xref: /openbmc/qemu/target/arm/helper.c (revision fcd23a67875d6f7f8256b90960ec05312cab2f5b)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 #include "qemu/osdep.h"
9 #include "qemu/units.h"
10 #include "target/arm/idau.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/gdbstub.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "sysemu/sysemu.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include "exec/cpu_ldst.h"
23 #include "arm_ldst.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 #ifndef CONFIG_USER_ONLY
36 
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
39                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40                                target_ulong *page_size_ptr,
41                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
42 #endif
43 
44 static void switch_mode(CPUARMState *env, int mode);
45 
46 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
47 {
48     int nregs;
49 
50     /* VFP data registers are always little-endian.  */
51     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
52     if (reg < nregs) {
53         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
54         return 8;
55     }
56     if (arm_feature(env, ARM_FEATURE_NEON)) {
57         /* Aliases for Q regs.  */
58         nregs += 16;
59         if (reg < nregs) {
60             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
61             stq_le_p(buf, q[0]);
62             stq_le_p(buf + 8, q[1]);
63             return 16;
64         }
65     }
66     switch (reg - nregs) {
67     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
68     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
69     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
70     }
71     return 0;
72 }
73 
74 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
75 {
76     int nregs;
77 
78     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
79     if (reg < nregs) {
80         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
81         return 8;
82     }
83     if (arm_feature(env, ARM_FEATURE_NEON)) {
84         nregs += 16;
85         if (reg < nregs) {
86             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
87             q[0] = ldq_le_p(buf);
88             q[1] = ldq_le_p(buf + 8);
89             return 16;
90         }
91     }
92     switch (reg - nregs) {
93     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
94     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
95     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
96     }
97     return 0;
98 }
99 
100 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
101 {
102     switch (reg) {
103     case 0 ... 31:
104         /* 128 bit FP register */
105         {
106             uint64_t *q = aa64_vfp_qreg(env, reg);
107             stq_le_p(buf, q[0]);
108             stq_le_p(buf + 8, q[1]);
109             return 16;
110         }
111     case 32:
112         /* FPSR */
113         stl_p(buf, vfp_get_fpsr(env));
114         return 4;
115     case 33:
116         /* FPCR */
117         stl_p(buf, vfp_get_fpcr(env));
118         return 4;
119     default:
120         return 0;
121     }
122 }
123 
124 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
125 {
126     switch (reg) {
127     case 0 ... 31:
128         /* 128 bit FP register */
129         {
130             uint64_t *q = aa64_vfp_qreg(env, reg);
131             q[0] = ldq_le_p(buf);
132             q[1] = ldq_le_p(buf + 8);
133             return 16;
134         }
135     case 32:
136         /* FPSR */
137         vfp_set_fpsr(env, ldl_p(buf));
138         return 4;
139     case 33:
140         /* FPCR */
141         vfp_set_fpcr(env, ldl_p(buf));
142         return 4;
143     default:
144         return 0;
145     }
146 }
147 
148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
149 {
150     assert(ri->fieldoffset);
151     if (cpreg_field_is_64bit(ri)) {
152         return CPREG_FIELD64(env, ri);
153     } else {
154         return CPREG_FIELD32(env, ri);
155     }
156 }
157 
158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
159                       uint64_t value)
160 {
161     assert(ri->fieldoffset);
162     if (cpreg_field_is_64bit(ri)) {
163         CPREG_FIELD64(env, ri) = value;
164     } else {
165         CPREG_FIELD32(env, ri) = value;
166     }
167 }
168 
169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
170 {
171     return (char *)env + ri->fieldoffset;
172 }
173 
174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
175 {
176     /* Raw read of a coprocessor register (as needed for migration, etc). */
177     if (ri->type & ARM_CP_CONST) {
178         return ri->resetvalue;
179     } else if (ri->raw_readfn) {
180         return ri->raw_readfn(env, ri);
181     } else if (ri->readfn) {
182         return ri->readfn(env, ri);
183     } else {
184         return raw_read(env, ri);
185     }
186 }
187 
188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
189                              uint64_t v)
190 {
191     /* Raw write of a coprocessor register (as needed for migration, etc).
192      * Note that constant registers are treated as write-ignored; the
193      * caller should check for success by whether a readback gives the
194      * value written.
195      */
196     if (ri->type & ARM_CP_CONST) {
197         return;
198     } else if (ri->raw_writefn) {
199         ri->raw_writefn(env, ri, v);
200     } else if (ri->writefn) {
201         ri->writefn(env, ri, v);
202     } else {
203         raw_write(env, ri, v);
204     }
205 }
206 
207 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
208 {
209     ARMCPU *cpu = env_archcpu(env);
210     const ARMCPRegInfo *ri;
211     uint32_t key;
212 
213     key = cpu->dyn_xml.cpregs_keys[reg];
214     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
215     if (ri) {
216         if (cpreg_field_is_64bit(ri)) {
217             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
218         } else {
219             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
220         }
221     }
222     return 0;
223 }
224 
225 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
226 {
227     return 0;
228 }
229 
230 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
231 {
232    /* Return true if the regdef would cause an assertion if you called
233     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
234     * program bug for it not to have the NO_RAW flag).
235     * NB that returning false here doesn't necessarily mean that calling
236     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
237     * read/write access functions which are safe for raw use" from "has
238     * read/write access functions which have side effects but has forgotten
239     * to provide raw access functions".
240     * The tests here line up with the conditions in read/write_raw_cp_reg()
241     * and assertions in raw_read()/raw_write().
242     */
243     if ((ri->type & ARM_CP_CONST) ||
244         ri->fieldoffset ||
245         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
246         return false;
247     }
248     return true;
249 }
250 
251 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
252 {
253     /* Write the coprocessor state from cpu->env to the (index,value) list. */
254     int i;
255     bool ok = true;
256 
257     for (i = 0; i < cpu->cpreg_array_len; i++) {
258         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
259         const ARMCPRegInfo *ri;
260         uint64_t newval;
261 
262         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
263         if (!ri) {
264             ok = false;
265             continue;
266         }
267         if (ri->type & ARM_CP_NO_RAW) {
268             continue;
269         }
270 
271         newval = read_raw_cp_reg(&cpu->env, ri);
272         if (kvm_sync) {
273             /*
274              * Only sync if the previous list->cpustate sync succeeded.
275              * Rather than tracking the success/failure state for every
276              * item in the list, we just recheck "does the raw write we must
277              * have made in write_list_to_cpustate() read back OK" here.
278              */
279             uint64_t oldval = cpu->cpreg_values[i];
280 
281             if (oldval == newval) {
282                 continue;
283             }
284 
285             write_raw_cp_reg(&cpu->env, ri, oldval);
286             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
287                 continue;
288             }
289 
290             write_raw_cp_reg(&cpu->env, ri, newval);
291         }
292         cpu->cpreg_values[i] = newval;
293     }
294     return ok;
295 }
296 
297 bool write_list_to_cpustate(ARMCPU *cpu)
298 {
299     int i;
300     bool ok = true;
301 
302     for (i = 0; i < cpu->cpreg_array_len; i++) {
303         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
304         uint64_t v = cpu->cpreg_values[i];
305         const ARMCPRegInfo *ri;
306 
307         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
308         if (!ri) {
309             ok = false;
310             continue;
311         }
312         if (ri->type & ARM_CP_NO_RAW) {
313             continue;
314         }
315         /* Write value and confirm it reads back as written
316          * (to catch read-only registers and partially read-only
317          * registers where the incoming migration value doesn't match)
318          */
319         write_raw_cp_reg(&cpu->env, ri, v);
320         if (read_raw_cp_reg(&cpu->env, ri) != v) {
321             ok = false;
322         }
323     }
324     return ok;
325 }
326 
327 static void add_cpreg_to_list(gpointer key, gpointer opaque)
328 {
329     ARMCPU *cpu = opaque;
330     uint64_t regidx;
331     const ARMCPRegInfo *ri;
332 
333     regidx = *(uint32_t *)key;
334     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
335 
336     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
337         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
338         /* The value array need not be initialized at this point */
339         cpu->cpreg_array_len++;
340     }
341 }
342 
343 static void count_cpreg(gpointer key, gpointer opaque)
344 {
345     ARMCPU *cpu = opaque;
346     uint64_t regidx;
347     const ARMCPRegInfo *ri;
348 
349     regidx = *(uint32_t *)key;
350     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
351 
352     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
353         cpu->cpreg_array_len++;
354     }
355 }
356 
357 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
358 {
359     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
360     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
361 
362     if (aidx > bidx) {
363         return 1;
364     }
365     if (aidx < bidx) {
366         return -1;
367     }
368     return 0;
369 }
370 
371 void init_cpreg_list(ARMCPU *cpu)
372 {
373     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
374      * Note that we require cpreg_tuples[] to be sorted by key ID.
375      */
376     GList *keys;
377     int arraylen;
378 
379     keys = g_hash_table_get_keys(cpu->cp_regs);
380     keys = g_list_sort(keys, cpreg_key_compare);
381 
382     cpu->cpreg_array_len = 0;
383 
384     g_list_foreach(keys, count_cpreg, cpu);
385 
386     arraylen = cpu->cpreg_array_len;
387     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
388     cpu->cpreg_values = g_new(uint64_t, arraylen);
389     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
390     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
391     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
392     cpu->cpreg_array_len = 0;
393 
394     g_list_foreach(keys, add_cpreg_to_list, cpu);
395 
396     assert(cpu->cpreg_array_len == arraylen);
397 
398     g_list_free(keys);
399 }
400 
401 /*
402  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
403  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
404  *
405  * access_el3_aa32ns: Used to check AArch32 register views.
406  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
407  */
408 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
409                                         const ARMCPRegInfo *ri,
410                                         bool isread)
411 {
412     bool secure = arm_is_secure_below_el3(env);
413 
414     assert(!arm_el_is_aa64(env, 3));
415     if (secure) {
416         return CP_ACCESS_TRAP_UNCATEGORIZED;
417     }
418     return CP_ACCESS_OK;
419 }
420 
421 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
422                                                 const ARMCPRegInfo *ri,
423                                                 bool isread)
424 {
425     if (!arm_el_is_aa64(env, 3)) {
426         return access_el3_aa32ns(env, ri, isread);
427     }
428     return CP_ACCESS_OK;
429 }
430 
431 /* Some secure-only AArch32 registers trap to EL3 if used from
432  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
433  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
434  * We assume that the .access field is set to PL1_RW.
435  */
436 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
437                                             const ARMCPRegInfo *ri,
438                                             bool isread)
439 {
440     if (arm_current_el(env) == 3) {
441         return CP_ACCESS_OK;
442     }
443     if (arm_is_secure_below_el3(env)) {
444         return CP_ACCESS_TRAP_EL3;
445     }
446     /* This will be EL1 NS and EL2 NS, which just UNDEF */
447     return CP_ACCESS_TRAP_UNCATEGORIZED;
448 }
449 
450 /* Check for traps to "powerdown debug" registers, which are controlled
451  * by MDCR.TDOSA
452  */
453 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
454                                    bool isread)
455 {
456     int el = arm_current_el(env);
457     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
458         (env->cp15.mdcr_el2 & MDCR_TDE) ||
459         (arm_hcr_el2_eff(env) & HCR_TGE);
460 
461     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
462         return CP_ACCESS_TRAP_EL2;
463     }
464     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
465         return CP_ACCESS_TRAP_EL3;
466     }
467     return CP_ACCESS_OK;
468 }
469 
470 /* Check for traps to "debug ROM" registers, which are controlled
471  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
472  */
473 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
474                                   bool isread)
475 {
476     int el = arm_current_el(env);
477     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
478         (env->cp15.mdcr_el2 & MDCR_TDE) ||
479         (arm_hcr_el2_eff(env) & HCR_TGE);
480 
481     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
482         return CP_ACCESS_TRAP_EL2;
483     }
484     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
485         return CP_ACCESS_TRAP_EL3;
486     }
487     return CP_ACCESS_OK;
488 }
489 
490 /* Check for traps to general debug registers, which are controlled
491  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
492  */
493 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
494                                   bool isread)
495 {
496     int el = arm_current_el(env);
497     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
498         (env->cp15.mdcr_el2 & MDCR_TDE) ||
499         (arm_hcr_el2_eff(env) & HCR_TGE);
500 
501     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
502         return CP_ACCESS_TRAP_EL2;
503     }
504     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
505         return CP_ACCESS_TRAP_EL3;
506     }
507     return CP_ACCESS_OK;
508 }
509 
510 /* Check for traps to performance monitor registers, which are controlled
511  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
512  */
513 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
514                                  bool isread)
515 {
516     int el = arm_current_el(env);
517 
518     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
519         && !arm_is_secure_below_el3(env)) {
520         return CP_ACCESS_TRAP_EL2;
521     }
522     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
523         return CP_ACCESS_TRAP_EL3;
524     }
525     return CP_ACCESS_OK;
526 }
527 
528 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
529 {
530     ARMCPU *cpu = env_archcpu(env);
531 
532     raw_write(env, ri, value);
533     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
534 }
535 
536 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
537 {
538     ARMCPU *cpu = env_archcpu(env);
539 
540     if (raw_read(env, ri) != value) {
541         /* Unlike real hardware the qemu TLB uses virtual addresses,
542          * not modified virtual addresses, so this causes a TLB flush.
543          */
544         tlb_flush(CPU(cpu));
545         raw_write(env, ri, value);
546     }
547 }
548 
549 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
550                              uint64_t value)
551 {
552     ARMCPU *cpu = env_archcpu(env);
553 
554     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
555         && !extended_addresses_enabled(env)) {
556         /* For VMSA (when not using the LPAE long descriptor page table
557          * format) this register includes the ASID, so do a TLB flush.
558          * For PMSA it is purely a process ID and no action is needed.
559          */
560         tlb_flush(CPU(cpu));
561     }
562     raw_write(env, ri, value);
563 }
564 
565 /* IS variants of TLB operations must affect all cores */
566 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567                              uint64_t value)
568 {
569     CPUState *cs = env_cpu(env);
570 
571     tlb_flush_all_cpus_synced(cs);
572 }
573 
574 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
575                              uint64_t value)
576 {
577     CPUState *cs = env_cpu(env);
578 
579     tlb_flush_all_cpus_synced(cs);
580 }
581 
582 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                              uint64_t value)
584 {
585     CPUState *cs = env_cpu(env);
586 
587     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
588 }
589 
590 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                              uint64_t value)
592 {
593     CPUState *cs = env_cpu(env);
594 
595     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
596 }
597 
598 /*
599  * Non-IS variants of TLB operations are upgraded to
600  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
601  * force broadcast of these operations.
602  */
603 static bool tlb_force_broadcast(CPUARMState *env)
604 {
605     return (env->cp15.hcr_el2 & HCR_FB) &&
606         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
607 }
608 
609 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
610                           uint64_t value)
611 {
612     /* Invalidate all (TLBIALL) */
613     ARMCPU *cpu = env_archcpu(env);
614 
615     if (tlb_force_broadcast(env)) {
616         tlbiall_is_write(env, NULL, value);
617         return;
618     }
619 
620     tlb_flush(CPU(cpu));
621 }
622 
623 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
624                           uint64_t value)
625 {
626     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
627     ARMCPU *cpu = env_archcpu(env);
628 
629     if (tlb_force_broadcast(env)) {
630         tlbimva_is_write(env, NULL, value);
631         return;
632     }
633 
634     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
635 }
636 
637 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
638                            uint64_t value)
639 {
640     /* Invalidate by ASID (TLBIASID) */
641     ARMCPU *cpu = env_archcpu(env);
642 
643     if (tlb_force_broadcast(env)) {
644         tlbiasid_is_write(env, NULL, value);
645         return;
646     }
647 
648     tlb_flush(CPU(cpu));
649 }
650 
651 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
652                            uint64_t value)
653 {
654     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
655     ARMCPU *cpu = env_archcpu(env);
656 
657     if (tlb_force_broadcast(env)) {
658         tlbimvaa_is_write(env, NULL, value);
659         return;
660     }
661 
662     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
663 }
664 
665 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
666                                uint64_t value)
667 {
668     CPUState *cs = env_cpu(env);
669 
670     tlb_flush_by_mmuidx(cs,
671                         ARMMMUIdxBit_S12NSE1 |
672                         ARMMMUIdxBit_S12NSE0 |
673                         ARMMMUIdxBit_S2NS);
674 }
675 
676 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
677                                   uint64_t value)
678 {
679     CPUState *cs = env_cpu(env);
680 
681     tlb_flush_by_mmuidx_all_cpus_synced(cs,
682                                         ARMMMUIdxBit_S12NSE1 |
683                                         ARMMMUIdxBit_S12NSE0 |
684                                         ARMMMUIdxBit_S2NS);
685 }
686 
687 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
688                             uint64_t value)
689 {
690     /* Invalidate by IPA. This has to invalidate any structures that
691      * contain only stage 2 translation information, but does not need
692      * to apply to structures that contain combined stage 1 and stage 2
693      * translation information.
694      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
695      */
696     CPUState *cs = env_cpu(env);
697     uint64_t pageaddr;
698 
699     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
700         return;
701     }
702 
703     pageaddr = sextract64(value << 12, 0, 40);
704 
705     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
706 }
707 
708 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709                                uint64_t value)
710 {
711     CPUState *cs = env_cpu(env);
712     uint64_t pageaddr;
713 
714     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
715         return;
716     }
717 
718     pageaddr = sextract64(value << 12, 0, 40);
719 
720     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
721                                              ARMMMUIdxBit_S2NS);
722 }
723 
724 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
725                               uint64_t value)
726 {
727     CPUState *cs = env_cpu(env);
728 
729     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
730 }
731 
732 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
733                                  uint64_t value)
734 {
735     CPUState *cs = env_cpu(env);
736 
737     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
738 }
739 
740 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
741                               uint64_t value)
742 {
743     CPUState *cs = env_cpu(env);
744     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
745 
746     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
747 }
748 
749 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
750                                  uint64_t value)
751 {
752     CPUState *cs = env_cpu(env);
753     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
754 
755     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
756                                              ARMMMUIdxBit_S1E2);
757 }
758 
759 static const ARMCPRegInfo cp_reginfo[] = {
760     /* Define the secure and non-secure FCSE identifier CP registers
761      * separately because there is no secure bank in V8 (no _EL3).  This allows
762      * the secure register to be properly reset and migrated. There is also no
763      * v8 EL1 version of the register so the non-secure instance stands alone.
764      */
765     { .name = "FCSEIDR",
766       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
767       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
768       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
769       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
770     { .name = "FCSEIDR_S",
771       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
772       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
773       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
774       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
775     /* Define the secure and non-secure context identifier CP registers
776      * separately because there is no secure bank in V8 (no _EL3).  This allows
777      * the secure register to be properly reset and migrated.  In the
778      * non-secure case, the 32-bit register will have reset and migration
779      * disabled during registration as it is handled by the 64-bit instance.
780      */
781     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
782       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
783       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
784       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
785       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
786     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
787       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
788       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
789       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
790       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
791     REGINFO_SENTINEL
792 };
793 
794 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
795     /* NB: Some of these registers exist in v8 but with more precise
796      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
797      */
798     /* MMU Domain access control / MPU write buffer control */
799     { .name = "DACR",
800       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
801       .access = PL1_RW, .resetvalue = 0,
802       .writefn = dacr_write, .raw_writefn = raw_write,
803       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
804                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
805     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
806      * For v6 and v5, these mappings are overly broad.
807      */
808     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
809       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
810     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
811       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
812     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
813       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
815       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816     /* Cache maintenance ops; some of this space may be overridden later. */
817     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
818       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
819       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
820     REGINFO_SENTINEL
821 };
822 
823 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
824     /* Not all pre-v6 cores implemented this WFI, so this is slightly
825      * over-broad.
826      */
827     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
828       .access = PL1_W, .type = ARM_CP_WFI },
829     REGINFO_SENTINEL
830 };
831 
832 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
833     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
834      * is UNPREDICTABLE; we choose to NOP as most implementations do).
835      */
836     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
837       .access = PL1_W, .type = ARM_CP_WFI },
838     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
839      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
840      * OMAPCP will override this space.
841      */
842     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
843       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
844       .resetvalue = 0 },
845     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
846       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
847       .resetvalue = 0 },
848     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
849     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
850       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
851       .resetvalue = 0 },
852     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
853      * implementing it as RAZ means the "debug architecture version" bits
854      * will read as a reserved value, which should cause Linux to not try
855      * to use the debug hardware.
856      */
857     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
858       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859     /* MMU TLB control. Note that the wildcarding means we cover not just
860      * the unified TLB ops but also the dside/iside/inner-shareable variants.
861      */
862     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
863       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
864       .type = ARM_CP_NO_RAW },
865     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
866       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
867       .type = ARM_CP_NO_RAW },
868     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
869       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
870       .type = ARM_CP_NO_RAW },
871     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
872       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
873       .type = ARM_CP_NO_RAW },
874     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
875       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
876     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
877       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
878     REGINFO_SENTINEL
879 };
880 
881 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
882                         uint64_t value)
883 {
884     uint32_t mask = 0;
885 
886     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
887     if (!arm_feature(env, ARM_FEATURE_V8)) {
888         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
889          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
890          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
891          */
892         if (arm_feature(env, ARM_FEATURE_VFP)) {
893             /* VFP coprocessor: cp10 & cp11 [23:20] */
894             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
895 
896             if (!arm_feature(env, ARM_FEATURE_NEON)) {
897                 /* ASEDIS [31] bit is RAO/WI */
898                 value |= (1 << 31);
899             }
900 
901             /* VFPv3 and upwards with NEON implement 32 double precision
902              * registers (D0-D31).
903              */
904             if (!arm_feature(env, ARM_FEATURE_NEON) ||
905                     !arm_feature(env, ARM_FEATURE_VFP3)) {
906                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
907                 value |= (1 << 30);
908             }
909         }
910         value &= mask;
911     }
912 
913     /*
914      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
915      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
916      */
917     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
918         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
919         value &= ~(0xf << 20);
920         value |= env->cp15.cpacr_el1 & (0xf << 20);
921     }
922 
923     env->cp15.cpacr_el1 = value;
924 }
925 
926 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
927 {
928     /*
929      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
930      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
931      */
932     uint64_t value = env->cp15.cpacr_el1;
933 
934     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
935         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
936         value &= ~(0xf << 20);
937     }
938     return value;
939 }
940 
941 
942 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
943 {
944     /* Call cpacr_write() so that we reset with the correct RAO bits set
945      * for our CPU features.
946      */
947     cpacr_write(env, ri, 0);
948 }
949 
950 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
951                                    bool isread)
952 {
953     if (arm_feature(env, ARM_FEATURE_V8)) {
954         /* Check if CPACR accesses are to be trapped to EL2 */
955         if (arm_current_el(env) == 1 &&
956             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
957             return CP_ACCESS_TRAP_EL2;
958         /* Check if CPACR accesses are to be trapped to EL3 */
959         } else if (arm_current_el(env) < 3 &&
960                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
961             return CP_ACCESS_TRAP_EL3;
962         }
963     }
964 
965     return CP_ACCESS_OK;
966 }
967 
968 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
969                                   bool isread)
970 {
971     /* Check if CPTR accesses are set to trap to EL3 */
972     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
973         return CP_ACCESS_TRAP_EL3;
974     }
975 
976     return CP_ACCESS_OK;
977 }
978 
979 static const ARMCPRegInfo v6_cp_reginfo[] = {
980     /* prefetch by MVA in v6, NOP in v7 */
981     { .name = "MVA_prefetch",
982       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
983       .access = PL1_W, .type = ARM_CP_NOP },
984     /* We need to break the TB after ISB to execute self-modifying code
985      * correctly and also to take any pending interrupts immediately.
986      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
987      */
988     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
989       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
990     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
991       .access = PL0_W, .type = ARM_CP_NOP },
992     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
993       .access = PL0_W, .type = ARM_CP_NOP },
994     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
995       .access = PL1_RW,
996       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
997                              offsetof(CPUARMState, cp15.ifar_ns) },
998       .resetvalue = 0, },
999     /* Watchpoint Fault Address Register : should actually only be present
1000      * for 1136, 1176, 11MPCore.
1001      */
1002     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1003       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1004     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1005       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1006       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1007       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1008     REGINFO_SENTINEL
1009 };
1010 
1011 /* Definitions for the PMU registers */
1012 #define PMCRN_MASK  0xf800
1013 #define PMCRN_SHIFT 11
1014 #define PMCRLC  0x40
1015 #define PMCRDP  0x10
1016 #define PMCRD   0x8
1017 #define PMCRC   0x4
1018 #define PMCRP   0x2
1019 #define PMCRE   0x1
1020 
1021 #define PMXEVTYPER_P          0x80000000
1022 #define PMXEVTYPER_U          0x40000000
1023 #define PMXEVTYPER_NSK        0x20000000
1024 #define PMXEVTYPER_NSU        0x10000000
1025 #define PMXEVTYPER_NSH        0x08000000
1026 #define PMXEVTYPER_M          0x04000000
1027 #define PMXEVTYPER_MT         0x02000000
1028 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1029 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1030                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1031                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1032                                PMXEVTYPER_EVTCOUNT)
1033 
1034 #define PMCCFILTR             0xf8000000
1035 #define PMCCFILTR_M           PMXEVTYPER_M
1036 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1037 
1038 static inline uint32_t pmu_num_counters(CPUARMState *env)
1039 {
1040   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1041 }
1042 
1043 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1044 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1045 {
1046   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1047 }
1048 
1049 typedef struct pm_event {
1050     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1051     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1052     bool (*supported)(CPUARMState *);
1053     /*
1054      * Retrieve the current count of the underlying event. The programmed
1055      * counters hold a difference from the return value from this function
1056      */
1057     uint64_t (*get_count)(CPUARMState *);
1058     /*
1059      * Return how many nanoseconds it will take (at a minimum) for count events
1060      * to occur. A negative value indicates the counter will never overflow, or
1061      * that the counter has otherwise arranged for the overflow bit to be set
1062      * and the PMU interrupt to be raised on overflow.
1063      */
1064     int64_t (*ns_per_count)(uint64_t);
1065 } pm_event;
1066 
1067 static bool event_always_supported(CPUARMState *env)
1068 {
1069     return true;
1070 }
1071 
1072 static uint64_t swinc_get_count(CPUARMState *env)
1073 {
1074     /*
1075      * SW_INCR events are written directly to the pmevcntr's by writes to
1076      * PMSWINC, so there is no underlying count maintained by the PMU itself
1077      */
1078     return 0;
1079 }
1080 
1081 static int64_t swinc_ns_per(uint64_t ignored)
1082 {
1083     return -1;
1084 }
1085 
1086 /*
1087  * Return the underlying cycle count for the PMU cycle counters. If we're in
1088  * usermode, simply return 0.
1089  */
1090 static uint64_t cycles_get_count(CPUARMState *env)
1091 {
1092 #ifndef CONFIG_USER_ONLY
1093     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1094                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1095 #else
1096     return cpu_get_host_ticks();
1097 #endif
1098 }
1099 
1100 #ifndef CONFIG_USER_ONLY
1101 static int64_t cycles_ns_per(uint64_t cycles)
1102 {
1103     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1104 }
1105 
1106 static bool instructions_supported(CPUARMState *env)
1107 {
1108     return use_icount == 1 /* Precise instruction counting */;
1109 }
1110 
1111 static uint64_t instructions_get_count(CPUARMState *env)
1112 {
1113     return (uint64_t)cpu_get_icount_raw();
1114 }
1115 
1116 static int64_t instructions_ns_per(uint64_t icount)
1117 {
1118     return cpu_icount_to_ns((int64_t)icount);
1119 }
1120 #endif
1121 
1122 static const pm_event pm_events[] = {
1123     { .number = 0x000, /* SW_INCR */
1124       .supported = event_always_supported,
1125       .get_count = swinc_get_count,
1126       .ns_per_count = swinc_ns_per,
1127     },
1128 #ifndef CONFIG_USER_ONLY
1129     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1130       .supported = instructions_supported,
1131       .get_count = instructions_get_count,
1132       .ns_per_count = instructions_ns_per,
1133     },
1134     { .number = 0x011, /* CPU_CYCLES, Cycle */
1135       .supported = event_always_supported,
1136       .get_count = cycles_get_count,
1137       .ns_per_count = cycles_ns_per,
1138     }
1139 #endif
1140 };
1141 
1142 /*
1143  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1144  * events (i.e. the statistical profiling extension), this implementation
1145  * should first be updated to something sparse instead of the current
1146  * supported_event_map[] array.
1147  */
1148 #define MAX_EVENT_ID 0x11
1149 #define UNSUPPORTED_EVENT UINT16_MAX
1150 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1151 
1152 /*
1153  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1154  * of ARM event numbers to indices in our pm_events array.
1155  *
1156  * Note: Events in the 0x40XX range are not currently supported.
1157  */
1158 void pmu_init(ARMCPU *cpu)
1159 {
1160     unsigned int i;
1161 
1162     /*
1163      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1164      * events to them
1165      */
1166     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1167         supported_event_map[i] = UNSUPPORTED_EVENT;
1168     }
1169     cpu->pmceid0 = 0;
1170     cpu->pmceid1 = 0;
1171 
1172     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1173         const pm_event *cnt = &pm_events[i];
1174         assert(cnt->number <= MAX_EVENT_ID);
1175         /* We do not currently support events in the 0x40xx range */
1176         assert(cnt->number <= 0x3f);
1177 
1178         if (cnt->supported(&cpu->env)) {
1179             supported_event_map[cnt->number] = i;
1180             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1181             if (cnt->number & 0x20) {
1182                 cpu->pmceid1 |= event_mask;
1183             } else {
1184                 cpu->pmceid0 |= event_mask;
1185             }
1186         }
1187     }
1188 }
1189 
1190 /*
1191  * Check at runtime whether a PMU event is supported for the current machine
1192  */
1193 static bool event_supported(uint16_t number)
1194 {
1195     if (number > MAX_EVENT_ID) {
1196         return false;
1197     }
1198     return supported_event_map[number] != UNSUPPORTED_EVENT;
1199 }
1200 
1201 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1202                                    bool isread)
1203 {
1204     /* Performance monitor registers user accessibility is controlled
1205      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1206      * trapping to EL2 or EL3 for other accesses.
1207      */
1208     int el = arm_current_el(env);
1209 
1210     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1211         return CP_ACCESS_TRAP;
1212     }
1213     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1214         && !arm_is_secure_below_el3(env)) {
1215         return CP_ACCESS_TRAP_EL2;
1216     }
1217     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1218         return CP_ACCESS_TRAP_EL3;
1219     }
1220 
1221     return CP_ACCESS_OK;
1222 }
1223 
1224 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1225                                            const ARMCPRegInfo *ri,
1226                                            bool isread)
1227 {
1228     /* ER: event counter read trap control */
1229     if (arm_feature(env, ARM_FEATURE_V8)
1230         && arm_current_el(env) == 0
1231         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1232         && isread) {
1233         return CP_ACCESS_OK;
1234     }
1235 
1236     return pmreg_access(env, ri, isread);
1237 }
1238 
1239 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1240                                          const ARMCPRegInfo *ri,
1241                                          bool isread)
1242 {
1243     /* SW: software increment write trap control */
1244     if (arm_feature(env, ARM_FEATURE_V8)
1245         && arm_current_el(env) == 0
1246         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1247         && !isread) {
1248         return CP_ACCESS_OK;
1249     }
1250 
1251     return pmreg_access(env, ri, isread);
1252 }
1253 
1254 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1255                                         const ARMCPRegInfo *ri,
1256                                         bool isread)
1257 {
1258     /* ER: event counter read trap control */
1259     if (arm_feature(env, ARM_FEATURE_V8)
1260         && arm_current_el(env) == 0
1261         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1262         return CP_ACCESS_OK;
1263     }
1264 
1265     return pmreg_access(env, ri, isread);
1266 }
1267 
1268 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1269                                          const ARMCPRegInfo *ri,
1270                                          bool isread)
1271 {
1272     /* CR: cycle counter read trap control */
1273     if (arm_feature(env, ARM_FEATURE_V8)
1274         && arm_current_el(env) == 0
1275         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1276         && isread) {
1277         return CP_ACCESS_OK;
1278     }
1279 
1280     return pmreg_access(env, ri, isread);
1281 }
1282 
1283 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1284  * the current EL, security state, and register configuration.
1285  */
1286 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1287 {
1288     uint64_t filter;
1289     bool e, p, u, nsk, nsu, nsh, m;
1290     bool enabled, prohibited, filtered;
1291     bool secure = arm_is_secure(env);
1292     int el = arm_current_el(env);
1293     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1294 
1295     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1296         return false;
1297     }
1298 
1299     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1300             (counter < hpmn || counter == 31)) {
1301         e = env->cp15.c9_pmcr & PMCRE;
1302     } else {
1303         e = env->cp15.mdcr_el2 & MDCR_HPME;
1304     }
1305     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1306 
1307     if (!secure) {
1308         if (el == 2 && (counter < hpmn || counter == 31)) {
1309             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1310         } else {
1311             prohibited = false;
1312         }
1313     } else {
1314         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1315            (env->cp15.mdcr_el3 & MDCR_SPME);
1316     }
1317 
1318     if (prohibited && counter == 31) {
1319         prohibited = env->cp15.c9_pmcr & PMCRDP;
1320     }
1321 
1322     if (counter == 31) {
1323         filter = env->cp15.pmccfiltr_el0;
1324     } else {
1325         filter = env->cp15.c14_pmevtyper[counter];
1326     }
1327 
1328     p   = filter & PMXEVTYPER_P;
1329     u   = filter & PMXEVTYPER_U;
1330     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1331     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1332     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1333     m   = arm_el_is_aa64(env, 1) &&
1334               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1335 
1336     if (el == 0) {
1337         filtered = secure ? u : u != nsu;
1338     } else if (el == 1) {
1339         filtered = secure ? p : p != nsk;
1340     } else if (el == 2) {
1341         filtered = !nsh;
1342     } else { /* EL3 */
1343         filtered = m != p;
1344     }
1345 
1346     if (counter != 31) {
1347         /*
1348          * If not checking PMCCNTR, ensure the counter is setup to an event we
1349          * support
1350          */
1351         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1352         if (!event_supported(event)) {
1353             return false;
1354         }
1355     }
1356 
1357     return enabled && !prohibited && !filtered;
1358 }
1359 
1360 static void pmu_update_irq(CPUARMState *env)
1361 {
1362     ARMCPU *cpu = env_archcpu(env);
1363     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1364             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1365 }
1366 
1367 /*
1368  * Ensure c15_ccnt is the guest-visible count so that operations such as
1369  * enabling/disabling the counter or filtering, modifying the count itself,
1370  * etc. can be done logically. This is essentially a no-op if the counter is
1371  * not enabled at the time of the call.
1372  */
1373 static void pmccntr_op_start(CPUARMState *env)
1374 {
1375     uint64_t cycles = cycles_get_count(env);
1376 
1377     if (pmu_counter_enabled(env, 31)) {
1378         uint64_t eff_cycles = cycles;
1379         if (env->cp15.c9_pmcr & PMCRD) {
1380             /* Increment once every 64 processor clock cycles */
1381             eff_cycles /= 64;
1382         }
1383 
1384         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1385 
1386         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1387                                  1ull << 63 : 1ull << 31;
1388         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1389             env->cp15.c9_pmovsr |= (1 << 31);
1390             pmu_update_irq(env);
1391         }
1392 
1393         env->cp15.c15_ccnt = new_pmccntr;
1394     }
1395     env->cp15.c15_ccnt_delta = cycles;
1396 }
1397 
1398 /*
1399  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1400  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1401  * pmccntr_op_start.
1402  */
1403 static void pmccntr_op_finish(CPUARMState *env)
1404 {
1405     if (pmu_counter_enabled(env, 31)) {
1406 #ifndef CONFIG_USER_ONLY
1407         /* Calculate when the counter will next overflow */
1408         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1409         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1410             remaining_cycles = (uint32_t)remaining_cycles;
1411         }
1412         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1413 
1414         if (overflow_in > 0) {
1415             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1416                 overflow_in;
1417             ARMCPU *cpu = env_archcpu(env);
1418             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1419         }
1420 #endif
1421 
1422         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1423         if (env->cp15.c9_pmcr & PMCRD) {
1424             /* Increment once every 64 processor clock cycles */
1425             prev_cycles /= 64;
1426         }
1427         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1428     }
1429 }
1430 
1431 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1432 {
1433 
1434     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1435     uint64_t count = 0;
1436     if (event_supported(event)) {
1437         uint16_t event_idx = supported_event_map[event];
1438         count = pm_events[event_idx].get_count(env);
1439     }
1440 
1441     if (pmu_counter_enabled(env, counter)) {
1442         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1443 
1444         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1445             env->cp15.c9_pmovsr |= (1 << counter);
1446             pmu_update_irq(env);
1447         }
1448         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1449     }
1450     env->cp15.c14_pmevcntr_delta[counter] = count;
1451 }
1452 
1453 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1454 {
1455     if (pmu_counter_enabled(env, counter)) {
1456 #ifndef CONFIG_USER_ONLY
1457         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1458         uint16_t event_idx = supported_event_map[event];
1459         uint64_t delta = UINT32_MAX -
1460             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1461         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1462 
1463         if (overflow_in > 0) {
1464             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1465                 overflow_in;
1466             ARMCPU *cpu = env_archcpu(env);
1467             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1468         }
1469 #endif
1470 
1471         env->cp15.c14_pmevcntr_delta[counter] -=
1472             env->cp15.c14_pmevcntr[counter];
1473     }
1474 }
1475 
1476 void pmu_op_start(CPUARMState *env)
1477 {
1478     unsigned int i;
1479     pmccntr_op_start(env);
1480     for (i = 0; i < pmu_num_counters(env); i++) {
1481         pmevcntr_op_start(env, i);
1482     }
1483 }
1484 
1485 void pmu_op_finish(CPUARMState *env)
1486 {
1487     unsigned int i;
1488     pmccntr_op_finish(env);
1489     for (i = 0; i < pmu_num_counters(env); i++) {
1490         pmevcntr_op_finish(env, i);
1491     }
1492 }
1493 
1494 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1495 {
1496     pmu_op_start(&cpu->env);
1497 }
1498 
1499 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1500 {
1501     pmu_op_finish(&cpu->env);
1502 }
1503 
1504 void arm_pmu_timer_cb(void *opaque)
1505 {
1506     ARMCPU *cpu = opaque;
1507 
1508     /*
1509      * Update all the counter values based on the current underlying counts,
1510      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1511      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1512      * counter may expire.
1513      */
1514     pmu_op_start(&cpu->env);
1515     pmu_op_finish(&cpu->env);
1516 }
1517 
1518 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1519                        uint64_t value)
1520 {
1521     pmu_op_start(env);
1522 
1523     if (value & PMCRC) {
1524         /* The counter has been reset */
1525         env->cp15.c15_ccnt = 0;
1526     }
1527 
1528     if (value & PMCRP) {
1529         unsigned int i;
1530         for (i = 0; i < pmu_num_counters(env); i++) {
1531             env->cp15.c14_pmevcntr[i] = 0;
1532         }
1533     }
1534 
1535     /* only the DP, X, D and E bits are writable */
1536     env->cp15.c9_pmcr &= ~0x39;
1537     env->cp15.c9_pmcr |= (value & 0x39);
1538 
1539     pmu_op_finish(env);
1540 }
1541 
1542 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1543                           uint64_t value)
1544 {
1545     unsigned int i;
1546     for (i = 0; i < pmu_num_counters(env); i++) {
1547         /* Increment a counter's count iff: */
1548         if ((value & (1 << i)) && /* counter's bit is set */
1549                 /* counter is enabled and not filtered */
1550                 pmu_counter_enabled(env, i) &&
1551                 /* counter is SW_INCR */
1552                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1553             pmevcntr_op_start(env, i);
1554 
1555             /*
1556              * Detect if this write causes an overflow since we can't predict
1557              * PMSWINC overflows like we can for other events
1558              */
1559             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1560 
1561             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1562                 env->cp15.c9_pmovsr |= (1 << i);
1563                 pmu_update_irq(env);
1564             }
1565 
1566             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1567 
1568             pmevcntr_op_finish(env, i);
1569         }
1570     }
1571 }
1572 
1573 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1574 {
1575     uint64_t ret;
1576     pmccntr_op_start(env);
1577     ret = env->cp15.c15_ccnt;
1578     pmccntr_op_finish(env);
1579     return ret;
1580 }
1581 
1582 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1583                          uint64_t value)
1584 {
1585     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1586      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1587      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1588      * accessed.
1589      */
1590     env->cp15.c9_pmselr = value & 0x1f;
1591 }
1592 
1593 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594                         uint64_t value)
1595 {
1596     pmccntr_op_start(env);
1597     env->cp15.c15_ccnt = value;
1598     pmccntr_op_finish(env);
1599 }
1600 
1601 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1602                             uint64_t value)
1603 {
1604     uint64_t cur_val = pmccntr_read(env, NULL);
1605 
1606     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1607 }
1608 
1609 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610                             uint64_t value)
1611 {
1612     pmccntr_op_start(env);
1613     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1614     pmccntr_op_finish(env);
1615 }
1616 
1617 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1618                             uint64_t value)
1619 {
1620     pmccntr_op_start(env);
1621     /* M is not accessible from AArch32 */
1622     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1623         (value & PMCCFILTR);
1624     pmccntr_op_finish(env);
1625 }
1626 
1627 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1628 {
1629     /* M is not visible in AArch32 */
1630     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1631 }
1632 
1633 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634                             uint64_t value)
1635 {
1636     value &= pmu_counter_mask(env);
1637     env->cp15.c9_pmcnten |= value;
1638 }
1639 
1640 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1641                              uint64_t value)
1642 {
1643     value &= pmu_counter_mask(env);
1644     env->cp15.c9_pmcnten &= ~value;
1645 }
1646 
1647 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1648                          uint64_t value)
1649 {
1650     value &= pmu_counter_mask(env);
1651     env->cp15.c9_pmovsr &= ~value;
1652     pmu_update_irq(env);
1653 }
1654 
1655 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1656                          uint64_t value)
1657 {
1658     value &= pmu_counter_mask(env);
1659     env->cp15.c9_pmovsr |= value;
1660     pmu_update_irq(env);
1661 }
1662 
1663 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1664                              uint64_t value, const uint8_t counter)
1665 {
1666     if (counter == 31) {
1667         pmccfiltr_write(env, ri, value);
1668     } else if (counter < pmu_num_counters(env)) {
1669         pmevcntr_op_start(env, counter);
1670 
1671         /*
1672          * If this counter's event type is changing, store the current
1673          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1674          * pmevcntr_op_finish has the correct baseline when it converts back to
1675          * a delta.
1676          */
1677         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1678             PMXEVTYPER_EVTCOUNT;
1679         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1680         if (old_event != new_event) {
1681             uint64_t count = 0;
1682             if (event_supported(new_event)) {
1683                 uint16_t event_idx = supported_event_map[new_event];
1684                 count = pm_events[event_idx].get_count(env);
1685             }
1686             env->cp15.c14_pmevcntr_delta[counter] = count;
1687         }
1688 
1689         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1690         pmevcntr_op_finish(env, counter);
1691     }
1692     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1693      * PMSELR value is equal to or greater than the number of implemented
1694      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1695      */
1696 }
1697 
1698 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1699                                const uint8_t counter)
1700 {
1701     if (counter == 31) {
1702         return env->cp15.pmccfiltr_el0;
1703     } else if (counter < pmu_num_counters(env)) {
1704         return env->cp15.c14_pmevtyper[counter];
1705     } else {
1706       /*
1707        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1708        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1709        */
1710         return 0;
1711     }
1712 }
1713 
1714 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1715                               uint64_t value)
1716 {
1717     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1718     pmevtyper_write(env, ri, value, counter);
1719 }
1720 
1721 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1722                                uint64_t value)
1723 {
1724     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1725     env->cp15.c14_pmevtyper[counter] = value;
1726 
1727     /*
1728      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1729      * pmu_op_finish calls when loading saved state for a migration. Because
1730      * we're potentially updating the type of event here, the value written to
1731      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1732      * different counter type. Therefore, we need to set this value to the
1733      * current count for the counter type we're writing so that pmu_op_finish
1734      * has the correct count for its calculation.
1735      */
1736     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1737     if (event_supported(event)) {
1738         uint16_t event_idx = supported_event_map[event];
1739         env->cp15.c14_pmevcntr_delta[counter] =
1740             pm_events[event_idx].get_count(env);
1741     }
1742 }
1743 
1744 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1745 {
1746     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1747     return pmevtyper_read(env, ri, counter);
1748 }
1749 
1750 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751                              uint64_t value)
1752 {
1753     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1754 }
1755 
1756 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1757 {
1758     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1759 }
1760 
1761 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762                              uint64_t value, uint8_t counter)
1763 {
1764     if (counter < pmu_num_counters(env)) {
1765         pmevcntr_op_start(env, counter);
1766         env->cp15.c14_pmevcntr[counter] = value;
1767         pmevcntr_op_finish(env, counter);
1768     }
1769     /*
1770      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1771      * are CONSTRAINED UNPREDICTABLE.
1772      */
1773 }
1774 
1775 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1776                               uint8_t counter)
1777 {
1778     if (counter < pmu_num_counters(env)) {
1779         uint64_t ret;
1780         pmevcntr_op_start(env, counter);
1781         ret = env->cp15.c14_pmevcntr[counter];
1782         pmevcntr_op_finish(env, counter);
1783         return ret;
1784     } else {
1785       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1786        * are CONSTRAINED UNPREDICTABLE. */
1787         return 0;
1788     }
1789 }
1790 
1791 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1795     pmevcntr_write(env, ri, value, counter);
1796 }
1797 
1798 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1799 {
1800     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1801     return pmevcntr_read(env, ri, counter);
1802 }
1803 
1804 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1805                              uint64_t value)
1806 {
1807     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1808     assert(counter < pmu_num_counters(env));
1809     env->cp15.c14_pmevcntr[counter] = value;
1810     pmevcntr_write(env, ri, value, counter);
1811 }
1812 
1813 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1814 {
1815     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1816     assert(counter < pmu_num_counters(env));
1817     return env->cp15.c14_pmevcntr[counter];
1818 }
1819 
1820 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1821                              uint64_t value)
1822 {
1823     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1824 }
1825 
1826 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827 {
1828     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1829 }
1830 
1831 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832                             uint64_t value)
1833 {
1834     if (arm_feature(env, ARM_FEATURE_V8)) {
1835         env->cp15.c9_pmuserenr = value & 0xf;
1836     } else {
1837         env->cp15.c9_pmuserenr = value & 1;
1838     }
1839 }
1840 
1841 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1842                              uint64_t value)
1843 {
1844     /* We have no event counters so only the C bit can be changed */
1845     value &= pmu_counter_mask(env);
1846     env->cp15.c9_pminten |= value;
1847     pmu_update_irq(env);
1848 }
1849 
1850 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851                              uint64_t value)
1852 {
1853     value &= pmu_counter_mask(env);
1854     env->cp15.c9_pminten &= ~value;
1855     pmu_update_irq(env);
1856 }
1857 
1858 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1859                        uint64_t value)
1860 {
1861     /* Note that even though the AArch64 view of this register has bits
1862      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863      * architectural requirements for bits which are RES0 only in some
1864      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1866      */
1867     raw_write(env, ri, value & ~0x1FULL);
1868 }
1869 
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1871 {
1872     /* Begin with base v8.0 state.  */
1873     uint32_t valid_mask = 0x3fff;
1874     ARMCPU *cpu = env_archcpu(env);
1875 
1876     if (arm_el_is_aa64(env, 3)) {
1877         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1878         valid_mask &= ~SCR_NET;
1879     } else {
1880         valid_mask &= ~(SCR_RW | SCR_ST);
1881     }
1882 
1883     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1884         valid_mask &= ~SCR_HCE;
1885 
1886         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1887          * supported if EL2 exists. The bit is UNK/SBZP when
1888          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1889          * when EL2 is unavailable.
1890          * On ARMv8, this bit is always available.
1891          */
1892         if (arm_feature(env, ARM_FEATURE_V7) &&
1893             !arm_feature(env, ARM_FEATURE_V8)) {
1894             valid_mask &= ~SCR_SMD;
1895         }
1896     }
1897     if (cpu_isar_feature(aa64_lor, cpu)) {
1898         valid_mask |= SCR_TLOR;
1899     }
1900     if (cpu_isar_feature(aa64_pauth, cpu)) {
1901         valid_mask |= SCR_API | SCR_APK;
1902     }
1903 
1904     /* Clear all-context RES0 bits.  */
1905     value &= valid_mask;
1906     raw_write(env, ri, value);
1907 }
1908 
1909 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1910 {
1911     ARMCPU *cpu = env_archcpu(env);
1912 
1913     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1914      * bank
1915      */
1916     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1917                                         ri->secure & ARM_CP_SECSTATE_S);
1918 
1919     return cpu->ccsidr[index];
1920 }
1921 
1922 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1923                          uint64_t value)
1924 {
1925     raw_write(env, ri, value & 0xf);
1926 }
1927 
1928 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1929 {
1930     CPUState *cs = env_cpu(env);
1931     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1932     uint64_t ret = 0;
1933 
1934     if (hcr_el2 & HCR_IMO) {
1935         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1936             ret |= CPSR_I;
1937         }
1938     } else {
1939         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1940             ret |= CPSR_I;
1941         }
1942     }
1943 
1944     if (hcr_el2 & HCR_FMO) {
1945         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1946             ret |= CPSR_F;
1947         }
1948     } else {
1949         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1950             ret |= CPSR_F;
1951         }
1952     }
1953 
1954     /* External aborts are not possible in QEMU so A bit is always clear */
1955     return ret;
1956 }
1957 
1958 static const ARMCPRegInfo v7_cp_reginfo[] = {
1959     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1960     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1961       .access = PL1_W, .type = ARM_CP_NOP },
1962     /* Performance monitors are implementation defined in v7,
1963      * but with an ARM recommended set of registers, which we
1964      * follow.
