbids certain page-table setups 3628 * HCR_DC Disables stage1 and enables stage2 translation 3629 */ 3630 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3631 tlb_flush(CPU(cpu), 1); 3632 } 3633 raw_write(env, ri, value); 3634 } 3635 3636 static const ARMCPRegInfo el2_cp_reginfo[] = { 3637 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3639 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3640 .writefn = hcr_write }, 3641 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3642 .type = ARM_CP_ALIAS, 3643 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3644 .access = PL2_RW, 3645 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3646 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3647 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3648 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3649 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3650 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3651 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3652 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3653 .type = ARM_CP_ALIAS, 3654 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3655 .access = PL2_RW, 3656 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3657 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3658 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3659 .access = PL2_RW, .writefn = vbar_write, 3660 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3661 .resetvalue = 0 }, 3662 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3663 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3664 .access = PL3_RW, .type = ARM_CP_ALIAS, 3665 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3666 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3668 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3670 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3671 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3672 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3673 .resetvalue = 0 }, 3674 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3675 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3676 .access = PL2_RW, .type = ARM_CP_ALIAS, 3677 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3678 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3679 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3680 .access = PL2_RW, .type = ARM_CP_CONST, 3681 .resetvalue = 0 }, 3682 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3683 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3684 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3685 .access = PL2_RW, .type = ARM_CP_CONST, 3686 .resetvalue = 0 }, 3687 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3688 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3689 .access = PL2_RW, .type = ARM_CP_CONST, 3690 .resetvalue = 0 }, 3691 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3692 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3693 .access = PL2_RW, .type = ARM_CP_CONST, 3694 .resetvalue = 0 }, 3695 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3696 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3697 .access = PL2_RW, 3698 /* no .writefn needed as this can't cause an ASID change; 3699 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3700 */ 3701 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3702 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3703 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3704 .type = ARM_CP_ALIAS, 3705 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3706 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3707 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3708 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3709 .access = PL2_RW, 3710 /* no .writefn needed as this can't cause an ASID change; 3711 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3712 */ 3713 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3714 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3715 .cp = 15, .opc1 = 6, .crm = 2, 3716 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3717 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3718 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3719 .writefn = vttbr_write }, 3720 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3721 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3722 .access = PL2_RW, .writefn = vttbr_write, 3723 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3724 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3725 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3726 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3727 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3728 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3729 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3730 .access = PL2_RW, .resetvalue = 0, 3731 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3732 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3733 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3734 .access = PL2_RW, .resetvalue = 0, 3735 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3736 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3737 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3738 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3739 { .name = "TLBIALLNSNH", 3740 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3741 .type = ARM_CP_NO_RAW, .access = PL2_W, 3742 .writefn = tlbiall_nsnh_write }, 3743 { .name = "TLBIALLNSNHIS", 3744 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3745 .type = ARM_CP_NO_RAW, .access = PL2_W, 3746 .writefn = tlbiall_nsnh_is_write }, 3747 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3748 .type = ARM_CP_NO_RAW, .access = PL2_W, 3749 .writefn = tlbiall_hyp_write }, 3750 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3751 .type = ARM_CP_NO_RAW, .access = PL2_W, 3752 .writefn = tlbiall_hyp_is_write }, 3753 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3754 .type = ARM_CP_NO_RAW, .access = PL2_W, 3755 .writefn = tlbimva_hyp_write }, 3756 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3757 .type = ARM_CP_NO_RAW, .access = PL2_W, 3758 .writefn = tlbimva_hyp_is_write }, 3759 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3761 .type = ARM_CP_NO_RAW, .access = PL2_W, 3762 .writefn = tlbi_aa64_alle2_write }, 3763 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3765 .type = ARM_CP_NO_RAW, .access = PL2_W, 3766 .writefn = tlbi_aa64_vae2_write }, 3767 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3769 .access = PL2_W, .type = ARM_CP_NO_RAW, 3770 .writefn = tlbi_aa64_vae2_write }, 3771 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3773 .access = PL2_W, .type = ARM_CP_NO_RAW, 3774 .writefn = tlbi_aa64_alle2is_write }, 3775 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3776 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3777 .type = ARM_CP_NO_RAW, .access = PL2_W, 3778 .writefn = tlbi_aa64_vae2is_write }, 3779 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3781 .access = PL2_W, .type = ARM_CP_NO_RAW, 3782 .writefn = tlbi_aa64_vae2is_write }, 3783 #ifndef CONFIG_USER_ONLY 3784 /* Unlike the other EL2-related AT operations, these must 3785 * UNDEF from EL3 if EL2 is not implemented, which is why we 3786 * define them here rather than with the rest of the AT ops. 3787 */ 3788 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3789 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3790 .access = PL2_W, .accessfn = at_s1e2_access, 3791 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3792 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3793 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3794 .access = PL2_W, .accessfn = at_s1e2_access, 3795 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3796 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3797 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3798 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3799 * to behave as if SCR.NS was 1. 3800 */ 3801 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3802 .access = PL2_W, 3803 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3804 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3805 .access = PL2_W, 3806 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3807 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3808 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3809 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3810 * reset values as IMPDEF. We choose to reset to 3 to comply with 3811 * both ARMv7 and ARMv8. 3812 */ 3813 .access = PL2_RW, .resetvalue = 3, 3814 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3815 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3816 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3817 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3818 .writefn = gt_cntvoff_write, 3819 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3820 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3821 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3822 .writefn = gt_cntvoff_write, 3823 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3824 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3825 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3826 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3827 .type = ARM_CP_IO, .access = PL2_RW, 3828 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3829 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3831 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3832 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3833 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3835 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3836 .resetfn = gt_hyp_timer_reset, 3837 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3838 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3839 .type = ARM_CP_IO, 3840 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3841 .access = PL2_RW, 3842 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3843 .resetvalue = 0, 3844 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3845 #endif 3846 /* The only field of MDCR_EL2 that has a defined architectural reset value 3847 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3848 * don't impelment any PMU event counters, so using zero as a reset 3849 * value for MDCR_EL2 is okay 3850 */ 3851 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3852 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3853 .access = PL2_RW, .resetvalue = 0, 3854 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3855 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3856 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3857 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3858 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3859 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3860 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3861 .access = PL2_RW, 3862 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3863 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3864 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3865 .access = PL2_RW, 3866 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3867 REGINFO_SENTINEL 3868 }; 3869 3870 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 3871 bool isread) 3872 { 3873 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 3874 * At Secure EL1 it traps to EL3. 3875 */ 3876 if (arm_current_el(env) == 3) { 3877 return CP_ACCESS_OK; 3878 } 3879 if (arm_is_secure_below_el3(env)) { 3880 return CP_ACCESS_TRAP_EL3; 3881 } 3882 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 3883 if (isread) { 3884 return CP_ACCESS_OK; 3885 } 3886 return CP_ACCESS_TRAP_UNCATEGORIZED; 3887 } 3888 3889 static const ARMCPRegInfo el3_cp_reginfo[] = { 3890 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 3891 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 3892 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 3893 .resetvalue = 0, .writefn = scr_write }, 3894 { .name = "SCR", .type = ARM_CP_ALIAS, 3895 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 3896 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3897 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 3898 .writefn = scr_write }, 3899 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 3900 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 3901 .access = PL3_RW, .resetvalue = 0, 3902 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 3903 { .name = "SDER", 3904 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 3905 .access = PL3_RW, .resetvalue = 0, 3906 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 3907 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 3908 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3909 .writefn = vbar_write, .resetvalue = 0, 3910 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 3911 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 3912 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 3913 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3914 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 3915 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 3916 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 3917 .access = PL3_RW, 3918 /* no .writefn needed as this can't cause an ASID change; 3919 * we must provide a .raw_writefn and .resetfn because we handle 3920 * reset and migration for the AArch32 TTBCR(S), which might be 3921 * using mask and base_mask. 3922 */ 3923 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 3924 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 3925 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 3926 .type = ARM_CP_ALIAS, 3927 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 3928 .access = PL3_RW, 3929 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 3930 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 3931 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 3932 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 3933 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 3934 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 3935 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 3936 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 3937 .type = ARM_CP_ALIAS, 3938 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 3939 .access = PL3_RW, 3940 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 3941 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 3942 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 3943 .access = PL3_RW, .writefn = vbar_write, 3944 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 3945 .resetvalue = 0 }, 3946 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 3947 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 3948 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 3949 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 3950 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 3951 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 3952 .access = PL3_RW, .resetvalue = 0, 3953 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 3954 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 3955 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 3956 .access = PL3_RW, .type = ARM_CP_CONST, 3957 .resetvalue = 0 }, 3958 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 3959 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 3960 .access = PL3_RW, .type = ARM_CP_CONST, 3961 .resetvalue = 0 }, 3962 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 3963 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 3964 .access = PL3_RW, .type = ARM_CP_CONST, 3965 .resetvalue = 0 }, 3966 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 3967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 3968 .access = PL3_W, .type = ARM_CP_NO_RAW, 3969 .writefn = tlbi_aa64_alle3is_write }, 3970 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 3971 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 3972 .access = PL3_W, .type = ARM_CP_NO_RAW, 3973 .writefn = tlbi_aa64_vae3is_write }, 3974 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 3975 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 3976 .access = PL3_W, .type = ARM_CP_NO_RAW, 3977 .writefn = tlbi_aa64_vae3is_write }, 3978 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 3979 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 3980 .access = PL3_W, .type = ARM_CP_NO_RAW, 3981 .writefn = tlbi_aa64_alle3_write }, 3982 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 3983 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 3984 .access = PL3_W, .type = ARM_CP_NO_RAW, 3985 .writefn = tlbi_aa64_vae3_write }, 3986 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 3987 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 3988 .access = PL3_W, .type = ARM_CP_NO_RAW, 3989 .writefn = tlbi_aa64_vae3_write }, 3990 REGINFO_SENTINEL 3991 }; 3992 3993 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3994 bool isread) 3995 { 3996 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 3997 * but the AArch32 CTR has its own reginfo struct) 3998 */ 3999 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4000 return CP_ACCESS_TRAP; 4001 } 4002 return CP_ACCESS_OK; 4003 } 4004 4005 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4006 uint64_t value) 4007 { 4008 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4009 * read via a bit in OSLSR_EL1. 4010 */ 4011 int oslock; 4012 4013 if (ri->state == ARM_CP_STATE_AA32) { 4014 oslock = (value == 0xC5ACCE55); 4015 } else { 4016 oslock = value & 1; 4017 } 4018 4019 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4020 } 4021 4022 static const ARMCPRegInfo debug_cp_reginfo[] = { 4023 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4024 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4025 * unlike DBGDRAR it is never accessible from EL0. 4026 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4027 * accessor. 4028 */ 4029 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4030 .access = PL0_R, .accessfn = access_tdra, 4031 .type = ARM_CP_CONST, .resetvalue = 0 }, 4032 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4033 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4034 .access = PL1_R, .accessfn = access_tdra, 4035 .type = ARM_CP_CONST, .resetvalue = 0 }, 4036 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4037 .access = PL0_R, .accessfn = access_tdra, 4038 .type = ARM_CP_CONST, .resetvalue = 0 }, 4039 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4040 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4041 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4042 .access = PL1_RW, .accessfn = access_tda, 4043 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4044 .resetvalue = 0 }, 4045 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4046 * We don't implement the configurable EL0 access. 4047 */ 4048 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4049 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4050 .type = ARM_CP_ALIAS, 4051 .access = PL1_R, .accessfn = access_tda, 4052 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4053 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4054 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4055 .access = PL1_W, .type = ARM_CP_NO_RAW, 4056 .accessfn = access_tdosa, 4057 .writefn = oslar_write }, 4058 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4060 .access = PL1_R, .resetvalue = 10, 4061 .accessfn = access_tdosa, 4062 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4063 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4064 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4065 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4066 .access = PL1_RW, .accessfn = access_tdosa, 4067 .type = ARM_CP_NOP }, 4068 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4069 * implement vector catch debug events yet. 4070 */ 4071 { .name = "DBGVCR", 4072 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4073 .access = PL1_RW, .accessfn = access_tda, 4074 .type = ARM_CP_NOP }, 4075 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4076 * Channel but Linux may try to access this register. The 32-bit 4077 * alias is DBGDCCINT. 4078 */ 4079 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4080 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4081 .access = PL1_RW, .accessfn = access_tda, 4082 .type = ARM_CP_NOP }, 4083 REGINFO_SENTINEL 4084 }; 4085 4086 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4087 /* 64 bit access versions of the (dummy) debug registers */ 4088 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4089 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4090 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4091 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4092 REGINFO_SENTINEL 4093 }; 4094 4095 void hw_watchpoint_update(ARMCPU *cpu, int n) 4096 { 4097 CPUARMState *env = &cpu->env; 4098 vaddr len = 0; 4099 vaddr wvr = env->cp15.dbgwvr[n]; 4100 uint64_t wcr = env->cp15.dbgwcr[n]; 4101 int mask; 4102 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4103 4104 if (env->cpu_watchpoint[n]) { 4105 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4106 env->cpu_watchpoint[n] = NULL; 4107 } 4108 4109 if (!extract64(wcr, 0, 1)) { 4110 /* E bit clear : watchpoint disabled */ 4111 return; 4112 } 4113 4114 switch (extract64(wcr, 3, 2)) { 4115 case 0: 4116 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4117 return; 4118 case 1: 4119 flags |= BP_MEM_READ; 4120 break; 4121 case 2: 4122 flags |= BP_MEM_WRITE; 4123 break; 4124 case 3: 4125 flags |= BP_MEM_ACCESS; 4126 break; 4127 } 4128 4129 /* Attempts to use both MASK and BAS fields simultaneously are 4130 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4131 * thus generating a watchpoint for every byte in the masked region. 4132 */ 4133 mask = extract64(wcr, 24, 4); 4134 if (mask == 1 || mask == 2) { 4135 /* Reserved values of MASK; we must act as if the mask value was 4136 * some non-reserved value, or as if the watchpoint were disabled. 4137 * We choose the latter. 4138 */ 4139 return; 4140 } else if (mask) { 4141 /* Watchpoint covers an aligned area up to 2GB in size */ 4142 len = 1ULL << mask; 4143 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4144 * whether the watchpoint fires when the unmasked bits match; we opt 4145 * to generate the exceptions. 4146 */ 4147 wvr &= ~(len - 1); 4148 } else { 4149 /* Watchpoint covers bytes defined by the byte address select bits */ 4150 int bas = extract64(wcr, 5, 8); 4151 int basstart; 4152 4153 if (bas == 0) { 4154 /* This must act as if the watchpoint is disabled */ 4155 return; 4156 } 4157 4158 if (extract64(wvr, 2, 1)) { 4159 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4160 * ignored, and BAS[3:0] define which bytes to watch. 4161 */ 4162 bas &= 0xf; 4163 } 4164 /* The BAS bits are supposed to be programmed to indicate a contiguous 4165 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4166 * we fire for each byte in the word/doubleword addressed by the WVR. 4167 * We choose to ignore any non-zero bits after the first range of 1s. 4168 */ 4169 basstart = ctz32(bas); 4170 len = cto32(bas >> basstart); 4171 wvr += basstart; 4172 } 4173 4174 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4175 &env->cpu_watchpoint[n]); 4176 } 4177 4178 void hw_watchpoint_update_all(ARMCPU *cpu) 4179 { 4180 int i; 4181 CPUARMState *env = &cpu->env; 4182 4183 /* Completely clear out existing QEMU watchpoints and our array, to 4184 * avoid possible stale entries following migration load. 4185 */ 4186 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4187 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4188 4189 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4190 hw_watchpoint_update(cpu, i); 4191 } 4192 } 4193 4194 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4195 uint64_t value) 4196 { 4197 ARMCPU *cpu = arm_env_get_cpu(env); 4198 int i = ri->crm; 4199 4200 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4201 * register reads and behaves as if values written are sign extended. 