1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 */ 448 return (ARMMMUIdxBit_E10_1 | 449 ARMMMUIdxBit_E10_1_PAN | 450 ARMMMUIdxBit_E10_0 | 451 ARMMMUIdxBit_Stage2 | 452 ARMMMUIdxBit_Stage2_S); 453 } 454 455 456 /* IS variants of TLB operations must affect all cores */ 457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 458 uint64_t value) 459 { 460 CPUState *cs = env_cpu(env); 461 462 tlb_flush_all_cpus_synced(cs); 463 } 464 465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 CPUState *cs = env_cpu(env); 469 470 tlb_flush_all_cpus_synced(cs); 471 } 472 473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 CPUState *cs = env_cpu(env); 477 478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 479 } 480 481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 CPUState *cs = env_cpu(env); 485 486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 487 } 488 489 /* 490 * Non-IS variants of TLB operations are upgraded to 491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 492 * force broadcast of these operations. 493 */ 494 static bool tlb_force_broadcast(CPUARMState *env) 495 { 496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 CPUState *cs = env_cpu(env); 504 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_all_cpus_synced(cs); 507 } else { 508 tlb_flush(cs); 509 } 510 } 511 512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 516 CPUState *cs = env_cpu(env); 517 518 value &= TARGET_PAGE_MASK; 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_page_all_cpus_synced(cs, value); 521 } else { 522 tlb_flush_page(cs, value); 523 } 524 } 525 526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate by ASID (TLBIASID) */ 530 CPUState *cs = env_cpu(env); 531 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_all_cpus_synced(cs); 534 } else { 535 tlb_flush(cs); 536 } 537 } 538 539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 543 CPUState *cs = env_cpu(env); 544 545 value &= TARGET_PAGE_MASK; 546 if (tlb_force_broadcast(env)) { 547 tlb_flush_page_all_cpus_synced(cs, value); 548 } else { 549 tlb_flush_page(cs, value); 550 } 551 } 552 553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 CPUState *cs = env_cpu(env); 557 558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 559 } 560 561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = env_cpu(env); 565 566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 567 } 568 569 570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 576 } 577 578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 584 } 585 586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 591 592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 593 } 594 595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 600 601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 602 ARMMMUIdxBit_E2); 603 } 604 605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 610 611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 612 } 613 614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 619 620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* 625 * Define the secure and non-secure FCSE identifier CP registers 626 * separately because there is no secure bank in V8 (no _EL3). This allows 627 * the secure register to be properly reset and migrated. There is also no 628 * v8 EL1 version of the register so the non-secure instance stands alone. 629 */ 630 { .name = "FCSEIDR", 631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 635 { .name = "FCSEIDR_S", 636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 640 /* 641 * Define the secure and non-secure context identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. In the 644 * non-secure case, the 32-bit register will have reset and migration 645 * disabled during registration as it is handled by the 64-bit instance. 646 */ 647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 649 .access = PL1_RW, .accessfn = access_tvm_trvm, 650 .fgt = FGT_CONTEXTIDR_EL1, 651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 652 .secure = ARM_CP_SECSTATE_NS, 653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, 658 .secure = ARM_CP_SECSTATE_S, 659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 661 }; 662 663 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 664 /* 665 * NB: Some of these registers exist in v8 but with more precise 666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 667 */ 668 /* MMU Domain access control / MPU write buffer control */ 669 { .name = "DACR", 670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 672 .writefn = dacr_write, .raw_writefn = raw_write, 673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 674 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 675 /* 676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 677 * For v6 and v5, these mappings are overly broad. 678 */ 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 687 /* Cache maintenance ops; some of this space may be overridden later. */ 688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 691 }; 692 693 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 694 /* 695 * Not all pre-v6 cores implemented this WFI, so this is slightly 696 * over-broad. 697 */ 698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 699 .access = PL1_W, .type = ARM_CP_WFI }, 700 }; 701 702 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 703 /* 704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 705 * is UNPREDICTABLE; we choose to NOP as most implementations do). 706 */ 707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 708 .access = PL1_W, .type = ARM_CP_WFI }, 709 /* 710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 712 * OMAPCP will override this space. 713 */ 714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 716 .resetvalue = 0 }, 717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 719 .resetvalue = 0 }, 720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 723 .resetvalue = 0 }, 724 /* 725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 726 * implementing it as RAZ means the "debug architecture version" bits 727 * will read as a reserved value, which should cause Linux to not try 728 * to use the debug hardware. 729 */ 730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 732 /* 733 * MMU TLB control. Note that the wildcarding means we cover not just 734 * the unified TLB ops but also the dside/iside/inner-shareable variants. 735 */ 736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 738 .type = ARM_CP_NO_RAW }, 739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 752 }; 753 754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 uint32_t mask = 0; 758 759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 760 if (!arm_feature(env, ARM_FEATURE_V8)) { 761 /* 762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 765 */ 766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 767 /* VFP coprocessor: cp10 & cp11 [23:20] */ 768 mask |= R_CPACR_ASEDIS_MASK | 769 R_CPACR_D32DIS_MASK | 770 R_CPACR_CP11_MASK | 771 R_CPACR_CP10_MASK; 772 773 if (!arm_feature(env, ARM_FEATURE_NEON)) { 774 /* ASEDIS [31] bit is RAO/WI */ 775 value |= R_CPACR_ASEDIS_MASK; 776 } 777 778 /* 779 * VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* 822 * Call cpacr_write() so that we reset with the correct RAO bits set 823 * for our CPU features. 824 */ 825 cpacr_write(env, ri, 0); 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && 851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 852 return CP_ACCESS_TRAP_EL3; 853 } 854 855 return CP_ACCESS_OK; 856 } 857 858 static const ARMCPRegInfo v6_cp_reginfo[] = { 859 /* prefetch by MVA in v6, NOP in v7 */ 860 { .name = "MVA_prefetch", 861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 862 .access = PL1_W, .type = ARM_CP_NOP }, 863 /* 864 * We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* 880 * Watchpoint Fault Address Register : should actually only be present 881 * for 1136, 1176, 11MPCore. 882 */ 883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 887 .fgt = FGT_CPACR_EL1, 888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 /* Precise instruction counting */ 953 return icount_enabled() == ICOUNT_PRECISE; 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 assert(icount_enabled() == ICOUNT_PRECISE); 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 assert(icount_enabled() == ICOUNT_PRECISE); 965 return icount_to_ns((int64_t)icount); 966 } 967 #endif 968 969 static bool pmuv3p1_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 973 } 974 975 static bool pmuv3p4_events_supported(CPUARMState *env) 976 { 977 /* For events which are supported in any v8.1 PMU */ 978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 979 } 980 981 static uint64_t zero_event_get_count(CPUARMState *env) 982 { 983 /* For events which on QEMU never fire, so their count is always zero */ 984 return 0; 985 } 986 987 static int64_t zero_event_ns_per(uint64_t cycles) 988 { 989 /* An event which never fires can never overflow */ 990 return -1; 991 } 992 993 static const pm_event pm_events[] = { 994 { .number = 0x000, /* SW_INCR */ 995 .supported = event_always_supported, 996 .get_count = swinc_get_count, 997 .ns_per_count = swinc_ns_per, 998 }, 999 #ifndef CONFIG_USER_ONLY 1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1001 .supported = instructions_supported, 1002 .get_count = instructions_get_count, 1003 .ns_per_count = instructions_ns_per, 1004 }, 1005 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1006 .supported = event_always_supported, 1007 .get_count = cycles_get_count, 1008 .ns_per_count = cycles_ns_per, 1009 }, 1010 #endif 1011 { .number = 0x023, /* STALL_FRONTEND */ 1012 .supported = pmuv3p1_events_supported, 1013 .get_count = zero_event_get_count, 1014 .ns_per_count = zero_event_ns_per, 1015 }, 1016 { .number = 0x024, /* STALL_BACKEND */ 1017 .supported = pmuv3p1_events_supported, 1018 .get_count = zero_event_get_count, 1019 .ns_per_count = zero_event_ns_per, 1020 }, 1021 { .number = 0x03c, /* STALL */ 1022 .supported = pmuv3p4_events_supported, 1023 .get_count = zero_event_get_count, 1024 .ns_per_count = zero_event_ns_per, 1025 }, 1026 }; 1027 1028 /* 1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1030 * events (i.e. the statistical profiling extension), this implementation 1031 * should first be updated to something sparse instead of the current 1032 * supported_event_map[] array. 1033 */ 1034 #define MAX_EVENT_ID 0x3c 1035 #define UNSUPPORTED_EVENT UINT16_MAX 1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1037 1038 /* 1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1040 * of ARM event numbers to indices in our pm_events array. 1041 * 1042 * Note: Events in the 0x40XX range are not currently supported. 1043 */ 1044 void pmu_init(ARMCPU *cpu) 1045 { 1046 unsigned int i; 1047 1048 /* 1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1050 * events to them 1051 */ 1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1053 supported_event_map[i] = UNSUPPORTED_EVENT; 1054 } 1055 cpu->pmceid0 = 0; 1056 cpu->pmceid1 = 0; 1057 1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1059 const pm_event *cnt = &pm_events[i]; 1060 assert(cnt->number <= MAX_EVENT_ID); 1061 /* We do not currently support events in the 0x40xx range */ 1062 assert(cnt->number <= 0x3f); 1063 1064 if (cnt->supported(&cpu->env)) { 1065 supported_event_map[cnt->number] = i; 1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1067 if (cnt->number & 0x20) { 1068 cpu->pmceid1 |= event_mask; 1069 } else { 1070 cpu->pmceid0 |= event_mask; 1071 } 1072 } 1073 } 1074 } 1075 1076 /* 1077 * Check at runtime whether a PMU event is supported for the current machine 1078 */ 1079 static bool event_supported(uint16_t number) 1080 { 1081 if (number > MAX_EVENT_ID) { 1082 return false; 1083 } 1084 return supported_event_map[number] != UNSUPPORTED_EVENT; 1085 } 1086 1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1088 bool isread) 1089 { 1090 /* 1091 * Performance monitor registers user accessibility is controlled 1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1093 * trapping to EL2 or EL3 for other accesses. 1094 */ 1095 int el = arm_current_el(env); 1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1097 1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1099 return CP_ACCESS_TRAP; 1100 } 1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL2; 1103 } 1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL3; 1106 } 1107 1108 return CP_ACCESS_OK; 1109 } 1110 1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1112 const ARMCPRegInfo *ri, 1113 bool isread) 1114 { 1115 /* ER: event counter read trap control */ 1116 if (arm_feature(env, ARM_FEATURE_V8) 1117 && arm_current_el(env) == 0 1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1119 && isread) { 1120 return CP_ACCESS_OK; 1121 } 1122 1123 return pmreg_access(env, ri, isread); 1124 } 1125 1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1127 const ARMCPRegInfo *ri, 1128 bool isread) 1129 { 1130 /* SW: software increment write trap control */ 1131 if (arm_feature(env, ARM_FEATURE_V8) 1132 && arm_current_el(env) == 0 1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1134 && !isread) { 1135 return CP_ACCESS_OK; 1136 } 1137 1138 return pmreg_access(env, ri, isread); 1139 } 1140 1141 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1142 const ARMCPRegInfo *ri, 1143 bool isread) 1144 { 1145 /* ER: event counter read trap control */ 1146 if (arm_feature(env, ARM_FEATURE_V8) 1147 && arm_current_el(env) == 0 1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1149 return CP_ACCESS_OK; 1150 } 1151 1152 return pmreg_access(env, ri, isread); 1153 } 1154 1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1156 const ARMCPRegInfo *ri, 1157 bool isread) 1158 { 1159 /* CR: cycle counter read trap control */ 1160 if (arm_feature(env, ARM_FEATURE_V8) 1161 && arm_current_el(env) == 0 1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1163 && isread) { 1164 return CP_ACCESS_OK; 1165 } 1166 1167 return pmreg_access(env, ri, isread); 1168 } 1169 1170 /* 1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1172 * We use these to decide whether we need to wrap a write to MDCR_EL2 1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1174 */ 1175 #define MDCR_EL2_PMU_ENABLE_BITS \ 1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1178 1179 /* 1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1181 * the current EL, security state, and register configuration. 1182 */ 1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1184 { 1185 uint64_t filter; 1186 bool e, p, u, nsk, nsu, nsh, m; 1187 bool enabled, prohibited = false, filtered; 1188 bool secure = arm_is_secure(env); 1189 int el = arm_current_el(env); 1190 uint64_t mdcr_el2; 1191 uint8_t hpmn; 1192 1193 /* 1194 * We might be called for M-profile cores where MDCR_EL2 doesn't 1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1196 * must be before we read that value. 1197 */ 1198 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1199 return false; 1200 } 1201 1202 mdcr_el2 = arm_mdcr_el2_eff(env); 1203 hpmn = mdcr_el2 & MDCR_HPMN; 1204 1205 if (!arm_feature(env, ARM_FEATURE_EL2) || 1206 (counter < hpmn || counter == 31)) { 1207 e = env->cp15.c9_pmcr & PMCRE; 1208 } else { 1209 e = mdcr_el2 & MDCR_HPME; 1210 } 1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1212 1213 /* Is event counting prohibited? */ 1214 if (el == 2 && (counter < hpmn || counter == 31)) { 1215 prohibited = mdcr_el2 & MDCR_HPMD; 1216 } 1217 if (secure) { 1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1219 } 1220 1221 if (counter == 31) { 1222 /* 1223 * The cycle counter defaults to running. PMCR.DP says "disable 1224 * the cycle counter when event counting is prohibited". 1225 * Some MDCR bits disable the cycle counter specifically. 1226 */ 1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1229 if (secure) { 1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1231 } 1232 if (el == 2) { 1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1234 } 1235 } 1236 } 1237 1238 if (counter == 31) { 1239 filter = env->cp15.pmccfiltr_el0; 1240 } else { 1241 filter = env->cp15.c14_pmevtyper[counter]; 1242 } 1243 1244 p = filter & PMXEVTYPER_P; 1245 u = filter & PMXEVTYPER_U; 1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1249 m = arm_el_is_aa64(env, 1) && 1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1251 1252 if (el == 0) { 1253 filtered = secure ? u : u != nsu; 1254 } else if (el == 1) { 1255 filtered = secure ? p : p != nsk; 1256 } else if (el == 2) { 1257 filtered = !nsh; 1258 } else { /* EL3 */ 1259 filtered = m != p; 1260 } 1261 1262 if (counter != 31) { 1263 /* 1264 * If not checking PMCCNTR, ensure the counter is setup to an event we 1265 * support 1266 */ 1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1268 if (!event_supported(event)) { 1269 return false; 1270 } 1271 } 1272 1273 return enabled && !prohibited && !filtered; 1274 } 1275 1276 static void pmu_update_irq(CPUARMState *env) 1277 { 1278 ARMCPU *cpu = env_archcpu(env); 1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1281 } 1282 1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1284 { 1285 /* 1286 * Return true if the clock divider is enabled and the cycle counter 1287 * is supposed to tick only once every 64 clock cycles. This is 1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1289 * (64-bit) cycle counter PMCR.D has no effect. 1290 */ 1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1292 } 1293 1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1295 { 1296 /* Return true if the specified event counter is configured to be 64 bit */ 1297 1298 /* This isn't intended to be used with the cycle counter */ 1299 assert(counter < 31); 1300 1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1302 return false; 1303 } 1304 1305 if (arm_feature(env, ARM_FEATURE_EL2)) { 1306 /* 1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1308 * current security state, so we don't use arm_mdcr_el2_eff() here. 1309 */ 1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1312 1313 if (counter >= hpmn) { 1314 return hlp; 1315 } 1316 } 1317 return env->cp15.c9_pmcr & PMCRLP; 1318 } 1319 1320 /* 1321 * Ensure c15_ccnt is the guest-visible count so that operations such as 1322 * enabling/disabling the counter or filtering, modifying the count itself, 1323 * etc. can be done logically. This is essentially a no-op if the counter is 1324 * not enabled at the time of the call. 1325 */ 1326 static void pmccntr_op_start(CPUARMState *env) 1327 { 1328 uint64_t cycles = cycles_get_count(env); 1329 1330 if (pmu_counter_enabled(env, 31)) { 1331 uint64_t eff_cycles = cycles; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 eff_cycles /= 64; 1334 } 1335 1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1337 1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1339 1ull << 63 : 1ull << 31; 1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1341 env->cp15.c9_pmovsr |= (1ULL << 31); 1342 pmu_update_irq(env); 1343 } 1344 1345 env->cp15.c15_ccnt = new_pmccntr; 1346 } 1347 env->cp15.c15_ccnt_delta = cycles; 1348 } 1349 1350 /* 1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1353 * pmccntr_op_start. 1354 */ 1355 static void pmccntr_op_finish(CPUARMState *env) 1356 { 1357 if (pmu_counter_enabled(env, 31)) { 1358 #ifndef CONFIG_USER_ONLY 1359 /* Calculate when the counter will next overflow */ 1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1361 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1362 remaining_cycles = (uint32_t)remaining_cycles; 1363 } 1364 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1365 1366 if (overflow_in > 0) { 1367 int64_t overflow_at; 1368 1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1370 overflow_in, &overflow_at)) { 1371 ARMCPU *cpu = env_archcpu(env); 1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1373 } 1374 } 1375 #endif 1376 1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1378 if (pmccntr_clockdiv_enabled(env)) { 1379 prev_cycles /= 64; 1380 } 1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1382 } 1383 } 1384 1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1386 { 1387 1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1389 uint64_t count = 0; 1390 if (event_supported(event)) { 1391 uint16_t event_idx = supported_event_map[event]; 1392 count = pm_events[event_idx].get_count(env); 1393 } 1394 1395 if (pmu_counter_enabled(env, counter)) { 1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1398 1ULL << 63 : 1ULL << 31; 1399 1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1401 env->cp15.c9_pmovsr |= (1 << counter); 1402 pmu_update_irq(env); 1403 } 1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1405 } 1406 env->cp15.c14_pmevcntr_delta[counter] = count; 1407 } 1408 1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1410 { 1411 if (pmu_counter_enabled(env, counter)) { 1412 #ifndef CONFIG_USER_ONLY 1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1414 uint16_t event_idx = supported_event_map[event]; 1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1416 int64_t overflow_in; 1417 1418 if (!pmevcntr_is_64_bit(env, counter)) { 1419 delta = (uint32_t)delta; 1420 } 1421 overflow_in = pm_events[event_idx].ns_per_count(delta); 1422 1423 if (overflow_in > 0) { 1424 int64_t overflow_at; 1425 1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1427 overflow_in, &overflow_at)) { 1428 ARMCPU *cpu = env_archcpu(env); 1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1430 } 1431 } 1432 #endif 1433 1434 env->cp15.c14_pmevcntr_delta[counter] -= 1435 env->cp15.c14_pmevcntr[counter]; 1436 } 1437 } 1438 1439 void pmu_op_start(CPUARMState *env) 1440 { 1441 unsigned int i; 1442 pmccntr_op_start(env); 1443 for (i = 0; i < pmu_num_counters(env); i++) { 1444 pmevcntr_op_start(env, i); 1445 } 1446 } 1447 1448 void pmu_op_finish(CPUARMState *env) 1449 { 1450 unsigned int i; 1451 pmccntr_op_finish(env); 1452 for (i = 0; i < pmu_num_counters(env); i++) { 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1458 { 1459 pmu_op_start(&cpu->env); 1460 } 1461 1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1463 { 1464 pmu_op_finish(&cpu->env); 1465 } 1466 1467 void arm_pmu_timer_cb(void *opaque) 1468 { 1469 ARMCPU *cpu = opaque; 1470 1471 /* 1472 * Update all the counter values based on the current underlying counts, 1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1475 * counter may expire. 1476 */ 1477 pmu_op_start(&cpu->env); 1478 pmu_op_finish(&cpu->env); 1479 } 1480 1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 pmu_op_start(env); 1485 1486 if (value & PMCRC) { 1487 /* The counter has been reset */ 1488 env->cp15.c15_ccnt = 0; 1489 } 1490 1491 if (value & PMCRP) { 1492 unsigned int i; 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 env->cp15.c14_pmevcntr[i] = 0; 1495 } 1496 } 1497 1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1500 1501 pmu_op_finish(env); 1502 } 1503 1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1505 { 1506 uint64_t pmcr = env->cp15.c9_pmcr; 1507 1508 /* 1509 * If EL2 is implemented and enabled for the current security state, reads 1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1511 */ 1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1513 pmcr &= ~PMCRN_MASK; 1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1515 } 1516 1517 return pmcr; 1518 } 1519 1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 unsigned int i; 1524 uint64_t overflow_mask, new_pmswinc; 1525 1526 for (i = 0; i < pmu_num_counters(env); i++) { 1527 /* Increment a counter's count iff: */ 1528 if ((value & (1 << i)) && /* counter's bit is set */ 1529 /* counter is enabled and not filtered */ 1530 pmu_counter_enabled(env, i) && 1531 /* counter is SW_INCR */ 1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1533 pmevcntr_op_start(env, i); 1534 1535 /* 1536 * Detect if this write causes an overflow since we can't predict 1537 * PMSWINC overflows like we can for other events 1538 */ 1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1540 1541 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1542 1ULL << 63 : 1ULL << 31; 1543 1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1545 env->cp15.c9_pmovsr |= (1 << i); 1546 pmu_update_irq(env); 1547 } 1548 1549 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1550 1551 pmevcntr_op_finish(env, i); 1552 } 1553 } 1554 } 1555 1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1557 { 1558 uint64_t ret; 1559 pmccntr_op_start(env); 1560 ret = env->cp15.c15_ccnt; 1561 pmccntr_op_finish(env); 1562 return ret; 1563 } 1564 1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 /* 1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1572 * accessed. 