1965      *
1966      * Performance registers fall into three categories:
1967      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1968      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1969      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1970      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1971      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1972      */
1973     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1974       .access = PL0_RW, .type = ARM_CP_ALIAS,
1975       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1976       .writefn = pmcntenset_write,
1977       .accessfn = pmreg_access,
1978       .raw_writefn = raw_write },
1979     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1980       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1981       .access = PL0_RW, .accessfn = pmreg_access,
1982       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1983       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1984     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1985       .access = PL0_RW,
1986       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1987       .accessfn = pmreg_access,
1988       .writefn = pmcntenclr_write,
1989       .type = ARM_CP_ALIAS },
1990     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1991       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1992       .access = PL0_RW, .accessfn = pmreg_access,
1993       .type = ARM_CP_ALIAS,
1994       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1995       .writefn = pmcntenclr_write },
1996     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1997       .access = PL0_RW, .type = ARM_CP_IO,
1998       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1999       .accessfn = pmreg_access,
2000       .writefn = pmovsr_write,
2001       .raw_writefn = raw_write },
2002     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2003       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2004       .access = PL0_RW, .accessfn = pmreg_access,
2005       .type = ARM_CP_ALIAS | ARM_CP_IO,
2006       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2007       .writefn = pmovsr_write,
2008       .raw_writefn = raw_write },
2009     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2010       .access = PL0_W, .accessfn = pmreg_access_swinc,
2011       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012       .writefn = pmswinc_write },
2013     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2014       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2015       .access = PL0_W, .accessfn = pmreg_access_swinc,
2016       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2017       .writefn = pmswinc_write },
2018     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2019       .access = PL0_RW, .type = ARM_CP_ALIAS,
2020       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2021       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2022       .raw_writefn = raw_write},
2023     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2024       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2025       .access = PL0_RW, .accessfn = pmreg_access_selr,
2026       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2027       .writefn = pmselr_write, .raw_writefn = raw_write, },
2028     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2029       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2030       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2031       .accessfn = pmreg_access_ccntr },
2032     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2034       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2035       .type = ARM_CP_IO,
2036       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2037       .readfn = pmccntr_read, .writefn = pmccntr_write,
2038       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2039     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2040       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2041       .access = PL0_RW, .accessfn = pmreg_access,
2042       .type = ARM_CP_ALIAS | ARM_CP_IO,
2043       .resetvalue = 0, },
2044     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2045       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2046       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2047       .access = PL0_RW, .accessfn = pmreg_access,
2048       .type = ARM_CP_IO,
2049       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2050       .resetvalue = 0, },
2051     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2052       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2053       .accessfn = pmreg_access,
2054       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2055     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2056       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2057       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2058       .accessfn = pmreg_access,
2059       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2060     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2061       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2062       .accessfn = pmreg_access_xevcntr,
2063       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2064     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2065       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2066       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2067       .accessfn = pmreg_access_xevcntr,
2068       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2069     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2070       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2071       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2072       .resetvalue = 0,
2073       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2074     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2075       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2076       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2077       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2078       .resetvalue = 0,
2079       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2080     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2081       .access = PL1_RW, .accessfn = access_tpm,
2082       .type = ARM_CP_ALIAS | ARM_CP_IO,
2083       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2084       .resetvalue = 0,
2085       .writefn = pmintenset_write, .raw_writefn = raw_write },
2086     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2088       .access = PL1_RW, .accessfn = access_tpm,
2089       .type = ARM_CP_IO,
2090       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2091       .writefn = pmintenset_write, .raw_writefn = raw_write,
2092       .resetvalue = 0x0 },
2093     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2094       .access = PL1_RW, .accessfn = access_tpm,
2095       .type = ARM_CP_ALIAS | ARM_CP_IO,
2096       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2097       .writefn = pmintenclr_write, },
2098     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2100       .access = PL1_RW, .accessfn = access_tpm,
2101       .type = ARM_CP_ALIAS | ARM_CP_IO,
2102       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2103       .writefn = pmintenclr_write },
2104     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2105       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2106       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2107     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2108       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2109       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2110       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2111                              offsetof(CPUARMState, cp15.csselr_ns) } },
2112     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2113      * just RAZ for all cores:
2114      */
2115     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2116       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2117       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2118     /* Auxiliary fault status registers: these also are IMPDEF, and we
2119      * choose to RAZ/WI for all cores.
2120      */
2121     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2122       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2123       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2124     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2125       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2126       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2127     /* MAIR can just read-as-written because we don't implement caches
2128      * and so don't need to care about memory attributes.
2129      */
2130     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2131       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2132       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2133       .resetvalue = 0 },
2134     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2135       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2136       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2137       .resetvalue = 0 },
2138     /* For non-long-descriptor page tables these are PRRR and NMRR;
2139      * regardless they still act as reads-as-written for QEMU.
2140      */
2141      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2142       * allows them to assign the correct fieldoffset based on the endianness
2143       * handled in the field definitions.
2144       */
2145     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2146       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2147       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2148                              offsetof(CPUARMState, cp15.mair0_ns) },
2149       .resetfn = arm_cp_reset_ignore },
2150     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2151       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2152       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2153                              offsetof(CPUARMState, cp15.mair1_ns) },
2154       .resetfn = arm_cp_reset_ignore },
2155     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2156       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2157       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2158     /* 32 bit ITLB invalidates */
2159     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2160       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2161     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2162       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2163     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2164       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2165     /* 32 bit DTLB invalidates */
2166     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2167       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2168     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2169       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2170     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2171       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2172     /* 32 bit TLB invalidates */
2173     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2174       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2175     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2176       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2177     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2178       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2179     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2180       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2181     REGINFO_SENTINEL
2182 };
2183 
2184 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2185     /* 32 bit TLB invalidates, Inner Shareable */
2186     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2187       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2188     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2189       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2190     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2191       .type = ARM_CP_NO_RAW, .access = PL1_W,
2192       .writefn = tlbiasid_is_write },
2193     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2194       .type = ARM_CP_NO_RAW, .access = PL1_W,
2195       .writefn = tlbimvaa_is_write },
2196     REGINFO_SENTINEL
2197 };
2198 
2199 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2200     /* PMOVSSET is not implemented in v7 before v7ve */
2201     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2202       .access = PL0_RW, .accessfn = pmreg_access,
2203       .type = ARM_CP_ALIAS | ARM_CP_IO,
2204       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2205       .writefn = pmovsset_write,
2206       .raw_writefn = raw_write },
2207     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2208       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2209       .access = PL0_RW, .accessfn = pmreg_access,
2210       .type = ARM_CP_ALIAS | ARM_CP_IO,
2211       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2212       .writefn = pmovsset_write,
2213       .raw_writefn = raw_write },
2214     REGINFO_SENTINEL
2215 };
2216 
2217 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2218                         uint64_t value)
2219 {
2220     value &= 1;
2221     env->teecr = value;
2222 }
2223 
2224 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2225                                     bool isread)
2226 {
2227     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2228         return CP_ACCESS_TRAP;
2229     }
2230     return CP_ACCESS_OK;
2231 }
2232 
2233 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2234     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2235       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2236       .resetvalue = 0,
2237       .writefn = teecr_write },
2238     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2239       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2240       .accessfn = teehbr_access, .resetvalue = 0 },
2241     REGINFO_SENTINEL
2242 };
2243 
2244 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2245     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2246       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2247       .access = PL0_RW,
2248       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2249     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2250       .access = PL0_RW,
2251       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2252                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2253       .resetfn = arm_cp_reset_ignore },
2254     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2255       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2256       .access = PL0_R|PL1_W,
2257       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2258       .resetvalue = 0},
2259     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2260       .access = PL0_R|PL1_W,
2261       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2262                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2263       .resetfn = arm_cp_reset_ignore },
2264     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2265       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2266       .access = PL1_RW,
2267       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2268     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2269       .access = PL1_RW,
2270       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2271                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2272       .resetvalue = 0 },
2273     REGINFO_SENTINEL
2274 };
2275 
2276 #ifndef CONFIG_USER_ONLY
2277 
2278 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2279                                        bool isread)
2280 {
2281     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2282      * Writable only at the highest implemented exception level.
2283      */
2284     int el = arm_current_el(env);
2285 
2286     switch (el) {
2287     case 0:
2288         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2289             return CP_ACCESS_TRAP;
2290         }
2291         break;
2292     case 1:
2293         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2294             arm_is_secure_below_el3(env)) {
2295             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2296             return CP_ACCESS_TRAP_UNCATEGORIZED;
2297         }
2298         break;
2299     case 2:
2300     case 3:
2301         break;
2302     }
2303 
2304     if (!isread && el < arm_highest_el(env)) {
2305         return CP_ACCESS_TRAP_UNCATEGORIZED;
2306     }
2307 
2308     return CP_ACCESS_OK;
2309 }
2310 
2311 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2312                                         bool isread)
2313 {
2314     unsigned int cur_el = arm_current_el(env);
2315     bool secure = arm_is_secure(env);
2316 
2317     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2318     if (cur_el == 0 &&
2319         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2320         return CP_ACCESS_TRAP;
2321     }
2322 
2323     if (arm_feature(env, ARM_FEATURE_EL2) &&
2324         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2325         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2326         return CP_ACCESS_TRAP_EL2;
2327     }
2328     return CP_ACCESS_OK;
2329 }
2330 
2331 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2332                                       bool isread)
2333 {
2334     unsigned int cur_el = arm_current_el(env);
2335     bool secure = arm_is_secure(env);
2336 
2337     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2338      * EL0[PV]TEN is zero.
2339      */
2340     if (cur_el == 0 &&
2341         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2342         return CP_ACCESS_TRAP;
2343     }
2344 
2345     if (arm_feature(env, ARM_FEATURE_EL2) &&
2346         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2347         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2348         return CP_ACCESS_TRAP_EL2;
2349     }
2350     return CP_ACCESS_OK;
2351 }
2352 
2353 static CPAccessResult gt_pct_access(CPUARMState *env,
2354                                     const ARMCPRegInfo *ri,
2355                                     bool isread)
2356 {
2357     return gt_counter_access(env, GTIMER_PHYS, isread);
2358 }
2359 
2360 static CPAccessResult gt_vct_access(CPUARMState *env,
2361                                     const ARMCPRegInfo *ri,
2362                                     bool isread)
2363 {
2364     return gt_counter_access(env, GTIMER_VIRT, isread);
2365 }
2366 
2367 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2368                                        bool isread)
2369 {
2370     return gt_timer_access(env, GTIMER_PHYS, isread);
2371 }
2372 
2373 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2374                                        bool isread)
2375 {
2376     return gt_timer_access(env, GTIMER_VIRT, isread);
2377 }
2378 
2379 static CPAccessResult gt_stimer_access(CPUARMState *env,
2380                                        const ARMCPRegInfo *ri,
2381                                        bool isread)
2382 {
2383     /* The AArch64 register view of the secure physical timer is
2384      * always accessible from EL3, and configurably accessible from
2385      * Secure EL1.
2386      */
2387     switch (arm_current_el(env)) {
2388     case 1:
2389         if (!arm_is_secure(env)) {
2390             return CP_ACCESS_TRAP;
2391         }
2392         if (!(env->cp15.scr_el3 & SCR_ST)) {
2393             return CP_ACCESS_TRAP_EL3;
2394         }
2395         return CP_ACCESS_OK;
2396     case 0:
2397     case 2:
2398         return CP_ACCESS_TRAP;
2399     case 3:
2400         return CP_ACCESS_OK;
2401     default:
2402         g_assert_not_reached();
2403     }
2404 }
2405 
2406 static uint64_t gt_get_countervalue(CPUARMState *env)
2407 {
2408     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2409 }
2410 
2411 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2412 {
2413     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2414 
2415     if (gt->ctl & 1) {
2416         /* Timer enabled: calculate and set current ISTATUS, irq, and
2417          * reset timer to when ISTATUS next has to change
2418          */
2419         uint64_t offset = timeridx == GTIMER_VIRT ?
2420                                       cpu->env.cp15.cntvoff_el2 : 0;
2421         uint64_t count = gt_get_countervalue(&cpu->env);
2422         /* Note that this must be unsigned 64 bit arithmetic: */
2423         int istatus = count - offset >= gt->cval;
2424         uint64_t nexttick;
2425         int irqstate;
2426 
2427         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2428 
2429         irqstate = (istatus && !(gt->ctl & 2));
2430         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2431 
2432         if (istatus) {
2433             /* Next transition is when count rolls back over to zero */
2434             nexttick = UINT64_MAX;
2435         } else {
2436             /* Next transition is when we hit cval */
2437             nexttick = gt->cval + offset;
2438         }
2439         /* Note that the desired next expiry time might be beyond the
2440          * signed-64-bit range of a QEMUTimer -- in this case we just
2441          * set the timer for as far in the future as possible. When the
2442          * timer expires we will reset the timer for any remaining period.
2443          */
2444         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2445             nexttick = INT64_MAX / GTIMER_SCALE;
2446         }
2447         timer_mod(cpu->gt_timer[timeridx], nexttick);
2448         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2449     } else {
2450         /* Timer disabled: ISTATUS and timer output always clear */
2451         gt->ctl &= ~4;
2452         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2453         timer_del(cpu->gt_timer[timeridx]);
2454         trace_arm_gt_recalc_disabled(timeridx);
2455     }
2456 }
2457 
2458 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2459                            int timeridx)
2460 {
2461     ARMCPU *cpu = env_archcpu(env);
2462 
2463     timer_del(cpu->gt_timer[timeridx]);
2464 }
2465 
2466 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2467 {
2468     return gt_get_countervalue(env);
2469 }
2470 
2471 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2472 {
2473     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2474 }
2475 
2476 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2477                           int timeridx,
2478                           uint64_t value)
2479 {
2480     trace_arm_gt_cval_write(timeridx, value);
2481     env->cp15.c14_timer[timeridx].cval = value;
2482     gt_recalc_timer(env_archcpu(env), timeridx);
2483 }
2484 
2485 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2486                              int timeridx)
2487 {
2488     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2489 
2490     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2491                       (gt_get_countervalue(env) - offset));
2492 }
2493 
2494 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2495                           int timeridx,
2496                           uint64_t value)
2497 {
2498     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2499 
2500     trace_arm_gt_tval_write(timeridx, value);
2501     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2502                                          sextract64(value, 0, 32);
2503     gt_recalc_timer(env_archcpu(env), timeridx);
2504 }
2505 
2506 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507                          int timeridx,
2508                          uint64_t value)
2509 {
2510     ARMCPU *cpu = env_archcpu(env);
2511     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2512 
2513     trace_arm_gt_ctl_write(timeridx, value);
2514     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2515     if ((oldval ^ value) & 1) {
2516         /* Enable toggled */
2517         gt_recalc_timer(cpu, timeridx);
2518     } else if ((oldval ^ value) & 2) {
2519         /* IMASK toggled: don't need to recalculate,
2520          * just set the interrupt line based on ISTATUS
2521          */
2522         int irqstate = (oldval & 4) && !(value & 2);
2523 
2524         trace_arm_gt_imask_toggle(timeridx, irqstate);
2525         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2526     }
2527 }
2528 
2529 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2530 {
2531     gt_timer_reset(env, ri, GTIMER_PHYS);
2532 }
2533 
2534 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2535                                uint64_t value)
2536 {
2537     gt_cval_write(env, ri, GTIMER_PHYS, value);
2538 }
2539 
2540 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2541 {
2542     return gt_tval_read(env, ri, GTIMER_PHYS);
2543 }
2544 
2545 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2546                                uint64_t value)
2547 {
2548     gt_tval_write(env, ri, GTIMER_PHYS, value);
2549 }
2550 
2551 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2552                               uint64_t value)
2553 {
2554     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2555 }
2556 
2557 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2558 {
2559     gt_timer_reset(env, ri, GTIMER_VIRT);
2560 }
2561 
2562 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2563                                uint64_t value)
2564 {
2565     gt_cval_write(env, ri, GTIMER_VIRT, value);
2566 }
2567 
2568 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2569 {
2570     return gt_tval_read(env, ri, GTIMER_VIRT);
2571 }
2572 
2573 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574                                uint64_t value)
2575 {
2576     gt_tval_write(env, ri, GTIMER_VIRT, value);
2577 }
2578 
2579 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580                               uint64_t value)
2581 {
2582     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2583 }
2584 
2585 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586                               uint64_t value)
2587 {
2588     ARMCPU *cpu = env_archcpu(env);
2589 
2590     trace_arm_gt_cntvoff_write(value);
2591     raw_write(env, ri, value);
2592     gt_recalc_timer(cpu, GTIMER_VIRT);
2593 }
2594 
2595 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2596 {
2597     gt_timer_reset(env, ri, GTIMER_HYP);
2598 }
2599 
2600 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2601                               uint64_t value)
2602 {
2603     gt_cval_write(env, ri, GTIMER_HYP, value);
2604 }
2605 
2606 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2607 {
2608     return gt_tval_read(env, ri, GTIMER_HYP);
2609 }
2610 
2611 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2612                               uint64_t value)
2613 {
2614     gt_tval_write(env, ri, GTIMER_HYP, value);
2615 }
2616 
2617 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2618                               uint64_t value)
2619 {
2620     gt_ctl_write(env, ri, GTIMER_HYP, value);
2621 }
2622 
2623 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2624 {
2625     gt_timer_reset(env, ri, GTIMER_SEC);
2626 }
2627 
2628 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2629                               uint64_t value)
2630 {
2631     gt_cval_write(env, ri, GTIMER_SEC, value);
2632 }
2633 
2634 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2635 {
2636     return gt_tval_read(env, ri, GTIMER_SEC);
2637 }
2638 
2639 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2640                               uint64_t value)
2641 {
2642     gt_tval_write(env, ri, GTIMER_SEC, value);
2643 }
2644 
2645 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2646                               uint64_t value)
2647 {
2648     gt_ctl_write(env, ri, GTIMER_SEC, value);
2649 }
2650 
2651 void arm_gt_ptimer_cb(void *opaque)
2652 {
2653     ARMCPU *cpu = opaque;
2654 
2655     gt_recalc_timer(cpu, GTIMER_PHYS);
2656 }
2657 
2658 void arm_gt_vtimer_cb(void *opaque)
2659 {
2660     ARMCPU *cpu = opaque;
2661 
2662     gt_recalc_timer(cpu, GTIMER_VIRT);
2663 }
2664 
2665 void arm_gt_htimer_cb(void *opaque)
2666 {
2667     ARMCPU *cpu = opaque;
2668 
2669     gt_recalc_timer(cpu, GTIMER_HYP);
2670 }
2671 
2672 void arm_gt_stimer_cb(void *opaque)
2673 {
2674     ARMCPU *cpu = opaque;
2675 
2676     gt_recalc_timer(cpu, GTIMER_SEC);
2677 }
2678 
2679 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2680     /* Note that CNTFRQ is purely reads-as-written for the benefit
2681      * of software; writing it doesn't actually change the timer frequency.
2682      * Our reset value matches the fixed frequency we implement the timer at.
2683      */
2684     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2685       .type = ARM_CP_ALIAS,
2686       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2687       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2688     },
2689     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2690       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2691       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2692       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2693       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2694     },
2695     /* overall control: mostly access permissions */
2696     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2697       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2698       .access = PL1_RW,
2699       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2700       .resetvalue = 0,
2701     },
2702     /* per-timer control */
2703     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2704       .secure = ARM_CP_SECSTATE_NS,
2705       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2706       .accessfn = gt_ptimer_access,
2707       .fieldoffset = offsetoflow32(CPUARMState,
2708                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2709       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2710     },
2711     { .name = "CNTP_CTL_S",
2712       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2713       .secure = ARM_CP_SECSTATE_S,
2714       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2715       .accessfn = gt_ptimer_access,
2716       .fieldoffset = offsetoflow32(CPUARMState,
2717                                    cp15.c14_timer[GTIMER_SEC].ctl),
2718       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2719     },
2720     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2721       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2722       .type = ARM_CP_IO, .access = PL0_RW,
2723       .accessfn = gt_ptimer_access,
2724       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2725       .resetvalue = 0,
2726       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2727     },
2728     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2729       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2730       .accessfn = gt_vtimer_access,
2731       .fieldoffset = offsetoflow32(CPUARMState,
2732                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2733       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2734     },
2735     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2736       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2737       .type = ARM_CP_IO, .access = PL0_RW,
2738       .accessfn = gt_vtimer_access,
2739       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2740       .resetvalue = 0,
2741       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2742     },
2743     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2744     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2745       .secure = ARM_CP_SECSTATE_NS,
2746       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2747       .accessfn = gt_ptimer_access,
2748       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2749     },
2750     { .name = "CNTP_TVAL_S",
2751       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2752       .secure = ARM_CP_SECSTATE_S,
2753       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2754       .accessfn = gt_ptimer_access,
2755       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2756     },
2757     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2758       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2759       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2760       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2761       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2762     },
2763     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2764       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2765       .accessfn = gt_vtimer_access,
2766       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2767     },
2768     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2769       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2770       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2771       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2772       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2773     },
2774     /* The counter itself */
2775     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2776       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2777       .accessfn = gt_pct_access,
2778       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2779     },
2780     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2781       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2782       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2783       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2784     },
2785     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2786       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2787       .accessfn = gt_vct_access,
2788       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2789     },
2790     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2791       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2792       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2793       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2794     },
2795     /* Comparison value, indicating when the timer goes off */
2796     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2797       .secure = ARM_CP_SECSTATE_NS,
2798       .access = PL0_RW,
2799       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2800       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2801       .accessfn = gt_ptimer_access,
2802       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2803     },
2804     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2805       .secure = ARM_CP_SECSTATE_S,
2806       .access = PL0_RW,
2807       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2808       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2809       .accessfn = gt_ptimer_access,
2810       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2811     },
2812     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2813       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2814       .access = PL0_RW,
2815       .type = ARM_CP_IO,
2816       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2817       .resetvalue = 0, .accessfn = gt_ptimer_access,
2818       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2819     },
2820     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2821       .access = PL0_RW,
2822       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2823       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2824       .accessfn = gt_vtimer_access,
2825       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2826     },
2827     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2828       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2829       .access = PL0_RW,
2830       .type = ARM_CP_IO,
2831       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2832       .resetvalue = 0, .accessfn = gt_vtimer_access,
2833       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2834     },
2835     /* Secure timer -- this is actually restricted to only EL3
2836      * and configurably Secure-EL1 via the accessfn.
2837      */
2838     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2839       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2840       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2841       .accessfn = gt_stimer_access,
2842       .readfn = gt_sec_tval_read,
2843       .writefn = gt_sec_tval_write,
2844       .resetfn = gt_sec_timer_reset,
2845     },
2846     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2847       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2848       .type = ARM_CP_IO, .access = PL1_RW,
2849       .accessfn = gt_stimer_access,
2850       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2851       .resetvalue = 0,
2852       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2853     },
2854     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2855       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2856       .type = ARM_CP_IO, .access = PL1_RW,
2857       .accessfn = gt_stimer_access,
2858       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2859       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2860     },
2861     REGINFO_SENTINEL
2862 };
2863 
2864 #else
2865 
2866 /* In user-mode most of the generic timer registers are inaccessible
2867  * however modern kernels (4.12+) allow access to cntvct_el0
2868  */
2869 
2870 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2871 {
2872     /* Currently we have no support for QEMUTimer in linux-user so we
2873      * can't call gt_get_countervalue(env), instead we directly
2874      * call the lower level functions.
2875      */
2876     return cpu_get_clock() / GTIMER_SCALE;
2877 }
2878 
2879 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2880     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2881       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2882       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2883       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2884       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2885     },
2886     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2887       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2888       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2889       .readfn = gt_virt_cnt_read,
2890     },
2891     REGINFO_SENTINEL
2892 };
2893 
2894 #endif
2895 
2896 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2897 {
2898     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2899         raw_write(env, ri, value);
2900     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2901         raw_write(env, ri, value & 0xfffff6ff);
2902     } else {
2903         raw_write(env, ri, value & 0xfffff1ff);
2904     }
2905 }
2906 
2907 #ifndef CONFIG_USER_ONLY
2908 /* get_phys_addr() isn't present for user-mode-only targets */
2909 
2910 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2911                                  bool isread)
2912 {
2913     if (ri->opc2 & 4) {
2914         /* The ATS12NSO* operations must trap to EL3 if executed in
2915          * Secure EL1 (which can only happen if EL3 is AArch64).
2916          * They are simply UNDEF if executed from NS EL1.
2917          * They function normally from EL2 or EL3.
2918          */
2919         if (arm_current_el(env) == 1) {
2920             if (arm_is_secure_below_el3(env)) {
2921                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2922             }
2923             return CP_ACCESS_TRAP_UNCATEGORIZED;
2924         }
2925     }
2926     return CP_ACCESS_OK;
2927 }
2928 
2929 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2930                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2931 {
2932     hwaddr phys_addr;
2933     target_ulong page_size;
2934     int prot;
2935     bool ret;
2936     uint64_t par64;
2937     bool format64 = false;
2938     MemTxAttrs attrs = {};
2939     ARMMMUFaultInfo fi = {};
2940     ARMCacheAttrs cacheattrs = {};
2941 
2942     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2943                         &prot, &page_size, &fi, &cacheattrs);
2944 
2945     if (is_a64(env)) {
2946         format64 = true;
2947     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2948         /*
2949          * ATS1Cxx:
2950          * * TTBCR.EAE determines whether the result is returned using the
2951          *   32-bit or the 64-bit PAR format
2952          * * Instructions executed in Hyp mode always use the 64bit format
2953          *
2954          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2955          * * The Non-secure TTBCR.EAE bit is set to 1
2956          * * The implementation includes EL2, and the value of HCR.VM is 1
2957          *
2958          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2959          *
2960          * ATS1Hx always uses the 64bit format.
2961          */
2962         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2963 
2964         if (arm_feature(env, ARM_FEATURE_EL2)) {
2965             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2966                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2967             } else {
2968                 format64 |= arm_current_el(env) == 2;
2969             }
2970         }
2971     }
2972 
2973     if (format64) {
2974         /* Create a 64-bit PAR */
2975         par64 = (1 << 11); /* LPAE bit always set */
2976         if (!ret) {
2977             par64 |= phys_addr & ~0xfffULL;
2978             if (!attrs.secure) {
2979                 par64 |= (1 << 9); /* NS */
2980             }
2981             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2982             par64 |= cacheattrs.shareability << 7; /* SH */
2983         } else {
2984             uint32_t fsr = arm_fi_to_lfsc(&fi);
2985 
2986             par64 |= 1; /* F */
2987             par64 |= (fsr & 0x3f) << 1; /* FS */
2988             if (fi.stage2) {
2989                 par64 |= (1 << 9); /* S */
2990             }
2991             if (fi.s1ptw) {
2992                 par64 |= (1 << 8); /* PTW */
2993             }
2994         }
2995     } else {
2996         /* fsr is a DFSR/IFSR value for the short descriptor
2997          * translation table format (with WnR always clear).
2998          * Convert it to a 32-bit PAR.
2999          */
3000         if (!ret) {
3001             /* We do not set any attribute bits in the PAR */
3002             if (page_size == (1 << 24)
3003                 && arm_feature(env, ARM_FEATURE_V7)) {
3004                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3005             } else {
3006                 par64 = phys_addr & 0xfffff000;
3007             }
3008             if (!attrs.secure) {
3009                 par64 |= (1 << 9); /* NS */
3010             }
3011         } else {
3012             uint32_t fsr = arm_fi_to_sfsc(&fi);
3013 
3014             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3015                     ((fsr & 0xf) << 1) | 1;
3016         }
3017     }
3018     return par64;
3019 }
3020 
3021 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3022 {
3023     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3024     uint64_t par64;
3025     ARMMMUIdx mmu_idx;
3026     int el = arm_current_el(env);
3027     bool secure = arm_is_secure_below_el3(env);
3028 
3029     switch (ri->opc2 & 6) {
3030     case 0:
3031         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3032         switch (el) {
3033         case 3:
3034             mmu_idx = ARMMMUIdx_S1E3;
3035             break;
3036         case 2:
3037             mmu_idx = ARMMMUIdx_S1NSE1;
3038             break;
3039         case 1:
3040             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3041             break;
3042         default:
3043             g_assert_not_reached();
3044         }
3045         break;
3046     case 2:
3047         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3048         switch (el) {
3049         case 3:
3050             mmu_idx = ARMMMUIdx_S1SE0;
3051             break;
3052         case 2:
3053             mmu_idx = ARMMMUIdx_S1NSE0;
3054             break;
3055         case 1:
3056             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3057             break;
3058         default:
3059             g_assert_not_reached();
3060         }
3061         break;
3062     case 4:
3063         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3064         mmu_idx = ARMMMUIdx_S12NSE1;
3065         break;
3066     case 6:
3067         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3068         mmu_idx = ARMMMUIdx_S12NSE0;
3069         break;
3070     default:
3071         g_assert_not_reached();
3072     }
3073 
3074     par64 = do_ats_write(env, value, access_type, mmu_idx);
3075 
3076     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3077 }
3078 
3079 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3080                         uint64_t value)
3081 {
3082     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3083     uint64_t par64;
3084 
3085     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3086 
3087     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3088 }
3089 
3090 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3091                                      bool isread)
3092 {
3093     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3094         return CP_ACCESS_TRAP;
3095     }
3096     return CP_ACCESS_OK;
3097 }
3098 
3099 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3100                         uint64_t value)
3101 {
3102     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3103     ARMMMUIdx mmu_idx;
3104     int secure = arm_is_secure_below_el3(env);
3105 
3106     switch (ri->opc2 & 6) {
3107     case 0:
3108         switch (ri->opc1) {
3109         case 0: /* AT S1E1R, AT S1E1W */
3110             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3111             break;
3112         case 4: /* AT S1E2R, AT S1E2W */
3113             mmu_idx = ARMMMUIdx_S1E2;
3114             break;
3115         case 6: /* AT S1E3R, AT S1E3W */
3116             mmu_idx = ARMMMUIdx_S1E3;
3117             break;
3118         default:
3119             g_assert_not_reached();
3120         }
3121         break;
3122     case 2: /* AT S1E0R, AT S1E0W */
3123         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3124         break;
3125     case 4: /* AT S12E1R, AT S12E1W */
3126         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3127         break;
3128     case 6: /* AT S12E0R, AT S12E0W */
3129         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3130         break;
3131     default:
3132         g_assert_not_reached();
3133     }
3134 
3135     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3136 }
3137 #endif
3138 
3139 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3140     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3141       .access = PL1_RW, .resetvalue = 0,
3142       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3143                              offsetoflow32(CPUARMState, cp15.par_ns) },
3144       .writefn = par_write },
3145 #ifndef CONFIG_USER_ONLY
3146     /* This underdecoding is safe because the reginfo is NO_RAW. */
3147     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3148       .access = PL1_W, .accessfn = ats_access,
3149       .writefn = ats_write, .type = ARM_CP_NO_RAW },
3150 #endif
3151     REGINFO_SENTINEL
3152 };
3153 
3154 /* Return basic MPU access permission bits.  */
3155 static uint32_t simple_mpu_ap_bits(uint32_t val)
3156 {
3157     uint32_t ret;
3158     uint32_t mask;
3159     int i;
3160     ret = 0;
3161     mask = 3;
3162     for (i = 0; i < 16; i += 2) {
3163         ret |= (val >> i) & mask;
3164         mask <<= 2;
3165     }
3166     return ret;
3167 }
3168 
3169 /* Pad basic MPU access permission bits to extended format.  */
3170 static uint32_t extended_mpu_ap_bits(uint32_t val)
3171 {
3172     uint32_t ret;
3173     uint32_t mask;
3174     int i;
3175     ret = 0;
3176     mask = 3;
3177     for (i = 0; i < 16; i += 2) {
3178         ret |= (val & mask) << i;
3179         mask <<= 2;
3180     }
3181     return ret;
3182 }
3183 
3184 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3185                                  uint64_t value)
3186 {
3187     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3188 }
3189 
3190 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3191 {
3192     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3193 }
3194 
3195 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3196                                  uint64_t value)
3197 {
3198     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3199 }
3200 
3201 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3202 {
3203     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3204 }
3205 
3206 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3207 {
3208     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3209 
3210     if (!u32p) {
3211         return 0;
3212     }
3213 
3214     u32p += env->pmsav7.rnr[M_REG_NS];
3215     return *u32p;
3216 }
3217 
3218 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3219                          uint64_t value)
3220 {
3221     ARMCPU *cpu = env_archcpu(env);
3222     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3223 
3224     if (!u32p) {
3225         return;
3226     }
3227 
3228     u32p += env->pmsav7.rnr[M_REG_NS];
3229     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3230     *u32p = value;
3231 }
3232 
3233 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3234                               uint64_t value)
3235 {
3236     ARMCPU *cpu = env_archcpu(env);
3237     uint32_t nrgs = cpu->pmsav7_dregion;
3238 
3239     if (value >= nrgs) {
3240         qemu_log_mask(LOG_GUEST_ERROR,
3241                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3242                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3243         return;
3244     }
3245 
3246     raw_write(env, ri, value);
3247 }
3248 
3249 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3250     /* Reset for all these registers is handled in arm_cpu_reset(),
3251      * because the PMSAv7 is also used by M-profile CPUs, which do
3252      * not register cpregs but still need the state to be reset.
3253      */
3254     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3255       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3256       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3257       .readfn = pmsav7_read, .writefn = pmsav7_write,
3258       .resetfn = arm_cp_reset_ignore },
3259     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3260       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3261       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3262       .readfn = pmsav7_read, .writefn = pmsav7_write,
3263       .resetfn = arm_cp_reset_ignore },
3264     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3265       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3266       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3267       .readfn = pmsav7_read, .writefn = pmsav7_write,
3268       .resetfn = arm_cp_reset_ignore },
3269     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3270       .access = PL1_RW,
3271       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3272       .writefn = pmsav7_rgnr_write,
3273       .resetfn = arm_cp_reset_ignore },
3274     REGINFO_SENTINEL
3275 };
3276 
3277 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3278     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3279       .access = PL1_RW, .type = ARM_CP_ALIAS,
3280       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3281       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3282     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3283       .access = PL1_RW, .type = ARM_CP_ALIAS,
3284       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3285       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3286     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3287       .access = PL1_RW,
3288       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3289       .resetvalue = 0, },
3290     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3291       .access = PL1_RW,
3292       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3293       .resetvalue = 0, },
3294     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3295       .access = PL1_RW,
3296       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3297     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3298       .access = PL1_RW,
3299       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3300     /* Protection region base and size registers */
3301     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3302       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3303       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3304     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3305       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3306       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3307     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3308       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3309       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3310     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3311       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3312       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3313     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3314       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3315       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3316     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3317       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3318       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3319     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3320       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3321       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3322     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3323       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3324       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3325     REGINFO_SENTINEL
3326 };
3327 
3328 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3329                                  uint64_t value)
3330 {
3331     TCR *tcr = raw_ptr(env, ri);
3332     int maskshift = extract32(value, 0, 3);
3333 
3334     if (!arm_feature(env, ARM_FEATURE_V8)) {
3335         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3336             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3337              * using Long-desciptor translation table format */
3338             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3339         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3340             /* In an implementation that includes the Security Extensions
3341              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3342              * Short-descriptor translation table format.
3343              */
3344             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3345         } else {
3346             value &= TTBCR_N;
3347         }
3348     }
3349 
3350     /* Update the masks corresponding to the TCR bank being written
3351      * Note that we always calculate mask and base_mask, but
3352      * they are only used for short-descriptor tables (ie if EAE is 0);
3353      * for long-descriptor tables the TCR fields are used differently
3354      * and the mask and base_mask values are meaningless.
3355      */
3356     tcr->raw_tcr = value;
3357     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3358     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3359 }
3360 
3361 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3362                              uint64_t value)
3363 {
3364     ARMCPU *cpu = env_archcpu(env);
3365     TCR *tcr = raw_ptr(env, ri);
3366 
3367     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3368         /* With LPAE the TTBCR could result in a change of ASID
3369          * via the TTBCR.A1 bit, so do a TLB flush.
3370          */
3371         tlb_flush(CPU(cpu));
3372     }
3373     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3374     value = deposit64(tcr->raw_tcr, 0, 32, value);
3375     vmsa_ttbcr_raw_write(env, ri, value);
3376 }
3377 
3378 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3379 {
3380     TCR *tcr = raw_ptr(env, ri);
3381 
3382     /* Reset both the TCR as well as the masks corresponding to the bank of
3383      * the TCR being reset.
3384      */
3385     tcr->raw_tcr = 0;
3386     tcr->mask = 0;
3387     tcr->base_mask = 0xffffc000u;
3388 }
3389 
3390 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3391                                uint64_t value)
3392 {
3393     ARMCPU *cpu = env_archcpu(env);
3394     TCR *tcr = raw_ptr(env, ri);
3395 
3396     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3397     tlb_flush(CPU(cpu));
3398     tcr->raw_tcr = value;
3399 }
3400 
3401 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3402                             uint64_t value)
3403 {
3404     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3405     if (cpreg_field_is_64bit(ri) &&
3406         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3407         ARMCPU *cpu = env_archcpu(env);
3408         tlb_flush(CPU(cpu));
3409     }
3410     raw_write(env, ri, value);
3411 }
3412 
3413 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3414                         uint64_t value)
3415 {
3416     ARMCPU *cpu = env_archcpu(env);
3417     CPUState *cs = CPU(cpu);
3418 
3419     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3420     if (raw_read(env, ri) != value) {
3421         tlb_flush_by_mmuidx(cs,
3422                             ARMMMUIdxBit_S12NSE1 |
3423                             ARMMMUIdxBit_S12NSE0 |
3424                             ARMMMUIdxBit_S2NS);
3425         raw_write(env, ri, value);
3426     }
3427 }
3428 
3429 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3430     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3431       .access = PL1_RW, .type = ARM_CP_ALIAS,
3432       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3433                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3434     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3435       .access = PL1_RW, .resetvalue = 0,
3436       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3437                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3438     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3439       .access = PL1_RW, .resetvalue = 0,
3440       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3441                              offsetof(CPUARMState, cp15.dfar_ns) } },
3442     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3444       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3445       .resetvalue = 0, },
3446     REGINFO_SENTINEL
3447 };
3448 
3449 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3450     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3452       .access = PL1_RW,
3453       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3454     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3455       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3456       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3458                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3459     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3460       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3461       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3462       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3463                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3464     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3465       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3466       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3467       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3468       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3469     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3470       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3471       .raw_writefn = vmsa_ttbcr_raw_write,
3472       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3473                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3474     REGINFO_SENTINEL
3475 };
3476 
3477 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3478  * qemu tlbs nor adjusting cached masks.
3479  */
3480 static const ARMCPRegInfo ttbcr2_reginfo = {
3481     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3482     .access = PL1_RW, .type = ARM_CP_ALIAS,
3483     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3484                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3485 };
3486 
3487 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3488                                 uint64_t value)
3489 {
3490     env->cp15.c15_ticonfig = value & 0xe7;
3491     /* The OS_TYPE bit in this register changes the reported CPUID! */
3492     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3493         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3494 }
3495 
3496 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3497                                 uint64_t value)
3498 {
3499     env->cp15.c15_threadid = value & 0xffff;
3500 }
3501 
3502 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3503                            uint64_t value)
3504 {
3505     /* Wait-for-interrupt (deprecated) */
3506     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3507 }
3508 
3509 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3510                                   uint64_t value)
3511 {
3512     /* On OMAP there are registers indicating the max/min index of dcache lines
3513      * containing a dirty line; cache flush operations have to reset these.
3514      */
3515     env->cp15.c15_i_max = 0x000;
3516     env->cp15.c15_i_min = 0xff0;
3517 }
3518 
3519 static const ARMCPRegInfo omap_cp_reginfo[] = {
3520     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3521       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3522       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3523       .resetvalue = 0, },
3524     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3525       .access = PL1_RW, .type = ARM_CP_NOP },
3526     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3527       .access = PL1_RW,
3528       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3529       .writefn = omap_ticonfig_write },
3530     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3531       .access = PL1_RW,
3532       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3533     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3534       .access = PL1_RW, .resetvalue = 0xff0,
3535       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3536     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3537       .access = PL1_RW,
3538       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3539       .writefn = omap_threadid_write },
3540     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3541       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3542       .type = ARM_CP_NO_RAW,
3543       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3544     /* TODO: Peripheral port remap register:
3545      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3546      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3547      * when MMU is off.
3548      */
3549     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3550       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3551       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3552       .writefn = omap_cachemaint_write },
3553     { .name = "C9", .cp = 15, .crn = 9,
3554       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3555       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3556     REGINFO_SENTINEL
3557 };
3558 
3559 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3560                               uint64_t value)
3561 {
3562     env->cp15.c15_cpar = value & 0x3fff;
3563 }
3564 
3565 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3566     { .name = "XSCALE_CPAR",
3567       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3568       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3569       .writefn = xscale_cpar_write, },
3570     { .name = "XSCALE_AUXCR",
3571       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3572       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3573       .resetvalue = 0, },
3574     /* XScale specific cache-lockdown: since we have no cache we NOP these
3575      * and hope the guest does not really rely on cache behaviour.
3576      */
3577     { .name = "XSCALE_LOCK_ICACHE_LINE",
3578       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3579       .access = PL1_W, .type = ARM_CP_NOP },
3580     { .name = "XSCALE_UNLOCK_ICACHE",
3581       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3582       .access = PL1_W, .type = ARM_CP_NOP },
3583     { .name = "XSCALE_DCACHE_LOCK",
3584       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3585       .access = PL1_RW, .type = ARM_CP_NOP },
3586     { .name = "XSCALE_UNLOCK_DCACHE",
3587       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3588       .access = PL1_W, .type = ARM_CP_NOP },
3589     REGINFO_SENTINEL
3590 };
3591 
3592 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3593     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3594      * implementation of this implementation-defined space.
3595      * Ideally this should eventually disappear in favour of actually
3596      * implementing the correct behaviour for all cores.
3597      */
3598     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3599       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3600       .access = PL1_RW,
3601       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3602       .resetvalue = 0 },
3603     REGINFO_SENTINEL
3604 };
3605 
3606 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3607     /* Cache status: RAZ because we have no cache so it's always clean */
3608     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3609       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3610       .resetvalue = 0 },
3611     REGINFO_SENTINEL
3612 };
3613 
3614 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3615     /* We never have a a block transfer operation in progress */
3616     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3617       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3618       .resetvalue = 0 },
3619     /* The cache ops themselves: these all NOP for QEMU */
3620     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3621       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3622     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3623       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3624     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3625       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3626     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3627       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3628     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3629       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3630     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3631       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3632     REGINFO_SENTINEL
3633 };
3634 
3635 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3636     /* The cache test-and-clean instructions always return (1 << 30)
3637      * to indicate that there are no dirty cache lines.
3638      */
3639     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3640       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3641       .resetvalue = (1 << 30) },
3642     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3643       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3644       .resetvalue = (1 << 30) },
3645     REGINFO_SENTINEL
3646 };
3647 
3648 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3649     /* Ignore ReadBuffer accesses */
3650     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3651       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3652       .access = PL1_RW, .resetvalue = 0,
3653       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3654     REGINFO_SENTINEL
3655 };
3656 
3657 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3658 {
3659     ARMCPU *cpu = env_archcpu(env);
3660     unsigned int cur_el = arm_current_el(env);
3661     bool secure = arm_is_secure(env);
3662 
3663     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3664         return env->cp15.vpidr_el2;
3665     }
3666     return raw_read(env, ri);
3667 }
3668 
3669 static uint64_t mpidr_read_val(CPUARMState *env)
3670 {
3671     ARMCPU *cpu = env_archcpu(env);
3672     uint64_t mpidr = cpu->mp_affinity;
3673 
3674     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3675         mpidr |= (1U << 31);
3676         /* Cores which are uniprocessor (non-coherent)
3677          * but still implement the MP extensions set
3678          * bit 30. (For instance, Cortex-R5).
3679          */
3680         if (cpu->mp_is_up) {
3681             mpidr |= (1u << 30);
3682         }
3683     }
3684     return mpidr;
3685 }
3686 
3687 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3688 {
3689     unsigned int cur_el = arm_current_el(env);
3690     bool secure = arm_is_secure(env);
3691 
3692     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3693         return env->cp15.vmpidr_el2;
3694     }
3695     return mpidr_read_val(env);
3696 }
3697 
3698 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3699     /* NOP AMAIR0/1 */
3700     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3701       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3702       .access = PL1_RW, .type = ARM_CP_CONST,
3703       .resetvalue = 0 },
3704     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3705     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3706       .access = PL1_RW, .type = ARM_CP_CONST,
3707       .resetvalue = 0 },
3708     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3709       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3710       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3711                              offsetof(CPUARMState, cp15.par_ns)} },
3712     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3713       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3714       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3715                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3716       .writefn = vmsa_ttbr_write, },
3717     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3718       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3719       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3720                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3721       .writefn = vmsa_ttbr_write, },
3722     REGINFO_SENTINEL
3723 };
3724 
3725 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3726 {
3727     return vfp_get_fpcr(env);
3728 }
3729 
3730 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3731                             uint64_t value)
3732 {
3733     vfp_set_fpcr(env, value);
3734 }
3735 
3736 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3737 {
3738     return vfp_get_fpsr(env);
3739 }
3740 
3741 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3742                             uint64_t value)
3743 {
3744     vfp_set_fpsr(env, value);
3745 }
3746 
3747 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3748                                        bool isread)
3749 {
3750     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3751         return CP_ACCESS_TRAP;
3752     }
3753     return CP_ACCESS_OK;
3754 }
3755 
3756 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3757                             uint64_t value)
3758 {
3759     env->daif = value & PSTATE_DAIF;
3760 }
3761 
3762 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3763                                           const ARMCPRegInfo *ri,
3764                                           bool isread)
3765 {
3766     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3767      * SCTLR_EL1.UCI is set.
3768      */
3769     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3770         return CP_ACCESS_TRAP;
3771     }
3772     return CP_ACCESS_OK;
3773 }
3774 
3775 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3776  * Page D4-1736 (DDI0487A.b)
3777  */
3778 
3779 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3780                                       uint64_t value)
3781 {
3782     CPUState *cs = env_cpu(env);
3783     bool sec = arm_is_secure_below_el3(env);
3784 
3785     if (sec) {
3786         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3787                                             ARMMMUIdxBit_S1SE1 |
3788                                             ARMMMUIdxBit_S1SE0);
3789     } else {
3790         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3791                                             ARMMMUIdxBit_S12NSE1 |
3792                                             ARMMMUIdxBit_S12NSE0);
3793     }
3794 }
3795 
3796 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3797                                     uint64_t value)
3798 {
3799     CPUState *cs = env_cpu(env);
3800 
3801     if (tlb_force_broadcast(env)) {
3802         tlbi_aa64_vmalle1is_write(env, NULL, value);
3803         return;
3804     }
3805 
3806     if (arm_is_secure_below_el3(env)) {
3807         tlb_flush_by_mmuidx(cs,
3808                             ARMMMUIdxBit_S1SE1 |
3809                             ARMMMUIdxBit_S1SE0);
3810     } else {
3811         tlb_flush_by_mmuidx(cs,
3812                             ARMMMUIdxBit_S12NSE1 |
3813                             ARMMMUIdxBit_S12NSE0);
3814     }
3815 }
3816 
3817 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3818                                   uint64_t value)
3819 {
3820     /* Note that the 'ALL' scope must invalidate both stage 1 and
3821      * stage 2 translations, whereas most other scopes only invalidate
3822      * stage 1 translations.
3823      */
3824     ARMCPU *cpu = env_archcpu(env);
3825     CPUState *cs = CPU(cpu);
3826 
3827     if (arm_is_secure_below_el3(env)) {
3828         tlb_flush_by_mmuidx(cs,
3829                             ARMMMUIdxBit_S1SE1 |
3830                             ARMMMUIdxBit_S1SE0);
3831     } else {
3832         if (arm_feature(env, ARM_FEATURE_EL2)) {
3833             tlb_flush_by_mmuidx(cs,
3834                                 ARMMMUIdxBit_S12NSE1 |
3835                                 ARMMMUIdxBit_S12NSE0 |
3836                                 ARMMMUIdxBit_S2NS);
3837         } else {
3838             tlb_flush_by_mmuidx(cs,
3839                                 ARMMMUIdxBit_S12NSE1 |
3840                                 ARMMMUIdxBit_S12NSE0);
3841         }
3842     }
3843 }
3844 
3845 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3846                                   uint64_t value)
3847 {
3848     ARMCPU *cpu = env_archcpu(env);
3849     CPUState *cs = CPU(cpu);
3850 
3851     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3852 }
3853 
3854 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3855                                   uint64_t value)
3856 {
3857     ARMCPU *cpu = env_archcpu(env);
3858     CPUState *cs = CPU(cpu);
3859 
3860     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3861 }
3862 
3863 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3864                                     uint64_t value)
3865 {
3866     /* Note that the 'ALL' scope must invalidate both stage 1 and
3867      * stage 2 translations, whereas most other scopes only invalidate
3868      * stage 1 translations.