4202 * Bits [1:0] are RES0. 4203 */ 4204 value = sextract64(value, 0, 49) & ~3ULL; 4205 4206 raw_write(env, ri, value); 4207 hw_watchpoint_update(cpu, i); 4208 } 4209 4210 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4211 uint64_t value) 4212 { 4213 ARMCPU *cpu = arm_env_get_cpu(env); 4214 int i = ri->crm; 4215 4216 raw_write(env, ri, value); 4217 hw_watchpoint_update(cpu, i); 4218 } 4219 4220 void hw_breakpoint_update(ARMCPU *cpu, int n) 4221 { 4222 CPUARMState *env = &cpu->env; 4223 uint64_t bvr = env->cp15.dbgbvr[n]; 4224 uint64_t bcr = env->cp15.dbgbcr[n]; 4225 vaddr addr; 4226 int bt; 4227 int flags = BP_CPU; 4228 4229 if (env->cpu_breakpoint[n]) { 4230 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4231 env->cpu_breakpoint[n] = NULL; 4232 } 4233 4234 if (!extract64(bcr, 0, 1)) { 4235 /* E bit clear : watchpoint disabled */ 4236 return; 4237 } 4238 4239 bt = extract64(bcr, 20, 4); 4240 4241 switch (bt) { 4242 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4243 case 5: /* linked address mismatch (reserved if AArch64) */ 4244 qemu_log_mask(LOG_UNIMP, 4245 "arm: address mismatch breakpoint types not implemented"); 4246 return; 4247 case 0: /* unlinked address match */ 4248 case 1: /* linked address match */ 4249 { 4250 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4251 * we behave as if the register was sign extended. Bits [1:0] are 4252 * RES0. The BAS field is used to allow setting breakpoints on 16 4253 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4254 * a bp will fire if the addresses covered by the bp and the addresses 4255 * covered by the insn overlap but the insn doesn't start at the 4256 * start of the bp address range. We choose to require the insn and 4257 * the bp to have the same address. The constraints on writing to 4258 * BAS enforced in dbgbcr_write mean we have only four cases: 4259 * 0b0000 => no breakpoint 4260 * 0b0011 => breakpoint on addr 4261 * 0b1100 => breakpoint on addr + 2 4262 * 0b1111 => breakpoint on addr 4263 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4264 */ 4265 int bas = extract64(bcr, 5, 4); 4266 addr = sextract64(bvr, 0, 49) & ~3ULL; 4267 if (bas == 0) { 4268 return; 4269 } 4270 if (bas == 0xc) { 4271 addr += 2; 4272 } 4273 break; 4274 } 4275 case 2: /* unlinked context ID match */ 4276 case 8: /* unlinked VMID match (reserved if no EL2) */ 4277 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4278 qemu_log_mask(LOG_UNIMP, 4279 "arm: unlinked context breakpoint types not implemented"); 4280 return; 4281 case 9: /* linked VMID match (reserved if no EL2) */ 4282 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4283 case 3: /* linked context ID match */ 4284 default: 4285 /* We must generate no events for Linked context matches (unless 4286 * they are linked to by some other bp/wp, which is handled in 4287 * updates for the linking bp/wp). We choose to also generate no events 4288 * for reserved values. 4289 */ 4290 return; 4291 } 4292 4293 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4294 } 4295 4296 void hw_breakpoint_update_all(ARMCPU *cpu) 4297 { 4298 int i; 4299 CPUARMState *env = &cpu->env; 4300 4301 /* Completely clear out existing QEMU breakpoints and our array, to 4302 * avoid possible stale entries following migration load. 4303 */ 4304 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4305 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4306 4307 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4308 hw_breakpoint_update(cpu, i); 4309 } 4310 } 4311 4312 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 ARMCPU *cpu = arm_env_get_cpu(env); 4316 int i = ri->crm; 4317 4318 raw_write(env, ri, value); 4319 hw_breakpoint_update(cpu, i); 4320 } 4321 4322 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4323 uint64_t value) 4324 { 4325 ARMCPU *cpu = arm_env_get_cpu(env); 4326 int i = ri->crm; 4327 4328 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4329 * copy of BAS[0]. 4330 */ 4331 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4332 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4333 4334 raw_write(env, ri, value); 4335 hw_breakpoint_update(cpu, i); 4336 } 4337 4338 static void define_debug_regs(ARMCPU *cpu) 4339 { 4340 /* Define v7 and v8 architectural debug registers. 4341 * These are just dummy implementations for now. 4342 */ 4343 int i; 4344 int wrps, brps, ctx_cmps; 4345 ARMCPRegInfo dbgdidr = { 4346 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4347 .access = PL0_R, .accessfn = access_tda, 4348 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4349 }; 4350 4351 /* Note that all these register fields hold "number of Xs minus 1". */ 4352 brps = extract32(cpu->dbgdidr, 24, 4); 4353 wrps = extract32(cpu->dbgdidr, 28, 4); 4354 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4355 4356 assert(ctx_cmps <= brps); 4357 4358 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4359 * of the debug registers such as number of breakpoints; 4360 * check that if they both exist then they agree. 4361 */ 4362 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4363 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4364 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4365 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4366 } 4367 4368 define_one_arm_cp_reg(cpu, &dbgdidr); 4369 define_arm_cp_regs(cpu, debug_cp_reginfo); 4370 4371 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4372 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4373 } 4374 4375 for (i = 0; i < brps + 1; i++) { 4376 ARMCPRegInfo dbgregs[] = { 4377 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4378 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4379 .access = PL1_RW, .accessfn = access_tda, 4380 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4381 .writefn = dbgbvr_write, .raw_writefn = raw_write 4382 }, 4383 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4384 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4385 .access = PL1_RW, .accessfn = access_tda, 4386 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4387 .writefn = dbgbcr_write, .raw_writefn = raw_write 4388 }, 4389 REGINFO_SENTINEL 4390 }; 4391 define_arm_cp_regs(cpu, dbgregs); 4392 } 4393 4394 for (i = 0; i < wrps + 1; i++) { 4395 ARMCPRegInfo dbgregs[] = { 4396 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4397 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4398 .access = PL1_RW, .accessfn = access_tda, 4399 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4400 .writefn = dbgwvr_write, .raw_writefn = raw_write 4401 }, 4402 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4403 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4404 .access = PL1_RW, .accessfn = access_tda, 4405 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4406 .writefn = dbgwcr_write, .raw_writefn = raw_write 4407 }, 4408 REGINFO_SENTINEL 4409 }; 4410 define_arm_cp_regs(cpu, dbgregs); 4411 } 4412 } 4413 4414 void register_cp_regs_for_features(ARMCPU *cpu) 4415 { 4416 /* Register all the coprocessor registers based on feature bits */ 4417 CPUARMState *env = &cpu->env; 4418 if (arm_feature(env, ARM_FEATURE_M)) { 4419 /* M profile has no coprocessor registers */ 4420 return; 4421 } 4422 4423 define_arm_cp_regs(cpu, cp_reginfo); 4424 if (!arm_feature(env, ARM_FEATURE_V8)) { 4425 /* Must go early as it is full of wildcards that may be 4426 * overridden by later definitions. 4427 */ 4428 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4429 } 4430 4431 if (arm_feature(env, ARM_FEATURE_V6)) { 4432 /* The ID registers all have impdef reset values */ 4433 ARMCPRegInfo v6_idregs[] = { 4434 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4436 .access = PL1_R, .type = ARM_CP_CONST, 4437 .resetvalue = cpu->id_pfr0 }, 4438 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4440 .access = PL1_R, .type = ARM_CP_CONST, 4441 .resetvalue = cpu->id_pfr1 }, 4442 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4444 .access = PL1_R, .type = ARM_CP_CONST, 4445 .resetvalue = cpu->id_dfr0 }, 4446 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4448 .access = PL1_R, .type = ARM_CP_CONST, 4449 .resetvalue = cpu->id_afr0 }, 4450 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4452 .access = PL1_R, .type = ARM_CP_CONST, 4453 .resetvalue = cpu->id_mmfr0 }, 4454 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4456 .access = PL1_R, .type = ARM_CP_CONST, 4457 .resetvalue = cpu->id_mmfr1 }, 4458 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4460 .access = PL1_R, .type = ARM_CP_CONST, 4461 .resetvalue = cpu->id_mmfr2 }, 4462 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4464 .access = PL1_R, .type = ARM_CP_CONST, 4465 .resetvalue = cpu->id_mmfr3 }, 4466 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4468 .access = PL1_R, .type = ARM_CP_CONST, 4469 .resetvalue = cpu->id_isar0 }, 4470 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4472 .access = PL1_R, .type = ARM_CP_CONST, 4473 .resetvalue = cpu->id_isar1 }, 4474 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4476 .access = PL1_R, .type = ARM_CP_CONST, 4477 .resetvalue = cpu->id_isar2 }, 4478 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4480 .access = PL1_R, .type = ARM_CP_CONST, 4481 .resetvalue = cpu->id_isar3 }, 4482 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4484 .access = PL1_R, .type = ARM_CP_CONST, 4485 .resetvalue = cpu->id_isar4 }, 4486 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4488 .access = PL1_R, .type = ARM_CP_CONST, 4489 .resetvalue = cpu->id_isar5 }, 4490 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4492 .access = PL1_R, .type = ARM_CP_CONST, 4493 .resetvalue = cpu->id_mmfr4 }, 4494 /* 7 is as yet unallocated and must RAZ */ 4495 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4497 .access = PL1_R, .type = ARM_CP_CONST, 4498 .resetvalue = 0 }, 4499 REGINFO_SENTINEL 4500 }; 4501 define_arm_cp_regs(cpu, v6_idregs); 4502 define_arm_cp_regs(cpu, v6_cp_reginfo); 4503 } else { 4504 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4505 } 4506 if (arm_feature(env, ARM_FEATURE_V6K)) { 4507 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4508 } 4509 if (arm_feature(env, ARM_FEATURE_V7MP) && 4510 !arm_feature(env, ARM_FEATURE_MPU)) { 4511 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4512 } 4513 if (arm_feature(env, ARM_FEATURE_V7)) { 4514 /* v7 performance monitor control register: same implementor 4515 * field as main ID register, and we implement only the cycle 4516 * count register. 4517 */ 4518 #ifndef CONFIG_USER_ONLY 4519 ARMCPRegInfo pmcr = { 4520 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4521 .access = PL0_RW, 4522 .type = ARM_CP_IO | ARM_CP_ALIAS, 4523 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4524 .accessfn = pmreg_access, .writefn = pmcr_write, 4525 .raw_writefn = raw_write, 4526 }; 4527 ARMCPRegInfo pmcr64 = { 4528 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4529 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4530 .access = PL0_RW, .accessfn = pmreg_access, 4531 .type = ARM_CP_IO, 4532 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4533 .resetvalue = cpu->midr & 0xff000000, 4534 .writefn = pmcr_write, .raw_writefn = raw_write, 4535 }; 4536 define_one_arm_cp_reg(cpu, &pmcr); 4537 define_one_arm_cp_reg(cpu, &pmcr64); 4538 #endif 4539 ARMCPRegInfo clidr = { 4540 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4541 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4542 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4543 }; 4544 define_one_arm_cp_reg(cpu, &clidr); 4545 define_arm_cp_regs(cpu, v7_cp_reginfo); 4546 define_debug_regs(cpu); 4547 } else { 4548 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4549 } 4550 if (arm_feature(env, ARM_FEATURE_V8)) { 4551 /* AArch64 ID registers, which all have impdef reset values. 4552 * Note that within the ID register ranges the unused slots 4553 * must all RAZ, not UNDEF; future architecture versions may 4554 * define new registers here. 4555 */ 4556 ARMCPRegInfo v8_idregs[] = { 4557 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4559 .access = PL1_R, .type = ARM_CP_CONST, 4560 .resetvalue = cpu->id_aa64pfr0 }, 4561 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4563 .access = PL1_R, .type = ARM_CP_CONST, 4564 .resetvalue = cpu->id_aa64pfr1}, 4565 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4567 .access = PL1_R, .type = ARM_CP_CONST, 4568 .resetvalue = 0 }, 4569 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4571 .access = PL1_R, .type = ARM_CP_CONST, 4572 .resetvalue = 0 }, 4573 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4575 .access = PL1_R, .type = ARM_CP_CONST, 4576 .resetvalue = 0 }, 4577 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4579 .access = PL1_R, .type = ARM_CP_CONST, 4580 .resetvalue = 0 }, 4581 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4583 .access = PL1_R, .type = ARM_CP_CONST, 4584 .resetvalue = 0 }, 4585 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4587 .access = PL1_R, .type = ARM_CP_CONST, 4588 .resetvalue = 0 }, 4589 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4591 .access = PL1_R, .type = ARM_CP_CONST, 4592 /* We mask out the PMUVer field, because we don't currently 4593 * implement the PMU. Not advertising it prevents the guest 4594 * from trying to use it and getting UNDEFs on registers we 4595 * don't implement. 4596 */ 4597 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, 4598 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4600 .access = PL1_R, .type = ARM_CP_CONST, 4601 .resetvalue = cpu->id_aa64dfr1 }, 4602 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4604 .access = PL1_R, .type = ARM_CP_CONST, 4605 .resetvalue = 0 }, 4606 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4608 .access = PL1_R, .type = ARM_CP_CONST, 4609 .resetvalue = 0 }, 4610 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4612 .access = PL1_R, .type = ARM_CP_CONST, 4613 .resetvalue = cpu->id_aa64afr0 }, 4614 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4616 .access = PL1_R, .type = ARM_CP_CONST, 4617 .resetvalue = cpu->id_aa64afr1 }, 4618 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4620 .access = PL1_R, .type = ARM_CP_CONST, 4621 .resetvalue = 0 }, 4622 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4624 .access = PL1_R, .type = ARM_CP_CONST, 4625 .resetvalue = 0 }, 4626 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4628 .access = PL1_R, .type = ARM_CP_CONST, 4629 .resetvalue = cpu->id_aa64isar0 }, 4630 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4632 .access = PL1_R, .type = ARM_CP_CONST, 4633 .resetvalue = cpu->id_aa64isar1 }, 4634 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4636 .access = PL1_R, .type = ARM_CP_CONST, 4637 .resetvalue = 0 }, 4638 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4640 .access = PL1_R, .type = ARM_CP_CONST, 4641 .resetvalue = 0 }, 4642 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4644 .access = PL1_R, .type = ARM_CP_CONST, 4645 .resetvalue = 0 }, 4646 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4648 .access = PL1_R, .type = ARM_CP_CONST, 4649 .resetvalue = 0 }, 4650 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4652 .access = PL1_R, .type = ARM_CP_CONST, 4653 .resetvalue = 0 }, 4654 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4656 .access = PL1_R, .type = ARM_CP_CONST, 4657 .resetvalue = 0 }, 4658 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4660 .access = PL1_R, .type = ARM_CP_CONST, 4661 .resetvalue = cpu->id_aa64mmfr0 }, 4662 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4664 .access = PL1_R, .type = ARM_CP_CONST, 4665 .resetvalue = cpu->id_aa64mmfr1 }, 4666 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4668 .access = PL1_R, .type = ARM_CP_CONST, 4669 .resetvalue = 0 }, 4670 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4672 .access = PL1_R, .type = ARM_CP_CONST, 4673 .resetvalue = 0 }, 4674 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4676 .access = PL1_R, .type = ARM_CP_CONST, 4677 .resetvalue = 0 }, 4678 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4680 .access = PL1_R, .type = ARM_CP_CONST, 4681 .resetvalue = 0 }, 4682 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4684 .access = PL1_R, .type = ARM_CP_CONST, 4685 .resetvalue = 0 }, 4686 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4688 .access = PL1_R, .type = ARM_CP_CONST, 4689 .resetvalue = 0 }, 4690 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4692 .access = PL1_R, .type = ARM_CP_CONST, 4693 .resetvalue = cpu->mvfr0 }, 4694 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4696 .access = PL1_R, .type = ARM_CP_CONST, 4697 .resetvalue = cpu->mvfr1 }, 4698 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4700 .access = PL1_R, .type = ARM_CP_CONST, 4701 .resetvalue = cpu->mvfr2 }, 4702 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4704 .access = PL1_R, .type = ARM_CP_CONST, 4705 .resetvalue = 0 }, 4706 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4708 .access = PL1_R, .type = ARM_CP_CONST, 4709 .resetvalue = 0 }, 4710 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4712 .access = PL1_R, .type = ARM_CP_CONST, 4713 .resetvalue = 0 }, 4714 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4716 .access = PL1_R, .type = ARM_CP_CONST, 4717 .resetvalue = 0 }, 4718 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4720 .access = PL1_R, .type = ARM_CP_CONST, 4721 .resetvalue = 0 }, 4722 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4723 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4724 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4725 .resetvalue = cpu->pmceid0 }, 4726 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4727 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4728 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4729 .resetvalue = cpu->pmceid0 }, 4730 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4731 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4732 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4733 .resetvalue = cpu->pmceid1 }, 4734 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4735 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4736 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4737 .resetvalue = cpu->pmceid1 }, 4738 REGINFO_SENTINEL 4739 }; 4740 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4741 if (!arm_feature(env, ARM_FEATURE_EL3) && 4742 !arm_feature(env, ARM_FEATURE_EL2)) { 4743 ARMCPRegInfo rvbar = { 4744 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4745 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4746 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4747 }; 4748 define_one_arm_cp_reg(cpu, &rvbar); 4749 } 4750 define_arm_cp_regs(cpu, v8_idregs); 4751 define_arm_cp_regs(cpu, v8_cp_reginfo); 4752 } 4753 if (arm_feature(env, ARM_FEATURE_EL2)) { 4754 uint64_t vmpidr_def = mpidr_read_val(env); 4755 ARMCPRegInfo vpidr_regs[] = { 4756 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4757 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4758 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4759 .resetvalue = cpu->midr, 4760 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4761 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4762 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4763 .access = PL2_RW, .resetvalue = cpu->midr, 4764 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4765 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4766 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4767 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4768 .resetvalue = vmpidr_def, 4769 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4770 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4771 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4772 .access = PL2_RW, 4773 .resetvalue = vmpidr_def, 4774 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4775 REGINFO_SENTINEL 4776 }; 4777 define_arm_cp_regs(cpu, vpidr_regs); 4778 define_arm_cp_regs(cpu, el2_cp_reginfo); 4779 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4780 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4781 ARMCPRegInfo rvbar = { 4782 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4783 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4784 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4785 }; 4786 define_one_arm_cp_reg(cpu, &rvbar); 4787 } 4788 } else { 4789 /* If EL2 is missing but higher ELs are enabled, we need to 4790 * register the no_el2 reginfos. 4791 */ 4792 if (arm_feature(env, ARM_FEATURE_EL3)) { 4793 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4794 * of MIDR_EL1 and MPIDR_EL1. 4795 */ 4796 ARMCPRegInfo vpidr_regs[] = { 4797 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4798 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4799 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4800 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4801 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4802 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4803 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4804 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4805 .type = ARM_CP_NO_RAW, 4806 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4807 REGINFO_SENTINEL 4808 }; 4809 define_arm_cp_regs(cpu, vpidr_regs); 4810 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4811 } 4812 } 4813 if (arm_feature(env, ARM_FEATURE_EL3)) { 4814 define_arm_cp_regs(cpu, el3_cp_reginfo); 4815 ARMCPRegInfo el3_regs[] = { 4816 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4818 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4819 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4821 .access = PL3_RW, 4822 .raw_writefn = raw_write, .writefn = sctlr_write, 4823 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4824 .resetvalue = cpu->reset_sctlr }, 4825 REGINFO_SENTINEL 4826 }; 4827 4828 define_arm_cp_regs(cpu, el3_regs); 4829 } 4830 /* The behaviour of NSACR is sufficiently various that we don't 4831 * try to describe it in a single reginfo: 4832 * if EL3 is 64 bit, then trap to EL3 from S EL1, 4833 * reads as constant 0xc00 from NS EL1 and NS EL2 4834 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 4835 * if v7 without EL3, register doesn't exist 4836 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 4837 */ 4838 if (arm_feature(env, ARM_FEATURE_EL3)) { 4839 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 4840 ARMCPRegInfo nsacr = { 4841 .name = "NSACR", .type = ARM_CP_CONST, 4842 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4843 .access = PL1_RW, .accessfn = nsacr_access, 4844 .resetvalue = 0xc00 4845 }; 4846 define_one_arm_cp_reg(cpu, &nsacr); 4847 } else { 4848 ARMCPRegInfo nsacr = { 4849 .name = "NSACR", 4850 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4851 .access = PL3_RW | PL1_R, 4852 .resetvalue = 0, 4853 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 4854 }; 4855 define_one_arm_cp_reg(cpu, &nsacr); 4856 } 4857 } else { 4858 if (arm_feature(env, ARM_FEATURE_V8)) { 4859 ARMCPRegInfo nsacr = { 4860 .name = "NSACR", .type = ARM_CP_CONST, 4861 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4862 .access = PL1_R, 4863 .resetvalue = 0xc00 4864 }; 4865 define_one_arm_cp_reg(cpu, &nsacr); 4866 } 4867 } 4868 4869 if (arm_feature(env, ARM_FEATURE_MPU)) { 4870 if (arm_feature(env, ARM_FEATURE_V6)) { 4871 /* PMSAv6 not implemented */ 4872 assert(arm_feature(env, ARM_FEATURE_V7)); 4873 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4874 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 4875 } else { 4876 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 4877 } 4878 } else { 4879 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4880 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 4881 } 4882 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 4883 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 4884 } 4885 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 4886 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 4887 } 4888 if (arm_feature(env, ARM_FEATURE_VAPA)) { 4889 define_arm_cp_regs(cpu, vapa_cp_reginfo); 4890 } 4891 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 4892 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 4893 } 4894 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 4895 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 4896 } 4897 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 4898 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 4899 } 4900 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 4901 define_arm_cp_regs(cpu, omap_cp_reginfo); 4902 } 4903 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 4904 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 4905 } 4906 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 4907 define_arm_cp_regs(cpu, xscale_cp_reginfo); 4908 } 4909 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 4910 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 4911 } 4912 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4913 define_arm_cp_regs(cpu, lpae_cp_reginfo); 4914 } 4915 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 4916 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 4917 * be read-only (ie write causes UNDEF exception). 