1573 */ 1574 env->cp15.c9_pmselr = value & 0x1f; 1575 } 1576 1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 pmccntr_op_start(env); 1581 env->cp15.c15_ccnt = value; 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 uint64_t cur_val = pmccntr_read(env, NULL); 1589 1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1591 } 1592 1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 pmccntr_op_start(env); 1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1598 pmccntr_op_finish(env); 1599 } 1600 1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 pmccntr_op_start(env); 1605 /* M is not accessible from AArch32 */ 1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1607 (value & PMCCFILTR); 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 /* M is not visible in AArch32 */ 1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1615 } 1616 1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 pmu_op_start(env); 1621 value &= pmu_counter_mask(env); 1622 env->cp15.c9_pmcnten |= value; 1623 pmu_op_finish(env); 1624 } 1625 1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten &= ~value; 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pmovsr &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmovsr |= value; 1648 pmu_update_irq(env); 1649 } 1650 1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value, const uint8_t counter) 1653 { 1654 if (counter == 31) { 1655 pmccfiltr_write(env, ri, value); 1656 } else if (counter < pmu_num_counters(env)) { 1657 pmevcntr_op_start(env, counter); 1658 1659 /* 1660 * If this counter's event type is changing, store the current 1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1662 * pmevcntr_op_finish has the correct baseline when it converts back to 1663 * a delta. 1664 */ 1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1666 PMXEVTYPER_EVTCOUNT; 1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1668 if (old_event != new_event) { 1669 uint64_t count = 0; 1670 if (event_supported(new_event)) { 1671 uint16_t event_idx = supported_event_map[new_event]; 1672 count = pm_events[event_idx].get_count(env); 1673 } 1674 env->cp15.c14_pmevcntr_delta[counter] = count; 1675 } 1676 1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1678 pmevcntr_op_finish(env, counter); 1679 } 1680 /* 1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1682 * PMSELR value is equal to or greater than the number of implemented 1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1684 */ 1685 } 1686 1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1688 const uint8_t counter) 1689 { 1690 if (counter == 31) { 1691 return env->cp15.pmccfiltr_el0; 1692 } else if (counter < pmu_num_counters(env)) { 1693 return env->cp15.c14_pmevtyper[counter]; 1694 } else { 1695 /* 1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1698 */ 1699 return 0; 1700 } 1701 } 1702 1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1707 pmevtyper_write(env, ri, value, counter); 1708 } 1709 1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 env->cp15.c14_pmevtyper[counter] = value; 1715 1716 /* 1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1718 * pmu_op_finish calls when loading saved state for a migration. Because 1719 * we're potentially updating the type of event here, the value written to 1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1721 * different counter type. Therefore, we need to set this value to the 1722 * current count for the counter type we're writing so that pmu_op_finish 1723 * has the correct count for its calculation. 1724 */ 1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1726 if (event_supported(event)) { 1727 uint16_t event_idx = supported_event_map[event]; 1728 env->cp15.c14_pmevcntr_delta[counter] = 1729 pm_events[event_idx].get_count(env); 1730 } 1731 } 1732 1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1736 return pmevtyper_read(env, ri, counter); 1737 } 1738 1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1743 } 1744 1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value, uint8_t counter) 1752 { 1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1755 value &= MAKE_64BIT_MASK(0, 32); 1756 } 1757 if (counter < pmu_num_counters(env)) { 1758 pmevcntr_op_start(env, counter); 1759 env->cp15.c14_pmevcntr[counter] = value; 1760 pmevcntr_op_finish(env, counter); 1761 } 1762 /* 1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1764 * are CONSTRAINED UNPREDICTABLE. 1765 */ 1766 } 1767 1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint8_t counter) 1770 { 1771 if (counter < pmu_num_counters(env)) { 1772 uint64_t ret; 1773 pmevcntr_op_start(env, counter); 1774 ret = env->cp15.c14_pmevcntr[counter]; 1775 pmevcntr_op_finish(env, counter); 1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1778 ret &= MAKE_64BIT_MASK(0, 32); 1779 } 1780 return ret; 1781 } else { 1782 /* 1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1784 * are CONSTRAINED UNPREDICTABLE. 1785 */ 1786 return 0; 1787 } 1788 } 1789 1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1794 pmevcntr_write(env, ri, value, counter); 1795 } 1796 1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1800 return pmevcntr_read(env, ri, counter); 1801 } 1802 1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1807 assert(counter < pmu_num_counters(env)); 1808 env->cp15.c14_pmevcntr[counter] = value; 1809 pmevcntr_write(env, ri, value, counter); 1810 } 1811 1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1815 assert(counter < pmu_num_counters(env)); 1816 return env->cp15.c14_pmevcntr[counter]; 1817 } 1818 1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 if (arm_feature(env, ARM_FEATURE_V8)) { 1834 env->cp15.c9_pmuserenr = value & 0xf; 1835 } else { 1836 env->cp15.c9_pmuserenr = value & 1; 1837 } 1838 } 1839 1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 /* We have no event counters so only the C bit can be changed */ 1844 value &= pmu_counter_mask(env); 1845 env->cp15.c9_pminten |= value; 1846 pmu_update_irq(env); 1847 } 1848 1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 value &= pmu_counter_mask(env); 1853 env->cp15.c9_pminten &= ~value; 1854 pmu_update_irq(env); 1855 } 1856 1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 /* 1861 * Note that even though the AArch64 view of this register has bits 1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1863 * architectural requirements for bits which are RES0 only in some 1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1866 */ 1867 raw_write(env, ri, value & ~0x1FULL); 1868 } 1869 1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1871 { 1872 /* Begin with base v8.0 state. */ 1873 uint64_t valid_mask = 0x3fff; 1874 ARMCPU *cpu = env_archcpu(env); 1875 uint64_t changed; 1876 1877 /* 1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1880 * Instead, choose the format based on the mode of EL3. 1881 */ 1882 if (arm_el_is_aa64(env, 3)) { 1883 value |= SCR_FW | SCR_AW; /* RES1 */ 1884 valid_mask &= ~SCR_NET; /* RES0 */ 1885 1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1888 value |= SCR_RW; /* RAO/WI */ 1889 } 1890 if (cpu_isar_feature(aa64_ras, cpu)) { 1891 valid_mask |= SCR_TERR; 1892 } 1893 if (cpu_isar_feature(aa64_lor, cpu)) { 1894 valid_mask |= SCR_TLOR; 1895 } 1896 if (cpu_isar_feature(aa64_pauth, cpu)) { 1897 valid_mask |= SCR_API | SCR_APK; 1898 } 1899 if (cpu_isar_feature(aa64_sel2, cpu)) { 1900 valid_mask |= SCR_EEL2; 1901 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1903 value |= SCR_NS; 1904 } 1905 if (cpu_isar_feature(aa64_mte, cpu)) { 1906 valid_mask |= SCR_ATA; 1907 } 1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1909 valid_mask |= SCR_ENSCXT; 1910 } 1911 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1912 valid_mask |= SCR_EASE | SCR_NMEA; 1913 } 1914 if (cpu_isar_feature(aa64_sme, cpu)) { 1915 valid_mask |= SCR_ENTP2; 1916 } 1917 if (cpu_isar_feature(aa64_hcx, cpu)) { 1918 valid_mask |= SCR_HXEN; 1919 } 1920 if (cpu_isar_feature(aa64_fgt, cpu)) { 1921 valid_mask |= SCR_FGTEN; 1922 } 1923 if (cpu_isar_feature(aa64_rme, cpu)) { 1924 valid_mask |= SCR_NSE | SCR_GPF; 1925 } 1926 if (cpu_isar_feature(aa64_ecv, cpu)) { 1927 valid_mask |= SCR_ECVEN; 1928 } 1929 } else { 1930 valid_mask &= ~(SCR_RW | SCR_ST); 1931 if (cpu_isar_feature(aa32_ras, cpu)) { 1932 valid_mask |= SCR_TERR; 1933 } 1934 } 1935 1936 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1937 valid_mask &= ~SCR_HCE; 1938 1939 /* 1940 * On ARMv7, SMD (or SCD as it is called in v7) is only 1941 * supported if EL2 exists. The bit is UNK/SBZP when 1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1943 * when EL2 is unavailable. 1944 * On ARMv8, this bit is always available. 1945 */ 1946 if (arm_feature(env, ARM_FEATURE_V7) && 1947 !arm_feature(env, ARM_FEATURE_V8)) { 1948 valid_mask &= ~SCR_SMD; 1949 } 1950 } 1951 1952 /* Clear all-context RES0 bits. */ 1953 value &= valid_mask; 1954 changed = env->cp15.scr_el3 ^ value; 1955 env->cp15.scr_el3 = value; 1956 1957 /* 1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1959 * we must invalidate all TLBs below EL3. 1960 */ 1961 if (changed & (SCR_NS | SCR_NSE)) { 1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1963 ARMMMUIdxBit_E20_0 | 1964 ARMMMUIdxBit_E10_1 | 1965 ARMMMUIdxBit_E20_2 | 1966 ARMMMUIdxBit_E10_1_PAN | 1967 ARMMMUIdxBit_E20_2_PAN | 1968 ARMMMUIdxBit_E2)); 1969 } 1970 } 1971 1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1973 { 1974 /* 1975 * scr_write will set the RES1 bits on an AArch64-only CPU. 1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1977 */ 1978 scr_write(env, ri, 0); 1979 } 1980 1981 static CPAccessResult access_tid4(CPUARMState *env, 1982 const ARMCPRegInfo *ri, 1983 bool isread) 1984 { 1985 if (arm_current_el(env) == 1 && 1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1987 return CP_ACCESS_TRAP_EL2; 1988 } 1989 1990 return CP_ACCESS_OK; 1991 } 1992 1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1994 { 1995 ARMCPU *cpu = env_archcpu(env); 1996 1997 /* 1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1999 * bank 2000 */ 2001 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2002 ri->secure & ARM_CP_SECSTATE_S); 2003 2004 return cpu->ccsidr[index]; 2005 } 2006 2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2008 uint64_t value) 2009 { 2010 raw_write(env, ri, value & 0xf); 2011 } 2012 2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2014 { 2015 CPUState *cs = env_cpu(env); 2016 bool el1 = arm_current_el(env) == 1; 2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2018 uint64_t ret = 0; 2019 2020 if (hcr_el2 & HCR_IMO) { 2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2022 ret |= CPSR_I; 2023 } 2024 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 2025 ret |= ISR_IS; 2026 ret |= CPSR_I; 2027 } 2028 } else { 2029 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2030 ret |= CPSR_I; 2031 } 2032 2033 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 2034 ret |= ISR_IS; 2035 ret |= CPSR_I; 2036 } 2037 } 2038 2039 if (hcr_el2 & HCR_FMO) { 2040 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2041 ret |= CPSR_F; 2042 } 2043 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 2044 ret |= ISR_FS; 2045 ret |= CPSR_F; 2046 } 2047 } else { 2048 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2049 ret |= CPSR_F; 2050 } 2051 } 2052 2053 if (hcr_el2 & HCR_AMO) { 2054 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2055 ret |= CPSR_A; 2056 } 2057 } 2058 2059 return ret; 2060 } 2061 2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2063 bool isread) 2064 { 2065 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2066 return CP_ACCESS_TRAP_EL2; 2067 } 2068 2069 return CP_ACCESS_OK; 2070 } 2071 2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2073 bool isread) 2074 { 2075 if (arm_feature(env, ARM_FEATURE_V8)) { 2076 return access_aa64_tid1(env, ri, isread); 2077 } 2078 2079 return CP_ACCESS_OK; 2080 } 2081 2082 static const ARMCPRegInfo v7_cp_reginfo[] = { 2083 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2084 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2085 .access = PL1_W, .type = ARM_CP_NOP }, 2086 /* 2087 * Performance monitors are implementation defined in v7, 2088 * but with an ARM recommended set of registers, which we 2089 * follow. 2090 * 2091 * Performance registers fall into three categories: 2092 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2093 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2094 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2095 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2096 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2097 */ 2098 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2099 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2101 .writefn = pmcntenset_write, 2102 .accessfn = pmreg_access, 2103 .fgt = FGT_PMCNTEN, 2104 .raw_writefn = raw_write }, 2105 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2107 .access = PL0_RW, .accessfn = pmreg_access, 2108 .fgt = FGT_PMCNTEN, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2110 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2111 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2112 .access = PL0_RW, 2113 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2114 .accessfn = pmreg_access, 2115 .fgt = FGT_PMCNTEN, 2116 .writefn = pmcntenclr_write, 2117 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2118 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCNTEN, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2124 .writefn = pmcntenclr_write }, 2125 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2126 .access = PL0_RW, .type = ARM_CP_IO, 2127 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2128 .accessfn = pmreg_access, 2129 .fgt = FGT_PMOVS, 2130 .writefn = pmovsr_write, 2131 .raw_writefn = raw_write }, 2132 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2134 .access = PL0_RW, .accessfn = pmreg_access, 2135 .fgt = FGT_PMOVS, 2136 .type = ARM_CP_ALIAS | ARM_CP_IO, 2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2138 .writefn = pmovsr_write, 2139 .raw_writefn = raw_write }, 2140 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2141 .access = PL0_W, .accessfn = pmreg_access_swinc, 2142 .fgt = FGT_PMSWINC_EL0, 2143 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .writefn = pmswinc_write }, 2145 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2146 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2147 .access = PL0_W, .accessfn = pmreg_access_swinc, 2148 .fgt = FGT_PMSWINC_EL0, 2149 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .writefn = pmswinc_write }, 2151 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2152 .access = PL0_RW, .type = ARM_CP_ALIAS, 2153 .fgt = FGT_PMSELR_EL0, 2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2155 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2156 .raw_writefn = raw_write}, 2157 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2159 .access = PL0_RW, .accessfn = pmreg_access_selr, 2160 .fgt = FGT_PMSELR_EL0, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2162 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2163 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2164 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fgt = FGT_PMCCNTR_EL0, 2166 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2167 .accessfn = pmreg_access_ccntr }, 2168 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2170 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2171 .fgt = FGT_PMCCNTR_EL0, 2172 .type = ARM_CP_IO, 2173 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2174 .readfn = pmccntr_read, .writefn = pmccntr_write, 2175 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2176 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2177 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2178 .access = PL0_RW, .accessfn = pmreg_access, 2179 .fgt = FGT_PMCCFILTR_EL0, 2180 .type = ARM_CP_ALIAS | ARM_CP_IO, 2181 .resetvalue = 0, }, 2182 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2184 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2185 .access = PL0_RW, .accessfn = pmreg_access, 2186 .fgt = FGT_PMCCFILTR_EL0, 2187 .type = ARM_CP_IO, 2188 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2189 .resetvalue = 0, }, 2190 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2191 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2192 .accessfn = pmreg_access, 2193 .fgt = FGT_PMEVTYPERN_EL0, 2194 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2195 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2197 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2198 .accessfn = pmreg_access, 2199 .fgt = FGT_PMEVTYPERN_EL0, 2200 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2201 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2202 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2203 .accessfn = pmreg_access_xevcntr, 2204 .fgt = FGT_PMEVCNTRN_EL0, 2205 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2206 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2208 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2209 .accessfn = pmreg_access_xevcntr, 2210 .fgt = FGT_PMEVCNTRN_EL0, 2211 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2212 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2213 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2215 .resetvalue = 0, 2216 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2217 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2219 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2221 .resetvalue = 0, 2222 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2223 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2224 .access = PL1_RW, .accessfn = access_tpm, 2225 .fgt = FGT_PMINTEN, 2226 .type = ARM_CP_ALIAS | ARM_CP_IO, 2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2228 .resetvalue = 0, 2229 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2230 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2232 .access = PL1_RW, .accessfn = access_tpm, 2233 .fgt = FGT_PMINTEN, 2234 .type = ARM_CP_IO, 2235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2236 .writefn = pmintenset_write, .raw_writefn = raw_write, 2237 .resetvalue = 0x0 }, 2238 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2239 .access = PL1_RW, .accessfn = access_tpm, 2240 .fgt = FGT_PMINTEN, 2241 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2242 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2243 .writefn = pmintenclr_write, }, 2244 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2245 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2246 .access = PL1_RW, .accessfn = access_tpm, 2247 .fgt = FGT_PMINTEN, 2248 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2250 .writefn = pmintenclr_write }, 2251 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2252 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2253 .access = PL1_R, 2254 .accessfn = access_tid4, 2255 .fgt = FGT_CCSIDR_EL1, 2256 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2257 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2258 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2259 .access = PL1_RW, 2260 .accessfn = access_tid4, 2261 .fgt = FGT_CSSELR_EL1, 2262 .writefn = csselr_write, .resetvalue = 0, 2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2264 offsetof(CPUARMState, cp15.csselr_ns) } }, 2265 /* 2266 * Auxiliary ID register: this actually has an IMPDEF value but for now 2267 * just RAZ for all cores: 2268 */ 2269 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2270 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2271 .access = PL1_R, .type = ARM_CP_CONST, 2272 .accessfn = access_aa64_tid1, 2273 .fgt = FGT_AIDR_EL1, 2274 .resetvalue = 0 }, 2275 /* 2276 * Auxiliary fault status registers: these also are IMPDEF, and we 2277 * choose to RAZ/WI for all cores. 2278 */ 2279 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2280 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2281 .access = PL1_RW, .accessfn = access_tvm_trvm, 2282 .fgt = FGT_AFSR0_EL1, 2283 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2284 .type = ARM_CP_CONST, .resetvalue = 0 }, 2285 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2286 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2287 .access = PL1_RW, .accessfn = access_tvm_trvm, 2288 .fgt = FGT_AFSR1_EL1, 2289 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2290 .type = ARM_CP_CONST, .resetvalue = 0 }, 2291 /* 2292 * MAIR can just read-as-written because we don't implement caches 2293 * and so don't need to care about memory attributes. 2294 */ 2295 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2296 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2297 .access = PL1_RW, .accessfn = access_tvm_trvm, 2298 .fgt = FGT_MAIR_EL1, 2299 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2300 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2301 .resetvalue = 0 }, 2302 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2303 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2304 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2305 .resetvalue = 0 }, 2306 /* 2307 * For non-long-descriptor page tables these are PRRR and NMRR; 2308 * regardless they still act as reads-as-written for QEMU. 2309 */ 2310 /* 2311 * MAIR0/1 are defined separately from their 64-bit counterpart which 2312 * allows them to assign the correct fieldoffset based on the endianness 2313 * handled in the field definitions. 2314 */ 2315 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2316 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2317 .access = PL1_RW, .accessfn = access_tvm_trvm, 2318 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2319 offsetof(CPUARMState, cp15.mair0_ns) }, 2320 .resetfn = arm_cp_reset_ignore }, 2321 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2322 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2323 .access = PL1_RW, .accessfn = access_tvm_trvm, 2324 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2325 offsetof(CPUARMState, cp15.mair1_ns) }, 2326 .resetfn = arm_cp_reset_ignore }, 2327 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2328 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2329 .fgt = FGT_ISR_EL1, 2330 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2331 /* 32 bit ITLB invalidates */ 2332 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2334 .writefn = tlbiall_write }, 2335 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2337 .writefn = tlbimva_write }, 2338 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2340 .writefn = tlbiasid_write }, 2341 /* 32 bit DTLB invalidates */ 2342 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbiall_write }, 2345 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbimva_write }, 2348 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiasid_write }, 2351 /* 32 bit TLB invalidates */ 2352 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2354 .writefn = tlbiall_write }, 2355 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2357 .writefn = tlbimva_write }, 2358 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbiasid_write }, 2361 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2363 .writefn = tlbimvaa_write }, 2364 }; 2365 2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2367 /* 32 bit TLB invalidates, Inner Shareable */ 2368 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2370 .writefn = tlbiall_is_write }, 2371 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2373 .writefn = tlbimva_is_write }, 2374 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2376 .writefn = tlbiasid_is_write }, 2377 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2379 .writefn = tlbimvaa_is_write }, 2380 }; 2381 2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2383 /* PMOVSSET is not implemented in v7 before v7ve */ 2384 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2385 .access = PL0_RW, .accessfn = pmreg_access, 2386 .fgt = FGT_PMOVS, 2387 .type = ARM_CP_ALIAS | ARM_CP_IO, 2388 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2389 .writefn = pmovsset_write, 2390 .raw_writefn = raw_write }, 2391 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2393 .access = PL0_RW, .accessfn = pmreg_access, 2394 .fgt = FGT_PMOVS, 2395 .type = ARM_CP_ALIAS | ARM_CP_IO, 2396 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2397 .writefn = pmovsset_write, 2398 .raw_writefn = raw_write }, 2399 }; 2400 2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2402 uint64_t value) 2403 { 2404 value &= 1; 2405 env->teecr = value; 2406 } 2407 2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2409 bool isread) 2410 { 2411 /* 2412 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2413 * at all, so we don't need to check whether we're v8A. 2414 */ 2415 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2416 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2417 return CP_ACCESS_TRAP_EL2; 2418 } 2419 return CP_ACCESS_OK; 2420 } 2421 2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2423 bool isread) 2424 { 2425 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2426 return CP_ACCESS_TRAP; 2427 } 2428 return teecr_access(env, ri, isread); 2429 } 2430 2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2432 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2433 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2434 .resetvalue = 0, 2435 .writefn = teecr_write, .accessfn = teecr_access }, 2436 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2437 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2438 .accessfn = teehbr_access, .resetvalue = 0 }, 2439 }; 2440 2441 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2442 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2443 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2444 .access = PL0_RW, 2445 .fgt = FGT_TPIDR_EL0, 2446 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2447 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2448 .access = PL0_RW, 2449 .fgt = FGT_TPIDR_EL0, 2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2451 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2452 .resetfn = arm_cp_reset_ignore }, 2453 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2454 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2455 .access = PL0_R | PL1_W, 2456 .fgt = FGT_TPIDRRO_EL0, 2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2458 .resetvalue = 0}, 2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2460 .access = PL0_R | PL1_W, 2461 .fgt = FGT_TPIDRRO_EL0, 2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2467 .access = PL1_RW, 2468 .fgt = FGT_TPIDR_EL1, 2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2471 .access = PL1_RW, 2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2474 .resetvalue = 0 }, 2475 }; 2476 2477 #ifndef CONFIG_USER_ONLY 2478 2479 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2480 bool isread) 2481 { 2482 /* 2483 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2484 * Writable only at the highest implemented exception level. 