3869      */
3870     CPUState *cs = env_cpu(env);
3871     bool sec = arm_is_secure_below_el3(env);
3872     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3873 
3874     if (sec) {
3875         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3876                                             ARMMMUIdxBit_S1SE1 |
3877                                             ARMMMUIdxBit_S1SE0);
3878     } else if (has_el2) {
3879         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3880                                             ARMMMUIdxBit_S12NSE1 |
3881                                             ARMMMUIdxBit_S12NSE0 |
3882                                             ARMMMUIdxBit_S2NS);
3883     } else {
3884           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3885                                               ARMMMUIdxBit_S12NSE1 |
3886                                               ARMMMUIdxBit_S12NSE0);
3887     }
3888 }
3889 
3890 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3891                                     uint64_t value)
3892 {
3893     CPUState *cs = env_cpu(env);
3894 
3895     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3896 }
3897 
3898 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3899                                     uint64_t value)
3900 {
3901     CPUState *cs = env_cpu(env);
3902 
3903     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3904 }
3905 
3906 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907                                  uint64_t value)
3908 {
3909     /* Invalidate by VA, EL2
3910      * Currently handles both VAE2 and VALE2, since we don't support
3911      * flush-last-level-only.
3912      */
3913     ARMCPU *cpu = env_archcpu(env);
3914     CPUState *cs = CPU(cpu);
3915     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3916 
3917     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3918 }
3919 
3920 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921                                  uint64_t value)
3922 {
3923     /* Invalidate by VA, EL3
3924      * Currently handles both VAE3 and VALE3, since we don't support
3925      * flush-last-level-only.
3926      */
3927     ARMCPU *cpu = env_archcpu(env);
3928     CPUState *cs = CPU(cpu);
3929     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3930 
3931     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3932 }
3933 
3934 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3935                                    uint64_t value)
3936 {
3937     ARMCPU *cpu = env_archcpu(env);
3938     CPUState *cs = CPU(cpu);
3939     bool sec = arm_is_secure_below_el3(env);
3940     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3941 
3942     if (sec) {
3943         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3944                                                  ARMMMUIdxBit_S1SE1 |
3945                                                  ARMMMUIdxBit_S1SE0);
3946     } else {
3947         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3948                                                  ARMMMUIdxBit_S12NSE1 |
3949                                                  ARMMMUIdxBit_S12NSE0);
3950     }
3951 }
3952 
3953 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3954                                  uint64_t value)
3955 {
3956     /* Invalidate by VA, EL1&0 (AArch64 version).
3957      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3958      * since we don't support flush-for-specific-ASID-only or
3959      * flush-last-level-only.
3960      */
3961     ARMCPU *cpu = env_archcpu(env);
3962     CPUState *cs = CPU(cpu);
3963     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3964 
3965     if (tlb_force_broadcast(env)) {
3966         tlbi_aa64_vae1is_write(env, NULL, value);
3967         return;
3968     }
3969 
3970     if (arm_is_secure_below_el3(env)) {
3971         tlb_flush_page_by_mmuidx(cs, pageaddr,
3972                                  ARMMMUIdxBit_S1SE1 |
3973                                  ARMMMUIdxBit_S1SE0);
3974     } else {
3975         tlb_flush_page_by_mmuidx(cs, pageaddr,
3976                                  ARMMMUIdxBit_S12NSE1 |
3977                                  ARMMMUIdxBit_S12NSE0);
3978     }
3979 }
3980 
3981 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3982                                    uint64_t value)
3983 {
3984     CPUState *cs = env_cpu(env);
3985     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3986 
3987     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3988                                              ARMMMUIdxBit_S1E2);
3989 }
3990 
3991 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992                                    uint64_t value)
3993 {
3994     CPUState *cs = env_cpu(env);
3995     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3996 
3997     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3998                                              ARMMMUIdxBit_S1E3);
3999 }
4000 
4001 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                                     uint64_t value)
4003 {
4004     /* Invalidate by IPA. This has to invalidate any structures that
4005      * contain only stage 2 translation information, but does not need
4006      * to apply to structures that contain combined stage 1 and stage 2
4007      * translation information.
4008      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4009      */
4010     ARMCPU *cpu = env_archcpu(env);
4011     CPUState *cs = CPU(cpu);
4012     uint64_t pageaddr;
4013 
4014     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4015         return;
4016     }
4017 
4018     pageaddr = sextract64(value << 12, 0, 48);
4019 
4020     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4021 }
4022 
4023 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4024                                       uint64_t value)
4025 {
4026     CPUState *cs = env_cpu(env);
4027     uint64_t pageaddr;
4028 
4029     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4030         return;
4031     }
4032 
4033     pageaddr = sextract64(value << 12, 0, 48);
4034 
4035     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4036                                              ARMMMUIdxBit_S2NS);
4037 }
4038 
4039 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4040                                       bool isread)
4041 {
4042     /* We don't implement EL2, so the only control on DC ZVA is the
4043      * bit in the SCTLR which can prohibit access for EL0.
4044      */
4045     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4046         return CP_ACCESS_TRAP;
4047     }
4048     return CP_ACCESS_OK;
4049 }
4050 
4051 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4052 {
4053     ARMCPU *cpu = env_archcpu(env);
4054     int dzp_bit = 1 << 4;
4055 
4056     /* DZP indicates whether DC ZVA access is allowed */
4057     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4058         dzp_bit = 0;
4059     }
4060     return cpu->dcz_blocksize | dzp_bit;
4061 }
4062 
4063 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4064                                     bool isread)
4065 {
4066     if (!(env->pstate & PSTATE_SP)) {
4067         /* Access to SP_EL0 is undefined if it's being used as
4068          * the stack pointer.
4069          */
4070         return CP_ACCESS_TRAP_UNCATEGORIZED;
4071     }
4072     return CP_ACCESS_OK;
4073 }
4074 
4075 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4076 {
4077     return env->pstate & PSTATE_SP;
4078 }
4079 
4080 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4081 {
4082     update_spsel(env, val);
4083 }
4084 
4085 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4086                         uint64_t value)
4087 {
4088     ARMCPU *cpu = env_archcpu(env);
4089 
4090     if (raw_read(env, ri) == value) {
4091         /* Skip the TLB flush if nothing actually changed; Linux likes
4092          * to do a lot of pointless SCTLR writes.
4093          */
4094         return;
4095     }
4096 
4097     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4098         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4099         value &= ~SCTLR_M;
4100     }
4101 
4102     raw_write(env, ri, value);
4103     /* ??? Lots of these bits are not implemented.  */
4104     /* This may enable/disable the MMU, so do a TLB flush.  */
4105     tlb_flush(CPU(cpu));
4106 }
4107 
4108 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4109                                      bool isread)
4110 {
4111     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4112         return CP_ACCESS_TRAP_FP_EL2;
4113     }
4114     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4115         return CP_ACCESS_TRAP_FP_EL3;
4116     }
4117     return CP_ACCESS_OK;
4118 }
4119 
4120 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121                        uint64_t value)
4122 {
4123     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4124 }
4125 
4126 static const ARMCPRegInfo v8_cp_reginfo[] = {
4127     /* Minimal set of EL0-visible registers. This will need to be expanded
4128      * significantly for system emulation of AArch64 CPUs.
4129      */
4130     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4131       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4132       .access = PL0_RW, .type = ARM_CP_NZCV },
4133     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4134       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4135       .type = ARM_CP_NO_RAW,
4136       .access = PL0_RW, .accessfn = aa64_daif_access,
4137       .fieldoffset = offsetof(CPUARMState, daif),
4138       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4139     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4140       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4141       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4142       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4143     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4144       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4145       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4146       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4147     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4148       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4149       .access = PL0_R, .type = ARM_CP_NO_RAW,
4150       .readfn = aa64_dczid_read },
4151     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4152       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4153       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4154 #ifndef CONFIG_USER_ONLY
4155       /* Avoid overhead of an access check that always passes in user-mode */
4156       .accessfn = aa64_zva_access,
4157 #endif
4158     },
4159     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4160       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4161       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4162     /* Cache ops: all NOPs since we don't emulate caches */
4163     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4164       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4165       .access = PL1_W, .type = ARM_CP_NOP },
4166     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4167       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4168       .access = PL1_W, .type = ARM_CP_NOP },
4169     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4170       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4171       .access = PL0_W, .type = ARM_CP_NOP,
4172       .accessfn = aa64_cacheop_access },
4173     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4174       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4175       .access = PL1_W, .type = ARM_CP_NOP },
4176     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4177       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4178       .access = PL1_W, .type = ARM_CP_NOP },
4179     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4180       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4181       .access = PL0_W, .type = ARM_CP_NOP,
4182       .accessfn = aa64_cacheop_access },
4183     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4184       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4185       .access = PL1_W, .type = ARM_CP_NOP },
4186     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4187       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4188       .access = PL0_W, .type = ARM_CP_NOP,
4189       .accessfn = aa64_cacheop_access },
4190     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4191       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4192       .access = PL0_W, .type = ARM_CP_NOP,
4193       .accessfn = aa64_cacheop_access },
4194     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4195       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4196       .access = PL1_W, .type = ARM_CP_NOP },
4197     /* TLBI operations */
4198     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4199       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4200       .access = PL1_W, .type = ARM_CP_NO_RAW,
4201       .writefn = tlbi_aa64_vmalle1is_write },
4202     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4204       .access = PL1_W, .type = ARM_CP_NO_RAW,
4205       .writefn = tlbi_aa64_vae1is_write },
4206     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4207       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4208       .access = PL1_W, .type = ARM_CP_NO_RAW,
4209       .writefn = tlbi_aa64_vmalle1is_write },
4210     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4211       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4212       .access = PL1_W, .type = ARM_CP_NO_RAW,
4213       .writefn = tlbi_aa64_vae1is_write },
4214     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4215       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4216       .access = PL1_W, .type = ARM_CP_NO_RAW,
4217       .writefn = tlbi_aa64_vae1is_write },
4218     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4219       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4220       .access = PL1_W, .type = ARM_CP_NO_RAW,
4221       .writefn = tlbi_aa64_vae1is_write },
4222     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4223       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4224       .access = PL1_W, .type = ARM_CP_NO_RAW,
4225       .writefn = tlbi_aa64_vmalle1_write },
4226     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4227       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4228       .access = PL1_W, .type = ARM_CP_NO_RAW,
4229       .writefn = tlbi_aa64_vae1_write },
4230     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4231       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4232       .access = PL1_W, .type = ARM_CP_NO_RAW,
4233       .writefn = tlbi_aa64_vmalle1_write },
4234     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4235       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4236       .access = PL1_W, .type = ARM_CP_NO_RAW,
4237       .writefn = tlbi_aa64_vae1_write },
4238     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4239       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4240       .access = PL1_W, .type = ARM_CP_NO_RAW,
4241       .writefn = tlbi_aa64_vae1_write },
4242     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4243       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4244       .access = PL1_W, .type = ARM_CP_NO_RAW,
4245       .writefn = tlbi_aa64_vae1_write },
4246     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4247       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4248       .access = PL2_W, .type = ARM_CP_NO_RAW,
4249       .writefn = tlbi_aa64_ipas2e1is_write },
4250     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4251       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4252       .access = PL2_W, .type = ARM_CP_NO_RAW,
4253       .writefn = tlbi_aa64_ipas2e1is_write },
4254     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4255       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4256       .access = PL2_W, .type = ARM_CP_NO_RAW,
4257       .writefn = tlbi_aa64_alle1is_write },
4258     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4259       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4260       .access = PL2_W, .type = ARM_CP_NO_RAW,
4261       .writefn = tlbi_aa64_alle1is_write },
4262     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4263       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4264       .access = PL2_W, .type = ARM_CP_NO_RAW,
4265       .writefn = tlbi_aa64_ipas2e1_write },
4266     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4267       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4268       .access = PL2_W, .type = ARM_CP_NO_RAW,
4269       .writefn = tlbi_aa64_ipas2e1_write },
4270     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4271       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4272       .access = PL2_W, .type = ARM_CP_NO_RAW,
4273       .writefn = tlbi_aa64_alle1_write },
4274     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4275       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4276       .access = PL2_W, .type = ARM_CP_NO_RAW,
4277       .writefn = tlbi_aa64_alle1is_write },
4278 #ifndef CONFIG_USER_ONLY
4279     /* 64 bit address translation operations */
4280     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4281       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4282       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4283     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4284       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4285       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4286     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4287       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4288       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4289     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4290       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4291       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4292     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4293       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4294       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4295     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4296       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4297       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4298     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4299       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4300       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4301     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4302       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4303       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4304     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4305     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4306       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4307       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4308     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4309       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4310       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4311     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4312       .type = ARM_CP_ALIAS,
4313       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4314       .access = PL1_RW, .resetvalue = 0,
4315       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4316       .writefn = par_write },
4317 #endif
4318     /* TLB invalidate last level of translation table walk */
4319     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4320       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4321     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4322       .type = ARM_CP_NO_RAW, .access = PL1_W,
4323       .writefn = tlbimvaa_is_write },
4324     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4325       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4326     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4327       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4328     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4329       .type = ARM_CP_NO_RAW, .access = PL2_W,
4330       .writefn = tlbimva_hyp_write },
4331     { .name = "TLBIMVALHIS",
4332       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4333       .type = ARM_CP_NO_RAW, .access = PL2_W,
4334       .writefn = tlbimva_hyp_is_write },
4335     { .name = "TLBIIPAS2",
4336       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4337       .type = ARM_CP_NO_RAW, .access = PL2_W,
4338       .writefn = tlbiipas2_write },
4339     { .name = "TLBIIPAS2IS",
4340       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4341       .type = ARM_CP_NO_RAW, .access = PL2_W,
4342       .writefn = tlbiipas2_is_write },
4343     { .name = "TLBIIPAS2L",
4344       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4345       .type = ARM_CP_NO_RAW, .access = PL2_W,
4346       .writefn = tlbiipas2_write },
4347     { .name = "TLBIIPAS2LIS",
4348       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4349       .type = ARM_CP_NO_RAW, .access = PL2_W,
4350       .writefn = tlbiipas2_is_write },
4351     /* 32 bit cache operations */
4352     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4353       .type = ARM_CP_NOP, .access = PL1_W },
4354     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4355       .type = ARM_CP_NOP, .access = PL1_W },
4356     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4357       .type = ARM_CP_NOP, .access = PL1_W },
4358     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4359       .type = ARM_CP_NOP, .access = PL1_W },
4360     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4361       .type = ARM_CP_NOP, .access = PL1_W },
4362     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4363       .type = ARM_CP_NOP, .access = PL1_W },
4364     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4365       .type = ARM_CP_NOP, .access = PL1_W },
4366     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4367       .type = ARM_CP_NOP, .access = PL1_W },
4368     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4369       .type = ARM_CP_NOP, .access = PL1_W },
4370     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4371       .type = ARM_CP_NOP, .access = PL1_W },
4372     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4373       .type = ARM_CP_NOP, .access = PL1_W },
4374     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4375       .type = ARM_CP_NOP, .access = PL1_W },
4376     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4377       .type = ARM_CP_NOP, .access = PL1_W },
4378     /* MMU Domain access control / MPU write buffer control */
4379     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4380       .access = PL1_RW, .resetvalue = 0,
4381       .writefn = dacr_write, .raw_writefn = raw_write,
4382       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4383                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4384     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4385       .type = ARM_CP_ALIAS,
4386       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4387       .access = PL1_RW,
4388       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4389     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4390       .type = ARM_CP_ALIAS,
4391       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4392       .access = PL1_RW,
4393       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4394     /* We rely on the access checks not allowing the guest to write to the
4395      * state field when SPSel indicates that it's being used as the stack
4396      * pointer.
4397      */
4398     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4399       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4400       .access = PL1_RW, .accessfn = sp_el0_access,
4401       .type = ARM_CP_ALIAS,
4402       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4403     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4404       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4405       .access = PL2_RW, .type = ARM_CP_ALIAS,
4406       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4407     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4408       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4409       .type = ARM_CP_NO_RAW,
4410       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4411     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4412       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4413       .type = ARM_CP_ALIAS,
4414       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4415       .access = PL2_RW, .accessfn = fpexc32_access },
4416     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4417       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4418       .access = PL2_RW, .resetvalue = 0,
4419       .writefn = dacr_write, .raw_writefn = raw_write,
4420       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4421     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4422       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4423       .access = PL2_RW, .resetvalue = 0,
4424       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4425     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4426       .type = ARM_CP_ALIAS,
4427       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4428       .access = PL2_RW,
4429       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4430     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4431       .type = ARM_CP_ALIAS,
4432       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4433       .access = PL2_RW,
4434       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4435     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4436       .type = ARM_CP_ALIAS,
4437       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4438       .access = PL2_RW,
4439       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4440     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4441       .type = ARM_CP_ALIAS,
4442       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4443       .access = PL2_RW,
4444       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4445     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4446       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4447       .resetvalue = 0,
4448       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4449     { .name = "SDCR", .type = ARM_CP_ALIAS,
4450       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4451       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4452       .writefn = sdcr_write,
4453       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4454     REGINFO_SENTINEL
4455 };
4456 
4457 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4458 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4459     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4460       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4461       .access = PL2_RW,
4462       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4463     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4464       .type = ARM_CP_NO_RAW,
4465       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4466       .access = PL2_RW,
4467       .type = ARM_CP_CONST, .resetvalue = 0 },
4468     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4469       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4470       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4471     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4472       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4473       .access = PL2_RW,
4474       .type = ARM_CP_CONST, .resetvalue = 0 },
4475     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4476       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4477       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4478     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4479       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4480       .access = PL2_RW, .type = ARM_CP_CONST,
4481       .resetvalue = 0 },
4482     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4483       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4484       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4485     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4486       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4487       .access = PL2_RW, .type = ARM_CP_CONST,
4488       .resetvalue = 0 },
4489     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4490       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4491       .access = PL2_RW, .type = ARM_CP_CONST,
4492       .resetvalue = 0 },
4493     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4494       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4495       .access = PL2_RW, .type = ARM_CP_CONST,
4496       .resetvalue = 0 },
4497     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4498       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4499       .access = PL2_RW, .type = ARM_CP_CONST,
4500       .resetvalue = 0 },
4501     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4502       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4503       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4504     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4505       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4506       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4507       .type = ARM_CP_CONST, .resetvalue = 0 },
4508     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4509       .cp = 15, .opc1 = 6, .crm = 2,
4510       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4511       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4512     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4513       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4514       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4515     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4516       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4517       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4518     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4519       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4520       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4521     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4522       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4523       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4524     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4525       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4526       .resetvalue = 0 },
4527     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4528       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4529       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4530     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4531       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4532       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4533     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4534       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4535       .resetvalue = 0 },
4536     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4537       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4538       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4539     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4540       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4541       .resetvalue = 0 },
4542     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4543       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4544       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4545     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4546       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4547       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4548     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4549       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4550       .access = PL2_RW, .accessfn = access_tda,
4551       .type = ARM_CP_CONST, .resetvalue = 0 },
4552     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4553       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4554       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4555       .type = ARM_CP_CONST, .resetvalue = 0 },
4556     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4557       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4558       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4559     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4560       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4561       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4562     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4563       .type = ARM_CP_CONST,
4564       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4565       .access = PL2_RW, .resetvalue = 0 },
4566     REGINFO_SENTINEL
4567 };
4568 
4569 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4570 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4571     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4572       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4573       .access = PL2_RW,
4574       .type = ARM_CP_CONST, .resetvalue = 0 },
4575     REGINFO_SENTINEL
4576 };
4577 
4578 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4579 {
4580     ARMCPU *cpu = env_archcpu(env);
4581     uint64_t valid_mask = HCR_MASK;
4582 
4583     if (arm_feature(env, ARM_FEATURE_EL3)) {
4584         valid_mask &= ~HCR_HCD;
4585     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4586         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4587          * However, if we're using the SMC PSCI conduit then QEMU is
4588          * effectively acting like EL3 firmware and so the guest at
4589          * EL2 should retain the ability to prevent EL1 from being
4590          * able to make SMC calls into the ersatz firmware, so in
4591          * that case HCR.TSC should be read/write.
4592          */
4593         valid_mask &= ~HCR_TSC;
4594     }
4595     if (cpu_isar_feature(aa64_lor, cpu)) {
4596         valid_mask |= HCR_TLOR;
4597     }
4598     if (cpu_isar_feature(aa64_pauth, cpu)) {
4599         valid_mask |= HCR_API | HCR_APK;
4600     }
4601 
4602     /* Clear RES0 bits.  */
4603     value &= valid_mask;
4604 
4605     /* These bits change the MMU setup:
4606      * HCR_VM enables stage 2 translation
4607      * HCR_PTW forbids certain page-table setups
4608      * HCR_DC Disables stage1 and enables stage2 translation
4609      */
4610     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4611         tlb_flush(CPU(cpu));
4612     }
4613     env->cp15.hcr_el2 = value;
4614 
4615     /*
4616      * Updates to VI and VF require us to update the status of
4617      * virtual interrupts, which are the logical OR of these bits
4618      * and the state of the input lines from the GIC. (This requires
4619      * that we have the iothread lock, which is done by marking the
4620      * reginfo structs as ARM_CP_IO.)
4621      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4622      * possible for it to be taken immediately, because VIRQ and
4623      * VFIQ are masked unless running at EL0 or EL1, and HCR
4624      * can only be written at EL2.
4625      */
4626     g_assert(qemu_mutex_iothread_locked());
4627     arm_cpu_update_virq(cpu);
4628     arm_cpu_update_vfiq(cpu);
4629 }
4630 
4631 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4632                           uint64_t value)
4633 {
4634     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4635     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4636     hcr_write(env, NULL, value);
4637 }
4638 
4639 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4640                          uint64_t value)
4641 {
4642     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4643     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4644     hcr_write(env, NULL, value);
4645 }
4646 
4647 /*
4648  * Return the effective value of HCR_EL2.
4649  * Bits that are not included here:
4650  * RW       (read from SCR_EL3.RW as needed)
4651  */
4652 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4653 {
4654     uint64_t ret = env->cp15.hcr_el2;
4655 
4656     if (arm_is_secure_below_el3(env)) {
4657         /*
4658          * "This register has no effect if EL2 is not enabled in the
4659          * current Security state".  This is ARMv8.4-SecEL2 speak for
4660          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4661          *
4662          * Prior to that, the language was "In an implementation that
4663          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4664          * as if this field is 0 for all purposes other than a direct
4665          * read or write access of HCR_EL2".  With lots of enumeration
4666          * on a per-field basis.  In current QEMU, this is condition
4667          * is arm_is_secure_below_el3.
4668          *
4669          * Since the v8.4 language applies to the entire register, and
4670          * appears to be backward compatible, use that.
4671          */
4672         ret = 0;
4673     } else if (ret & HCR_TGE) {
4674         /* These bits are up-to-date as of ARMv8.4.  */
4675         if (ret & HCR_E2H) {
4676             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4677                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4678                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4679                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4680         } else {
4681             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4682         }
4683         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4684                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4685                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4686                  HCR_TLOR);
4687     }
4688 
4689     return ret;
4690 }
4691 
4692 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4693                            uint64_t value)
4694 {
4695     /*
4696      * For A-profile AArch32 EL3, if NSACR.CP10
4697      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4698      */
4699     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4700         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4701         value &= ~(0x3 << 10);
4702         value |= env->cp15.cptr_el[2] & (0x3 << 10);
4703     }
4704     env->cp15.cptr_el[2] = value;
4705 }
4706 
4707 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4708 {
4709     /*
4710      * For A-profile AArch32 EL3, if NSACR.CP10
4711      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4712      */
4713     uint64_t value = env->cp15.cptr_el[2];
4714 
4715     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4716         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4717         value |= 0x3 << 10;
4718     }
4719     return value;
4720 }
4721 
4722 static const ARMCPRegInfo el2_cp_reginfo[] = {
4723     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4724       .type = ARM_CP_IO,
4725       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4726       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4727       .writefn = hcr_write },
4728     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4729       .type = ARM_CP_ALIAS | ARM_CP_IO,
4730       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4731       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4732       .writefn = hcr_writelow },
4733     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4734       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4735       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4736     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4737       .type = ARM_CP_ALIAS,
4738       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4739       .access = PL2_RW,
4740       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4741     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4742       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4743       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4744     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4745       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4746       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4747     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4748       .type = ARM_CP_ALIAS,
4749       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4750       .access = PL2_RW,
4751       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4752     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4753       .type = ARM_CP_ALIAS,
4754       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4755       .access = PL2_RW,
4756       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4757     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4758       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4759       .access = PL2_RW, .writefn = vbar_write,
4760       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4761       .resetvalue = 0 },
4762     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4763       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4764       .access = PL3_RW, .type = ARM_CP_ALIAS,
4765       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4766     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4767       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4768       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4769       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4770       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4771     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4772       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4773       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4774       .resetvalue = 0 },
4775     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4776       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4777       .access = PL2_RW, .type = ARM_CP_ALIAS,
4778       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4779     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4780       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4781       .access = PL2_RW, .type = ARM_CP_CONST,
4782       .resetvalue = 0 },
4783     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4784     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4785       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4786       .access = PL2_RW, .type = ARM_CP_CONST,
4787       .resetvalue = 0 },
4788     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4789       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4790       .access = PL2_RW, .type = ARM_CP_CONST,
4791       .resetvalue = 0 },
4792     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4793       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4794       .access = PL2_RW, .type = ARM_CP_CONST,
4795       .resetvalue = 0 },
4796     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4797       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4798       .access = PL2_RW,
4799       /* no .writefn needed as this can't cause an ASID change;
4800        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4801        */
4802       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4803     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4804       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4805       .type = ARM_CP_ALIAS,
4806       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4807       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4808     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4809       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4810       .access = PL2_RW,
4811       /* no .writefn needed as this can't cause an ASID change;
4812        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4813        */
4814       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4815     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4816       .cp = 15, .opc1 = 6, .crm = 2,
4817       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4818       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4819       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4820       .writefn = vttbr_write },
4821     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4822       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4823       .access = PL2_RW, .writefn = vttbr_write,
4824       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4825     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4826       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4827       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4828       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4829     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4830       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4831       .access = PL2_RW, .resetvalue = 0,
4832       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4833     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4834       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4835       .access = PL2_RW, .resetvalue = 0,
4836       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4837     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4838       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4839       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4840     { .name = "TLBIALLNSNH",
4841       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4842       .type = ARM_CP_NO_RAW, .access = PL2_W,
4843       .writefn = tlbiall_nsnh_write },
4844     { .name = "TLBIALLNSNHIS",
4845       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4846       .type = ARM_CP_NO_RAW, .access = PL2_W,
4847       .writefn = tlbiall_nsnh_is_write },
4848     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4849       .type = ARM_CP_NO_RAW, .access = PL2_W,
4850       .writefn = tlbiall_hyp_write },
4851     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4852       .type = ARM_CP_NO_RAW, .access = PL2_W,
4853       .writefn = tlbiall_hyp_is_write },
4854     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4855       .type = ARM_CP_NO_RAW, .access = PL2_W,
4856       .writefn = tlbimva_hyp_write },
4857     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4858       .type = ARM_CP_NO_RAW, .access = PL2_W,
4859       .writefn = tlbimva_hyp_is_write },
4860     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4861       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4862       .type = ARM_CP_NO_RAW, .access = PL2_W,
4863       .writefn = tlbi_aa64_alle2_write },
4864     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4865       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4866       .type = ARM_CP_NO_RAW, .access = PL2_W,
4867       .writefn = tlbi_aa64_vae2_write },
4868     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4869       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4870       .access = PL2_W, .type = ARM_CP_NO_RAW,
4871       .writefn = tlbi_aa64_vae2_write },
4872     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4873       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4874       .access = PL2_W, .type = ARM_CP_NO_RAW,
4875       .writefn = tlbi_aa64_alle2is_write },
4876     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4877       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4878       .type = ARM_CP_NO_RAW, .access = PL2_W,
4879       .writefn = tlbi_aa64_vae2is_write },
4880     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4881       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4882       .access = PL2_W, .type = ARM_CP_NO_RAW,
4883       .writefn = tlbi_aa64_vae2is_write },
4884 #ifndef CONFIG_USER_ONLY
4885     /* Unlike the other EL2-related AT operations, these must
4886      * UNDEF from EL3 if EL2 is not implemented, which is why we
4887      * define them here rather than with the rest of the AT ops.
4888      */
4889     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4891       .access = PL2_W, .accessfn = at_s1e2_access,
4892       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4893     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4895       .access = PL2_W, .accessfn = at_s1e2_access,
4896       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4897     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4898      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4899      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4900      * to behave as if SCR.NS was 1.
4901      */
4902     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4903       .access = PL2_W,
4904       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4905     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4906       .access = PL2_W,
4907       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4908     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4909       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4910       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4911        * reset values as IMPDEF. We choose to reset to 3 to comply with
4912        * both ARMv7 and ARMv8.
4913        */
4914       .access = PL2_RW, .resetvalue = 3,
4915       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4916     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4917       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4918       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4919       .writefn = gt_cntvoff_write,
4920       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4921     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4922       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4923       .writefn = gt_cntvoff_write,
4924       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4925     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4926       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4927       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4928       .type = ARM_CP_IO, .access = PL2_RW,
4929       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4930     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4931       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4932       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4933       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4934     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4935       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4936       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4937       .resetfn = gt_hyp_timer_reset,
4938       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4939     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4940       .type = ARM_CP_IO,
4941       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4942       .access = PL2_RW,
4943       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4944       .resetvalue = 0,
4945       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4946 #endif
4947     /* The only field of MDCR_EL2 that has a defined architectural reset value
4948      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4949      * don't implement any PMU event counters, so using zero as a reset
4950      * value for MDCR_EL2 is okay
4951      */
4952     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4953       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4954       .access = PL2_RW, .resetvalue = 0,
4955       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4956     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4957       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4958       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4959       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4960     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4961       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4962       .access = PL2_RW,
4963       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4964     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4965       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4966       .access = PL2_RW,
4967       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4968     REGINFO_SENTINEL
4969 };
4970 
4971 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4972     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4973       .type = ARM_CP_ALIAS | ARM_CP_IO,
4974       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4975       .access = PL2_RW,
4976       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4977       .writefn = hcr_writehigh },
4978     REGINFO_SENTINEL
4979 };
4980 
4981 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4982                                    bool isread)
4983 {
4984     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4985      * At Secure EL1 it traps to EL3.
4986      */
4987     if (arm_current_el(env) == 3) {
4988         return CP_ACCESS_OK;
4989     }
4990     if (arm_is_secure_below_el3(env)) {
4991         return CP_ACCESS_TRAP_EL3;
4992     }
4993     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4994     if (isread) {
4995         return CP_ACCESS_OK;
4996     }
4997     return CP_ACCESS_TRAP_UNCATEGORIZED;
4998 }
4999 
5000 static const ARMCPRegInfo el3_cp_reginfo[] = {
5001     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5002       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5003       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5004       .resetvalue = 0, .writefn = scr_write },
5005     { .name = "SCR",  .type = ARM_CP_ALIAS,
5006       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5007       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5008       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5009       .writefn = scr_write },
5010     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5011       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5012       .access = PL3_RW, .resetvalue = 0,
5013       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5014     { .name = "SDER",
5015       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5016       .access = PL3_RW, .resetvalue = 0,
5017       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5018     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5019       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5020       .writefn = vbar_write, .resetvalue = 0,
5021       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5022     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5023       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5024       .access = PL3_RW, .resetvalue = 0,
5025       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5026     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5027       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5028       .access = PL3_RW,
5029       /* no .writefn needed as this can't cause an ASID change;
5030        * we must provide a .raw_writefn and .resetfn because we handle
5031        * reset and migration for the AArch32 TTBCR(S), which might be
5032        * using mask and base_mask.
5033        */
5034       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5035       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5036     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5037       .type = ARM_CP_ALIAS,
5038       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5039       .access = PL3_RW,
5040       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5041     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5042       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5043       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5044     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5045       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5046       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5047     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5048       .type = ARM_CP_ALIAS,
5049       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5050       .access = PL3_RW,
5051       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5052     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5053       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5054       .access = PL3_RW, .writefn = vbar_write,
5055       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5056       .resetvalue = 0 },
5057     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5058       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5059       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5060       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5061     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5062       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5063       .access = PL3_RW, .resetvalue = 0,
5064       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5065     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5066       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5067       .access = PL3_RW, .type = ARM_CP_CONST,
5068       .resetvalue = 0 },
5069     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5070       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5071       .access = PL3_RW, .type = ARM_CP_CONST,
5072       .resetvalue = 0 },
5073     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5074       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5075       .access = PL3_RW, .type = ARM_CP_CONST,
5076       .resetvalue = 0 },
5077     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5078       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5079       .access = PL3_W, .type = ARM_CP_NO_RAW,
5080       .writefn = tlbi_aa64_alle3is_write },
5081     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5082       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5083       .access = PL3_W, .type = ARM_CP_NO_RAW,
5084       .writefn = tlbi_aa64_vae3is_write },
5085     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5086       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5087       .access = PL3_W, .type = ARM_CP_NO_RAW,
5088       .writefn = tlbi_aa64_vae3is_write },
5089     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5090       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5091       .access = PL3_W, .type = ARM_CP_NO_RAW,
5092       .writefn = tlbi_aa64_alle3_write },
5093     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5094       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5095       .access = PL3_W, .type = ARM_CP_NO_RAW,
5096       .writefn = tlbi_aa64_vae3_write },
5097     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5098       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5099       .access = PL3_W, .type = ARM_CP_NO_RAW,
5100       .writefn = tlbi_aa64_vae3_write },
5101     REGINFO_SENTINEL
5102 };
5103 
5104 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5105                                      bool isread)
5106 {
5107     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5108      * but the AArch32 CTR has its own reginfo struct)
5109      */
5110     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5111         return CP_ACCESS_TRAP;
5112     }
5113     return CP_ACCESS_OK;
5114 }
5115 
5116 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5117                         uint64_t value)
5118 {
5119     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5120      * read via a bit in OSLSR_EL1.
5121      */
5122     int oslock;
5123 
5124     if (ri->state == ARM_CP_STATE_AA32) {
5125         oslock = (value == 0xC5ACCE55);
5126     } else {
5127         oslock = value & 1;
5128     }
5129 
5130     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5131 }
5132 
5133 static const ARMCPRegInfo debug_cp_reginfo[] = {
5134     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5135      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5136      * unlike DBGDRAR it is never accessible from EL0.
5137      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5138      * accessor.
5139      */
5140     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5141       .access = PL0_R, .accessfn = access_tdra,
5142       .type = ARM_CP_CONST, .resetvalue = 0 },
5143     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5144       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5145       .access = PL1_R, .accessfn = access_tdra,
5146       .type = ARM_CP_CONST, .resetvalue = 0 },
5147     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5148       .access = PL0_R, .accessfn = access_tdra,
5149       .type = ARM_CP_CONST, .resetvalue = 0 },
5150     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5151     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5152       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5153       .access = PL1_RW, .accessfn = access_tda,
5154       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5155       .resetvalue = 0 },
5156     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5157      * We don't implement the configurable EL0 access.
5158      */
5159     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5160       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5161       .type = ARM_CP_ALIAS,
5162       .access = PL1_R, .accessfn = access_tda,
5163       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5164     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5165       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5166       .access = PL1_W, .type = ARM_CP_NO_RAW,
5167       .accessfn = access_tdosa,
5168       .writefn = oslar_write },
5169     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5170       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5171       .access = PL1_R, .resetvalue = 10,
5172       .accessfn = access_tdosa,
5173       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5174     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5175     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5176       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5177       .access = PL1_RW, .accessfn = access_tdosa,
5178       .type = ARM_CP_NOP },
5179     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5180      * implement vector catch debug events yet.
5181      */
5182     { .name = "DBGVCR",
5183       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5184       .access = PL1_RW, .accessfn = access_tda,
5185       .type = ARM_CP_NOP },
5186     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5187      * to save and restore a 32-bit guest's DBGVCR)
5188      */
5189     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5190       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5191       .access = PL2_RW, .accessfn = access_tda,
5192       .type = ARM_CP_NOP },
5193     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5194      * Channel but Linux may try to access this register. The 32-bit
5195      * alias is DBGDCCINT.
5196      */
5197     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5198       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5199       .access = PL1_RW, .accessfn = access_tda,
5200       .type = ARM_CP_NOP },
5201     REGINFO_SENTINEL
5202 };
5203 
5204 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5205     /* 64 bit access versions of the (dummy) debug registers */
5206     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5207       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5208     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5209       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5210     REGINFO_SENTINEL
5211 };
5212 
5213 /* Return the exception level to which exceptions should be taken
5214  * via SVEAccessTrap.  If an exception should be routed through
5215  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5216  * take care of raising that exception.
5217  * C.f. the ARM pseudocode function CheckSVEEnabled.
5218  */
5219 int sve_exception_el(CPUARMState *env, int el)
5220 {
5221 #ifndef CONFIG_USER_ONLY
5222     if (el <= 1) {
5223         bool disabled = false;
5224 
5225         /* The CPACR.ZEN controls traps to EL1:
5226          * 0, 2 : trap EL0 and EL1 accesses
5227          * 1    : trap only EL0 accesses
5228          * 3    : trap no accesses
5229          */
5230         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5231             disabled = true;
5232         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5233             disabled = el == 0;
5234         }
5235         if (disabled) {
5236             /* route_to_el2 */
5237             return (arm_feature(env, ARM_FEATURE_EL2)
5238                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5239         }
5240 
5241         /* Check CPACR.FPEN.  */
5242         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5243             disabled = true;
5244         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5245             disabled = el == 0;
5246         }
5247         if (disabled) {
5248             return 0;
5249         }
5250     }
5251 
5252     /* CPTR_EL2.  Since TZ and TFP are positive,
5253      * they will be zero when EL2 is not present.
5254      */
5255     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5256         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5257             return 2;
5258         }
5259         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5260             return 0;
5261         }
5262     }
5263 
5264     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5265     if (arm_feature(env, ARM_FEATURE_EL3)
5266         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5267         return 3;
5268     }
5269 #endif
5270     return 0;
5271 }
5272 
5273 /*
5274  * Given that SVE is enabled, return the vector length for EL.
5275  */
5276 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5277 {
5278     ARMCPU *cpu = env_archcpu(env);
5279     uint32_t zcr_len = cpu->sve_max_vq - 1;
5280 
5281     if (el <= 1) {
5282         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5283     }
5284     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5285         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5286     }
5287     if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5288         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5289     }
5290     return zcr_len;
5291 }
5292 
5293 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5294                       uint64_t value)
5295 {
5296     int cur_el = arm_current_el(env);
5297     int old_len = sve_zcr_len_for_el(env, cur_el);
5298     int new_len;
5299 
5300     /* Bits other than [3:0] are RAZ/WI.  */
5301     raw_write(env, ri, value & 0xf);
5302 
5303     /*
5304      * Because we arrived here, we know both FP and SVE are enabled;
5305      * otherwise we would have trapped access to the ZCR_ELn register.
5306      */
5307     new_len = sve_zcr_len_for_el(env, cur_el);
5308     if (new_len < old_len) {
5309         aarch64_sve_narrow_vq(env, new_len + 1);
5310     }
5311 }
5312 
5313 static const ARMCPRegInfo zcr_el1_reginfo = {
5314     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5315     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5316     .access = PL1_RW, .type = ARM_CP_SVE,
5317     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5318     .writefn = zcr_write, .raw_writefn = raw_write
5319 };
5320 
5321 static const ARMCPRegInfo zcr_el2_reginfo = {
5322     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5323     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5324     .access = PL2_RW, .type = ARM_CP_SVE,
5325     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5326     .writefn = zcr_write, .raw_writefn = raw_write
5327 };
5328 
5329 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5330     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5331     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5332     .access = PL2_RW, .type = ARM_CP_SVE,
5333     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5334 };
5335 
5336 static const ARMCPRegInfo zcr_el3_reginfo = {
5337     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5338     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5339     .access = PL3_RW, .type = ARM_CP_SVE,
5340     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5341     .writefn = zcr_write, .raw_writefn = raw_write
5342 };
5343 
5344 void hw_watchpoint_update(ARMCPU *cpu, int n)
5345 {
5346     CPUARMState *env = &cpu->env;
5347     vaddr len = 0;
5348     vaddr wvr = env->cp15.dbgwvr[n];
5349     uint64_t wcr = env->cp15.dbgwcr[n];
5350     int mask;
5351     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5352 
5353     if (env->cpu_watchpoint[n]) {
5354         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5355         env->cpu_watchpoint[n] = NULL;
5356     }
5357 
5358     if (!extract64(wcr, 0, 1)) {
5359         /* E bit clear : watchpoint disabled */
5360         return;
5361     }
5362 
5363     switch (extract64(wcr, 3, 2)) {
5364     case 0:
5365         /* LSC 00 is reserved and must behave as if the wp is disabled */
5366         return;
5367     case 1:
5368         flags |= BP_MEM_READ;
5369         break;
5370     case 2:
5371         flags |= BP_MEM_WRITE;
5372         break;
5373     case 3:
5374         flags |= BP_MEM_ACCESS;
5375         break;
5376     }
5377 
5378     /* Attempts to use both MASK and BAS fields simultaneously are
5379      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5380      * thus generating a watchpoint for every byte in the masked region.
5381      */
5382     mask = extract64(wcr, 24, 4);
5383     if (mask == 1 || mask == 2) {
5384         /* Reserved values of MASK; we must act as if the mask value was
5385          * some non-reserved value, or as if the watchpoint were disabled.
5386          * We choose the latter.
5387          */
5388         return;
5389     } else if (mask) {
5390         /* Watchpoint covers an aligned area up to 2GB in size */
5391         len = 1ULL << mask;
5392         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5393          * whether the watchpoint fires when the unmasked bits match; we opt
5394          * to generate the exceptions.
5395          */
5396         wvr &= ~(len - 1);
5397     } else {
5398         /* Watchpoint covers bytes defined by the byte address select bits */
5399         int bas = extract64(wcr, 5, 8);
5400         int basstart;
5401 
5402         if (bas == 0) {
5403             /* This must act as if the watchpoint is disabled */
5404             return;
5405         }
5406 
5407         if (extract64(wvr, 2, 1)) {
5408             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5409              * ignored, and BAS[3:0] define which bytes to watch.
5410              */
5411             bas &= 0xf;
5412         }
5413         /* The BAS bits are supposed to be programmed to indicate a contiguous
5414          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5415          * we fire for each byte in the word/doubleword addressed by the WVR.
5416          * We choose to ignore any non-zero bits after the first range of 1s.
5417          */
5418         basstart = ctz32(bas);
5419         len = cto32(bas >> basstart);
5420         wvr += basstart;
5421     }
5422 
5423     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5424                           &env->cpu_watchpoint[n]);
5425 }
5426 
5427 void hw_watchpoint_update_all(ARMCPU *cpu)
5428 {
5429     int i;
5430     CPUARMState *env = &cpu->env;
5431 
5432     /* Completely clear out existing QEMU watchpoints and our array, to
5433      * avoid possible stale entries following migration load.
5434      */
5435     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5436     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5437 
5438     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5439         hw_watchpoint_update(cpu, i);
5440     }
5441 }
5442 
5443 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5444                          uint64_t value)
5445 {
5446     ARMCPU *cpu = env_archcpu(env);
5447     int i = ri->crm;
5448 
5449     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5450      * register reads and behaves as if values written are sign extended.
5451      * Bits [1:0] are RES0.
5452      */
5453     value = sextract64(value, 0, 49) & ~3ULL;
5454 
5455     raw_write(env, ri, value);
5456     hw_watchpoint_update(cpu, i);
5457 }
5458 
5459 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5460                          uint64_t value)
5461 {
5462     ARMCPU *cpu = env_archcpu(env);
5463     int i = ri->crm;
5464 
5465     raw_write(env, ri, value);
5466     hw_watchpoint_update(cpu, i);
5467 }
5468 
5469 void hw_breakpoint_update(ARMCPU *cpu, int n)
5470 {
5471     CPUARMState *env = &cpu->env;
5472     uint64_t bvr = env->cp15.dbgbvr[n];
5473     uint64_t bcr = env->cp15.dbgbcr[n];
5474     vaddr addr;
5475     int bt;
5476     int flags = BP_CPU;
5477 
5478     if (env->cpu_breakpoint[n]) {
5479         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5480         env->cpu_breakpoint[n] = NULL;
5481     }
5482 
5483     if (!extract64(bcr, 0, 1)) {
5484         /* E bit clear : watchpoint disabled */
5485         return;
5486     }
5487 
5488     bt = extract64(bcr, 20, 4);
5489 
5490     switch (bt) {
5491     case 4: /* unlinked address mismatch (reserved if AArch64) */
5492     case 5: /* linked address mismatch (reserved if AArch64) */
5493         qemu_log_mask(LOG_UNIMP,
5494                       "arm: address mismatch breakpoint types not implemented\n");
5495         return;
5496     case 0: /* unlinked address match */
5497     case 1: /* linked address match */
5498     {
5499         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5500          * we behave as if the register was sign extended. Bits [1:0] are
5501          * RES0. The BAS field is used to allow setting breakpoints on 16
5502          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5503          * a bp will fire if the addresses covered by the bp and the addresses
5504          * covered by the insn overlap but the insn doesn't start at the
5505          * start of the bp address range. We choose to require the insn and
5506          * the bp to have the same address. The constraints on writing to
5507          * BAS enforced in dbgbcr_write mean we have only four cases:
5508          *  0b0000  => no breakpoint
5509          *  0b0011  => breakpoint on addr
5510          *  0b1100  => breakpoint on addr + 2
5511          *  0b1111  => breakpoint on addr
5512          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5513          */
5514         int bas = extract64(bcr, 5, 4);
5515         addr = sextract64(bvr, 0, 49) & ~3ULL;
5516         if (bas == 0) {
5517             return;
5518         }
5519         if (bas == 0xc) {
5520             addr += 2;
5521         }
5522         break;
5523     }
5524     case 2: /* unlinked context ID match */
5525     case 8: /* unlinked VMID match (reserved if no EL2) */
5526     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5527         qemu_log_mask(LOG_UNIMP,
5528                       "arm: unlinked context breakpoint types not implemented\n");
5529         return;
5530     case 9: /* linked VMID match (reserved if no EL2) */
5531     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5532     case 3: /* linked context ID match */
5533     default:
5534         /* We must generate no events for Linked context matches (unless
5535          * they are linked to by some other bp/wp, which is handled in
5536          * updates for the linking bp/wp). We choose to also generate no events
5537          * for reserved values.
5538          */
5539         return;
5540     }
5541 
5542     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5543 }
5544 
5545 void hw_breakpoint_update_all(ARMCPU *cpu)
5546 {
5547     int i;
5548     CPUARMState *env = &cpu->env;
5549 
5550     /* Completely clear out existing QEMU breakpoints and our array, to
5551      * avoid possible stale entries following migration load.
5552      */
5553     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5554     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5555 
5556     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5557         hw_breakpoint_update(cpu, i);
5558     }
5559 }
5560 
5561 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5562                          uint64_t value)
5563 {
5564     ARMCPU *cpu = env_archcpu(env);
5565     int i = ri->crm;
5566 
5567     raw_write(env, ri, value);
5568     hw_breakpoint_update(cpu, i);
5569 }
5570 
5571 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5572                          uint64_t value)
5573 {
5574     ARMCPU *cpu = env_archcpu(env);
5575     int i = ri->crm;
5576 
5577     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5578      * copy of BAS[0].
5579      */
5580     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5581     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5582 
5583     raw_write(env, ri, value);
5584     hw_breakpoint_update(cpu, i);
5585 }
5586 
5587 static void define_debug_regs(ARMCPU *cpu)
5588 {
5589     /* Define v7 and v8 architectural debug registers.
5590      * These are just dummy implementations for now.
5591      */
5592     int i;
5593     int wrps, brps, ctx_cmps;
5594     ARMCPRegInfo dbgdidr = {
5595         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5596         .access = PL0_R, .accessfn = access_tda,
5597         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5598     };
5599 
5600     /* Note that all these register fields hold "number of Xs minus 1". */
5601     brps = extract32(cpu->dbgdidr, 24, 4);
5602     wrps = extract32(cpu->dbgdidr, 28, 4);
5603     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5604 
5605     assert(ctx_cmps <= brps);
5606 
5607     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5608      * of the debug registers such as number of breakpoints;
5609      * check that if they both exist then they agree.
5610      */
5611     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5612         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5613         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5614         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5615     }
5616 
5617     define_one_arm_cp_reg(cpu, &dbgdidr);
5618     define_arm_cp_regs(cpu, debug_cp_reginfo);
5619 
5620     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5621         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5622     }
5623 
5624     for (i = 0; i < brps + 1; i++) {
5625         ARMCPRegInfo dbgregs[] = {
5626             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5627               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5628               .access = PL1_RW, .accessfn = access_tda,
5629               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5630               .writefn = dbgbvr_write, .raw_writefn = raw_write
5631             },
5632             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5633               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5634               .access = PL1_RW, .accessfn = access_tda,
5635               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5636               .writefn = dbgbcr_write, .raw_writefn = raw_write
5637             },
5638             REGINFO_SENTINEL
5639         };
5640         define_arm_cp_regs(cpu, dbgregs);
5641     }
5642 
5643     for (i = 0; i < wrps + 1; i++) {
5644         ARMCPRegInfo dbgregs[] = {
5645             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5646               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5647               .access = PL1_RW, .accessfn = access_tda,
5648               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5649               .writefn = dbgwvr_write, .raw_writefn = raw_write
5650             },
5651             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5652               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5653               .access = PL1_RW, .accessfn = access_tda,
5654               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5655               .writefn = dbgwcr_write, .raw_writefn = raw_write
5656             },
5657             REGINFO_SENTINEL
5658         };
5659         define_arm_cp_regs(cpu, dbgregs);
5660     }
5661 }
5662 
5663 /* We don't know until after realize whether there's a GICv3
5664  * attached, and that is what registers the gicv3 sysregs.