4918 */ 4919 { 4920 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 4921 /* Pre-v8 MIDR space. 4922 * Note that the MIDR isn't a simple constant register because 4923 * of the TI925 behaviour where writes to another register can 4924 * cause the MIDR value to change. 4925 * 4926 * Unimplemented registers in the c15 0 0 0 space default to 4927 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 4928 * and friends override accordingly. 4929 */ 4930 { .name = "MIDR", 4931 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 4932 .access = PL1_R, .resetvalue = cpu->midr, 4933 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 4934 .readfn = midr_read, 4935 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 4936 .type = ARM_CP_OVERRIDE }, 4937 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 4938 { .name = "DUMMY", 4939 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 4940 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4941 { .name = "DUMMY", 4942 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 4943 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4944 { .name = "DUMMY", 4945 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 4946 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4947 { .name = "DUMMY", 4948 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 4949 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4950 { .name = "DUMMY", 4951 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 4952 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4953 REGINFO_SENTINEL 4954 }; 4955 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 4956 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 4957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 4958 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 4959 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 4960 .readfn = midr_read }, 4961 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 4962 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 4963 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 4964 .access = PL1_R, .resetvalue = cpu->midr }, 4965 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 4966 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 4967 .access = PL1_R, .resetvalue = cpu->midr }, 4968 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 4969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 4970 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 4971 REGINFO_SENTINEL 4972 }; 4973 ARMCPRegInfo id_cp_reginfo[] = { 4974 /* These are common to v8 and pre-v8 */ 4975 { .name = "CTR", 4976 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 4977 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 4978 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 4980 .access = PL0_R, .accessfn = ctr_el0_access, 4981 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 4982 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 4983 { .name = "TCMTR", 4984 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 4985 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4986 REGINFO_SENTINEL 4987 }; 4988 /* TLBTR is specific to VMSA */ 4989 ARMCPRegInfo id_tlbtr_reginfo = { 4990 .name = "TLBTR", 4991 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 4992 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 4993 }; 4994 /* MPUIR is specific to PMSA V6+ */ 4995 ARMCPRegInfo id_mpuir_reginfo = { 4996 .name = "MPUIR", 4997 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 4998 .access = PL1_R, .type = ARM_CP_CONST, 4999 .resetvalue = cpu->pmsav7_dregion << 8 5000 }; 5001 ARMCPRegInfo crn0_wi_reginfo = { 5002 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5003 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5004 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5005 }; 5006 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5007 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5008 ARMCPRegInfo *r; 5009 /* Register the blanket "writes ignored" value first to cover the 5010 * whole space. Then update the specific ID registers to allow write 5011 * access, so that they ignore writes rather than causing them to 5012 * UNDEF. 5013 */ 5014 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5015 for (r = id_pre_v8_midr_cp_reginfo; 5016 r->type != ARM_CP_SENTINEL; r++) { 5017 r->access = PL1_RW; 5018 } 5019 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5020 r->access = PL1_RW; 5021 } 5022 id_tlbtr_reginfo.access = PL1_RW; 5023 id_tlbtr_reginfo.access = PL1_RW; 5024 } 5025 if (arm_feature(env, ARM_FEATURE_V8)) { 5026 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5027 } else { 5028 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5029 } 5030 define_arm_cp_regs(cpu, id_cp_reginfo); 5031 if (!arm_feature(env, ARM_FEATURE_MPU)) { 5032 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5033 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5034 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5035 } 5036 } 5037 5038 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5039 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5040 } 5041 5042 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5043 ARMCPRegInfo auxcr_reginfo[] = { 5044 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5045 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5046 .access = PL1_RW, .type = ARM_CP_CONST, 5047 .resetvalue = cpu->reset_auxcr }, 5048 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5049 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5050 .access = PL2_RW, .type = ARM_CP_CONST, 5051 .resetvalue = 0 }, 5052 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5053 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5054 .access = PL3_RW, .type = ARM_CP_CONST, 5055 .resetvalue = 0 }, 5056 REGINFO_SENTINEL 5057 }; 5058 define_arm_cp_regs(cpu, auxcr_reginfo); 5059 } 5060 5061 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5062 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5063 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5064 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5065 | extract64(cpu->reset_cbar, 32, 12); 5066 ARMCPRegInfo cbar_reginfo[] = { 5067 { .name = "CBAR", 5068 .type = ARM_CP_CONST, 5069 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5070 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5071 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5072 .type = ARM_CP_CONST, 5073 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5074 .access = PL1_R, .resetvalue = cbar32 }, 5075 REGINFO_SENTINEL 5076 }; 5077 /* We don't implement a r/w 64 bit CBAR currently */ 5078 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5079 define_arm_cp_regs(cpu, cbar_reginfo); 5080 } else { 5081 ARMCPRegInfo cbar = { 5082 .name = "CBAR", 5083 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5084 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5085 .fieldoffset = offsetof(CPUARMState, 5086 cp15.c15_config_base_address) 5087 }; 5088 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5089 cbar.access = PL1_R; 5090 cbar.fieldoffset = 0; 5091 cbar.type = ARM_CP_CONST; 5092 } 5093 define_one_arm_cp_reg(cpu, &cbar); 5094 } 5095 } 5096 5097 /* Generic registers whose values depend on the implementation */ 5098 { 5099 ARMCPRegInfo sctlr = { 5100 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5101 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5102 .access = PL1_RW, 5103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5104 offsetof(CPUARMState, cp15.sctlr_ns) }, 5105 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5106 .raw_writefn = raw_write, 5107 }; 5108 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5109 /* Normally we would always end the TB on an SCTLR write, but Linux 5110 * arch/arm/mach-pxa/sleep.S expects two instructions following 5111 * an MMU enable to execute from cache. Imitate this behaviour. 5112 */ 5113 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5114 } 5115 define_one_arm_cp_reg(cpu, &sctlr); 5116 } 5117 } 5118 5119 ARMCPU *cpu_arm_init(const char *cpu_model) 5120 { 5121 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); 5122 } 5123 5124 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5125 { 5126 CPUState *cs = CPU(cpu); 5127 CPUARMState *env = &cpu->env; 5128 5129 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5130 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5131 aarch64_fpu_gdb_set_reg, 5132 34, "aarch64-fpu.xml", 0); 5133 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5134 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5135 51, "arm-neon.xml", 0); 5136 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5137 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5138 35, "arm-vfp3.xml", 0); 5139 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5140 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5141 19, "arm-vfp.xml", 0); 5142 } 5143 } 5144 5145 /* Sort alphabetically by type name, except for "any". */ 5146 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5147 { 5148 ObjectClass *class_a = (ObjectClass *)a; 5149 ObjectClass *class_b = (ObjectClass *)b; 5150 const char *name_a, *name_b; 5151 5152 name_a = object_class_get_name(class_a); 5153 name_b = object_class_get_name(class_b); 5154 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5155 return 1; 5156 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5157 return -1; 5158 } else { 5159 return strcmp(name_a, name_b); 5160 } 5161 } 5162 5163 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5164 { 5165 ObjectClass *oc = data; 5166 CPUListState *s = user_data; 5167 const char *typename; 5168 char *name; 5169 5170 typename = object_class_get_name(oc); 5171 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5172 (*s->cpu_fprintf)(s->file, " %s\n", 5173 name); 5174 g_free(name); 5175 } 5176 5177 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5178 { 5179 CPUListState s = { 5180 .file = f, 5181 .cpu_fprintf = cpu_fprintf, 5182 }; 5183 GSList *list; 5184 5185 list = object_class_get_list(TYPE_ARM_CPU, false); 5186 list = g_slist_sort(list, arm_cpu_list_compare); 5187 (*cpu_fprintf)(f, "Available CPUs:\n"); 5188 g_slist_foreach(list, arm_cpu_list_entry, &s); 5189 g_slist_free(list); 5190 #ifdef CONFIG_KVM 5191 /* The 'host' CPU type is dynamically registered only if KVM is 5192 * enabled, so we have to special-case it here: 5193 */ 5194 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5195 #endif 5196 } 5197 5198 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5199 { 5200 ObjectClass *oc = data; 5201 CpuDefinitionInfoList **cpu_list = user_data; 5202 CpuDefinitionInfoList *entry; 5203 CpuDefinitionInfo *info; 5204 const char *typename; 5205 5206 typename = object_class_get_name(oc); 5207 info = g_malloc0(sizeof(*info)); 5208 info->name = g_strndup(typename, 5209 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5210 5211 entry = g_malloc0(sizeof(*entry)); 5212 entry->value = info; 5213 entry->next = *cpu_list; 5214 *cpu_list = entry; 5215 } 5216 5217 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5218 { 5219 CpuDefinitionInfoList *cpu_list = NULL; 5220 GSList *list; 5221 5222 list = object_class_get_list(TYPE_ARM_CPU, false); 5223 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5224 g_slist_free(list); 5225 5226 return cpu_list; 5227 } 5228 5229 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5230 void *opaque, int state, int secstate, 5231 int crm, int opc1, int opc2) 5232 { 5233 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5234 * add a single reginfo struct to the hash table. 5235 */ 5236 uint32_t *key = g_new(uint32_t, 1); 5237 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5238 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5239 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5240 5241 /* Reset the secure state to the specific incoming state. This is 5242 * necessary as the register may have been defined with both states. 5243 */ 5244 r2->secure = secstate; 5245 5246 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5247 /* Register is banked (using both entries in array). 5248 * Overwriting fieldoffset as the array is only used to define 5249 * banked registers but later only fieldoffset is used. 5250 */ 5251 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5252 } 5253 5254 if (state == ARM_CP_STATE_AA32) { 5255 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5256 /* If the register is banked then we don't need to migrate or 5257 * reset the 32-bit instance in certain cases: 5258 * 5259 * 1) If the register has both 32-bit and 64-bit instances then we 5260 * can count on the 64-bit instance taking care of the 5261 * non-secure bank. 5262 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5263 * taking care of the secure bank. This requires that separate 5264 * 32 and 64-bit definitions are provided. 5265 */ 5266 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5267 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5268 r2->type |= ARM_CP_ALIAS; 5269 } 5270 } else if ((secstate != r->secure) && !ns) { 5271 /* The register is not banked so we only want to allow migration of 5272 * the non-secure instance. 5273 */ 5274 r2->type |= ARM_CP_ALIAS; 5275 } 5276 5277 if (r->state == ARM_CP_STATE_BOTH) { 5278 /* We assume it is a cp15 register if the .cp field is left unset. 5279 */ 5280 if (r2->cp == 0) { 5281 r2->cp = 15; 5282 } 5283 5284 #ifdef HOST_WORDS_BIGENDIAN 5285 if (r2->fieldoffset) { 5286 r2->fieldoffset += sizeof(uint32_t); 5287 } 5288 #endif 5289 } 5290 } 5291 if (state == ARM_CP_STATE_AA64) { 5292 /* To allow abbreviation of ARMCPRegInfo 5293 * definitions, we treat cp == 0 as equivalent to 5294 * the value for "standard guest-visible sysreg". 5295 * STATE_BOTH definitions are also always "standard 5296 * sysreg" in their AArch64 view (the .cp value may 5297 * be non-zero for the benefit of the AArch32 view). 5298 */ 5299 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5300 r2->cp = CP_REG_ARM64_SYSREG_CP; 5301 } 5302 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5303 r2->opc0, opc1, opc2); 5304 } else { 5305 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5306 } 5307 if (opaque) { 5308 r2->opaque = opaque; 5309 } 5310 /* reginfo passed to helpers is correct for the actual access, 5311 * and is never ARM_CP_STATE_BOTH: 5312 */ 5313 r2->state = state; 5314 /* Make sure reginfo passed to helpers for wildcarded regs 5315 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5316 */ 5317 r2->crm = crm; 5318 r2->opc1 = opc1; 5319 r2->opc2 = opc2; 5320 /* By convention, for wildcarded registers only the first 5321 * entry is used for migration; the others are marked as 5322 * ALIAS so we don't try to transfer the register 5323 * multiple times. Special registers (ie NOP/WFI) are 5324 * never migratable and not even raw-accessible. 5325 */ 5326 if ((r->type & ARM_CP_SPECIAL)) { 5327 r2->type |= ARM_CP_NO_RAW; 5328 } 5329 if (((r->crm == CP_ANY) && crm != 0) || 5330 ((r->opc1 == CP_ANY) && opc1 != 0) || 5331 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5332 r2->type |= ARM_CP_ALIAS; 5333 } 5334 5335 /* Check that raw accesses are either forbidden or handled. Note that 5336 * we can't assert this earlier because the setup of fieldoffset for 5337 * banked registers has to be done first. 5338 */ 5339 if (!(r2->type & ARM_CP_NO_RAW)) { 5340 assert(!raw_accessors_invalid(r2)); 5341 } 5342 5343 /* Overriding of an existing definition must be explicitly 5344 * requested. 5345 */ 5346 if (!(r->type & ARM_CP_OVERRIDE)) { 5347 ARMCPRegInfo *oldreg; 5348 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5349 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5350 fprintf(stderr, "Register redefined: cp=%d %d bit " 5351 "crn=%d crm=%d opc1=%d opc2=%d, " 5352 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5353 r2->crn, r2->crm, r2->opc1, r2->opc2, 5354 oldreg->name, r2->name); 5355 g_assert_not_reached(); 5356 } 5357 } 5358 g_hash_table_insert(cpu->cp_regs, key, r2); 5359 } 5360 5361 5362 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5363 const ARMCPRegInfo *r, void *opaque) 5364 { 5365 /* Define implementations of coprocessor registers. 5366 * We store these in a hashtable because typically 5367 * there are less than 150 registers in a space which 5368 * is 16*16*16*8*8 = 262144 in size. 5369 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5370 * If a register is defined twice then the second definition is 5371 * used, so this can be used to define some generic registers and 5372 * then override them with implementation specific variations. 5373 * At least one of the original and the second definition should 5374 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5375 * against accidental use. 5376 * 5377 * The state field defines whether the register is to be 5378 * visible in the AArch32 or AArch64 execution state. If the 5379 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5380 * reginfo structure for the AArch32 view, which sees the lower 5381 * 32 bits of the 64 bit register. 5382 * 5383 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5384 * be wildcarded. AArch64 registers are always considered to be 64 5385 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5386 * the register, if any. 5387 */ 5388 int crm, opc1, opc2, state; 5389 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5390 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5391 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5392 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5393 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5394 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5395 /* 64 bit registers have only CRm and Opc1 fields */ 5396 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5397 /* op0 only exists in the AArch64 encodings */ 5398 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5399 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5400 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5401 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5402 * encodes a minimum access level for the register. We roll this 5403 * runtime check into our general permission check code, so check 5404 * here that the reginfo's specified permissions are strict enough 5405 * to encompass the generic architectural permission check. 5406 */ 5407 if (r->state != ARM_CP_STATE_AA32) { 5408 int mask = 0; 5409 switch (r->opc1) { 5410 case 0: case 1: case 2: 5411 /* min_EL EL1 */ 5412 mask = PL1_RW; 5413 break; 5414 case 3: 5415 /* min_EL EL0 */ 5416 mask = PL0_RW; 5417 break; 5418 case 4: 5419 /* min_EL EL2 */ 5420 mask = PL2_RW; 5421 break; 5422 case 5: 5423 /* unallocated encoding, so not possible */ 5424 assert(false); 5425 break; 5426 case 6: 5427 /* min_EL EL3 */ 5428 mask = PL3_RW; 5429 break; 5430 case 7: 5431 /* min_EL EL1, secure mode only (we don't check the latter) */ 5432 mask = PL1_RW; 5433 break; 5434 default: 5435 /* broken reginfo with out-of-range opc1 */ 5436 assert(false); 5437 break; 5438 } 5439 /* assert our permissions are not too lax (stricter is fine) */ 5440 assert((r->access & ~mask) == 0); 5441 } 5442 5443 /* Check that the register definition has enough info to handle 5444 * reads and writes if they are permitted. 5445 */ 5446 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5447 if (r->access & PL3_R) { 5448 assert((r->fieldoffset || 5449 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5450 r->readfn); 5451 } 5452 if (r->access & PL3_W) { 5453 assert((r->fieldoffset || 5454 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5455 r->writefn); 5456 } 5457 } 5458 /* Bad type field probably means missing sentinel at end of reg list */ 5459 assert(cptype_valid(r->type)); 5460 for (crm = crmmin; crm <= crmmax; crm++) { 5461 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5462 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5463 for (state = ARM_CP_STATE_AA32; 5464 state <= ARM_CP_STATE_AA64; state++) { 5465 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5466 continue; 5467 } 5468 if (state == ARM_CP_STATE_AA32) { 5469 /* Under AArch32 CP registers can be common 5470 * (same for secure and non-secure world) or banked. 5471 */ 5472 switch (r->secure) { 5473 case ARM_CP_SECSTATE_S: 5474 case ARM_CP_SECSTATE_NS: 5475 add_cpreg_to_hashtable(cpu, r, opaque, state, 5476 r->secure, crm, opc1, opc2); 5477 break; 5478 default: 5479 add_cpreg_to_hashtable(cpu, r, opaque, state, 5480 ARM_CP_SECSTATE_S, 5481 crm, opc1, opc2); 5482 add_cpreg_to_hashtable(cpu, r, opaque, state, 5483 ARM_CP_SECSTATE_NS, 5484 crm, opc1, opc2); 5485 break; 5486 } 5487 } else { 5488 /* AArch64 registers get mapped to non-secure instance 5489 * of AArch32 */ 5490 add_cpreg_to_hashtable(cpu, r, opaque, state, 5491 ARM_CP_SECSTATE_NS, 5492 crm, opc1, opc2); 5493 } 5494 } 5495 } 5496 } 5497 } 5498 } 5499 5500 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5501 const ARMCPRegInfo *regs, void *opaque) 5502 { 5503 /* Define a whole list of registers */ 5504 const ARMCPRegInfo *r; 5505 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5506 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5507 } 5508 } 5509 5510 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5511 { 5512 return g_hash_table_lookup(cpregs, &encoded_cp); 5513 } 5514 5515 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5516 uint64_t value) 5517 { 5518 /* Helper coprocessor write function for write-ignore registers */ 5519 } 5520 5521 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5522 { 5523 /* Helper coprocessor write function for read-as-zero registers */ 5524 return 0; 5525 } 5526 5527 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5528 { 5529 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5530 } 5531 5532 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5533 { 5534 /* Return true if it is not valid for us to switch to 5535 * this CPU mode (ie all the UNPREDICTABLE cases in 5536 * the ARM ARM CPSRWriteByInstr pseudocode). 5537 */ 5538 5539 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5540 if (write_type == CPSRWriteByInstr && 5541 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5542 mode == ARM_CPU_MODE_HYP)) { 5543 return 1; 5544 } 5545 5546 switch (mode) { 5547 case ARM_CPU_MODE_USR: 5548 return 0; 5549 case ARM_CPU_MODE_SYS: 5550 case ARM_CPU_MODE_SVC: 5551 case ARM_CPU_MODE_ABT: 5552 case ARM_CPU_MODE_UND: 5553 case ARM_CPU_MODE_IRQ: 5554 case ARM_CPU_MODE_FIQ: 5555 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5556 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5557 */ 5558 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5559 * and CPS are treated as illegal mode changes. 