2485 */ 2486 int el = arm_current_el(env); 2487 uint64_t hcr; 2488 uint32_t cntkctl; 2489 2490 switch (el) { 2491 case 0: 2492 hcr = arm_hcr_el2_eff(env); 2493 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2494 cntkctl = env->cp15.cnthctl_el2; 2495 } else { 2496 cntkctl = env->cp15.c14_cntkctl; 2497 } 2498 if (!extract32(cntkctl, 0, 2)) { 2499 return CP_ACCESS_TRAP; 2500 } 2501 break; 2502 case 1: 2503 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2504 arm_is_secure_below_el3(env)) { 2505 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2506 return CP_ACCESS_TRAP_UNCATEGORIZED; 2507 } 2508 break; 2509 case 2: 2510 case 3: 2511 break; 2512 } 2513 2514 if (!isread && el < arm_highest_el(env)) { 2515 return CP_ACCESS_TRAP_UNCATEGORIZED; 2516 } 2517 2518 return CP_ACCESS_OK; 2519 } 2520 2521 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2522 bool isread) 2523 { 2524 unsigned int cur_el = arm_current_el(env); 2525 bool has_el2 = arm_is_el2_enabled(env); 2526 uint64_t hcr = arm_hcr_el2_eff(env); 2527 2528 switch (cur_el) { 2529 case 0: 2530 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2531 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2532 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2533 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2534 } 2535 2536 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2537 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2538 return CP_ACCESS_TRAP; 2539 } 2540 /* fall through */ 2541 case 1: 2542 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2543 if (has_el2 && timeridx == GTIMER_PHYS && 2544 (hcr & HCR_E2H 2545 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2546 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2547 return CP_ACCESS_TRAP_EL2; 2548 } 2549 if (has_el2 && timeridx == GTIMER_VIRT) { 2550 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2551 return CP_ACCESS_TRAP_EL2; 2552 } 2553 } 2554 break; 2555 } 2556 return CP_ACCESS_OK; 2557 } 2558 2559 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2560 bool isread) 2561 { 2562 unsigned int cur_el = arm_current_el(env); 2563 bool has_el2 = arm_is_el2_enabled(env); 2564 uint64_t hcr = arm_hcr_el2_eff(env); 2565 2566 switch (cur_el) { 2567 case 0: 2568 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2569 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2570 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2571 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2572 } 2573 2574 /* 2575 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2576 * EL0 if EL0[PV]TEN is zero. 2577 */ 2578 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2579 return CP_ACCESS_TRAP; 2580 } 2581 /* fall through */ 2582 2583 case 1: 2584 if (has_el2 && timeridx == GTIMER_PHYS) { 2585 if (hcr & HCR_E2H) { 2586 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2587 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2588 return CP_ACCESS_TRAP_EL2; 2589 } 2590 } else { 2591 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2592 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2593 return CP_ACCESS_TRAP_EL2; 2594 } 2595 } 2596 } 2597 if (has_el2 && timeridx == GTIMER_VIRT) { 2598 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2599 return CP_ACCESS_TRAP_EL2; 2600 } 2601 } 2602 break; 2603 } 2604 return CP_ACCESS_OK; 2605 } 2606 2607 static CPAccessResult gt_pct_access(CPUARMState *env, 2608 const ARMCPRegInfo *ri, 2609 bool isread) 2610 { 2611 return gt_counter_access(env, GTIMER_PHYS, isread); 2612 } 2613 2614 static CPAccessResult gt_vct_access(CPUARMState *env, 2615 const ARMCPRegInfo *ri, 2616 bool isread) 2617 { 2618 return gt_counter_access(env, GTIMER_VIRT, isread); 2619 } 2620 2621 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2622 bool isread) 2623 { 2624 return gt_timer_access(env, GTIMER_PHYS, isread); 2625 } 2626 2627 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2628 bool isread) 2629 { 2630 return gt_timer_access(env, GTIMER_VIRT, isread); 2631 } 2632 2633 static CPAccessResult gt_stimer_access(CPUARMState *env, 2634 const ARMCPRegInfo *ri, 2635 bool isread) 2636 { 2637 /* 2638 * The AArch64 register view of the secure physical timer is 2639 * always accessible from EL3, and configurably accessible from 2640 * Secure EL1. 2641 */ 2642 switch (arm_current_el(env)) { 2643 case 1: 2644 if (!arm_is_secure(env)) { 2645 return CP_ACCESS_TRAP; 2646 } 2647 if (!(env->cp15.scr_el3 & SCR_ST)) { 2648 return CP_ACCESS_TRAP_EL3; 2649 } 2650 return CP_ACCESS_OK; 2651 case 0: 2652 case 2: 2653 return CP_ACCESS_TRAP; 2654 case 3: 2655 return CP_ACCESS_OK; 2656 default: 2657 g_assert_not_reached(); 2658 } 2659 } 2660 2661 static uint64_t gt_get_countervalue(CPUARMState *env) 2662 { 2663 ARMCPU *cpu = env_archcpu(env); 2664 2665 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2666 } 2667 2668 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2669 { 2670 CPUARMState *env = &cpu->env; 2671 uint64_t cnthctl = env->cp15.cnthctl_el2; 2672 ARMSecuritySpace ss = arm_security_space(env); 2673 /* ISTATUS && !IMASK */ 2674 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2675 2676 /* 2677 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2678 * It is RES0 in Secure and NonSecure state. 2679 */ 2680 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2681 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2682 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2683 irqstate = 0; 2684 } 2685 2686 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2687 trace_arm_gt_update_irq(timeridx, irqstate); 2688 } 2689 2690 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2691 { 2692 /* 2693 * Changing security state between Root and Secure/NonSecure, which may 2694 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2695 * mask bits. Update the IRQ state accordingly. 2696 */ 2697 gt_update_irq(cpu, GTIMER_VIRT); 2698 gt_update_irq(cpu, GTIMER_PHYS); 2699 } 2700 2701 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2702 { 2703 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2704 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2705 arm_is_el2_enabled(env) && 2706 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2707 return env->cp15.cntpoff_el2; 2708 } 2709 return 0; 2710 } 2711 2712 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2713 { 2714 if (arm_current_el(env) >= 2) { 2715 return 0; 2716 } 2717 return gt_phys_raw_cnt_offset(env); 2718 } 2719 2720 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2721 { 2722 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2723 2724 if (gt->ctl & 1) { 2725 /* 2726 * Timer enabled: calculate and set current ISTATUS, irq, and 2727 * reset timer to when ISTATUS next has to change 2728 */ 2729 uint64_t offset = timeridx == GTIMER_VIRT ? 2730 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2731 uint64_t count = gt_get_countervalue(&cpu->env); 2732 /* Note that this must be unsigned 64 bit arithmetic: */ 2733 int istatus = count - offset >= gt->cval; 2734 uint64_t nexttick; 2735 2736 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2737 2738 if (istatus) { 2739 /* 2740 * Next transition is when (count - offset) rolls back over to 0. 2741 * If offset > count then this is when count == offset; 2742 * if offset <= count then this is when count == offset + 2^64 2743 * For the latter case we set nexttick to an "as far in future 2744 * as possible" value and let the code below handle it. 2745 */ 2746 if (offset > count) { 2747 nexttick = offset; 2748 } else { 2749 nexttick = UINT64_MAX; 2750 } 2751 } else { 2752 /* 2753 * Next transition is when (count - offset) == cval, i.e. 2754 * when count == (cval + offset). 2755 * If that would overflow, then again we set up the next interrupt 2756 * for "as far in the future as possible" for the code below. 2757 */ 2758 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2759 nexttick = UINT64_MAX; 2760 } 2761 } 2762 /* 2763 * Note that the desired next expiry time might be beyond the 2764 * signed-64-bit range of a QEMUTimer -- in this case we just 2765 * set the timer for as far in the future as possible. When the 2766 * timer expires we will reset the timer for any remaining period. 2767 */ 2768 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2769 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2770 } else { 2771 timer_mod(cpu->gt_timer[timeridx], nexttick); 2772 } 2773 trace_arm_gt_recalc(timeridx, nexttick); 2774 } else { 2775 /* Timer disabled: ISTATUS and timer output always clear */ 2776 gt->ctl &= ~4; 2777 timer_del(cpu->gt_timer[timeridx]); 2778 trace_arm_gt_recalc_disabled(timeridx); 2779 } 2780 gt_update_irq(cpu, timeridx); 2781 } 2782 2783 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2784 int timeridx) 2785 { 2786 ARMCPU *cpu = env_archcpu(env); 2787 2788 timer_del(cpu->gt_timer[timeridx]); 2789 } 2790 2791 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2792 { 2793 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2794 } 2795 2796 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2797 { 2798 uint64_t hcr; 2799 2800 switch (arm_current_el(env)) { 2801 case 2: 2802 hcr = arm_hcr_el2_eff(env); 2803 if (hcr & HCR_E2H) { 2804 return 0; 2805 } 2806 break; 2807 case 0: 2808 hcr = arm_hcr_el2_eff(env); 2809 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2810 return 0; 2811 } 2812 break; 2813 } 2814 2815 return env->cp15.cntvoff_el2; 2816 } 2817 2818 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2819 { 2820 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2821 } 2822 2823 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2824 int timeridx, 2825 uint64_t value) 2826 { 2827 trace_arm_gt_cval_write(timeridx, value); 2828 env->cp15.c14_timer[timeridx].cval = value; 2829 gt_recalc_timer(env_archcpu(env), timeridx); 2830 } 2831 2832 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2833 int timeridx) 2834 { 2835 uint64_t offset = 0; 2836 2837 switch (timeridx) { 2838 case GTIMER_VIRT: 2839 case GTIMER_HYPVIRT: 2840 offset = gt_virt_cnt_offset(env); 2841 break; 2842 case GTIMER_PHYS: 2843 offset = gt_phys_cnt_offset(env); 2844 break; 2845 } 2846 2847 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2848 (gt_get_countervalue(env) - offset)); 2849 } 2850 2851 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 int timeridx, 2853 uint64_t value) 2854 { 2855 uint64_t offset = 0; 2856 2857 switch (timeridx) { 2858 case GTIMER_VIRT: 2859 case GTIMER_HYPVIRT: 2860 offset = gt_virt_cnt_offset(env); 2861 break; 2862 case GTIMER_PHYS: 2863 offset = gt_phys_cnt_offset(env); 2864 break; 2865 } 2866 2867 trace_arm_gt_tval_write(timeridx, value); 2868 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2869 sextract64(value, 0, 32); 2870 gt_recalc_timer(env_archcpu(env), timeridx); 2871 } 2872 2873 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2874 int timeridx, 2875 uint64_t value) 2876 { 2877 ARMCPU *cpu = env_archcpu(env); 2878 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2879 2880 trace_arm_gt_ctl_write(timeridx, value); 2881 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2882 if ((oldval ^ value) & 1) { 2883 /* Enable toggled */ 2884 gt_recalc_timer(cpu, timeridx); 2885 } else if ((oldval ^ value) & 2) { 2886 /* 2887 * IMASK toggled: don't need to recalculate, 2888 * just set the interrupt line based on ISTATUS 2889 */ 2890 trace_arm_gt_imask_toggle(timeridx); 2891 gt_update_irq(cpu, timeridx); 2892 } 2893 } 2894 2895 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2896 { 2897 gt_timer_reset(env, ri, GTIMER_PHYS); 2898 } 2899 2900 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2901 uint64_t value) 2902 { 2903 gt_cval_write(env, ri, GTIMER_PHYS, value); 2904 } 2905 2906 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2907 { 2908 return gt_tval_read(env, ri, GTIMER_PHYS); 2909 } 2910 2911 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2912 uint64_t value) 2913 { 2914 gt_tval_write(env, ri, GTIMER_PHYS, value); 2915 } 2916 2917 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2918 uint64_t value) 2919 { 2920 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2921 } 2922 2923 static int gt_phys_redir_timeridx(CPUARMState *env) 2924 { 2925 switch (arm_mmu_idx(env)) { 2926 case ARMMMUIdx_E20_0: 2927 case ARMMMUIdx_E20_2: 2928 case ARMMMUIdx_E20_2_PAN: 2929 return GTIMER_HYP; 2930 default: 2931 return GTIMER_PHYS; 2932 } 2933 } 2934 2935 static int gt_virt_redir_timeridx(CPUARMState *env) 2936 { 2937 switch (arm_mmu_idx(env)) { 2938 case ARMMMUIdx_E20_0: 2939 case ARMMMUIdx_E20_2: 2940 case ARMMMUIdx_E20_2_PAN: 2941 return GTIMER_HYPVIRT; 2942 default: 2943 return GTIMER_VIRT; 2944 } 2945 } 2946 2947 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2948 const ARMCPRegInfo *ri) 2949 { 2950 int timeridx = gt_phys_redir_timeridx(env); 2951 return env->cp15.c14_timer[timeridx].cval; 2952 } 2953 2954 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 int timeridx = gt_phys_redir_timeridx(env); 2958 gt_cval_write(env, ri, timeridx, value); 2959 } 2960 2961 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2962 const ARMCPRegInfo *ri) 2963 { 2964 int timeridx = gt_phys_redir_timeridx(env); 2965 return gt_tval_read(env, ri, timeridx); 2966 } 2967 2968 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 int timeridx = gt_phys_redir_timeridx(env); 2972 gt_tval_write(env, ri, timeridx, value); 2973 } 2974 2975 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2976 const ARMCPRegInfo *ri) 2977 { 2978 int timeridx = gt_phys_redir_timeridx(env); 2979 return env->cp15.c14_timer[timeridx].ctl; 2980 } 2981 2982 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2983 uint64_t value) 2984 { 2985 int timeridx = gt_phys_redir_timeridx(env); 2986 gt_ctl_write(env, ri, timeridx, value); 2987 } 2988 2989 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2990 { 2991 gt_timer_reset(env, ri, GTIMER_VIRT); 2992 } 2993 2994 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2995 uint64_t value) 2996 { 2997 gt_cval_write(env, ri, GTIMER_VIRT, value); 2998 } 2999 3000 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3001 { 3002 return gt_tval_read(env, ri, GTIMER_VIRT); 3003 } 3004 3005 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3006 uint64_t value) 3007 { 3008 gt_tval_write(env, ri, GTIMER_VIRT, value); 3009 } 3010 3011 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3012 uint64_t value) 3013 { 3014 gt_ctl_write(env, ri, GTIMER_VIRT, value); 3015 } 3016 3017 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3018 uint64_t value) 3019 { 3020 ARMCPU *cpu = env_archcpu(env); 3021 uint32_t oldval = env->cp15.cnthctl_el2; 3022 uint32_t valid_mask = 3023 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 3024 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 3025 R_CNTHCTL_EVNTEN_MASK | 3026 R_CNTHCTL_EVNTDIR_MASK | 3027 R_CNTHCTL_EVNTI_MASK | 3028 R_CNTHCTL_EL0VTEN_MASK | 3029 R_CNTHCTL_EL0PTEN_MASK | 3030 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 3031 R_CNTHCTL_EL1PTEN_MASK; 3032 3033 if (cpu_isar_feature(aa64_rme, cpu)) { 3034 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 3035 } 3036 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 3037 valid_mask |= 3038 R_CNTHCTL_EL1TVT_MASK | 3039 R_CNTHCTL_EL1TVCT_MASK | 3040 R_CNTHCTL_EL1NVPCT_MASK | 3041 R_CNTHCTL_EL1NVVCT_MASK | 3042 R_CNTHCTL_EVNTIS_MASK; 3043 } 3044 if (cpu_isar_feature(aa64_ecv, cpu)) { 3045 valid_mask |= R_CNTHCTL_ECV_MASK; 3046 } 3047 3048 /* Clear RES0 bits */ 3049 value &= valid_mask; 3050 3051 raw_write(env, ri, value); 3052 3053 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 3054 gt_update_irq(cpu, GTIMER_VIRT); 3055 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 3056 gt_update_irq(cpu, GTIMER_PHYS); 3057 } 3058 } 3059 3060 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3061 uint64_t value) 3062 { 3063 ARMCPU *cpu = env_archcpu(env); 3064 3065 trace_arm_gt_cntvoff_write(value); 3066 raw_write(env, ri, value); 3067 gt_recalc_timer(cpu, GTIMER_VIRT); 3068 } 3069 3070 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3071 const ARMCPRegInfo *ri) 3072 { 3073 int timeridx = gt_virt_redir_timeridx(env); 3074 return env->cp15.c14_timer[timeridx].cval; 3075 } 3076 3077 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3078 uint64_t value) 3079 { 3080 int timeridx = gt_virt_redir_timeridx(env); 3081 gt_cval_write(env, ri, timeridx, value); 3082 } 3083 3084 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3085 const ARMCPRegInfo *ri) 3086 { 3087 int timeridx = gt_virt_redir_timeridx(env); 3088 return gt_tval_read(env, ri, timeridx); 3089 } 3090 3091 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3092 uint64_t value) 3093 { 3094 int timeridx = gt_virt_redir_timeridx(env); 3095 gt_tval_write(env, ri, timeridx, value); 3096 } 3097 3098 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3099 const ARMCPRegInfo *ri) 3100 { 3101 int timeridx = gt_virt_redir_timeridx(env); 3102 return env->cp15.c14_timer[timeridx].ctl; 3103 } 3104 3105 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3106 uint64_t value) 3107 { 3108 int timeridx = gt_virt_redir_timeridx(env); 3109 gt_ctl_write(env, ri, timeridx, value); 3110 } 3111 3112 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3113 { 3114 gt_timer_reset(env, ri, GTIMER_HYP); 3115 } 3116 3117 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3118 uint64_t value) 3119 { 3120 gt_cval_write(env, ri, GTIMER_HYP, value); 3121 } 3122 3123 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3124 { 3125 return gt_tval_read(env, ri, GTIMER_HYP); 3126 } 3127 3128 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3129 uint64_t value) 3130 { 3131 gt_tval_write(env, ri, GTIMER_HYP, value); 3132 } 3133 3134 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3135 uint64_t value) 3136 { 3137 gt_ctl_write(env, ri, GTIMER_HYP, value); 3138 } 3139 3140 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3141 { 3142 gt_timer_reset(env, ri, GTIMER_SEC); 3143 } 3144 3145 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3146 uint64_t value) 3147 { 3148 gt_cval_write(env, ri, GTIMER_SEC, value); 3149 } 3150 3151 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3152 { 3153 return gt_tval_read(env, ri, GTIMER_SEC); 3154 } 3155 3156 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3157 uint64_t value) 3158 { 3159 gt_tval_write(env, ri, GTIMER_SEC, value); 3160 } 3161 3162 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3163 uint64_t value) 3164 { 3165 gt_ctl_write(env, ri, GTIMER_SEC, value); 3166 } 3167 3168 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3169 { 3170 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3171 } 3172 3173 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3174 uint64_t value) 3175 { 3176 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3177 } 3178 3179 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3180 { 3181 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3182 } 3183 3184 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3185 uint64_t value) 3186 { 3187 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3188 } 3189 3190 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3191 uint64_t value) 3192 { 3193 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3194 } 3195 3196 void arm_gt_ptimer_cb(void *opaque) 3197 { 3198 ARMCPU *cpu = opaque; 3199 3200 gt_recalc_timer(cpu, GTIMER_PHYS); 3201 } 3202 3203 void arm_gt_vtimer_cb(void *opaque) 3204 { 3205 ARMCPU *cpu = opaque; 3206 3207 gt_recalc_timer(cpu, GTIMER_VIRT); 3208 } 3209 3210 void arm_gt_htimer_cb(void *opaque) 3211 { 3212 ARMCPU *cpu = opaque; 3213 3214 gt_recalc_timer(cpu, GTIMER_HYP); 3215 } 3216 3217 void arm_gt_stimer_cb(void *opaque) 3218 { 3219 ARMCPU *cpu = opaque; 3220 3221 gt_recalc_timer(cpu, GTIMER_SEC); 3222 } 3223 3224 void arm_gt_hvtimer_cb(void *opaque) 3225 { 3226 ARMCPU *cpu = opaque; 3227 3228 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3229 } 3230 3231 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3232 { 3233 ARMCPU *cpu = env_archcpu(env); 3234 3235 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3236 } 3237 3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3239 /* 3240 * Note that CNTFRQ is purely reads-as-written for the benefit 3241 * of software; writing it doesn't actually change the timer frequency. 