5665  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5666  * at runtime.
5667  */
5668 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5669 {
5670     ARMCPU *cpu = env_archcpu(env);
5671     uint64_t pfr1 = cpu->id_pfr1;
5672 
5673     if (env->gicv3state) {
5674         pfr1 |= 1 << 28;
5675     }
5676     return pfr1;
5677 }
5678 
5679 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5680 {
5681     ARMCPU *cpu = env_archcpu(env);
5682     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5683 
5684     if (env->gicv3state) {
5685         pfr0 |= 1 << 24;
5686     }
5687     return pfr0;
5688 }
5689 
5690 /* Shared logic between LORID and the rest of the LOR* registers.
5691  * Secure state has already been delt with.
5692  */
5693 static CPAccessResult access_lor_ns(CPUARMState *env)
5694 {
5695     int el = arm_current_el(env);
5696 
5697     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5698         return CP_ACCESS_TRAP_EL2;
5699     }
5700     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5701         return CP_ACCESS_TRAP_EL3;
5702     }
5703     return CP_ACCESS_OK;
5704 }
5705 
5706 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5707                                    bool isread)
5708 {
5709     if (arm_is_secure_below_el3(env)) {
5710         /* Access ok in secure mode.  */
5711         return CP_ACCESS_OK;
5712     }
5713     return access_lor_ns(env);
5714 }
5715 
5716 static CPAccessResult access_lor_other(CPUARMState *env,
5717                                        const ARMCPRegInfo *ri, bool isread)
5718 {
5719     if (arm_is_secure_below_el3(env)) {
5720         /* Access denied in secure mode.  */
5721         return CP_ACCESS_TRAP;
5722     }
5723     return access_lor_ns(env);
5724 }
5725 
5726 #ifdef TARGET_AARCH64
5727 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5728                                    bool isread)
5729 {
5730     int el = arm_current_el(env);
5731 
5732     if (el < 2 &&
5733         arm_feature(env, ARM_FEATURE_EL2) &&
5734         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5735         return CP_ACCESS_TRAP_EL2;
5736     }
5737     if (el < 3 &&
5738         arm_feature(env, ARM_FEATURE_EL3) &&
5739         !(env->cp15.scr_el3 & SCR_APK)) {
5740         return CP_ACCESS_TRAP_EL3;
5741     }
5742     return CP_ACCESS_OK;
5743 }
5744 
5745 static const ARMCPRegInfo pauth_reginfo[] = {
5746     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5747       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5748       .access = PL1_RW, .accessfn = access_pauth,
5749       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5750     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5751       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5752       .access = PL1_RW, .accessfn = access_pauth,
5753       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5754     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5755       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5756       .access = PL1_RW, .accessfn = access_pauth,
5757       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5758     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5759       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5760       .access = PL1_RW, .accessfn = access_pauth,
5761       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5762     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5763       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5764       .access = PL1_RW, .accessfn = access_pauth,
5765       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5766     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5767       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5768       .access = PL1_RW, .accessfn = access_pauth,
5769       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5770     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5772       .access = PL1_RW, .accessfn = access_pauth,
5773       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5774     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5776       .access = PL1_RW, .accessfn = access_pauth,
5777       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5778     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5779       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5780       .access = PL1_RW, .accessfn = access_pauth,
5781       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5782     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5783       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5784       .access = PL1_RW, .accessfn = access_pauth,
5785       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5786     REGINFO_SENTINEL
5787 };
5788 
5789 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5790 {
5791     Error *err = NULL;
5792     uint64_t ret;
5793 
5794     /* Success sets NZCV = 0000.  */
5795     env->NF = env->CF = env->VF = 0, env->ZF = 1;
5796 
5797     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5798         /*
5799          * ??? Failed, for unknown reasons in the crypto subsystem.
5800          * The best we can do is log the reason and return the
5801          * timed-out indication to the guest.  There is no reason
5802          * we know to expect this failure to be transitory, so the
5803          * guest may well hang retrying the operation.
5804          */
5805         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5806                       ri->name, error_get_pretty(err));
5807         error_free(err);
5808 
5809         env->ZF = 0; /* NZCF = 0100 */
5810         return 0;
5811     }
5812     return ret;
5813 }
5814 
5815 /* We do not support re-seeding, so the two registers operate the same.  */
5816 static const ARMCPRegInfo rndr_reginfo[] = {
5817     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5818       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5819       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5820       .access = PL0_R, .readfn = rndr_readfn },
5821     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5822       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5823       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5824       .access = PL0_R, .readfn = rndr_readfn },
5825     REGINFO_SENTINEL
5826 };
5827 #endif
5828 
5829 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5830                                      bool isread)
5831 {
5832     int el = arm_current_el(env);
5833 
5834     if (el == 0) {
5835         uint64_t sctlr = arm_sctlr(env, el);
5836         if (!(sctlr & SCTLR_EnRCTX)) {
5837             return CP_ACCESS_TRAP;
5838         }
5839     } else if (el == 1) {
5840         uint64_t hcr = arm_hcr_el2_eff(env);
5841         if (hcr & HCR_NV) {
5842             return CP_ACCESS_TRAP_EL2;
5843         }
5844     }
5845     return CP_ACCESS_OK;
5846 }
5847 
5848 static const ARMCPRegInfo predinv_reginfo[] = {
5849     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5850       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5851       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5852     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5853       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5854       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5855     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5856       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5857       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5858     /*
5859      * Note the AArch32 opcodes have a different OPC1.
5860      */
5861     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5862       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5863       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5864     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5865       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5866       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5867     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5868       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5869       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5870     REGINFO_SENTINEL
5871 };
5872 
5873 void register_cp_regs_for_features(ARMCPU *cpu)
5874 {
5875     /* Register all the coprocessor registers based on feature bits */
5876     CPUARMState *env = &cpu->env;
5877     if (arm_feature(env, ARM_FEATURE_M)) {
5878         /* M profile has no coprocessor registers */
5879         return;
5880     }
5881 
5882     define_arm_cp_regs(cpu, cp_reginfo);
5883     if (!arm_feature(env, ARM_FEATURE_V8)) {
5884         /* Must go early as it is full of wildcards that may be
5885          * overridden by later definitions.
5886          */
5887         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5888     }
5889 
5890     if (arm_feature(env, ARM_FEATURE_V6)) {
5891         /* The ID registers all have impdef reset values */
5892         ARMCPRegInfo v6_idregs[] = {
5893             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5894               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5895               .access = PL1_R, .type = ARM_CP_CONST,
5896               .resetvalue = cpu->id_pfr0 },
5897             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5898              * the value of the GIC field until after we define these regs.
5899              */
5900             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5901               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5902               .access = PL1_R, .type = ARM_CP_NO_RAW,
5903               .readfn = id_pfr1_read,
5904               .writefn = arm_cp_write_ignore },
5905             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5906               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5907               .access = PL1_R, .type = ARM_CP_CONST,
5908               .resetvalue = cpu->id_dfr0 },
5909             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5910               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5911               .access = PL1_R, .type = ARM_CP_CONST,
5912               .resetvalue = cpu->id_afr0 },
5913             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5914               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5915               .access = PL1_R, .type = ARM_CP_CONST,
5916               .resetvalue = cpu->id_mmfr0 },
5917             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5918               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5919               .access = PL1_R, .type = ARM_CP_CONST,
5920               .resetvalue = cpu->id_mmfr1 },
5921             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5922               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5923               .access = PL1_R, .type = ARM_CP_CONST,
5924               .resetvalue = cpu->id_mmfr2 },
5925             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5926               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5927               .access = PL1_R, .type = ARM_CP_CONST,
5928               .resetvalue = cpu->id_mmfr3 },
5929             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5930               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5931               .access = PL1_R, .type = ARM_CP_CONST,
5932               .resetvalue = cpu->isar.id_isar0 },
5933             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5934               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5935               .access = PL1_R, .type = ARM_CP_CONST,
5936               .resetvalue = cpu->isar.id_isar1 },
5937             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5938               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5939               .access = PL1_R, .type = ARM_CP_CONST,
5940               .resetvalue = cpu->isar.id_isar2 },
5941             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5942               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5943               .access = PL1_R, .type = ARM_CP_CONST,
5944               .resetvalue = cpu->isar.id_isar3 },
5945             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5946               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5947               .access = PL1_R, .type = ARM_CP_CONST,
5948               .resetvalue = cpu->isar.id_isar4 },
5949             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5951               .access = PL1_R, .type = ARM_CP_CONST,
5952               .resetvalue = cpu->isar.id_isar5 },
5953             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5954               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5955               .access = PL1_R, .type = ARM_CP_CONST,
5956               .resetvalue = cpu->id_mmfr4 },
5957             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5958               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5959               .access = PL1_R, .type = ARM_CP_CONST,
5960               .resetvalue = cpu->isar.id_isar6 },
5961             REGINFO_SENTINEL
5962         };
5963         define_arm_cp_regs(cpu, v6_idregs);
5964         define_arm_cp_regs(cpu, v6_cp_reginfo);
5965     } else {
5966         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5967     }
5968     if (arm_feature(env, ARM_FEATURE_V6K)) {
5969         define_arm_cp_regs(cpu, v6k_cp_reginfo);
5970     }
5971     if (arm_feature(env, ARM_FEATURE_V7MP) &&
5972         !arm_feature(env, ARM_FEATURE_PMSA)) {
5973         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5974     }
5975     if (arm_feature(env, ARM_FEATURE_V7VE)) {
5976         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5977     }
5978     if (arm_feature(env, ARM_FEATURE_V7)) {
5979         /* v7 performance monitor control register: same implementor
5980          * field as main ID register, and we implement four counters in
5981          * addition to the cycle count register.
5982          */
5983         unsigned int i, pmcrn = 4;
5984         ARMCPRegInfo pmcr = {
5985             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5986             .access = PL0_RW,
5987             .type = ARM_CP_IO | ARM_CP_ALIAS,
5988             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5989             .accessfn = pmreg_access, .writefn = pmcr_write,
5990             .raw_writefn = raw_write,
5991         };
5992         ARMCPRegInfo pmcr64 = {
5993             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5994             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5995             .access = PL0_RW, .accessfn = pmreg_access,
5996             .type = ARM_CP_IO,
5997             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5998             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5999             .writefn = pmcr_write, .raw_writefn = raw_write,
6000         };
6001         define_one_arm_cp_reg(cpu, &pmcr);
6002         define_one_arm_cp_reg(cpu, &pmcr64);
6003         for (i = 0; i < pmcrn; i++) {
6004             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6005             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6006             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6007             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6008             ARMCPRegInfo pmev_regs[] = {
6009                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6010                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6011                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6012                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6013                   .accessfn = pmreg_access },
6014                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6015                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6016                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6017                   .type = ARM_CP_IO,
6018                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6019                   .raw_readfn = pmevcntr_rawread,
6020                   .raw_writefn = pmevcntr_rawwrite },
6021                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6022                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6023                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6024                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6025                   .accessfn = pmreg_access },
6026                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6027                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6028                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6029                   .type = ARM_CP_IO,
6030                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6031                   .raw_writefn = pmevtyper_rawwrite },
6032                 REGINFO_SENTINEL
6033             };
6034             define_arm_cp_regs(cpu, pmev_regs);
6035             g_free(pmevcntr_name);
6036             g_free(pmevcntr_el0_name);
6037             g_free(pmevtyper_name);
6038             g_free(pmevtyper_el0_name);
6039         }
6040         ARMCPRegInfo clidr = {
6041             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6042             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6043             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6044         };
6045         define_one_arm_cp_reg(cpu, &clidr);
6046         define_arm_cp_regs(cpu, v7_cp_reginfo);
6047         define_debug_regs(cpu);
6048     } else {
6049         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6050     }
6051     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6052             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6053         ARMCPRegInfo v81_pmu_regs[] = {
6054             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6055               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6056               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6057               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6058             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6059               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6060               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6061               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6062             REGINFO_SENTINEL
6063         };
6064         define_arm_cp_regs(cpu, v81_pmu_regs);
6065     }
6066     if (arm_feature(env, ARM_FEATURE_V8)) {
6067         /* AArch64 ID registers, which all have impdef reset values.
6068          * Note that within the ID register ranges the unused slots
6069          * must all RAZ, not UNDEF; future architecture versions may
6070          * define new registers here.
6071          */
6072         ARMCPRegInfo v8_idregs[] = {
6073             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6074              * know the right value for the GIC field until after we
6075              * define these regs.
6076              */
6077             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6079               .access = PL1_R, .type = ARM_CP_NO_RAW,
6080               .readfn = id_aa64pfr0_read,
6081               .writefn = arm_cp_write_ignore },
6082             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6083               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6084               .access = PL1_R, .type = ARM_CP_CONST,
6085               .resetvalue = cpu->isar.id_aa64pfr1},
6086             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6087               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6088               .access = PL1_R, .type = ARM_CP_CONST,
6089               .resetvalue = 0 },
6090             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6091               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6092               .access = PL1_R, .type = ARM_CP_CONST,
6093               .resetvalue = 0 },
6094             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6095               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6096               .access = PL1_R, .type = ARM_CP_CONST,
6097               /* At present, only SVEver == 0 is defined anyway.  */
6098               .resetvalue = 0 },
6099             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6101               .access = PL1_R, .type = ARM_CP_CONST,
6102               .resetvalue = 0 },
6103             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6104               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6105               .access = PL1_R, .type = ARM_CP_CONST,
6106               .resetvalue = 0 },
6107             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6108               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6109               .access = PL1_R, .type = ARM_CP_CONST,
6110               .resetvalue = 0 },
6111             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6112               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6113               .access = PL1_R, .type = ARM_CP_CONST,
6114               .resetvalue = cpu->id_aa64dfr0 },
6115             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6116               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6117               .access = PL1_R, .type = ARM_CP_CONST,
6118               .resetvalue = cpu->id_aa64dfr1 },
6119             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6120               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6121               .access = PL1_R, .type = ARM_CP_CONST,
6122               .resetvalue = 0 },
6123             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6124               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6125               .access = PL1_R, .type = ARM_CP_CONST,
6126               .resetvalue = 0 },
6127             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6128               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6129               .access = PL1_R, .type = ARM_CP_CONST,
6130               .resetvalue = cpu->id_aa64afr0 },
6131             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6132               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6133               .access = PL1_R, .type = ARM_CP_CONST,
6134               .resetvalue = cpu->id_aa64afr1 },
6135             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6136               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6137               .access = PL1_R, .type = ARM_CP_CONST,
6138               .resetvalue = 0 },
6139             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6140               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6141               .access = PL1_R, .type = ARM_CP_CONST,
6142               .resetvalue = 0 },
6143             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6144               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6145               .access = PL1_R, .type = ARM_CP_CONST,
6146               .resetvalue = cpu->isar.id_aa64isar0 },
6147             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6148               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6149               .access = PL1_R, .type = ARM_CP_CONST,
6150               .resetvalue = cpu->isar.id_aa64isar1 },
6151             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6152               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6153               .access = PL1_R, .type = ARM_CP_CONST,
6154               .resetvalue = 0 },
6155             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6156               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6157               .access = PL1_R, .type = ARM_CP_CONST,
6158               .resetvalue = 0 },
6159             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6160               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6161               .access = PL1_R, .type = ARM_CP_CONST,
6162               .resetvalue = 0 },
6163             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6164               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6165               .access = PL1_R, .type = ARM_CP_CONST,
6166               .resetvalue = 0 },
6167             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6168               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6169               .access = PL1_R, .type = ARM_CP_CONST,
6170               .resetvalue = 0 },
6171             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6172               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6173               .access = PL1_R, .type = ARM_CP_CONST,
6174               .resetvalue = 0 },
6175             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6176               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6177               .access = PL1_R, .type = ARM_CP_CONST,
6178               .resetvalue = cpu->isar.id_aa64mmfr0 },
6179             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6180               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6181               .access = PL1_R, .type = ARM_CP_CONST,
6182               .resetvalue = cpu->isar.id_aa64mmfr1 },
6183             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6184               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6185               .access = PL1_R, .type = ARM_CP_CONST,
6186               .resetvalue = 0 },
6187             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6188               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6189               .access = PL1_R, .type = ARM_CP_CONST,
6190               .resetvalue = 0 },
6191             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6192               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6193               .access = PL1_R, .type = ARM_CP_CONST,
6194               .resetvalue = 0 },
6195             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6196               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6197               .access = PL1_R, .type = ARM_CP_CONST,
6198               .resetvalue = 0 },
6199             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6200               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6201               .access = PL1_R, .type = ARM_CP_CONST,
6202               .resetvalue = 0 },
6203             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6204               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6205               .access = PL1_R, .type = ARM_CP_CONST,
6206               .resetvalue = 0 },
6207             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6208               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6209               .access = PL1_R, .type = ARM_CP_CONST,
6210               .resetvalue = cpu->isar.mvfr0 },
6211             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6212               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6213               .access = PL1_R, .type = ARM_CP_CONST,
6214               .resetvalue = cpu->isar.mvfr1 },
6215             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6216               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6217               .access = PL1_R, .type = ARM_CP_CONST,
6218               .resetvalue = cpu->isar.mvfr2 },
6219             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6220               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6221               .access = PL1_R, .type = ARM_CP_CONST,
6222               .resetvalue = 0 },
6223             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6224               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6225               .access = PL1_R, .type = ARM_CP_CONST,
6226               .resetvalue = 0 },
6227             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6228               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6229               .access = PL1_R, .type = ARM_CP_CONST,
6230               .resetvalue = 0 },
6231             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6232               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6233               .access = PL1_R, .type = ARM_CP_CONST,
6234               .resetvalue = 0 },
6235             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6236               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6237               .access = PL1_R, .type = ARM_CP_CONST,
6238               .resetvalue = 0 },
6239             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6240               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6241               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6242               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6243             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6244               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6245               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6246               .resetvalue = cpu->pmceid0 },
6247             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6248               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6249               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6250               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6251             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6252               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6253               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6254               .resetvalue = cpu->pmceid1 },
6255             REGINFO_SENTINEL
6256         };
6257 #ifdef CONFIG_USER_ONLY
6258         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6259             { .name = "ID_AA64PFR0_EL1",
6260               .exported_bits = 0x000f000f00ff0000,
6261               .fixed_bits    = 0x0000000000000011 },
6262             { .name = "ID_AA64PFR1_EL1",
6263               .exported_bits = 0x00000000000000f0 },
6264             { .name = "ID_AA64PFR*_EL1_RESERVED",
6265               .is_glob = true                     },
6266             { .name = "ID_AA64ZFR0_EL1"           },
6267             { .name = "ID_AA64MMFR0_EL1",
6268               .fixed_bits    = 0x00000000ff000000 },
6269             { .name = "ID_AA64MMFR1_EL1"          },
6270             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6271               .is_glob = true                     },
6272             { .name = "ID_AA64DFR0_EL1",
6273               .fixed_bits    = 0x0000000000000006 },
6274             { .name = "ID_AA64DFR1_EL1"           },
6275             { .name = "ID_AA64DFR*_EL1_RESERVED",
6276               .is_glob = true                     },
6277             { .name = "ID_AA64AFR*",
6278               .is_glob = true                     },
6279             { .name = "ID_AA64ISAR0_EL1",
6280               .exported_bits = 0x00fffffff0fffff0 },
6281             { .name = "ID_AA64ISAR1_EL1",
6282               .exported_bits = 0x000000f0ffffffff },
6283             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6284               .is_glob = true                     },
6285             REGUSERINFO_SENTINEL
6286         };
6287         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6288 #endif
6289         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6290         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6291             !arm_feature(env, ARM_FEATURE_EL2)) {
6292             ARMCPRegInfo rvbar = {
6293                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6294                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6295                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6296             };
6297             define_one_arm_cp_reg(cpu, &rvbar);
6298         }
6299         define_arm_cp_regs(cpu, v8_idregs);
6300         define_arm_cp_regs(cpu, v8_cp_reginfo);
6301     }
6302     if (arm_feature(env, ARM_FEATURE_EL2)) {
6303         uint64_t vmpidr_def = mpidr_read_val(env);
6304         ARMCPRegInfo vpidr_regs[] = {
6305             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6306               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6307               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6308               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6309               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6310             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6311               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6312               .access = PL2_RW, .resetvalue = cpu->midr,
6313               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6314             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6315               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6316               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6317               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6318               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6319             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6320               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6321               .access = PL2_RW,
6322               .resetvalue = vmpidr_def,
6323               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6324             REGINFO_SENTINEL
6325         };
6326         define_arm_cp_regs(cpu, vpidr_regs);
6327         define_arm_cp_regs(cpu, el2_cp_reginfo);
6328         if (arm_feature(env, ARM_FEATURE_V8)) {
6329             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6330         }
6331         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6332         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6333             ARMCPRegInfo rvbar = {
6334                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6335                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6336                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6337             };
6338             define_one_arm_cp_reg(cpu, &rvbar);
6339         }
6340     } else {
6341         /* If EL2 is missing but higher ELs are enabled, we need to
6342          * register the no_el2 reginfos.
6343          */
6344         if (arm_feature(env, ARM_FEATURE_EL3)) {
6345             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6346              * of MIDR_EL1 and MPIDR_EL1.
6347              */
6348             ARMCPRegInfo vpidr_regs[] = {
6349                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6350                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6351                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6352                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6353                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6354                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6355                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6356                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6357                   .type = ARM_CP_NO_RAW,
6358                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6359                 REGINFO_SENTINEL
6360             };
6361             define_arm_cp_regs(cpu, vpidr_regs);
6362             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6363             if (arm_feature(env, ARM_FEATURE_V8)) {
6364                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6365             }
6366         }
6367     }
6368     if (arm_feature(env, ARM_FEATURE_EL3)) {
6369         define_arm_cp_regs(cpu, el3_cp_reginfo);
6370         ARMCPRegInfo el3_regs[] = {
6371             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6372               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6373               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6374             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6375               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6376               .access = PL3_RW,
6377               .raw_writefn = raw_write, .writefn = sctlr_write,
6378               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6379               .resetvalue = cpu->reset_sctlr },
6380             REGINFO_SENTINEL
6381         };
6382 
6383         define_arm_cp_regs(cpu, el3_regs);
6384     }
6385     /* The behaviour of NSACR is sufficiently various that we don't
6386      * try to describe it in a single reginfo:
6387      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6388      *     reads as constant 0xc00 from NS EL1 and NS EL2
6389      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6390      *  if v7 without EL3, register doesn't exist
6391      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6392      */
6393     if (arm_feature(env, ARM_FEATURE_EL3)) {
6394         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6395             ARMCPRegInfo nsacr = {
6396                 .name = "NSACR", .type = ARM_CP_CONST,
6397                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6398                 .access = PL1_RW, .accessfn = nsacr_access,
6399                 .resetvalue = 0xc00
6400             };
6401             define_one_arm_cp_reg(cpu, &nsacr);
6402         } else {
6403             ARMCPRegInfo nsacr = {
6404                 .name = "NSACR",
6405                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6406                 .access = PL3_RW | PL1_R,
6407                 .resetvalue = 0,
6408                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6409             };
6410             define_one_arm_cp_reg(cpu, &nsacr);
6411         }
6412     } else {
6413         if (arm_feature(env, ARM_FEATURE_V8)) {
6414             ARMCPRegInfo nsacr = {
6415                 .name = "NSACR", .type = ARM_CP_CONST,
6416                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6417                 .access = PL1_R,
6418                 .resetvalue = 0xc00
6419             };
6420             define_one_arm_cp_reg(cpu, &nsacr);
6421         }
6422     }
6423 
6424     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6425         if (arm_feature(env, ARM_FEATURE_V6)) {
6426             /* PMSAv6 not implemented */
6427             assert(arm_feature(env, ARM_FEATURE_V7));
6428             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6429             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6430         } else {
6431             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6432         }
6433     } else {
6434         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6435         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6436         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6437         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6438             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6439         }
6440     }
6441     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6442         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6443     }
6444     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6445         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6446     }
6447     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6448         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6449     }
6450     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6451         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6452     }
6453     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6454         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6455     }
6456     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6457         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6458     }
6459     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6460         define_arm_cp_regs(cpu, omap_cp_reginfo);
6461     }
6462     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6463         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6464     }
6465     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6466         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6467     }
6468     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6469         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6470     }
6471     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6472         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6473     }
6474     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6475      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6476      * be read-only (ie write causes UNDEF exception).
6477      */
6478     {
6479         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6480             /* Pre-v8 MIDR space.
6481              * Note that the MIDR isn't a simple constant register because
6482              * of the TI925 behaviour where writes to another register can
6483              * cause the MIDR value to change.
6484              *
6485              * Unimplemented registers in the c15 0 0 0 space default to
6486              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6487              * and friends override accordingly.
6488              */
6489             { .name = "MIDR",
6490               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6491               .access = PL1_R, .resetvalue = cpu->midr,
6492               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6493               .readfn = midr_read,
6494               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6495               .type = ARM_CP_OVERRIDE },
6496             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6497             { .name = "DUMMY",
6498               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6499               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6500             { .name = "DUMMY",
6501               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6502               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6503             { .name = "DUMMY",
6504               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6505               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6506             { .name = "DUMMY",
6507               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6508               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6509             { .name = "DUMMY",
6510               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6511               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6512             REGINFO_SENTINEL
6513         };
6514         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6515             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6516               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6517               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6518               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6519               .readfn = midr_read },
6520             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6521             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6522               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6523               .access = PL1_R, .resetvalue = cpu->midr },
6524             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6525               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6526               .access = PL1_R, .resetvalue = cpu->midr },
6527             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6528               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6529               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6530             REGINFO_SENTINEL
6531         };
6532         ARMCPRegInfo id_cp_reginfo[] = {
6533             /* These are common to v8 and pre-v8 */
6534             { .name = "CTR",
6535               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6536               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6537             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6538               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6539               .access = PL0_R, .accessfn = ctr_el0_access,
6540               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6541             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6542             { .name = "TCMTR",
6543               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6544               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6545             REGINFO_SENTINEL
6546         };
6547         /* TLBTR is specific to VMSA */
6548         ARMCPRegInfo id_tlbtr_reginfo = {
6549               .name = "TLBTR",
6550               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6551               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6552         };
6553         /* MPUIR is specific to PMSA V6+ */
6554         ARMCPRegInfo id_mpuir_reginfo = {
6555               .name = "MPUIR",
6556               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6557               .access = PL1_R, .type = ARM_CP_CONST,
6558               .resetvalue = cpu->pmsav7_dregion << 8
6559         };
6560         ARMCPRegInfo crn0_wi_reginfo = {
6561             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6562             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6563             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6564         };
6565 #ifdef CONFIG_USER_ONLY
6566         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6567             { .name = "MIDR_EL1",
6568               .exported_bits = 0x00000000ffffffff },
6569             { .name = "REVIDR_EL1"                },
6570             REGUSERINFO_SENTINEL
6571         };
6572         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6573 #endif
6574         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6575             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6576             ARMCPRegInfo *r;
6577             /* Register the blanket "writes ignored" value first to cover the
6578              * whole space. Then update the specific ID registers to allow write
6579              * access, so that they ignore writes rather than causing them to
6580              * UNDEF.
6581              */
6582             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6583             for (r = id_pre_v8_midr_cp_reginfo;
6584                  r->type != ARM_CP_SENTINEL; r++) {
6585                 r->access = PL1_RW;
6586             }
6587             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6588                 r->access = PL1_RW;
6589             }
6590             id_mpuir_reginfo.access = PL1_RW;
6591             id_tlbtr_reginfo.access = PL1_RW;
6592         }
6593         if (arm_feature(env, ARM_FEATURE_V8)) {
6594             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6595         } else {
6596             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6597         }
6598         define_arm_cp_regs(cpu, id_cp_reginfo);
6599         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6600             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6601         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6602             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6603         }
6604     }
6605 
6606     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6607         ARMCPRegInfo mpidr_cp_reginfo[] = {
6608             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6609               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6610               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6611             REGINFO_SENTINEL
6612         };
6613 #ifdef CONFIG_USER_ONLY
6614         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6615             { .name = "MPIDR_EL1",
6616               .fixed_bits = 0x0000000080000000 },
6617             REGUSERINFO_SENTINEL
6618         };
6619         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6620 #endif
6621         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6622     }
6623 
6624     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6625         ARMCPRegInfo auxcr_reginfo[] = {
6626             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6627               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6628               .access = PL1_RW, .type = ARM_CP_CONST,
6629               .resetvalue = cpu->reset_auxcr },
6630             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6631               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6632               .access = PL2_RW, .type = ARM_CP_CONST,
6633               .resetvalue = 0 },
6634             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6635               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6636               .access = PL3_RW, .type = ARM_CP_CONST,
6637               .resetvalue = 0 },
6638             REGINFO_SENTINEL
6639         };
6640         define_arm_cp_regs(cpu, auxcr_reginfo);
6641         if (arm_feature(env, ARM_FEATURE_V8)) {
6642             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6643             ARMCPRegInfo hactlr2_reginfo = {
6644                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6645                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6646                 .access = PL2_RW, .type = ARM_CP_CONST,
6647                 .resetvalue = 0
6648             };
6649             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6650         }
6651     }
6652 
6653     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6654         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6655             /* 32 bit view is [31:18] 0...0 [43:32]. */
6656             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6657                 | extract64(cpu->reset_cbar, 32, 12);
6658             ARMCPRegInfo cbar_reginfo[] = {
6659                 { .name = "CBAR",
6660                   .type = ARM_CP_CONST,
6661                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6662                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6663                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6664                   .type = ARM_CP_CONST,
6665                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6666                   .access = PL1_R, .resetvalue = cbar32 },
6667                 REGINFO_SENTINEL
6668             };
6669             /* We don't implement a r/w 64 bit CBAR currently */
6670             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6671             define_arm_cp_regs(cpu, cbar_reginfo);
6672         } else {
6673             ARMCPRegInfo cbar = {
6674                 .name = "CBAR",
6675                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6676                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6677                 .fieldoffset = offsetof(CPUARMState,
6678                                         cp15.c15_config_base_address)
6679             };
6680             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6681                 cbar.access = PL1_R;
6682                 cbar.fieldoffset = 0;
6683                 cbar.type = ARM_CP_CONST;
6684             }
6685             define_one_arm_cp_reg(cpu, &cbar);
6686         }
6687     }
6688 
6689     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6690         ARMCPRegInfo vbar_cp_reginfo[] = {
6691             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6692               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6693               .access = PL1_RW, .writefn = vbar_write,
6694               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6695                                      offsetof(CPUARMState, cp15.vbar_ns) },
6696               .resetvalue = 0 },
6697             REGINFO_SENTINEL
6698         };
6699         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6700     }
6701 
6702     /* Generic registers whose values depend on the implementation */
6703     {
6704         ARMCPRegInfo sctlr = {
6705             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6706             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6707             .access = PL1_RW,
6708             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6709                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6710             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6711             .raw_writefn = raw_write,
6712         };
6713         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6714             /* Normally we would always end the TB on an SCTLR write, but Linux
6715              * arch/arm/mach-pxa/sleep.S expects two instructions following
6716              * an MMU enable to execute from cache.  Imitate this behaviour.
6717              */
6718             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6719         }
6720         define_one_arm_cp_reg(cpu, &sctlr);
6721     }
6722 
6723     if (cpu_isar_feature(aa64_lor, cpu)) {
6724         /*
6725          * A trivial implementation of ARMv8.1-LOR leaves all of these
6726          * registers fixed at 0, which indicates that there are zero
6727          * supported Limited Ordering regions.
6728          */
6729         static const ARMCPRegInfo lor_reginfo[] = {
6730             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6731               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6732               .access = PL1_RW, .accessfn = access_lor_other,
6733               .type = ARM_CP_CONST, .resetvalue = 0 },
6734             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6735               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6736               .access = PL1_RW, .accessfn = access_lor_other,
6737               .type = ARM_CP_CONST, .resetvalue = 0 },
6738             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6739               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6740               .access = PL1_RW, .accessfn = access_lor_other,
6741               .type = ARM_CP_CONST, .resetvalue = 0 },
6742             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6743               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6744               .access = PL1_RW, .accessfn = access_lor_other,
6745               .type = ARM_CP_CONST, .resetvalue = 0 },
6746             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6747               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6748               .access = PL1_R, .accessfn = access_lorid,
6749               .type = ARM_CP_CONST, .resetvalue = 0 },
6750             REGINFO_SENTINEL
6751         };
6752         define_arm_cp_regs(cpu, lor_reginfo);
6753     }
6754 
6755     if (cpu_isar_feature(aa64_sve, cpu)) {
6756         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6757         if (arm_feature(env, ARM_FEATURE_EL2)) {
6758             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6759         } else {
6760             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6761         }
6762         if (arm_feature(env, ARM_FEATURE_EL3)) {
6763             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6764         }
6765     }
6766 
6767 #ifdef TARGET_AARCH64
6768     if (cpu_isar_feature(aa64_pauth, cpu)) {
6769         define_arm_cp_regs(cpu, pauth_reginfo);
6770     }
6771     if (cpu_isar_feature(aa64_rndr, cpu)) {
6772         define_arm_cp_regs(cpu, rndr_reginfo);
6773     }
6774 #endif
6775 
6776     /*
6777      * While all v8.0 cpus support aarch64, QEMU does have configurations
6778      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6779      * which will set ID_ISAR6.
6780      */
6781     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6782         ? cpu_isar_feature(aa64_predinv, cpu)
6783         : cpu_isar_feature(aa32_predinv, cpu)) {
6784         define_arm_cp_regs(cpu, predinv_reginfo);
6785     }
6786 }
6787 
6788 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6789 {
6790     CPUState *cs = CPU(cpu);
6791     CPUARMState *env = &cpu->env;
6792 
6793     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6794         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6795                                  aarch64_fpu_gdb_set_reg,
6796                                  34, "aarch64-fpu.xml", 0);
6797     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6798         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6799                                  51, "arm-neon.xml", 0);
6800     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6801         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6802                                  35, "arm-vfp3.xml", 0);
6803     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6804         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6805                                  19, "arm-vfp.xml", 0);
6806     }
6807     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6808                              arm_gen_dynamic_xml(cs),
6809                              "system-registers.xml", 0);
6810 }
6811 
6812 /* Sort alphabetically by type name, except for "any". */
6813 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6814 {
6815     ObjectClass *class_a = (ObjectClass *)a;
6816     ObjectClass *class_b = (ObjectClass *)b;
6817     const char *name_a, *name_b;
6818 
6819     name_a = object_class_get_name(class_a);
6820     name_b = object_class_get_name(class_b);
6821     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6822         return 1;
6823     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6824         return -1;
6825     } else {
6826         return strcmp(name_a, name_b);
6827     }
6828 }
6829 
6830 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6831 {
6832     ObjectClass *oc = data;
6833     const char *typename;
6834     char *name;
6835 
6836     typename = object_class_get_name(oc);
6837     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6838     qemu_printf("  %s\n", name);
6839     g_free(name);
6840 }
6841 
6842 void arm_cpu_list(void)
6843 {
6844     GSList *list;
6845 
6846     list = object_class_get_list(TYPE_ARM_CPU, false);
6847     list = g_slist_sort(list, arm_cpu_list_compare);
6848     qemu_printf("Available CPUs:\n");
6849     g_slist_foreach(list, arm_cpu_list_entry, NULL);
6850     g_slist_free(list);
6851 }
6852 
6853 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6854 {
6855     ObjectClass *oc = data;
6856     CpuDefinitionInfoList **cpu_list = user_data;
6857     CpuDefinitionInfoList *entry;
6858     CpuDefinitionInfo *info;
6859     const char *typename;
6860 
6861     typename = object_class_get_name(oc);
6862     info = g_malloc0(sizeof(*info));
6863     info->name = g_strndup(typename,
6864                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
6865     info->q_typename = g_strdup(typename);
6866 
6867     entry = g_malloc0(sizeof(*entry));
6868     entry->value = info;
6869     entry->next = *cpu_list;
6870     *cpu_list = entry;
6871 }
6872 
6873 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6874 {
6875     CpuDefinitionInfoList *cpu_list = NULL;
6876     GSList *list;
6877 
6878     list = object_class_get_list(TYPE_ARM_CPU, false);
6879     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6880     g_slist_free(list);
6881 
6882     return cpu_list;
6883 }
6884 
6885 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6886                                    void *opaque, int state, int secstate,
6887                                    int crm, int opc1, int opc2,
6888                                    const char *name)
6889 {
6890     /* Private utility function for define_one_arm_cp_reg_with_opaque():
6891      * add a single reginfo struct to the hash table.
6892      */
6893     uint32_t *key = g_new(uint32_t, 1);
6894     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6895     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6896     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6897 
6898     r2->name = g_strdup(name);
6899     /* Reset the secure state to the specific incoming state.  This is
6900      * necessary as the register may have been defined with both states.
6901      */
6902     r2->secure = secstate;
6903 
6904     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6905         /* Register is banked (using both entries in array).
6906          * Overwriting fieldoffset as the array is only used to define
6907          * banked registers but later only fieldoffset is used.
6908          */
6909         r2->fieldoffset = r->bank_fieldoffsets[ns];
6910     }
6911 
6912     if (state == ARM_CP_STATE_AA32) {
6913         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6914             /* If the register is banked then we don't need to migrate or
6915              * reset the 32-bit instance in certain cases:
6916              *
6917              * 1) If the register has both 32-bit and 64-bit instances then we
6918              *    can count on the 64-bit instance taking care of the
6919              *    non-secure bank.
6920              * 2) If ARMv8 is enabled then we can count on a 64-bit version
6921              *    taking care of the secure bank.  This requires that separate
6922              *    32 and 64-bit definitions are provided.
6923              */
6924             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6925                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6926                 r2->type |= ARM_CP_ALIAS;
6927             }
6928         } else if ((secstate != r->secure) && !ns) {
6929             /* The register is not banked so we only want to allow migration of
6930              * the non-secure instance.
6931              */
6932             r2->type |= ARM_CP_ALIAS;
6933         }
6934 
6935         if (r->state == ARM_CP_STATE_BOTH) {
6936             /* We assume it is a cp15 register if the .cp field is left unset.
6937              */
6938             if (r2->cp == 0) {
6939                 r2->cp = 15;
6940             }
6941 
6942 #ifdef HOST_WORDS_BIGENDIAN
6943             if (r2->fieldoffset) {
6944                 r2->fieldoffset += sizeof(uint32_t);
6945             }
6946 #endif
6947         }
6948     }
6949     if (state == ARM_CP_STATE_AA64) {
6950         /* To allow abbreviation of ARMCPRegInfo
6951          * definitions, we treat cp == 0 as equivalent to
6952          * the value for "standard guest-visible sysreg".
6953          * STATE_BOTH definitions are also always "standard
6954          * sysreg" in their AArch64 view (the .cp value may
6955          * be non-zero for the benefit of the AArch32 view).
6956          */
6957         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6958             r2->cp = CP_REG_ARM64_SYSREG_CP;
6959         }
6960         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6961                                   r2->opc0, opc1, opc2);
6962     } else {
6963         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6964     }
6965     if (opaque) {
6966         r2->opaque = opaque;
6967     }
6968     /* reginfo passed to helpers is correct for the actual access,
6969      * and is never ARM_CP_STATE_BOTH:
6970      */
6971     r2->state = state;
6972     /* Make sure reginfo passed to helpers for wildcarded regs
6973      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6974      */
6975     r2->crm = crm;
6976     r2->opc1 = opc1;
6977     r2->opc2 = opc2;
6978     /* By convention, for wildcarded registers only the first
6979      * entry is used for migration; the others are marked as
6980      * ALIAS so we don't try to transfer the register
6981      * multiple times. Special registers (ie NOP/WFI) are
6982      * never migratable and not even raw-accessible.
6983      */
6984     if ((r->type & ARM_CP_SPECIAL)) {
6985         r2->type |= ARM_CP_NO_RAW;
6986     }
6987     if (((r->crm == CP_ANY) && crm != 0) ||
6988         ((r->opc1 == CP_ANY) && opc1 != 0) ||
6989         ((r->opc2 == CP_ANY) && opc2 != 0)) {
6990         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6991     }
6992 
6993     /* Check that raw accesses are either forbidden or handled. Note that
6994      * we can't assert this earlier because the setup of fieldoffset for
6995      * banked registers has to be done first.
6996      */
6997     if (!(r2->type & ARM_CP_NO_RAW)) {
6998         assert(!raw_accessors_invalid(r2));
6999     }
7000 
7001     /* Overriding of an existing definition must be explicitly
7002      * requested.
7003      */
7004     if (!(r->type & ARM_CP_OVERRIDE)) {
7005         ARMCPRegInfo *oldreg;
7006         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7007         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7008             fprintf(stderr, "Register redefined: cp=%d %d bit "
7009                     "crn=%d crm=%d opc1=%d opc2=%d, "
7010                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7011                     r2->crn, r2->crm, r2->opc1, r2->opc2,
7012                     oldreg->name, r2->name);
7013             g_assert_not_reached();
7014         }
7015     }
7016     g_hash_table_insert(cpu->cp_regs, key, r2);
7017 }
7018 
7019 
7020 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7021                                        const ARMCPRegInfo *r, void *opaque)
7022 {
7023     /* Define implementations of coprocessor registers.
7024      * We store these in a hashtable because typically
7025      * there are less than 150 registers in a space which
7026      * is 16*16*16*8*8 = 262144 in size.
7027      * Wildcarding is supported for the crm, opc1 and opc2 fields.
7028      * If a register is defined twice then the second definition is
7029      * used, so this can be used to define some generic registers and
7030      * then override them with implementation specific variations.
7031      * At least one of the original and the second definition should
7032      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7033      * against accidental use.
7034      *
7035      * The state field defines whether the register is to be
7036      * visible in the AArch32 or AArch64 execution state. If the
7037      * state is set to ARM_CP_STATE_BOTH then we synthesise a
7038      * reginfo structure for the AArch32 view, which sees the lower
7039      * 32 bits of the 64 bit register.
7040      *
7041      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7042      * be wildcarded. AArch64 registers are always considered to be 64
7043      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7044      * the register, if any.
7045      */
7046     int crm, opc1, opc2, state;
7047     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7048     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7049     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7050     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7051     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7052     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7053     /* 64 bit registers have only CRm and Opc1 fields */
7054     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7055     /* op0 only exists in the AArch64 encodings */
7056     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7057     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7058     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7059     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7060      * encodes a minimum access level for the register. We roll this
7061      * runtime check into our general permission check code, so check
7062      * here that the reginfo's specified permissions are strict enough
7063      * to encompass the generic architectural permission check.
7064      */
7065     if (r->state != ARM_CP_STATE_AA32) {
7066         int mask = 0;
7067         switch (r->opc1) {
7068         case 0:
7069             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7070             mask = PL0U_R | PL1_RW;
7071             break;
7072         case 1: case 2:
7073             /* min_EL EL1 */
7074             mask = PL1_RW;
7075             break;
7076         case 3:
7077             /* min_EL EL0 */
7078             mask = PL0_RW;
7079             break;
7080         case 4:
7081             /* min_EL EL2 */
7082             mask = PL2_RW;
7083             break;
7084         case 5:
7085             /* unallocated encoding, so not possible */
7086             assert(false);
7087             break;
7088         case 6:
7089             /* min_EL EL3 */
7090             mask = PL3_RW;
7091             break;
7092         case 7:
7093             /* min_EL EL1, secure mode only (we don't check the latter) */
7094             mask = PL1_RW;
7095             break;
7096         default:
7097             /* broken reginfo with out-of-range opc1 */
7098             assert(false);
7099             break;
7100         }
7101         /* assert our permissions are not too lax (stricter is fine) */
7102         assert((r->access & ~mask) == 0);
7103     }
7104 
7105     /* Check that the register definition has enough info to handle
7106      * reads and writes if they are permitted.
7107      */
7108     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7109         if (r->access & PL3_R) {
7110             assert((r->fieldoffset ||
7111                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7112                    r->readfn);
7113         }
7114         if (r->access & PL3_W) {
7115             assert((r->fieldoffset ||
7116                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7117                    r->writefn);
7118         }
7119     }
7120     /* Bad type field probably means missing sentinel at end of reg list */
7121     assert(cptype_valid(r->type));
7122     for (crm = crmmin; crm <= crmmax; crm++) {
7123         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7124             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7125                 for (state = ARM_CP_STATE_AA32;
7126                      state <= ARM_CP_STATE_AA64; state++) {
7127                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7128                         continue;
7129                     }
7130                     if (state == ARM_CP_STATE_AA32) {
7131                         /* Under AArch32 CP registers can be common
7132                          * (same for secure and non-secure world) or banked.
7133                          */
7134                         char *name;
7135 
7136                         switch (r->secure) {
7137                         case ARM_CP_SECSTATE_S:
7138                         case ARM_CP_SECSTATE_NS:
7139                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7140                                                    r->secure, crm, opc1, opc2,
7141                                                    r->name);
7142                             break;
7143                         default:
7144                             name = g_strdup_printf("%s_S", r->name);
7145                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7146                                                    ARM_CP_SECSTATE_S,
7147                                                    crm, opc1, opc2, name);
7148                             g_free(name);
7149                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7150                                                    ARM_CP_SECSTATE_NS,
7151                                                    crm, opc1, opc2, r->name);
7152                             break;
7153                         }
7154                     } else {
7155                         /* AArch64 registers get mapped to non-secure instance
7156                          * of AArch32 */
7157                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7158                                                ARM_CP_SECSTATE_NS,
7159                                                crm, opc1, opc2, r->name);
7160                     }
7161                 }
7162             }
7163         }
7164     }
7165 }
7166 
7167 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7168                                     const ARMCPRegInfo *regs, void *opaque)
7169 {
7170     /* Define a whole list of registers */
7171     const ARMCPRegInfo *r;
7172     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7173         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7174     }
7175 }
7176 
7177 /*
7178  * Modify ARMCPRegInfo for access from userspace.
7179  *
7180  * This is a data driven modification directed by
7181  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7182  * user-space cannot alter any values and dynamic values pertaining to
7183  * execution state are hidden from user space view anyway.
7184  */
7185 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7186 {
7187     const ARMCPRegUserSpaceInfo *m;
7188     ARMCPRegInfo *r;
7189 
7190     for (m = mods; m->name; m++) {
7191         GPatternSpec *pat = NULL;
7192         if (m->is_glob) {
7193             pat = g_pattern_spec_new(m->name);
7194         }
7195         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7196             if (pat && g_pattern_match_string(pat, r->name)) {
7197                 r->type = ARM_CP_CONST;
7198                 r->access = PL0U_R;
7199                 r->resetvalue = 0;
7200                 /* continue */
7201             } else if (strcmp(r->name, m->name) == 0) {
7202                 r->type = ARM_CP_CONST;
7203                 r->access = PL0U_R;
7204                 r->resetvalue &= m->exported_bits;
7205                 r->resetvalue |= m->fixed_bits;
7206                 break;
7207             }
7208         }
7209         if (pat) {
7210             g_pattern_spec_free(pat);
7211         }
7212     }
7213 }
7214 
7215 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7216 {
7217     return g_hash_table_lookup(cpregs, &encoded_cp);
7218 }
7219 
7220 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7221                          uint64_t value)
7222 {
7223     /* Helper coprocessor write function for write-ignore registers */
7224 }
7225 
7226 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7227 {
7228     /* Helper coprocessor write function for read-as-zero registers */
7229     return 0;
7230 }
7231 
7232 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7233 {
7234     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7235 }
7236 
7237 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7238 {
7239     /* Return true if it is not valid for us to switch to
7240      * this CPU mode (ie all the UNPREDICTABLE cases in
7241      * the ARM ARM CPSRWriteByInstr pseudocode).
7242      */
7243 
7244     /* Changes to or from Hyp via MSR and CPS are illegal. */
7245     if (write_type == CPSRWriteByInstr &&
7246         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7247          mode == ARM_CPU_MODE_HYP)) {
7248         return 1;
7249     }
7250 
7251     switch (mode) {
7252     case ARM_CPU_MODE_USR:
7253         return 0;
7254     case ARM_CPU_MODE_SYS:
7255     case ARM_CPU_MODE_SVC:
7256     case ARM_CPU_MODE_ABT:
7257     case ARM_CPU_MODE_UND:
7258     case ARM_CPU_MODE_IRQ:
7259     case ARM_CPU_MODE_FIQ:
7260         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7261          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7262          */
7263         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7264          * and CPS are treated as illegal mode changes.
7265          */
7266         if (write_type == CPSRWriteByInstr &&
7267             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7268             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7269             return 1;
7270         }
7271         return 0;
7272     case ARM_CPU_MODE_HYP:
7273         return !arm_feature(env, ARM_FEATURE_EL2)
7274             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7275     case ARM_CPU_MODE_MON:
7276         return arm_current_el(env) < 3;
7277     default:
7278         return 1;
7279     }
7280 }
7281 
7282 uint32_t cpsr_read(CPUARMState *env)
7283 {
7284     int ZF;
7285     ZF = (env->ZF == 0);
7286     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7287         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7288         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7289         | ((env->condexec_bits & 0xfc) << 8)
7290         | (env->GE << 16) | (env->daif & CPSR_AIF);
7291 }
7292 
7293 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7294                 CPSRWriteType write_type)
7295 {
7296     uint32_t changed_daif;
7297 
7298     if (mask & CPSR_NZCV) {
7299         env->ZF = (~val) & CPSR_Z;
7300         env->NF = val;
7301         env->CF = (val >> 29) & 1;
7302         env->VF = (val << 3) & 0x80000000;
7303     }
7304     if (mask & CPSR_Q)
7305         env->QF = ((val & CPSR_Q) != 0);
7306     if (mask & CPSR_T)
7307         env->thumb = ((val & CPSR_T) != 0);
7308     if (mask & CPSR_IT_0_1) {
7309         env->condexec_bits &= ~3;
7310         env->condexec_bits |= (val >> 25) & 3;
7311     }
7312     if (mask & CPSR_IT_2_7) {
7313         env->condexec_bits &= 3;
7314         env->condexec_bits |= (val >> 8) & 0xfc;
7315     }
7316     if (mask & CPSR_GE) {
7317         env->GE = (val >> 16) & 0xf;
7318     }
7319 
7320     /* In a V7 implementation that includes the security extensions but does
7321      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7322      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7323      * bits respectively.