5560 */ 5561 if (write_type == CPSRWriteByInstr && 5562 (env->cp15.hcr_el2 & HCR_TGE) && 5563 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5564 !arm_is_secure_below_el3(env)) { 5565 return 1; 5566 } 5567 return 0; 5568 case ARM_CPU_MODE_HYP: 5569 return !arm_feature(env, ARM_FEATURE_EL2) 5570 || arm_current_el(env) < 2 || arm_is_secure(env); 5571 case ARM_CPU_MODE_MON: 5572 return arm_current_el(env) < 3; 5573 default: 5574 return 1; 5575 } 5576 } 5577 5578 uint32_t cpsr_read(CPUARMState *env) 5579 { 5580 int ZF; 5581 ZF = (env->ZF == 0); 5582 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5583 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5584 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5585 | ((env->condexec_bits & 0xfc) << 8) 5586 | (env->GE << 16) | (env->daif & CPSR_AIF); 5587 } 5588 5589 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5590 CPSRWriteType write_type) 5591 { 5592 uint32_t changed_daif; 5593 5594 if (mask & CPSR_NZCV) { 5595 env->ZF = (~val) & CPSR_Z; 5596 env->NF = val; 5597 env->CF = (val >> 29) & 1; 5598 env->VF = (val << 3) & 0x80000000; 5599 } 5600 if (mask & CPSR_Q) 5601 env->QF = ((val & CPSR_Q) != 0); 5602 if (mask & CPSR_T) 5603 env->thumb = ((val & CPSR_T) != 0); 5604 if (mask & CPSR_IT_0_1) { 5605 env->condexec_bits &= ~3; 5606 env->condexec_bits |= (val >> 25) & 3; 5607 } 5608 if (mask & CPSR_IT_2_7) { 5609 env->condexec_bits &= 3; 5610 env->condexec_bits |= (val >> 8) & 0xfc; 5611 } 5612 if (mask & CPSR_GE) { 5613 env->GE = (val >> 16) & 0xf; 5614 } 5615 5616 /* In a V7 implementation that includes the security extensions but does 5617 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5618 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5619 * bits respectively. 5620 * 5621 * In a V8 implementation, it is permitted for privileged software to 5622 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5623 */ 5624 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5625 arm_feature(env, ARM_FEATURE_EL3) && 5626 !arm_feature(env, ARM_FEATURE_EL2) && 5627 !arm_is_secure(env)) { 5628 5629 changed_daif = (env->daif ^ val) & mask; 5630 5631 if (changed_daif & CPSR_A) { 5632 /* Check to see if we are allowed to change the masking of async 5633 * abort exceptions from a non-secure state. 5634 */ 5635 if (!(env->cp15.scr_el3 & SCR_AW)) { 5636 qemu_log_mask(LOG_GUEST_ERROR, 5637 "Ignoring attempt to switch CPSR_A flag from " 5638 "non-secure world with SCR.AW bit clear\n"); 5639 mask &= ~CPSR_A; 5640 } 5641 } 5642 5643 if (changed_daif & CPSR_F) { 5644 /* Check to see if we are allowed to change the masking of FIQ 5645 * exceptions from a non-secure state. 5646 */ 5647 if (!(env->cp15.scr_el3 & SCR_FW)) { 5648 qemu_log_mask(LOG_GUEST_ERROR, 5649 "Ignoring attempt to switch CPSR_F flag from " 5650 "non-secure world with SCR.FW bit clear\n"); 5651 mask &= ~CPSR_F; 5652 } 5653 5654 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5655 * If this bit is set software is not allowed to mask 5656 * FIQs, but is allowed to set CPSR_F to 0. 5657 */ 5658 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5659 (val & CPSR_F)) { 5660 qemu_log_mask(LOG_GUEST_ERROR, 5661 "Ignoring attempt to enable CPSR_F flag " 5662 "(non-maskable FIQ [NMFI] support enabled)\n"); 5663 mask &= ~CPSR_F; 5664 } 5665 } 5666 } 5667 5668 env->daif &= ~(CPSR_AIF & mask); 5669 env->daif |= val & CPSR_AIF & mask; 5670 5671 if (write_type != CPSRWriteRaw && 5672 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5673 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5674 /* Note that we can only get here in USR mode if this is a 5675 * gdb stub write; for this case we follow the architectural 5676 * behaviour for guest writes in USR mode of ignoring an attempt 5677 * to switch mode. (Those are caught by translate.c for writes 5678 * triggered by guest instructions.) 5679 */ 5680 mask &= ~CPSR_M; 5681 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5682 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5683 * v7, and has defined behaviour in v8: 5684 * + leave CPSR.M untouched 5685 * + allow changes to the other CPSR fields 5686 * + set PSTATE.IL 5687 * For user changes via the GDB stub, we don't set PSTATE.IL, 5688 * as this would be unnecessarily harsh for a user error. 5689 */ 5690 mask &= ~CPSR_M; 5691 if (write_type != CPSRWriteByGDBStub && 5692 arm_feature(env, ARM_FEATURE_V8)) { 5693 mask |= CPSR_IL; 5694 val |= CPSR_IL; 5695 } 5696 } else { 5697 switch_mode(env, val & CPSR_M); 5698 } 5699 } 5700 mask &= ~CACHED_CPSR_BITS; 5701 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5702 } 5703 5704 /* Sign/zero extend */ 5705 uint32_t HELPER(sxtb16)(uint32_t x) 5706 { 5707 uint32_t res; 5708 res = (uint16_t)(int8_t)x; 5709 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5710 return res; 5711 } 5712 5713 uint32_t HELPER(uxtb16)(uint32_t x) 5714 { 5715 uint32_t res; 5716 res = (uint16_t)(uint8_t)x; 5717 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5718 return res; 5719 } 5720 5721 uint32_t HELPER(clz)(uint32_t x) 5722 { 5723 return clz32(x); 5724 } 5725 5726 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5727 { 5728 if (den == 0) 5729 return 0; 5730 if (num == INT_MIN && den == -1) 5731 return INT_MIN; 5732 return num / den; 5733 } 5734 5735 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5736 { 5737 if (den == 0) 5738 return 0; 5739 return num / den; 5740 } 5741 5742 uint32_t HELPER(rbit)(uint32_t x) 5743 { 5744 return revbit32(x); 5745 } 5746 5747 #if defined(CONFIG_USER_ONLY) 5748 5749 /* These should probably raise undefined insn exceptions. */ 5750 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5751 { 5752 ARMCPU *cpu = arm_env_get_cpu(env); 5753 5754 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5755 } 5756 5757 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5758 { 5759 ARMCPU *cpu = arm_env_get_cpu(env); 5760 5761 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5762 return 0; 5763 } 5764 5765 void switch_mode(CPUARMState *env, int mode) 5766 { 5767 ARMCPU *cpu = arm_env_get_cpu(env); 5768 5769 if (mode != ARM_CPU_MODE_USR) { 5770 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5771 } 5772 } 5773 5774 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5775 uint32_t cur_el, bool secure) 5776 { 5777 return 1; 5778 } 5779 5780 void aarch64_sync_64_to_32(CPUARMState *env) 5781 { 5782 g_assert_not_reached(); 5783 } 5784 5785 #else 5786 5787 void switch_mode(CPUARMState *env, int mode) 5788 { 5789 int old_mode; 5790 int i; 5791 5792 old_mode = env->uncached_cpsr & CPSR_M; 5793 if (mode == old_mode) 5794 return; 5795 5796 if (old_mode == ARM_CPU_MODE_FIQ) { 5797 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5798 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5799 } else if (mode == ARM_CPU_MODE_FIQ) { 5800 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5801 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5802 } 5803 5804 i = bank_number(old_mode); 5805 env->banked_r13[i] = env->regs[13]; 5806 env->banked_r14[i] = env->regs[14]; 5807 env->banked_spsr[i] = env->spsr; 5808 5809 i = bank_number(mode); 5810 env->regs[13] = env->banked_r13[i]; 5811 env->regs[14] = env->banked_r14[i]; 5812 env->spsr = env->banked_spsr[i]; 5813 } 5814 5815 /* Physical Interrupt Target EL Lookup Table 5816 * 5817 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 5818 * 5819 * The below multi-dimensional table is used for looking up the target 5820 * exception level given numerous condition criteria. Specifically, the 5821 * target EL is based on SCR and HCR routing controls as well as the 5822 * currently executing EL and secure state. 5823 * 5824 * Dimensions: 5825 * target_el_table[2][2][2][2][2][4] 5826 * | | | | | +--- Current EL 5827 * | | | | +------ Non-secure(0)/Secure(1) 5828 * | | | +--------- HCR mask override 5829 * | | +------------ SCR exec state control 5830 * | +--------------- SCR mask override 5831 * +------------------ 32-bit(0)/64-bit(1) EL3 5832 * 5833 * The table values are as such: 5834 * 0-3 = EL0-EL3 5835 * -1 = Cannot occur 5836 * 5837 * The ARM ARM target EL table includes entries indicating that an "exception 5838 * is not taken". The two cases where this is applicable are: 5839 * 1) An exception is taken from EL3 but the SCR does not have the exception 5840 * routed to EL3. 5841 * 2) An exception is taken from EL2 but the HCR does not have the exception 5842 * routed to EL2. 5843 * In these two cases, the below table contain a target of EL1. This value is 5844 * returned as it is expected that the consumer of the table data will check 5845 * for "target EL >= current EL" to ensure the exception is not taken. 5846 * 5847 * SCR HCR 5848 * 64 EA AMO From 5849 * BIT IRQ IMO Non-secure Secure 5850 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 5851 */ 5852 static const int8_t target_el_table[2][2][2][2][2][4] = { 5853 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5854 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 5855 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5856 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 5857 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5858 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 5859 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5860 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 5861 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 5862 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 5863 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 5864 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 5865 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5866 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 5867 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5868 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 5869 }; 5870 5871 /* 5872 * Determine the target EL for physical exceptions 5873 */ 5874 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5875 uint32_t cur_el, bool secure) 5876 { 5877 CPUARMState *env = cs->env_ptr; 5878 int rw; 5879 int scr; 5880 int hcr; 5881 int target_el; 5882 /* Is the highest EL AArch64? */ 5883 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 5884 5885 if (arm_feature(env, ARM_FEATURE_EL3)) { 5886 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 5887 } else { 5888 /* Either EL2 is the highest EL (and so the EL2 register width 5889 * is given by is64); or there is no EL2 or EL3, in which case 5890 * the value of 'rw' does not affect the table lookup anyway. 5891 */ 5892 rw = is64; 5893 } 5894 5895 switch (excp_idx) { 5896 case EXCP_IRQ: 5897 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 5898 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 5899 break; 5900 case EXCP_FIQ: 5901 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 5902 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 5903 break; 5904 default: 5905 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 5906 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 5907 break; 5908 }; 5909 5910 /* If HCR.TGE is set then HCR is treated as being 1 */ 5911 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 5912 5913 /* Perform a table-lookup for the target EL given the current state */ 5914 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 5915 5916 assert(target_el > 0); 5917 5918 return target_el; 5919 } 5920 5921 static void v7m_push(CPUARMState *env, uint32_t val) 5922 { 5923 CPUState *cs = CPU(arm_env_get_cpu(env)); 5924 5925 env->regs[13] -= 4; 5926 stl_phys(cs->as, env->regs[13], val); 5927 } 5928 5929 static uint32_t v7m_pop(CPUARMState *env) 5930 { 5931 CPUState *cs = CPU(arm_env_get_cpu(env)); 5932 uint32_t val; 5933 5934 val = ldl_phys(cs->as, env->regs[13]); 5935 env->regs[13] += 4; 5936 return val; 5937 } 5938 5939 /* Switch to V7M main or process stack pointer. */ 5940 static void switch_v7m_sp(CPUARMState *env, int process) 5941 { 5942 uint32_t tmp; 5943 if (env->v7m.current_sp != process) { 5944 tmp = env->v7m.other_sp; 5945 env->v7m.other_sp = env->regs[13]; 5946 env->regs[13] = tmp; 5947 env->v7m.current_sp = process; 5948 } 5949 } 5950 5951 static void do_v7m_exception_exit(CPUARMState *env) 5952 { 5953 uint32_t type; 5954 uint32_t xpsr; 5955 5956 type = env->regs[15]; 5957 if (env->v7m.exception != 0) 5958 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); 5959 5960 /* Switch to the target stack. */ 5961 switch_v7m_sp(env, (type & 4) != 0); 5962 /* Pop registers. */ 5963 env->regs[0] = v7m_pop(env); 5964 env->regs[1] = v7m_pop(env); 5965 env->regs[2] = v7m_pop(env); 5966 env->regs[3] = v7m_pop(env); 5967 env->regs[12] = v7m_pop(env); 5968 env->regs[14] = v7m_pop(env); 5969 env->regs[15] = v7m_pop(env); 5970 if (env->regs[15] & 1) { 5971 qemu_log_mask(LOG_GUEST_ERROR, 5972 "M profile return from interrupt with misaligned " 5973 "PC is UNPREDICTABLE\n"); 5974 /* Actual hardware seems to ignore the lsbit, and there are several 5975 * RTOSes out there which incorrectly assume the r15 in the stack 5976 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. 5977 */ 5978 env->regs[15] &= ~1U; 5979 } 5980 xpsr = v7m_pop(env); 5981 xpsr_write(env, xpsr, 0xfffffdff); 5982 /* Undo stack alignment. */ 5983 if (xpsr & 0x200) 5984 env->regs[13] |= 4; 5985 /* ??? The exception return type specifies Thread/Handler mode. However 5986 this is also implied by the xPSR value. Not sure what to do 5987 if there is a mismatch. */ 5988 /* ??? Likewise for mismatches between the CONTROL register and the stack 5989 pointer. */ 5990 } 5991 5992 static void arm_log_exception(int idx) 5993 { 5994 if (qemu_loglevel_mask(CPU_LOG_INT)) { 5995 const char *exc = NULL; 5996 5997 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 5998 exc = excnames[idx]; 5999 } 6000 if (!exc) { 6001 exc = "unknown"; 6002 } 6003 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6004 } 6005 } 6006 6007 void arm_v7m_cpu_do_interrupt(CPUState *cs) 6008 { 6009 ARMCPU *cpu = ARM_CPU(cs); 6010 CPUARMState *env = &cpu->env; 6011 uint32_t xpsr = xpsr_read(env); 6012 uint32_t lr; 6013 uint32_t addr; 6014 6015 arm_log_exception(cs->exception_index); 6016 6017 lr = 0xfffffff1; 6018 if (env->v7m.current_sp) 6019 lr |= 4; 6020 if (env->v7m.exception == 0) 6021 lr |= 8; 6022 6023 /* For exceptions we just mark as pending on the NVIC, and let that 6024 handle it. */ 6025 /* TODO: Need to escalate if the current priority is higher than the 6026 one we're raising. */ 6027 switch (cs->exception_index) { 6028 case EXCP_UDEF: 6029 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6030 return; 6031 case EXCP_SWI: 6032 /* The PC already points to the next instruction. */ 6033 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); 6034 return; 6035 case EXCP_PREFETCH_ABORT: 6036 case EXCP_DATA_ABORT: 6037 /* TODO: if we implemented the MPU registers, this is where we 6038 * should set the MMFAR, etc from exception.fsr and exception.vaddress. 6039 */ 6040 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); 6041 return; 6042 case EXCP_BKPT: 6043 if (semihosting_enabled()) { 6044 int nr; 6045 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 6046 if (nr == 0xab) { 6047 env->regs[15] += 2; 6048 qemu_log_mask(CPU_LOG_INT, 6049 "...handling as semihosting call 0x%x\n", 6050 env->regs[0]); 6051 env->regs[0] = do_arm_semihosting(env); 6052 return; 6053 } 6054 } 6055 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); 6056 return; 6057 case EXCP_IRQ: 6058 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); 6059 break; 6060 case EXCP_EXCEPTION_EXIT: 6061 do_v7m_exception_exit(env); 6062 return; 6063 default: 6064 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6065 return; /* Never happens. Keep compiler happy. */ 6066 } 6067 6068 /* Align stack pointer. */ 6069 /* ??? Should only do this if Configuration Control Register 6070 STACKALIGN bit is set. */ 6071 if (env->regs[13] & 4) { 6072 env->regs[13] -= 4; 6073 xpsr |= 0x200; 6074 } 6075 /* Switch to the handler mode. */ 6076 v7m_push(env, xpsr); 6077 v7m_push(env, env->regs[15]); 6078 v7m_push(env, env->regs[14]); 6079 v7m_push(env, env->regs[12]); 6080 v7m_push(env, env->regs[3]); 6081 v7m_push(env, env->regs[2]); 6082 v7m_push(env, env->regs[1]); 6083 v7m_push(env, env->regs[0]); 6084 switch_v7m_sp(env, 0); 6085 /* Clear IT bits */ 6086 env->condexec_bits = 0; 6087 env->regs[14] = lr; 6088 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); 6089 env->regs[15] = addr & 0xfffffffe; 6090 env->thumb = addr & 1; 6091 } 6092 6093 /* Function used to synchronize QEMU's AArch64 register set with AArch32 6094 * register set. This is necessary when switching between AArch32 and AArch64 6095 * execution state. 6096 */ 6097 void aarch64_sync_32_to_64(CPUARMState *env) 6098 { 6099 int i; 6100 uint32_t mode = env->uncached_cpsr & CPSR_M; 6101 6102 /* We can blanket copy R[0:7] to X[0:7] */ 6103 for (i = 0; i < 8; i++) { 6104 env->xregs[i] = env->regs[i]; 6105 } 6106 6107 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 6108 * Otherwise, they come from the banked user regs. 6109 */ 6110 if (mode == ARM_CPU_MODE_FIQ) { 6111 for (i = 8; i < 13; i++) { 6112 env->xregs[i] = env->usr_regs[i - 8]; 6113 } 6114 } else { 6115 for (i = 8; i < 13; i++) { 6116 env->xregs[i] = env->regs[i]; 6117 } 6118 } 6119 6120 /* Registers x13-x23 are the various mode SP and FP registers. Registers 6121 * r13 and r14 are only copied if we are in that mode, otherwise we copy 6122 * from the mode banked register. 6123 */ 6124 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6125 env->xregs[13] = env->regs[13]; 6126 env->xregs[14] = env->regs[14]; 6127 } else { 6128 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 6129 /* HYP is an exception in that it is copied from r14 */ 6130 if (mode == ARM_CPU_MODE_HYP) { 6131 env->xregs[14] = env->regs[14]; 6132 } else { 6133 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 6134 } 6135 } 6136 6137 if (mode == ARM_CPU_MODE_HYP) { 6138 env->xregs[15] = env->regs[13]; 6139 } else { 6140 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 6141 } 6142 6143 if (mode == ARM_CPU_MODE_IRQ) { 6144 env->xregs[16] = env->regs[14]; 6145 env->xregs[17] = env->regs[13]; 6146 } else { 6147 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 6148 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 6149 } 6150 6151 if (mode == ARM_CPU_MODE_SVC) { 6152 env->xregs[18] = env->regs[14]; 6153 env->xregs[19] = env->regs[13]; 6154 } else { 6155 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 6156 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 6157 } 6158 6159 if (mode == ARM_CPU_MODE_ABT) { 6160 env->xregs[20] = env->regs[14]; 6161 env->xregs[21] = env->regs[13]; 6162 } else { 6163 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 6164 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 6165 } 6166 6167 if (mode == ARM_CPU_MODE_UND) { 6168 env->xregs[22] = env->regs[14]; 6169 env->xregs[23] = env->regs[13]; 6170 } else { 6171 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 6172 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 6173 } 6174 6175 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6176 * mode, then we can copy from r8-r14. Otherwise, we copy from the 6177 * FIQ bank for r8-r14. 6178 */ 6179 if (mode == ARM_CPU_MODE_FIQ) { 6180 for (i = 24; i < 31; i++) { 6181 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 6182 } 6183 } else { 6184 for (i = 24; i < 29; i++) { 6185 env->xregs[i] = env->fiq_regs[i - 24]; 6186 } 6187 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 6188 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 6189 } 6190 6191 env->pc = env->regs[15]; 6192 } 6193 6194 /* Function used to synchronize QEMU's AArch32 register set with AArch64 6195 * register set. This is necessary when switching between AArch32 and AArch64 6196 * execution state. 6197 */ 6198 void aarch64_sync_64_to_32(CPUARMState *env) 6199 { 6200 int i; 6201 uint32_t mode = env->uncached_cpsr & CPSR_M; 6202 6203 /* We can blanket copy X[0:7] to R[0:7] */ 6204 for (i = 0; i < 8; i++) { 6205 env->regs[i] = env->xregs[i]; 6206 } 6207 6208 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 6209 * Otherwise, we copy x8-x12 into the banked user regs. 6210 */ 6211 if (mode == ARM_CPU_MODE_FIQ) { 6212 for (i = 8; i < 13; i++) { 6213 env->usr_regs[i - 8] = env->xregs[i]; 6214 } 6215 } else { 6216 for (i = 8; i < 13; i++) { 6217 env->regs[i] = env->xregs[i]; 6218 } 6219 } 6220 6221 /* Registers r13 & r14 depend on the current mode. 6222 * If we are in a given mode, we copy the corresponding x registers to r13 6223 * and r14. Otherwise, we copy the x register to the banked r13 and r14 6224 * for the mode. 6225 */ 6226 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6227 env->regs[13] = env->xregs[13]; 6228 env->regs[14] = env->xregs[14]; 6229 } else { 6230 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 6231 6232 /* HYP is an exception in that it does not have its own banked r14 but 6233 * shares the USR r14 6234 */ 6235 if (mode == ARM_CPU_MODE_HYP) { 6236 env->regs[14] = env->xregs[14]; 6237 } else { 6238 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 6239 } 6240 } 6241 6242 if (mode == ARM_CPU_MODE_HYP) { 6243 env->regs[13] = env->xregs[15]; 6244 } else { 6245 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 6246 } 6247 6248 if (mode == ARM_CPU_MODE_IRQ) { 6249 env->regs[14] = env->xregs[16]; 6250 env->regs[13] = env->xregs[17]; 6251 } else { 6252 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 6253 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 6254 } 6255 6256 if (mode == ARM_CPU_MODE_SVC) { 6257 env->regs[14] = env->xregs[18]; 6258 env->regs[13] = env->xregs[19]; 6259 } else { 6260 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 6261 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 6262 } 6263 6264 if (mode == ARM_CPU_MODE_ABT) { 6265 env->regs[14] = env->xregs[20]; 6266 env->regs[13] = env->xregs[21]; 6267 } else { 6268 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 6269 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 6270 } 6271 6272 if (mode == ARM_CPU_MODE_UND) { 6273 env->regs[14] = env->xregs[22]; 6274 env->regs[13] = env->xregs[23]; 6275 } else { 6276 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 6277 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 6278 } 6279 6280 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6281 * mode, then we can copy to r8-r14. Otherwise, we copy to the 6282 * FIQ bank for r8-r14. 