3242 * Our reset value matches the fixed frequency we implement the timer at. 3243 */ 3244 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_ALIAS, 3246 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3247 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3248 }, 3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3251 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3253 .resetfn = arm_gt_cntfrq_reset, 3254 }, 3255 /* overall control: mostly access permissions */ 3256 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3257 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3258 .access = PL1_RW, 3259 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3260 .resetvalue = 0, 3261 }, 3262 /* per-timer control */ 3263 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3264 .secure = ARM_CP_SECSTATE_NS, 3265 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3266 .accessfn = gt_ptimer_access, 3267 .fieldoffset = offsetoflow32(CPUARMState, 3268 cp15.c14_timer[GTIMER_PHYS].ctl), 3269 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3270 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3271 }, 3272 { .name = "CNTP_CTL_S", 3273 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3274 .secure = ARM_CP_SECSTATE_S, 3275 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3276 .accessfn = gt_ptimer_access, 3277 .fieldoffset = offsetoflow32(CPUARMState, 3278 cp15.c14_timer[GTIMER_SEC].ctl), 3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3280 }, 3281 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3283 .type = ARM_CP_IO, .access = PL0_RW, 3284 .accessfn = gt_ptimer_access, 3285 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3287 .resetvalue = 0, 3288 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3289 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3290 }, 3291 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3292 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3293 .accessfn = gt_vtimer_access, 3294 .fieldoffset = offsetoflow32(CPUARMState, 3295 cp15.c14_timer[GTIMER_VIRT].ctl), 3296 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3297 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3298 }, 3299 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3301 .type = ARM_CP_IO, .access = PL0_RW, 3302 .accessfn = gt_vtimer_access, 3303 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3305 .resetvalue = 0, 3306 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3307 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3308 }, 3309 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3310 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3311 .secure = ARM_CP_SECSTATE_NS, 3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3313 .accessfn = gt_ptimer_access, 3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3315 }, 3316 { .name = "CNTP_TVAL_S", 3317 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3318 .secure = ARM_CP_SECSTATE_S, 3319 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3320 .accessfn = gt_ptimer_access, 3321 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3322 }, 3323 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3326 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3327 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3328 }, 3329 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3330 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3331 .accessfn = gt_vtimer_access, 3332 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3333 }, 3334 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3336 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3337 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3338 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3339 }, 3340 /* The counter itself */ 3341 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3342 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3343 .accessfn = gt_pct_access, 3344 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3345 }, 3346 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3347 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3348 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3349 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3350 }, 3351 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3352 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3353 .accessfn = gt_vct_access, 3354 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3355 }, 3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3359 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3360 }, 3361 /* Comparison value, indicating when the timer goes off */ 3362 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3363 .secure = ARM_CP_SECSTATE_NS, 3364 .access = PL0_RW, 3365 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3367 .accessfn = gt_ptimer_access, 3368 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3369 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3370 }, 3371 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3372 .secure = ARM_CP_SECSTATE_S, 3373 .access = PL0_RW, 3374 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3375 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3376 .accessfn = gt_ptimer_access, 3377 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3378 }, 3379 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3381 .access = PL0_RW, 3382 .type = ARM_CP_IO, 3383 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3384 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3385 .resetvalue = 0, .accessfn = gt_ptimer_access, 3386 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3387 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3388 }, 3389 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3390 .access = PL0_RW, 3391 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3393 .accessfn = gt_vtimer_access, 3394 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3395 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3396 }, 3397 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3399 .access = PL0_RW, 3400 .type = ARM_CP_IO, 3401 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3402 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3403 .resetvalue = 0, .accessfn = gt_vtimer_access, 3404 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3405 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3406 }, 3407 /* 3408 * Secure timer -- this is actually restricted to only EL3 3409 * and configurably Secure-EL1 via the accessfn. 3410 */ 3411 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3412 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3413 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3414 .accessfn = gt_stimer_access, 3415 .readfn = gt_sec_tval_read, 3416 .writefn = gt_sec_tval_write, 3417 .resetfn = gt_sec_timer_reset, 3418 }, 3419 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3420 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3421 .type = ARM_CP_IO, .access = PL1_RW, 3422 .accessfn = gt_stimer_access, 3423 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3424 .resetvalue = 0, 3425 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3426 }, 3427 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3429 .type = ARM_CP_IO, .access = PL1_RW, 3430 .accessfn = gt_stimer_access, 3431 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3432 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3433 }, 3434 }; 3435 3436 /* 3437 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3438 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3439 * so our implementations here are identical to the normal registers. 3440 */ 3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3442 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3443 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3444 .accessfn = gt_vct_access, 3445 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3446 }, 3447 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3448 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3449 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3450 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3451 }, 3452 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3453 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3454 .accessfn = gt_pct_access, 3455 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3456 }, 3457 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3459 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3460 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3461 }, 3462 }; 3463 3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3465 const ARMCPRegInfo *ri, 3466 bool isread) 3467 { 3468 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3469 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3470 return CP_ACCESS_TRAP_EL3; 3471 } 3472 return CP_ACCESS_OK; 3473 } 3474 3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3476 uint64_t value) 3477 { 3478 ARMCPU *cpu = env_archcpu(env); 3479 3480 trace_arm_gt_cntpoff_write(value); 3481 raw_write(env, ri, value); 3482 gt_recalc_timer(cpu, GTIMER_PHYS); 3483 } 3484 3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3486 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3487 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3488 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3489 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3490 .nv2_redirect_offset = 0x1a8, 3491 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3492 }; 3493 #else 3494 3495 /* 3496 * In user-mode most of the generic timer registers are inaccessible 3497 * however modern kernels (4.12+) allow access to cntvct_el0 3498 */ 3499 3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3501 { 3502 ARMCPU *cpu = env_archcpu(env); 3503 3504 /* 3505 * Currently we have no support for QEMUTimer in linux-user so we 3506 * can't call gt_get_countervalue(env), instead we directly 3507 * call the lower level functions. 3508 */ 3509 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3510 } 3511 3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3513 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3515 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3516 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3517 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3518 }, 3519 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3521 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3522 .readfn = gt_virt_cnt_read, 3523 }, 3524 }; 3525 3526 /* 3527 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3528 * is exposed to userspace by Linux. 3529 */ 3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3531 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3532 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3533 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3534 .readfn = gt_virt_cnt_read, 3535 }, 3536 }; 3537 3538 #endif 3539 3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3541 { 3542 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3543 raw_write(env, ri, value); 3544 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3545 raw_write(env, ri, value & 0xfffff6ff); 3546 } else { 3547 raw_write(env, ri, value & 0xfffff1ff); 3548 } 3549 } 3550 3551 #ifndef CONFIG_USER_ONLY 3552 /* get_phys_addr() isn't present for user-mode-only targets */ 3553 3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3555 bool isread) 3556 { 3557 if (ri->opc2 & 4) { 3558 /* 3559 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3560 * Secure EL1 (which can only happen if EL3 is AArch64). 3561 * They are simply UNDEF if executed from NS EL1. 3562 * They function normally from EL2 or EL3. 3563 */ 3564 if (arm_current_el(env) == 1) { 3565 if (arm_is_secure_below_el3(env)) { 3566 if (env->cp15.scr_el3 & SCR_EEL2) { 3567 return CP_ACCESS_TRAP_EL2; 3568 } 3569 return CP_ACCESS_TRAP_EL3; 3570 } 3571 return CP_ACCESS_TRAP_UNCATEGORIZED; 3572 } 3573 } 3574 return CP_ACCESS_OK; 3575 } 3576 3577 #ifdef CONFIG_TCG 3578 static int par_el1_shareability(GetPhysAddrResult *res) 3579 { 3580 /* 3581 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3582 * memory -- see pseudocode PAREncodeShareability(). 3583 */ 3584 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3585 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3586 return 2; 3587 } 3588 return res->cacheattrs.shareability; 3589 } 3590 3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3592 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3593 ARMSecuritySpace ss) 3594 { 3595 bool ret; 3596 uint64_t par64; 3597 bool format64 = false; 3598 ARMMMUFaultInfo fi = {}; 3599 GetPhysAddrResult res = {}; 3600 3601 /* 3602 * I_MXTJT: Granule protection checks are not performed on the final address 3603 * of a successful translation. 3604 */ 3605 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3606 &res, &fi); 3607 3608 /* 3609 * ATS operations only do S1 or S1+S2 translations, so we never 3610 * have to deal with the ARMCacheAttrs format for S2 only. 3611 */ 3612 assert(!res.cacheattrs.is_s2_format); 3613 3614 if (ret) { 3615 /* 3616 * Some kinds of translation fault must cause exceptions rather 3617 * than being reported in the PAR. 3618 */ 3619 int current_el = arm_current_el(env); 3620 int target_el; 3621 uint32_t syn, fsr, fsc; 3622 bool take_exc = false; 3623 3624 if (fi.s1ptw && current_el == 1 3625 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3626 /* 3627 * Synchronous stage 2 fault on an access made as part of the 3628 * translation table walk for AT S1E0* or AT S1E1* insn 3629 * executed from NS EL1. If this is a synchronous external abort 3630 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3631 * to EL3. Otherwise the fault is taken as an exception to EL2, 3632 * and HPFAR_EL2 holds the faulting IPA. 3633 */ 3634 if (fi.type == ARMFault_SyncExternalOnWalk && 3635 (env->cp15.scr_el3 & SCR_EA)) { 3636 target_el = 3; 3637 } else { 3638 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3639 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3640 env->cp15.hpfar_el2 |= HPFAR_NS; 3641 } 3642 target_el = 2; 3643 } 3644 take_exc = true; 3645 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3646 /* 3647 * Synchronous external aborts during a translation table walk 3648 * are taken as Data Abort exceptions. 3649 */ 3650 if (fi.stage2) { 3651 if (current_el == 3) { 3652 target_el = 3; 3653 } else { 3654 target_el = 2; 3655 } 3656 } else { 3657 target_el = exception_target_el(env); 3658 } 3659 take_exc = true; 3660 } 3661 3662 if (take_exc) { 3663 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3664 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3665 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3666 fsr = arm_fi_to_lfsc(&fi); 3667 fsc = extract32(fsr, 0, 6); 3668 } else { 3669 fsr = arm_fi_to_sfsc(&fi); 3670 fsc = 0x3f; 3671 } 3672 /* 3673 * Report exception with ESR indicating a fault due to a 3674 * translation table walk for a cache maintenance instruction. 3675 */ 3676 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3677 fi.ea, 1, fi.s1ptw, 1, fsc); 3678 env->exception.vaddress = value; 3679 env->exception.fsr = fsr; 3680 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3681 } 3682 } 3683 3684 if (is_a64(env)) { 3685 format64 = true; 3686 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3687 /* 3688 * ATS1Cxx: 3689 * * TTBCR.EAE determines whether the result is returned using the 3690 * 32-bit or the 64-bit PAR format 3691 * * Instructions executed in Hyp mode always use the 64bit format 3692 * 3693 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3694 * * The Non-secure TTBCR.EAE bit is set to 1 3695 * * The implementation includes EL2, and the value of HCR.VM is 1 3696 * 3697 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3698 * 3699 * ATS1Hx always uses the 64bit format. 3700 */ 3701 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3702 3703 if (arm_feature(env, ARM_FEATURE_EL2)) { 3704 if (mmu_idx == ARMMMUIdx_E10_0 || 3705 mmu_idx == ARMMMUIdx_E10_1 || 3706 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3707 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3708 } else { 3709 format64 |= arm_current_el(env) == 2; 3710 } 3711 } 3712 } 3713 3714 if (format64) { 3715 /* Create a 64-bit PAR */ 3716 par64 = (1 << 11); /* LPAE bit always set */ 3717 if (!ret) { 3718 par64 |= res.f.phys_addr & ~0xfffULL; 3719 if (!res.f.attrs.secure) { 3720 par64 |= (1 << 9); /* NS */ 3721 } 3722 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3723 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3724 } else { 3725 uint32_t fsr = arm_fi_to_lfsc(&fi); 3726 3727 par64 |= 1; /* F */ 3728 par64 |= (fsr & 0x3f) << 1; /* FS */ 3729 if (fi.stage2) { 3730 par64 |= (1 << 9); /* S */ 3731 } 3732 if (fi.s1ptw) { 3733 par64 |= (1 << 8); /* PTW */ 3734 } 3735 } 3736 } else { 3737 /* 3738 * fsr is a DFSR/IFSR value for the short descriptor 3739 * translation table format (with WnR always clear). 3740 * Convert it to a 32-bit PAR. 3741 */ 3742 if (!ret) { 3743 /* We do not set any attribute bits in the PAR */ 3744 if (res.f.lg_page_size == 24 3745 && arm_feature(env, ARM_FEATURE_V7)) { 3746 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3747 } else { 3748 par64 = res.f.phys_addr & 0xfffff000; 3749 } 3750 if (!res.f.attrs.secure) { 3751 par64 |= (1 << 9); /* NS */ 3752 } 3753 } else { 3754 uint32_t fsr = arm_fi_to_sfsc(&fi); 3755 3756 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3757 ((fsr & 0xf) << 1) | 1; 3758 } 3759 } 3760 return par64; 3761 } 3762 #endif /* CONFIG_TCG */ 3763 3764 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3765 { 3766 #ifdef CONFIG_TCG 3767 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3768 uint64_t par64; 3769 ARMMMUIdx mmu_idx; 3770 int el = arm_current_el(env); 3771 ARMSecuritySpace ss = arm_security_space(env); 3772 3773 switch (ri->opc2 & 6) { 3774 case 0: 3775 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3776 switch (el) { 3777 case 3: 3778 mmu_idx = ARMMMUIdx_E3; 3779 break; 3780 case 2: 3781 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3782 /* fall through */ 3783 case 1: 3784 if (ri->crm == 9 && arm_pan_enabled(env)) { 3785 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3786 } else { 3787 mmu_idx = ARMMMUIdx_Stage1_E1; 3788 } 3789 break; 3790 default: 3791 g_assert_not_reached(); 3792 } 3793 break; 3794 case 2: 3795 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3796 switch (el) { 3797 case 3: 3798 mmu_idx = ARMMMUIdx_E10_0; 3799 break; 3800 case 2: 3801 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3802 mmu_idx = ARMMMUIdx_Stage1_E0; 3803 break; 3804 case 1: 3805 mmu_idx = ARMMMUIdx_Stage1_E0; 3806 break; 3807 default: 3808 g_assert_not_reached(); 3809 } 3810 break; 3811 case 4: 3812 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3813 mmu_idx = ARMMMUIdx_E10_1; 3814 ss = ARMSS_NonSecure; 3815 break; 3816 case 6: 3817 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3818 mmu_idx = ARMMMUIdx_E10_0; 3819 ss = ARMSS_NonSecure; 3820 break; 3821 default: 3822 g_assert_not_reached(); 3823 } 3824 3825 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3826 3827 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3828 #else 3829 /* Handled by hardware accelerator. */ 3830 g_assert_not_reached(); 3831 #endif /* CONFIG_TCG */ 3832 } 3833 3834 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 #ifdef CONFIG_TCG 3838 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3839 uint64_t par64; 3840 3841 /* There is no SecureEL2 for AArch32. */ 3842 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3843 ARMSS_NonSecure); 3844 3845 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3846 #else 3847 /* Handled by hardware accelerator. */ 3848 g_assert_not_reached(); 3849 #endif /* CONFIG_TCG */ 3850 } 3851 3852 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3853 bool isread) 3854 { 3855 /* 3856 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3857 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3858 * only happen when executing at EL3 because that combination also causes an 3859 * illegal exception return. We don't need to check FEAT_RME either, because 3860 * scr_write() ensures that the NSE bit is not set otherwise. 3861 */ 3862 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3863 return CP_ACCESS_TRAP; 3864 } 3865 return CP_ACCESS_OK; 3866 } 3867 3868 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3869 bool isread) 3870 { 3871 if (arm_current_el(env) == 3 && 3872 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3873 return CP_ACCESS_TRAP; 3874 } 3875 return at_e012_access(env, ri, isread); 3876 } 3877 3878 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3879 bool isread) 3880 { 3881 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3882 return CP_ACCESS_TRAP_EL2; 3883 } 3884 return at_e012_access(env, ri, isread); 3885 } 3886 3887 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3888 uint64_t value) 3889 { 3890 #ifdef CONFIG_TCG 3891 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3892 ARMMMUIdx mmu_idx; 3893 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3894 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3895 bool for_el3 = false; 3896 ARMSecuritySpace ss; 3897 3898 switch (ri->opc2 & 6) { 3899 case 0: 3900 switch (ri->opc1) { 3901 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3902 if (ri->crm == 9 && arm_pan_enabled(env)) { 3903 mmu_idx = regime_e20 ? 3904 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3905 } else { 3906 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3907 } 3908 break; 3909 case 4: /* AT S1E2R, AT S1E2W */ 3910 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3911 break; 3912 case 6: /* AT S1E3R, AT S1E3W */ 3913 mmu_idx = ARMMMUIdx_E3; 3914 for_el3 = true; 3915 break; 3916 default: 3917 g_assert_not_reached(); 3918 } 3919 break; 3920 case 2: /* AT S1E0R, AT S1E0W */ 3921 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3922 break; 3923 case 4: /* AT S12E1R, AT S12E1W */ 3924 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3925 break; 3926 case 6: /* AT S12E0R, AT S12E0W */ 3927 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3928 break; 3929 default: 3930 g_assert_not_reached(); 3931 } 3932 3933 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3934 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3935 #else 3936 /* Handled by hardware accelerator. */ 3937 g_assert_not_reached(); 3938 #endif /* CONFIG_TCG */ 3939 } 3940 #endif 3941 3942 /* Return basic MPU access permission bits. */ 3943 static uint32_t simple_mpu_ap_bits(uint32_t val) 3944 { 3945 uint32_t ret; 3946 uint32_t mask; 3947 int i; 3948 ret = 0; 3949 mask = 3; 3950 for (i = 0; i < 16; i += 2) { 3951 ret |= (val >> i) & mask; 3952 mask <<= 2; 3953 } 3954 return ret; 3955 } 3956 3957 /* Pad basic MPU access permission bits to extended format. */ 3958 static uint32_t extended_mpu_ap_bits(uint32_t val) 3959 { 3960 uint32_t ret; 3961 uint32_t mask; 3962 int i; 3963 ret = 0; 3964 mask = 3; 3965 for (i = 0; i < 16; i += 2) { 3966 ret |= (val & mask) << i; 3967 mask <<= 2; 3968 } 3969 return ret; 3970 } 3971 3972 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3973 uint64_t value) 3974 { 3975 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3976 } 3977 3978 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3979 { 3980 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3981 } 3982 3983 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3984 uint64_t value) 3985 { 3986 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3987 } 3988 3989 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3990 { 3991 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3992 } 3993 3994 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3995 { 3996 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3997 3998 if (!u32p) { 3999 return 0; 4000 } 4001 4002 u32p += env->pmsav7.rnr[M_REG_NS]; 4003 return *u32p; 4004 } 4005 4006 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 4007 uint64_t value) 4008 { 4009 ARMCPU *cpu = env_archcpu(env); 4010 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 4011 4012 if (!u32p) { 4013 return; 4014 } 4015 4016 u32p += env->pmsav7.rnr[M_REG_NS]; 4017 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4018 *u32p = value; 4019 } 4020 4021 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4022 uint64_t value) 4023 { 4024 ARMCPU *cpu = env_archcpu(env); 4025 uint32_t nrgs = cpu->pmsav7_dregion; 4026 4027 if (value >= nrgs) { 4028 qemu_log_mask(LOG_GUEST_ERROR, 4029 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 4030 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 4031 return; 4032 } 4033 4034 raw_write(env, ri, value); 4035 } 4036 4037 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4038 uint64_t value) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 4042 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4043 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4044 } 4045 4046 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4049 } 4050 4051 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4052 uint64_t value) 4053 { 4054 ARMCPU *cpu = env_archcpu(env); 4055 4056 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4057 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4058 } 4059 4060 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4061 { 4062 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4063 } 4064 4065 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4066 uint64_t value) 4067 { 4068 ARMCPU *cpu = env_archcpu(env); 4069 4070 /* 4071 * Ignore writes that would select not implemented region. 4072 * This is architecturally UNPREDICTABLE. 4073 */ 4074 if (value >= cpu->pmsav7_dregion) { 4075 return; 4076 } 4077 4078 env->pmsav7.rnr[M_REG_NS] = value; 4079 } 4080 4081 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4082 uint64_t value) 4083 { 4084 ARMCPU *cpu = env_archcpu(env); 4085 4086 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4087 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 4088 } 4089 4090 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4091 { 4092 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 4093 } 4094 4095 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4096 uint64_t value) 4097 { 4098 ARMCPU *cpu = env_archcpu(env); 4099 4100 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4101 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4102 } 4103 4104 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4105 { 4106 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4107 } 4108 4109 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4110 uint64_t value) 4111 { 4112 uint32_t n; 4113 uint32_t bit; 4114 ARMCPU *cpu = env_archcpu(env); 4115 4116 /* Ignore writes to unimplemented regions */ 4117 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4118 value &= MAKE_64BIT_MASK(0, rmax); 4119 4120 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4121 4122 /* Register alias is only valid for first 32 indexes */ 4123 for (n = 0; n < rmax; ++n) { 4124 bit = extract32(value, n, 1); 4125 env->pmsav8.hprlar[n] = deposit32( 4126 env->pmsav8.hprlar[n], 0, 1, bit); 4127 } 4128 } 4129 4130 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4131 { 4132 uint32_t n; 4133 uint32_t result = 0x0; 4134 ARMCPU *cpu = env_archcpu(env); 4135 4136 /* Register alias is only valid for first 32 indexes */ 4137 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4138 if (env->pmsav8.hprlar[n] & 0x1) { 4139 result |= (0x1 << n); 4140 } 4141 } 4142 return result; 4143 } 4144 4145 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4146 uint64_t value) 4147 { 4148 ARMCPU *cpu = env_archcpu(env); 4149 4150 /* 4151 * Ignore writes that would select not implemented region. 