7324      *
7325      * In a V8 implementation, it is permitted for privileged software to
7326      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7327      */
7328     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7329         arm_feature(env, ARM_FEATURE_EL3) &&
7330         !arm_feature(env, ARM_FEATURE_EL2) &&
7331         !arm_is_secure(env)) {
7332 
7333         changed_daif = (env->daif ^ val) & mask;
7334 
7335         if (changed_daif & CPSR_A) {
7336             /* Check to see if we are allowed to change the masking of async
7337              * abort exceptions from a non-secure state.
7338              */
7339             if (!(env->cp15.scr_el3 & SCR_AW)) {
7340                 qemu_log_mask(LOG_GUEST_ERROR,
7341                               "Ignoring attempt to switch CPSR_A flag from "
7342                               "non-secure world with SCR.AW bit clear\n");
7343                 mask &= ~CPSR_A;
7344             }
7345         }
7346 
7347         if (changed_daif & CPSR_F) {
7348             /* Check to see if we are allowed to change the masking of FIQ
7349              * exceptions from a non-secure state.
7350              */
7351             if (!(env->cp15.scr_el3 & SCR_FW)) {
7352                 qemu_log_mask(LOG_GUEST_ERROR,
7353                               "Ignoring attempt to switch CPSR_F flag from "
7354                               "non-secure world with SCR.FW bit clear\n");
7355                 mask &= ~CPSR_F;
7356             }
7357 
7358             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7359              * If this bit is set software is not allowed to mask
7360              * FIQs, but is allowed to set CPSR_F to 0.
7361              */
7362             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7363                 (val & CPSR_F)) {
7364                 qemu_log_mask(LOG_GUEST_ERROR,
7365                               "Ignoring attempt to enable CPSR_F flag "
7366                               "(non-maskable FIQ [NMFI] support enabled)\n");
7367                 mask &= ~CPSR_F;
7368             }
7369         }
7370     }
7371 
7372     env->daif &= ~(CPSR_AIF & mask);
7373     env->daif |= val & CPSR_AIF & mask;
7374 
7375     if (write_type != CPSRWriteRaw &&
7376         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7377         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7378             /* Note that we can only get here in USR mode if this is a
7379              * gdb stub write; for this case we follow the architectural
7380              * behaviour for guest writes in USR mode of ignoring an attempt
7381              * to switch mode. (Those are caught by translate.c for writes
7382              * triggered by guest instructions.)
7383              */
7384             mask &= ~CPSR_M;
7385         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7386             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7387              * v7, and has defined behaviour in v8:
7388              *  + leave CPSR.M untouched
7389              *  + allow changes to the other CPSR fields
7390              *  + set PSTATE.IL
7391              * For user changes via the GDB stub, we don't set PSTATE.IL,
7392              * as this would be unnecessarily harsh for a user error.
7393              */
7394             mask &= ~CPSR_M;
7395             if (write_type != CPSRWriteByGDBStub &&
7396                 arm_feature(env, ARM_FEATURE_V8)) {
7397                 mask |= CPSR_IL;
7398                 val |= CPSR_IL;
7399             }
7400             qemu_log_mask(LOG_GUEST_ERROR,
7401                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7402                           aarch32_mode_name(env->uncached_cpsr),
7403                           aarch32_mode_name(val));
7404         } else {
7405             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7406                           write_type == CPSRWriteExceptionReturn ?
7407                           "Exception return from AArch32" :
7408                           "AArch32 mode switch from",
7409                           aarch32_mode_name(env->uncached_cpsr),
7410                           aarch32_mode_name(val), env->regs[15]);
7411             switch_mode(env, val & CPSR_M);
7412         }
7413     }
7414     mask &= ~CACHED_CPSR_BITS;
7415     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7416 }
7417 
7418 /* Sign/zero extend */
7419 uint32_t HELPER(sxtb16)(uint32_t x)
7420 {
7421     uint32_t res;
7422     res = (uint16_t)(int8_t)x;
7423     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7424     return res;
7425 }
7426 
7427 uint32_t HELPER(uxtb16)(uint32_t x)
7428 {
7429     uint32_t res;
7430     res = (uint16_t)(uint8_t)x;
7431     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7432     return res;
7433 }
7434 
7435 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7436 {
7437     if (den == 0)
7438       return 0;
7439     if (num == INT_MIN && den == -1)
7440       return INT_MIN;
7441     return num / den;
7442 }
7443 
7444 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7445 {
7446     if (den == 0)
7447       return 0;
7448     return num / den;
7449 }
7450 
7451 uint32_t HELPER(rbit)(uint32_t x)
7452 {
7453     return revbit32(x);
7454 }
7455 
7456 #ifdef CONFIG_USER_ONLY
7457 
7458 /* These should probably raise undefined insn exceptions.  */
7459 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7460 {
7461     ARMCPU *cpu = env_archcpu(env);
7462 
7463     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7464 }
7465 
7466 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7467 {
7468     ARMCPU *cpu = env_archcpu(env);
7469 
7470     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7471     return 0;
7472 }
7473 
7474 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7475 {
7476     /* translate.c should never generate calls here in user-only mode */
7477     g_assert_not_reached();
7478 }
7479 
7480 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7481 {
7482     /* translate.c should never generate calls here in user-only mode */
7483     g_assert_not_reached();
7484 }
7485 
7486 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7487 {
7488     /* translate.c should never generate calls here in user-only mode */
7489     g_assert_not_reached();
7490 }
7491 
7492 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
7493 {
7494     /* translate.c should never generate calls here in user-only mode */
7495     g_assert_not_reached();
7496 }
7497 
7498 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
7499 {
7500     /* translate.c should never generate calls here in user-only mode */
7501     g_assert_not_reached();
7502 }
7503 
7504 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7505 {
7506     /*
7507      * The TT instructions can be used by unprivileged code, but in
7508      * user-only emulation we don't have the MPU.
7509      * Luckily since we know we are NonSecure unprivileged (and that in
7510      * turn means that the A flag wasn't specified), all the bits in the
7511      * register must be zero:
7512      *  IREGION: 0 because IRVALID is 0
7513      *  IRVALID: 0 because NS
7514      *  S: 0 because NS
7515      *  NSRW: 0 because NS
7516      *  NSR: 0 because NS
7517      *  RW: 0 because unpriv and A flag not set
7518      *  R: 0 because unpriv and A flag not set
7519      *  SRVALID: 0 because NS
7520      *  MRVALID: 0 because unpriv and A flag not set
7521      *  SREGION: 0 becaus SRVALID is 0
7522      *  MREGION: 0 because MRVALID is 0
7523      */
7524     return 0;
7525 }
7526 
7527 static void switch_mode(CPUARMState *env, int mode)
7528 {
7529     ARMCPU *cpu = env_archcpu(env);
7530 
7531     if (mode != ARM_CPU_MODE_USR) {
7532         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7533     }
7534 }
7535 
7536 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7537                                  uint32_t cur_el, bool secure)
7538 {
7539     return 1;
7540 }
7541 
7542 void aarch64_sync_64_to_32(CPUARMState *env)
7543 {
7544     g_assert_not_reached();
7545 }
7546 
7547 #else
7548 
7549 static void switch_mode(CPUARMState *env, int mode)
7550 {
7551     int old_mode;
7552     int i;
7553 
7554     old_mode = env->uncached_cpsr & CPSR_M;
7555     if (mode == old_mode)
7556         return;
7557 
7558     if (old_mode == ARM_CPU_MODE_FIQ) {
7559         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7560         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7561     } else if (mode == ARM_CPU_MODE_FIQ) {
7562         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7563         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7564     }
7565 
7566     i = bank_number(old_mode);
7567     env->banked_r13[i] = env->regs[13];
7568     env->banked_spsr[i] = env->spsr;
7569 
7570     i = bank_number(mode);
7571     env->regs[13] = env->banked_r13[i];
7572     env->spsr = env->banked_spsr[i];
7573 
7574     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7575     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7576 }
7577 
7578 /* Physical Interrupt Target EL Lookup Table
7579  *
7580  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7581  *
7582  * The below multi-dimensional table is used for looking up the target
7583  * exception level given numerous condition criteria.  Specifically, the
7584  * target EL is based on SCR and HCR routing controls as well as the
7585  * currently executing EL and secure state.
7586  *
7587  *    Dimensions:
7588  *    target_el_table[2][2][2][2][2][4]
7589  *                    |  |  |  |  |  +--- Current EL
7590  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7591  *                    |  |  |  +--------- HCR mask override
7592  *                    |  |  +------------ SCR exec state control
7593  *                    |  +--------------- SCR mask override
7594  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7595  *
7596  *    The table values are as such:
7597  *    0-3 = EL0-EL3
7598  *     -1 = Cannot occur
7599  *
7600  * The ARM ARM target EL table includes entries indicating that an "exception
7601  * is not taken".  The two cases where this is applicable are:
7602  *    1) An exception is taken from EL3 but the SCR does not have the exception
7603  *    routed to EL3.
7604  *    2) An exception is taken from EL2 but the HCR does not have the exception
7605  *    routed to EL2.
7606  * In these two cases, the below table contain a target of EL1.  This value is
7607  * returned as it is expected that the consumer of the table data will check
7608  * for "target EL >= current EL" to ensure the exception is not taken.
7609  *
7610  *            SCR     HCR
7611  *         64  EA     AMO                 From
7612  *        BIT IRQ     IMO      Non-secure         Secure
7613  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7614  */
7615 static const int8_t target_el_table[2][2][2][2][2][4] = {
7616     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7617        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7618       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7619        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7620      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7621        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7622       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7623        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7624     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7625        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7626       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7627        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7628      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7629        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7630       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7631        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7632 };
7633 
7634 /*
7635  * Determine the target EL for physical exceptions
7636  */
7637 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7638                                  uint32_t cur_el, bool secure)
7639 {
7640     CPUARMState *env = cs->env_ptr;
7641     bool rw;
7642     bool scr;
7643     bool hcr;
7644     int target_el;
7645     /* Is the highest EL AArch64? */
7646     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7647     uint64_t hcr_el2;
7648 
7649     if (arm_feature(env, ARM_FEATURE_EL3)) {
7650         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7651     } else {
7652         /* Either EL2 is the highest EL (and so the EL2 register width
7653          * is given by is64); or there is no EL2 or EL3, in which case
7654          * the value of 'rw' does not affect the table lookup anyway.
7655          */
7656         rw = is64;
7657     }
7658 
7659     hcr_el2 = arm_hcr_el2_eff(env);
7660     switch (excp_idx) {
7661     case EXCP_IRQ:
7662         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7663         hcr = hcr_el2 & HCR_IMO;
7664         break;
7665     case EXCP_FIQ:
7666         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7667         hcr = hcr_el2 & HCR_FMO;
7668         break;
7669     default:
7670         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7671         hcr = hcr_el2 & HCR_AMO;
7672         break;
7673     };
7674 
7675     /* Perform a table-lookup for the target EL given the current state */
7676     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7677 
7678     assert(target_el > 0);
7679 
7680     return target_el;
7681 }
7682 
7683 void arm_log_exception(int idx)
7684 {
7685     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7686         const char *exc = NULL;
7687         static const char * const excnames[] = {
7688             [EXCP_UDEF] = "Undefined Instruction",
7689             [EXCP_SWI] = "SVC",
7690             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7691             [EXCP_DATA_ABORT] = "Data Abort",
7692             [EXCP_IRQ] = "IRQ",
7693             [EXCP_FIQ] = "FIQ",
7694             [EXCP_BKPT] = "Breakpoint",
7695             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7696             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7697             [EXCP_HVC] = "Hypervisor Call",
7698             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7699             [EXCP_SMC] = "Secure Monitor Call",
7700             [EXCP_VIRQ] = "Virtual IRQ",
7701             [EXCP_VFIQ] = "Virtual FIQ",
7702             [EXCP_SEMIHOST] = "Semihosting call",
7703             [EXCP_NOCP] = "v7M NOCP UsageFault",
7704             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7705             [EXCP_STKOF] = "v8M STKOF UsageFault",
7706             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7707             [EXCP_LSERR] = "v8M LSERR UsageFault",
7708             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7709         };
7710 
7711         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7712             exc = excnames[idx];
7713         }
7714         if (!exc) {
7715             exc = "unknown";
7716         }
7717         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7718     }
7719 }
7720 
7721 /*
7722  * What kind of stack write are we doing? This affects how exceptions
7723  * generated during the stacking are treated.
7724  */
7725 typedef enum StackingMode {
7726     STACK_NORMAL,
7727     STACK_IGNFAULTS,
7728     STACK_LAZYFP,
7729 } StackingMode;
7730 
7731 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7732                             ARMMMUIdx mmu_idx, StackingMode mode)
7733 {
7734     CPUState *cs = CPU(cpu);
7735     CPUARMState *env = &cpu->env;
7736     MemTxAttrs attrs = {};
7737     MemTxResult txres;
7738     target_ulong page_size;
7739     hwaddr physaddr;
7740     int prot;
7741     ARMMMUFaultInfo fi = {};
7742     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7743     int exc;
7744     bool exc_secure;
7745 
7746     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7747                       &attrs, &prot, &page_size, &fi, NULL)) {
7748         /* MPU/SAU lookup failed */
7749         if (fi.type == ARMFault_QEMU_SFault) {
7750             if (mode == STACK_LAZYFP) {
7751                 qemu_log_mask(CPU_LOG_INT,
7752                               "...SecureFault with SFSR.LSPERR "
7753                               "during lazy stacking\n");
7754                 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
7755             } else {
7756                 qemu_log_mask(CPU_LOG_INT,
7757                               "...SecureFault with SFSR.AUVIOL "
7758                               "during stacking\n");
7759                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7760             }
7761             env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
7762             env->v7m.sfar = addr;
7763             exc = ARMV7M_EXCP_SECURE;
7764             exc_secure = false;
7765         } else {
7766             if (mode == STACK_LAZYFP) {
7767                 qemu_log_mask(CPU_LOG_INT,
7768                               "...MemManageFault with CFSR.MLSPERR\n");
7769                 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
7770             } else {
7771                 qemu_log_mask(CPU_LOG_INT,
7772                               "...MemManageFault with CFSR.MSTKERR\n");
7773                 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7774             }
7775             exc = ARMV7M_EXCP_MEM;
7776             exc_secure = secure;
7777         }
7778         goto pend_fault;
7779     }
7780     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7781                          attrs, &txres);
7782     if (txres != MEMTX_OK) {
7783         /* BusFault trying to write the data */
7784         if (mode == STACK_LAZYFP) {
7785             qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
7786             env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
7787         } else {
7788             qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7789             env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7790         }
7791         exc = ARMV7M_EXCP_BUS;
7792         exc_secure = false;
7793         goto pend_fault;
7794     }
7795     return true;
7796 
7797 pend_fault:
7798     /*
7799      * By pending the exception at this point we are making
7800      * the IMPDEF choice "overridden exceptions pended" (see the
7801      * MergeExcInfo() pseudocode). The other choice would be to not
7802      * pend them now and then make a choice about which to throw away
7803      * later if we have two derived exceptions.
7804      * The only case when we must not pend the exception but instead
7805      * throw it away is if we are doing the push of the callee registers
7806      * and we've already generated a derived exception (this is indicated
7807      * by the caller passing STACK_IGNFAULTS). Even in this case we will
7808      * still update the fault status registers.
7809      */
7810     switch (mode) {
7811     case STACK_NORMAL:
7812         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7813         break;
7814     case STACK_LAZYFP:
7815         armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
7816         break;
7817     case STACK_IGNFAULTS:
7818         break;
7819     }
7820     return false;
7821 }
7822 
7823 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7824                            ARMMMUIdx mmu_idx)
7825 {
7826     CPUState *cs = CPU(cpu);
7827     CPUARMState *env = &cpu->env;
7828     MemTxAttrs attrs = {};
7829     MemTxResult txres;
7830     target_ulong page_size;
7831     hwaddr physaddr;
7832     int prot;
7833     ARMMMUFaultInfo fi = {};
7834     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7835     int exc;
7836     bool exc_secure;
7837     uint32_t value;
7838 
7839     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7840                       &attrs, &prot, &page_size, &fi, NULL)) {
7841         /* MPU/SAU lookup failed */
7842         if (fi.type == ARMFault_QEMU_SFault) {
7843             qemu_log_mask(CPU_LOG_INT,
7844                           "...SecureFault with SFSR.AUVIOL during unstack\n");
7845             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7846             env->v7m.sfar = addr;
7847             exc = ARMV7M_EXCP_SECURE;
7848             exc_secure = false;
7849         } else {
7850             qemu_log_mask(CPU_LOG_INT,
7851                           "...MemManageFault with CFSR.MUNSTKERR\n");
7852             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7853             exc = ARMV7M_EXCP_MEM;
7854             exc_secure = secure;
7855         }
7856         goto pend_fault;
7857     }
7858 
7859     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7860                               attrs, &txres);
7861     if (txres != MEMTX_OK) {
7862         /* BusFault trying to read the data */
7863         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7864         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7865         exc = ARMV7M_EXCP_BUS;
7866         exc_secure = false;
7867         goto pend_fault;
7868     }
7869 
7870     *dest = value;
7871     return true;
7872 
7873 pend_fault:
7874     /*
7875      * By pending the exception at this point we are making
7876      * the IMPDEF choice "overridden exceptions pended" (see the
7877      * MergeExcInfo() pseudocode). The other choice would be to not
7878      * pend them now and then make a choice about which to throw away
7879      * later if we have two derived exceptions.
7880      */
7881     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7882     return false;
7883 }
7884 
7885 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7886 {
7887     /*
7888      * Preserve FP state (because LSPACT was set and we are about
7889      * to execute an FP instruction). This corresponds to the
7890      * PreserveFPState() pseudocode.
7891      * We may throw an exception if the stacking fails.
7892      */
7893     ARMCPU *cpu = env_archcpu(env);
7894     bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
7895     bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
7896     bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
7897     bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
7898     uint32_t fpcar = env->v7m.fpcar[is_secure];
7899     bool stacked_ok = true;
7900     bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
7901     bool take_exception;
7902 
7903     /* Take the iothread lock as we are going to touch the NVIC */
7904     qemu_mutex_lock_iothread();
7905 
7906     /* Check the background context had access to the FPU */
7907     if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
7908         armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
7909         env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
7910         stacked_ok = false;
7911     } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
7912         armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
7913         env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
7914         stacked_ok = false;
7915     }
7916 
7917     if (!splimviol && stacked_ok) {
7918         /* We only stack if the stack limit wasn't violated */
7919         int i;
7920         ARMMMUIdx mmu_idx;
7921 
7922         mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
7923         for (i = 0; i < (ts ? 32 : 16); i += 2) {
7924             uint64_t dn = *aa32_vfp_dreg(env, i / 2);
7925             uint32_t faddr = fpcar + 4 * i;
7926             uint32_t slo = extract64(dn, 0, 32);
7927             uint32_t shi = extract64(dn, 32, 32);
7928 
7929             if (i >= 16) {
7930                 faddr += 8; /* skip the slot for the FPSCR */
7931             }
7932             stacked_ok = stacked_ok &&
7933                 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
7934                 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
7935         }
7936 
7937         stacked_ok = stacked_ok &&
7938             v7m_stack_write(cpu, fpcar + 0x40,
7939                             vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
7940     }
7941 
7942     /*
7943      * We definitely pended an exception, but it's possible that it
7944      * might not be able to be taken now. If its priority permits us
7945      * to take it now, then we must not update the LSPACT or FP regs,
7946      * but instead jump out to take the exception immediately.
7947      * If it's just pending and won't be taken until the current
7948      * handler exits, then we do update LSPACT and the FP regs.
7949      */
7950     take_exception = !stacked_ok &&
7951         armv7m_nvic_can_take_pending_exception(env->nvic);
7952 
7953     qemu_mutex_unlock_iothread();
7954 
7955     if (take_exception) {
7956         raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
7957     }
7958 
7959     env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
7960 
7961     if (ts) {
7962         /* Clear s0 to s31 and the FPSCR */
7963         int i;
7964 
7965         for (i = 0; i < 32; i += 2) {
7966             *aa32_vfp_dreg(env, i / 2) = 0;
7967         }
7968         vfp_set_fpscr(env, 0);
7969     }
7970     /*
7971      * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
7972      * unchanged.
7973      */
7974 }
7975 
7976 /*
7977  * Write to v7M CONTROL.SPSEL bit for the specified security bank.
7978  * This may change the current stack pointer between Main and Process
7979  * stack pointers if it is done for the CONTROL register for the current
7980  * security state.
7981  */
7982 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7983                                                  bool new_spsel,
7984                                                  bool secstate)
7985 {
7986     bool old_is_psp = v7m_using_psp(env);
7987 
7988     env->v7m.control[secstate] =
7989         deposit32(env->v7m.control[secstate],
7990                   R_V7M_CONTROL_SPSEL_SHIFT,
7991                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7992 
7993     if (secstate == env->v7m.secure) {
7994         bool new_is_psp = v7m_using_psp(env);
7995         uint32_t tmp;
7996 
7997         if (old_is_psp != new_is_psp) {
7998             tmp = env->v7m.other_sp;
7999             env->v7m.other_sp = env->regs[13];
8000             env->regs[13] = tmp;
8001         }
8002     }
8003 }
8004 
8005 /*
8006  * Write to v7M CONTROL.SPSEL bit. This may change the current
8007  * stack pointer between Main and Process stack pointers.
8008  */
8009 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
8010 {
8011     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
8012 }
8013 
8014 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
8015 {
8016     /*
8017      * Write a new value to v7m.exception, thus transitioning into or out
8018      * of Handler mode; this may result in a change of active stack pointer.
8019      */
8020     bool new_is_psp, old_is_psp = v7m_using_psp(env);
8021     uint32_t tmp;
8022 
8023     env->v7m.exception = new_exc;
8024 
8025     new_is_psp = v7m_using_psp(env);
8026 
8027     if (old_is_psp != new_is_psp) {
8028         tmp = env->v7m.other_sp;
8029         env->v7m.other_sp = env->regs[13];
8030         env->regs[13] = tmp;
8031     }
8032 }
8033 
8034 /* Switch M profile security state between NS and S */
8035 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
8036 {
8037     uint32_t new_ss_msp, new_ss_psp;
8038 
8039     if (env->v7m.secure == new_secstate) {
8040         return;
8041     }
8042 
8043     /*
8044      * All the banked state is accessed by looking at env->v7m.secure
8045      * except for the stack pointer; rearrange the SP appropriately.
8046      */
8047     new_ss_msp = env->v7m.other_ss_msp;
8048     new_ss_psp = env->v7m.other_ss_psp;
8049 
8050     if (v7m_using_psp(env)) {
8051         env->v7m.other_ss_psp = env->regs[13];
8052         env->v7m.other_ss_msp = env->v7m.other_sp;
8053     } else {
8054         env->v7m.other_ss_msp = env->regs[13];
8055         env->v7m.other_ss_psp = env->v7m.other_sp;
8056     }
8057 
8058     env->v7m.secure = new_secstate;
8059 
8060     if (v7m_using_psp(env)) {
8061         env->regs[13] = new_ss_psp;
8062         env->v7m.other_sp = new_ss_msp;
8063     } else {
8064         env->regs[13] = new_ss_msp;
8065         env->v7m.other_sp = new_ss_psp;
8066     }
8067 }
8068 
8069 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
8070 {
8071     /*
8072      * Handle v7M BXNS:
8073      *  - if the return value is a magic value, do exception return (like BX)
8074      *  - otherwise bit 0 of the return value is the target security state
8075      */
8076     uint32_t min_magic;
8077 
8078     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8079         /* Covers FNC_RETURN and EXC_RETURN magic */
8080         min_magic = FNC_RETURN_MIN_MAGIC;
8081     } else {
8082         /* EXC_RETURN magic only */
8083         min_magic = EXC_RETURN_MIN_MAGIC;
8084     }
8085 
8086     if (dest >= min_magic) {
8087         /*
8088          * This is an exception return magic value; put it where
8089          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
8090          * Note that if we ever add gen_ss_advance() singlestep support to
8091          * M profile this should count as an "instruction execution complete"
8092          * event (compare gen_bx_excret_final_code()).
8093          */
8094         env->regs[15] = dest & ~1;
8095         env->thumb = dest & 1;
8096         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
8097         /* notreached */
8098     }
8099 
8100     /* translate.c should have made BXNS UNDEF unless we're secure */
8101     assert(env->v7m.secure);
8102 
8103     if (!(dest & 1)) {
8104         env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8105     }
8106     switch_v7m_security_state(env, dest & 1);
8107     env->thumb = 1;
8108     env->regs[15] = dest & ~1;
8109 }
8110 
8111 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
8112 {
8113     /*
8114      * Handle v7M BLXNS:
8115      *  - bit 0 of the destination address is the target security state
8116      */
8117 
8118     /* At this point regs[15] is the address just after the BLXNS */
8119     uint32_t nextinst = env->regs[15] | 1;
8120     uint32_t sp = env->regs[13] - 8;
8121     uint32_t saved_psr;
8122 
8123     /* translate.c will have made BLXNS UNDEF unless we're secure */
8124     assert(env->v7m.secure);
8125 
8126     if (dest & 1) {
8127         /*
8128          * Target is Secure, so this is just a normal BLX,
8129          * except that the low bit doesn't indicate Thumb/not.
8130          */
8131         env->regs[14] = nextinst;
8132         env->thumb = 1;
8133         env->regs[15] = dest & ~1;
8134         return;
8135     }
8136 
8137     /* Target is non-secure: first push a stack frame */
8138     if (!QEMU_IS_ALIGNED(sp, 8)) {
8139         qemu_log_mask(LOG_GUEST_ERROR,
8140                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
8141     }
8142 
8143     if (sp < v7m_sp_limit(env)) {
8144         raise_exception(env, EXCP_STKOF, 0, 1);
8145     }
8146 
8147     saved_psr = env->v7m.exception;
8148     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
8149         saved_psr |= XPSR_SFPA;
8150     }
8151 
8152     /* Note that these stores can throw exceptions on MPU faults */
8153     cpu_stl_data(env, sp, nextinst);
8154     cpu_stl_data(env, sp + 4, saved_psr);
8155 
8156     env->regs[13] = sp;
8157     env->regs[14] = 0xfeffffff;
8158     if (arm_v7m_is_handler_mode(env)) {
8159         /*
8160          * Write a dummy value to IPSR, to avoid leaking the current secure
8161          * exception number to non-secure code. This is guaranteed not
8162          * to cause write_v7m_exception() to actually change stacks.
8163          */
8164         write_v7m_exception(env, 1);
8165     }
8166     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8167     switch_v7m_security_state(env, 0);
8168     env->thumb = 1;
8169     env->regs[15] = dest;
8170 }
8171 
8172 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
8173                                 bool spsel)
8174 {
8175     /*
8176      * Return a pointer to the location where we currently store the
8177      * stack pointer for the requested security state and thread mode.
8178      * This pointer will become invalid if the CPU state is updated
8179      * such that the stack pointers are switched around (eg changing
8180      * the SPSEL control bit).
8181      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
8182      * Unlike that pseudocode, we require the caller to pass us in the
8183      * SPSEL control bit value; this is because we also use this
8184      * function in handling of pushing of the callee-saves registers
8185      * part of the v8M stack frame (pseudocode PushCalleeStack()),
8186      * and in the tailchain codepath the SPSEL bit comes from the exception
8187      * return magic LR value from the previous exception. The pseudocode
8188      * opencodes the stack-selection in PushCalleeStack(), but we prefer
8189      * to make this utility function generic enough to do the job.
8190      */
8191     bool want_psp = threadmode && spsel;
8192 
8193     if (secure == env->v7m.secure) {
8194         if (want_psp == v7m_using_psp(env)) {
8195             return &env->regs[13];
8196         } else {
8197             return &env->v7m.other_sp;
8198         }
8199     } else {
8200         if (want_psp) {
8201             return &env->v7m.other_ss_psp;
8202         } else {
8203             return &env->v7m.other_ss_msp;
8204         }
8205     }
8206 }
8207 
8208 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
8209                                 uint32_t *pvec)
8210 {
8211     CPUState *cs = CPU(cpu);
8212     CPUARMState *env = &cpu->env;
8213     MemTxResult result;
8214     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
8215     uint32_t vector_entry;
8216     MemTxAttrs attrs = {};
8217     ARMMMUIdx mmu_idx;
8218     bool exc_secure;
8219 
8220     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
8221 
8222     /*
8223      * We don't do a get_phys_addr() here because the rules for vector
8224      * loads are special: they always use the default memory map, and
8225      * the default memory map permits reads from all addresses.
8226      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
8227      * that we want this special case which would always say "yes",
8228      * we just do the SAU lookup here followed by a direct physical load.
8229      */
8230     attrs.secure = targets_secure;
8231     attrs.user = false;
8232 
8233     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8234         V8M_SAttributes sattrs = {};
8235 
8236         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
8237         if (sattrs.ns) {
8238             attrs.secure = false;
8239         } else if (!targets_secure) {
8240             /* NS access to S memory */
8241             goto load_fail;
8242         }
8243     }
8244 
8245     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
8246                                      attrs, &result);
8247     if (result != MEMTX_OK) {
8248         goto load_fail;
8249     }
8250     *pvec = vector_entry;
8251     return true;
8252 
8253 load_fail:
8254     /*
8255      * All vector table fetch fails are reported as HardFault, with
8256      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
8257      * technically the underlying exception is a MemManage or BusFault
8258      * that is escalated to HardFault.) This is a terminal exception,
8259      * so we will either take the HardFault immediately or else enter
8260      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
8261      */
8262     exc_secure = targets_secure ||
8263         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
8264     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
8265     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
8266     return false;
8267 }
8268 
8269 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
8270 {
8271     /*
8272      * Return the integrity signature value for the callee-saves
8273      * stack frame section. @lr is the exception return payload/LR value
8274      * whose FType bit forms bit 0 of the signature if FP is present.
8275      */
8276     uint32_t sig = 0xfefa125a;
8277 
8278     if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
8279         sig |= 1;
8280     }
8281     return sig;
8282 }
8283 
8284 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8285                                   bool ignore_faults)
8286 {
8287     /*
8288      * For v8M, push the callee-saves register part of the stack frame.
8289      * Compare the v8M pseudocode PushCalleeStack().
8290      * In the tailchaining case this may not be the current stack.
8291      */
8292     CPUARMState *env = &cpu->env;
8293     uint32_t *frame_sp_p;
8294     uint32_t frameptr;
8295     ARMMMUIdx mmu_idx;
8296     bool stacked_ok;
8297     uint32_t limit;
8298     bool want_psp;
8299     uint32_t sig;
8300     StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
8301 
8302     if (dotailchain) {
8303         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
8304         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
8305             !mode;
8306 
8307         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
8308         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
8309                                     lr & R_V7M_EXCRET_SPSEL_MASK);
8310         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
8311         if (want_psp) {
8312             limit = env->v7m.psplim[M_REG_S];
8313         } else {
8314             limit = env->v7m.msplim[M_REG_S];
8315         }
8316     } else {
8317         mmu_idx = arm_mmu_idx(env);
8318         frame_sp_p = &env->regs[13];
8319         limit = v7m_sp_limit(env);
8320     }
8321 
8322     frameptr = *frame_sp_p - 0x28;
8323     if (frameptr < limit) {
8324         /*
8325          * Stack limit failure: set SP to the limit value, and generate
8326          * STKOF UsageFault. Stack pushes below the limit must not be
8327          * performed. It is IMPDEF whether pushes above the limit are
8328          * performed; we choose not to.
8329          */
8330         qemu_log_mask(CPU_LOG_INT,
8331                       "...STKOF during callee-saves register stacking\n");
8332         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8333         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8334                                 env->v7m.secure);
8335         *frame_sp_p = limit;
8336         return true;
8337     }
8338 
8339     /*
8340      * Write as much of the stack frame as we can. A write failure may
8341      * cause us to pend a derived exception.
8342      */
8343     sig = v7m_integrity_sig(env, lr);
8344     stacked_ok =
8345         v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
8346         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
8347         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
8348         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
8349         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
8350         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
8351         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
8352         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
8353         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
8354 
8355     /* Update SP regardless of whether any of the stack accesses failed. */
8356     *frame_sp_p = frameptr;
8357 
8358     return !stacked_ok;
8359 }
8360 
8361 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8362                                 bool ignore_stackfaults)
8363 {
8364     /*
8365      * Do the "take the exception" parts of exception entry,
8366      * but not the pushing of state to the stack. This is
8367      * similar to the pseudocode ExceptionTaken() function.
8368      */
8369     CPUARMState *env = &cpu->env;
8370     uint32_t addr;
8371     bool targets_secure;
8372     int exc;
8373     bool push_failed = false;
8374 
8375     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8376     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8377                   targets_secure ? "secure" : "nonsecure", exc);
8378 
8379     if (dotailchain) {
8380         /* Sanitize LR FType and PREFIX bits */
8381         if (!arm_feature(env, ARM_FEATURE_VFP)) {
8382             lr |= R_V7M_EXCRET_FTYPE_MASK;
8383         }
8384         lr = deposit32(lr, 24, 8, 0xff);
8385     }
8386 
8387     if (arm_feature(env, ARM_FEATURE_V8)) {
8388         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8389             (lr & R_V7M_EXCRET_S_MASK)) {
8390             /*
8391              * The background code (the owner of the registers in the
8392              * exception frame) is Secure. This means it may either already
8393              * have or now needs to push callee-saves registers.
8394              */
8395             if (targets_secure) {
8396                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8397                     /*
8398                      * We took an exception from Secure to NonSecure
8399                      * (which means the callee-saved registers got stacked)
8400                      * and are now tailchaining to a Secure exception.
8401                      * Clear DCRS so eventual return from this Secure
8402                      * exception unstacks the callee-saved registers.
8403                      */
8404                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
8405                 }
8406             } else {
8407                 /*
8408                  * We're going to a non-secure exception; push the
8409                  * callee-saves registers to the stack now, if they're
8410                  * not already saved.
8411                  */
8412                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8413                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8414                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8415                                                         ignore_stackfaults);
8416                 }
8417                 lr |= R_V7M_EXCRET_DCRS_MASK;
8418             }
8419         }
8420 
8421         lr &= ~R_V7M_EXCRET_ES_MASK;
8422         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8423             lr |= R_V7M_EXCRET_ES_MASK;
8424         }
8425         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8426         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8427             lr |= R_V7M_EXCRET_SPSEL_MASK;
8428         }
8429 
8430         /*
8431          * Clear registers if necessary to prevent non-secure exception
8432          * code being able to see register values from secure code.
8433          * Where register values become architecturally UNKNOWN we leave
8434          * them with their previous values.
8435          */
8436         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8437             if (!targets_secure) {
8438                 /*
8439                  * Always clear the caller-saved registers (they have been
8440                  * pushed to the stack earlier in v7m_push_stack()).
8441                  * Clear callee-saved registers if the background code is
8442                  * Secure (in which case these regs were saved in
8443                  * v7m_push_callee_stack()).
8444                  */
8445                 int i;
8446 
8447                 for (i = 0; i < 13; i++) {
8448                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8449                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8450                         env->regs[i] = 0;
8451                     }
8452                 }
8453                 /* Clear EAPSR */
8454                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8455             }
8456         }
8457     }
8458 
8459     if (push_failed && !ignore_stackfaults) {
8460         /*
8461          * Derived exception on callee-saves register stacking:
8462          * we might now want to take a different exception which
8463          * targets a different security state, so try again from the top.
8464          */
8465         qemu_log_mask(CPU_LOG_INT,
8466                       "...derived exception on callee-saves register stacking");
8467         v7m_exception_taken(cpu, lr, true, true);
8468         return;
8469     }
8470 
8471     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8472         /* Vector load failed: derived exception */
8473         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8474         v7m_exception_taken(cpu, lr, true, true);
8475         return;
8476     }
8477 
8478     /*
8479      * Now we've done everything that might cause a derived exception
8480      * we can go ahead and activate whichever exception we're going to
8481      * take (which might now be the derived exception).
8482      */
8483     armv7m_nvic_acknowledge_irq(env->nvic);
8484 
8485     /* Switch to target security state -- must do this before writing SPSEL */
8486     switch_v7m_security_state(env, targets_secure);
8487     write_v7m_control_spsel(env, 0);
8488     arm_clear_exclusive(env);
8489     /* Clear SFPA and FPCA (has no effect if no FPU) */
8490     env->v7m.control[M_REG_S] &=
8491         ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
8492     /* Clear IT bits */
8493     env->condexec_bits = 0;
8494     env->regs[14] = lr;
8495     env->regs[15] = addr & 0xfffffffe;
8496     env->thumb = addr & 1;
8497 }
8498 
8499 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
8500                              bool apply_splim)
8501 {
8502     /*
8503      * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
8504      * that we will need later in order to do lazy FP reg stacking.
8505      */
8506     bool is_secure = env->v7m.secure;
8507     void *nvic = env->nvic;
8508     /*
8509      * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
8510      * are banked and we want to update the bit in the bank for the
8511      * current security state; and in one case we want to specifically
8512      * update the NS banked version of a bit even if we are secure.
8513      */
8514     uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
8515     uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
8516     uint32_t *fpccr = &env->v7m.fpccr[is_secure];
8517     bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
8518 
8519     env->v7m.fpcar[is_secure] = frameptr & ~0x7;
8520 
8521     if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
8522         bool splimviol;
8523         uint32_t splim = v7m_sp_limit(env);
8524         bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
8525             (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
8526 
8527         splimviol = !ign && frameptr < splim;
8528         *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
8529     }
8530 
8531     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
8532 
8533     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
8534 
8535     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
8536 
8537     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
8538                         !arm_v7m_is_handler_mode(env));
8539 
8540     hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
8541     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
8542 
8543     bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
8544     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
8545 
8546     mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
8547     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
8548 
8549     ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
8550     *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
8551 
8552     monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
8553     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
8554 
8555     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8556         s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
8557         *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
8558 
8559         sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
8560         *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
8561     }
8562 }
8563 
8564 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
8565 {
8566     /* fptr is the value of Rn, the frame pointer we store the FP regs to */
8567     bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8568     bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
8569 
8570     assert(env->v7m.secure);
8571 
8572     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8573         return;
8574     }
8575 
8576     /* Check access to the coprocessor is permitted */
8577     if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8578         raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8579     }
8580 
8581     if (lspact) {
8582         /* LSPACT should not be active when there is active FP state */
8583         raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
8584     }
8585 
8586     if (fptr & 7) {
8587         raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8588     }
8589 
8590     /*
8591      * Note that we do not use v7m_stack_write() here, because the
8592      * accesses should not set the FSR bits for stacking errors if they
8593      * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
8594      * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions
8595      * and longjmp out.
8596      */
8597     if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8598         bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8599         int i;
8600 
8601         for (i = 0; i < (ts ? 32 : 16); i += 2) {
8602             uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8603             uint32_t faddr = fptr + 4 * i;
8604             uint32_t slo = extract64(dn, 0, 32);
8605             uint32_t shi = extract64(dn, 32, 32);
8606 
8607             if (i >= 16) {
8608                 faddr += 8; /* skip the slot for the FPSCR */
8609             }
8610             cpu_stl_data(env, faddr, slo);
8611             cpu_stl_data(env, faddr + 4, shi);
8612         }
8613         cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env));
8614 
8615         /*
8616          * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
8617          * leave them unchanged, matching our choice in v7m_preserve_fp_state.
8618          */
8619         if (ts) {
8620             for (i = 0; i < 32; i += 2) {
8621                 *aa32_vfp_dreg(env, i / 2) = 0;
8622             }
8623             vfp_set_fpscr(env, 0);
8624         }
8625     } else {
8626         v7m_update_fpccr(env, fptr, false);
8627     }
8628 
8629     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
8630 }
8631 
8632 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
8633 {
8634     /* fptr is the value of Rn, the frame pointer we load the FP regs from */
8635     assert(env->v7m.secure);
8636 
8637     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8638         return;
8639     }
8640 
8641     /* Check access to the coprocessor is permitted */
8642     if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8643         raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8644     }
8645 
8646     if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8647         /* State in FP is still valid */
8648         env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
8649     } else {
8650         bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8651         int i;
8652         uint32_t fpscr;
8653 
8654         if (fptr & 7) {
8655             raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8656         }
8657 
8658         for (i = 0; i < (ts ? 32 : 16); i += 2) {
8659             uint32_t slo, shi;
8660             uint64_t dn;
8661             uint32_t faddr = fptr + 4 * i;
8662 
8663             if (i >= 16) {
8664                 faddr += 8; /* skip the slot for the FPSCR */
8665             }
8666 
8667             slo = cpu_ldl_data(env, faddr);
8668             shi = cpu_ldl_data(env, faddr + 4);
8669 
8670             dn = (uint64_t) shi << 32 | slo;
8671             *aa32_vfp_dreg(env, i / 2) = dn;
8672         }
8673         fpscr = cpu_ldl_data(env, fptr + 0x40);
8674         vfp_set_fpscr(env, fpscr);
8675     }
8676 
8677     env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
8678 }
8679 
8680 static bool v7m_push_stack(ARMCPU *cpu)
8681 {
8682     /*
8683      * Do the "set up stack frame" part of exception entry,
8684      * similar to pseudocode PushStack().
8685      * Return true if we generate a derived exception (and so
8686      * should ignore further stack faults trying to process
8687      * that derived exception.)
8688      */
8689     bool stacked_ok = true, limitviol = false;
8690     CPUARMState *env = &cpu->env;
8691     uint32_t xpsr = xpsr_read(env);
8692     uint32_t frameptr = env->regs[13];
8693     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8694     uint32_t framesize;
8695     bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
8696 
8697     if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
8698         (env->v7m.secure || nsacr_cp10)) {
8699         if (env->v7m.secure &&
8700             env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
8701             framesize = 0xa8;
8702         } else {
8703             framesize = 0x68;
8704         }
8705     } else {
8706         framesize = 0x20;
8707     }
8708 
8709     /* Align stack pointer if the guest wants that */
8710     if ((frameptr & 4) &&
8711         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8712         frameptr -= 4;
8713         xpsr |= XPSR_SPREALIGN;
8714     }
8715 
8716     xpsr &= ~XPSR_SFPA;
8717     if (env->v7m.secure &&
8718         (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8719         xpsr |= XPSR_SFPA;
8720     }
8721 
8722     frameptr -= framesize;
8723 
8724     if (arm_feature(env, ARM_FEATURE_V8)) {
8725         uint32_t limit = v7m_sp_limit(env);
8726 
8727         if (frameptr < limit) {
8728             /*
8729              * Stack limit failure: set SP to the limit value, and generate
8730              * STKOF UsageFault. Stack pushes below the limit must not be
8731              * performed. It is IMPDEF whether pushes above the limit are
8732              * performed; we choose not to.
8733              */
8734             qemu_log_mask(CPU_LOG_INT,
8735                           "...STKOF during stacking\n");
8736             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8737             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8738                                     env->v7m.secure);
8739             env->regs[13] = limit;
8740             /*
8741              * We won't try to perform any further memory accesses but
8742              * we must continue through the following code to check for
8743              * permission faults during FPU state preservation, and we
8744              * must update FPCCR if lazy stacking is enabled.
8745              */
8746             limitviol = true;
8747             stacked_ok = false;
8748         }
8749     }
8750 
8751     /*
8752      * Write as much of the stack frame as we can. If we fail a stack
8753      * write this will result in a derived exception being pended
8754      * (which may be taken in preference to the one we started with
8755      * if it has higher priority).
8756      */
8757     stacked_ok = stacked_ok &&
8758         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
8759         v7m_stack_write(cpu, frameptr + 4, env->regs[1],
8760                         mmu_idx, STACK_NORMAL) &&
8761         v7m_stack_write(cpu, frameptr + 8, env->regs[2],
8762                         mmu_idx, STACK_NORMAL) &&
8763         v7m_stack_write(cpu, frameptr + 12, env->regs[3],
8764                         mmu_idx, STACK_NORMAL) &&
8765         v7m_stack_write(cpu, frameptr + 16, env->regs[12],
8766                         mmu_idx, STACK_NORMAL) &&
8767         v7m_stack_write(cpu, frameptr + 20, env->regs[14],
8768                         mmu_idx, STACK_NORMAL) &&
8769         v7m_stack_write(cpu, frameptr + 24, env->regs[15],
8770                         mmu_idx, STACK_NORMAL) &&
8771         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
8772 
8773     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
8774         /* FPU is active, try to save its registers */
8775         bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8776         bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
8777 
8778         if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8779             qemu_log_mask(CPU_LOG_INT,
8780                           "...SecureFault because LSPACT and FPCA both set\n");
8781             env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8782             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8783         } else if (!env->v7m.secure && !nsacr_cp10) {
8784             qemu_log_mask(CPU_LOG_INT,
8785                           "...Secure UsageFault with CFSR.NOCP because "
8786                           "NSACR.CP10 prevents stacking FP regs\n");
8787             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
8788             env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
8789         } else {
8790             if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8791                 /* Lazy stacking disabled, save registers now */
8792                 int i;
8793                 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
8794                                                  arm_current_el(env) != 0);
8795 
8796                 if (stacked_ok && !cpacr_pass) {
8797                     /*
8798                      * Take UsageFault if CPACR forbids access. The pseudocode
8799                      * here does a full CheckCPEnabled() but we know the NSACR
8800                      * check can never fail as we have already handled that.
8801                      */
8802                     qemu_log_mask(CPU_LOG_INT,
8803                                   "...UsageFault with CFSR.NOCP because "
8804                                   "CPACR.CP10 prevents stacking FP regs\n");
8805                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8806                                             env->v7m.secure);
8807                     env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8808                     stacked_ok = false;
8809                 }
8810 
8811                 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8812                     uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8813                     uint32_t faddr = frameptr + 0x20 + 4 * i;
8814                     uint32_t slo = extract64(dn, 0, 32);
8815                     uint32_t shi = extract64(dn, 32, 32);
8816 
8817                     if (i >= 16) {
8818                         faddr += 8; /* skip the slot for the FPSCR */
8819                     }
8820                     stacked_ok = stacked_ok &&
8821                         v7m_stack_write(cpu, faddr, slo,
8822                                         mmu_idx, STACK_NORMAL) &&
8823                         v7m_stack_write(cpu, faddr + 4, shi,
8824                                         mmu_idx, STACK_NORMAL);
8825                 }
8826                 stacked_ok = stacked_ok &&
8827                     v7m_stack_write(cpu, frameptr + 0x60,
8828                                     vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
8829                 if (cpacr_pass) {
8830                     for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8831                         *aa32_vfp_dreg(env, i / 2) = 0;
8832                     }
8833                     vfp_set_fpscr(env, 0);
8834                 }
8835             } else {
8836                 /* Lazy stacking enabled, save necessary info to stack later */
8837                 v7m_update_fpccr(env, frameptr + 0x20, true);
8838             }
8839         }
8840     }
8841 
8842     /*
8843      * If we broke a stack limit then SP was already updated earlier;
8844      * otherwise we update SP regardless of whether any of the stack
8845      * accesses failed or we took some other kind of fault.
8846      */
8847     if (!limitviol) {
8848         env->regs[13] = frameptr;
8849     }
8850 
8851     return !stacked_ok;
8852 }
8853 
8854 static void do_v7m_exception_exit(ARMCPU *cpu)
8855 {
8856     CPUARMState *env = &cpu->env;
8857     uint32_t excret;
8858     uint32_t xpsr, xpsr_mask;
8859     bool ufault = false;
8860     bool sfault = false;
8861     bool return_to_sp_process;
8862     bool return_to_handler;
8863     bool rettobase = false;
8864     bool exc_secure = false;
8865     bool return_to_secure;
8866     bool ftype;
8867     bool restore_s16_s31;
8868 
8869     /*
8870      * If we're not in Handler mode then jumps to magic exception-exit
8871      * addresses don't have magic behaviour. However for the v8M
8872      * security extensions the magic secure-function-return has to
8873      * work in thread mode too, so to avoid doing an extra check in
8874      * the generated code we allow exception-exit magic to also cause the
8875      * internal exception and bring us here in thread mode. Correct code
8876      * will never try to do this (the following insn fetch will always
8877      * fault) so we the overhead of having taken an unnecessary exception
8878      * doesn't matter.
8879      */
8880     if (!arm_v7m_is_handler_mode(env)) {
8881         return;
8882     }
8883 
8884     /*
8885      * In the spec pseudocode ExceptionReturn() is called directly
8886      * from BXWritePC() and gets the full target PC value including
8887      * bit zero. In QEMU's implementation we treat it as a normal
8888      * jump-to-register (which is then caught later on), and so split
8889      * the target value up between env->regs[15] and env->thumb in
8890      * gen_bx(). Reconstitute it.