6283 */ 6284 if (mode == ARM_CPU_MODE_FIQ) { 6285 for (i = 24; i < 31; i++) { 6286 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 6287 } 6288 } else { 6289 for (i = 24; i < 29; i++) { 6290 env->fiq_regs[i - 24] = env->xregs[i]; 6291 } 6292 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 6293 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 6294 } 6295 6296 env->regs[15] = env->pc; 6297 } 6298 6299 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 6300 { 6301 ARMCPU *cpu = ARM_CPU(cs); 6302 CPUARMState *env = &cpu->env; 6303 uint32_t addr; 6304 uint32_t mask; 6305 int new_mode; 6306 uint32_t offset; 6307 uint32_t moe; 6308 6309 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 6310 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 6311 case EC_BREAKPOINT: 6312 case EC_BREAKPOINT_SAME_EL: 6313 moe = 1; 6314 break; 6315 case EC_WATCHPOINT: 6316 case EC_WATCHPOINT_SAME_EL: 6317 moe = 10; 6318 break; 6319 case EC_AA32_BKPT: 6320 moe = 3; 6321 break; 6322 case EC_VECTORCATCH: 6323 moe = 5; 6324 break; 6325 default: 6326 moe = 0; 6327 break; 6328 } 6329 6330 if (moe) { 6331 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 6332 } 6333 6334 /* TODO: Vectored interrupt controller. */ 6335 switch (cs->exception_index) { 6336 case EXCP_UDEF: 6337 new_mode = ARM_CPU_MODE_UND; 6338 addr = 0x04; 6339 mask = CPSR_I; 6340 if (env->thumb) 6341 offset = 2; 6342 else 6343 offset = 4; 6344 break; 6345 case EXCP_SWI: 6346 new_mode = ARM_CPU_MODE_SVC; 6347 addr = 0x08; 6348 mask = CPSR_I; 6349 /* The PC already points to the next instruction. */ 6350 offset = 0; 6351 break; 6352 case EXCP_BKPT: 6353 env->exception.fsr = 2; 6354 /* Fall through to prefetch abort. */ 6355 case EXCP_PREFETCH_ABORT: 6356 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 6357 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 6358 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 6359 env->exception.fsr, (uint32_t)env->exception.vaddress); 6360 new_mode = ARM_CPU_MODE_ABT; 6361 addr = 0x0c; 6362 mask = CPSR_A | CPSR_I; 6363 offset = 4; 6364 break; 6365 case EXCP_DATA_ABORT: 6366 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 6367 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 6368 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 6369 env->exception.fsr, 6370 (uint32_t)env->exception.vaddress); 6371 new_mode = ARM_CPU_MODE_ABT; 6372 addr = 0x10; 6373 mask = CPSR_A | CPSR_I; 6374 offset = 8; 6375 break; 6376 case EXCP_IRQ: 6377 new_mode = ARM_CPU_MODE_IRQ; 6378 addr = 0x18; 6379 /* Disable IRQ and imprecise data aborts. */ 6380 mask = CPSR_A | CPSR_I; 6381 offset = 4; 6382 if (env->cp15.scr_el3 & SCR_IRQ) { 6383 /* IRQ routed to monitor mode */ 6384 new_mode = ARM_CPU_MODE_MON; 6385 mask |= CPSR_F; 6386 } 6387 break; 6388 case EXCP_FIQ: 6389 new_mode = ARM_CPU_MODE_FIQ; 6390 addr = 0x1c; 6391 /* Disable FIQ, IRQ and imprecise data aborts. */ 6392 mask = CPSR_A | CPSR_I | CPSR_F; 6393 if (env->cp15.scr_el3 & SCR_FIQ) { 6394 /* FIQ routed to monitor mode */ 6395 new_mode = ARM_CPU_MODE_MON; 6396 } 6397 offset = 4; 6398 break; 6399 case EXCP_SMC: 6400 new_mode = ARM_CPU_MODE_MON; 6401 addr = 0x08; 6402 mask = CPSR_A | CPSR_I | CPSR_F; 6403 offset = 0; 6404 break; 6405 default: 6406 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6407 return; /* Never happens. Keep compiler happy. */ 6408 } 6409 6410 if (new_mode == ARM_CPU_MODE_MON) { 6411 addr += env->cp15.mvbar; 6412 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 6413 /* High vectors. When enabled, base address cannot be remapped. */ 6414 addr += 0xffff0000; 6415 } else { 6416 /* ARM v7 architectures provide a vector base address register to remap 6417 * the interrupt vector table. 6418 * This register is only followed in non-monitor mode, and is banked. 6419 * Note: only bits 31:5 are valid. 6420 */ 6421 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 6422 } 6423 6424 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 6425 env->cp15.scr_el3 &= ~SCR_NS; 6426 } 6427 6428 switch_mode (env, new_mode); 6429 /* For exceptions taken to AArch32 we must clear the SS bit in both 6430 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 6431 */ 6432 env->uncached_cpsr &= ~PSTATE_SS; 6433 env->spsr = cpsr_read(env); 6434 /* Clear IT bits. */ 6435 env->condexec_bits = 0; 6436 /* Switch to the new mode, and to the correct instruction set. */ 6437 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 6438 /* Set new mode endianness */ 6439 env->uncached_cpsr &= ~CPSR_E; 6440 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 6441 env->uncached_cpsr |= CPSR_E; 6442 } 6443 env->daif |= mask; 6444 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 6445 * and we should just guard the thumb mode on V4 */ 6446 if (arm_feature(env, ARM_FEATURE_V4T)) { 6447 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 6448 } 6449 env->regs[14] = env->regs[15] + offset; 6450 env->regs[15] = addr; 6451 } 6452 6453 /* Handle exception entry to a target EL which is using AArch64 */ 6454 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 6455 { 6456 ARMCPU *cpu = ARM_CPU(cs); 6457 CPUARMState *env = &cpu->env; 6458 unsigned int new_el = env->exception.target_el; 6459 target_ulong addr = env->cp15.vbar_el[new_el]; 6460 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 6461 6462 if (arm_current_el(env) < new_el) { 6463 /* Entry vector offset depends on whether the implemented EL 6464 * immediately lower than the target level is using AArch32 or AArch64 6465 */ 6466 bool is_aa64; 6467 6468 switch (new_el) { 6469 case 3: 6470 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 6471 break; 6472 case 2: 6473 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 6474 break; 6475 case 1: 6476 is_aa64 = is_a64(env); 6477 break; 6478 default: 6479 g_assert_not_reached(); 6480 } 6481 6482 if (is_aa64) { 6483 addr += 0x400; 6484 } else { 6485 addr += 0x600; 6486 } 6487 } else if (pstate_read(env) & PSTATE_SP) { 6488 addr += 0x200; 6489 } 6490 6491 switch (cs->exception_index) { 6492 case EXCP_PREFETCH_ABORT: 6493 case EXCP_DATA_ABORT: 6494 env->cp15.far_el[new_el] = env->exception.vaddress; 6495 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 6496 env->cp15.far_el[new_el]); 6497 /* fall through */ 6498 case EXCP_BKPT: 6499 case EXCP_UDEF: 6500 case EXCP_SWI: 6501 case EXCP_HVC: 6502 case EXCP_HYP_TRAP: 6503 case EXCP_SMC: 6504 env->cp15.esr_el[new_el] = env->exception.syndrome; 6505 break; 6506 case EXCP_IRQ: 6507 case EXCP_VIRQ: 6508 addr += 0x80; 6509 break; 6510 case EXCP_FIQ: 6511 case EXCP_VFIQ: 6512 addr += 0x100; 6513 break; 6514 case EXCP_SEMIHOST: 6515 qemu_log_mask(CPU_LOG_INT, 6516 "...handling as semihosting call 0x%" PRIx64 "\n", 6517 env->xregs[0]); 6518 env->xregs[0] = do_arm_semihosting(env); 6519 return; 6520 default: 6521 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6522 } 6523 6524 if (is_a64(env)) { 6525 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 6526 aarch64_save_sp(env, arm_current_el(env)); 6527 env->elr_el[new_el] = env->pc; 6528 } else { 6529 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 6530 env->elr_el[new_el] = env->regs[15]; 6531 6532 aarch64_sync_32_to_64(env); 6533 6534 env->condexec_bits = 0; 6535 } 6536 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 6537 env->elr_el[new_el]); 6538 6539 pstate_write(env, PSTATE_DAIF | new_mode); 6540 env->aarch64 = 1; 6541 aarch64_restore_sp(env, new_el); 6542 6543 env->pc = addr; 6544 6545 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 6546 new_el, env->pc, pstate_read(env)); 6547 } 6548 6549 static inline bool check_for_semihosting(CPUState *cs) 6550 { 6551 /* Check whether this exception is a semihosting call; if so 6552 * then handle it and return true; otherwise return false. 6553 */ 6554 ARMCPU *cpu = ARM_CPU(cs); 6555 CPUARMState *env = &cpu->env; 6556 6557 if (is_a64(env)) { 6558 if (cs->exception_index == EXCP_SEMIHOST) { 6559 /* This is always the 64-bit semihosting exception. 6560 * The "is this usermode" and "is semihosting enabled" 6561 * checks have been done at translate time. 6562 */ 6563 qemu_log_mask(CPU_LOG_INT, 6564 "...handling as semihosting call 0x%" PRIx64 "\n", 6565 env->xregs[0]); 6566 env->xregs[0] = do_arm_semihosting(env); 6567 return true; 6568 } 6569 return false; 6570 } else { 6571 uint32_t imm; 6572 6573 /* Only intercept calls from privileged modes, to provide some 6574 * semblance of security. 6575 */ 6576 if (cs->exception_index != EXCP_SEMIHOST && 6577 (!semihosting_enabled() || 6578 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 6579 return false; 6580 } 6581 6582 switch (cs->exception_index) { 6583 case EXCP_SEMIHOST: 6584 /* This is always a semihosting call; the "is this usermode" 6585 * and "is semihosting enabled" checks have been done at 6586 * translate time. 6587 */ 6588 break; 6589 case EXCP_SWI: 6590 /* Check for semihosting interrupt. */ 6591 if (env->thumb) { 6592 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 6593 & 0xff; 6594 if (imm == 0xab) { 6595 break; 6596 } 6597 } else { 6598 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 6599 & 0xffffff; 6600 if (imm == 0x123456) { 6601 break; 6602 } 6603 } 6604 return false; 6605 case EXCP_BKPT: 6606 /* See if this is a semihosting syscall. */ 6607 if (env->thumb) { 6608 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 6609 & 0xff; 6610 if (imm == 0xab) { 6611 env->regs[15] += 2; 6612 break; 6613 } 6614 } 6615 return false; 6616 default: 6617 return false; 6618 } 6619 6620 qemu_log_mask(CPU_LOG_INT, 6621 "...handling as semihosting call 0x%x\n", 6622 env->regs[0]); 6623 env->regs[0] = do_arm_semihosting(env); 6624 return true; 6625 } 6626 } 6627 6628 /* Handle a CPU exception for A and R profile CPUs. 6629 * Do any appropriate logging, handle PSCI calls, and then hand off 6630 * to the AArch64-entry or AArch32-entry function depending on the 6631 * target exception level's register width. 6632 */ 6633 void arm_cpu_do_interrupt(CPUState *cs) 6634 { 6635 ARMCPU *cpu = ARM_CPU(cs); 6636 CPUARMState *env = &cpu->env; 6637 unsigned int new_el = env->exception.target_el; 6638 6639 assert(!IS_M(env)); 6640 6641 arm_log_exception(cs->exception_index); 6642 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 6643 new_el); 6644 if (qemu_loglevel_mask(CPU_LOG_INT) 6645 && !excp_is_internal(cs->exception_index)) { 6646 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n", 6647 env->exception.syndrome >> ARM_EL_EC_SHIFT, 6648 env->exception.syndrome); 6649 } 6650 6651 if (arm_is_psci_call(cpu, cs->exception_index)) { 6652 arm_handle_psci_call(cpu); 6653 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 6654 return; 6655 } 6656 6657 /* Semihosting semantics depend on the register width of the 6658 * code that caused the exception, not the target exception level, 6659 * so must be handled here. 6660 */ 6661 if (check_for_semihosting(cs)) { 6662 return; 6663 } 6664 6665 assert(!excp_is_internal(cs->exception_index)); 6666 if (arm_el_is_aa64(env, new_el)) { 6667 arm_cpu_do_interrupt_aarch64(cs); 6668 } else { 6669 arm_cpu_do_interrupt_aarch32(cs); 6670 } 6671 6672 arm_call_el_change_hook(cpu); 6673 6674 if (!kvm_enabled()) { 6675 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 6676 } 6677 } 6678 6679 /* Return the exception level which controls this address translation regime */ 6680 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 6681 { 6682 switch (mmu_idx) { 6683 case ARMMMUIdx_S2NS: 6684 case ARMMMUIdx_S1E2: 6685 return 2; 6686 case ARMMMUIdx_S1E3: 6687 return 3; 6688 case ARMMMUIdx_S1SE0: 6689 return arm_el_is_aa64(env, 3) ? 1 : 3; 6690 case ARMMMUIdx_S1SE1: 6691 case ARMMMUIdx_S1NSE0: 6692 case ARMMMUIdx_S1NSE1: 6693 return 1; 6694 default: 6695 g_assert_not_reached(); 6696 } 6697 } 6698 6699 /* Return true if this address translation regime is secure */ 6700 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 6701 { 6702 switch (mmu_idx) { 6703 case ARMMMUIdx_S12NSE0: 6704 case ARMMMUIdx_S12NSE1: 6705 case ARMMMUIdx_S1NSE0: 6706 case ARMMMUIdx_S1NSE1: 6707 case ARMMMUIdx_S1E2: 6708 case ARMMMUIdx_S2NS: 6709 return false; 6710 case ARMMMUIdx_S1E3: 6711 case ARMMMUIdx_S1SE0: 6712 case ARMMMUIdx_S1SE1: 6713 return true; 6714 default: 6715 g_assert_not_reached(); 6716 } 6717 } 6718 6719 /* Return the SCTLR value which controls this address translation regime */ 6720 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 6721 { 6722 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 6723 } 6724 6725 /* Return true if the specified stage of address translation is disabled */ 6726 static inline bool regime_translation_disabled(CPUARMState *env, 6727 ARMMMUIdx mmu_idx) 6728 { 6729 if (mmu_idx == ARMMMUIdx_S2NS) { 6730 return (env->cp15.hcr_el2 & HCR_VM) == 0; 6731 } 6732 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 6733 } 6734 6735 static inline bool regime_translation_big_endian(CPUARMState *env, 6736 ARMMMUIdx mmu_idx) 6737 { 6738 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 6739 } 6740 6741 /* Return the TCR controlling this translation regime */ 6742 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 6743 { 6744 if (mmu_idx == ARMMMUIdx_S2NS) { 6745 return &env->cp15.vtcr_el2; 6746 } 6747 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 6748 } 6749 6750 /* Returns TBI0 value for current regime el */ 6751 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 6752 { 6753 TCR *tcr; 6754 uint32_t el; 6755 6756 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 6757 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 6758 */ 6759 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6760 mmu_idx += ARMMMUIdx_S1NSE0; 6761 } 6762 6763 tcr = regime_tcr(env, mmu_idx); 6764 el = regime_el(env, mmu_idx); 6765 6766 if (el > 1) { 6767 return extract64(tcr->raw_tcr, 20, 1); 6768 } else { 6769 return extract64(tcr->raw_tcr, 37, 1); 6770 } 6771 } 6772 6773 /* Returns TBI1 value for current regime el */ 6774 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 6775 { 6776 TCR *tcr; 6777 uint32_t el; 6778 6779 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 6780 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 6781 */ 6782 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6783 mmu_idx += ARMMMUIdx_S1NSE0; 6784 } 6785 6786 tcr = regime_tcr(env, mmu_idx); 6787 el = regime_el(env, mmu_idx); 6788 6789 if (el > 1) { 6790 return 0; 6791 } else { 6792 return extract64(tcr->raw_tcr, 38, 1); 6793 } 6794 } 6795 6796 /* Return the TTBR associated with this translation regime */ 6797 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 6798 int ttbrn) 6799 { 6800 if (mmu_idx == ARMMMUIdx_S2NS) { 6801 return env->cp15.vttbr_el2; 6802 } 6803 if (ttbrn == 0) { 6804 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 6805 } else { 6806 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 6807 } 6808 } 6809 6810 /* Return true if the translation regime is using LPAE format page tables */ 6811 static inline bool regime_using_lpae_format(CPUARMState *env, 6812 ARMMMUIdx mmu_idx) 6813 { 6814 int el = regime_el(env, mmu_idx); 6815 if (el == 2 || arm_el_is_aa64(env, el)) { 6816 return true; 6817 } 6818 if (arm_feature(env, ARM_FEATURE_LPAE) 6819 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 6820 return true; 6821 } 6822 return false; 6823 } 6824 6825 /* Returns true if the stage 1 translation regime is using LPAE format page 6826 * tables. Used when raising alignment exceptions, whose FSR changes depending 6827 * on whether the long or short descriptor format is in use. */ 6828 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 6829 { 6830 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6831 mmu_idx += ARMMMUIdx_S1NSE0; 6832 } 6833 6834 return regime_using_lpae_format(env, mmu_idx); 6835 } 6836 6837 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 6838 { 6839 switch (mmu_idx) { 6840 case ARMMMUIdx_S1SE0: 6841 case ARMMMUIdx_S1NSE0: 6842 return true; 6843 default: 6844 return false; 6845 case ARMMMUIdx_S12NSE0: 6846 case ARMMMUIdx_S12NSE1: 6847 g_assert_not_reached(); 6848 } 6849 } 6850 6851 /* Translate section/page access permissions to page 6852 * R/W protection flags 6853 * 6854 * @env: CPUARMState 6855 * @mmu_idx: MMU index indicating required translation regime 6856 * @ap: The 3-bit access permissions (AP[2:0]) 6857 * @domain_prot: The 2-bit domain access permissions 6858 */ 6859 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 6860 int ap, int domain_prot) 6861 { 6862 bool is_user = regime_is_user(env, mmu_idx); 6863 6864 if (domain_prot == 3) { 6865 return PAGE_READ | PAGE_WRITE; 6866 } 6867 6868 switch (ap) { 6869 case 0: 6870 if (arm_feature(env, ARM_FEATURE_V7)) { 6871 return 0; 6872 } 6873 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 6874 case SCTLR_S: 6875 return is_user ? 0 : PAGE_READ; 6876 case SCTLR_R: 6877 return PAGE_READ; 6878 default: 6879 return 0; 6880 } 6881 case 1: 6882 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 6883 case 2: 6884 if (is_user) { 6885 return PAGE_READ; 6886 } else { 6887 return PAGE_READ | PAGE_WRITE; 6888 } 6889 case 3: 6890 return PAGE_READ | PAGE_WRITE; 6891 case 4: /* Reserved. */ 6892 return 0; 6893 case 5: 6894 return is_user ? 0 : PAGE_READ; 6895 case 6: 6896 return PAGE_READ; 6897 case 7: 6898 if (!arm_feature(env, ARM_FEATURE_V6K)) { 6899 return 0; 6900 } 6901 return PAGE_READ; 6902 default: 6903 g_assert_not_reached(); 6904 } 6905 } 6906 6907 /* Translate section/page access permissions to page 6908 * R/W protection flags. 6909 * 6910 * @ap: The 2-bit simple AP (AP[2:1]) 6911 * @is_user: TRUE if accessing from PL0 6912 */ 6913 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 6914 { 6915 switch (ap) { 6916 case 0: 6917 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 6918 case 1: 6919 return PAGE_READ | PAGE_WRITE; 6920 case 2: 6921 return is_user ? 0 : PAGE_READ; 6922 case 3: 6923 return PAGE_READ; 6924 default: 6925 g_assert_not_reached(); 6926 } 6927 } 6928 6929 static inline int 6930 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 6931 { 6932 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 6933 } 6934 6935 /* Translate S2 section/page access permissions to protection flags 6936 * 6937 * @env: CPUARMState 6938 * @s2ap: The 2-bit stage2 access permissions (S2AP) 6939 * @xn: XN (execute-never) bit 6940 */ 6941 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 6942 { 6943 int prot = 0; 6944 6945 if (s2ap & 1) { 6946 prot |= PAGE_READ; 6947 } 6948 if (s2ap & 2) { 6949 prot |= PAGE_WRITE; 6950 } 6951 if (!xn) { 6952 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 6953 prot |= PAGE_EXEC; 6954 } 6955 } 6956 return prot; 6957 } 6958 6959 /* Translate section/page access permissions to protection flags 6960 * 6961 * @env: CPUARMState 6962 * @mmu_idx: MMU index indicating required translation regime 6963 * @is_aa64: TRUE if AArch64 6964 * @ap: The 2-bit simple AP (AP[2:1]) 6965 * @ns: NS (non-secure) bit 6966 * @xn: XN (execute-never) bit 6967 * @pxn: PXN (privileged execute-never) bit 6968 */ 6969 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 6970 int ap, int ns, int xn, int pxn) 6971 { 6972 bool is_user = regime_is_user(env, mmu_idx); 6973 int prot_rw, user_rw; 6974 bool have_wxn; 6975 int wxn = 0; 6976 6977 assert(mmu_idx != ARMMMUIdx_S2NS); 6978 6979 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 6980 if (is_user) { 6981 prot_rw = user_rw; 6982 } else { 6983 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 6984 } 6985 6986 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 6987 return prot_rw; 6988 } 6989 6990 /* TODO have_wxn should be replaced with 6991 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 6992 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 6993 * compatible processors have EL2, which is required for [U]WXN. 6994 */ 6995 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 6996 6997 if (have_wxn) { 6998 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 6999 } 7000 7001 if (is_aa64) { 7002 switch (regime_el(env, mmu_idx)) { 7003 case 1: 7004 if (!is_user) { 7005 xn = pxn || (user_rw & PAGE_WRITE); 7006 } 7007 break; 7008 case 2: 7009 case 3: 7010 break; 7011 } 7012 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7013 switch (regime_el(env, mmu_idx)) { 7014 case 1: 7015 case 3: 7016 if (is_user) { 7017 xn = xn || !(user_rw & PAGE_READ); 7018 } else { 7019 int uwxn = 0; 7020 if (have_wxn) { 7021 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 7022 } 7023 xn = xn || !(prot_rw & PAGE_READ) || pxn || 7024 (uwxn && (user_rw & PAGE_WRITE)); 7025 } 7026 break; 7027 case 2: 7028 break; 7029 } 7030 } else { 7031 xn = wxn = 0; 7032 } 7033 7034 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 7035 return prot_rw; 7036 } 7037 return prot_rw | PAGE_EXEC; 7038 } 7039 7040 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 7041 uint32_t *table, uint32_t address) 7042 { 7043 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 7044 TCR *tcr = regime_tcr(env, mmu_idx); 7045 7046 if (address & tcr->mask) { 7047 if (tcr->raw_tcr & TTBCR_PD1) { 7048 /* Translation table walk disabled for TTBR1 */ 7049 return false; 7050 } 7051 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 7052 } else { 7053 if (tcr->raw_tcr & TTBCR_PD0) { 7054 /* Translation table walk disabled for TTBR0 */ 7055 return false; 7056 } 7057 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 7058 } 7059 *table |= (address >> 18) & 0x3ffc; 7060 return true; 7061 } 7062 7063 /* Translate a S1 pagetable walk through S2 if needed. */ 7064 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 7065 hwaddr addr, MemTxAttrs txattrs, 7066 uint32_t *fsr, 7067 ARMMMUFaultInfo *fi) 7068 { 7069 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 7070 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 7071 target_ulong s2size; 7072 hwaddr s2pa; 7073 int s2prot; 7074 int ret; 7075 7076 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 7077 &txattrs, &s2prot, &s2size, fsr, fi); 7078 if (ret) { 7079 fi->s2addr = addr; 7080 fi->stage2 = true; 7081 fi->s1ptw = true; 7082 return ~0; 7083 } 7084 addr = s2pa; 7085 } 7086 return addr; 7087 } 7088 7089 /* All loads done in the course of a page table walk go through here. 7090 * TODO: rather than ignoring errors from physical memory reads (which 7091 * are external aborts in ARM terminology) we should propagate this 7092 * error out so that we can turn it into a Data Abort if this walk 7093 * was being done for a CPU load/store or an address translation instruction 7094 * (but not if it was for a debug access). 7095 */ 7096 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7097 ARMMMUIdx mmu_idx, uint32_t *fsr, 7098 ARMMMUFaultInfo *fi) 7099 { 7100 ARMCPU *cpu = ARM_CPU(cs); 7101 CPUARMState *env = &cpu->env; 7102 MemTxAttrs attrs = {}; 7103 AddressSpace *as; 7104 7105 attrs.secure = is_secure; 7106 as = arm_addressspace(cs, attrs); 7107 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7108 if (fi->s1ptw) { 7109 return 0; 7110 } 7111 if (regime_translation_big_endian(env, mmu_idx)) { 7112 return address_space_ldl_be(as, addr, attrs, NULL); 7113 } else { 7114 return address_space_ldl_le(as, addr, attrs, NULL); 7115 } 7116 } 7117 7118 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7119 ARMMMUIdx mmu_idx, uint32_t *fsr, 7120 ARMMMUFaultInfo *fi) 7121 { 7122 ARMCPU *cpu = ARM_CPU(cs); 7123 CPUARMState *env = &cpu->env; 7124 MemTxAttrs attrs = {}; 7125 AddressSpace *as; 7126 7127 attrs.secure = is_secure; 7128 as = arm_addressspace(cs, attrs); 7129 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7130 if (fi->s1ptw) { 7131 return 0; 7132 } 7133 if (regime_translation_big_endian(env, mmu_idx)) { 7134 return address_space_ldq_be(as, addr, attrs, NULL); 7135 } else { 7136 return address_space_ldq_le(as, addr, attrs, NULL); 7137 } 7138 } 7139 7140 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 7141 int access_type, ARMMMUIdx mmu_idx, 7142 hwaddr *phys_ptr, int *prot, 7143 target_ulong *page_size, uint32_t *fsr, 7144 ARMMMUFaultInfo *fi) 7145 { 7146 CPUState *cs = CPU(arm_env_get_cpu(env)); 7147 int code; 7148 uint32_t table; 7149 uint32_t desc; 7150 int type; 7151 int ap; 7152 int domain = 0; 7153 int domain_prot; 7154 hwaddr phys_addr; 7155 uint32_t dacr; 7156 7157 /* Pagetable walk. */ 7158 /* Lookup l1 descriptor. */ 7159 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7160 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7161 code = 5; 7162 goto do_fault; 7163 } 7164 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7165 mmu_idx, fsr, fi); 7166 type = (desc & 3); 7167 domain = (desc >> 5) & 0x0f; 7168 if (regime_el(env, mmu_idx) == 1) { 7169 dacr = env->cp15.dacr_ns; 7170 } else { 7171 dacr = env->cp15.dacr_s; 7172 } 7173 domain_prot = (dacr >> (domain * 2)) & 3; 7174 if (type == 0) { 7175 /* Section translation fault. */ 7176 code = 5; 7177 goto do_fault; 7178 } 7179 if (domain_prot == 0 || domain_prot == 2) { 7180 if (type == 2) 7181 code = 9; /* Section domain fault. */ 7182 else 7183 code = 11; /* Page domain fault. */ 7184 goto do_fault; 7185 } 7186 if (type == 2) { 7187 /* 1Mb section. */ 7188 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7189 ap = (desc >> 10) & 3; 7190 code = 13; 7191 *page_size = 1024 * 1024; 7192 } else { 7193 /* Lookup l2 entry. */ 7194 if (type == 1) { 7195 /* Coarse pagetable. */ 7196 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7197 } else { 7198 /* Fine pagetable. */ 7199 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 7200 } 7201 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7202 mmu_idx, fsr, fi); 7203 switch (desc & 3) { 7204 case 0: /* Page translation fault. */ 7205 code = 7; 7206 goto do_fault; 7207 case 1: /* 64k page. */ 7208 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7209 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 7210 *page_size = 0x10000; 7211 break; 7212 case 2: /* 4k page. */ 7213 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7214 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 7215 *page_size = 0x1000; 7216 break; 7217 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 7218 if (type == 1) { 7219 /* ARMv6/XScale extended small page format */ 7220 if (arm_feature(env, ARM_FEATURE_XSCALE) 7221 || arm_feature(env, ARM_FEATURE_V6)) { 7222 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7223 *page_size = 0x1000; 7224 } else { 7225 /* UNPREDICTABLE in ARMv5; we choose to take a 7226 * page translation fault. 