4152 * This is architecturally UNPREDICTABLE. 4153 */ 4154 if (value >= cpu->pmsav8r_hdregion) { 4155 return; 4156 } 4157 4158 env->pmsav8.hprselr = value; 4159 } 4160 4161 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4162 uint64_t value) 4163 { 4164 ARMCPU *cpu = env_archcpu(env); 4165 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4166 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4167 4168 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4169 4170 if (ri->opc1 & 4) { 4171 if (index >= cpu->pmsav8r_hdregion) { 4172 return; 4173 } 4174 if (ri->opc2 & 0x1) { 4175 env->pmsav8.hprlar[index] = value; 4176 } else { 4177 env->pmsav8.hprbar[index] = value; 4178 } 4179 } else { 4180 if (index >= cpu->pmsav7_dregion) { 4181 return; 4182 } 4183 if (ri->opc2 & 0x1) { 4184 env->pmsav8.rlar[M_REG_NS][index] = value; 4185 } else { 4186 env->pmsav8.rbar[M_REG_NS][index] = value; 4187 } 4188 } 4189 } 4190 4191 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4192 { 4193 ARMCPU *cpu = env_archcpu(env); 4194 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4195 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4196 4197 if (ri->opc1 & 4) { 4198 if (index >= cpu->pmsav8r_hdregion) { 4199 return 0x0; 4200 } 4201 if (ri->opc2 & 0x1) { 4202 return env->pmsav8.hprlar[index]; 4203 } else { 4204 return env->pmsav8.hprbar[index]; 4205 } 4206 } else { 4207 if (index >= cpu->pmsav7_dregion) { 4208 return 0x0; 4209 } 4210 if (ri->opc2 & 0x1) { 4211 return env->pmsav8.rlar[M_REG_NS][index]; 4212 } else { 4213 return env->pmsav8.rbar[M_REG_NS][index]; 4214 } 4215 } 4216 } 4217 4218 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4219 { .name = "PRBAR", 4220 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4221 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4222 .accessfn = access_tvm_trvm, 4223 .readfn = prbar_read, .writefn = prbar_write }, 4224 { .name = "PRLAR", 4225 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4226 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4227 .accessfn = access_tvm_trvm, 4228 .readfn = prlar_read, .writefn = prlar_write }, 4229 { .name = "PRSELR", .resetvalue = 0, 4230 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4231 .access = PL1_RW, .accessfn = access_tvm_trvm, 4232 .writefn = prselr_write, 4233 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4234 { .name = "HPRBAR", .resetvalue = 0, 4235 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4236 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4237 .readfn = hprbar_read, .writefn = hprbar_write }, 4238 { .name = "HPRLAR", 4239 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4240 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4241 .readfn = hprlar_read, .writefn = hprlar_write }, 4242 { .name = "HPRSELR", .resetvalue = 0, 4243 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4244 .access = PL2_RW, 4245 .writefn = hprselr_write, 4246 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4247 { .name = "HPRENR", 4248 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4249 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4250 .readfn = hprenr_read, .writefn = hprenr_write }, 4251 }; 4252 4253 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4254 /* 4255 * Reset for all these registers is handled in arm_cpu_reset(), 4256 * because the PMSAv7 is also used by M-profile CPUs, which do 4257 * not register cpregs but still need the state to be reset. 4258 */ 4259 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4260 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4261 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4262 .readfn = pmsav7_read, .writefn = pmsav7_write, 4263 .resetfn = arm_cp_reset_ignore }, 4264 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4265 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4266 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4267 .readfn = pmsav7_read, .writefn = pmsav7_write, 4268 .resetfn = arm_cp_reset_ignore }, 4269 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4270 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4271 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4272 .readfn = pmsav7_read, .writefn = pmsav7_write, 4273 .resetfn = arm_cp_reset_ignore }, 4274 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4275 .access = PL1_RW, 4276 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4277 .writefn = pmsav7_rgnr_write, 4278 .resetfn = arm_cp_reset_ignore }, 4279 }; 4280 4281 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4282 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4283 .access = PL1_RW, .type = ARM_CP_ALIAS, 4284 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4285 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4286 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4287 .access = PL1_RW, .type = ARM_CP_ALIAS, 4288 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4289 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4290 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4291 .access = PL1_RW, 4292 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4293 .resetvalue = 0, }, 4294 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4295 .access = PL1_RW, 4296 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4297 .resetvalue = 0, }, 4298 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4299 .access = PL1_RW, 4300 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4301 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4302 .access = PL1_RW, 4303 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4304 /* Protection region base and size registers */ 4305 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4306 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4307 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4308 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4309 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4310 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4311 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4312 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4313 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4314 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4315 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4316 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4317 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4318 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4319 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4320 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4321 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4322 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4323 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4324 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4325 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4326 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4327 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4328 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4329 }; 4330 4331 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 ARMCPU *cpu = env_archcpu(env); 4335 4336 if (!arm_feature(env, ARM_FEATURE_V8)) { 4337 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4338 /* 4339 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4340 * using Long-descriptor translation table format 4341 */ 4342 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4343 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4344 /* 4345 * In an implementation that includes the Security Extensions 4346 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4347 * Short-descriptor translation table format. 4348 */ 4349 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4350 } else { 4351 value &= TTBCR_N; 4352 } 4353 } 4354 4355 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4356 /* 4357 * With LPAE the TTBCR could result in a change of ASID 4358 * via the TTBCR.A1 bit, so do a TLB flush. 4359 */ 4360 tlb_flush(CPU(cpu)); 4361 } 4362 raw_write(env, ri, value); 4363 } 4364 4365 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4366 uint64_t value) 4367 { 4368 ARMCPU *cpu = env_archcpu(env); 4369 4370 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4371 tlb_flush(CPU(cpu)); 4372 raw_write(env, ri, value); 4373 } 4374 4375 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4376 uint64_t value) 4377 { 4378 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4379 if (cpreg_field_is_64bit(ri) && 4380 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4381 ARMCPU *cpu = env_archcpu(env); 4382 tlb_flush(CPU(cpu)); 4383 } 4384 raw_write(env, ri, value); 4385 } 4386 4387 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4388 uint64_t value) 4389 { 4390 /* 4391 * If we are running with E2&0 regime, then an ASID is active. 4392 * Flush if that might be changing. Note we're not checking 4393 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4394 * holds the active ASID, only checking the field that might. 4395 */ 4396 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4397 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4398 uint16_t mask = ARMMMUIdxBit_E20_2 | 4399 ARMMMUIdxBit_E20_2_PAN | 4400 ARMMMUIdxBit_E20_0; 4401 tlb_flush_by_mmuidx(env_cpu(env), mask); 4402 } 4403 raw_write(env, ri, value); 4404 } 4405 4406 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4407 uint64_t value) 4408 { 4409 ARMCPU *cpu = env_archcpu(env); 4410 CPUState *cs = CPU(cpu); 4411 4412 /* 4413 * A change in VMID to the stage2 page table (Stage2) invalidates 4414 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4415 */ 4416 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4417 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4418 } 4419 raw_write(env, ri, value); 4420 } 4421 4422 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4423 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4424 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4425 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4426 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4427 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4428 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4429 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4430 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4431 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4432 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4434 offsetof(CPUARMState, cp15.dfar_ns) } }, 4435 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4436 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4437 .access = PL1_RW, .accessfn = access_tvm_trvm, 4438 .fgt = FGT_FAR_EL1, 4439 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4440 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4441 .resetvalue = 0, }, 4442 }; 4443 4444 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4445 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4446 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4447 .access = PL1_RW, .accessfn = access_tvm_trvm, 4448 .fgt = FGT_ESR_EL1, 4449 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4450 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4451 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4452 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4453 .access = PL1_RW, .accessfn = access_tvm_trvm, 4454 .fgt = FGT_TTBR0_EL1, 4455 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4456 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4458 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4459 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4460 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4461 .access = PL1_RW, .accessfn = access_tvm_trvm, 4462 .fgt = FGT_TTBR1_EL1, 4463 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4464 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4465 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4466 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4467 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4468 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4469 .access = PL1_RW, .accessfn = access_tvm_trvm, 4470 .fgt = FGT_TCR_EL1, 4471 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4472 .writefn = vmsa_tcr_el12_write, 4473 .raw_writefn = raw_write, 4474 .resetvalue = 0, 4475 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4476 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4477 .access = PL1_RW, .accessfn = access_tvm_trvm, 4478 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4479 .raw_writefn = raw_write, 4480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4481 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4482 }; 4483 4484 /* 4485 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4486 * qemu tlbs nor adjusting cached masks. 4487 */ 4488 static const ARMCPRegInfo ttbcr2_reginfo = { 4489 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4490 .access = PL1_RW, .accessfn = access_tvm_trvm, 4491 .type = ARM_CP_ALIAS, 4492 .bank_fieldoffsets = { 4493 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4494 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4495 }, 4496 }; 4497 4498 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4499 uint64_t value) 4500 { 4501 env->cp15.c15_ticonfig = value & 0xe7; 4502 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4503 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4504 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4505 } 4506 4507 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4508 uint64_t value) 4509 { 4510 env->cp15.c15_threadid = value & 0xffff; 4511 } 4512 4513 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4514 uint64_t value) 4515 { 4516 /* Wait-for-interrupt (deprecated) */ 4517 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4518 } 4519 4520 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4521 uint64_t value) 4522 { 4523 /* 4524 * On OMAP there are registers indicating the max/min index of dcache lines 4525 * containing a dirty line; cache flush operations have to reset these. 4526 */ 4527 env->cp15.c15_i_max = 0x000; 4528 env->cp15.c15_i_min = 0xff0; 4529 } 4530 4531 static const ARMCPRegInfo omap_cp_reginfo[] = { 4532 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4533 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4534 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4535 .resetvalue = 0, }, 4536 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4537 .access = PL1_RW, .type = ARM_CP_NOP }, 4538 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4539 .access = PL1_RW, 4540 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4541 .writefn = omap_ticonfig_write }, 4542 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4543 .access = PL1_RW, 4544 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4545 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4546 .access = PL1_RW, .resetvalue = 0xff0, 4547 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4548 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4549 .access = PL1_RW, 4550 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4551 .writefn = omap_threadid_write }, 4552 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4553 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4554 .type = ARM_CP_NO_RAW, 4555 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4556 /* 4557 * TODO: Peripheral port remap register: 4558 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4559 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4560 * when MMU is off. 4561 */ 4562 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4563 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4564 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4565 .writefn = omap_cachemaint_write }, 4566 { .name = "C9", .cp = 15, .crn = 9, 4567 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4568 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4569 }; 4570 4571 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 env->cp15.c15_cpar = value & 0x3fff; 4575 } 4576 4577 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4578 { .name = "XSCALE_CPAR", 4579 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4580 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4581 .writefn = xscale_cpar_write, }, 4582 { .name = "XSCALE_AUXCR", 4583 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4584 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4585 .resetvalue = 0, }, 4586 /* 4587 * XScale specific cache-lockdown: since we have no cache we NOP these 4588 * and hope the guest does not really rely on cache behaviour. 4589 */ 4590 { .name = "XSCALE_LOCK_ICACHE_LINE", 4591 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4592 .access = PL1_W, .type = ARM_CP_NOP }, 4593 { .name = "XSCALE_UNLOCK_ICACHE", 4594 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4595 .access = PL1_W, .type = ARM_CP_NOP }, 4596 { .name = "XSCALE_DCACHE_LOCK", 4597 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4598 .access = PL1_RW, .type = ARM_CP_NOP }, 4599 { .name = "XSCALE_UNLOCK_DCACHE", 4600 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4601 .access = PL1_W, .type = ARM_CP_NOP }, 4602 }; 4603 4604 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4605 /* 4606 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4607 * implementation of this implementation-defined space. 4608 * Ideally this should eventually disappear in favour of actually 4609 * implementing the correct behaviour for all cores. 4610 */ 4611 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4612 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4613 .access = PL1_RW, 4614 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4615 .resetvalue = 0 }, 4616 }; 4617 4618 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4619 /* Cache status: RAZ because we have no cache so it's always clean */ 4620 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4621 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4622 .resetvalue = 0 }, 4623 }; 4624 4625 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4626 /* We never have a block transfer operation in progress */ 4627 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4628 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4629 .resetvalue = 0 }, 4630 /* The cache ops themselves: these all NOP for QEMU */ 4631 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4632 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4633 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4634 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4635 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4636 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4637 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4638 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4639 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4640 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4641 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4642 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4643 }; 4644 4645 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4646 /* 4647 * The cache test-and-clean instructions always return (1 << 30) 4648 * to indicate that there are no dirty cache lines. 4649 */ 4650 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4651 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4652 .resetvalue = (1 << 30) }, 4653 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4654 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4655 .resetvalue = (1 << 30) }, 4656 }; 4657 4658 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4659 /* Ignore ReadBuffer accesses */ 4660 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4661 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4662 .access = PL1_RW, .resetvalue = 0, 4663 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4664 }; 4665 4666 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4667 { 4668 unsigned int cur_el = arm_current_el(env); 4669 4670 if (arm_is_el2_enabled(env) && cur_el == 1) { 4671 return env->cp15.vpidr_el2; 4672 } 4673 return raw_read(env, ri); 4674 } 4675 4676 static uint64_t mpidr_read_val(CPUARMState *env) 4677 { 4678 ARMCPU *cpu = env_archcpu(env); 4679 uint64_t mpidr = cpu->mp_affinity; 4680 4681 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4682 mpidr |= (1U << 31); 4683 /* 4684 * Cores which are uniprocessor (non-coherent) 4685 * but still implement the MP extensions set 4686 * bit 30. (For instance, Cortex-R5). 4687 */ 4688 if (cpu->mp_is_up) { 4689 mpidr |= (1u << 30); 4690 } 4691 } 4692 return mpidr; 4693 } 4694 4695 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4696 { 4697 unsigned int cur_el = arm_current_el(env); 4698 4699 if (arm_is_el2_enabled(env) && cur_el == 1) { 4700 return env->cp15.vmpidr_el2; 4701 } 4702 return mpidr_read_val(env); 4703 } 4704 4705 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4706 /* NOP AMAIR0/1 */ 4707 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4708 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4709 .access = PL1_RW, .accessfn = access_tvm_trvm, 4710 .fgt = FGT_AMAIR_EL1, 4711 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4712 .type = ARM_CP_CONST, .resetvalue = 0 }, 4713 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4714 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4715 .access = PL1_RW, .accessfn = access_tvm_trvm, 4716 .type = ARM_CP_CONST, .resetvalue = 0 }, 4717 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4718 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4719 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4720 offsetof(CPUARMState, cp15.par_ns)} }, 4721 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4722 .access = PL1_RW, .accessfn = access_tvm_trvm, 4723 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4724 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4725 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4726 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4727 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4728 .access = PL1_RW, .accessfn = access_tvm_trvm, 4729 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4730 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4731 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4732 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4733 }; 4734 4735 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4736 { 4737 return vfp_get_fpcr(env); 4738 } 4739 4740 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4741 uint64_t value) 4742 { 4743 vfp_set_fpcr(env, value); 4744 } 4745 4746 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4747 { 4748 return vfp_get_fpsr(env); 4749 } 4750 4751 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4752 uint64_t value) 4753 { 4754 vfp_set_fpsr(env, value); 4755 } 4756 4757 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4758 bool isread) 4759 { 4760 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4761 return CP_ACCESS_TRAP; 4762 } 4763 return CP_ACCESS_OK; 4764 } 4765 4766 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4767 uint64_t value) 4768 { 4769 env->daif = value & PSTATE_DAIF; 4770 } 4771 4772 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4773 { 4774 return env->pstate & PSTATE_PAN; 4775 } 4776 4777 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4778 uint64_t value) 4779 { 4780 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4781 } 4782 4783 static const ARMCPRegInfo pan_reginfo = { 4784 .name = "PAN", .state = ARM_CP_STATE_AA64, 4785 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4786 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4787 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4788 }; 4789 4790 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4791 { 4792 return env->pstate & PSTATE_UAO; 4793 } 4794 4795 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4796 uint64_t value) 4797 { 4798 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4799 } 4800 4801 static const ARMCPRegInfo uao_reginfo = { 4802 .name = "UAO", .state = ARM_CP_STATE_AA64, 4803 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4804 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4805 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4806 }; 4807 4808 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4809 { 4810 return env->pstate & PSTATE_DIT; 4811 } 4812 4813 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4814 uint64_t value) 4815 { 4816 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4817 } 4818 4819 static const ARMCPRegInfo dit_reginfo = { 4820 .name = "DIT", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4822 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4823 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4824 }; 4825 4826 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4827 { 4828 return env->pstate & PSTATE_SSBS; 4829 } 4830 4831 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4832 uint64_t value) 4833 { 4834 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4835 } 4836 4837 static const ARMCPRegInfo ssbs_reginfo = { 4838 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4840 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4841 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4842 }; 4843 4844 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4845 const ARMCPRegInfo *ri, 4846 bool isread) 4847 { 4848 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4849 switch (arm_current_el(env)) { 4850 case 0: 4851 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4852 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4853 return CP_ACCESS_TRAP; 4854 } 4855 /* fall through */ 4856 case 1: 4857 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4858 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4859 return CP_ACCESS_TRAP_EL2; 4860 } 4861 break; 4862 } 4863 return CP_ACCESS_OK; 4864 } 4865 4866 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4867 { 4868 /* Cache invalidate/clean to Point of Unification... */ 4869 switch (arm_current_el(env)) { 4870 case 0: 4871 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4872 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4873 return CP_ACCESS_TRAP; 4874 } 4875 /* fall through */ 4876 case 1: 4877 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4878 if (arm_hcr_el2_eff(env) & hcrflags) { 4879 return CP_ACCESS_TRAP_EL2; 4880 } 4881 break; 4882 } 4883 return CP_ACCESS_OK; 4884 } 4885 4886 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4887 bool isread) 4888 { 4889 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4890 } 4891 4892 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4893 bool isread) 4894 { 4895 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4896 } 4897 4898 /* 4899 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4900 * Page D4-1736 (DDI0487A.b) 4901 */ 4902 4903 static int vae1_tlbmask(CPUARMState *env) 4904 { 4905 uint64_t hcr = arm_hcr_el2_eff(env); 4906 uint16_t mask; 4907 4908 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4909 mask = ARMMMUIdxBit_E20_2 | 4910 ARMMMUIdxBit_E20_2_PAN | 4911 ARMMMUIdxBit_E20_0; 4912 } else { 4913 mask = ARMMMUIdxBit_E10_1 | 4914 ARMMMUIdxBit_E10_1_PAN | 4915 ARMMMUIdxBit_E10_0; 4916 } 4917 return mask; 4918 } 4919 4920 static int vae2_tlbmask(CPUARMState *env) 4921 { 4922 uint64_t hcr = arm_hcr_el2_eff(env); 4923 uint16_t mask; 4924 4925 if (hcr & HCR_E2H) { 4926 mask = ARMMMUIdxBit_E20_2 | 4927 ARMMMUIdxBit_E20_2_PAN | 4928 ARMMMUIdxBit_E20_0; 4929 } else { 4930 mask = ARMMMUIdxBit_E2; 4931 } 4932 return mask; 4933 } 4934 4935 /* Return 56 if TBI is enabled, 64 otherwise. */ 4936 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4937 uint64_t addr) 4938 { 4939 uint64_t tcr = regime_tcr(env, mmu_idx); 4940 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4941 int select = extract64(addr, 55, 1); 4942 4943 return (tbi >> select) & 1 ? 