8891      */
8892     excret = env->regs[15];
8893     if (env->thumb) {
8894         excret |= 1;
8895     }
8896 
8897     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8898                   " previous exception %d\n",
8899                   excret, env->v7m.exception);
8900 
8901     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8902         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8903                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8904                       excret);
8905     }
8906 
8907     ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
8908 
8909     if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
8910         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
8911                       "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
8912                       "if FPU not present\n",
8913                       excret);
8914         ftype = true;
8915     }
8916 
8917     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8918         /*
8919          * EXC_RETURN.ES validation check (R_SMFL). We must do this before
8920          * we pick which FAULTMASK to clear.
8921          */
8922         if (!env->v7m.secure &&
8923             ((excret & R_V7M_EXCRET_ES_MASK) ||
8924              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8925             sfault = 1;
8926             /* For all other purposes, treat ES as 0 (R_HXSR) */
8927             excret &= ~R_V7M_EXCRET_ES_MASK;
8928         }
8929         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8930     }
8931 
8932     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8933         /*
8934          * Auto-clear FAULTMASK on return from other than NMI.
8935          * If the security extension is implemented then this only
8936          * happens if the raw execution priority is >= 0; the
8937          * value of the ES bit in the exception return value indicates
8938          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8939          */
8940         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8941             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8942                 env->v7m.faultmask[exc_secure] = 0;
8943             }
8944         } else {
8945             env->v7m.faultmask[M_REG_NS] = 0;
8946         }
8947     }
8948 
8949     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8950                                      exc_secure)) {
8951     case -1:
8952         /* attempt to exit an exception that isn't active */
8953         ufault = true;
8954         break;
8955     case 0:
8956         /* still an irq active now */
8957         break;
8958     case 1:
8959         /*
8960          * We returned to base exception level, no nesting.
8961          * (In the pseudocode this is written using "NestedActivation != 1"
8962          * where we have 'rettobase == false'.)
8963          */
8964         rettobase = true;
8965         break;
8966     default:
8967         g_assert_not_reached();
8968     }
8969 
8970     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8971     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8972     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8973         (excret & R_V7M_EXCRET_S_MASK);
8974 
8975     if (arm_feature(env, ARM_FEATURE_V8)) {
8976         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8977             /*
8978              * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8979              * we choose to take the UsageFault.
8980              */
8981             if ((excret & R_V7M_EXCRET_S_MASK) ||
8982                 (excret & R_V7M_EXCRET_ES_MASK) ||
8983                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8984                 ufault = true;
8985             }
8986         }
8987         if (excret & R_V7M_EXCRET_RES0_MASK) {
8988             ufault = true;
8989         }
8990     } else {
8991         /* For v7M we only recognize certain combinations of the low bits */
8992         switch (excret & 0xf) {
8993         case 1: /* Return to Handler */
8994             break;
8995         case 13: /* Return to Thread using Process stack */
8996         case 9: /* Return to Thread using Main stack */
8997             /*
8998              * We only need to check NONBASETHRDENA for v7M, because in
8999              * v8M this bit does not exist (it is RES1).
9000              */
9001             if (!rettobase &&
9002                 !(env->v7m.ccr[env->v7m.secure] &
9003                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
9004                 ufault = true;
9005             }
9006             break;
9007         default:
9008             ufault = true;
9009         }
9010     }
9011 
9012     /*
9013      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
9014      * Handler mode (and will be until we write the new XPSR.Interrupt
9015      * field) this does not switch around the current stack pointer.
9016      * We must do this before we do any kind of tailchaining, including
9017      * for the derived exceptions on integrity check failures, or we will
9018      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
9019      */
9020     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
9021 
9022     /*
9023      * Clear scratch FP values left in caller saved registers; this
9024      * must happen before any kind of tail chaining.
9025      */
9026     if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
9027         (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9028         if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
9029             env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9030             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9031             qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9032                           "stackframe: error during lazy state deactivation\n");
9033             v7m_exception_taken(cpu, excret, true, false);
9034             return;
9035         } else {
9036             /* Clear s0..s15 and FPSCR */
9037             int i;
9038 
9039             for (i = 0; i < 16; i += 2) {
9040                 *aa32_vfp_dreg(env, i / 2) = 0;
9041             }
9042             vfp_set_fpscr(env, 0);
9043         }
9044     }
9045 
9046     if (sfault) {
9047         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
9048         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9049         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9050                       "stackframe: failed EXC_RETURN.ES validity check\n");
9051         v7m_exception_taken(cpu, excret, true, false);
9052         return;
9053     }
9054 
9055     if (ufault) {
9056         /*
9057          * Bad exception return: instead of popping the exception
9058          * stack, directly take a usage fault on the current stack.
9059          */
9060         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9061         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9062         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9063                       "stackframe: failed exception return integrity check\n");
9064         v7m_exception_taken(cpu, excret, true, false);
9065         return;
9066     }
9067 
9068     /*
9069      * Tailchaining: if there is currently a pending exception that
9070      * is high enough priority to preempt execution at the level we're
9071      * about to return to, then just directly take that exception now,
9072      * avoiding an unstack-and-then-stack. Note that now we have
9073      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
9074      * our current execution priority is already the execution priority we are
9075      * returning to -- none of the state we would unstack or set based on
9076      * the EXCRET value affects it.
9077      */
9078     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
9079         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
9080         v7m_exception_taken(cpu, excret, true, false);
9081         return;
9082     }
9083 
9084     switch_v7m_security_state(env, return_to_secure);
9085 
9086     {
9087         /*
9088          * The stack pointer we should be reading the exception frame from
9089          * depends on bits in the magic exception return type value (and
9090          * for v8M isn't necessarily the stack pointer we will eventually
9091          * end up resuming execution with). Get a pointer to the location
9092          * in the CPU state struct where the SP we need is currently being
9093          * stored; we will use and modify it in place.
9094          * We use this limited C variable scope so we don't accidentally
9095          * use 'frame_sp_p' after we do something that makes it invalid.
9096          */
9097         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
9098                                               return_to_secure,
9099                                               !return_to_handler,
9100                                               return_to_sp_process);
9101         uint32_t frameptr = *frame_sp_p;
9102         bool pop_ok = true;
9103         ARMMMUIdx mmu_idx;
9104         bool return_to_priv = return_to_handler ||
9105             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
9106 
9107         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
9108                                                         return_to_priv);
9109 
9110         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
9111             arm_feature(env, ARM_FEATURE_V8)) {
9112             qemu_log_mask(LOG_GUEST_ERROR,
9113                           "M profile exception return with non-8-aligned SP "
9114                           "for destination state is UNPREDICTABLE\n");
9115         }
9116 
9117         /* Do we need to pop callee-saved registers? */
9118         if (return_to_secure &&
9119             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
9120              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
9121             uint32_t actual_sig;
9122 
9123             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
9124 
9125             if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
9126                 /* Take a SecureFault on the current stack */
9127                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
9128                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9129                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9130                               "stackframe: failed exception return integrity "
9131                               "signature check\n");
9132                 v7m_exception_taken(cpu, excret, true, false);
9133                 return;
9134             }
9135 
9136             pop_ok = pop_ok &&
9137                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
9138                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
9139                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
9140                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
9141                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
9142                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
9143                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
9144                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
9145 
9146             frameptr += 0x28;
9147         }
9148 
9149         /* Pop registers */
9150         pop_ok = pop_ok &&
9151             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
9152             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
9153             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
9154             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
9155             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
9156             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
9157             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
9158             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
9159 
9160         if (!pop_ok) {
9161             /*
9162              * v7m_stack_read() pended a fault, so take it (as a tail
9163              * chained exception on the same stack frame)
9164              */
9165             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
9166             v7m_exception_taken(cpu, excret, true, false);
9167             return;
9168         }
9169 
9170         /*
9171          * Returning from an exception with a PC with bit 0 set is defined
9172          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
9173          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
9174          * the lsbit, and there are several RTOSes out there which incorrectly
9175          * assume the r15 in the stack frame should be a Thumb-style "lsbit
9176          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
9177          * complain about the badly behaved guest.
9178          */
9179         if (env->regs[15] & 1) {
9180             env->regs[15] &= ~1U;
9181             if (!arm_feature(env, ARM_FEATURE_V8)) {
9182                 qemu_log_mask(LOG_GUEST_ERROR,
9183                               "M profile return from interrupt with misaligned "
9184                               "PC is UNPREDICTABLE on v7M\n");
9185             }
9186         }
9187 
9188         if (arm_feature(env, ARM_FEATURE_V8)) {
9189             /*
9190              * For v8M we have to check whether the xPSR exception field
9191              * matches the EXCRET value for return to handler/thread
9192              * before we commit to changing the SP and xPSR.
9193              */
9194             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
9195             if (return_to_handler != will_be_handler) {
9196                 /*
9197                  * Take an INVPC UsageFault on the current stack.
9198                  * By this point we will have switched to the security state
9199                  * for the background state, so this UsageFault will target
9200                  * that state.
9201                  */
9202                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9203                                         env->v7m.secure);
9204                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9205                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9206                               "stackframe: failed exception return integrity "
9207                               "check\n");
9208                 v7m_exception_taken(cpu, excret, true, false);
9209                 return;
9210             }
9211         }
9212 
9213         if (!ftype) {
9214             /* FP present and we need to handle it */
9215             if (!return_to_secure &&
9216                 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
9217                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9218                 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9219                 qemu_log_mask(CPU_LOG_INT,
9220                               "...taking SecureFault on existing stackframe: "
9221                               "Secure LSPACT set but exception return is "
9222                               "not to secure state\n");
9223                 v7m_exception_taken(cpu, excret, true, false);
9224                 return;
9225             }
9226 
9227             restore_s16_s31 = return_to_secure &&
9228                 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
9229 
9230             if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
9231                 /* State in FPU is still valid, just clear LSPACT */
9232                 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
9233             } else {
9234                 int i;
9235                 uint32_t fpscr;
9236                 bool cpacr_pass, nsacr_pass;
9237 
9238                 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
9239                                             return_to_priv);
9240                 nsacr_pass = return_to_secure ||
9241                     extract32(env->v7m.nsacr, 10, 1);
9242 
9243                 if (!cpacr_pass) {
9244                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9245                                             return_to_secure);
9246                     env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
9247                     qemu_log_mask(CPU_LOG_INT,
9248                                   "...taking UsageFault on existing "
9249                                   "stackframe: CPACR.CP10 prevents unstacking "
9250                                   "FP regs\n");
9251                     v7m_exception_taken(cpu, excret, true, false);
9252                     return;
9253                 } else if (!nsacr_pass) {
9254                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
9255                     env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
9256                     qemu_log_mask(CPU_LOG_INT,
9257                                   "...taking Secure UsageFault on existing "
9258                                   "stackframe: NSACR.CP10 prevents unstacking "
9259                                   "FP regs\n");
9260                     v7m_exception_taken(cpu, excret, true, false);
9261                     return;
9262                 }
9263 
9264                 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9265                     uint32_t slo, shi;
9266                     uint64_t dn;
9267                     uint32_t faddr = frameptr + 0x20 + 4 * i;
9268 
9269                     if (i >= 16) {
9270                         faddr += 8; /* Skip the slot for the FPSCR */
9271                     }
9272 
9273                     pop_ok = pop_ok &&
9274                         v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
9275                         v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
9276 
9277                     if (!pop_ok) {
9278                         break;
9279                     }
9280 
9281                     dn = (uint64_t)shi << 32 | slo;
9282                     *aa32_vfp_dreg(env, i / 2) = dn;
9283                 }
9284                 pop_ok = pop_ok &&
9285                     v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
9286                 if (pop_ok) {
9287                     vfp_set_fpscr(env, fpscr);
9288                 }
9289                 if (!pop_ok) {
9290                     /*
9291                      * These regs are 0 if security extension present;
9292                      * otherwise merely UNKNOWN. We zero always.
9293                      */
9294                     for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9295                         *aa32_vfp_dreg(env, i / 2) = 0;
9296                     }
9297                     vfp_set_fpscr(env, 0);
9298                 }
9299             }
9300         }
9301         env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9302                                                V7M_CONTROL, FPCA, !ftype);
9303 
9304         /* Commit to consuming the stack frame */
9305         frameptr += 0x20;
9306         if (!ftype) {
9307             frameptr += 0x48;
9308             if (restore_s16_s31) {
9309                 frameptr += 0x40;
9310             }
9311         }
9312         /*
9313          * Undo stack alignment (the SPREALIGN bit indicates that the original
9314          * pre-exception SP was not 8-aligned and we added a padding word to
9315          * align it, so we undo this by ORing in the bit that increases it
9316          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
9317          * would work too but a logical OR is how the pseudocode specifies it.)
9318          */
9319         if (xpsr & XPSR_SPREALIGN) {
9320             frameptr |= 4;
9321         }
9322         *frame_sp_p = frameptr;
9323     }
9324 
9325     xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
9326     if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9327         xpsr_mask &= ~XPSR_GE;
9328     }
9329     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
9330     xpsr_write(env, xpsr, xpsr_mask);
9331 
9332     if (env->v7m.secure) {
9333         bool sfpa = xpsr & XPSR_SFPA;
9334 
9335         env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9336                                                V7M_CONTROL, SFPA, sfpa);
9337     }
9338 
9339     /*
9340      * The restored xPSR exception field will be zero if we're
9341      * resuming in Thread mode. If that doesn't match what the
9342      * exception return excret specified then this is a UsageFault.
9343      * v7M requires we make this check here; v8M did it earlier.
9344      */
9345     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
9346         /*
9347          * Take an INVPC UsageFault by pushing the stack again;
9348          * we know we're v7M so this is never a Secure UsageFault.
9349          */
9350         bool ignore_stackfaults;
9351 
9352         assert(!arm_feature(env, ARM_FEATURE_V8));
9353         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
9354         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9355         ignore_stackfaults = v7m_push_stack(cpu);
9356         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
9357                       "failed exception return integrity check\n");
9358         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
9359         return;
9360     }
9361 
9362     /* Otherwise, we have a successful exception exit. */
9363     arm_clear_exclusive(env);
9364     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9365 }
9366 
9367 static bool do_v7m_function_return(ARMCPU *cpu)
9368 {
9369     /*
9370      * v8M security extensions magic function return.
9371      * We may either:
9372      *  (1) throw an exception (longjump)
9373      *  (2) return true if we successfully handled the function return
9374      *  (3) return false if we failed a consistency check and have
9375      *      pended a UsageFault that needs to be taken now
9376      *
9377      * At this point the magic return value is split between env->regs[15]
9378      * and env->thumb. We don't bother to reconstitute it because we don't
9379      * need it (all values are handled the same way).
9380      */
9381     CPUARMState *env = &cpu->env;
9382     uint32_t newpc, newpsr, newpsr_exc;
9383 
9384     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
9385 
9386     {
9387         bool threadmode, spsel;
9388         TCGMemOpIdx oi;
9389         ARMMMUIdx mmu_idx;
9390         uint32_t *frame_sp_p;
9391         uint32_t frameptr;
9392 
9393         /* Pull the return address and IPSR from the Secure stack */
9394         threadmode = !arm_v7m_is_handler_mode(env);
9395         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
9396 
9397         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
9398         frameptr = *frame_sp_p;
9399 
9400         /*
9401          * These loads may throw an exception (for MPU faults). We want to
9402          * do them as secure, so work out what MMU index that is.
9403          */
9404         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9405         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
9406         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
9407         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
9408 
9409         /* Consistency checks on new IPSR */
9410         newpsr_exc = newpsr & XPSR_EXCP;
9411         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
9412               (env->v7m.exception == 1 && newpsr_exc != 0))) {
9413             /* Pend the fault and tell our caller to take it */
9414             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9415             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9416                                     env->v7m.secure);
9417             qemu_log_mask(CPU_LOG_INT,
9418                           "...taking INVPC UsageFault: "
9419                           "IPSR consistency check failed\n");
9420             return false;
9421         }
9422 
9423         *frame_sp_p = frameptr + 8;
9424     }
9425 
9426     /* This invalidates frame_sp_p */
9427     switch_v7m_security_state(env, true);
9428     env->v7m.exception = newpsr_exc;
9429     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9430     if (newpsr & XPSR_SFPA) {
9431         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
9432     }
9433     xpsr_write(env, 0, XPSR_IT);
9434     env->thumb = newpc & 1;
9435     env->regs[15] = newpc & ~1;
9436 
9437     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
9438     return true;
9439 }
9440 
9441 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
9442                                uint32_t addr, uint16_t *insn)
9443 {
9444     /*
9445      * Load a 16-bit portion of a v7M instruction, returning true on success,
9446      * or false on failure (in which case we will have pended the appropriate
9447      * exception).
9448      * We need to do the instruction fetch's MPU and SAU checks
9449      * like this because there is no MMU index that would allow
9450      * doing the load with a single function call. Instead we must
9451      * first check that the security attributes permit the load
9452      * and that they don't mismatch on the two halves of the instruction,
9453      * and then we do the load as a secure load (ie using the security
9454      * attributes of the address, not the CPU, as architecturally required).
9455      */
9456     CPUState *cs = CPU(cpu);
9457     CPUARMState *env = &cpu->env;
9458     V8M_SAttributes sattrs = {};
9459     MemTxAttrs attrs = {};
9460     ARMMMUFaultInfo fi = {};
9461     MemTxResult txres;
9462     target_ulong page_size;
9463     hwaddr physaddr;
9464     int prot;
9465 
9466     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
9467     if (!sattrs.nsc || sattrs.ns) {
9468         /*
9469          * This must be the second half of the insn, and it straddles a
9470          * region boundary with the second half not being S&NSC.
9471          */
9472         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9473         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9474         qemu_log_mask(CPU_LOG_INT,
9475                       "...really SecureFault with SFSR.INVEP\n");
9476         return false;
9477     }
9478     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
9479                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
9480         /* the MPU lookup failed */
9481         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9482         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
9483         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
9484         return false;
9485     }
9486     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
9487                                  attrs, &txres);
9488     if (txres != MEMTX_OK) {
9489         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9490         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9491         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
9492         return false;
9493     }
9494     return true;
9495 }
9496 
9497 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
9498 {
9499     /*
9500      * Check whether this attempt to execute code in a Secure & NS-Callable
9501      * memory region is for an SG instruction; if so, then emulate the
9502      * effect of the SG instruction and return true. Otherwise pend
9503      * the correct kind of exception and return false.
9504      */
9505     CPUARMState *env = &cpu->env;
9506     ARMMMUIdx mmu_idx;
9507     uint16_t insn;
9508 
9509     /*
9510      * We should never get here unless get_phys_addr_pmsav8() caused
9511      * an exception for NS executing in S&NSC memory.
9512      */
9513     assert(!env->v7m.secure);
9514     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9515 
9516     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
9517     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9518 
9519     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
9520         return false;
9521     }
9522 
9523     if (!env->thumb) {
9524         goto gen_invep;
9525     }
9526 
9527     if (insn != 0xe97f) {
9528         /*
9529          * Not an SG instruction first half (we choose the IMPDEF
9530          * early-SG-check option).
9531          */
9532         goto gen_invep;
9533     }
9534 
9535     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
9536         return false;
9537     }
9538 
9539     if (insn != 0xe97f) {
9540         /*
9541          * Not an SG instruction second half (yes, both halves of the SG
9542          * insn have the same hex value)
9543          */
9544         goto gen_invep;
9545     }
9546 
9547     /*
9548      * OK, we have confirmed that we really have an SG instruction.
9549      * We know we're NS in S memory so don't need to repeat those checks.
9550      */
9551     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
9552                   ", executing it\n", env->regs[15]);
9553     env->regs[14] &= ~1;
9554     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9555     switch_v7m_security_state(env, true);
9556     xpsr_write(env, 0, XPSR_IT);
9557     env->regs[15] += 4;
9558     return true;
9559 
9560 gen_invep:
9561     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9562     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9563     qemu_log_mask(CPU_LOG_INT,
9564                   "...really SecureFault with SFSR.INVEP\n");
9565     return false;
9566 }
9567 
9568 void arm_v7m_cpu_do_interrupt(CPUState *cs)
9569 {
9570     ARMCPU *cpu = ARM_CPU(cs);
9571     CPUARMState *env = &cpu->env;
9572     uint32_t lr;
9573     bool ignore_stackfaults;
9574 
9575     arm_log_exception(cs->exception_index);
9576 
9577     /*
9578      * For exceptions we just mark as pending on the NVIC, and let that
9579      * handle it.
9580      */
9581     switch (cs->exception_index) {
9582     case EXCP_UDEF:
9583         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9584         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
9585         break;
9586     case EXCP_NOCP:
9587     {
9588         /*
9589          * NOCP might be directed to something other than the current
9590          * security state if this fault is because of NSACR; we indicate
9591          * the target security state using exception.target_el.
9592          */
9593         int target_secstate;
9594 
9595         if (env->exception.target_el == 3) {
9596             target_secstate = M_REG_S;
9597         } else {
9598             target_secstate = env->v7m.secure;
9599         }
9600         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
9601         env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
9602         break;
9603     }
9604     case EXCP_INVSTATE:
9605         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9606         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
9607         break;
9608     case EXCP_STKOF:
9609         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9610         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
9611         break;
9612     case EXCP_LSERR:
9613         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9614         env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9615         break;
9616     case EXCP_UNALIGNED:
9617         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9618         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
9619         break;
9620     case EXCP_SWI:
9621         /* The PC already points to the next instruction.  */
9622         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
9623         break;
9624     case EXCP_PREFETCH_ABORT:
9625     case EXCP_DATA_ABORT:
9626         /*
9627          * Note that for M profile we don't have a guest facing FSR, but
9628          * the env->exception.fsr will be populated by the code that
9629          * raises the fault, in the A profile short-descriptor format.
9630          */
9631         switch (env->exception.fsr & 0xf) {
9632         case M_FAKE_FSR_NSC_EXEC:
9633             /*
9634              * Exception generated when we try to execute code at an address
9635              * which is marked as Secure & Non-Secure Callable and the CPU
9636              * is in the Non-Secure state. The only instruction which can
9637              * be executed like this is SG (and that only if both halves of
9638              * the SG instruction have the same security attributes.)
9639              * Everything else must generate an INVEP SecureFault, so we
9640              * emulate the SG instruction here.
9641              */
9642             if (v7m_handle_execute_nsc(cpu)) {
9643                 return;
9644             }
9645             break;
9646         case M_FAKE_FSR_SFAULT:
9647             /*
9648              * Various flavours of SecureFault for attempts to execute or
9649              * access data in the wrong security state.
9650              */
9651             switch (cs->exception_index) {
9652             case EXCP_PREFETCH_ABORT:
9653                 if (env->v7m.secure) {
9654                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
9655                     qemu_log_mask(CPU_LOG_INT,
9656                                   "...really SecureFault with SFSR.INVTRAN\n");
9657                 } else {
9658                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9659                     qemu_log_mask(CPU_LOG_INT,
9660                                   "...really SecureFault with SFSR.INVEP\n");
9661                 }
9662                 break;
9663             case EXCP_DATA_ABORT:
9664                 /* This must be an NS access to S memory */
9665                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
9666                 qemu_log_mask(CPU_LOG_INT,
9667                               "...really SecureFault with SFSR.AUVIOL\n");
9668                 break;
9669             }
9670             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9671             break;
9672         case 0x8: /* External Abort */
9673             switch (cs->exception_index) {
9674             case EXCP_PREFETCH_ABORT:
9675                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9676                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
9677                 break;
9678             case EXCP_DATA_ABORT:
9679                 env->v7m.cfsr[M_REG_NS] |=
9680                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
9681                 env->v7m.bfar = env->exception.vaddress;
9682                 qemu_log_mask(CPU_LOG_INT,
9683                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
9684                               env->v7m.bfar);
9685                 break;
9686             }
9687             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9688             break;
9689         default:
9690             /*
9691              * All other FSR values are either MPU faults or "can't happen
9692              * for M profile" cases.
9693              */
9694             switch (cs->exception_index) {
9695             case EXCP_PREFETCH_ABORT:
9696                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9697                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
9698                 break;
9699             case EXCP_DATA_ABORT:
9700                 env->v7m.cfsr[env->v7m.secure] |=
9701                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
9702                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
9703                 qemu_log_mask(CPU_LOG_INT,
9704                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
9705                               env->v7m.mmfar[env->v7m.secure]);
9706                 break;
9707             }
9708             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
9709                                     env->v7m.secure);
9710             break;
9711         }
9712         break;
9713     case EXCP_BKPT:
9714         if (semihosting_enabled()) {
9715             int nr;
9716             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
9717             if (nr == 0xab) {
9718                 env->regs[15] += 2;
9719                 qemu_log_mask(CPU_LOG_INT,
9720                               "...handling as semihosting call 0x%x\n",
9721                               env->regs[0]);
9722                 env->regs[0] = do_arm_semihosting(env);
9723                 return;
9724             }
9725         }
9726         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
9727         break;
9728     case EXCP_IRQ:
9729         break;
9730     case EXCP_EXCEPTION_EXIT:
9731         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
9732             /* Must be v8M security extension function return */
9733             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
9734             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9735             if (do_v7m_function_return(cpu)) {
9736                 return;
9737             }
9738         } else {
9739             do_v7m_exception_exit(cpu);
9740             return;
9741         }
9742         break;
9743     case EXCP_LAZYFP:
9744         /*
9745          * We already pended the specific exception in the NVIC in the
9746          * v7m_preserve_fp_state() helper function.
9747          */
9748         break;
9749     default:
9750         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9751         return; /* Never happens.  Keep compiler happy.  */
9752     }
9753 
9754     if (arm_feature(env, ARM_FEATURE_V8)) {
9755         lr = R_V7M_EXCRET_RES1_MASK |
9756             R_V7M_EXCRET_DCRS_MASK;
9757         /*
9758          * The S bit indicates whether we should return to Secure
9759          * or NonSecure (ie our current state).
9760          * The ES bit indicates whether we're taking this exception
9761          * to Secure or NonSecure (ie our target state). We set it
9762          * later, in v7m_exception_taken().
9763          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
9764          * This corresponds to the ARM ARM pseudocode for v8M setting
9765          * some LR bits in PushStack() and some in ExceptionTaken();
9766          * the distinction matters for the tailchain cases where we
9767          * can take an exception without pushing the stack.
9768          */
9769         if (env->v7m.secure) {
9770             lr |= R_V7M_EXCRET_S_MASK;
9771         }
9772         if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9773             lr |= R_V7M_EXCRET_FTYPE_MASK;
9774         }
9775     } else {
9776         lr = R_V7M_EXCRET_RES1_MASK |
9777             R_V7M_EXCRET_S_MASK |
9778             R_V7M_EXCRET_DCRS_MASK |
9779             R_V7M_EXCRET_FTYPE_MASK |
9780             R_V7M_EXCRET_ES_MASK;
9781         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
9782             lr |= R_V7M_EXCRET_SPSEL_MASK;
9783         }
9784     }
9785     if (!arm_v7m_is_handler_mode(env)) {
9786         lr |= R_V7M_EXCRET_MODE_MASK;
9787     }
9788 
9789     ignore_stackfaults = v7m_push_stack(cpu);
9790     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9791 }
9792 
9793 /*
9794  * Function used to synchronize QEMU's AArch64 register set with AArch32
9795  * register set.  This is necessary when switching between AArch32 and AArch64
9796  * execution state.
9797  */
9798 void aarch64_sync_32_to_64(CPUARMState *env)
9799 {
9800     int i;
9801     uint32_t mode = env->uncached_cpsr & CPSR_M;
9802 
9803     /* We can blanket copy R[0:7] to X[0:7] */
9804     for (i = 0; i < 8; i++) {
9805         env->xregs[i] = env->regs[i];
9806     }
9807 
9808     /*
9809      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9810      * Otherwise, they come from the banked user regs.
9811      */
9812     if (mode == ARM_CPU_MODE_FIQ) {
9813         for (i = 8; i < 13; i++) {
9814             env->xregs[i] = env->usr_regs[i - 8];
9815         }
9816     } else {
9817         for (i = 8; i < 13; i++) {
9818             env->xregs[i] = env->regs[i];
9819         }
9820     }
9821 
9822     /*
9823      * Registers x13-x23 are the various mode SP and FP registers. Registers
9824      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9825      * from the mode banked register.
9826      */
9827     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9828         env->xregs[13] = env->regs[13];
9829         env->xregs[14] = env->regs[14];
9830     } else {
9831         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9832         /* HYP is an exception in that it is copied from r14 */
9833         if (mode == ARM_CPU_MODE_HYP) {
9834             env->xregs[14] = env->regs[14];
9835         } else {
9836             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9837         }
9838     }
9839 
9840     if (mode == ARM_CPU_MODE_HYP) {
9841         env->xregs[15] = env->regs[13];
9842     } else {
9843         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9844     }
9845 
9846     if (mode == ARM_CPU_MODE_IRQ) {
9847         env->xregs[16] = env->regs[14];
9848         env->xregs[17] = env->regs[13];
9849     } else {
9850         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9851         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9852     }
9853 
9854     if (mode == ARM_CPU_MODE_SVC) {
9855         env->xregs[18] = env->regs[14];
9856         env->xregs[19] = env->regs[13];
9857     } else {
9858         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9859         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9860     }
9861 
9862     if (mode == ARM_CPU_MODE_ABT) {
9863         env->xregs[20] = env->regs[14];
9864         env->xregs[21] = env->regs[13];
9865     } else {
9866         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9867         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9868     }
9869 
9870     if (mode == ARM_CPU_MODE_UND) {
9871         env->xregs[22] = env->regs[14];
9872         env->xregs[23] = env->regs[13];
9873     } else {
9874         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9875         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9876     }
9877 
9878     /*
9879      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9880      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9881      * FIQ bank for r8-r14.
9882      */
9883     if (mode == ARM_CPU_MODE_FIQ) {
9884         for (i = 24; i < 31; i++) {
9885             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9886         }
9887     } else {
9888         for (i = 24; i < 29; i++) {
9889             env->xregs[i] = env->fiq_regs[i - 24];
9890         }
9891         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9892         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9893     }
9894 
9895     env->pc = env->regs[15];
9896 }
9897 
9898 /*
9899  * Function used to synchronize QEMU's AArch32 register set with AArch64
9900  * register set.  This is necessary when switching between AArch32 and AArch64
9901  * execution state.
9902  */
9903 void aarch64_sync_64_to_32(CPUARMState *env)
9904 {
9905     int i;
9906     uint32_t mode = env->uncached_cpsr & CPSR_M;
9907 
9908     /* We can blanket copy X[0:7] to R[0:7] */
9909     for (i = 0; i < 8; i++) {
9910         env->regs[i] = env->xregs[i];
9911     }
9912 
9913     /*
9914      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9915      * Otherwise, we copy x8-x12 into the banked user regs.
9916      */
9917     if (mode == ARM_CPU_MODE_FIQ) {
9918         for (i = 8; i < 13; i++) {
9919             env->usr_regs[i - 8] = env->xregs[i];
9920         }
9921     } else {
9922         for (i = 8; i < 13; i++) {
9923             env->regs[i] = env->xregs[i];
9924         }
9925     }
9926 
9927     /*
9928      * Registers r13 & r14 depend on the current mode.
9929      * If we are in a given mode, we copy the corresponding x registers to r13
9930      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9931      * for the mode.
9932      */
9933     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9934         env->regs[13] = env->xregs[13];
9935         env->regs[14] = env->xregs[14];
9936     } else {
9937         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9938 
9939         /*
9940          * HYP is an exception in that it does not have its own banked r14 but
9941          * shares the USR r14
9942          */
9943         if (mode == ARM_CPU_MODE_HYP) {
9944             env->regs[14] = env->xregs[14];
9945         } else {
9946             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9947         }
9948     }
9949 
9950     if (mode == ARM_CPU_MODE_HYP) {
9951         env->regs[13] = env->xregs[15];
9952     } else {
9953         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9954     }
9955 
9956     if (mode == ARM_CPU_MODE_IRQ) {
9957         env->regs[14] = env->xregs[16];
9958         env->regs[13] = env->xregs[17];
9959     } else {
9960         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9961         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9962     }
9963 
9964     if (mode == ARM_CPU_MODE_SVC) {
9965         env->regs[14] = env->xregs[18];
9966         env->regs[13] = env->xregs[19];
9967     } else {
9968         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9969         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9970     }
9971 
9972     if (mode == ARM_CPU_MODE_ABT) {
9973         env->regs[14] = env->xregs[20];
9974         env->regs[13] = env->xregs[21];
9975     } else {
9976         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9977         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9978     }
9979 
9980     if (mode == ARM_CPU_MODE_UND) {
9981         env->regs[14] = env->xregs[22];
9982         env->regs[13] = env->xregs[23];
9983     } else {
9984         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9985         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9986     }
9987 
9988     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9989      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9990      * FIQ bank for r8-r14.
9991      */
9992     if (mode == ARM_CPU_MODE_FIQ) {
9993         for (i = 24; i < 31; i++) {
9994             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9995         }
9996     } else {
9997         for (i = 24; i < 29; i++) {
9998             env->fiq_regs[i - 24] = env->xregs[i];
9999         }
10000         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10001         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10002     }
10003 
10004     env->regs[15] = env->pc;
10005 }
10006 
10007 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10008                                    uint32_t mask, uint32_t offset,
10009                                    uint32_t newpc)
10010 {
10011     /* Change the CPU state so as to actually take the exception. */
10012     switch_mode(env, new_mode);
10013     /*
10014      * For exceptions taken to AArch32 we must clear the SS bit in both
10015      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10016      */
10017     env->uncached_cpsr &= ~PSTATE_SS;
10018     env->spsr = cpsr_read(env);
10019     /* Clear IT bits.  */
10020     env->condexec_bits = 0;
10021     /* Switch to the new mode, and to the correct instruction set.  */
10022     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10023     /* Set new mode endianness */
10024     env->uncached_cpsr &= ~CPSR_E;
10025     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
10026         env->uncached_cpsr |= CPSR_E;
10027     }
10028     /* J and IL must always be cleared for exception entry */
10029     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10030     env->daif |= mask;
10031 
10032     if (new_mode == ARM_CPU_MODE_HYP) {
10033         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10034         env->elr_el[2] = env->regs[15];
10035     } else {
10036         /*
10037          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10038          * and we should just guard the thumb mode on V4
10039          */
10040         if (arm_feature(env, ARM_FEATURE_V4T)) {
10041             env->thumb =
10042                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10043         }
10044         env->regs[14] = env->regs[15] + offset;
10045     }
10046     env->regs[15] = newpc;
10047 }
10048 
10049 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10050 {
10051     /*
10052      * Handle exception entry to Hyp mode; this is sufficiently
10053      * different to entry to other AArch32 modes that we handle it
10054      * separately here.
10055      *
10056      * The vector table entry used is always the 0x14 Hyp mode entry point,
10057      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
10058      * The offset applied to the preferred return address is always zero
10059      * (see DDI0487C.a section G1.12.3).
10060      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10061      */
10062     uint32_t addr, mask;
10063     ARMCPU *cpu = ARM_CPU(cs);
10064     CPUARMState *env = &cpu->env;
10065 
10066     switch (cs->exception_index) {
10067     case EXCP_UDEF:
10068         addr = 0x04;
10069         break;
10070     case EXCP_SWI:
10071         addr = 0x14;
10072         break;
10073     case EXCP_BKPT:
10074         /* Fall through to prefetch abort.  */
10075     case EXCP_PREFETCH_ABORT:
10076         env->cp15.ifar_s = env->exception.vaddress;
10077         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10078                       (uint32_t)env->exception.vaddress);
10079         addr = 0x0c;
10080         break;
10081     case EXCP_DATA_ABORT:
10082         env->cp15.dfar_s = env->exception.vaddress;
10083         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10084                       (uint32_t)env->exception.vaddress);
10085         addr = 0x10;
10086         break;
10087     case EXCP_IRQ:
10088         addr = 0x18;
10089         break;
10090     case EXCP_FIQ:
10091         addr = 0x1c;
10092         break;
10093     case EXCP_HVC:
10094         addr = 0x08;
10095         break;
10096     case EXCP_HYP_TRAP:
10097         addr = 0x14;
10098     default:
10099         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10100     }
10101 
10102     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10103         if (!arm_feature(env, ARM_FEATURE_V8)) {
10104             /*
10105              * QEMU syndrome values are v8-style. v7 has the IL bit
10106              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10107              * If this is a v7 CPU, squash the IL bit in those cases.
10108              */
10109             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10110                 (cs->exception_index == EXCP_DATA_ABORT &&
10111                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10112                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10113                 env->exception.syndrome &= ~ARM_EL_IL;
10114             }
10115         }
10116         env->cp15.esr_el[2] = env->exception.syndrome;
10117     }
10118 
10119     if (arm_current_el(env) != 2 && addr < 0x14) {
10120         addr = 0x14;
10121     }
10122 
10123     mask = 0;
10124     if (!(env->cp15.scr_el3 & SCR_EA)) {
10125         mask |= CPSR_A;
10126     }
10127     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10128         mask |= CPSR_I;
10129     }
10130     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10131         mask |= CPSR_F;
10132     }
10133 
10134     addr += env->cp15.hvbar;
10135 
10136     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10137 }
10138 
10139 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10140 {
10141     ARMCPU *cpu = ARM_CPU(cs);
10142     CPUARMState *env = &cpu->env;
10143     uint32_t addr;
10144     uint32_t mask;
10145     int new_mode;
10146     uint32_t offset;
10147     uint32_t moe;
10148 
10149     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10150     switch (syn_get_ec(env->exception.syndrome)) {
10151     case EC_BREAKPOINT:
10152     case EC_BREAKPOINT_SAME_EL:
10153         moe = 1;
10154         break;
10155     case EC_WATCHPOINT:
10156     case EC_WATCHPOINT_SAME_EL:
10157         moe = 10;
10158         break;
10159     case EC_AA32_BKPT:
10160         moe = 3;
10161         break;
10162     case EC_VECTORCATCH:
10163         moe = 5;
10164         break;
10165     default:
10166         moe = 0;
10167         break;
10168     }
10169 
10170     if (moe) {
10171         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10172     }
10173 
10174     if (env->exception.target_el == 2) {
10175         arm_cpu_do_interrupt_aarch32_hyp(cs);
10176         return;
10177     }
10178 
10179     switch (cs->exception_index) {
10180     case EXCP_UDEF:
10181         new_mode = ARM_CPU_MODE_UND;
10182         addr = 0x04;
10183         mask = CPSR_I;
10184         if (env->thumb)
10185             offset = 2;
10186         else
10187             offset = 4;
10188         break;
10189     case EXCP_SWI:
10190         new_mode = ARM_CPU_MODE_SVC;
10191         addr = 0x08;
10192         mask = CPSR_I;
10193         /* The PC already points to the next instruction.  */
10194         offset = 0;
10195         break;
10196     case EXCP_BKPT:
10197         /* Fall through to prefetch abort.  */
10198     case EXCP_PREFETCH_ABORT:
10199         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10200         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10201         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10202                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10203         new_mode = ARM_CPU_MODE_ABT;
10204         addr = 0x0c;
10205         mask = CPSR_A | CPSR_I;
10206         offset = 4;
10207         break;
10208     case EXCP_DATA_ABORT:
10209         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10210         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10211         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10212                       env->exception.fsr,
10213                       (uint32_t)env->exception.vaddress);
10214         new_mode = ARM_CPU_MODE_ABT;
10215         addr = 0x10;
10216         mask = CPSR_A | CPSR_I;
10217         offset = 8;
10218         break;
10219     case EXCP_IRQ:
10220         new_mode = ARM_CPU_MODE_IRQ;
10221         addr = 0x18;
10222         /* Disable IRQ and imprecise data aborts.  */
10223         mask = CPSR_A | CPSR_I;
10224         offset = 4;
10225         if (env->cp15.scr_el3 & SCR_IRQ) {
10226             /* IRQ routed to monitor mode */
10227             new_mode = ARM_CPU_MODE_MON;
10228             mask |= CPSR_F;
10229         }
10230         break;
10231     case EXCP_FIQ:
10232         new_mode = ARM_CPU_MODE_FIQ;
10233         addr = 0x1c;
10234         /* Disable FIQ, IRQ and imprecise data aborts.  */
10235         mask = CPSR_A | CPSR_I | CPSR_F;
10236         if (env->cp15.scr_el3 & SCR_FIQ) {
10237             /* FIQ routed to monitor mode */
10238             new_mode = ARM_CPU_MODE_MON;
10239         }
10240         offset = 4;
10241         break;
10242     case EXCP_VIRQ:
10243         new_mode = ARM_CPU_MODE_IRQ;
10244         addr = 0x18;
10245         /* Disable IRQ and imprecise data aborts.  */
10246         mask = CPSR_A | CPSR_I;
10247         offset = 4;
10248         break;
10249     case EXCP_VFIQ:
10250         new_mode = ARM_CPU_MODE_FIQ;
10251         addr = 0x1c;
10252         /* Disable FIQ, IRQ and imprecise data aborts.  */
10253         mask = CPSR_A | CPSR_I | CPSR_F;
10254         offset = 4;
10255         break;
10256     case EXCP_SMC:
10257         new_mode = ARM_CPU_MODE_MON;
10258         addr = 0x08;
10259         mask = CPSR_A | CPSR_I | CPSR_F;
10260         offset = 0;
10261         break;
10262     default:
10263         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10264         return; /* Never happens.  Keep compiler happy.  */
10265     }
10266 
10267     if (new_mode == ARM_CPU_MODE_MON) {
10268         addr += env->cp15.mvbar;
10269     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10270         /* High vectors. When enabled, base address cannot be remapped. */
10271         addr += 0xffff0000;
10272     } else {
10273         /* ARM v7 architectures provide a vector base address register to remap
10274          * the interrupt vector table.
10275          * This register is only followed in non-monitor mode, and is banked.
10276          * Note: only bits 31:5 are valid.
10277          */
10278         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10279     }
10280 
10281     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10282         env->cp15.scr_el3 &= ~SCR_NS;
10283     }
10284 
10285     take_aarch32_exception(env, new_mode, mask, offset, addr);
10286 }
10287 
10288 /* Handle exception entry to a target EL which is using AArch64 */
10289 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10290 {
10291     ARMCPU *cpu = ARM_CPU(cs);
10292     CPUARMState *env = &cpu->env;
10293     unsigned int new_el = env->exception.target_el;
10294     target_ulong addr = env->cp15.vbar_el[new_el];
10295     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10296     unsigned int cur_el = arm_current_el(env);
10297 
10298     /*
10299      * Note that new_el can never be 0.  If cur_el is 0, then
10300      * el0_a64 is is_a64(), else el0_a64 is ignored.
10301      */
10302     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10303 
10304     if (cur_el < new_el) {
10305         /* Entry vector offset depends on whether the implemented EL
10306          * immediately lower than the target level is using AArch32 or AArch64
10307          */
10308         bool is_aa64;
10309 
10310         switch (new_el) {
10311         case 3:
10312             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10313             break;
10314         case 2:
10315             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
10316             break;
10317         case 1:
10318             is_aa64 = is_a64(env);
10319             break;
10320         default:
10321             g_assert_not_reached();
10322         }
10323 
10324         if (is_aa64) {
10325             addr += 0x400;
10326         } else {
10327             addr += 0x600;
10328         }
10329     } else if (pstate_read(env) & PSTATE_SP) {
10330         addr += 0x200;
10331     }
10332 
10333     switch (cs->exception_index) {
10334     case EXCP_PREFETCH_ABORT:
10335     case EXCP_DATA_ABORT:
10336         env->cp15.far_el[new_el] = env->exception.vaddress;
10337         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10338                       env->cp15.far_el[new_el]);
10339         /* fall through */
10340     case EXCP_BKPT:
10341     case EXCP_UDEF:
10342     case EXCP_SWI:
10343     case EXCP_HVC:
10344     case EXCP_HYP_TRAP:
10345     case EXCP_SMC:
10346         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
10347             /*
10348              * QEMU internal FP/SIMD syndromes from AArch32 include the
10349              * TA and coproc fields which are only exposed if the exception
10350              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10351              * AArch64 format syndrome.
10352              */
10353             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10354         }
10355         env->cp15.esr_el[new_el] = env->exception.syndrome;
10356         break;
10357     case EXCP_IRQ:
10358     case EXCP_VIRQ:
10359         addr += 0x80;
10360         break;
10361     case EXCP_FIQ:
10362     case EXCP_VFIQ:
10363         addr += 0x100;
10364         break;
10365     case EXCP_SEMIHOST:
10366         qemu_log_mask(CPU_LOG_INT,
10367                       "...handling as semihosting call 0x%" PRIx64 "\n",
10368                       env->xregs[0]);
10369         env->xregs[0] = do_arm_semihosting(env);
10370         return;
10371     default:
10372         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10373     }
10374 
10375     if (is_a64(env)) {
10376         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
10377         aarch64_save_sp(env, arm_current_el(env));
10378         env->elr_el[new_el] = env->pc;
10379     } else {
10380         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
10381         env->elr_el[new_el] = env->regs[15];
10382 
10383         aarch64_sync_32_to_64(env);
10384 
10385         env->condexec_bits = 0;
10386     }
10387     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10388                   env->elr_el[new_el]);
10389 
10390     pstate_write(env, PSTATE_DAIF | new_mode);
10391     env->aarch64 = 1;
10392     aarch64_restore_sp(env, new_el);
10393 
10394     env->pc = addr;
10395 
10396     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10397                   new_el, env->pc, pstate_read(env));
10398 }
10399 
10400 static inline bool check_for_semihosting(CPUState *cs)
10401 {
10402     /* Check whether this exception is a semihosting call; if so
10403      * then handle it and return true; otherwise return false.
10404      */
10405     ARMCPU *cpu = ARM_CPU(cs);
10406     CPUARMState *env = &cpu->env;
10407 
10408     if (is_a64(env)) {
10409         if (cs->exception_index == EXCP_SEMIHOST) {
10410             /* This is always the 64-bit semihosting exception.
10411              * The "is this usermode" and "is semihosting enabled"
10412              * checks have been done at translate time.
10413              */
10414             qemu_log_mask(CPU_LOG_INT,
10415                           "...handling as semihosting call 0x%" PRIx64 "\n",
10416                           env->xregs[0]);
10417             env->xregs[0] = do_arm_semihosting(env);
10418             return true;
10419         }
10420         return false;
10421     } else {
10422         uint32_t imm;
10423 
10424         /* Only intercept calls from privileged modes, to provide some
10425          * semblance of security.
10426          */
10427         if (cs->exception_index != EXCP_SEMIHOST &&
10428             (!semihosting_enabled() ||
10429              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
10430             return false;
10431         }
10432 
10433         switch (cs->exception_index) {
10434         case EXCP_SEMIHOST:
10435             /* This is always a semihosting call; the "is this usermode"
10436              * and "is semihosting enabled" checks have been done at
10437              * translate time.
10438              */
10439             break;
10440         case EXCP_SWI:
10441             /* Check for semihosting interrupt.  */
10442             if (env->thumb) {
10443                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
10444                     & 0xff;
10445                 if (imm == 0xab) {
10446                     break;
10447                 }
10448             } else {
10449                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
10450                     & 0xffffff;
10451                 if (imm == 0x123456) {
10452                     break;
10453                 }
10454             }
10455             return false;
10456         case EXCP_BKPT:
10457             /* See if this is a semihosting syscall.  */
10458             if (env->thumb) {
10459                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
10460                     & 0xff;
10461                 if (imm == 0xab) {
10462                     env->regs[15] += 2;
10463                     break;
10464                 }
10465             }
10466             return false;
10467         default:
10468             return false;
10469         }
10470 
10471         qemu_log_mask(CPU_LOG_INT,
10472                       "...handling as semihosting call 0x%x\n",
10473                       env->regs[0]);
10474         env->regs[0] = do_arm_semihosting(env);
10475         return true;
10476     }
10477 }
10478 
10479 /* Handle a CPU exception for A and R profile CPUs.
10480  * Do any appropriate logging, handle PSCI calls, and then hand off
10481  * to the AArch64-entry or AArch32-entry function depending on the
10482  * target exception level's register width.
10483  */
10484 void arm_cpu_do_interrupt(CPUState *cs)
10485 {
10486     ARMCPU *cpu = ARM_CPU(cs);
10487     CPUARMState *env = &cpu->env;
10488     unsigned int new_el = env->exception.target_el;
10489 
10490     assert(!arm_feature(env, ARM_FEATURE_M));
10491 
10492     arm_log_exception(cs->exception_index);
10493     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10494                   new_el);
10495     if (qemu_loglevel_mask(CPU_LOG_INT)
10496         && !excp_is_internal(cs->exception_index)) {
10497         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10498                       syn_get_ec(env->exception.syndrome),
10499                       env->exception.syndrome);
10500     }
10501 
10502     if (arm_is_psci_call(cpu, cs->exception_index)) {
10503         arm_handle_psci_call(cpu);
10504         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10505         return;
10506     }
10507 
10508     /* Semihosting semantics depend on the register width of the
10509      * code that caused the exception, not the target exception level,
10510      * so must be handled here.
10511      */
10512     if (check_for_semihosting(cs)) {
10513         return;
10514     }
10515 
10516     /* Hooks may change global state so BQL should be held, also the
10517      * BQL needs to be held for any modification of
10518      * cs->interrupt_request.