7227 */ 7228 code = 7; 7229 goto do_fault; 7230 } 7231 } else { 7232 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 7233 *page_size = 0x400; 7234 } 7235 ap = (desc >> 4) & 3; 7236 break; 7237 default: 7238 /* Never happens, but compiler isn't smart enough to tell. */ 7239 abort(); 7240 } 7241 code = 15; 7242 } 7243 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7244 *prot |= *prot ? PAGE_EXEC : 0; 7245 if (!(*prot & (1 << access_type))) { 7246 /* Access permission fault. */ 7247 goto do_fault; 7248 } 7249 *phys_ptr = phys_addr; 7250 return false; 7251 do_fault: 7252 *fsr = code | (domain << 4); 7253 return true; 7254 } 7255 7256 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 7257 int access_type, ARMMMUIdx mmu_idx, 7258 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 7259 target_ulong *page_size, uint32_t *fsr, 7260 ARMMMUFaultInfo *fi) 7261 { 7262 CPUState *cs = CPU(arm_env_get_cpu(env)); 7263 int code; 7264 uint32_t table; 7265 uint32_t desc; 7266 uint32_t xn; 7267 uint32_t pxn = 0; 7268 int type; 7269 int ap; 7270 int domain = 0; 7271 int domain_prot; 7272 hwaddr phys_addr; 7273 uint32_t dacr; 7274 bool ns; 7275 7276 /* Pagetable walk. */ 7277 /* Lookup l1 descriptor. */ 7278 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7279 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7280 code = 5; 7281 goto do_fault; 7282 } 7283 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7284 mmu_idx, fsr, fi); 7285 type = (desc & 3); 7286 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 7287 /* Section translation fault, or attempt to use the encoding 7288 * which is Reserved on implementations without PXN. 7289 */ 7290 code = 5; 7291 goto do_fault; 7292 } 7293 if ((type == 1) || !(desc & (1 << 18))) { 7294 /* Page or Section. */ 7295 domain = (desc >> 5) & 0x0f; 7296 } 7297 if (regime_el(env, mmu_idx) == 1) { 7298 dacr = env->cp15.dacr_ns; 7299 } else { 7300 dacr = env->cp15.dacr_s; 7301 } 7302 domain_prot = (dacr >> (domain * 2)) & 3; 7303 if (domain_prot == 0 || domain_prot == 2) { 7304 if (type != 1) { 7305 code = 9; /* Section domain fault. */ 7306 } else { 7307 code = 11; /* Page domain fault. */ 7308 } 7309 goto do_fault; 7310 } 7311 if (type != 1) { 7312 if (desc & (1 << 18)) { 7313 /* Supersection. */ 7314 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 7315 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 7316 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 7317 *page_size = 0x1000000; 7318 } else { 7319 /* Section. */ 7320 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7321 *page_size = 0x100000; 7322 } 7323 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 7324 xn = desc & (1 << 4); 7325 pxn = desc & 1; 7326 code = 13; 7327 ns = extract32(desc, 19, 1); 7328 } else { 7329 if (arm_feature(env, ARM_FEATURE_PXN)) { 7330 pxn = (desc >> 2) & 1; 7331 } 7332 ns = extract32(desc, 3, 1); 7333 /* Lookup l2 entry. */ 7334 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7335 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7336 mmu_idx, fsr, fi); 7337 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 7338 switch (desc & 3) { 7339 case 0: /* Page translation fault. */ 7340 code = 7; 7341 goto do_fault; 7342 case 1: /* 64k page. */ 7343 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7344 xn = desc & (1 << 15); 7345 *page_size = 0x10000; 7346 break; 7347 case 2: case 3: /* 4k page. */ 7348 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7349 xn = desc & 1; 7350 *page_size = 0x1000; 7351 break; 7352 default: 7353 /* Never happens, but compiler isn't smart enough to tell. */ 7354 abort(); 7355 } 7356 code = 15; 7357 } 7358 if (domain_prot == 3) { 7359 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 7360 } else { 7361 if (pxn && !regime_is_user(env, mmu_idx)) { 7362 xn = 1; 7363 } 7364 if (xn && access_type == 2) 7365 goto do_fault; 7366 7367 if (arm_feature(env, ARM_FEATURE_V6K) && 7368 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 7369 /* The simplified model uses AP[0] as an access control bit. */ 7370 if ((ap & 1) == 0) { 7371 /* Access flag fault. */ 7372 code = (code == 15) ? 6 : 3; 7373 goto do_fault; 7374 } 7375 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 7376 } else { 7377 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7378 } 7379 if (*prot && !xn) { 7380 *prot |= PAGE_EXEC; 7381 } 7382 if (!(*prot & (1 << access_type))) { 7383 /* Access permission fault. */ 7384 goto do_fault; 7385 } 7386 } 7387 if (ns) { 7388 /* The NS bit will (as required by the architecture) have no effect if 7389 * the CPU doesn't support TZ or this is a non-secure translation 7390 * regime, because the attribute will already be non-secure. 7391 */ 7392 attrs->secure = false; 7393 } 7394 *phys_ptr = phys_addr; 7395 return false; 7396 do_fault: 7397 *fsr = code | (domain << 4); 7398 return true; 7399 } 7400 7401 /* Fault type for long-descriptor MMU fault reporting; this corresponds 7402 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 7403 */ 7404 typedef enum { 7405 translation_fault = 1, 7406 access_fault = 2, 7407 permission_fault = 3, 7408 } MMUFaultType; 7409 7410 /* 7411 * check_s2_mmu_setup 7412 * @cpu: ARMCPU 7413 * @is_aa64: True if the translation regime is in AArch64 state 7414 * @startlevel: Suggested starting level 7415 * @inputsize: Bitsize of IPAs 7416 * @stride: Page-table stride (See the ARM ARM) 7417 * 7418 * Returns true if the suggested S2 translation parameters are OK and 7419 * false otherwise. 7420 */ 7421 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 7422 int inputsize, int stride) 7423 { 7424 const int grainsize = stride + 3; 7425 int startsizecheck; 7426 7427 /* Negative levels are never allowed. */ 7428 if (level < 0) { 7429 return false; 7430 } 7431 7432 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 7433 if (startsizecheck < 1 || startsizecheck > stride + 4) { 7434 return false; 7435 } 7436 7437 if (is_aa64) { 7438 CPUARMState *env = &cpu->env; 7439 unsigned int pamax = arm_pamax(cpu); 7440 7441 switch (stride) { 7442 case 13: /* 64KB Pages. */ 7443 if (level == 0 || (level == 1 && pamax <= 42)) { 7444 return false; 7445 } 7446 break; 7447 case 11: /* 16KB Pages. */ 7448 if (level == 0 || (level == 1 && pamax <= 40)) { 7449 return false; 7450 } 7451 break; 7452 case 9: /* 4KB Pages. */ 7453 if (level == 0 && pamax <= 42) { 7454 return false; 7455 } 7456 break; 7457 default: 7458 g_assert_not_reached(); 7459 } 7460 7461 /* Inputsize checks. */ 7462 if (inputsize > pamax && 7463 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 7464 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 7465 return false; 7466 } 7467 } else { 7468 /* AArch32 only supports 4KB pages. Assert on that. */ 7469 assert(stride == 9); 7470 7471 if (level == 0) { 7472 return false; 7473 } 7474 } 7475 return true; 7476 } 7477 7478 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 7479 int access_type, ARMMMUIdx mmu_idx, 7480 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 7481 target_ulong *page_size_ptr, uint32_t *fsr, 7482 ARMMMUFaultInfo *fi) 7483 { 7484 ARMCPU *cpu = arm_env_get_cpu(env); 7485 CPUState *cs = CPU(cpu); 7486 /* Read an LPAE long-descriptor translation table. */ 7487 MMUFaultType fault_type = translation_fault; 7488 uint32_t level; 7489 uint32_t epd = 0; 7490 int32_t t0sz, t1sz; 7491 uint32_t tg; 7492 uint64_t ttbr; 7493 int ttbr_select; 7494 hwaddr descaddr, indexmask, indexmask_grainsize; 7495 uint32_t tableattrs; 7496 target_ulong page_size; 7497 uint32_t attrs; 7498 int32_t stride = 9; 7499 int32_t addrsize; 7500 int inputsize; 7501 int32_t tbi = 0; 7502 TCR *tcr = regime_tcr(env, mmu_idx); 7503 int ap, ns, xn, pxn; 7504 uint32_t el = regime_el(env, mmu_idx); 7505 bool ttbr1_valid = true; 7506 uint64_t descaddrmask; 7507 bool aarch64 = arm_el_is_aa64(env, el); 7508 7509 /* TODO: 7510 * This code does not handle the different format TCR for VTCR_EL2. 7511 * This code also does not support shareability levels. 7512 * Attribute and permission bit handling should also be checked when adding 7513 * support for those page table walks. 7514 */ 7515 if (aarch64) { 7516 level = 0; 7517 addrsize = 64; 7518 if (el > 1) { 7519 if (mmu_idx != ARMMMUIdx_S2NS) { 7520 tbi = extract64(tcr->raw_tcr, 20, 1); 7521 } 7522 } else { 7523 if (extract64(address, 55, 1)) { 7524 tbi = extract64(tcr->raw_tcr, 38, 1); 7525 } else { 7526 tbi = extract64(tcr->raw_tcr, 37, 1); 7527 } 7528 } 7529 tbi *= 8; 7530 7531 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 7532 * invalid. 7533 */ 7534 if (el > 1) { 7535 ttbr1_valid = false; 7536 } 7537 } else { 7538 level = 1; 7539 addrsize = 32; 7540 /* There is no TTBR1 for EL2 */ 7541 if (el == 2) { 7542 ttbr1_valid = false; 7543 } 7544 } 7545 7546 /* Determine whether this address is in the region controlled by 7547 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 7548 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 7549 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 7550 */ 7551 if (aarch64) { 7552 /* AArch64 translation. */ 7553 t0sz = extract32(tcr->raw_tcr, 0, 6); 7554 t0sz = MIN(t0sz, 39); 7555 t0sz = MAX(t0sz, 16); 7556 } else if (mmu_idx != ARMMMUIdx_S2NS) { 7557 /* AArch32 stage 1 translation. */ 7558 t0sz = extract32(tcr->raw_tcr, 0, 3); 7559 } else { 7560 /* AArch32 stage 2 translation. */ 7561 bool sext = extract32(tcr->raw_tcr, 4, 1); 7562 bool sign = extract32(tcr->raw_tcr, 3, 1); 7563 /* Address size is 40-bit for a stage 2 translation, 7564 * and t0sz can be negative (from -8 to 7), 7565 * so we need to adjust it to use the TTBR selecting logic below. 7566 */ 7567 addrsize = 40; 7568 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 7569 7570 /* If the sign-extend bit is not the same as t0sz[3], the result 7571 * is unpredictable. Flag this as a guest error. */ 7572 if (sign != sext) { 7573 qemu_log_mask(LOG_GUEST_ERROR, 7574 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 7575 } 7576 } 7577 t1sz = extract32(tcr->raw_tcr, 16, 6); 7578 if (aarch64) { 7579 t1sz = MIN(t1sz, 39); 7580 t1sz = MAX(t1sz, 16); 7581 } 7582 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 7583 /* there is a ttbr0 region and we are in it (high bits all zero) */ 7584 ttbr_select = 0; 7585 } else if (ttbr1_valid && t1sz && 7586 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 7587 /* there is a ttbr1 region and we are in it (high bits all one) */ 7588 ttbr_select = 1; 7589 } else if (!t0sz) { 7590 /* ttbr0 region is "everything not in the ttbr1 region" */ 7591 ttbr_select = 0; 7592 } else if (!t1sz && ttbr1_valid) { 7593 /* ttbr1 region is "everything not in the ttbr0 region" */ 7594 ttbr_select = 1; 7595 } else { 7596 /* in the gap between the two regions, this is a Translation fault */ 7597 fault_type = translation_fault; 7598 goto do_fault; 7599 } 7600 7601 /* Note that QEMU ignores shareability and cacheability attributes, 7602 * so we don't need to do anything with the SH, ORGN, IRGN fields 7603 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 7604 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 7605 * implement any ASID-like capability so we can ignore it (instead 7606 * we will always flush the TLB any time the ASID is changed). 7607 */ 7608 if (ttbr_select == 0) { 7609 ttbr = regime_ttbr(env, mmu_idx, 0); 7610 if (el < 2) { 7611 epd = extract32(tcr->raw_tcr, 7, 1); 7612 } 7613 inputsize = addrsize - t0sz; 7614 7615 tg = extract32(tcr->raw_tcr, 14, 2); 7616 if (tg == 1) { /* 64KB pages */ 7617 stride = 13; 7618 } 7619 if (tg == 2) { /* 16KB pages */ 7620 stride = 11; 7621 } 7622 } else { 7623 /* We should only be here if TTBR1 is valid */ 7624 assert(ttbr1_valid); 7625 7626 ttbr = regime_ttbr(env, mmu_idx, 1); 7627 epd = extract32(tcr->raw_tcr, 23, 1); 7628 inputsize = addrsize - t1sz; 7629 7630 tg = extract32(tcr->raw_tcr, 30, 2); 7631 if (tg == 3) { /* 64KB pages */ 7632 stride = 13; 7633 } 7634 if (tg == 1) { /* 16KB pages */ 7635 stride = 11; 7636 } 7637 } 7638 7639 /* Here we should have set up all the parameters for the translation: 7640 * inputsize, ttbr, epd, stride, tbi 7641 */ 7642 7643 if (epd) { 7644 /* Translation table walk disabled => Translation fault on TLB miss 7645 * Note: This is always 0 on 64-bit EL2 and EL3. 7646 */ 7647 goto do_fault; 7648 } 7649 7650 if (mmu_idx != ARMMMUIdx_S2NS) { 7651 /* The starting level depends on the virtual address size (which can 7652 * be up to 48 bits) and the translation granule size. It indicates 7653 * the number of strides (stride bits at a time) needed to 7654 * consume the bits of the input address. In the pseudocode this is: 7655 * level = 4 - RoundUp((inputsize - grainsize) / stride) 7656 * where their 'inputsize' is our 'inputsize', 'grainsize' is 7657 * our 'stride + 3' and 'stride' is our 'stride'. 7658 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 7659 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 7660 * = 4 - (inputsize - 4) / stride; 7661 */ 7662 level = 4 - (inputsize - 4) / stride; 7663 } else { 7664 /* For stage 2 translations the starting level is specified by the 7665 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 7666 */ 7667 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 7668 uint32_t startlevel; 7669 bool ok; 7670 7671 if (!aarch64 || stride == 9) { 7672 /* AArch32 or 4KB pages */ 7673 startlevel = 2 - sl0; 7674 } else { 7675 /* 16KB or 64KB pages */ 7676 startlevel = 3 - sl0; 7677 } 7678 7679 /* Check that the starting level is valid. */ 7680 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 7681 inputsize, stride); 7682 if (!ok) { 7683 fault_type = translation_fault; 7684 goto do_fault; 7685 } 7686 level = startlevel; 7687 } 7688 7689 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 7690 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 7691 7692 /* Now we can extract the actual base address from the TTBR */ 7693 descaddr = extract64(ttbr, 0, 48); 7694 descaddr &= ~indexmask; 7695 7696 /* The address field in the descriptor goes up to bit 39 for ARMv7 7697 * but up to bit 47 for ARMv8, but we use the descaddrmask 7698 * up to bit 39 for AArch32, because we don't need other bits in that case 7699 * to construct next descriptor address (anyway they should be all zeroes). 7700 */ 7701 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 7702 ~indexmask_grainsize; 7703 7704 /* Secure accesses start with the page table in secure memory and 7705 * can be downgraded to non-secure at any step. Non-secure accesses 7706 * remain non-secure. We implement this by just ORing in the NSTable/NS 7707 * bits at each step. 7708 */ 7709 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 7710 for (;;) { 7711 uint64_t descriptor; 7712 bool nstable; 7713 7714 descaddr |= (address >> (stride * (4 - level))) & indexmask; 7715 descaddr &= ~7ULL; 7716 nstable = extract32(tableattrs, 4, 1); 7717 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 7718 if (fi->s1ptw) { 7719 goto do_fault; 7720 } 7721 7722 if (!(descriptor & 1) || 7723 (!(descriptor & 2) && (level == 3))) { 7724 /* Invalid, or the Reserved level 3 encoding */ 7725 goto do_fault; 7726 } 7727 descaddr = descriptor & descaddrmask; 7728 7729 if ((descriptor & 2) && (level < 3)) { 7730 /* Table entry. The top five bits are attributes which may 7731 * propagate down through lower levels of the table (and 7732 * which are all arranged so that 0 means "no effect", so 7733 * we can gather them up by ORing in the bits at each level). 7734 */ 7735 tableattrs |= extract64(descriptor, 59, 5); 7736 level++; 7737 indexmask = indexmask_grainsize; 7738 continue; 7739 } 7740 /* Block entry at level 1 or 2, or page entry at level 3. 7741 * These are basically the same thing, although the number 7742 * of bits we pull in from the vaddr varies. 7743 */ 7744 page_size = (1ULL << ((stride * (4 - level)) + 3)); 7745 descaddr |= (address & (page_size - 1)); 7746 /* Extract attributes from the descriptor */ 7747 attrs = extract64(descriptor, 2, 10) 7748 | (extract64(descriptor, 52, 12) << 10); 7749 7750 if (mmu_idx == ARMMMUIdx_S2NS) { 7751 /* Stage 2 table descriptors do not include any attribute fields */ 7752 break; 7753 } 7754 /* Merge in attributes from table descriptors */ 7755 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 7756 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 7757 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 7758 * means "force PL1 access only", which means forcing AP[1] to 0. 7759 */ 7760 if (extract32(tableattrs, 2, 1)) { 7761 attrs &= ~(1 << 4); 7762 } 7763 attrs |= nstable << 3; /* NS */ 7764 break; 7765 } 7766 /* Here descaddr is the final physical address, and attributes 7767 * are all in attrs. 7768 */ 7769 fault_type = access_fault; 7770 if ((attrs & (1 << 8)) == 0) { 7771 /* Access flag */ 7772 goto do_fault; 7773 } 7774 7775 ap = extract32(attrs, 4, 2); 7776 xn = extract32(attrs, 12, 1); 7777 7778 if (mmu_idx == ARMMMUIdx_S2NS) { 7779 ns = true; 7780 *prot = get_S2prot(env, ap, xn); 7781 } else { 7782 ns = extract32(attrs, 3, 1); 7783 pxn = extract32(attrs, 11, 1); 7784 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 7785 } 7786 7787 fault_type = permission_fault; 7788 if (!(*prot & (1 << access_type))) { 7789 goto do_fault; 7790 } 7791 7792 if (ns) { 7793 /* The NS bit will (as required by the architecture) have no effect if 7794 * the CPU doesn't support TZ or this is a non-secure translation 7795 * regime, because the attribute will already be non-secure. 7796 */ 7797 txattrs->secure = false; 7798 } 7799 *phys_ptr = descaddr; 7800 *page_size_ptr = page_size; 7801 return false; 7802 7803 do_fault: 7804 /* Long-descriptor format IFSR/DFSR value */ 7805 *fsr = (1 << 9) | (fault_type << 2) | level; 7806 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 7807 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 7808 return true; 7809 } 7810 7811 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 7812 ARMMMUIdx mmu_idx, 7813 int32_t address, int *prot) 7814 { 7815 *prot = PAGE_READ | PAGE_WRITE; 7816 switch (address) { 7817 case 0xF0000000 ... 0xFFFFFFFF: 7818 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ 7819 *prot |= PAGE_EXEC; 7820 } 7821 break; 7822 case 0x00000000 ... 0x7FFFFFFF: 7823 *prot |= PAGE_EXEC; 7824 break; 7825 } 7826 7827 } 7828 7829 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 7830 int access_type, ARMMMUIdx mmu_idx, 7831 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 7832 { 7833 ARMCPU *cpu = arm_env_get_cpu(env); 7834 int n; 7835 bool is_user = regime_is_user(env, mmu_idx); 7836 7837 *phys_ptr = address; 7838 *prot = 0; 7839 7840 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 7841 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 7842 } else { /* MPU enabled */ 7843 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 7844 /* region search */ 7845 uint32_t base = env->pmsav7.drbar[n]; 7846 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 7847 uint32_t rmask; 7848 bool srdis = false; 7849 7850 if (!(env->pmsav7.drsr[n] & 0x1)) { 7851 continue; 7852 } 7853 7854 if (!rsize) { 7855 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); 7856 continue; 7857 } 7858 rsize++; 7859 rmask = (1ull << rsize) - 1; 7860 7861 if (base & rmask) { 7862 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " 7863 "to DRSR region size, mask = %" PRIx32, 7864 base, rmask); 7865 continue; 7866 } 7867 7868 if (address < base || address > base + rmask) { 7869 continue; 7870 } 7871 7872 /* Region matched */ 7873 7874 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 7875 int i, snd; 7876 uint32_t srdis_mask; 7877 7878 rsize -= 3; /* sub region size (power of 2) */ 7879 snd = ((address - base) >> rsize) & 0x7; 7880 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 7881 7882 srdis_mask = srdis ? 0x3 : 0x0; 7883 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 7884 /* This will check in groups of 2, 4 and then 8, whether 7885 * the subregion bits are consistent. rsize is incremented 7886 * back up to give the region size, considering consistent 7887 * adjacent subregions as one region. Stop testing if rsize 7888 * is already big enough for an entire QEMU page. 7889 */ 7890 int snd_rounded = snd & ~(i - 1); 7891 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 7892 snd_rounded + 8, i); 7893 if (srdis_mask ^ srdis_multi) { 7894 break; 7895 } 7896 srdis_mask = (srdis_mask << i) | srdis_mask; 7897 rsize++; 7898 } 7899 } 7900 if (rsize < TARGET_PAGE_BITS) { 7901 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" 7902 "alignment of %" PRIu32 " bits. Minimum is %d\n", 7903 rsize, TARGET_PAGE_BITS); 7904 continue; 7905 } 7906 if (srdis) { 7907 continue; 7908 } 7909 break; 7910 } 7911 7912 if (n == -1) { /* no hits */ 7913 if (cpu->pmsav7_dregion && 7914 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { 7915 /* background fault */ 7916 *fsr = 0; 7917 return true; 7918 } 7919 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 7920 } else { /* a MPU hit! */ 7921 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 7922 7923 if (is_user) { /* User mode AP bit decoding */ 7924 switch (ap) { 7925 case 0: 7926 case 1: 7927 case 5: 7928 break; /* no access */ 7929 case 3: 7930 *prot |= PAGE_WRITE; 7931 /* fall through */ 7932 case 2: 7933 case 6: 7934 *prot |= PAGE_READ | PAGE_EXEC; 7935 break; 7936 default: 7937 qemu_log_mask(LOG_GUEST_ERROR, 7938 "Bad value for AP bits in DRACR %" 7939 PRIx32 "\n", ap); 7940 } 7941 } else { /* Priv. mode AP bits decoding */ 7942 switch (ap) { 7943 case 0: 7944 break; /* no access */ 7945 case 1: 7946 case 2: 7947 case 3: 7948 *prot |= PAGE_WRITE; 7949 /* fall through */ 7950 case 5: 7951 case 6: 7952 *prot |= PAGE_READ | PAGE_EXEC; 7953 break; 7954 default: 7955 qemu_log_mask(LOG_GUEST_ERROR, 7956 "Bad value for AP bits in DRACR %" 7957 PRIx32 "\n", ap); 7958 } 7959 } 7960 7961 /* execute never */ 7962 if (env->pmsav7.dracr[n] & (1 << 12)) { 7963 *prot &= ~PAGE_EXEC; 7964 } 7965 } 7966 } 7967 7968 *fsr = 0x00d; /* Permission fault */ 7969 return !(*prot & (1 << access_type)); 7970 } 7971 7972 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 7973 int access_type, ARMMMUIdx mmu_idx, 7974 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 7975 { 7976 int n; 7977 uint32_t mask; 7978 uint32_t base; 7979 bool is_user = regime_is_user(env, mmu_idx); 7980 7981 *phys_ptr = address; 7982 for (n = 7; n >= 0; n--) { 7983 base = env->cp15.c6_region[n]; 7984 if ((base & 1) == 0) { 7985 continue; 7986 } 7987 mask = 1 << ((base >> 1) & 0x1f); 7988 /* Keep this shift separate from the above to avoid an 7989 (undefined) << 32. */ 7990 mask = (mask << 1) - 1; 7991 if (((base ^ address) & ~mask) == 0) { 7992 break; 7993 } 7994 } 7995 if (n < 0) { 7996 *fsr = 2; 7997 return true; 7998 } 7999 8000 if (access_type == 2) { 8001 mask = env->cp15.pmsav5_insn_ap; 8002 } else { 8003 mask = env->cp15.pmsav5_data_ap; 8004 } 8005 mask = (mask >> (n * 4)) & 0xf; 8006 switch (mask) { 8007 case 0: 8008 *fsr = 1; 8009 return true; 8010 case 1: 8011 if (is_user) { 8012 *fsr = 1; 8013 return true; 8014 } 8015 *prot = PAGE_READ | PAGE_WRITE; 8016 break; 8017 case 2: 8018 *prot = PAGE_READ; 8019 if (!is_user) { 8020 *prot |= PAGE_WRITE; 8021 } 8022 break; 8023 case 3: 8024 *prot = PAGE_READ | PAGE_WRITE; 8025 break; 8026 case 5: 8027 if (is_user) { 8028 *fsr = 1; 8029 return true; 8030 } 8031 *prot = PAGE_READ; 8032 break; 8033 case 6: 8034 *prot = PAGE_READ; 8035 break; 8036 default: 8037 /* Bad permission. */ 8038 *fsr = 1; 8039 return true; 8040 } 8041 *prot |= PAGE_EXEC; 8042 return false; 8043 } 8044 8045 /* get_phys_addr - get the physical address for this virtual address 8046 * 8047 * Find the physical address corresponding to the given virtual address, 8048 * by doing a translation table walk on MMU based systems or using the 8049 * MPU state on MPU based systems. 