56 : 64; 4944 } 4945 4946 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4947 { 4948 uint64_t hcr = arm_hcr_el2_eff(env); 4949 ARMMMUIdx mmu_idx; 4950 4951 /* Only the regime of the mmu_idx below is significant. */ 4952 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4953 mmu_idx = ARMMMUIdx_E20_0; 4954 } else { 4955 mmu_idx = ARMMMUIdx_E10_0; 4956 } 4957 4958 return tlbbits_for_regime(env, mmu_idx, addr); 4959 } 4960 4961 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4962 { 4963 uint64_t hcr = arm_hcr_el2_eff(env); 4964 ARMMMUIdx mmu_idx; 4965 4966 /* 4967 * Only the regime of the mmu_idx below is significant. 4968 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4969 * only has one. 4970 */ 4971 if (hcr & HCR_E2H) { 4972 mmu_idx = ARMMMUIdx_E20_2; 4973 } else { 4974 mmu_idx = ARMMMUIdx_E2; 4975 } 4976 4977 return tlbbits_for_regime(env, mmu_idx, addr); 4978 } 4979 4980 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4981 uint64_t value) 4982 { 4983 CPUState *cs = env_cpu(env); 4984 int mask = vae1_tlbmask(env); 4985 4986 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4987 } 4988 4989 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4990 uint64_t value) 4991 { 4992 CPUState *cs = env_cpu(env); 4993 int mask = vae1_tlbmask(env); 4994 4995 if (tlb_force_broadcast(env)) { 4996 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4997 } else { 4998 tlb_flush_by_mmuidx(cs, mask); 4999 } 5000 } 5001 5002 static int e2_tlbmask(CPUARMState *env) 5003 { 5004 return (ARMMMUIdxBit_E20_0 | 5005 ARMMMUIdxBit_E20_2 | 5006 ARMMMUIdxBit_E20_2_PAN | 5007 ARMMMUIdxBit_E2); 5008 } 5009 5010 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5011 uint64_t value) 5012 { 5013 CPUState *cs = env_cpu(env); 5014 int mask = alle1_tlbmask(env); 5015 5016 tlb_flush_by_mmuidx(cs, mask); 5017 } 5018 5019 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5020 uint64_t value) 5021 { 5022 CPUState *cs = env_cpu(env); 5023 int mask = e2_tlbmask(env); 5024 5025 tlb_flush_by_mmuidx(cs, mask); 5026 } 5027 5028 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5029 uint64_t value) 5030 { 5031 ARMCPU *cpu = env_archcpu(env); 5032 CPUState *cs = CPU(cpu); 5033 5034 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 5035 } 5036 5037 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5038 uint64_t value) 5039 { 5040 CPUState *cs = env_cpu(env); 5041 int mask = alle1_tlbmask(env); 5042 5043 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5044 } 5045 5046 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5047 uint64_t value) 5048 { 5049 CPUState *cs = env_cpu(env); 5050 int mask = e2_tlbmask(env); 5051 5052 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5053 } 5054 5055 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5056 uint64_t value) 5057 { 5058 CPUState *cs = env_cpu(env); 5059 5060 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 5061 } 5062 5063 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5064 uint64_t value) 5065 { 5066 /* 5067 * Invalidate by VA, EL2 5068 * Currently handles both VAE2 and VALE2, since we don't support 5069 * flush-last-level-only. 5070 */ 5071 CPUState *cs = env_cpu(env); 5072 int mask = vae2_tlbmask(env); 5073 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5074 int bits = vae2_tlbbits(env, pageaddr); 5075 5076 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5077 } 5078 5079 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5080 uint64_t value) 5081 { 5082 /* 5083 * Invalidate by VA, EL3 5084 * Currently handles both VAE3 and VALE3, since we don't support 5085 * flush-last-level-only. 5086 */ 5087 ARMCPU *cpu = env_archcpu(env); 5088 CPUState *cs = CPU(cpu); 5089 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5090 5091 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 5092 } 5093 5094 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5095 uint64_t value) 5096 { 5097 CPUState *cs = env_cpu(env); 5098 int mask = vae1_tlbmask(env); 5099 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5100 int bits = vae1_tlbbits(env, pageaddr); 5101 5102 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5103 } 5104 5105 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5106 uint64_t value) 5107 { 5108 /* 5109 * Invalidate by VA, EL1&0 (AArch64 version). 5110 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 5111 * since we don't support flush-for-specific-ASID-only or 5112 * flush-last-level-only. 5113 */ 5114 CPUState *cs = env_cpu(env); 5115 int mask = vae1_tlbmask(env); 5116 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5117 int bits = vae1_tlbbits(env, pageaddr); 5118 5119 if (tlb_force_broadcast(env)) { 5120 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5121 } else { 5122 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5123 } 5124 } 5125 5126 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5127 uint64_t value) 5128 { 5129 CPUState *cs = env_cpu(env); 5130 int mask = vae2_tlbmask(env); 5131 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5132 int bits = vae2_tlbbits(env, pageaddr); 5133 5134 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5135 } 5136 5137 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5138 uint64_t value) 5139 { 5140 CPUState *cs = env_cpu(env); 5141 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5142 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 5143 5144 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 5145 ARMMMUIdxBit_E3, bits); 5146 } 5147 5148 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5149 { 5150 /* 5151 * The MSB of value is the NS field, which only applies if SEL2 5152 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5153 */ 5154 return (value >= 0 5155 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5156 && arm_is_secure_below_el3(env) 5157 ? ARMMMUIdxBit_Stage2_S 5158 : ARMMMUIdxBit_Stage2); 5159 } 5160 5161 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5162 uint64_t value) 5163 { 5164 CPUState *cs = env_cpu(env); 5165 int mask = ipas2e1_tlbmask(env, value); 5166 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5167 5168 if (tlb_force_broadcast(env)) { 5169 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5170 } else { 5171 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5172 } 5173 } 5174 5175 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5176 uint64_t value) 5177 { 5178 CPUState *cs = env_cpu(env); 5179 int mask = ipas2e1_tlbmask(env, value); 5180 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5181 5182 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5183 } 5184 5185 #ifdef TARGET_AARCH64 5186 typedef struct { 5187 uint64_t base; 5188 uint64_t length; 5189 } TLBIRange; 5190 5191 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5192 { 5193 /* 5194 * Note that the TLBI range TG field encoding differs from both 5195 * TG0 and TG1 encodings. 5196 */ 5197 switch (tg) { 5198 case 1: 5199 return Gran4K; 5200 case 2: 5201 return Gran16K; 5202 case 3: 5203 return Gran64K; 5204 default: 5205 return GranInvalid; 5206 } 5207 } 5208 5209 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5210 uint64_t value) 5211 { 5212 unsigned int page_size_granule, page_shift, num, scale, exponent; 5213 /* Extract one bit to represent the va selector in use. */ 5214 uint64_t select = sextract64(value, 36, 1); 5215 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5216 TLBIRange ret = { }; 5217 ARMGranuleSize gran; 5218 5219 page_size_granule = extract64(value, 46, 2); 5220 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5221 5222 /* The granule encoded in value must match the granule in use. */ 5223 if (gran != param.gran) { 5224 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5225 page_size_granule); 5226 return ret; 5227 } 5228 5229 page_shift = arm_granule_bits(gran); 5230 num = extract64(value, 39, 5); 5231 scale = extract64(value, 44, 2); 5232 exponent = (5 * scale) + 1; 5233 5234 ret.length = (num + 1) << (exponent + page_shift); 5235 5236 if (param.select) { 5237 ret.base = sextract64(value, 0, 37); 5238 } else { 5239 ret.base = extract64(value, 0, 37); 5240 } 5241 if (param.ds) { 5242 /* 5243 * With DS=1, BaseADDR is always shifted 16 so that it is able 5244 * to address all 52 va bits. The input address is perforce 5245 * aligned on a 64k boundary regardless of translation granule. 5246 */ 5247 page_shift = 16; 5248 } 5249 ret.base <<= page_shift; 5250 5251 return ret; 5252 } 5253 5254 static void do_rvae_write(CPUARMState *env, uint64_t value, 5255 int idxmap, bool synced) 5256 { 5257 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5258 TLBIRange range; 5259 int bits; 5260 5261 range = tlbi_aa64_get_range(env, one_idx, value); 5262 bits = tlbbits_for_regime(env, one_idx, range.base); 5263 5264 if (synced) { 5265 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5266 range.base, 5267 range.length, 5268 idxmap, 5269 bits); 5270 } else { 5271 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5272 range.length, idxmap, bits); 5273 } 5274 } 5275 5276 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5277 const ARMCPRegInfo *ri, 5278 uint64_t value) 5279 { 5280 /* 5281 * Invalidate by VA range, EL1&0. 5282 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5283 * since we don't support flush-for-specific-ASID-only or 5284 * flush-last-level-only. 5285 */ 5286 5287 do_rvae_write(env, value, vae1_tlbmask(env), 5288 tlb_force_broadcast(env)); 5289 } 5290 5291 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5292 const ARMCPRegInfo *ri, 5293 uint64_t value) 5294 { 5295 /* 5296 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5297 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5298 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5299 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5300 * shareable specific flushes. 5301 */ 5302 5303 do_rvae_write(env, value, vae1_tlbmask(env), true); 5304 } 5305 5306 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5307 const ARMCPRegInfo *ri, 5308 uint64_t value) 5309 { 5310 /* 5311 * Invalidate by VA range, EL2. 5312 * Currently handles all of RVAE2 and RVALE2, 5313 * since we don't support flush-for-specific-ASID-only or 5314 * flush-last-level-only. 5315 */ 5316 5317 do_rvae_write(env, value, vae2_tlbmask(env), 5318 tlb_force_broadcast(env)); 5319 5320 5321 } 5322 5323 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5324 const ARMCPRegInfo *ri, 5325 uint64_t value) 5326 { 5327 /* 5328 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5329 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5330 * since we don't support flush-for-specific-ASID-only, 5331 * flush-last-level-only or inner/outer shareable specific flushes. 5332 */ 5333 5334 do_rvae_write(env, value, vae2_tlbmask(env), true); 5335 5336 } 5337 5338 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5339 const ARMCPRegInfo *ri, 5340 uint64_t value) 5341 { 5342 /* 5343 * Invalidate by VA range, EL3. 5344 * Currently handles all of RVAE3 and RVALE3, 5345 * since we don't support flush-for-specific-ASID-only or 5346 * flush-last-level-only. 5347 */ 5348 5349 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5350 } 5351 5352 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5353 const ARMCPRegInfo *ri, 5354 uint64_t value) 5355 { 5356 /* 5357 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5358 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5359 * since we don't support flush-for-specific-ASID-only, 5360 * flush-last-level-only or inner/outer specific flushes. 5361 */ 5362 5363 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5364 } 5365 5366 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5367 uint64_t value) 5368 { 5369 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5370 tlb_force_broadcast(env)); 5371 } 5372 5373 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5374 const ARMCPRegInfo *ri, 5375 uint64_t value) 5376 { 5377 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5378 } 5379 #endif 5380 5381 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5382 bool isread) 5383 { 5384 int cur_el = arm_current_el(env); 5385 5386 if (cur_el < 2) { 5387 uint64_t hcr = arm_hcr_el2_eff(env); 5388 5389 if (cur_el == 0) { 5390 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5391 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5392 return CP_ACCESS_TRAP_EL2; 5393 } 5394 } else { 5395 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5396 return CP_ACCESS_TRAP; 5397 } 5398 if (hcr & HCR_TDZ) { 5399 return CP_ACCESS_TRAP_EL2; 5400 } 5401 } 5402 } else if (hcr & HCR_TDZ) { 5403 return CP_ACCESS_TRAP_EL2; 5404 } 5405 } 5406 return CP_ACCESS_OK; 5407 } 5408 5409 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5410 { 5411 ARMCPU *cpu = env_archcpu(env); 5412 int dzp_bit = 1 << 4; 5413 5414 /* DZP indicates whether DC ZVA access is allowed */ 5415 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5416 dzp_bit = 0; 5417 } 5418 return cpu->dcz_blocksize | dzp_bit; 5419 } 5420 5421 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5422 bool isread) 5423 { 5424 if (!(env->pstate & PSTATE_SP)) { 5425 /* 5426 * Access to SP_EL0 is undefined if it's being used as 5427 * the stack pointer. 5428 */ 5429 return CP_ACCESS_TRAP_UNCATEGORIZED; 5430 } 5431 return CP_ACCESS_OK; 5432 } 5433 5434 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5435 { 5436 return env->pstate & PSTATE_SP; 5437 } 5438 5439 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5440 { 5441 update_spsel(env, val); 5442 } 5443 5444 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5445 uint64_t value) 5446 { 5447 ARMCPU *cpu = env_archcpu(env); 5448 5449 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5450 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5451 value &= ~SCTLR_M; 5452 } 5453 5454 /* ??? Lots of these bits are not implemented. */ 5455 5456 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5457 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5458 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5459 } else { 5460 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5461 SCTLR_ATA0 | SCTLR_ATA); 5462 } 5463 } 5464 5465 if (raw_read(env, ri) == value) { 5466 /* 5467 * Skip the TLB flush if nothing actually changed; Linux likes 5468 * to do a lot of pointless SCTLR writes. 5469 */ 5470 return; 5471 } 5472 5473 raw_write(env, ri, value); 5474 5475 /* This may enable/disable the MMU, so do a TLB flush. */ 5476 tlb_flush(CPU(cpu)); 5477 5478 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5479 /* 5480 * Normally we would always end the TB on an SCTLR write; see the 5481 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5482 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5483 * of hflags from the translator, so do it here. 5484 */ 5485 arm_rebuild_hflags(env); 5486 } 5487 } 5488 5489 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5490 uint64_t value) 5491 { 5492 /* 5493 * Some MDCR_EL3 bits affect whether PMU counters are running: 5494 * if we are trying to change any of those then we must 5495 * bracket this update with PMU start/finish calls. 5496 */ 5497 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5498 5499 if (pmu_op) { 5500 pmu_op_start(env); 5501 } 5502 env->cp15.mdcr_el3 = value; 5503 if (pmu_op) { 5504 pmu_op_finish(env); 5505 } 5506 } 5507 5508 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5509 uint64_t value) 5510 { 5511 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5512 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5513 } 5514 5515 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5516 uint64_t value) 5517 { 5518 /* 5519 * Some MDCR_EL2 bits affect whether PMU counters are running: 5520 * if we are trying to change any of those then we must 5521 * bracket this update with PMU start/finish calls. 5522 */ 5523 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5524 5525 if (pmu_op) { 5526 pmu_op_start(env); 5527 } 5528 env->cp15.mdcr_el2 = value; 5529 if (pmu_op) { 5530 pmu_op_finish(env); 5531 } 5532 } 5533 5534 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5535 bool isread) 5536 { 5537 if (arm_current_el(env) == 1) { 5538 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5539 5540 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5541 return CP_ACCESS_TRAP_EL2; 5542 } 5543 } 5544 return CP_ACCESS_OK; 5545 } 5546 5547 #ifdef CONFIG_USER_ONLY 5548 /* 5549 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5550 * code to get around W^X restrictions, where one region is writable and the 5551 * other is executable. 5552 * 5553 * Since the executable region is never written to we cannot detect code 5554 * changes when running in user mode, and rely on the emulated JIT telling us 5555 * that the code has changed by executing this instruction. 5556 */ 5557 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5558 uint64_t value) 5559 { 5560 uint64_t icache_line_mask, start_address, end_address; 5561 const ARMCPU *cpu; 5562 5563 cpu = env_archcpu(env); 5564 5565 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5566 start_address = value & ~icache_line_mask; 5567 end_address = value | icache_line_mask; 5568 5569 mmap_lock(); 5570 5571 tb_invalidate_phys_range(start_address, end_address); 5572 5573 mmap_unlock(); 5574 } 5575 #endif 5576 5577 static const ARMCPRegInfo v8_cp_reginfo[] = { 5578 /* 5579 * Minimal set of EL0-visible registers. This will need to be expanded 5580 * significantly for system emulation of AArch64 CPUs. 5581 */ 5582 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5584 .access = PL0_RW, .type = ARM_CP_NZCV }, 5585 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5587 .type = ARM_CP_NO_RAW, 5588 .access = PL0_RW, .accessfn = aa64_daif_access, 5589 .fieldoffset = offsetof(CPUARMState, daif), 5590 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5591 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5593 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5594 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5595 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5596 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5597 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5598 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5599 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5601 .access = PL0_R, .type = ARM_CP_NO_RAW, 5602 .fgt = FGT_DCZID_EL0, 5603 .readfn = aa64_dczid_read }, 5604 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5606 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5607 #ifndef CONFIG_USER_ONLY 5608 /* Avoid overhead of an access check that always passes in user-mode */ 5609 .accessfn = aa64_zva_access, 5610 .fgt = FGT_DCZVA, 5611 #endif 5612 }, 5613 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5615 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5616 /* 5617 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5618 * don't emulate caches. 