10519      */
10520     g_assert(qemu_mutex_iothread_locked());
10521 
10522     arm_call_pre_el_change_hook(cpu);
10523 
10524     assert(!excp_is_internal(cs->exception_index));
10525     if (arm_el_is_aa64(env, new_el)) {
10526         arm_cpu_do_interrupt_aarch64(cs);
10527     } else {
10528         arm_cpu_do_interrupt_aarch32(cs);
10529     }
10530 
10531     arm_call_el_change_hook(cpu);
10532 
10533     if (!kvm_enabled()) {
10534         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10535     }
10536 }
10537 #endif /* !CONFIG_USER_ONLY */
10538 
10539 /* Return the exception level which controls this address translation regime */
10540 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
10541 {
10542     switch (mmu_idx) {
10543     case ARMMMUIdx_S2NS:
10544     case ARMMMUIdx_S1E2:
10545         return 2;
10546     case ARMMMUIdx_S1E3:
10547         return 3;
10548     case ARMMMUIdx_S1SE0:
10549         return arm_el_is_aa64(env, 3) ? 1 : 3;
10550     case ARMMMUIdx_S1SE1:
10551     case ARMMMUIdx_S1NSE0:
10552     case ARMMMUIdx_S1NSE1:
10553     case ARMMMUIdx_MPrivNegPri:
10554     case ARMMMUIdx_MUserNegPri:
10555     case ARMMMUIdx_MPriv:
10556     case ARMMMUIdx_MUser:
10557     case ARMMMUIdx_MSPrivNegPri:
10558     case ARMMMUIdx_MSUserNegPri:
10559     case ARMMMUIdx_MSPriv:
10560     case ARMMMUIdx_MSUser:
10561         return 1;
10562     default:
10563         g_assert_not_reached();
10564     }
10565 }
10566 
10567 #ifndef CONFIG_USER_ONLY
10568 
10569 /* Return the SCTLR value which controls this address translation regime */
10570 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10571 {
10572     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10573 }
10574 
10575 /* Return true if the specified stage of address translation is disabled */
10576 static inline bool regime_translation_disabled(CPUARMState *env,
10577                                                ARMMMUIdx mmu_idx)
10578 {
10579     if (arm_feature(env, ARM_FEATURE_M)) {
10580         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10581                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10582         case R_V7M_MPU_CTRL_ENABLE_MASK:
10583             /* Enabled, but not for HardFault and NMI */
10584             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10585         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10586             /* Enabled for all cases */
10587             return false;
10588         case 0:
10589         default:
10590             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10591              * we warned about that in armv7m_nvic.c when the guest set it.
10592              */
10593             return true;
10594         }
10595     }
10596 
10597     if (mmu_idx == ARMMMUIdx_S2NS) {
10598         /* HCR.DC means HCR.VM behaves as 1 */
10599         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10600     }
10601 
10602     if (env->cp15.hcr_el2 & HCR_TGE) {
10603         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10604         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10605             return true;
10606         }
10607     }
10608 
10609     if ((env->cp15.hcr_el2 & HCR_DC) &&
10610         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
10611         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10612         return true;
10613     }
10614 
10615     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10616 }
10617 
10618 static inline bool regime_translation_big_endian(CPUARMState *env,
10619                                                  ARMMMUIdx mmu_idx)
10620 {
10621     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10622 }
10623 
10624 /* Return the TTBR associated with this translation regime */
10625 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10626                                    int ttbrn)
10627 {
10628     if (mmu_idx == ARMMMUIdx_S2NS) {
10629         return env->cp15.vttbr_el2;
10630     }
10631     if (ttbrn == 0) {
10632         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10633     } else {
10634         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10635     }
10636 }
10637 
10638 #endif /* !CONFIG_USER_ONLY */
10639 
10640 /* Return the TCR controlling this translation regime */
10641 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
10642 {
10643     if (mmu_idx == ARMMMUIdx_S2NS) {
10644         return &env->cp15.vtcr_el2;
10645     }
10646     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
10647 }
10648 
10649 /* Convert a possible stage1+2 MMU index into the appropriate
10650  * stage 1 MMU index
10651  */
10652 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10653 {
10654     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10655         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
10656     }
10657     return mmu_idx;
10658 }
10659 
10660 /* Return true if the translation regime is using LPAE format page tables */
10661 static inline bool regime_using_lpae_format(CPUARMState *env,
10662                                             ARMMMUIdx mmu_idx)
10663 {
10664     int el = regime_el(env, mmu_idx);
10665     if (el == 2 || arm_el_is_aa64(env, el)) {
10666         return true;
10667     }
10668     if (arm_feature(env, ARM_FEATURE_LPAE)
10669         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10670         return true;
10671     }
10672     return false;
10673 }
10674 
10675 /* Returns true if the stage 1 translation regime is using LPAE format page
10676  * tables. Used when raising alignment exceptions, whose FSR changes depending
10677  * on whether the long or short descriptor format is in use. */
10678 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10679 {
10680     mmu_idx = stage_1_mmu_idx(mmu_idx);
10681 
10682     return regime_using_lpae_format(env, mmu_idx);
10683 }
10684 
10685 #ifndef CONFIG_USER_ONLY
10686 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10687 {
10688     switch (mmu_idx) {
10689     case ARMMMUIdx_S1SE0:
10690     case ARMMMUIdx_S1NSE0:
10691     case ARMMMUIdx_MUser:
10692     case ARMMMUIdx_MSUser:
10693     case ARMMMUIdx_MUserNegPri:
10694     case ARMMMUIdx_MSUserNegPri:
10695         return true;
10696     default:
10697         return false;
10698     case ARMMMUIdx_S12NSE0:
10699     case ARMMMUIdx_S12NSE1:
10700         g_assert_not_reached();
10701     }
10702 }
10703 
10704 /* Translate section/page access permissions to page
10705  * R/W protection flags
10706  *
10707  * @env:         CPUARMState
10708  * @mmu_idx:     MMU index indicating required translation regime
10709  * @ap:          The 3-bit access permissions (AP[2:0])
10710  * @domain_prot: The 2-bit domain access permissions
10711  */
10712 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10713                                 int ap, int domain_prot)
10714 {
10715     bool is_user = regime_is_user(env, mmu_idx);
10716 
10717     if (domain_prot == 3) {
10718         return PAGE_READ | PAGE_WRITE;
10719     }
10720 
10721     switch (ap) {
10722     case 0:
10723         if (arm_feature(env, ARM_FEATURE_V7)) {
10724             return 0;
10725         }
10726         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10727         case SCTLR_S:
10728             return is_user ? 0 : PAGE_READ;
10729         case SCTLR_R:
10730             return PAGE_READ;
10731         default:
10732             return 0;
10733         }
10734     case 1:
10735         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10736     case 2:
10737         if (is_user) {
10738             return PAGE_READ;
10739         } else {
10740             return PAGE_READ | PAGE_WRITE;
10741         }
10742     case 3:
10743         return PAGE_READ | PAGE_WRITE;
10744     case 4: /* Reserved.  */
10745         return 0;
10746     case 5:
10747         return is_user ? 0 : PAGE_READ;
10748     case 6:
10749         return PAGE_READ;
10750     case 7:
10751         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10752             return 0;
10753         }
10754         return PAGE_READ;
10755     default:
10756         g_assert_not_reached();
10757     }
10758 }
10759 
10760 /* Translate section/page access permissions to page
10761  * R/W protection flags.
10762  *
10763  * @ap:      The 2-bit simple AP (AP[2:1])
10764  * @is_user: TRUE if accessing from PL0
10765  */
10766 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10767 {
10768     switch (ap) {
10769     case 0:
10770         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10771     case 1:
10772         return PAGE_READ | PAGE_WRITE;
10773     case 2:
10774         return is_user ? 0 : PAGE_READ;
10775     case 3:
10776         return PAGE_READ;
10777     default:
10778         g_assert_not_reached();
10779     }
10780 }
10781 
10782 static inline int
10783 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10784 {
10785     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10786 }
10787 
10788 /* Translate S2 section/page access permissions to protection flags
10789  *
10790  * @env:     CPUARMState
10791  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10792  * @xn:      XN (execute-never) bit
10793  */
10794 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
10795 {
10796     int prot = 0;
10797 
10798     if (s2ap & 1) {
10799         prot |= PAGE_READ;
10800     }
10801     if (s2ap & 2) {
10802         prot |= PAGE_WRITE;
10803     }
10804     if (!xn) {
10805         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10806             prot |= PAGE_EXEC;
10807         }
10808     }
10809     return prot;
10810 }
10811 
10812 /* Translate section/page access permissions to protection flags
10813  *
10814  * @env:     CPUARMState
10815  * @mmu_idx: MMU index indicating required translation regime
10816  * @is_aa64: TRUE if AArch64
10817  * @ap:      The 2-bit simple AP (AP[2:1])
10818  * @ns:      NS (non-secure) bit
10819  * @xn:      XN (execute-never) bit
10820  * @pxn:     PXN (privileged execute-never) bit
10821  */
10822 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10823                       int ap, int ns, int xn, int pxn)
10824 {
10825     bool is_user = regime_is_user(env, mmu_idx);
10826     int prot_rw, user_rw;
10827     bool have_wxn;
10828     int wxn = 0;
10829 
10830     assert(mmu_idx != ARMMMUIdx_S2NS);
10831 
10832     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10833     if (is_user) {
10834         prot_rw = user_rw;
10835     } else {
10836         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10837     }
10838 
10839     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10840         return prot_rw;
10841     }
10842 
10843     /* TODO have_wxn should be replaced with
10844      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10845      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10846      * compatible processors have EL2, which is required for [U]WXN.
10847      */
10848     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10849 
10850     if (have_wxn) {
10851         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10852     }
10853 
10854     if (is_aa64) {
10855         switch (regime_el(env, mmu_idx)) {
10856         case 1:
10857             if (!is_user) {
10858                 xn = pxn || (user_rw & PAGE_WRITE);
10859             }
10860             break;
10861         case 2:
10862         case 3:
10863             break;
10864         }
10865     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10866         switch (regime_el(env, mmu_idx)) {
10867         case 1:
10868         case 3:
10869             if (is_user) {
10870                 xn = xn || !(user_rw & PAGE_READ);
10871             } else {
10872                 int uwxn = 0;
10873                 if (have_wxn) {
10874                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10875                 }
10876                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10877                      (uwxn && (user_rw & PAGE_WRITE));
10878             }
10879             break;
10880         case 2:
10881             break;
10882         }
10883     } else {
10884         xn = wxn = 0;
10885     }
10886 
10887     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10888         return prot_rw;
10889     }
10890     return prot_rw | PAGE_EXEC;
10891 }
10892 
10893 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10894                                      uint32_t *table, uint32_t address)
10895 {
10896     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10897     TCR *tcr = regime_tcr(env, mmu_idx);
10898 
10899     if (address & tcr->mask) {
10900         if (tcr->raw_tcr & TTBCR_PD1) {
10901             /* Translation table walk disabled for TTBR1 */
10902             return false;
10903         }
10904         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10905     } else {
10906         if (tcr->raw_tcr & TTBCR_PD0) {
10907             /* Translation table walk disabled for TTBR0 */
10908             return false;
10909         }
10910         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10911     }
10912     *table |= (address >> 18) & 0x3ffc;
10913     return true;
10914 }
10915 
10916 /* Translate a S1 pagetable walk through S2 if needed.  */
10917 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10918                                hwaddr addr, MemTxAttrs txattrs,
10919                                ARMMMUFaultInfo *fi)
10920 {
10921     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10922         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10923         target_ulong s2size;
10924         hwaddr s2pa;
10925         int s2prot;
10926         int ret;
10927         ARMCacheAttrs cacheattrs = {};
10928         ARMCacheAttrs *pcacheattrs = NULL;
10929 
10930         if (env->cp15.hcr_el2 & HCR_PTW) {
10931             /*
10932              * PTW means we must fault if this S1 walk touches S2 Device
10933              * memory; otherwise we don't care about the attributes and can
10934              * save the S2 translation the effort of computing them.
10935              */
10936             pcacheattrs = &cacheattrs;
10937         }
10938 
10939         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10940                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10941         if (ret) {
10942             assert(fi->type != ARMFault_None);
10943             fi->s2addr = addr;
10944             fi->stage2 = true;
10945             fi->s1ptw = true;
10946             return ~0;
10947         }
10948         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10949             /* Access was to Device memory: generate Permission fault */
10950             fi->type = ARMFault_Permission;
10951             fi->s2addr = addr;
10952             fi->stage2 = true;
10953             fi->s1ptw = true;
10954             return ~0;
10955         }
10956         addr = s2pa;
10957     }
10958     return addr;
10959 }
10960 
10961 /* All loads done in the course of a page table walk go through here. */
10962 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10963                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10964 {
10965     ARMCPU *cpu = ARM_CPU(cs);
10966     CPUARMState *env = &cpu->env;
10967     MemTxAttrs attrs = {};
10968     MemTxResult result = MEMTX_OK;
10969     AddressSpace *as;
10970     uint32_t data;
10971 
10972     attrs.secure = is_secure;
10973     as = arm_addressspace(cs, attrs);
10974     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10975     if (fi->s1ptw) {
10976         return 0;
10977     }
10978     if (regime_translation_big_endian(env, mmu_idx)) {
10979         data = address_space_ldl_be(as, addr, attrs, &result);
10980     } else {
10981         data = address_space_ldl_le(as, addr, attrs, &result);
10982     }
10983     if (result == MEMTX_OK) {
10984         return data;
10985     }
10986     fi->type = ARMFault_SyncExternalOnWalk;
10987     fi->ea = arm_extabort_type(result);
10988     return 0;
10989 }
10990 
10991 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10992                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10993 {
10994     ARMCPU *cpu = ARM_CPU(cs);
10995     CPUARMState *env = &cpu->env;
10996     MemTxAttrs attrs = {};
10997     MemTxResult result = MEMTX_OK;
10998     AddressSpace *as;
10999     uint64_t data;
11000 
11001     attrs.secure = is_secure;
11002     as = arm_addressspace(cs, attrs);
11003     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
11004     if (fi->s1ptw) {
11005         return 0;
11006     }
11007     if (regime_translation_big_endian(env, mmu_idx)) {
11008         data = address_space_ldq_be(as, addr, attrs, &result);
11009     } else {
11010         data = address_space_ldq_le(as, addr, attrs, &result);
11011     }
11012     if (result == MEMTX_OK) {
11013         return data;
11014     }
11015     fi->type = ARMFault_SyncExternalOnWalk;
11016     fi->ea = arm_extabort_type(result);
11017     return 0;
11018 }
11019 
11020 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
11021                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11022                              hwaddr *phys_ptr, int *prot,
11023                              target_ulong *page_size,
11024                              ARMMMUFaultInfo *fi)
11025 {
11026     CPUState *cs = env_cpu(env);
11027     int level = 1;
11028     uint32_t table;
11029     uint32_t desc;
11030     int type;
11031     int ap;
11032     int domain = 0;
11033     int domain_prot;
11034     hwaddr phys_addr;
11035     uint32_t dacr;
11036 
11037     /* Pagetable walk.  */
11038     /* Lookup l1 descriptor.  */
11039     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11040         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11041         fi->type = ARMFault_Translation;
11042         goto do_fault;
11043     }
11044     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11045                        mmu_idx, fi);
11046     if (fi->type != ARMFault_None) {
11047         goto do_fault;
11048     }
11049     type = (desc & 3);
11050     domain = (desc >> 5) & 0x0f;
11051     if (regime_el(env, mmu_idx) == 1) {
11052         dacr = env->cp15.dacr_ns;
11053     } else {
11054         dacr = env->cp15.dacr_s;
11055     }
11056     domain_prot = (dacr >> (domain * 2)) & 3;
11057     if (type == 0) {
11058         /* Section translation fault.  */
11059         fi->type = ARMFault_Translation;
11060         goto do_fault;
11061     }
11062     if (type != 2) {
11063         level = 2;
11064     }
11065     if (domain_prot == 0 || domain_prot == 2) {
11066         fi->type = ARMFault_Domain;
11067         goto do_fault;
11068     }
11069     if (type == 2) {
11070         /* 1Mb section.  */
11071         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11072         ap = (desc >> 10) & 3;
11073         *page_size = 1024 * 1024;
11074     } else {
11075         /* Lookup l2 entry.  */
11076         if (type == 1) {
11077             /* Coarse pagetable.  */
11078             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11079         } else {
11080             /* Fine pagetable.  */
11081             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11082         }
11083         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11084                            mmu_idx, fi);
11085         if (fi->type != ARMFault_None) {
11086             goto do_fault;
11087         }
11088         switch (desc & 3) {
11089         case 0: /* Page translation fault.  */
11090             fi->type = ARMFault_Translation;
11091             goto do_fault;
11092         case 1: /* 64k page.  */
11093             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11094             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11095             *page_size = 0x10000;
11096             break;
11097         case 2: /* 4k page.  */
11098             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11099             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11100             *page_size = 0x1000;
11101             break;
11102         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11103             if (type == 1) {
11104                 /* ARMv6/XScale extended small page format */
11105                 if (arm_feature(env, ARM_FEATURE_XSCALE)
11106                     || arm_feature(env, ARM_FEATURE_V6)) {
11107                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11108                     *page_size = 0x1000;
11109                 } else {
11110                     /* UNPREDICTABLE in ARMv5; we choose to take a
11111                      * page translation fault.
11112                      */
11113                     fi->type = ARMFault_Translation;
11114                     goto do_fault;
11115                 }
11116             } else {
11117                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11118                 *page_size = 0x400;
11119             }
11120             ap = (desc >> 4) & 3;
11121             break;
11122         default:
11123             /* Never happens, but compiler isn't smart enough to tell.  */
11124             abort();
11125         }
11126     }
11127     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11128     *prot |= *prot ? PAGE_EXEC : 0;
11129     if (!(*prot & (1 << access_type))) {
11130         /* Access permission fault.  */
11131         fi->type = ARMFault_Permission;
11132         goto do_fault;
11133     }
11134     *phys_ptr = phys_addr;
11135     return false;
11136 do_fault:
11137     fi->domain = domain;
11138     fi->level = level;
11139     return true;
11140 }
11141 
11142 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11143                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11144                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11145                              target_ulong *page_size, ARMMMUFaultInfo *fi)
11146 {
11147     CPUState *cs = env_cpu(env);
11148     int level = 1;
11149     uint32_t table;
11150     uint32_t desc;
11151     uint32_t xn;
11152     uint32_t pxn = 0;
11153     int type;
11154     int ap;
11155     int domain = 0;
11156     int domain_prot;
11157     hwaddr phys_addr;
11158     uint32_t dacr;
11159     bool ns;
11160 
11161     /* Pagetable walk.  */
11162     /* Lookup l1 descriptor.  */
11163     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11164         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11165         fi->type = ARMFault_Translation;
11166         goto do_fault;
11167     }
11168     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11169                        mmu_idx, fi);
11170     if (fi->type != ARMFault_None) {
11171         goto do_fault;
11172     }
11173     type = (desc & 3);
11174     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
11175         /* Section translation fault, or attempt to use the encoding
11176          * which is Reserved on implementations without PXN.
11177          */
11178         fi->type = ARMFault_Translation;
11179         goto do_fault;
11180     }
11181     if ((type == 1) || !(desc & (1 << 18))) {
11182         /* Page or Section.  */
11183         domain = (desc >> 5) & 0x0f;
11184     }
11185     if (regime_el(env, mmu_idx) == 1) {
11186         dacr = env->cp15.dacr_ns;
11187     } else {
11188         dacr = env->cp15.dacr_s;
11189     }
11190     if (type == 1) {
11191         level = 2;
11192     }
11193     domain_prot = (dacr >> (domain * 2)) & 3;
11194     if (domain_prot == 0 || domain_prot == 2) {
11195         /* Section or Page domain fault */
11196         fi->type = ARMFault_Domain;
11197         goto do_fault;
11198     }
11199     if (type != 1) {
11200         if (desc & (1 << 18)) {
11201             /* Supersection.  */
11202             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11203             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11204             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11205             *page_size = 0x1000000;
11206         } else {
11207             /* Section.  */
11208             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11209             *page_size = 0x100000;
11210         }
11211         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11212         xn = desc & (1 << 4);
11213         pxn = desc & 1;
11214         ns = extract32(desc, 19, 1);
11215     } else {
11216         if (arm_feature(env, ARM_FEATURE_PXN)) {
11217             pxn = (desc >> 2) & 1;
11218         }
11219         ns = extract32(desc, 3, 1);
11220         /* Lookup l2 entry.  */
11221         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11222         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11223                            mmu_idx, fi);
11224         if (fi->type != ARMFault_None) {
11225             goto do_fault;
11226         }
11227         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11228         switch (desc & 3) {
11229         case 0: /* Page translation fault.  */
11230             fi->type = ARMFault_Translation;
11231             goto do_fault;
11232         case 1: /* 64k page.  */
11233             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11234             xn = desc & (1 << 15);
11235             *page_size = 0x10000;
11236             break;
11237         case 2: case 3: /* 4k page.  */
11238             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11239             xn = desc & 1;
11240             *page_size = 0x1000;
11241             break;
11242         default:
11243             /* Never happens, but compiler isn't smart enough to tell.  */
11244             abort();
11245         }
11246     }
11247     if (domain_prot == 3) {
11248         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11249     } else {
11250         if (pxn && !regime_is_user(env, mmu_idx)) {
11251             xn = 1;
11252         }
11253         if (xn && access_type == MMU_INST_FETCH) {
11254             fi->type = ARMFault_Permission;
11255             goto do_fault;
11256         }
11257 
11258         if (arm_feature(env, ARM_FEATURE_V6K) &&
11259                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11260             /* The simplified model uses AP[0] as an access control bit.  */
11261             if ((ap & 1) == 0) {
11262                 /* Access flag fault.  */
11263                 fi->type = ARMFault_AccessFlag;
11264                 goto do_fault;
11265             }
11266             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11267         } else {
11268             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11269         }
11270         if (*prot && !xn) {
11271             *prot |= PAGE_EXEC;
11272         }
11273         if (!(*prot & (1 << access_type))) {
11274             /* Access permission fault.  */
11275             fi->type = ARMFault_Permission;
11276             goto do_fault;
11277         }
11278     }
11279     if (ns) {
11280         /* The NS bit will (as required by the architecture) have no effect if
11281          * the CPU doesn't support TZ or this is a non-secure translation
11282          * regime, because the attribute will already be non-secure.
11283          */
11284         attrs->secure = false;
11285     }
11286     *phys_ptr = phys_addr;
11287     return false;
11288 do_fault:
11289     fi->domain = domain;
11290     fi->level = level;
11291     return true;
11292 }
11293 
11294 /*
11295  * check_s2_mmu_setup
11296  * @cpu:        ARMCPU
11297  * @is_aa64:    True if the translation regime is in AArch64 state
11298  * @startlevel: Suggested starting level
11299  * @inputsize:  Bitsize of IPAs
11300  * @stride:     Page-table stride (See the ARM ARM)
11301  *
11302  * Returns true if the suggested S2 translation parameters are OK and
11303  * false otherwise.
11304  */
11305 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11306                                int inputsize, int stride)
11307 {
11308     const int grainsize = stride + 3;
11309     int startsizecheck;
11310 
11311     /* Negative levels are never allowed.  */
11312     if (level < 0) {
11313         return false;
11314     }
11315 
11316     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11317     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11318         return false;
11319     }
11320 
11321     if (is_aa64) {
11322         CPUARMState *env = &cpu->env;
11323         unsigned int pamax = arm_pamax(cpu);
11324 
11325         switch (stride) {
11326         case 13: /* 64KB Pages.  */
11327             if (level == 0 || (level == 1 && pamax <= 42)) {
11328                 return false;
11329             }
11330             break;
11331         case 11: /* 16KB Pages.  */
11332             if (level == 0 || (level == 1 && pamax <= 40)) {
11333                 return false;
11334             }
11335             break;
11336         case 9: /* 4KB Pages.  */
11337             if (level == 0 && pamax <= 42) {
11338                 return false;
11339             }
11340             break;
11341         default:
11342             g_assert_not_reached();
11343         }
11344 
11345         /* Inputsize checks.  */
11346         if (inputsize > pamax &&
11347             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11348             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11349             return false;
11350         }
11351     } else {
11352         /* AArch32 only supports 4KB pages. Assert on that.  */
11353         assert(stride == 9);
11354 
11355         if (level == 0) {
11356             return false;
11357         }
11358     }
11359     return true;
11360 }
11361 
11362 /* Translate from the 4-bit stage 2 representation of
11363  * memory attributes (without cache-allocation hints) to
11364  * the 8-bit representation of the stage 1 MAIR registers
11365  * (which includes allocation hints).
11366  *
11367  * ref: shared/translation/attrs/S2AttrDecode()
11368  *      .../S2ConvertAttrsHints()
11369  */
11370 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11371 {
11372     uint8_t hiattr = extract32(s2attrs, 2, 2);
11373     uint8_t loattr = extract32(s2attrs, 0, 2);
11374     uint8_t hihint = 0, lohint = 0;
11375 
11376     if (hiattr != 0) { /* normal memory */
11377         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
11378             hiattr = loattr = 1; /* non-cacheable */
11379         } else {
11380             if (hiattr != 1) { /* Write-through or write-back */
11381                 hihint = 3; /* RW allocate */
11382             }
11383             if (loattr != 1) { /* Write-through or write-back */
11384                 lohint = 3; /* RW allocate */
11385             }
11386         }
11387     }
11388 
11389     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11390 }
11391 #endif /* !CONFIG_USER_ONLY */
11392 
11393 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
11394                                         ARMMMUIdx mmu_idx)
11395 {
11396     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11397     uint32_t el = regime_el(env, mmu_idx);
11398     bool tbi, tbid, epd, hpd, using16k, using64k;
11399     int select, tsz;
11400 
11401     /*
11402      * Bit 55 is always between the two regions, and is canonical for
11403      * determining if address tagging is enabled.
11404      */
11405     select = extract64(va, 55, 1);
11406 
11407     if (el > 1) {
11408         tsz = extract32(tcr, 0, 6);
11409         using64k = extract32(tcr, 14, 1);
11410         using16k = extract32(tcr, 15, 1);
11411         if (mmu_idx == ARMMMUIdx_S2NS) {
11412             /* VTCR_EL2 */
11413             tbi = tbid = hpd = false;
11414         } else {
11415             tbi = extract32(tcr, 20, 1);
11416             hpd = extract32(tcr, 24, 1);
11417             tbid = extract32(tcr, 29, 1);
11418         }
11419         epd = false;
11420     } else if (!select) {
11421         tsz = extract32(tcr, 0, 6);
11422         epd = extract32(tcr, 7, 1);
11423         using64k = extract32(tcr, 14, 1);
11424         using16k = extract32(tcr, 15, 1);
11425         tbi = extract64(tcr, 37, 1);
11426         hpd = extract64(tcr, 41, 1);
11427         tbid = extract64(tcr, 51, 1);
11428     } else {
11429         int tg = extract32(tcr, 30, 2);
11430         using16k = tg == 1;
11431         using64k = tg == 3;
11432         tsz = extract32(tcr, 16, 6);
11433         epd = extract32(tcr, 23, 1);
11434         tbi = extract64(tcr, 38, 1);
11435         hpd = extract64(tcr, 42, 1);
11436         tbid = extract64(tcr, 52, 1);
11437     }
11438     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
11439     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11440 
11441     return (ARMVAParameters) {
11442         .tsz = tsz,
11443         .select = select,
11444         .tbi = tbi,
11445         .tbid = tbid,
11446         .epd = epd,
11447         .hpd = hpd,
11448         .using16k = using16k,
11449         .using64k = using64k,
11450     };
11451 }
11452 
11453 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11454                                    ARMMMUIdx mmu_idx, bool data)
11455 {
11456     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
11457 
11458     /* Present TBI as a composite with TBID.  */
11459     ret.tbi &= (data || !ret.tbid);
11460     return ret;
11461 }
11462 
11463 #ifndef CONFIG_USER_ONLY
11464 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11465                                           ARMMMUIdx mmu_idx)
11466 {
11467     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11468     uint32_t el = regime_el(env, mmu_idx);
11469     int select, tsz;
11470     bool epd, hpd;
11471 
11472     if (mmu_idx == ARMMMUIdx_S2NS) {
11473         /* VTCR */
11474         bool sext = extract32(tcr, 4, 1);
11475         bool sign = extract32(tcr, 3, 1);
11476 
11477         /*
11478          * If the sign-extend bit is not the same as t0sz[3], the result
11479          * is unpredictable. Flag this as a guest error.
11480          */
11481         if (sign != sext) {
11482             qemu_log_mask(LOG_GUEST_ERROR,
11483                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11484         }
11485         tsz = sextract32(tcr, 0, 4) + 8;
11486         select = 0;
11487         hpd = false;
11488         epd = false;
11489     } else if (el == 2) {
11490         /* HTCR */
11491         tsz = extract32(tcr, 0, 3);
11492         select = 0;
11493         hpd = extract64(tcr, 24, 1);
11494         epd = false;
11495     } else {
11496         int t0sz = extract32(tcr, 0, 3);
11497         int t1sz = extract32(tcr, 16, 3);
11498 
11499         if (t1sz == 0) {
11500             select = va > (0xffffffffu >> t0sz);
11501         } else {
11502             /* Note that we will detect errors later.  */
11503             select = va >= ~(0xffffffffu >> t1sz);
11504         }
11505         if (!select) {
11506             tsz = t0sz;
11507             epd = extract32(tcr, 7, 1);
11508             hpd = extract64(tcr, 41, 1);
11509         } else {
11510             tsz = t1sz;
11511             epd = extract32(tcr, 23, 1);
11512             hpd = extract64(tcr, 42, 1);
11513         }
11514         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11515         hpd &= extract32(tcr, 6, 1);
11516     }
11517 
11518     return (ARMVAParameters) {
11519         .tsz = tsz,
11520         .select = select,
11521         .epd = epd,
11522         .hpd = hpd,
11523     };
11524 }
11525 
11526 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
11527                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11528                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11529                                target_ulong *page_size_ptr,
11530                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11531 {
11532     ARMCPU *cpu = env_archcpu(env);
11533     CPUState *cs = CPU(cpu);
11534     /* Read an LPAE long-descriptor translation table. */
11535     ARMFaultType fault_type = ARMFault_Translation;
11536     uint32_t level;
11537     ARMVAParameters param;
11538     uint64_t ttbr;
11539     hwaddr descaddr, indexmask, indexmask_grainsize;
11540     uint32_t tableattrs;
11541     target_ulong page_size;
11542     uint32_t attrs;
11543     int32_t stride;
11544     int addrsize, inputsize;
11545     TCR *tcr = regime_tcr(env, mmu_idx);
11546     int ap, ns, xn, pxn;
11547     uint32_t el = regime_el(env, mmu_idx);
11548     bool ttbr1_valid;
11549     uint64_t descaddrmask;
11550     bool aarch64 = arm_el_is_aa64(env, el);
11551     bool guarded = false;
11552 
11553     /* TODO:
11554      * This code does not handle the different format TCR for VTCR_EL2.
11555      * This code also does not support shareability levels.
11556      * Attribute and permission bit handling should also be checked when adding
11557      * support for those page table walks.
11558      */
11559     if (aarch64) {
11560         param = aa64_va_parameters(env, address, mmu_idx,
11561                                    access_type != MMU_INST_FETCH);
11562         level = 0;
11563         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
11564          * invalid.
11565          */
11566         ttbr1_valid = (el < 2);
11567         addrsize = 64 - 8 * param.tbi;
11568         inputsize = 64 - param.tsz;
11569     } else {
11570         param = aa32_va_parameters(env, address, mmu_idx);
11571         level = 1;
11572         /* There is no TTBR1 for EL2 */
11573         ttbr1_valid = (el != 2);
11574         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
11575         inputsize = addrsize - param.tsz;
11576     }
11577 
11578     /*
11579      * We determined the region when collecting the parameters, but we
11580      * have not yet validated that the address is valid for the region.
11581      * Extract the top bits and verify that they all match select.
11582      *
11583      * For aa32, if inputsize == addrsize, then we have selected the
11584      * region by exclusion in aa32_va_parameters and there is no more
11585      * validation to do here.
11586      */
11587     if (inputsize < addrsize) {
11588         target_ulong top_bits = sextract64(address, inputsize,
11589                                            addrsize - inputsize);
11590         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
11591             /* The gap between the two regions is a Translation fault */
11592             fault_type = ARMFault_Translation;
11593             goto do_fault;
11594         }
11595     }
11596 
11597     if (param.using64k) {
11598         stride = 13;
11599     } else if (param.using16k) {
11600         stride = 11;
11601     } else {
11602         stride = 9;
11603     }
11604 
11605     /* Note that QEMU ignores shareability and cacheability attributes,
11606      * so we don't need to do anything with the SH, ORGN, IRGN fields
11607      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11608      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11609      * implement any ASID-like capability so we can ignore it (instead
11610      * we will always flush the TLB any time the ASID is changed).
11611      */
11612     ttbr = regime_ttbr(env, mmu_idx, param.select);
11613 
11614     /* Here we should have set up all the parameters for the translation:
11615      * inputsize, ttbr, epd, stride, tbi
11616      */
11617 
11618     if (param.epd) {
11619         /* Translation table walk disabled => Translation fault on TLB miss
11620          * Note: This is always 0 on 64-bit EL2 and EL3.
11621          */
11622         goto do_fault;
11623     }
11624 
11625     if (mmu_idx != ARMMMUIdx_S2NS) {
11626         /* The starting level depends on the virtual address size (which can
11627          * be up to 48 bits) and the translation granule size. It indicates
11628          * the number of strides (stride bits at a time) needed to
11629          * consume the bits of the input address. In the pseudocode this is:
11630          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11631          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11632          * our 'stride + 3' and 'stride' is our 'stride'.
11633          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11634          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11635          * = 4 - (inputsize - 4) / stride;
11636          */
11637         level = 4 - (inputsize - 4) / stride;
11638     } else {
11639         /* For stage 2 translations the starting level is specified by the
11640          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11641          */
11642         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11643         uint32_t startlevel;
11644         bool ok;
11645 
11646         if (!aarch64 || stride == 9) {
11647             /* AArch32 or 4KB pages */
11648             startlevel = 2 - sl0;
11649         } else {
11650             /* 16KB or 64KB pages */
11651             startlevel = 3 - sl0;
11652         }
11653 
11654         /* Check that the starting level is valid. */
11655         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11656                                 inputsize, stride);
11657         if (!ok) {
11658             fault_type = ARMFault_Translation;
11659             goto do_fault;
11660         }
11661         level = startlevel;
11662     }
11663 
11664     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11665     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11666 
11667     /* Now we can extract the actual base address from the TTBR */
11668     descaddr = extract64(ttbr, 0, 48);
11669     descaddr &= ~indexmask;
11670 
11671     /* The address field in the descriptor goes up to bit 39 for ARMv7
11672      * but up to bit 47 for ARMv8, but we use the descaddrmask
11673      * up to bit 39 for AArch32, because we don't need other bits in that case
11674      * to construct next descriptor address (anyway they should be all zeroes).
11675      */
11676     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11677                    ~indexmask_grainsize;
11678 
11679     /* Secure accesses start with the page table in secure memory and
11680      * can be downgraded to non-secure at any step. Non-secure accesses
11681      * remain non-secure. We implement this by just ORing in the NSTable/NS
11682      * bits at each step.
11683      */
11684     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11685     for (;;) {
11686         uint64_t descriptor;
11687         bool nstable;
11688 
11689         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11690         descaddr &= ~7ULL;
11691         nstable = extract32(tableattrs, 4, 1);
11692         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11693         if (fi->type != ARMFault_None) {
11694             goto do_fault;
11695         }
11696 
11697         if (!(descriptor & 1) ||
11698             (!(descriptor & 2) && (level == 3))) {
11699             /* Invalid, or the Reserved level 3 encoding */
11700             goto do_fault;
11701         }
11702         descaddr = descriptor & descaddrmask;
11703 
11704         if ((descriptor & 2) && (level < 3)) {
11705             /* Table entry. The top five bits are attributes which may
11706              * propagate down through lower levels of the table (and
11707              * which are all arranged so that 0 means "no effect", so
11708              * we can gather them up by ORing in the bits at each level).
11709              */
11710             tableattrs |= extract64(descriptor, 59, 5);
11711             level++;
11712             indexmask = indexmask_grainsize;
11713             continue;
11714         }
11715         /* Block entry at level 1 or 2, or page entry at level 3.
11716          * These are basically the same thing, although the number
11717          * of bits we pull in from the vaddr varies.
11718          */
11719         page_size = (1ULL << ((stride * (4 - level)) + 3));
11720         descaddr |= (address & (page_size - 1));
11721         /* Extract attributes from the descriptor */
11722         attrs = extract64(descriptor, 2, 10)
11723             | (extract64(descriptor, 52, 12) << 10);
11724 
11725         if (mmu_idx == ARMMMUIdx_S2NS) {
11726             /* Stage 2 table descriptors do not include any attribute fields */
11727             break;
11728         }
11729         /* Merge in attributes from table descriptors */
11730         attrs |= nstable << 3; /* NS */
11731         guarded = extract64(descriptor, 50, 1);  /* GP */
11732         if (param.hpd) {
11733             /* HPD disables all the table attributes except NSTable.  */
11734             break;
11735         }
11736         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11737         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11738          * means "force PL1 access only", which means forcing AP[1] to 0.
11739          */
11740         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11741         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11742         break;
11743     }
11744     /* Here descaddr is the final physical address, and attributes
11745      * are all in attrs.
11746      */
11747     fault_type = ARMFault_AccessFlag;
11748     if ((attrs & (1 << 8)) == 0) {
11749         /* Access flag */
11750         goto do_fault;
11751     }
11752 
11753     ap = extract32(attrs, 4, 2);
11754     xn = extract32(attrs, 12, 1);
11755 
11756     if (mmu_idx == ARMMMUIdx_S2NS) {
11757         ns = true;
11758         *prot = get_S2prot(env, ap, xn);
11759     } else {
11760         ns = extract32(attrs, 3, 1);
11761         pxn = extract32(attrs, 11, 1);
11762         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11763     }
11764 
11765     fault_type = ARMFault_Permission;
11766     if (!(*prot & (1 << access_type))) {
11767         goto do_fault;
11768     }
11769 
11770     if (ns) {
11771         /* The NS bit will (as required by the architecture) have no effect if
11772          * the CPU doesn't support TZ or this is a non-secure translation
11773          * regime, because the attribute will already be non-secure.
11774          */
11775         txattrs->secure = false;
11776     }
11777     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11778     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11779         txattrs->target_tlb_bit0 = true;
11780     }
11781 
11782     if (cacheattrs != NULL) {
11783         if (mmu_idx == ARMMMUIdx_S2NS) {
11784             cacheattrs->attrs = convert_stage2_attrs(env,
11785                                                      extract32(attrs, 0, 4));
11786         } else {
11787             /* Index into MAIR registers for cache attributes */
11788             uint8_t attrindx = extract32(attrs, 0, 3);
11789             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11790             assert(attrindx <= 7);
11791             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11792         }
11793         cacheattrs->shareability = extract32(attrs, 6, 2);
11794     }
11795 
11796     *phys_ptr = descaddr;
11797     *page_size_ptr = page_size;
11798     return false;
11799 
11800 do_fault:
11801     fi->type = fault_type;
11802     fi->level = level;
11803     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11804     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
11805     return true;
11806 }
11807 
11808 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11809                                                 ARMMMUIdx mmu_idx,
11810                                                 int32_t address, int *prot)
11811 {
11812     if (!arm_feature(env, ARM_FEATURE_M)) {
11813         *prot = PAGE_READ | PAGE_WRITE;
11814         switch (address) {
11815         case 0xF0000000 ... 0xFFFFFFFF:
11816             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11817                 /* hivecs execing is ok */
11818                 *prot |= PAGE_EXEC;
11819             }
11820             break;
11821         case 0x00000000 ... 0x7FFFFFFF:
11822             *prot |= PAGE_EXEC;
11823             break;
11824         }
11825     } else {
11826         /* Default system address map for M profile cores.
11827          * The architecture specifies which regions are execute-never;
11828          * at the MPU level no other checks are defined.
11829          */
11830         switch (address) {
11831         case 0x00000000 ... 0x1fffffff: /* ROM */
11832         case 0x20000000 ... 0x3fffffff: /* SRAM */
11833         case 0x60000000 ... 0x7fffffff: /* RAM */
11834         case 0x80000000 ... 0x9fffffff: /* RAM */
11835             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11836             break;
11837         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11838         case 0xa0000000 ... 0xbfffffff: /* Device */
11839         case 0xc0000000 ... 0xdfffffff: /* Device */
11840         case 0xe0000000 ... 0xffffffff: /* System */
11841             *prot = PAGE_READ | PAGE_WRITE;
11842             break;
11843         default:
11844             g_assert_not_reached();
11845         }
11846     }
11847 }
11848 
11849 static bool pmsav7_use_background_region(ARMCPU *cpu,
11850                                          ARMMMUIdx mmu_idx, bool is_user)
11851 {
11852     /* Return true if we should use the default memory map as a
11853      * "background" region if there are no hits against any MPU regions.
11854      */
11855     CPUARMState *env = &cpu->env;
11856 
11857     if (is_user) {
11858         return false;
11859     }
11860 
11861     if (arm_feature(env, ARM_FEATURE_M)) {
11862         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11863             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11864     } else {
11865         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11866     }
11867 }
11868 
11869 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11870 {
11871     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11872     return arm_feature(env, ARM_FEATURE_M) &&
11873         extract32(address, 20, 12) == 0xe00;
11874 }
11875 
11876 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11877 {
11878     /* True if address is in the M profile system region
11879      * 0xe0000000 - 0xffffffff
11880      */
11881     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11882 }
11883 
11884 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11885                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11886                                  hwaddr *phys_ptr, int *prot,
11887                                  target_ulong *page_size,
11888                                  ARMMMUFaultInfo *fi)
11889 {
11890     ARMCPU *cpu = env_archcpu(env);
11891     int n;
11892     bool is_user = regime_is_user(env, mmu_idx);
11893 
11894     *phys_ptr = address;
11895     *page_size = TARGET_PAGE_SIZE;
11896     *prot = 0;
11897 
11898     if (regime_translation_disabled(env, mmu_idx) ||
11899         m_is_ppb_region(env, address)) {
11900         /* MPU disabled or M profile PPB access: use default memory map.
11901          * The other case which uses the default memory map in the
11902          * v7M ARM ARM pseudocode is exception vector reads from the vector
11903          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11904          * which always does a direct read using address_space_ldl(), rather
11905          * than going via this function, so we don't need to check that here.
11906          */
11907         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11908     } else { /* MPU enabled */
11909         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11910             /* region search */
11911             uint32_t base = env->pmsav7.drbar[n];
11912             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11913             uint32_t rmask;
11914             bool srdis = false;
11915 
11916             if (!(env->pmsav7.drsr[n] & 0x1)) {
11917                 continue;
11918             }
11919 
11920             if (!rsize) {
11921                 qemu_log_mask(LOG_GUEST_ERROR,
11922                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11923                 continue;
11924             }
11925             rsize++;
11926             rmask = (1ull << rsize) - 1;
11927 
11928             if (base & rmask) {
11929                 qemu_log_mask(LOG_GUEST_ERROR,
11930                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11931                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11932                               n, base, rmask);
11933                 continue;
11934             }
11935 
11936             if (address < base || address > base + rmask) {
11937                 /*
11938                  * Address not in this region. We must check whether the
11939                  * region covers addresses in the same page as our address.
11940                  * In that case we must not report a size that covers the
11941                  * whole page for a subsequent hit against a different MPU
11942                  * region or the background region, because it would result in
11943                  * incorrect TLB hits for subsequent accesses to addresses that
11944                  * are in this MPU region.
11945                  */
11946                 if (ranges_overlap(base, rmask,
11947                                    address & TARGET_PAGE_MASK,
11948                                    TARGET_PAGE_SIZE)) {
11949                     *page_size = 1;
11950                 }
11951                 continue;
11952             }
11953 
11954             /* Region matched */
11955 
11956             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11957                 int i, snd;
11958                 uint32_t srdis_mask;
11959 
11960                 rsize -= 3; /* sub region size (power of 2) */
11961                 snd = ((address - base) >> rsize) & 0x7;
11962                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11963 
11964                 srdis_mask = srdis ? 0x3 : 0x0;
11965                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11966                     /* This will check in groups of 2, 4 and then 8, whether
11967                      * the subregion bits are consistent. rsize is incremented
11968                      * back up to give the region size, considering consistent
11969                      * adjacent subregions as one region. Stop testing if rsize
11970                      * is already big enough for an entire QEMU page.
11971                      */
11972                     int snd_rounded = snd & ~(i - 1);
11973                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11974                                                      snd_rounded + 8, i);
11975                     if (srdis_mask ^ srdis_multi) {
11976                         break;
11977                     }
11978                     srdis_mask = (srdis_mask << i) | srdis_mask;
11979                     rsize++;
11980                 }
11981             }
11982             if (srdis) {
11983                 continue;
11984             }
11985             if (rsize < TARGET_PAGE_BITS) {
11986                 *page_size = 1 << rsize;
11987             }
11988             break;
11989         }
11990 
11991         if (n == -1) { /* no hits */
11992             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11993                 /* background fault */
11994                 fi->type = ARMFault_Background;
11995                 return true;
11996             }
11997             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11998         } else { /* a MPU hit! */
11999             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12000             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12001 
12002             if (m_is_system_region(env, address)) {
12003                 /* System space is always execute never */
12004                 xn = 1;
12005             }
12006 
12007             if (is_user) { /* User mode AP bit decoding */
12008                 switch (ap) {
12009                 case 0:
12010                 case 1:
12011                 case 5:
12012                     break; /* no access */
12013                 case 3:
12014                     *prot |= PAGE_WRITE;
12015                     /* fall through */
12016                 case 2:
12017                 case 6:
12018                     *prot |= PAGE_READ | PAGE_EXEC;
12019                     break;
12020                 case 7:
12021                     /* for v7M, same as 6; for R profile a reserved value */
12022                     if (arm_feature(env, ARM_FEATURE_M)) {
12023                         *prot |= PAGE_READ | PAGE_EXEC;
12024                         break;
12025                     }
12026                     /* fall through */
12027                 default:
12028                     qemu_log_mask(LOG_GUEST_ERROR,
12029                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12030                                   PRIx32 "\n", n, ap);
12031                 }
12032             } else { /* Priv. mode AP bits decoding */
12033                 switch (ap) {
12034                 case 0:
12035                     break; /* no access */
12036                 case 1:
12037                 case 2:
12038                 case 3:
12039                     *prot |= PAGE_WRITE;
12040                     /* fall through */
12041                 case 5:
12042                 case 6:
12043                     *prot |= PAGE_READ | PAGE_EXEC;
12044                     break;
12045                 case 7:
12046                     /* for v7M, same as 6; for R profile a reserved value */
12047                     if (arm_feature(env, ARM_FEATURE_M)) {
12048                         *prot |= PAGE_READ | PAGE_EXEC;
12049                         break;
12050                     }
12051                     /* fall through */
12052                 default:
12053                     qemu_log_mask(LOG_GUEST_ERROR,
12054                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12055                                   PRIx32 "\n", n, ap);
12056                 }
12057             }
12058 
12059             /* execute never */
12060             if (xn) {
12061                 *prot &= ~PAGE_EXEC;
12062             }
12063         }
12064     }
12065 
12066     fi->type = ARMFault_Permission;
12067     fi->level = 1;
12068     return !(*prot & (1 << access_type));
12069 }
12070 
12071 static bool v8m_is_sau_exempt(CPUARMState *env,
12072                               uint32_t address, MMUAccessType access_type)
12073 {
12074     /* The architecture specifies that certain address ranges are
12075      * exempt from v8M SAU/IDAU checks.
12076      */
12077     return
12078         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12079         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12080         (address >= 0xe000e000 && address <= 0xe000efff) ||
12081         (address >= 0xe002e000 && address <= 0xe002efff) ||
12082         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12083         (address >= 0xe00ff000 && address <= 0xe00fffff);
12084 }
12085 
12086 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12087                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12088                                 V8M_SAttributes *sattrs)
12089 {
12090     /* Look up the security attributes for this address. Compare the
12091      * pseudocode SecurityCheck() function.
12092      * We assume the caller has zero-initialized *sattrs.
12093      */
12094     ARMCPU *cpu = env_archcpu(env);
12095     int r;
12096     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12097     int idau_region = IREGION_NOTVALID;
12098     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12099     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12100 
12101     if (cpu->idau) {
12102         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12103         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12104 
12105         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12106                    &idau_nsc);
12107     }
12108 
12109     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12110         /* 0xf0000000..0xffffffff is always S for insn fetches */
12111         return;
12112     }
12113 
12114     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12115         sattrs->ns = !regime_is_secure(env, mmu_idx);
12116         return;
12117     }
12118 
12119     if (idau_region != IREGION_NOTVALID) {
12120         sattrs->irvalid = true;
12121         sattrs->iregion = idau_region;
12122     }
12123 
12124     switch (env->sau.ctrl & 3) {
12125     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12126         break;
12127     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12128         sattrs->ns = true;
12129         break;
12130     default: /* SAU.ENABLE == 1 */
12131         for (r = 0; r < cpu->sau_sregion; r++) {
12132             if (env->sau.rlar[r] & 1) {
12133                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12134                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12135 
12136                 if (base <= address && limit >= address) {
12137                     if (base > addr_page_base || limit < addr_page_limit) {
12138                         sattrs->subpage = true;
12139                     }
12140                     if (sattrs->srvalid) {
12141                         /* If we hit in more than one region then we must report
12142                          * as Secure, not NS-Callable, with no valid region
12143                          * number info.
12144                          */
12145                         sattrs->ns = false;
12146                         sattrs->nsc = false;
12147                         sattrs->sregion = 0;
12148                         sattrs->srvalid = false;
12149                         break;
12150                     } else {
12151                         if (env->sau.rlar[r] & 2) {
12152                             sattrs->nsc = true;
12153                         } else {
12154                             sattrs->ns = true;
12155                         }
12156                         sattrs->srvalid = true;
12157                         sattrs->sregion = r;
12158                     }
12159                 } else {
12160                     /*
12161                      * Address not in this region. We must check whether the
12162                      * region covers addresses in the same page as our address.