8050 * 8051 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 8052 * prot and page_size may not be filled in, and the populated fsr value provides 8053 * information on why the translation aborted, in the format of a 8054 * DFSR/IFSR fault register, with the following caveats: 8055 * * we honour the short vs long DFSR format differences. 8056 * * the WnR bit is never set (the caller must do this). 8057 * * for PSMAv5 based systems we don't bother to return a full FSR format 8058 * value. 8059 * 8060 * @env: CPUARMState 8061 * @address: virtual address to get physical address for 8062 * @access_type: 0 for read, 1 for write, 2 for execute 8063 * @mmu_idx: MMU index indicating required translation regime 8064 * @phys_ptr: set to the physical address corresponding to the virtual address 8065 * @attrs: set to the memory transaction attributes to use 8066 * @prot: set to the permissions for the page containing phys_ptr 8067 * @page_size: set to the size of the page containing phys_ptr 8068 * @fsr: set to the DFSR/IFSR value on failure 8069 */ 8070 static bool get_phys_addr(CPUARMState *env, target_ulong address, 8071 int access_type, ARMMMUIdx mmu_idx, 8072 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8073 target_ulong *page_size, uint32_t *fsr, 8074 ARMMMUFaultInfo *fi) 8075 { 8076 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8077 /* Call ourselves recursively to do the stage 1 and then stage 2 8078 * translations. 8079 */ 8080 if (arm_feature(env, ARM_FEATURE_EL2)) { 8081 hwaddr ipa; 8082 int s2_prot; 8083 int ret; 8084 8085 ret = get_phys_addr(env, address, access_type, 8086 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, 8087 prot, page_size, fsr, fi); 8088 8089 /* If S1 fails or S2 is disabled, return early. */ 8090 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8091 *phys_ptr = ipa; 8092 return ret; 8093 } 8094 8095 /* S1 is done. Now do S2 translation. */ 8096 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 8097 phys_ptr, attrs, &s2_prot, 8098 page_size, fsr, fi); 8099 fi->s2addr = ipa; 8100 /* Combine the S1 and S2 perms. */ 8101 *prot &= s2_prot; 8102 return ret; 8103 } else { 8104 /* 8105 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 8106 */ 8107 mmu_idx += ARMMMUIdx_S1NSE0; 8108 } 8109 } 8110 8111 /* The page table entries may downgrade secure to non-secure, but 8112 * cannot upgrade an non-secure translation regime's attributes 8113 * to secure. 8114 */ 8115 attrs->secure = regime_is_secure(env, mmu_idx); 8116 attrs->user = regime_is_user(env, mmu_idx); 8117 8118 /* Fast Context Switch Extension. This doesn't exist at all in v8. 8119 * In v7 and earlier it affects all stage 1 translations. 8120 */ 8121 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 8122 && !arm_feature(env, ARM_FEATURE_V8)) { 8123 if (regime_el(env, mmu_idx) == 3) { 8124 address += env->cp15.fcseidr_s; 8125 } else { 8126 address += env->cp15.fcseidr_ns; 8127 } 8128 } 8129 8130 /* pmsav7 has special handling for when MPU is disabled so call it before 8131 * the common MMU/MPU disabled check below. 8132 */ 8133 if (arm_feature(env, ARM_FEATURE_MPU) && 8134 arm_feature(env, ARM_FEATURE_V7)) { 8135 *page_size = TARGET_PAGE_SIZE; 8136 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 8137 phys_ptr, prot, fsr); 8138 } 8139 8140 if (regime_translation_disabled(env, mmu_idx)) { 8141 /* MMU/MPU disabled. */ 8142 *phys_ptr = address; 8143 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8144 *page_size = TARGET_PAGE_SIZE; 8145 return 0; 8146 } 8147 8148 if (arm_feature(env, ARM_FEATURE_MPU)) { 8149 /* Pre-v7 MPU */ 8150 *page_size = TARGET_PAGE_SIZE; 8151 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 8152 phys_ptr, prot, fsr); 8153 } 8154 8155 if (regime_using_lpae_format(env, mmu_idx)) { 8156 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 8157 attrs, prot, page_size, fsr, fi); 8158 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 8159 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 8160 attrs, prot, page_size, fsr, fi); 8161 } else { 8162 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 8163 prot, page_size, fsr, fi); 8164 } 8165 } 8166 8167 /* Walk the page table and (if the mapping exists) add the page 8168 * to the TLB. Return false on success, or true on failure. Populate 8169 * fsr with ARM DFSR/IFSR fault register format value on failure. 8170 */ 8171 bool arm_tlb_fill(CPUState *cs, vaddr address, 8172 int access_type, int mmu_idx, uint32_t *fsr, 8173 ARMMMUFaultInfo *fi) 8174 { 8175 ARMCPU *cpu = ARM_CPU(cs); 8176 CPUARMState *env = &cpu->env; 8177 hwaddr phys_addr; 8178 target_ulong page_size; 8179 int prot; 8180 int ret; 8181 MemTxAttrs attrs = {}; 8182 8183 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, 8184 &attrs, &prot, &page_size, fsr, fi); 8185 if (!ret) { 8186 /* Map a single [sub]page. */ 8187 phys_addr &= TARGET_PAGE_MASK; 8188 address &= TARGET_PAGE_MASK; 8189 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 8190 prot, mmu_idx, page_size); 8191 return 0; 8192 } 8193 8194 return ret; 8195 } 8196 8197 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 8198 MemTxAttrs *attrs) 8199 { 8200 ARMCPU *cpu = ARM_CPU(cs); 8201 CPUARMState *env = &cpu->env; 8202 hwaddr phys_addr; 8203 target_ulong page_size; 8204 int prot; 8205 bool ret; 8206 uint32_t fsr; 8207 ARMMMUFaultInfo fi = {}; 8208 8209 *attrs = (MemTxAttrs) {}; 8210 8211 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, 8212 attrs, &prot, &page_size, &fsr, &fi); 8213 8214 if (ret) { 8215 return -1; 8216 } 8217 return phys_addr; 8218 } 8219 8220 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 8221 { 8222 ARMCPU *cpu = arm_env_get_cpu(env); 8223 8224 switch (reg) { 8225 case 0: /* APSR */ 8226 return xpsr_read(env) & 0xf8000000; 8227 case 1: /* IAPSR */ 8228 return xpsr_read(env) & 0xf80001ff; 8229 case 2: /* EAPSR */ 8230 return xpsr_read(env) & 0xff00fc00; 8231 case 3: /* xPSR */ 8232 return xpsr_read(env) & 0xff00fdff; 8233 case 5: /* IPSR */ 8234 return xpsr_read(env) & 0x000001ff; 8235 case 6: /* EPSR */ 8236 return xpsr_read(env) & 0x0700fc00; 8237 case 7: /* IEPSR */ 8238 return xpsr_read(env) & 0x0700edff; 8239 case 8: /* MSP */ 8240 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; 8241 case 9: /* PSP */ 8242 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; 8243 case 16: /* PRIMASK */ 8244 return (env->daif & PSTATE_I) != 0; 8245 case 17: /* BASEPRI */ 8246 case 18: /* BASEPRI_MAX */ 8247 return env->v7m.basepri; 8248 case 19: /* FAULTMASK */ 8249 return (env->daif & PSTATE_F) != 0; 8250 case 20: /* CONTROL */ 8251 return env->v7m.control; 8252 default: 8253 /* ??? For debugging only. */ 8254 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); 8255 return 0; 8256 } 8257 } 8258 8259 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 8260 { 8261 ARMCPU *cpu = arm_env_get_cpu(env); 8262 8263 switch (reg) { 8264 case 0: /* APSR */ 8265 xpsr_write(env, val, 0xf8000000); 8266 break; 8267 case 1: /* IAPSR */ 8268 xpsr_write(env, val, 0xf8000000); 8269 break; 8270 case 2: /* EAPSR */ 8271 xpsr_write(env, val, 0xfe00fc00); 8272 break; 8273 case 3: /* xPSR */ 8274 xpsr_write(env, val, 0xfe00fc00); 8275 break; 8276 case 5: /* IPSR */ 8277 /* IPSR bits are readonly. */ 8278 break; 8279 case 6: /* EPSR */ 8280 xpsr_write(env, val, 0x0600fc00); 8281 break; 8282 case 7: /* IEPSR */ 8283 xpsr_write(env, val, 0x0600fc00); 8284 break; 8285 case 8: /* MSP */ 8286 if (env->v7m.current_sp) 8287 env->v7m.other_sp = val; 8288 else 8289 env->regs[13] = val; 8290 break; 8291 case 9: /* PSP */ 8292 if (env->v7m.current_sp) 8293 env->regs[13] = val; 8294 else 8295 env->v7m.other_sp = val; 8296 break; 8297 case 16: /* PRIMASK */ 8298 if (val & 1) { 8299 env->daif |= PSTATE_I; 8300 } else { 8301 env->daif &= ~PSTATE_I; 8302 } 8303 break; 8304 case 17: /* BASEPRI */ 8305 env->v7m.basepri = val & 0xff; 8306 break; 8307 case 18: /* BASEPRI_MAX */ 8308 val &= 0xff; 8309 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) 8310 env->v7m.basepri = val; 8311 break; 8312 case 19: /* FAULTMASK */ 8313 if (val & 1) { 8314 env->daif |= PSTATE_F; 8315 } else { 8316 env->daif &= ~PSTATE_F; 8317 } 8318 break; 8319 case 20: /* CONTROL */ 8320 env->v7m.control = val & 3; 8321 switch_v7m_sp(env, (val & 2) != 0); 8322 break; 8323 default: 8324 /* ??? For debugging only. */ 8325 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); 8326 return; 8327 } 8328 } 8329 8330 #endif 8331 8332 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 8333 { 8334 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 8335 * Note that we do not implement the (architecturally mandated) 8336 * alignment fault for attempts to use this on Device memory 8337 * (which matches the usual QEMU behaviour of not implementing either 8338 * alignment faults or any memory attribute handling). 8339 */ 8340 8341 ARMCPU *cpu = arm_env_get_cpu(env); 8342 uint64_t blocklen = 4 << cpu->dcz_blocksize; 8343 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 8344 8345 #ifndef CONFIG_USER_ONLY 8346 { 8347 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 8348 * the block size so we might have to do more than one TLB lookup. 8349 * We know that in fact for any v8 CPU the page size is at least 4K 8350 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 8351 * 1K as an artefact of legacy v5 subpage support being present in the 8352 * same QEMU executable. 8353 */ 8354 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 8355 void *hostaddr[maxidx]; 8356 int try, i; 8357 unsigned mmu_idx = cpu_mmu_index(env, false); 8358 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 8359 8360 for (try = 0; try < 2; try++) { 8361 8362 for (i = 0; i < maxidx; i++) { 8363 hostaddr[i] = tlb_vaddr_to_host(env, 8364 vaddr + TARGET_PAGE_SIZE * i, 8365 1, mmu_idx); 8366 if (!hostaddr[i]) { 8367 break; 8368 } 8369 } 8370 if (i == maxidx) { 8371 /* If it's all in the TLB it's fair game for just writing to; 8372 * we know we don't need to update dirty status, etc. 8373 */ 8374 for (i = 0; i < maxidx - 1; i++) { 8375 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 8376 } 8377 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 8378 return; 8379 } 8380 /* OK, try a store and see if we can populate the tlb. This 8381 * might cause an exception if the memory isn't writable, 8382 * in which case we will longjmp out of here. We must for 8383 * this purpose use the actual register value passed to us 8384 * so that we get the fault address right. 8385 */ 8386 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 8387 /* Now we can populate the other TLB entries, if any */ 8388 for (i = 0; i < maxidx; i++) { 8389 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 8390 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 8391 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 8392 } 8393 } 8394 } 8395 8396 /* Slow path (probably attempt to do this to an I/O device or 8397 * similar, or clearing of a block of code we have translations 8398 * cached for). Just do a series of byte writes as the architecture 8399 * demands. It's not worth trying to use a cpu_physical_memory_map(), 8400 * memset(), unmap() sequence here because: 8401 * + we'd need to account for the blocksize being larger than a page 8402 * + the direct-RAM access case is almost always going to be dealt 8403 * with in the fastpath code above, so there's no speed benefit 8404 * + we would have to deal with the map returning NULL because the 8405 * bounce buffer was in use 8406 */ 8407 for (i = 0; i < blocklen; i++) { 8408 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 8409 } 8410 } 8411 #else 8412 memset(g2h(vaddr), 0, blocklen); 8413 #endif 8414 } 8415 8416 /* Note that signed overflow is undefined in C. The following routines are 8417 careful to use unsigned types where modulo arithmetic is required. 8418 Failure to do so _will_ break on newer gcc. */ 8419 8420 /* Signed saturating arithmetic. */ 8421 8422 /* Perform 16-bit signed saturating addition. */ 8423 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 8424 { 8425 uint16_t res; 8426 8427 res = a + b; 8428 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 8429 if (a & 0x8000) 8430 res = 0x8000; 8431 else 8432 res = 0x7fff; 8433 } 8434 return res; 8435 } 8436 8437 /* Perform 8-bit signed saturating addition. */ 8438 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 8439 { 8440 uint8_t res; 8441 8442 res = a + b; 8443 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 8444 if (a & 0x80) 8445 res = 0x80; 8446 else 8447 res = 0x7f; 8448 } 8449 return res; 8450 } 8451 8452 /* Perform 16-bit signed saturating subtraction. */ 8453 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 8454 { 8455 uint16_t res; 8456 8457 res = a - b; 8458 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 8459 if (a & 0x8000) 8460 res = 0x8000; 8461 else 8462 res = 0x7fff; 8463 } 8464 return res; 8465 } 8466 8467 /* Perform 8-bit signed saturating subtraction. */ 8468 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 8469 { 8470 uint8_t res; 8471 8472 res = a - b; 8473 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 8474 if (a & 0x80) 8475 res = 0x80; 8476 else 8477 res = 0x7f; 8478 } 8479 return res; 8480 } 8481 8482 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 8483 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 8484 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 8485 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 8486 #define PFX q 8487 8488 #include "op_addsub.h" 8489 8490 /* Unsigned saturating arithmetic. */ 8491 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 8492 { 8493 uint16_t res; 8494 res = a + b; 8495 if (res < a) 8496 res = 0xffff; 8497 return res; 8498 } 8499 8500 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 8501 { 8502 if (a > b) 8503 return a - b; 8504 else 8505 return 0; 8506 } 8507 8508 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 8509 { 8510 uint8_t res; 8511 res = a + b; 8512 if (res < a) 8513 res = 0xff; 8514 return res; 8515 } 8516 8517 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 8518 { 8519 if (a > b) 8520 return a - b; 8521 else 8522 return 0; 8523 } 8524 8525 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 8526 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 8527 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 8528 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 8529 #define PFX uq 8530 8531 #include "op_addsub.h" 8532 8533 /* Signed modulo arithmetic. */ 8534 #define SARITH16(a, b, n, op) do { \ 8535 int32_t sum; \ 8536 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 8537 RESULT(sum, n, 16); \ 8538 if (sum >= 0) \ 8539 ge |= 3 << (n * 2); \ 8540 } while(0) 8541 8542 #define SARITH8(a, b, n, op) do { \ 8543 int32_t sum; \ 8544 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 8545 RESULT(sum, n, 8); \ 8546 if (sum >= 0) \ 8547 ge |= 1 << n; \ 8548 } while(0) 8549 8550 8551 #define ADD16(a, b, n) SARITH16(a, b, n, +) 8552 #define SUB16(a, b, n) SARITH16(a, b, n, -) 8553 #define ADD8(a, b, n) SARITH8(a, b, n, +) 8554 #define SUB8(a, b, n) SARITH8(a, b, n, -) 8555 #define PFX s 8556 #define ARITH_GE 8557 8558 #include "op_addsub.h" 8559 8560 /* Unsigned modulo arithmetic. */ 8561 #define ADD16(a, b, n) do { \ 8562 uint32_t sum; \ 8563 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 8564 RESULT(sum, n, 16); \ 8565 if ((sum >> 16) == 1) \ 8566 ge |= 3 << (n * 2); \ 8567 } while(0) 8568 8569 #define ADD8(a, b, n) do { \ 8570 uint32_t sum; \ 8571 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 8572 RESULT(sum, n, 8); \ 8573 if ((sum >> 8) == 1) \ 8574 ge |= 1 << n; \ 8575 } while(0) 8576 8577 #define SUB16(a, b, n) do { \ 8578 uint32_t sum; \ 8579 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 8580 RESULT(sum, n, 16); \ 8581 if ((sum >> 16) == 0) \ 8582 ge |= 3 << (n * 2); \ 8583 } while(0) 8584 8585 #define SUB8(a, b, n) do { \ 8586 uint32_t sum; \ 8587 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 8588 RESULT(sum, n, 8); \ 8589 if ((sum >> 8) == 0) \ 8590 ge |= 1 << n; \ 8591 } while(0) 8592 8593 #define PFX u 8594 #define ARITH_GE 8595 8596 #include "op_addsub.h" 8597 8598 /* Halved signed arithmetic. */ 8599 #define ADD16(a, b, n) \ 8600 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 8601 #define SUB16(a, b, n) \ 8602 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 8603 #define ADD8(a, b, n) \ 8604 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 8605 #define SUB8(a, b, n) \ 8606 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 8607 #define PFX sh 8608 8609 #include "op_addsub.h" 8610 8611 /* Halved unsigned arithmetic. */ 8612 #define ADD16(a, b, n) \ 8613 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8614 #define SUB16(a, b, n) \ 8615 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8616 #define ADD8(a, b, n) \ 8617 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8618 #define SUB8(a, b, n) \ 8619 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8620 #define PFX uh 8621 8622 #include "op_addsub.h" 8623 8624 static inline uint8_t do_usad(uint8_t a, uint8_t b) 8625 { 8626 if (a > b) 8627 return a - b; 8628 else 8629 return b - a; 8630 } 8631 8632 /* Unsigned sum of absolute byte differences. */ 8633 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 8634 { 8635 uint32_t sum; 8636 sum = do_usad(a, b); 8637 sum += do_usad(a >> 8, b >> 8); 8638 sum += do_usad(a >> 16, b >>16); 8639 sum += do_usad(a >> 24, b >> 24); 8640 return sum; 8641 } 8642 8643 /* For ARMv6 SEL instruction. */ 8644 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 8645 { 8646 uint32_t mask; 8647 8648 mask = 0; 8649 if (flags & 1) 8650 mask |= 0xff; 8651 if (flags & 2) 8652 mask |= 0xff00; 8653 if (flags & 4) 8654 mask |= 0xff0000; 8655 if (flags & 8) 8656 mask |= 0xff000000; 8657 return (a & mask) | (b & ~mask); 8658 } 8659 8660 /* VFP support. We follow the convention used for VFP instructions: 8661 Single precision routines have a "s" suffix, double precision a 8662 "d" suffix. */ 8663 8664 /* Convert host exception flags to vfp form. */ 8665 static inline int vfp_exceptbits_from_host(int host_bits) 8666 { 8667 int target_bits = 0; 8668 8669 if (host_bits & float_flag_invalid) 8670 target_bits |= 1; 8671 if (host_bits & float_flag_divbyzero) 8672 target_bits |= 2; 8673 if (host_bits & float_flag_overflow) 8674 target_bits |= 4; 8675 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 8676 target_bits |= 8; 8677 if (host_bits & float_flag_inexact) 8678 target_bits |= 0x10; 8679 if (host_bits & float_flag_input_denormal) 8680 target_bits |= 0x80; 8681 return target_bits; 8682 } 8683 8684 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 8685 { 8686 int i; 8687 uint32_t fpscr; 8688 8689 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 8690 | (env->vfp.vec_len << 16) 8691 | (env->vfp.vec_stride << 20); 8692 i = get_float_exception_flags(&env->vfp.fp_status); 8693 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 8694 fpscr |= vfp_exceptbits_from_host(i); 8695 return fpscr; 8696 } 8697 8698 uint32_t vfp_get_fpscr(CPUARMState *env) 8699 { 8700 return HELPER(vfp_get_fpscr)(env); 8701 } 8702 8703 /* Convert vfp exception flags to target form. */ 8704 static inline int vfp_exceptbits_to_host(int target_bits) 8705 { 8706 int host_bits = 0; 8707 8708 if (target_bits & 1) 8709 host_bits |= float_flag_invalid; 8710 if (target_bits & 2) 8711 host_bits |= float_flag_divbyzero; 8712 if (target_bits & 4) 8713 host_bits |= float_flag_overflow; 8714 if (target_bits & 8) 8715 host_bits |= float_flag_underflow; 8716 if (target_bits & 0x10) 8717 host_bits |= float_flag_inexact; 8718 if (target_bits & 0x80) 8719 host_bits |= float_flag_input_denormal; 8720 return host_bits; 8721 } 8722 8723 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 8724 { 8725 int i; 8726 uint32_t changed; 8727 8728 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 8729 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 8730 env->vfp.vec_len = (val >> 16) & 7; 8731 env->vfp.vec_stride = (val >> 20) & 3; 8732 8733 changed ^= val; 8734 if (changed & (3 << 22)) { 8735 i = (val >> 22) & 3; 8736 switch (i) { 8737 case FPROUNDING_TIEEVEN: 8738 i = float_round_nearest_even; 8739 break; 8740 case FPROUNDING_POSINF: 8741 i = float_round_up; 8742 break; 8743 case FPROUNDING_NEGINF: 8744 i = float_round_down; 8745 break; 8746 case FPROUNDING_ZERO: 8747 i = float_round_to_zero; 8748 break; 8749 } 8750 set_float_rounding_mode(i, &env->vfp.fp_status); 8751 } 8752 if (changed & (1 << 24)) { 8753 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 8754 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 8755 } 8756 if (changed & (1 << 25)) 8757 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 8758 8759 i = vfp_exceptbits_to_host(val); 8760 set_float_exception_flags(i, &env->vfp.fp_status); 8761 set_float_exception_flags(0, &env->vfp.standard_fp_status); 8762 } 8763 8764 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 8765 { 8766 HELPER(vfp_set_fpscr)(env, val); 8767 } 8768 8769 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 8770 8771 #define VFP_BINOP(name) \ 8772 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 8773 { \ 8774 float_status *fpst = fpstp; \ 8775 return float32_ ## name(a, b, fpst); \ 8776 } \ 8777 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 8778 { \ 8779 float_status *fpst = fpstp; \ 8780 return float64_ ## name(a, b, fpst); \ 8781 } 8782 VFP_BINOP(add) 8783 VFP_BINOP(sub) 8784 VFP_BINOP(mul) 8785 VFP_BINOP(div) 8786 VFP_BINOP(min) 8787 VFP_BINOP(max) 8788 VFP_BINOP(minnum) 8789 VFP_BINOP(maxnum) 8790 #undef VFP_BINOP 8791 8792 float32 VFP_HELPER(neg, s)(float32 a) 8793 { 8794 return float32_chs(a); 8795 } 8796 8797 float64 VFP_HELPER(neg, d)(float64 a) 8798 { 8799 return float64_chs(a); 8800 } 8801 8802 float32 VFP_HELPER(abs, s)(float32 a) 8803 { 8804 return float32_abs(a); 8805 } 8806 8807 float64 VFP_HELPER(abs, d)(float64 a) 8808 { 8809 return float64_abs(a); 8810 } 8811 8812 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 8813 { 8814 return float32_sqrt(a, &env->vfp.fp_status); 8815 } 8816 8817 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 8818 { 8819 return float64_sqrt(a, &env->vfp.fp_status); 8820 } 8821 8822 /* XXX: check quiet/signaling case */ 8823 #define DO_VFP_cmp(p, type) \ 8824 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 8825 { \ 8826 uint32_t flags; \ 8827 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 8828 case 0: flags = 0x6; break; \ 8829 case -1: flags = 0x8; break; \ 8830 case 1: flags = 0x2; break; \ 8831 default: case 2: flags = 0x3; break; \ 8832 } \ 8833 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 8834 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 8835 } \ 8836 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 8837 { \ 8838 uint32_t flags; \ 8839 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 8840 case 0: flags = 0x6; break; \ 8841 case -1: flags = 0x8; break; \ 8842 case 1: flags = 0x2; break; \ 8843 default: case 2: flags = 0x3; break; \ 8844 } \ 8845 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 8846 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 8847 } 8848 DO_VFP_cmp(s, float32) 8849 DO_VFP_cmp(d, float64) 8850 #undef DO_VFP_cmp 8851 8852 /* Integer to float and float to integer conversions */ 8853 8854 #define CONV_ITOF(name, fsz, sign) \ 8855 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 8856 { \ 8857 float_status *fpst = fpstp; \ 8858 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 8859 } 8860 8861 #define CONV_FTOI(name, fsz, sign, round) \ 8862 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 8863 { \ 8864 float_status *fpst = fpstp; \ 8865 if (float##fsz##_is_any_nan(x)) { \ 8866 float_raise(float_flag_invalid, fpst); \ 8867 return 0; \ 8868 } \ 8869 return float##fsz##_to_##sign##int32##round(x, fpst); \ 8870 } 8871 8872 #define FLOAT_CONVS(name, p, fsz, sign) \ 8873 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 8874 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 8875 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 8876 8877 FLOAT_CONVS(si, s, 32, ) 8878 FLOAT_CONVS(si, d, 64, ) 8879 FLOAT_CONVS(ui, s, 32, u) 8880 FLOAT_CONVS(ui, d, 64, u) 8881 8882 #undef CONV_ITOF 8883 #undef CONV_FTOI 8884 #undef FLOAT_CONVS 8885 8886 /* floating point conversion */ 8887 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 8888 { 8889 float64 r = float32_to_float64(x, &env->vfp.fp_status); 8890 /* ARM requires that S<->D conversion of any kind of NaN generates 8891 * a quiet NaN by forcing the most significant frac bit to 1. 