5619 */ 5620 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5621 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5622 .access = PL1_W, .type = ARM_CP_NOP, 5623 .fgt = FGT_ICIALLUIS, 5624 .accessfn = access_ticab }, 5625 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5626 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5627 .access = PL1_W, .type = ARM_CP_NOP, 5628 .fgt = FGT_ICIALLU, 5629 .accessfn = access_tocu }, 5630 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5631 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5632 .access = PL0_W, 5633 .fgt = FGT_ICIVAU, 5634 .accessfn = access_tocu, 5635 #ifdef CONFIG_USER_ONLY 5636 .type = ARM_CP_NO_RAW, 5637 .writefn = ic_ivau_write 5638 #else 5639 .type = ARM_CP_NOP 5640 #endif 5641 }, 5642 /* Cache ops: all NOPs since we don't emulate caches */ 5643 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5644 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5645 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5646 .fgt = FGT_DCIVAC, 5647 .type = ARM_CP_NOP }, 5648 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5649 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5650 .fgt = FGT_DCISW, 5651 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5652 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5653 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5654 .access = PL0_W, .type = ARM_CP_NOP, 5655 .fgt = FGT_DCCVAC, 5656 .accessfn = aa64_cacheop_poc_access }, 5657 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5658 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5659 .fgt = FGT_DCCSW, 5660 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5661 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5662 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5663 .access = PL0_W, .type = ARM_CP_NOP, 5664 .fgt = FGT_DCCVAU, 5665 .accessfn = access_tocu }, 5666 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5667 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5668 .access = PL0_W, .type = ARM_CP_NOP, 5669 .fgt = FGT_DCCIVAC, 5670 .accessfn = aa64_cacheop_poc_access }, 5671 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5673 .fgt = FGT_DCCISW, 5674 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5675 /* TLBI operations */ 5676 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5678 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5679 .fgt = FGT_TLBIVMALLE1IS, 5680 .writefn = tlbi_aa64_vmalle1is_write }, 5681 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5682 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5683 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5684 .fgt = FGT_TLBIVAE1IS, 5685 .writefn = tlbi_aa64_vae1is_write }, 5686 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5688 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5689 .fgt = FGT_TLBIASIDE1IS, 5690 .writefn = tlbi_aa64_vmalle1is_write }, 5691 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5692 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5693 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5694 .fgt = FGT_TLBIVAAE1IS, 5695 .writefn = tlbi_aa64_vae1is_write }, 5696 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5698 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5699 .fgt = FGT_TLBIVALE1IS, 5700 .writefn = tlbi_aa64_vae1is_write }, 5701 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5702 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5703 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5704 .fgt = FGT_TLBIVAALE1IS, 5705 .writefn = tlbi_aa64_vae1is_write }, 5706 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5707 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5708 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5709 .fgt = FGT_TLBIVMALLE1, 5710 .writefn = tlbi_aa64_vmalle1_write }, 5711 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5712 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5713 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5714 .fgt = FGT_TLBIVAE1, 5715 .writefn = tlbi_aa64_vae1_write }, 5716 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5718 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5719 .fgt = FGT_TLBIASIDE1, 5720 .writefn = tlbi_aa64_vmalle1_write }, 5721 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5722 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5723 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5724 .fgt = FGT_TLBIVAAE1, 5725 .writefn = tlbi_aa64_vae1_write }, 5726 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5728 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5729 .fgt = FGT_TLBIVALE1, 5730 .writefn = tlbi_aa64_vae1_write }, 5731 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5732 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5733 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5734 .fgt = FGT_TLBIVAALE1, 5735 .writefn = tlbi_aa64_vae1_write }, 5736 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5737 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5738 .access = PL2_W, .type = ARM_CP_NO_RAW, 5739 .writefn = tlbi_aa64_ipas2e1is_write }, 5740 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5741 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5742 .access = PL2_W, .type = ARM_CP_NO_RAW, 5743 .writefn = tlbi_aa64_ipas2e1is_write }, 5744 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5745 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5746 .access = PL2_W, .type = ARM_CP_NO_RAW, 5747 .writefn = tlbi_aa64_alle1is_write }, 5748 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5749 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5750 .access = PL2_W, .type = ARM_CP_NO_RAW, 5751 .writefn = tlbi_aa64_alle1is_write }, 5752 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5754 .access = PL2_W, .type = ARM_CP_NO_RAW, 5755 .writefn = tlbi_aa64_ipas2e1_write }, 5756 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5758 .access = PL2_W, .type = ARM_CP_NO_RAW, 5759 .writefn = tlbi_aa64_ipas2e1_write }, 5760 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5762 .access = PL2_W, .type = ARM_CP_NO_RAW, 5763 .writefn = tlbi_aa64_alle1_write }, 5764 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5765 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5766 .access = PL2_W, .type = ARM_CP_NO_RAW, 5767 .writefn = tlbi_aa64_alle1is_write }, 5768 #ifndef CONFIG_USER_ONLY 5769 /* 64 bit address translation operations */ 5770 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5772 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5773 .fgt = FGT_ATS1E1R, 5774 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5775 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5776 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5777 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5778 .fgt = FGT_ATS1E1W, 5779 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5780 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5781 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5782 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5783 .fgt = FGT_ATS1E0R, 5784 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5785 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5787 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5788 .fgt = FGT_ATS1E0W, 5789 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5790 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5792 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5793 .accessfn = at_e012_access, .writefn = ats_write64 }, 5794 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5796 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5797 .accessfn = at_e012_access, .writefn = ats_write64 }, 5798 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5800 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5801 .accessfn = at_e012_access, .writefn = ats_write64 }, 5802 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5804 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5805 .accessfn = at_e012_access, .writefn = ats_write64 }, 5806 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5807 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5808 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5809 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5810 .writefn = ats_write64 }, 5811 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5813 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5814 .writefn = ats_write64 }, 5815 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5816 .type = ARM_CP_ALIAS, 5817 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5818 .access = PL1_RW, .resetvalue = 0, 5819 .fgt = FGT_PAR_EL1, 5820 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5821 .writefn = par_write }, 5822 #endif 5823 /* TLB invalidate last level of translation table walk */ 5824 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5825 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5826 .writefn = tlbimva_is_write }, 5827 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5828 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5829 .writefn = tlbimvaa_is_write }, 5830 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5831 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5832 .writefn = tlbimva_write }, 5833 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5834 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5835 .writefn = tlbimvaa_write }, 5836 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5837 .type = ARM_CP_NO_RAW, .access = PL2_W, 5838 .writefn = tlbimva_hyp_write }, 5839 { .name = "TLBIMVALHIS", 5840 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5841 .type = ARM_CP_NO_RAW, .access = PL2_W, 5842 .writefn = tlbimva_hyp_is_write }, 5843 { .name = "TLBIIPAS2", 5844 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5845 .type = ARM_CP_NO_RAW, .access = PL2_W, 5846 .writefn = tlbiipas2_hyp_write }, 5847 { .name = "TLBIIPAS2IS", 5848 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5849 .type = ARM_CP_NO_RAW, .access = PL2_W, 5850 .writefn = tlbiipas2is_hyp_write }, 5851 { .name = "TLBIIPAS2L", 5852 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5853 .type = ARM_CP_NO_RAW, .access = PL2_W, 5854 .writefn = tlbiipas2_hyp_write }, 5855 { .name = "TLBIIPAS2LIS", 5856 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5857 .type = ARM_CP_NO_RAW, .access = PL2_W, 5858 .writefn = tlbiipas2is_hyp_write }, 5859 /* 32 bit cache operations */ 5860 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5861 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5862 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5863 .type = ARM_CP_NOP, .access = PL1_W }, 5864 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5865 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5866 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5867 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5868 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5869 .type = ARM_CP_NOP, .access = PL1_W }, 5870 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5871 .type = ARM_CP_NOP, .access = PL1_W }, 5872 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5873 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5874 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5875 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5876 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5877 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5878 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5879 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5880 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5881 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5882 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5883 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5884 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5885 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5886 /* MMU Domain access control / MPU write buffer control */ 5887 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5888 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5889 .writefn = dacr_write, .raw_writefn = raw_write, 5890 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5891 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5892 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5893 .type = ARM_CP_ALIAS, 5894 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5895 .access = PL1_RW, .accessfn = access_nv1, 5896 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5897 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5898 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5899 .type = ARM_CP_ALIAS, 5900 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5901 .access = PL1_RW, .accessfn = access_nv1, 5902 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5903 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5904 /* 5905 * We rely on the access checks not allowing the guest to write to the 5906 * state field when SPSel indicates that it's being used as the stack 5907 * pointer. 5908 */ 5909 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5910 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5911 .access = PL1_RW, .accessfn = sp_el0_access, 5912 .type = ARM_CP_ALIAS, 5913 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5914 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5915 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5916 .nv2_redirect_offset = 0x240, 5917 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5918 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5919 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5920 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5921 .type = ARM_CP_NO_RAW, 5922 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5923 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5924 .type = ARM_CP_ALIAS, 5925 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5926 .access = PL2_RW, 5927 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5928 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5929 .type = ARM_CP_ALIAS, 5930 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5931 .access = PL2_RW, 5932 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5933 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5934 .type = ARM_CP_ALIAS, 5935 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5936 .access = PL2_RW, 5937 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5938 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5939 .type = ARM_CP_ALIAS, 5940 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5941 .access = PL2_RW, 5942 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5943 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5944 .type = ARM_CP_IO, 5945 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5946 .resetvalue = 0, 5947 .access = PL3_RW, 5948 .writefn = mdcr_el3_write, 5949 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5950 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5951 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5952 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5953 .writefn = sdcr_write, 5954 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5955 }; 5956 5957 /* These are present only when EL1 supports AArch32 */ 5958 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5959 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5960 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5961 .access = PL2_RW, 5962 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5963 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5964 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5965 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5966 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5967 .writefn = dacr_write, .raw_writefn = raw_write, 5968 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5969 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5970 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5971 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5972 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5973 }; 5974 5975 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5976 { 5977 ARMCPU *cpu = env_archcpu(env); 5978 5979 if (arm_feature(env, ARM_FEATURE_V8)) { 5980 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5981 } else { 5982 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5983 } 5984 5985 if (arm_feature(env, ARM_FEATURE_EL3)) { 5986 valid_mask &= ~HCR_HCD; 5987 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5988 /* 5989 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5990 * However, if we're using the SMC PSCI conduit then QEMU is 5991 * effectively acting like EL3 firmware and so the guest at 5992 * EL2 should retain the ability to prevent EL1 from being 5993 * able to make SMC calls into the ersatz firmware, so in 5994 * that case HCR.TSC should be read/write. 5995 */ 5996 valid_mask &= ~HCR_TSC; 5997 } 5998 5999 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6000 if (cpu_isar_feature(aa64_vh, cpu)) { 6001 valid_mask |= HCR_E2H; 6002 } 6003 if (cpu_isar_feature(aa64_ras, cpu)) { 6004 valid_mask |= HCR_TERR | HCR_TEA; 6005 } 6006 if (cpu_isar_feature(aa64_lor, cpu)) { 6007 valid_mask |= HCR_TLOR; 6008 } 6009 if (cpu_isar_feature(aa64_pauth, cpu)) { 6010 valid_mask |= HCR_API | HCR_APK; 6011 } 6012 if (cpu_isar_feature(aa64_mte, cpu)) { 6013 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 6014 } 6015 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 6016 valid_mask |= HCR_ENSCXT; 6017 } 6018 if (cpu_isar_feature(aa64_fwb, cpu)) { 6019 valid_mask |= HCR_FWB; 6020 } 6021 if (cpu_isar_feature(aa64_rme, cpu)) { 6022 valid_mask |= HCR_GPF; 6023 } 6024 if (cpu_isar_feature(aa64_nv, cpu)) { 6025 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 6026 } 6027 if (cpu_isar_feature(aa64_nv2, cpu)) { 6028 valid_mask |= HCR_NV2; 6029 } 6030 } 6031 6032 if (cpu_isar_feature(any_evt, cpu)) { 6033 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 6034 } else if (cpu_isar_feature(any_half_evt, cpu)) { 6035 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 6036 } 6037 6038 /* Clear RES0 bits. */ 6039 value &= valid_mask; 6040 6041 /* 6042 * These bits change the MMU setup: 6043 * HCR_VM enables stage 2 translation 6044 * HCR_PTW forbids certain page-table setups 6045 * HCR_DC disables stage1 and enables stage2 translation 6046 * HCR_DCT enables tagging on (disabled) stage1 translation 6047 * HCR_FWB changes the interpretation of stage2 descriptor bits 6048 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 6049 */ 6050 if ((env->cp15.hcr_el2 ^ value) & 6051 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 6052 tlb_flush(CPU(cpu)); 6053 } 6054 env->cp15.hcr_el2 = value; 6055 6056 /* 6057 * Updates to VI and VF require us to update the status of 6058 * virtual interrupts, which are the logical OR of these bits 6059 * and the state of the input lines from the GIC. (This requires 6060 * that we have the BQL, which is done by marking the 6061 * reginfo structs as ARM_CP_IO.) 6062 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 6063 * VFNMI, it is never possible for it to be taken immediately 6064 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 6065 * at EL0 or EL1, and HCR can only be written at EL2. 6066 */ 6067 g_assert(bql_locked()); 6068 arm_cpu_update_virq(cpu); 6069 arm_cpu_update_vfiq(cpu); 6070 arm_cpu_update_vserr(cpu); 6071 if (cpu_isar_feature(aa64_nmi, cpu)) { 6072 arm_cpu_update_vinmi(cpu); 6073 arm_cpu_update_vfnmi(cpu); 6074 } 6075 } 6076 6077 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 6078 { 6079 do_hcr_write(env, value, 0); 6080 } 6081 6082 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 6083 uint64_t value) 6084 { 6085 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 6086 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 6087 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 6088 } 6089 6090 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 6091 uint64_t value) 6092 { 6093 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 6094 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 6095 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 6096 } 6097 6098 /* 6099 * Return the effective value of HCR_EL2, at the given security state. 6100 * Bits that are not included here: 6101 * RW (read from SCR_EL3.RW as needed) 6102 */ 6103 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 6104 { 6105 uint64_t ret = env->cp15.hcr_el2; 6106 6107 assert(space != ARMSS_Root); 6108 6109 if (!arm_is_el2_enabled_secstate(env, space)) { 6110 /* 6111 * "This register has no effect if EL2 is not enabled in the 6112 * current Security state". This is ARMv8.4-SecEL2 speak for 6113 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 6114 * 6115 * Prior to that, the language was "In an implementation that 6116 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 6117 * as if this field is 0 for all purposes other than a direct 6118 * read or write access of HCR_EL2". With lots of enumeration 6119 * on a per-field basis. In current QEMU, this is condition 6120 * is arm_is_secure_below_el3. 6121 * 6122 * Since the v8.4 language applies to the entire register, and 6123 * appears to be backward compatible, use that. 6124 */ 6125 return 0; 6126 } 6127 6128 /* 6129 * For a cpu that supports both aarch64 and aarch32, we can set bits 6130 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 6131 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 6132 */ 6133 if (!arm_el_is_aa64(env, 2)) { 6134 uint64_t aa32_valid; 6135 6136 /* 6137 * These bits are up-to-date as of ARMv8.6. 6138 * For HCR, it's easiest to list just the 2 bits that are invalid. 6139 * For HCR2, list those that are valid. 6140 */ 6141 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 6142 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 6143 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 6144 ret &= aa32_valid; 6145 } 6146 6147 if (ret & HCR_TGE) { 6148 /* These bits are up-to-date as of ARMv8.6. */ 6149 if (ret & HCR_E2H) { 6150 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 6151 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 6152 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6153 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6154 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6155 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6156 } else { 6157 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6158 } 6159 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6160 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6161 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6162 HCR_TLOR); 6163 } 6164 6165 return ret; 6166 } 6167 6168 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6169 { 6170 if (arm_feature(env, ARM_FEATURE_M)) { 6171 return 0; 6172 } 6173 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6174 } 6175 6176 /* 6177 * Corresponds to ARM pseudocode function ELIsInHost(). 6178 */ 6179 bool el_is_in_host(CPUARMState *env, int el) 6180 { 6181 uint64_t mask; 6182 6183 /* 6184 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6185 * Perform the simplest bit tests first, and validate EL2 afterward. 6186 */ 6187 if (el & 1) { 6188 return false; /* EL1 or EL3 */ 6189 } 6190 6191 /* 6192 * Note that hcr_write() checks isar_feature_aa64_vh(), 6193 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6194 */ 6195 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6196 if ((env->cp15.hcr_el2 & mask) != mask) { 6197 return false; 6198 } 6199 6200 /* TGE and/or E2H set: double check those bits are currently legal. */ 6201 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6202 } 6203 6204 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6205 uint64_t value) 6206 { 6207 ARMCPU *cpu = env_archcpu(env); 6208 uint64_t valid_mask = 0; 6209 6210 /* FEAT_MOPS adds MSCEn and MCE2 */ 6211 if (cpu_isar_feature(aa64_mops, cpu)) { 6212 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6213 } 6214 6215 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 6216 if (cpu_isar_feature(aa64_nmi, cpu)) { 6217 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 6218 } 6219 6220 /* Clear RES0 bits. */ 6221 env->cp15.hcrx_el2 = value & valid_mask; 6222 6223 /* 6224 * Updates to VINMI and VFNMI require us to update the status of 6225 * virtual NMI, which are the logical OR of these bits 6226 * and the state of the input lines from the GIC. (This requires 6227 * that we have the BQL, which is done by marking the 6228 * reginfo structs as ARM_CP_IO.) 6229 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 6230 * possible for it to be taken immediately, because VINMI and 6231 * VFNMI are masked unless running at EL0 or EL1, and HCRX 6232 * can only be written at EL2. 6233 */ 6234 if (cpu_isar_feature(aa64_nmi, cpu)) { 6235 g_assert(bql_locked()); 6236 arm_cpu_update_vinmi(cpu); 6237 arm_cpu_update_vfnmi(cpu); 6238 } 6239 } 6240 6241 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6242 bool isread) 6243 { 6244 if (arm_current_el(env) == 2 6245 && arm_feature(env, ARM_FEATURE_EL3) 6246 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6247 return CP_ACCESS_TRAP_EL3; 6248 } 6249 return CP_ACCESS_OK; 6250 } 6251 6252 static const ARMCPRegInfo hcrx_el2_reginfo = { 6253 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6254 .type = ARM_CP_IO, 6255 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6256 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6257 .nv2_redirect_offset = 0xa0, 6258 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6259 }; 6260 6261 /* Return the effective value of HCRX_EL2. */ 6262 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6263 { 6264 /* 6265 * The bits in this register behave as 0 for all purposes other than 6266 * direct reads of the register if SCR_EL3.HXEn is 0. 6267 * If EL2 is not enabled in the current security state, then the 6268 * bit may behave as if 0, or as if 1, depending on the bit. 6269 * For the moment, we treat the EL2-disabled case as taking 6270 * priority over the HXEn-disabled case. This is true for the only 6271 * bit for a feature which we implement where the answer is different 6272 * for the two cases (MSCEn for FEAT_MOPS). 