12163                      * In that case we must not report a size that covers the
12164                      * whole page for a subsequent hit against a different MPU
12165                      * region or the background region, because it would result
12166                      * in incorrect TLB hits for subsequent accesses to
12167                      * addresses that are in this MPU region.
12168                      */
12169                     if (limit >= base &&
12170                         ranges_overlap(base, limit - base + 1,
12171                                        addr_page_base,
12172                                        TARGET_PAGE_SIZE)) {
12173                         sattrs->subpage = true;
12174                     }
12175                 }
12176             }
12177         }
12178         break;
12179     }
12180 
12181     /*
12182      * The IDAU will override the SAU lookup results if it specifies
12183      * higher security than the SAU does.
12184      */
12185     if (!idau_ns) {
12186         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12187             sattrs->ns = false;
12188             sattrs->nsc = idau_nsc;
12189         }
12190     }
12191 }
12192 
12193 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12194                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12195                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12196                               int *prot, bool *is_subpage,
12197                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12198 {
12199     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12200      * that a full phys-to-virt translation does).
12201      * mregion is (if not NULL) set to the region number which matched,
12202      * or -1 if no region number is returned (MPU off, address did not
12203      * hit a region, address hit in multiple regions).
12204      * We set is_subpage to true if the region hit doesn't cover the
12205      * entire TARGET_PAGE the address is within.
12206      */
12207     ARMCPU *cpu = env_archcpu(env);
12208     bool is_user = regime_is_user(env, mmu_idx);
12209     uint32_t secure = regime_is_secure(env, mmu_idx);
12210     int n;
12211     int matchregion = -1;
12212     bool hit = false;
12213     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12214     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12215 
12216     *is_subpage = false;
12217     *phys_ptr = address;
12218     *prot = 0;
12219     if (mregion) {
12220         *mregion = -1;
12221     }
12222 
12223     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12224      * was an exception vector read from the vector table (which is always
12225      * done using the default system address map), because those accesses
12226      * are done in arm_v7m_load_vector(), which always does a direct
12227      * read using address_space_ldl(), rather than going via this function.
12228      */
12229     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12230         hit = true;
12231     } else if (m_is_ppb_region(env, address)) {
12232         hit = true;
12233     } else {
12234         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12235             hit = true;
12236         }
12237 
12238         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12239             /* region search */
12240             /* Note that the base address is bits [31:5] from the register
12241              * with bits [4:0] all zeroes, but the limit address is bits
12242              * [31:5] from the register with bits [4:0] all ones.
12243              */
12244             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12245             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12246 
12247             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12248                 /* Region disabled */
12249                 continue;
12250             }
12251 
12252             if (address < base || address > limit) {
12253                 /*
12254                  * Address not in this region. We must check whether the
12255                  * region covers addresses in the same page as our address.
12256                  * In that case we must not report a size that covers the
12257                  * whole page for a subsequent hit against a different MPU
12258                  * region or the background region, because it would result in
12259                  * incorrect TLB hits for subsequent accesses to addresses that
12260                  * are in this MPU region.
12261                  */
12262                 if (limit >= base &&
12263                     ranges_overlap(base, limit - base + 1,
12264                                    addr_page_base,
12265                                    TARGET_PAGE_SIZE)) {
12266                     *is_subpage = true;
12267                 }
12268                 continue;
12269             }
12270 
12271             if (base > addr_page_base || limit < addr_page_limit) {
12272                 *is_subpage = true;
12273             }
12274 
12275             if (matchregion != -1) {
12276                 /* Multiple regions match -- always a failure (unlike
12277                  * PMSAv7 where highest-numbered-region wins)
12278                  */
12279                 fi->type = ARMFault_Permission;
12280                 fi->level = 1;
12281                 return true;
12282             }
12283 
12284             matchregion = n;
12285             hit = true;
12286         }
12287     }
12288 
12289     if (!hit) {
12290         /* background fault */
12291         fi->type = ARMFault_Background;
12292         return true;
12293     }
12294 
12295     if (matchregion == -1) {
12296         /* hit using the background region */
12297         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12298     } else {
12299         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12300         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12301 
12302         if (m_is_system_region(env, address)) {
12303             /* System space is always execute never */
12304             xn = 1;
12305         }
12306 
12307         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12308         if (*prot && !xn) {
12309             *prot |= PAGE_EXEC;
12310         }
12311         /* We don't need to look the attribute up in the MAIR0/MAIR1
12312          * registers because that only tells us about cacheability.
12313          */
12314         if (mregion) {
12315             *mregion = matchregion;
12316         }
12317     }
12318 
12319     fi->type = ARMFault_Permission;
12320     fi->level = 1;
12321     return !(*prot & (1 << access_type));
12322 }
12323 
12324 
12325 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12326                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12327                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12328                                  int *prot, target_ulong *page_size,
12329                                  ARMMMUFaultInfo *fi)
12330 {
12331     uint32_t secure = regime_is_secure(env, mmu_idx);
12332     V8M_SAttributes sattrs = {};
12333     bool ret;
12334     bool mpu_is_subpage;
12335 
12336     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12337         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12338         if (access_type == MMU_INST_FETCH) {
12339             /* Instruction fetches always use the MMU bank and the
12340              * transaction attribute determined by the fetch address,
12341              * regardless of CPU state. This is painful for QEMU
12342              * to handle, because it would mean we need to encode
12343              * into the mmu_idx not just the (user, negpri) information
12344              * for the current security state but also that for the
12345              * other security state, which would balloon the number
12346              * of mmu_idx values needed alarmingly.
12347              * Fortunately we can avoid this because it's not actually
12348              * possible to arbitrarily execute code from memory with
12349              * the wrong security attribute: it will always generate
12350              * an exception of some kind or another, apart from the
12351              * special case of an NS CPU executing an SG instruction
12352              * in S&NSC memory. So we always just fail the translation
12353              * here and sort things out in the exception handler
12354              * (including possibly emulating an SG instruction).
12355              */
12356             if (sattrs.ns != !secure) {
12357                 if (sattrs.nsc) {
12358                     fi->type = ARMFault_QEMU_NSCExec;
12359                 } else {
12360                     fi->type = ARMFault_QEMU_SFault;
12361                 }
12362                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12363                 *phys_ptr = address;
12364                 *prot = 0;
12365                 return true;
12366             }
12367         } else {
12368             /* For data accesses we always use the MMU bank indicated
12369              * by the current CPU state, but the security attributes
12370              * might downgrade a secure access to nonsecure.
12371              */
12372             if (sattrs.ns) {
12373                 txattrs->secure = false;
12374             } else if (!secure) {
12375                 /* NS access to S memory must fault.
12376                  * Architecturally we should first check whether the
12377                  * MPU information for this address indicates that we
12378                  * are doing an unaligned access to Device memory, which
12379                  * should generate a UsageFault instead. QEMU does not
12380                  * currently check for that kind of unaligned access though.
12381                  * If we added it we would need to do so as a special case
12382                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12383                  */
12384                 fi->type = ARMFault_QEMU_SFault;
12385                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12386                 *phys_ptr = address;
12387                 *prot = 0;
12388                 return true;
12389             }
12390         }
12391     }
12392 
12393     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12394                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12395     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12396     return ret;
12397 }
12398 
12399 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12400                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12401                                  hwaddr *phys_ptr, int *prot,
12402                                  ARMMMUFaultInfo *fi)
12403 {
12404     int n;
12405     uint32_t mask;
12406     uint32_t base;
12407     bool is_user = regime_is_user(env, mmu_idx);
12408 
12409     if (regime_translation_disabled(env, mmu_idx)) {
12410         /* MPU disabled.  */
12411         *phys_ptr = address;
12412         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12413         return false;
12414     }
12415 
12416     *phys_ptr = address;
12417     for (n = 7; n >= 0; n--) {
12418         base = env->cp15.c6_region[n];
12419         if ((base & 1) == 0) {
12420             continue;
12421         }
12422         mask = 1 << ((base >> 1) & 0x1f);
12423         /* Keep this shift separate from the above to avoid an
12424            (undefined) << 32.  */
12425         mask = (mask << 1) - 1;
12426         if (((base ^ address) & ~mask) == 0) {
12427             break;
12428         }
12429     }
12430     if (n < 0) {
12431         fi->type = ARMFault_Background;
12432         return true;
12433     }
12434 
12435     if (access_type == MMU_INST_FETCH) {
12436         mask = env->cp15.pmsav5_insn_ap;
12437     } else {
12438         mask = env->cp15.pmsav5_data_ap;
12439     }
12440     mask = (mask >> (n * 4)) & 0xf;
12441     switch (mask) {
12442     case 0:
12443         fi->type = ARMFault_Permission;
12444         fi->level = 1;
12445         return true;
12446     case 1:
12447         if (is_user) {
12448             fi->type = ARMFault_Permission;
12449             fi->level = 1;
12450             return true;
12451         }
12452         *prot = PAGE_READ | PAGE_WRITE;
12453         break;
12454     case 2:
12455         *prot = PAGE_READ;
12456         if (!is_user) {
12457             *prot |= PAGE_WRITE;
12458         }
12459         break;
12460     case 3:
12461         *prot = PAGE_READ | PAGE_WRITE;
12462         break;
12463     case 5:
12464         if (is_user) {
12465             fi->type = ARMFault_Permission;
12466             fi->level = 1;
12467             return true;
12468         }
12469         *prot = PAGE_READ;
12470         break;
12471     case 6:
12472         *prot = PAGE_READ;
12473         break;
12474     default:
12475         /* Bad permission.  */
12476         fi->type = ARMFault_Permission;
12477         fi->level = 1;
12478         return true;
12479     }
12480     *prot |= PAGE_EXEC;
12481     return false;
12482 }
12483 
12484 /* Combine either inner or outer cacheability attributes for normal
12485  * memory, according to table D4-42 and pseudocode procedure
12486  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12487  *
12488  * NB: only stage 1 includes allocation hints (RW bits), leading to
12489  * some asymmetry.
12490  */
12491 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12492 {
12493     if (s1 == 4 || s2 == 4) {
12494         /* non-cacheable has precedence */
12495         return 4;
12496     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12497         /* stage 1 write-through takes precedence */
12498         return s1;
12499     } else if (extract32(s2, 2, 2) == 2) {
12500         /* stage 2 write-through takes precedence, but the allocation hint
12501          * is still taken from stage 1
12502          */
12503         return (2 << 2) | extract32(s1, 0, 2);
12504     } else { /* write-back */
12505         return s1;
12506     }
12507 }
12508 
12509 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12510  * and CombineS1S2Desc()
12511  *
12512  * @s1:      Attributes from stage 1 walk
12513  * @s2:      Attributes from stage 2 walk
12514  */
12515 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12516 {
12517     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
12518     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
12519     ARMCacheAttrs ret;
12520 
12521     /* Combine shareability attributes (table D4-43) */
12522     if (s1.shareability == 2 || s2.shareability == 2) {
12523         /* if either are outer-shareable, the result is outer-shareable */
12524         ret.shareability = 2;
12525     } else if (s1.shareability == 3 || s2.shareability == 3) {
12526         /* if either are inner-shareable, the result is inner-shareable */
12527         ret.shareability = 3;
12528     } else {
12529         /* both non-shareable */
12530         ret.shareability = 0;
12531     }
12532 
12533     /* Combine memory type and cacheability attributes */
12534     if (s1hi == 0 || s2hi == 0) {
12535         /* Device has precedence over normal */
12536         if (s1lo == 0 || s2lo == 0) {
12537             /* nGnRnE has precedence over anything */
12538             ret.attrs = 0;
12539         } else if (s1lo == 4 || s2lo == 4) {
12540             /* non-Reordering has precedence over Reordering */
12541             ret.attrs = 4;  /* nGnRE */
12542         } else if (s1lo == 8 || s2lo == 8) {
12543             /* non-Gathering has precedence over Gathering */
12544             ret.attrs = 8;  /* nGRE */
12545         } else {
12546             ret.attrs = 0xc; /* GRE */
12547         }
12548 
12549         /* Any location for which the resultant memory type is any
12550          * type of Device memory is always treated as Outer Shareable.
12551          */
12552         ret.shareability = 2;
12553     } else { /* Normal memory */
12554         /* Outer/inner cacheability combine independently */
12555         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12556                   | combine_cacheattr_nibble(s1lo, s2lo);
12557 
12558         if (ret.attrs == 0x44) {
12559             /* Any location for which the resultant memory type is Normal
12560              * Inner Non-cacheable, Outer Non-cacheable is always treated
12561              * as Outer Shareable.
12562              */
12563             ret.shareability = 2;
12564         }
12565     }
12566 
12567     return ret;
12568 }
12569 
12570 
12571 /* get_phys_addr - get the physical address for this virtual address
12572  *
12573  * Find the physical address corresponding to the given virtual address,
12574  * by doing a translation table walk on MMU based systems or using the
12575  * MPU state on MPU based systems.
12576  *
12577  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12578  * prot and page_size may not be filled in, and the populated fsr value provides
12579  * information on why the translation aborted, in the format of a
12580  * DFSR/IFSR fault register, with the following caveats:
12581  *  * we honour the short vs long DFSR format differences.
12582  *  * the WnR bit is never set (the caller must do this).
12583  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12584  *    value.
12585  *
12586  * @env: CPUARMState
12587  * @address: virtual address to get physical address for
12588  * @access_type: 0 for read, 1 for write, 2 for execute
12589  * @mmu_idx: MMU index indicating required translation regime
12590  * @phys_ptr: set to the physical address corresponding to the virtual address
12591  * @attrs: set to the memory transaction attributes to use
12592  * @prot: set to the permissions for the page containing phys_ptr
12593  * @page_size: set to the size of the page containing phys_ptr
12594  * @fi: set to fault info if the translation fails
12595  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12596  */
12597 bool get_phys_addr(CPUARMState *env, target_ulong address,
12598                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12599                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12600                    target_ulong *page_size,
12601                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12602 {
12603     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
12604         /* Call ourselves recursively to do the stage 1 and then stage 2
12605          * translations.
12606          */
12607         if (arm_feature(env, ARM_FEATURE_EL2)) {
12608             hwaddr ipa;
12609             int s2_prot;
12610             int ret;
12611             ARMCacheAttrs cacheattrs2 = {};
12612 
12613             ret = get_phys_addr(env, address, access_type,
12614                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12615                                 prot, page_size, fi, cacheattrs);
12616 
12617             /* If S1 fails or S2 is disabled, return early.  */
12618             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
12619                 *phys_ptr = ipa;
12620                 return ret;
12621             }
12622 
12623             /* S1 is done. Now do S2 translation.  */
12624             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
12625                                      phys_ptr, attrs, &s2_prot,
12626                                      page_size, fi,
12627                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
12628             fi->s2addr = ipa;
12629             /* Combine the S1 and S2 perms.  */
12630             *prot &= s2_prot;
12631 
12632             /* Combine the S1 and S2 cache attributes, if needed */
12633             if (!ret && cacheattrs != NULL) {
12634                 if (env->cp15.hcr_el2 & HCR_DC) {
12635                     /*
12636                      * HCR.DC forces the first stage attributes to
12637                      *  Normal Non-Shareable,
12638                      *  Inner Write-Back Read-Allocate Write-Allocate,
12639                      *  Outer Write-Back Read-Allocate Write-Allocate.
12640                      */
12641                     cacheattrs->attrs = 0xff;
12642                     cacheattrs->shareability = 0;
12643                 }
12644                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12645             }
12646 
12647             return ret;
12648         } else {
12649             /*
12650              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12651              */
12652             mmu_idx = stage_1_mmu_idx(mmu_idx);
12653         }
12654     }
12655 
12656     /* The page table entries may downgrade secure to non-secure, but
12657      * cannot upgrade an non-secure translation regime's attributes
12658      * to secure.
12659      */
12660     attrs->secure = regime_is_secure(env, mmu_idx);
12661     attrs->user = regime_is_user(env, mmu_idx);
12662 
12663     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12664      * In v7 and earlier it affects all stage 1 translations.
12665      */
12666     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
12667         && !arm_feature(env, ARM_FEATURE_V8)) {
12668         if (regime_el(env, mmu_idx) == 3) {
12669             address += env->cp15.fcseidr_s;
12670         } else {
12671             address += env->cp15.fcseidr_ns;
12672         }
12673     }
12674 
12675     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12676         bool ret;
12677         *page_size = TARGET_PAGE_SIZE;
12678 
12679         if (arm_feature(env, ARM_FEATURE_V8)) {
12680             /* PMSAv8 */
12681             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12682                                        phys_ptr, attrs, prot, page_size, fi);
12683         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12684             /* PMSAv7 */
12685             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12686                                        phys_ptr, prot, page_size, fi);
12687         } else {
12688             /* Pre-v7 MPU */
12689             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12690                                        phys_ptr, prot, fi);
12691         }
12692         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12693                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12694                       access_type == MMU_DATA_LOAD ? "reading" :
12695                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12696                       (uint32_t)address, mmu_idx,
12697                       ret ? "Miss" : "Hit",
12698                       *prot & PAGE_READ ? 'r' : '-',
12699                       *prot & PAGE_WRITE ? 'w' : '-',
12700                       *prot & PAGE_EXEC ? 'x' : '-');
12701 
12702         return ret;
12703     }
12704 
12705     /* Definitely a real MMU, not an MPU */
12706 
12707     if (regime_translation_disabled(env, mmu_idx)) {
12708         /* MMU disabled. */
12709         *phys_ptr = address;
12710         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12711         *page_size = TARGET_PAGE_SIZE;
12712         return 0;
12713     }
12714 
12715     if (regime_using_lpae_format(env, mmu_idx)) {
12716         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
12717                                   phys_ptr, attrs, prot, page_size,
12718                                   fi, cacheattrs);
12719     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12720         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12721                                 phys_ptr, attrs, prot, page_size, fi);
12722     } else {
12723         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12724                                     phys_ptr, prot, page_size, fi);
12725     }
12726 }
12727 
12728 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12729                                          MemTxAttrs *attrs)
12730 {
12731     ARMCPU *cpu = ARM_CPU(cs);
12732     CPUARMState *env = &cpu->env;
12733     hwaddr phys_addr;
12734     target_ulong page_size;
12735     int prot;
12736     bool ret;
12737     ARMMMUFaultInfo fi = {};
12738     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12739 
12740     *attrs = (MemTxAttrs) {};
12741 
12742     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12743                         attrs, &prot, &page_size, &fi, NULL);
12744 
12745     if (ret) {
12746         return -1;
12747     }
12748     return phys_addr;
12749 }
12750 
12751 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
12752 {
12753     uint32_t mask;
12754     unsigned el = arm_current_el(env);
12755 
12756     /* First handle registers which unprivileged can read */
12757 
12758     switch (reg) {
12759     case 0 ... 7: /* xPSR sub-fields */
12760         mask = 0;
12761         if ((reg & 1) && el) {
12762             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
12763         }
12764         if (!(reg & 4)) {
12765             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
12766             if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12767                 mask |= XPSR_GE;
12768             }
12769         }
12770         /* EPSR reads as zero */
12771         return xpsr_read(env) & mask;
12772         break;
12773     case 20: /* CONTROL */
12774     {
12775         uint32_t value = env->v7m.control[env->v7m.secure];
12776         if (!env->v7m.secure) {
12777             /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
12778             value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
12779         }
12780         return value;
12781     }
12782     case 0x94: /* CONTROL_NS */
12783         /*
12784          * We have to handle this here because unprivileged Secure code
12785          * can read the NS CONTROL register.
12786          */
12787         if (!env->v7m.secure) {
12788             return 0;
12789         }
12790         return env->v7m.control[M_REG_NS] |
12791             (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
12792     }
12793 
12794     if (el == 0) {
12795         return 0; /* unprivileged reads others as zero */
12796     }
12797 
12798     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12799         switch (reg) {
12800         case 0x88: /* MSP_NS */
12801             if (!env->v7m.secure) {
12802                 return 0;
12803             }
12804             return env->v7m.other_ss_msp;
12805         case 0x89: /* PSP_NS */
12806             if (!env->v7m.secure) {
12807                 return 0;
12808             }
12809             return env->v7m.other_ss_psp;
12810         case 0x8a: /* MSPLIM_NS */
12811             if (!env->v7m.secure) {
12812                 return 0;
12813             }
12814             return env->v7m.msplim[M_REG_NS];
12815         case 0x8b: /* PSPLIM_NS */
12816             if (!env->v7m.secure) {
12817                 return 0;
12818             }
12819             return env->v7m.psplim[M_REG_NS];
12820         case 0x90: /* PRIMASK_NS */
12821             if (!env->v7m.secure) {
12822                 return 0;
12823             }
12824             return env->v7m.primask[M_REG_NS];
12825         case 0x91: /* BASEPRI_NS */
12826             if (!env->v7m.secure) {
12827                 return 0;
12828             }
12829             return env->v7m.basepri[M_REG_NS];
12830         case 0x93: /* FAULTMASK_NS */
12831             if (!env->v7m.secure) {
12832                 return 0;
12833             }
12834             return env->v7m.faultmask[M_REG_NS];
12835         case 0x98: /* SP_NS */
12836         {
12837             /*
12838              * This gives the non-secure SP selected based on whether we're
12839              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12840              */
12841             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12842 
12843             if (!env->v7m.secure) {
12844                 return 0;
12845             }
12846             if (!arm_v7m_is_handler_mode(env) && spsel) {
12847                 return env->v7m.other_ss_psp;
12848             } else {
12849                 return env->v7m.other_ss_msp;
12850             }
12851         }
12852         default:
12853             break;
12854         }
12855     }
12856 
12857     switch (reg) {
12858     case 8: /* MSP */
12859         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12860     case 9: /* PSP */
12861         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12862     case 10: /* MSPLIM */
12863         if (!arm_feature(env, ARM_FEATURE_V8)) {
12864             goto bad_reg;
12865         }
12866         return env->v7m.msplim[env->v7m.secure];
12867     case 11: /* PSPLIM */
12868         if (!arm_feature(env, ARM_FEATURE_V8)) {
12869             goto bad_reg;
12870         }
12871         return env->v7m.psplim[env->v7m.secure];
12872     case 16: /* PRIMASK */
12873         return env->v7m.primask[env->v7m.secure];
12874     case 17: /* BASEPRI */
12875     case 18: /* BASEPRI_MAX */
12876         return env->v7m.basepri[env->v7m.secure];
12877     case 19: /* FAULTMASK */
12878         return env->v7m.faultmask[env->v7m.secure];
12879     default:
12880     bad_reg:
12881         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12882                                        " register %d\n", reg);
12883         return 0;
12884     }
12885 }
12886 
12887 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12888 {
12889     /*
12890      * We're passed bits [11..0] of the instruction; extract
12891      * SYSm and the mask bits.
12892      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12893      * we choose to treat them as if the mask bits were valid.
12894      * NB that the pseudocode 'mask' variable is bits [11..10],
12895      * whereas ours is [11..8].
12896      */
12897     uint32_t mask = extract32(maskreg, 8, 4);
12898     uint32_t reg = extract32(maskreg, 0, 8);
12899     int cur_el = arm_current_el(env);
12900 
12901     if (cur_el == 0 && reg > 7 && reg != 20) {
12902         /*
12903          * only xPSR sub-fields and CONTROL.SFPA may be written by
12904          * unprivileged code
12905          */
12906         return;
12907     }
12908 
12909     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12910         switch (reg) {
12911         case 0x88: /* MSP_NS */
12912             if (!env->v7m.secure) {
12913                 return;
12914             }
12915             env->v7m.other_ss_msp = val;
12916             return;
12917         case 0x89: /* PSP_NS */
12918             if (!env->v7m.secure) {
12919                 return;
12920             }
12921             env->v7m.other_ss_psp = val;
12922             return;
12923         case 0x8a: /* MSPLIM_NS */
12924             if (!env->v7m.secure) {
12925                 return;
12926             }
12927             env->v7m.msplim[M_REG_NS] = val & ~7;
12928             return;
12929         case 0x8b: /* PSPLIM_NS */
12930             if (!env->v7m.secure) {
12931                 return;
12932             }
12933             env->v7m.psplim[M_REG_NS] = val & ~7;
12934             return;
12935         case 0x90: /* PRIMASK_NS */
12936             if (!env->v7m.secure) {
12937                 return;
12938             }
12939             env->v7m.primask[M_REG_NS] = val & 1;
12940             return;
12941         case 0x91: /* BASEPRI_NS */
12942             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12943                 return;
12944             }
12945             env->v7m.basepri[M_REG_NS] = val & 0xff;
12946             return;
12947         case 0x93: /* FAULTMASK_NS */
12948             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12949                 return;
12950             }
12951             env->v7m.faultmask[M_REG_NS] = val & 1;
12952             return;
12953         case 0x94: /* CONTROL_NS */
12954             if (!env->v7m.secure) {
12955                 return;
12956             }
12957             write_v7m_control_spsel_for_secstate(env,
12958                                                  val & R_V7M_CONTROL_SPSEL_MASK,
12959                                                  M_REG_NS);
12960             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12961                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12962                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12963             }
12964             /*
12965              * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
12966              * RES0 if the FPU is not present, and is stored in the S bank
12967              */
12968             if (arm_feature(env, ARM_FEATURE_VFP) &&
12969                 extract32(env->v7m.nsacr, 10, 1)) {
12970                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12971                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12972             }
12973             return;
12974         case 0x98: /* SP_NS */
12975         {
12976             /*
12977              * This gives the non-secure SP selected based on whether we're
12978              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12979              */
12980             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12981             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12982             uint32_t limit;
12983 
12984             if (!env->v7m.secure) {
12985                 return;
12986             }
12987 
12988             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12989 
12990             if (val < limit) {
12991                 CPUState *cs = env_cpu(env);
12992 
12993                 cpu_restore_state(cs, GETPC(), true);
12994                 raise_exception(env, EXCP_STKOF, 0, 1);
12995             }
12996 
12997             if (is_psp) {
12998                 env->v7m.other_ss_psp = val;
12999             } else {
13000                 env->v7m.other_ss_msp = val;
13001             }
13002             return;
13003         }
13004         default:
13005             break;
13006         }
13007     }
13008 
13009     switch (reg) {
13010     case 0 ... 7: /* xPSR sub-fields */
13011         /* only APSR is actually writable */
13012         if (!(reg & 4)) {
13013             uint32_t apsrmask = 0;
13014 
13015             if (mask & 8) {
13016                 apsrmask |= XPSR_NZCV | XPSR_Q;
13017             }
13018             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
13019                 apsrmask |= XPSR_GE;
13020             }
13021             xpsr_write(env, val, apsrmask);
13022         }
13023         break;
13024     case 8: /* MSP */
13025         if (v7m_using_psp(env)) {
13026             env->v7m.other_sp = val;
13027         } else {
13028             env->regs[13] = val;
13029         }
13030         break;
13031     case 9: /* PSP */
13032         if (v7m_using_psp(env)) {
13033             env->regs[13] = val;
13034         } else {
13035             env->v7m.other_sp = val;
13036         }
13037         break;
13038     case 10: /* MSPLIM */
13039         if (!arm_feature(env, ARM_FEATURE_V8)) {
13040             goto bad_reg;
13041         }
13042         env->v7m.msplim[env->v7m.secure] = val & ~7;
13043         break;
13044     case 11: /* PSPLIM */
13045         if (!arm_feature(env, ARM_FEATURE_V8)) {
13046             goto bad_reg;
13047         }
13048         env->v7m.psplim[env->v7m.secure] = val & ~7;
13049         break;
13050     case 16: /* PRIMASK */
13051         env->v7m.primask[env->v7m.secure] = val & 1;
13052         break;
13053     case 17: /* BASEPRI */
13054         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
13055             goto bad_reg;
13056         }
13057         env->v7m.basepri[env->v7m.secure] = val & 0xff;
13058         break;
13059     case 18: /* BASEPRI_MAX */
13060         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
13061             goto bad_reg;
13062         }
13063         val &= 0xff;
13064         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
13065                          || env->v7m.basepri[env->v7m.secure] == 0)) {
13066             env->v7m.basepri[env->v7m.secure] = val;
13067         }
13068         break;
13069     case 19: /* FAULTMASK */
13070         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
13071             goto bad_reg;
13072         }
13073         env->v7m.faultmask[env->v7m.secure] = val & 1;
13074         break;
13075     case 20: /* CONTROL */
13076         /*
13077          * Writing to the SPSEL bit only has an effect if we are in
13078          * thread mode; other bits can be updated by any privileged code.
13079          * write_v7m_control_spsel() deals with updating the SPSEL bit in
13080          * env->v7m.control, so we only need update the others.
13081          * For v7M, we must just ignore explicit writes to SPSEL in handler
13082          * mode; for v8M the write is permitted but will have no effect.
13083          * All these bits are writes-ignored from non-privileged code,
13084          * except for SFPA.
13085          */
13086         if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
13087                            !arm_v7m_is_handler_mode(env))) {
13088             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
13089         }
13090         if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
13091             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
13092             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
13093         }
13094         if (arm_feature(env, ARM_FEATURE_VFP)) {
13095             /*
13096              * SFPA is RAZ/WI from NS or if no FPU.
13097              * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
13098              * Both are stored in the S bank.
13099              */
13100             if (env->v7m.secure) {
13101                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
13102                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
13103             }
13104             if (cur_el > 0 &&
13105                 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
13106                  extract32(env->v7m.nsacr, 10, 1))) {
13107                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
13108                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
13109             }
13110         }
13111         break;
13112     default:
13113     bad_reg:
13114         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
13115                                        " register %d\n", reg);
13116         return;
13117     }
13118 }
13119 
13120 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
13121 {
13122     /* Implement the TT instruction. op is bits [7:6] of the insn. */
13123     bool forceunpriv = op & 1;
13124     bool alt = op & 2;
13125     V8M_SAttributes sattrs = {};
13126     uint32_t tt_resp;
13127     bool r, rw, nsr, nsrw, mrvalid;
13128     int prot;
13129     ARMMMUFaultInfo fi = {};
13130     MemTxAttrs attrs = {};
13131     hwaddr phys_addr;
13132     ARMMMUIdx mmu_idx;
13133     uint32_t mregion;
13134     bool targetpriv;
13135     bool targetsec = env->v7m.secure;
13136     bool is_subpage;
13137 
13138     /*
13139      * Work out what the security state and privilege level we're
13140      * interested in is...
13141      */
13142     if (alt) {
13143         targetsec = !targetsec;
13144     }
13145 
13146     if (forceunpriv) {
13147         targetpriv = false;
13148     } else {
13149         targetpriv = arm_v7m_is_handler_mode(env) ||
13150             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
13151     }
13152 
13153     /* ...and then figure out which MMU index this is */
13154     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
13155 
13156     /*
13157      * We know that the MPU and SAU don't care about the access type
13158      * for our purposes beyond that we don't want to claim to be
13159      * an insn fetch, so we arbitrarily call this a read.
13160      */
13161 
13162     /*
13163      * MPU region info only available for privileged or if
13164      * inspecting the other MPU state.
13165      */
13166     if (arm_current_el(env) != 0 || alt) {
13167         /* We can ignore the return value as prot is always set */
13168         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
13169                           &phys_addr, &attrs, &prot, &is_subpage,
13170                           &fi, &mregion);
13171         if (mregion == -1) {
13172             mrvalid = false;
13173             mregion = 0;
13174         } else {
13175             mrvalid = true;
13176         }
13177         r = prot & PAGE_READ;
13178         rw = prot & PAGE_WRITE;
13179     } else {
13180         r = false;
13181         rw = false;
13182         mrvalid = false;
13183         mregion = 0;
13184     }
13185 
13186     if (env->v7m.secure) {
13187         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
13188         nsr = sattrs.ns && r;
13189         nsrw = sattrs.ns && rw;
13190     } else {
13191         sattrs.ns = true;
13192         nsr = false;
13193         nsrw = false;
13194     }
13195 
13196     tt_resp = (sattrs.iregion << 24) |
13197         (sattrs.irvalid << 23) |
13198         ((!sattrs.ns) << 22) |
13199         (nsrw << 21) |
13200         (nsr << 20) |
13201         (rw << 19) |
13202         (r << 18) |
13203         (sattrs.srvalid << 17) |
13204         (mrvalid << 16) |
13205         (sattrs.sregion << 8) |
13206         mregion;
13207 
13208     return tt_resp;
13209 }
13210 
13211 #endif
13212 
13213 /* Note that signed overflow is undefined in C.  The following routines are
13214    careful to use unsigned types where modulo arithmetic is required.
13215    Failure to do so _will_ break on newer gcc.  */
13216 
13217 /* Signed saturating arithmetic.  */
13218 
13219 /* Perform 16-bit signed saturating addition.  */
13220 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
13221 {
13222     uint16_t res;
13223 
13224     res = a + b;
13225     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
13226         if (a & 0x8000)
13227             res = 0x8000;
13228         else
13229             res = 0x7fff;
13230     }
13231     return res;
13232 }
13233 
13234 /* Perform 8-bit signed saturating addition.  */
13235 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
13236 {
13237     uint8_t res;
13238 
13239     res = a + b;
13240     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
13241         if (a & 0x80)
13242             res = 0x80;
13243         else
13244             res = 0x7f;
13245     }
13246     return res;
13247 }
13248 
13249 /* Perform 16-bit signed saturating subtraction.  */
13250 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
13251 {
13252     uint16_t res;
13253 
13254     res = a - b;
13255     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
13256         if (a & 0x8000)
13257             res = 0x8000;
13258         else
13259             res = 0x7fff;
13260     }
13261     return res;
13262 }
13263 
13264 /* Perform 8-bit signed saturating subtraction.  */
13265 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
13266 {
13267     uint8_t res;
13268 
13269     res = a - b;
13270     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
13271         if (a & 0x80)
13272             res = 0x80;
13273         else
13274             res = 0x7f;
13275     }
13276     return res;
13277 }
13278 
13279 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
13280 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
13281 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
13282 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
13283 #define PFX q
13284 
13285 #include "op_addsub.h"
13286 
13287 /* Unsigned saturating arithmetic.  */
13288 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
13289 {
13290     uint16_t res;
13291     res = a + b;
13292     if (res < a)
13293         res = 0xffff;
13294     return res;
13295 }
13296 
13297 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
13298 {
13299     if (a > b)
13300         return a - b;
13301     else
13302         return 0;
13303 }
13304 
13305 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13306 {
13307     uint8_t res;
13308     res = a + b;
13309     if (res < a)
13310         res = 0xff;
13311     return res;
13312 }
13313 
13314 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13315 {
13316     if (a > b)
13317         return a - b;
13318     else
13319         return 0;
13320 }
13321 
13322 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13323 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13324 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
13325 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
13326 #define PFX uq
13327 
13328 #include "op_addsub.h"
13329 
13330 /* Signed modulo arithmetic.  */
13331 #define SARITH16(a, b, n, op) do { \
13332     int32_t sum; \
13333     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13334     RESULT(sum, n, 16); \
13335     if (sum >= 0) \
13336         ge |= 3 << (n * 2); \
13337     } while(0)
13338 
13339 #define SARITH8(a, b, n, op) do { \
13340     int32_t sum; \
13341     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13342     RESULT(sum, n, 8); \
13343     if (sum >= 0) \
13344         ge |= 1 << n; \
13345     } while(0)
13346 
13347 
13348 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13349 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13350 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13351 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13352 #define PFX s
13353 #define ARITH_GE
13354 
13355 #include "op_addsub.h"
13356 
13357 /* Unsigned modulo arithmetic.  */
13358 #define ADD16(a, b, n) do { \
13359     uint32_t sum; \
13360     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13361     RESULT(sum, n, 16); \
13362     if ((sum >> 16) == 1) \
13363         ge |= 3 << (n * 2); \
13364     } while(0)
13365 
13366 #define ADD8(a, b, n) do { \
13367     uint32_t sum; \
13368     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13369     RESULT(sum, n, 8); \
13370     if ((sum >> 8) == 1) \
13371         ge |= 1 << n; \
13372     } while(0)
13373 
13374 #define SUB16(a, b, n) do { \
13375     uint32_t sum; \
13376     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13377     RESULT(sum, n, 16); \
13378     if ((sum >> 16) == 0) \
13379         ge |= 3 << (n * 2); \
13380     } while(0)
13381 
13382 #define SUB8(a, b, n) do { \
13383     uint32_t sum; \
13384     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13385     RESULT(sum, n, 8); \
13386     if ((sum >> 8) == 0) \
13387         ge |= 1 << n; \
13388     } while(0)
13389 
13390 #define PFX u
13391 #define ARITH_GE
13392 
13393 #include "op_addsub.h"
13394 
13395 /* Halved signed arithmetic.  */
13396 #define ADD16(a, b, n) \
13397   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13398 #define SUB16(a, b, n) \
13399   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13400 #define ADD8(a, b, n) \
13401   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13402 #define SUB8(a, b, n) \
13403   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13404 #define PFX sh
13405 
13406 #include "op_addsub.h"
13407 
13408 /* Halved unsigned arithmetic.  */
13409 #define ADD16(a, b, n) \
13410   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13411 #define SUB16(a, b, n) \
13412   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13413 #define ADD8(a, b, n) \
13414   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13415 #define SUB8(a, b, n) \
13416   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13417 #define PFX uh
13418 
13419 #include "op_addsub.h"
13420 
13421 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13422 {
13423     if (a > b)
13424         return a - b;
13425     else
13426         return b - a;
13427 }
13428 
13429 /* Unsigned sum of absolute byte differences.  */
13430 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13431 {
13432     uint32_t sum;
13433     sum = do_usad(a, b);
13434     sum += do_usad(a >> 8, b >> 8);
13435     sum += do_usad(a >> 16, b >>16);
13436     sum += do_usad(a >> 24, b >> 24);
13437     return sum;
13438 }
13439 
13440 /* For ARMv6 SEL instruction.  */
13441 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13442 {
13443     uint32_t mask;
13444 
13445     mask = 0;
13446     if (flags & 1)
13447         mask |= 0xff;
13448     if (flags & 2)
13449         mask |= 0xff00;
13450     if (flags & 4)
13451         mask |= 0xff0000;
13452     if (flags & 8)
13453         mask |= 0xff000000;
13454     return (a & mask) | (b & ~mask);
13455 }
13456 
13457 /* CRC helpers.
13458  * The upper bytes of val (above the number specified by 'bytes') must have
13459  * been zeroed out by the caller.
13460  */
13461 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13462 {
13463     uint8_t buf[4];
13464 
13465     stl_le_p(buf, val);
13466 
13467     /* zlib crc32 converts the accumulator and output to one's complement.  */
13468     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13469 }
13470 
13471 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13472 {
13473     uint8_t buf[4];
13474 
13475     stl_le_p(buf, val);
13476 
13477     /* Linux crc32c converts the output to one's complement.  */
13478     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13479 }
13480 
13481 /* Return the exception level to which FP-disabled exceptions should
13482  * be taken, or 0 if FP is enabled.
13483  */
13484 int fp_exception_el(CPUARMState *env, int cur_el)
13485 {
13486 #ifndef CONFIG_USER_ONLY
13487     int fpen;
13488 
13489     /* CPACR and the CPTR registers don't exist before v6, so FP is
13490      * always accessible
13491      */
13492     if (!arm_feature(env, ARM_FEATURE_V6)) {
13493         return 0;
13494     }
13495 
13496     if (arm_feature(env, ARM_FEATURE_M)) {
13497         /* CPACR can cause a NOCP UsageFault taken to current security state */
13498         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13499             return 1;
13500         }
13501 
13502         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13503             if (!extract32(env->v7m.nsacr, 10, 1)) {
13504                 /* FP insns cause a NOCP UsageFault taken to Secure */
13505                 return 3;
13506             }
13507         }
13508 
13509         return 0;
13510     }
13511 
13512     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13513      * 0, 2 : trap EL0 and EL1/PL1 accesses
13514      * 1    : trap only EL0 accesses
13515      * 3    : trap no accesses
13516      */
13517     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13518     switch (fpen) {
13519     case 0:
13520     case 2:
13521         if (cur_el == 0 || cur_el == 1) {
13522             /* Trap to PL1, which might be EL1 or EL3 */
13523             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13524                 return 3;
13525             }
13526             return 1;
13527         }
13528         if (cur_el == 3 && !is_a64(env)) {
13529             /* Secure PL1 running at EL3 */
13530             return 3;
13531         }
13532         break;
13533     case 1:
13534         if (cur_el == 0) {
13535             return 1;
13536         }
13537         break;
13538     case 3:
13539         break;
13540     }
13541 
13542     /*
13543      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13544      * to control non-secure access to the FPU. It doesn't have any
13545      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13546      */
13547     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13548          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13549         if (!extract32(env->cp15.nsacr, 10, 1)) {
13550             /* FP insns act as UNDEF */
13551             return cur_el == 2 ? 2 : 1;
13552         }
13553     }
13554 
13555     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13556      * check because zero bits in the registers mean "don't trap".
13557      */
13558 
13559     /* CPTR_EL2 : present in v7VE or v8 */
13560     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13561         && !arm_is_secure_below_el3(env)) {
13562         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13563         return 2;
13564     }
13565 
13566     /* CPTR_EL3 : present in v8 */
13567     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13568         /* Trap all FP ops to EL3 */
13569         return 3;
13570     }
13571 #endif
13572     return 0;
13573 }
13574 
13575 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
13576                               bool secstate, bool priv, bool negpri)
13577 {
13578     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13579 
13580     if (priv) {
13581         mmu_idx |= ARM_MMU_IDX_M_PRIV;
13582     }
13583 
13584     if (negpri) {
13585         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13586     }
13587 
13588     if (secstate) {
13589         mmu_idx |= ARM_MMU_IDX_M_S;
13590     }
13591 
13592     return mmu_idx;
13593 }
13594 
13595 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13596                                                 bool secstate, bool priv)
13597 {
13598     bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
13599 
13600     return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
13601 }
13602 
13603 /* Return the MMU index for a v7M CPU in the specified security state */
13604 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13605 {
13606     bool priv = arm_current_el(env) != 0;
13607 
13608     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13609 }
13610 
13611 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13612 {
13613     int el;
13614 
13615     if (arm_feature(env, ARM_FEATURE_M)) {
13616         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13617     }
13618 
13619     el = arm_current_el(env);
13620     if (el < 2 && arm_is_secure_below_el3(env)) {
13621         return ARMMMUIdx_S1SE0 + el;
13622     } else {
13623         return ARMMMUIdx_S12NSE0 + el;
13624     }
13625 }
13626 
13627 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13628 {
13629     return arm_to_core_mmu_idx(arm_mmu_idx(env));
13630 }
13631 
13632 #ifndef CONFIG_USER_ONLY
13633 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13634 {
13635     return stage_1_mmu_idx(arm_mmu_idx(env));
13636 }
13637 #endif
13638 
13639 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13640                           target_ulong *cs_base, uint32_t *pflags)
13641 {
13642     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13643     int current_el = arm_current_el(env);
13644     int fp_el = fp_exception_el(env, current_el);
13645     uint32_t flags = 0;
13646 
13647     if (is_a64(env)) {
13648         ARMCPU *cpu = env_archcpu(env);
13649         uint64_t sctlr;
13650 
13651         *pc = env->pc;
13652         flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13653 
13654         /* Get control bits for tagged addresses.  */
13655         {
13656             ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13657             ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13658             int tbii, tbid;
13659 
13660             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
13661             if (regime_el(env, stage1) < 2) {
13662                 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13663                 tbid = (p1.tbi << 1) | p0.tbi;
13664                 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13665             } else {
13666                 tbid = p0.tbi;
13667                 tbii = tbid & !p0.tbid;
13668             }
13669 
13670             flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13671             flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13672         }
13673 
13674         if (cpu_isar_feature(aa64_sve, cpu)) {
13675             int sve_el = sve_exception_el(env, current_el);
13676             uint32_t zcr_len;
13677 
13678             /* If SVE is disabled, but FP is enabled,
13679              * then the effective len is 0.
13680              */
13681             if (sve_el != 0 && fp_el == 0) {
13682                 zcr_len = 0;
13683             } else {
13684                 zcr_len = sve_zcr_len_for_el(env, current_el);
13685             }
13686             flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13687             flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13688         }
13689 
13690         sctlr = arm_sctlr(env, current_el);
13691 
13692         if (cpu_isar_feature(aa64_pauth, cpu)) {
13693             /*
13694              * In order to save space in flags, we record only whether
13695              * pauth is "inactive", meaning all insns are implemented as
13696              * a nop, or "active" when some action must be performed.
13697              * The decision of which action to take is left to a helper.
13698              */
13699             if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13700                 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13701             }
13702         }
13703 
13704         if (cpu_isar_feature(aa64_bti, cpu)) {
13705             /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13706             if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13707                 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13708             }
13709             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13710         }
13711     } else {
13712         *pc = env->regs[15];
13713         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13714         flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13715         flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13716         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13717         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13718         flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13719         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13720             || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
13721             flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13722         }
13723         /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
13724         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13725             flags = FIELD_DP32(flags, TBFLAG_A32,
13726                                XSCALE_CPAR, env->cp15.c15_cpar);
13727         }
13728     }
13729 
13730     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13731 
13732     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13733      * states defined in the ARM ARM for software singlestep:
13734      *  SS_ACTIVE   PSTATE.SS   State
13735      *     0            x       Inactive (the TB flag for SS is always 0)
13736      *     1            0       Active-pending
13737      *     1            1       Active-not-pending
13738      */
13739     if (arm_singlestep_active(env)) {
13740         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13741         if (is_a64(env)) {
13742             if (env->pstate & PSTATE_SS) {
13743                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13744             }
13745         } else {
13746             if (env->uncached_cpsr & PSTATE_SS) {
13747                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13748             }
13749         }
13750     }
13751     if (arm_cpu_data_is_big_endian(env)) {
13752         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13753     }
13754     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13755 
13756     if (arm_v7m_is_handler_mode(env)) {
13757         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13758     }
13759 
13760     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13761      * suppressing them because the requested execution priority is less than 0.
13762      */
13763     if (arm_feature(env, ARM_FEATURE_V8) &&
13764         arm_feature(env, ARM_FEATURE_M) &&
13765         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
13766           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13767         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13768     }
13769 
13770     if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13771         FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
13772         flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
13773     }
13774 
13775     if (arm_feature(env, ARM_FEATURE_M) &&
13776         (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13777         (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13778          (env->v7m.secure &&
13779           !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13780         /*
13781          * ASPEN is set, but FPCA/SFPA indicate that there is no active
13782          * FP context; we must create a new FP context before executing
13783          * any FP insn.
13784          */
13785         flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
13786     }
13787 
13788     if (arm_feature(env, ARM_FEATURE_M)) {
13789         bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13790 
13791         if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13792             flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
13793         }
13794     }
13795 
13796     *pflags = flags;
13797     *cs_base = 0;
13798 }
13799 
13800 #ifdef TARGET_AARCH64
13801 /*
13802  * The manual says that when SVE is enabled and VQ is widened the
13803  * implementation is allowed to zero the previously inaccessible
13804  * portion of the registers.  The corollary to that is that when
13805  * SVE is enabled and VQ is narrowed we are also allowed to zero
13806  * the now inaccessible portion of the registers.
13807  *
13808  * The intent of this is that no predicate bit beyond VQ is ever set.
13809  * Which means that some operations on predicate registers themselves
13810  * may operate on full uint64_t or even unrolled across the maximum
13811  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13812  * may well be cheaper than conditionals to restrict the operation
13813  * to the relevant portion of a uint16_t[16].
13814  */
13815 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13816 {
13817     int i, j;
13818     uint64_t pmask;
13819 
13820     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13821     assert(vq <= env_archcpu(env)->sve_max_vq);
13822 
13823     /* Zap the high bits of the zregs.  */
13824     for (i = 0; i < 32; i++) {
13825         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13826     }
13827 
13828     /* Zap the high bits of the pregs and ffr.  */
13829     pmask = 0;
13830     if (vq & 3) {
13831         pmask = ~(-1ULL << (16 * (vq & 3)));
13832     }
13833     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13834         for (i = 0; i < 17; ++i) {
13835             env->vfp.pregs[i].p[j] &= pmask;
13836         }
13837         pmask = 0;
13838     }
13839 }
13840 
13841 /*
13842  * Notice a change in SVE vector size when changing EL.
13843  */
13844 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13845                            int new_el, bool el0_a64)
13846 {
13847     ARMCPU *cpu = env_archcpu(env);
13848     int old_len, new_len;
13849     bool old_a64, new_a64;
13850 
13851     /* Nothing to do if no SVE.  */
13852     if (!cpu_isar_feature(aa64_sve, cpu)) {
13853         return;
13854     }
13855 
13856     /* Nothing to do if FP is disabled in either EL.  */
13857     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13858         return;
13859     }
13860 
13861     /*
13862      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13863      * at ELx, or not available because the EL is in AArch32 state, then
13864      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13865      * has an effective value of 0".
13866      *
13867      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13868      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13869      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13870      * we already have the correct register contents when encountering the
13871      * vq0->vq0 transition between EL0->EL1.
13872      */
13873     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13874     old_len = (old_a64 && !sve_exception_el(env, old_el)
13875                ? sve_zcr_len_for_el(env, old_el) : 0);
13876     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13877     new_len = (new_a64 && !sve_exception_el(env, new_el)
13878                ? sve_zcr_len_for_el(env, new_el) : 0);
13879 
13880     /* When changing vector length, clear inaccessible state.  */
13881     if (new_len < old_len) {
13882         aarch64_sve_narrow_vq(env, new_len + 1);
13883     }
13884 }
13885 #endif
13886