8892 */ 8893 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 8894 } 8895 8896 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 8897 { 8898 float32 r = float64_to_float32(x, &env->vfp.fp_status); 8899 /* ARM requires that S<->D conversion of any kind of NaN generates 8900 * a quiet NaN by forcing the most significant frac bit to 1. 8901 */ 8902 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 8903 } 8904 8905 /* VFP3 fixed point conversion. */ 8906 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 8907 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 8908 void *fpstp) \ 8909 { \ 8910 float_status *fpst = fpstp; \ 8911 float##fsz tmp; \ 8912 tmp = itype##_to_##float##fsz(x, fpst); \ 8913 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 8914 } 8915 8916 /* Notice that we want only input-denormal exception flags from the 8917 * scalbn operation: the other possible flags (overflow+inexact if 8918 * we overflow to infinity, output-denormal) aren't correct for the 8919 * complete scale-and-convert operation. 8920 */ 8921 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 8922 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 8923 uint32_t shift, \ 8924 void *fpstp) \ 8925 { \ 8926 float_status *fpst = fpstp; \ 8927 int old_exc_flags = get_float_exception_flags(fpst); \ 8928 float##fsz tmp; \ 8929 if (float##fsz##_is_any_nan(x)) { \ 8930 float_raise(float_flag_invalid, fpst); \ 8931 return 0; \ 8932 } \ 8933 tmp = float##fsz##_scalbn(x, shift, fpst); \ 8934 old_exc_flags |= get_float_exception_flags(fpst) \ 8935 & float_flag_input_denormal; \ 8936 set_float_exception_flags(old_exc_flags, fpst); \ 8937 return float##fsz##_to_##itype##round(tmp, fpst); \ 8938 } 8939 8940 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 8941 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 8942 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 8943 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 8944 8945 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 8946 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 8947 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 8948 8949 VFP_CONV_FIX(sh, d, 64, 64, int16) 8950 VFP_CONV_FIX(sl, d, 64, 64, int32) 8951 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 8952 VFP_CONV_FIX(uh, d, 64, 64, uint16) 8953 VFP_CONV_FIX(ul, d, 64, 64, uint32) 8954 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 8955 VFP_CONV_FIX(sh, s, 32, 32, int16) 8956 VFP_CONV_FIX(sl, s, 32, 32, int32) 8957 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 8958 VFP_CONV_FIX(uh, s, 32, 32, uint16) 8959 VFP_CONV_FIX(ul, s, 32, 32, uint32) 8960 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 8961 #undef VFP_CONV_FIX 8962 #undef VFP_CONV_FIX_FLOAT 8963 #undef VFP_CONV_FLOAT_FIX_ROUND 8964 8965 /* Set the current fp rounding mode and return the old one. 8966 * The argument is a softfloat float_round_ value. 8967 */ 8968 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 8969 { 8970 float_status *fp_status = &env->vfp.fp_status; 8971 8972 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 8973 set_float_rounding_mode(rmode, fp_status); 8974 8975 return prev_rmode; 8976 } 8977 8978 /* Set the current fp rounding mode in the standard fp status and return 8979 * the old one. This is for NEON instructions that need to change the 8980 * rounding mode but wish to use the standard FPSCR values for everything 8981 * else. Always set the rounding mode back to the correct value after 8982 * modifying it. 8983 * The argument is a softfloat float_round_ value. 8984 */ 8985 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 8986 { 8987 float_status *fp_status = &env->vfp.standard_fp_status; 8988 8989 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 8990 set_float_rounding_mode(rmode, fp_status); 8991 8992 return prev_rmode; 8993 } 8994 8995 /* Half precision conversions. */ 8996 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 8997 { 8998 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 8999 float32 r = float16_to_float32(make_float16(a), ieee, s); 9000 if (ieee) { 9001 return float32_maybe_silence_nan(r, s); 9002 } 9003 return r; 9004 } 9005 9006 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 9007 { 9008 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9009 float16 r = float32_to_float16(a, ieee, s); 9010 if (ieee) { 9011 r = float16_maybe_silence_nan(r, s); 9012 } 9013 return float16_val(r); 9014 } 9015 9016 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9017 { 9018 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 9019 } 9020 9021 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9022 { 9023 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 9024 } 9025 9026 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9027 { 9028 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 9029 } 9030 9031 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9032 { 9033 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 9034 } 9035 9036 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 9037 { 9038 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9039 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 9040 if (ieee) { 9041 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 9042 } 9043 return r; 9044 } 9045 9046 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 9047 { 9048 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9049 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 9050 if (ieee) { 9051 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 9052 } 9053 return float16_val(r); 9054 } 9055 9056 #define float32_two make_float32(0x40000000) 9057 #define float32_three make_float32(0x40400000) 9058 #define float32_one_point_five make_float32(0x3fc00000) 9059 9060 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 9061 { 9062 float_status *s = &env->vfp.standard_fp_status; 9063 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9064 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9065 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9066 float_raise(float_flag_input_denormal, s); 9067 } 9068 return float32_two; 9069 } 9070 return float32_sub(float32_two, float32_mul(a, b, s), s); 9071 } 9072 9073 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 9074 { 9075 float_status *s = &env->vfp.standard_fp_status; 9076 float32 product; 9077 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9078 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9079 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9080 float_raise(float_flag_input_denormal, s); 9081 } 9082 return float32_one_point_five; 9083 } 9084 product = float32_mul(a, b, s); 9085 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 9086 } 9087 9088 /* NEON helpers. */ 9089 9090 /* Constants 256 and 512 are used in some helpers; we avoid relying on 9091 * int->float conversions at run-time. */ 9092 #define float64_256 make_float64(0x4070000000000000LL) 9093 #define float64_512 make_float64(0x4080000000000000LL) 9094 #define float32_maxnorm make_float32(0x7f7fffff) 9095 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 9096 9097 /* Reciprocal functions 9098 * 9099 * The algorithm that must be used to calculate the estimate 9100 * is specified by the ARM ARM, see FPRecipEstimate() 9101 */ 9102 9103 static float64 recip_estimate(float64 a, float_status *real_fp_status) 9104 { 9105 /* These calculations mustn't set any fp exception flags, 9106 * so we use a local copy of the fp_status. 9107 */ 9108 float_status dummy_status = *real_fp_status; 9109 float_status *s = &dummy_status; 9110 /* q = (int)(a * 512.0) */ 9111 float64 q = float64_mul(float64_512, a, s); 9112 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9113 9114 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 9115 q = int64_to_float64(q_int, s); 9116 q = float64_add(q, float64_half, s); 9117 q = float64_div(q, float64_512, s); 9118 q = float64_div(float64_one, q, s); 9119 9120 /* s = (int)(256.0 * r + 0.5) */ 9121 q = float64_mul(q, float64_256, s); 9122 q = float64_add(q, float64_half, s); 9123 q_int = float64_to_int64_round_to_zero(q, s); 9124 9125 /* return (double)s / 256.0 */ 9126 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9127 } 9128 9129 /* Common wrapper to call recip_estimate */ 9130 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 9131 { 9132 uint64_t val64 = float64_val(num); 9133 uint64_t frac = extract64(val64, 0, 52); 9134 int64_t exp = extract64(val64, 52, 11); 9135 uint64_t sbit; 9136 float64 scaled, estimate; 9137 9138 /* Generate the scaled number for the estimate function */ 9139 if (exp == 0) { 9140 if (extract64(frac, 51, 1) == 0) { 9141 exp = -1; 9142 frac = extract64(frac, 0, 50) << 2; 9143 } else { 9144 frac = extract64(frac, 0, 51) << 1; 9145 } 9146 } 9147 9148 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 9149 scaled = make_float64((0x3feULL << 52) 9150 | extract64(frac, 44, 8) << 44); 9151 9152 estimate = recip_estimate(scaled, fpst); 9153 9154 /* Build new result */ 9155 val64 = float64_val(estimate); 9156 sbit = 0x8000000000000000ULL & val64; 9157 exp = off - exp; 9158 frac = extract64(val64, 0, 52); 9159 9160 if (exp == 0) { 9161 frac = 1ULL << 51 | extract64(frac, 1, 51); 9162 } else if (exp == -1) { 9163 frac = 1ULL << 50 | extract64(frac, 2, 50); 9164 exp = 0; 9165 } 9166 9167 return make_float64(sbit | (exp << 52) | frac); 9168 } 9169 9170 static bool round_to_inf(float_status *fpst, bool sign_bit) 9171 { 9172 switch (fpst->float_rounding_mode) { 9173 case float_round_nearest_even: /* Round to Nearest */ 9174 return true; 9175 case float_round_up: /* Round to +Inf */ 9176 return !sign_bit; 9177 case float_round_down: /* Round to -Inf */ 9178 return sign_bit; 9179 case float_round_to_zero: /* Round to Zero */ 9180 return false; 9181 } 9182 9183 g_assert_not_reached(); 9184 } 9185 9186 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 9187 { 9188 float_status *fpst = fpstp; 9189 float32 f32 = float32_squash_input_denormal(input, fpst); 9190 uint32_t f32_val = float32_val(f32); 9191 uint32_t f32_sbit = 0x80000000ULL & f32_val; 9192 int32_t f32_exp = extract32(f32_val, 23, 8); 9193 uint32_t f32_frac = extract32(f32_val, 0, 23); 9194 float64 f64, r64; 9195 uint64_t r64_val; 9196 int64_t r64_exp; 9197 uint64_t r64_frac; 9198 9199 if (float32_is_any_nan(f32)) { 9200 float32 nan = f32; 9201 if (float32_is_signaling_nan(f32, fpst)) { 9202 float_raise(float_flag_invalid, fpst); 9203 nan = float32_maybe_silence_nan(f32, fpst); 9204 } 9205 if (fpst->default_nan_mode) { 9206 nan = float32_default_nan(fpst); 9207 } 9208 return nan; 9209 } else if (float32_is_infinity(f32)) { 9210 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9211 } else if (float32_is_zero(f32)) { 9212 float_raise(float_flag_divbyzero, fpst); 9213 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9214 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 9215 /* Abs(value) < 2.0^-128 */ 9216 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9217 if (round_to_inf(fpst, f32_sbit)) { 9218 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9219 } else { 9220 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 9221 } 9222 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 9223 float_raise(float_flag_underflow, fpst); 9224 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9225 } 9226 9227 9228 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 9229 r64 = call_recip_estimate(f64, 253, fpst); 9230 r64_val = float64_val(r64); 9231 r64_exp = extract64(r64_val, 52, 11); 9232 r64_frac = extract64(r64_val, 0, 52); 9233 9234 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 9235 return make_float32(f32_sbit | 9236 (r64_exp & 0xff) << 23 | 9237 extract64(r64_frac, 29, 24)); 9238 } 9239 9240 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 9241 { 9242 float_status *fpst = fpstp; 9243 float64 f64 = float64_squash_input_denormal(input, fpst); 9244 uint64_t f64_val = float64_val(f64); 9245 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 9246 int64_t f64_exp = extract64(f64_val, 52, 11); 9247 float64 r64; 9248 uint64_t r64_val; 9249 int64_t r64_exp; 9250 uint64_t r64_frac; 9251 9252 /* Deal with any special cases */ 9253 if (float64_is_any_nan(f64)) { 9254 float64 nan = f64; 9255 if (float64_is_signaling_nan(f64, fpst)) { 9256 float_raise(float_flag_invalid, fpst); 9257 nan = float64_maybe_silence_nan(f64, fpst); 9258 } 9259 if (fpst->default_nan_mode) { 9260 nan = float64_default_nan(fpst); 9261 } 9262 return nan; 9263 } else if (float64_is_infinity(f64)) { 9264 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9265 } else if (float64_is_zero(f64)) { 9266 float_raise(float_flag_divbyzero, fpst); 9267 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9268 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 9269 /* Abs(value) < 2.0^-1024 */ 9270 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9271 if (round_to_inf(fpst, f64_sbit)) { 9272 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9273 } else { 9274 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 9275 } 9276 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 9277 float_raise(float_flag_underflow, fpst); 9278 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9279 } 9280 9281 r64 = call_recip_estimate(f64, 2045, fpst); 9282 r64_val = float64_val(r64); 9283 r64_exp = extract64(r64_val, 52, 11); 9284 r64_frac = extract64(r64_val, 0, 52); 9285 9286 /* result = sign : result_exp<10:0> : fraction<51:0> */ 9287 return make_float64(f64_sbit | 9288 ((r64_exp & 0x7ff) << 52) | 9289 r64_frac); 9290 } 9291 9292 /* The algorithm that must be used to calculate the estimate 9293 * is specified by the ARM ARM. 9294 */ 9295 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 9296 { 9297 /* These calculations mustn't set any fp exception flags, 9298 * so we use a local copy of the fp_status. 9299 */ 9300 float_status dummy_status = *real_fp_status; 9301 float_status *s = &dummy_status; 9302 float64 q; 9303 int64_t q_int; 9304 9305 if (float64_lt(a, float64_half, s)) { 9306 /* range 0.25 <= a < 0.5 */ 9307 9308 /* a in units of 1/512 rounded down */ 9309 /* q0 = (int)(a * 512.0); */ 9310 q = float64_mul(float64_512, a, s); 9311 q_int = float64_to_int64_round_to_zero(q, s); 9312 9313 /* reciprocal root r */ 9314 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 9315 q = int64_to_float64(q_int, s); 9316 q = float64_add(q, float64_half, s); 9317 q = float64_div(q, float64_512, s); 9318 q = float64_sqrt(q, s); 9319 q = float64_div(float64_one, q, s); 9320 } else { 9321 /* range 0.5 <= a < 1.0 */ 9322 9323 /* a in units of 1/256 rounded down */ 9324 /* q1 = (int)(a * 256.0); */ 9325 q = float64_mul(float64_256, a, s); 9326 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9327 9328 /* reciprocal root r */ 9329 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 9330 q = int64_to_float64(q_int, s); 9331 q = float64_add(q, float64_half, s); 9332 q = float64_div(q, float64_256, s); 9333 q = float64_sqrt(q, s); 9334 q = float64_div(float64_one, q, s); 9335 } 9336 /* r in units of 1/256 rounded to nearest */ 9337 /* s = (int)(256.0 * r + 0.5); */ 9338 9339 q = float64_mul(q, float64_256,s ); 9340 q = float64_add(q, float64_half, s); 9341 q_int = float64_to_int64_round_to_zero(q, s); 9342 9343 /* return (double)s / 256.0;*/ 9344 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9345 } 9346 9347 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 9348 { 9349 float_status *s = fpstp; 9350 float32 f32 = float32_squash_input_denormal(input, s); 9351 uint32_t val = float32_val(f32); 9352 uint32_t f32_sbit = 0x80000000 & val; 9353 int32_t f32_exp = extract32(val, 23, 8); 9354 uint32_t f32_frac = extract32(val, 0, 23); 9355 uint64_t f64_frac; 9356 uint64_t val64; 9357 int result_exp; 9358 float64 f64; 9359 9360 if (float32_is_any_nan(f32)) { 9361 float32 nan = f32; 9362 if (float32_is_signaling_nan(f32, s)) { 9363 float_raise(float_flag_invalid, s); 9364 nan = float32_maybe_silence_nan(f32, s); 9365 } 9366 if (s->default_nan_mode) { 9367 nan = float32_default_nan(s); 9368 } 9369 return nan; 9370 } else if (float32_is_zero(f32)) { 9371 float_raise(float_flag_divbyzero, s); 9372 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9373 } else if (float32_is_neg(f32)) { 9374 float_raise(float_flag_invalid, s); 9375 return float32_default_nan(s); 9376 } else if (float32_is_infinity(f32)) { 9377 return float32_zero; 9378 } 9379 9380 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9381 * preserving the parity of the exponent. */ 9382 9383 f64_frac = ((uint64_t) f32_frac) << 29; 9384 if (f32_exp == 0) { 9385 while (extract64(f64_frac, 51, 1) == 0) { 9386 f64_frac = f64_frac << 1; 9387 f32_exp = f32_exp-1; 9388 } 9389 f64_frac = extract64(f64_frac, 0, 51) << 1; 9390 } 9391 9392 if (extract64(f32_exp, 0, 1) == 0) { 9393 f64 = make_float64(((uint64_t) f32_sbit) << 32 9394 | (0x3feULL << 52) 9395 | f64_frac); 9396 } else { 9397 f64 = make_float64(((uint64_t) f32_sbit) << 32 9398 | (0x3fdULL << 52) 9399 | f64_frac); 9400 } 9401 9402 result_exp = (380 - f32_exp) / 2; 9403 9404 f64 = recip_sqrt_estimate(f64, s); 9405 9406 val64 = float64_val(f64); 9407 9408 val = ((result_exp & 0xff) << 23) 9409 | ((val64 >> 29) & 0x7fffff); 9410 return make_float32(val); 9411 } 9412 9413 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 9414 { 9415 float_status *s = fpstp; 9416 float64 f64 = float64_squash_input_denormal(input, s); 9417 uint64_t val = float64_val(f64); 9418 uint64_t f64_sbit = 0x8000000000000000ULL & val; 9419 int64_t f64_exp = extract64(val, 52, 11); 9420 uint64_t f64_frac = extract64(val, 0, 52); 9421 int64_t result_exp; 9422 uint64_t result_frac; 9423 9424 if (float64_is_any_nan(f64)) { 9425 float64 nan = f64; 9426 if (float64_is_signaling_nan(f64, s)) { 9427 float_raise(float_flag_invalid, s); 9428 nan = float64_maybe_silence_nan(f64, s); 9429 } 9430 if (s->default_nan_mode) { 9431 nan = float64_default_nan(s); 9432 } 9433 return nan; 9434 } else if (float64_is_zero(f64)) { 9435 float_raise(float_flag_divbyzero, s); 9436 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9437 } else if (float64_is_neg(f64)) { 9438 float_raise(float_flag_invalid, s); 9439 return float64_default_nan(s); 9440 } else if (float64_is_infinity(f64)) { 9441 return float64_zero; 9442 } 9443 9444 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9445 * preserving the parity of the exponent. */ 9446 9447 if (f64_exp == 0) { 9448 while (extract64(f64_frac, 51, 1) == 0) { 9449 f64_frac = f64_frac << 1; 9450 f64_exp = f64_exp - 1; 9451 } 9452 f64_frac = extract64(f64_frac, 0, 51) << 1; 9453 } 9454 9455 if (extract64(f64_exp, 0, 1) == 0) { 9456 f64 = make_float64(f64_sbit 9457 | (0x3feULL << 52) 9458 | f64_frac); 9459 } else { 9460 f64 = make_float64(f64_sbit 9461 | (0x3fdULL << 52) 9462 | f64_frac); 9463 } 9464 9465 result_exp = (3068 - f64_exp) / 2; 9466 9467 f64 = recip_sqrt_estimate(f64, s); 9468 9469 result_frac = extract64(float64_val(f64), 0, 52); 9470 9471 return make_float64(f64_sbit | 9472 ((result_exp & 0x7ff) << 52) | 9473 result_frac); 9474 } 9475 9476 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 9477 { 9478 float_status *s = fpstp; 9479 float64 f64; 9480 9481 if ((a & 0x80000000) == 0) { 9482 return 0xffffffff; 9483 } 9484 9485 f64 = make_float64((0x3feULL << 52) 9486 | ((int64_t)(a & 0x7fffffff) << 21)); 9487 9488 f64 = recip_estimate(f64, s); 9489 9490 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9491 } 9492 9493 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 9494 { 9495 float_status *fpst = fpstp; 9496 float64 f64; 9497 9498 if ((a & 0xc0000000) == 0) { 9499 return 0xffffffff; 9500 } 9501 9502 if (a & 0x80000000) { 9503 f64 = make_float64((0x3feULL << 52) 9504 | ((uint64_t)(a & 0x7fffffff) << 21)); 9505 } else { /* bits 31-30 == '01' */ 9506 f64 = make_float64((0x3fdULL << 52) 9507 | ((uint64_t)(a & 0x3fffffff) << 22)); 9508 } 9509 9510 f64 = recip_sqrt_estimate(f64, fpst); 9511 9512 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9513 } 9514 9515 /* VFPv4 fused multiply-accumulate */ 9516 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 9517 { 9518 float_status *fpst = fpstp; 9519 return float32_muladd(a, b, c, 0, fpst); 9520 } 9521 9522 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 9523 { 9524 float_status *fpst = fpstp; 9525 return float64_muladd(a, b, c, 0, fpst); 9526 } 9527 9528 /* ARMv8 round to integral */ 9529 float32 HELPER(rints_exact)(float32 x, void *fp_status) 9530 { 9531 return float32_round_to_int(x, fp_status); 9532 } 9533 9534 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 9535 { 9536 return float64_round_to_int(x, fp_status); 9537 } 9538 9539 float32 HELPER(rints)(float32 x, void *fp_status) 9540 { 9541 int old_flags = get_float_exception_flags(fp_status), new_flags; 9542 float32 ret; 9543 9544 ret = float32_round_to_int(x, fp_status); 9545 9546 /* Suppress any inexact exceptions the conversion produced */ 9547 if (!(old_flags & float_flag_inexact)) { 9548 new_flags = get_float_exception_flags(fp_status); 9549 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9550 } 9551 9552 return ret; 9553 } 9554 9555 float64 HELPER(rintd)(float64 x, void *fp_status) 9556 { 9557 int old_flags = get_float_exception_flags(fp_status), new_flags; 9558 float64 ret; 9559 9560 ret = float64_round_to_int(x, fp_status); 9561 9562 new_flags = get_float_exception_flags(fp_status); 9563 9564 /* Suppress any inexact exceptions the conversion produced */ 9565 if (!(old_flags & float_flag_inexact)) { 9566 new_flags = get_float_exception_flags(fp_status); 9567 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9568 } 9569 9570 return ret; 9571 } 9572 9573 /* Convert ARM rounding mode to softfloat */ 9574 int arm_rmode_to_sf(int rmode) 9575 { 9576 switch (rmode) { 9577 case FPROUNDING_TIEAWAY: 9578 rmode = float_round_ties_away; 9579 break; 9580 case FPROUNDING_ODD: 9581 /* FIXME: add support for TIEAWAY and ODD */ 9582 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 9583 rmode); 9584 case FPROUNDING_TIEEVEN: 9585 default: 9586 rmode = float_round_nearest_even; 9587 break; 9588 case FPROUNDING_POSINF: 9589 rmode = float_round_up; 9590 break; 9591 case FPROUNDING_NEGINF: 9592 rmode = float_round_down; 9593 break; 9594 case FPROUNDING_ZERO: 9595 rmode = float_round_to_zero; 9596 break; 9597 } 9598 return rmode; 9599 } 9600 9601 /* CRC helpers. 9602 * The upper bytes of val (above the number specified by 'bytes') must have 9603 * been zeroed out by the caller. 9604 */ 9605 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 9606 { 9607 uint8_t buf[4]; 9608 9609 stl_le_p(buf, val); 9610 9611 /* zlib crc32 converts the accumulator and output to one's complement. */ 9612 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 9613 } 9614 9615 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 9616 { 9617 uint8_t buf[4]; 9618 9619 stl_le_p(buf, val); 9620 9621 /* Linux crc32c converts the output to one's complement. */ 9622 return crc32c(acc, buf, bytes) ^ 0xffffffff; 9623 } 9624