6273 * This may need to be revisited for future bits. 6274 */ 6275 if (!arm_is_el2_enabled(env)) { 6276 uint64_t hcrx = 0; 6277 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6278 /* MSCEn behaves as 1 if EL2 is not enabled */ 6279 hcrx |= HCRX_MSCEN; 6280 } 6281 return hcrx; 6282 } 6283 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6284 return 0; 6285 } 6286 return env->cp15.hcrx_el2; 6287 } 6288 6289 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6290 uint64_t value) 6291 { 6292 /* 6293 * For A-profile AArch32 EL3, if NSACR.CP10 6294 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6295 */ 6296 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6297 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6298 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6299 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6300 } 6301 env->cp15.cptr_el[2] = value; 6302 } 6303 6304 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6305 { 6306 /* 6307 * For A-profile AArch32 EL3, if NSACR.CP10 6308 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6309 */ 6310 uint64_t value = env->cp15.cptr_el[2]; 6311 6312 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6313 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6314 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6315 } 6316 return value; 6317 } 6318 6319 static const ARMCPRegInfo el2_cp_reginfo[] = { 6320 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6321 .type = ARM_CP_IO, 6322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6323 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6324 .nv2_redirect_offset = 0x78, 6325 .writefn = hcr_write, .raw_writefn = raw_write }, 6326 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6327 .type = ARM_CP_ALIAS | ARM_CP_IO, 6328 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6329 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6330 .writefn = hcr_writelow }, 6331 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6332 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6333 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6334 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6335 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6336 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6337 .access = PL2_RW, 6338 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6339 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6340 .type = ARM_CP_NV2_REDIRECT, 6341 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6342 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6343 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6344 .type = ARM_CP_NV2_REDIRECT, 6345 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6346 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6347 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6348 .type = ARM_CP_ALIAS, 6349 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6350 .access = PL2_RW, 6351 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6352 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6353 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6354 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6355 .access = PL2_RW, 6356 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6357 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6358 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6359 .access = PL2_RW, .writefn = vbar_write, 6360 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6361 .resetvalue = 0 }, 6362 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6363 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6364 .access = PL3_RW, .type = ARM_CP_ALIAS, 6365 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6366 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6367 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6368 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6369 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6370 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6371 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6372 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6373 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6374 .resetvalue = 0 }, 6375 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6376 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6377 .access = PL2_RW, .type = ARM_CP_ALIAS, 6378 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6379 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6380 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6381 .access = PL2_RW, .type = ARM_CP_CONST, 6382 .resetvalue = 0 }, 6383 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6384 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6385 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6386 .access = PL2_RW, .type = ARM_CP_CONST, 6387 .resetvalue = 0 }, 6388 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6389 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6390 .access = PL2_RW, .type = ARM_CP_CONST, 6391 .resetvalue = 0 }, 6392 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6393 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6394 .access = PL2_RW, .type = ARM_CP_CONST, 6395 .resetvalue = 0 }, 6396 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6397 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6398 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6399 .raw_writefn = raw_write, 6400 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6401 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6402 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6403 .type = ARM_CP_ALIAS, 6404 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6405 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6406 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6407 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6408 .access = PL2_RW, 6409 .nv2_redirect_offset = 0x40, 6410 /* no .writefn needed as this can't cause an ASID change */ 6411 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6412 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6413 .cp = 15, .opc1 = 6, .crm = 2, 6414 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6415 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6416 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6417 .writefn = vttbr_write, .raw_writefn = raw_write }, 6418 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6420 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6421 .nv2_redirect_offset = 0x20, 6422 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6423 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6424 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6425 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6426 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6427 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6428 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6429 .access = PL2_RW, .resetvalue = 0, 6430 .nv2_redirect_offset = 0x90, 6431 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6432 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6433 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6434 .access = PL2_RW, .resetvalue = 0, 6435 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6436 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6437 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6438 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6439 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6440 { .name = "TLBIALLNSNH", 6441 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6442 .type = ARM_CP_NO_RAW, .access = PL2_W, 6443 .writefn = tlbiall_nsnh_write }, 6444 { .name = "TLBIALLNSNHIS", 6445 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6446 .type = ARM_CP_NO_RAW, .access = PL2_W, 6447 .writefn = tlbiall_nsnh_is_write }, 6448 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6449 .type = ARM_CP_NO_RAW, .access = PL2_W, 6450 .writefn = tlbiall_hyp_write }, 6451 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6452 .type = ARM_CP_NO_RAW, .access = PL2_W, 6453 .writefn = tlbiall_hyp_is_write }, 6454 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6455 .type = ARM_CP_NO_RAW, .access = PL2_W, 6456 .writefn = tlbimva_hyp_write }, 6457 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6458 .type = ARM_CP_NO_RAW, .access = PL2_W, 6459 .writefn = tlbimva_hyp_is_write }, 6460 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6461 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6462 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6463 .writefn = tlbi_aa64_alle2_write }, 6464 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6465 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6466 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6467 .writefn = tlbi_aa64_vae2_write }, 6468 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6470 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6471 .writefn = tlbi_aa64_vae2_write }, 6472 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6474 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6475 .writefn = tlbi_aa64_alle2is_write }, 6476 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6478 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6479 .writefn = tlbi_aa64_vae2is_write }, 6480 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6482 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6483 .writefn = tlbi_aa64_vae2is_write }, 6484 #ifndef CONFIG_USER_ONLY 6485 /* 6486 * Unlike the other EL2-related AT operations, these must 6487 * UNDEF from EL3 if EL2 is not implemented, which is why we 6488 * define them here rather than with the rest of the AT ops. 6489 */ 6490 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6491 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6492 .access = PL2_W, .accessfn = at_s1e2_access, 6493 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6494 .writefn = ats_write64 }, 6495 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6496 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6497 .access = PL2_W, .accessfn = at_s1e2_access, 6498 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6499 .writefn = ats_write64 }, 6500 /* 6501 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6502 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6503 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6504 * to behave as if SCR.NS was 1. 6505 */ 6506 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6507 .access = PL2_W, 6508 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6509 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6510 .access = PL2_W, 6511 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6512 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6513 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6514 /* 6515 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6516 * reset values as IMPDEF. We choose to reset to 3 to comply with 6517 * both ARMv7 and ARMv8. 6518 */ 6519 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6520 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6521 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6522 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6523 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6524 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6525 .writefn = gt_cntvoff_write, 6526 .nv2_redirect_offset = 0x60, 6527 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6528 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6529 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6530 .writefn = gt_cntvoff_write, 6531 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6532 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6533 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6534 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6535 .type = ARM_CP_IO, .access = PL2_RW, 6536 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6537 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6538 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6539 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6540 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6541 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6542 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6543 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6544 .resetfn = gt_hyp_timer_reset, 6545 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6546 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6547 .type = ARM_CP_IO, 6548 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6549 .access = PL2_RW, 6550 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6551 .resetvalue = 0, 6552 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6553 #endif 6554 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6555 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6556 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6557 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6558 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6559 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6560 .access = PL2_RW, 6561 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6562 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6563 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6564 .access = PL2_RW, 6565 .nv2_redirect_offset = 0x80, 6566 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6567 }; 6568 6569 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6570 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6571 .type = ARM_CP_ALIAS | ARM_CP_IO, 6572 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6573 .access = PL2_RW, 6574 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6575 .writefn = hcr_writehigh }, 6576 }; 6577 6578 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6579 bool isread) 6580 { 6581 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6582 return CP_ACCESS_OK; 6583 } 6584 return CP_ACCESS_TRAP_UNCATEGORIZED; 6585 } 6586 6587 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6588 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6589 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6590 .access = PL2_RW, .accessfn = sel2_access, 6591 .nv2_redirect_offset = 0x30, 6592 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6593 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6594 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6595 .access = PL2_RW, .accessfn = sel2_access, 6596 .nv2_redirect_offset = 0x48, 6597 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6598 }; 6599 6600 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6601 bool isread) 6602 { 6603 /* 6604 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6605 * At Secure EL1 it traps to EL3 or EL2. 6606 */ 6607 if (arm_current_el(env) == 3) { 6608 return CP_ACCESS_OK; 6609 } 6610 if (arm_is_secure_below_el3(env)) { 6611 if (env->cp15.scr_el3 & SCR_EEL2) { 6612 return CP_ACCESS_TRAP_EL2; 6613 } 6614 return CP_ACCESS_TRAP_EL3; 6615 } 6616 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6617 if (isread) { 6618 return CP_ACCESS_OK; 6619 } 6620 return CP_ACCESS_TRAP_UNCATEGORIZED; 6621 } 6622 6623 static const ARMCPRegInfo el3_cp_reginfo[] = { 6624 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6625 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6626 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6627 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6628 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6629 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6630 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6631 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6632 .writefn = scr_write, .raw_writefn = raw_write }, 6633 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6634 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6635 .access = PL3_RW, .resetvalue = 0, 6636 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6637 { .name = "SDER", 6638 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6639 .access = PL3_RW, .resetvalue = 0, 6640 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6641 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6642 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6643 .writefn = vbar_write, .resetvalue = 0, 6644 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6645 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6646 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6647 .access = PL3_RW, .resetvalue = 0, 6648 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6649 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6650 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6651 .access = PL3_RW, 6652 /* no .writefn needed as this can't cause an ASID change */ 6653 .resetvalue = 0, 6654 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6655 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6656 .type = ARM_CP_ALIAS, 6657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6658 .access = PL3_RW, 6659 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6660 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6661 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6662 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6663 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6664 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6665 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6666 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6667 .type = ARM_CP_ALIAS, 6668 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6669 .access = PL3_RW, 6670 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6671 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6672 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6673 .access = PL3_RW, .writefn = vbar_write, 6674 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6675 .resetvalue = 0 }, 6676 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6677 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6678 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6679 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6680 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6681 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6682 .access = PL3_RW, .resetvalue = 0, 6683 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6684 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6685 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6686 .access = PL3_RW, .type = ARM_CP_CONST, 6687 .resetvalue = 0 }, 6688 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6689 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6690 .access = PL3_RW, .type = ARM_CP_CONST, 6691 .resetvalue = 0 }, 6692 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6693 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6694 .access = PL3_RW, .type = ARM_CP_CONST, 6695 .resetvalue = 0 }, 6696 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6698 .access = PL3_W, .type = ARM_CP_NO_RAW, 6699 .writefn = tlbi_aa64_alle3is_write }, 6700 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6701 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6702 .access = PL3_W, .type = ARM_CP_NO_RAW, 6703 .writefn = tlbi_aa64_vae3is_write }, 6704 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6705 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6706 .access = PL3_W, .type = ARM_CP_NO_RAW, 6707 .writefn = tlbi_aa64_vae3is_write }, 6708 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6710 .access = PL3_W, .type = ARM_CP_NO_RAW, 6711 .writefn = tlbi_aa64_alle3_write }, 6712 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6714 .access = PL3_W, .type = ARM_CP_NO_RAW, 6715 .writefn = tlbi_aa64_vae3_write }, 6716 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6718 .access = PL3_W, .type = ARM_CP_NO_RAW, 6719 .writefn = tlbi_aa64_vae3_write }, 6720 }; 6721 6722 #ifndef CONFIG_USER_ONLY 6723 6724 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6725 bool isread) 6726 { 6727 if (arm_current_el(env) == 1) { 6728 /* This must be a FEAT_NV access */ 6729 return CP_ACCESS_OK; 6730 } 6731 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6732 return CP_ACCESS_TRAP_UNCATEGORIZED; 6733 } 6734 return CP_ACCESS_OK; 6735 } 6736 6737 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6738 bool isread) 6739 { 6740 if (arm_current_el(env) == 1) { 6741 /* This must be a FEAT_NV access with NVx == 101 */ 6742 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6743 return CP_ACCESS_TRAP_EL2; 6744 } 6745 } 6746 return e2h_access(env, ri, isread); 6747 } 6748 6749 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6750 bool isread) 6751 { 6752 if (arm_current_el(env) == 1) { 6753 /* This must be a FEAT_NV access with NVx == 101 */ 6754 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6755 return CP_ACCESS_TRAP_EL2; 6756 } 6757 } 6758 return e2h_access(env, ri, isread); 6759 } 6760 6761 /* Test if system register redirection is to occur in the current state. */ 6762 static bool redirect_for_e2h(CPUARMState *env) 6763 { 6764 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6765 } 6766 6767 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6768 { 6769 CPReadFn *readfn; 6770 6771 if (redirect_for_e2h(env)) { 6772 /* Switch to the saved EL2 version of the register. */ 6773 ri = ri->opaque; 6774 readfn = ri->readfn; 6775 } else { 6776 readfn = ri->orig_readfn; 6777 } 6778 if (readfn == NULL) { 6779 readfn = raw_read; 6780 } 6781 return readfn(env, ri); 6782 } 6783 6784 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6785 uint64_t value) 6786 { 6787 CPWriteFn *writefn; 6788 6789 if (redirect_for_e2h(env)) { 6790 /* Switch to the saved EL2 version of the register. */ 6791 ri = ri->opaque; 6792 writefn = ri->writefn; 6793 } else { 6794 writefn = ri->orig_writefn; 6795 } 6796 if (writefn == NULL) { 6797 writefn = raw_write; 6798 } 6799 writefn(env, ri, value); 6800 } 6801 6802 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6803 { 6804 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6805 return ri->orig_readfn(env, ri->opaque); 6806 } 6807 6808 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6809 uint64_t value) 6810 { 6811 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6812 return ri->orig_writefn(env, ri->opaque, value); 6813 } 6814 6815 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6816 const ARMCPRegInfo *ri, 6817 bool isread) 6818 { 6819 if (arm_current_el(env) == 1) { 6820 /* 6821 * This must be a FEAT_NV access (will either trap or redirect 6822 * to memory). None of the registers with _EL12 aliases want to 6823 * apply their trap controls for this kind of access, so don't 6824 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6825 */ 6826 return CP_ACCESS_OK; 6827 } 6828 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6829 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6830 return CP_ACCESS_TRAP_UNCATEGORIZED; 6831 } 6832 if (ri->orig_accessfn) { 6833 return ri->orig_accessfn(env, ri->opaque, isread); 6834 } 6835 return CP_ACCESS_OK; 6836 } 6837 6838 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6839 { 6840 struct E2HAlias { 6841 uint32_t src_key, dst_key, new_key; 6842 const char *src_name, *dst_name, *new_name; 6843 bool (*feature)(const ARMISARegisters *id); 6844 }; 6845 6846 #define K(op0, op1, crn, crm, op2) \ 6847 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6848 6849 static const struct E2HAlias aliases[] = { 6850 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6851 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6852 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6853 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6854 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6855 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6856 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6857 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6858 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6859 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6860 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6861 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6862 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6863 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6864 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6865 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6866 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6867 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6868 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6869 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6870 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6871 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6872 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6873 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6874 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6875 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6876 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6877 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6878 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6879 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6880 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6881 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6882 6883 /* 6884 * Note that redirection of ZCR is mentioned in the description 6885 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6886 * not in the summary table. 6887 */ 6888 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6889 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6890 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6891 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6892 6893 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6894 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6895 6896 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6897 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6898 isar_feature_aa64_scxtnum }, 6899 6900 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6901 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6902 }; 6903 #undef K 6904 6905 size_t i; 6906 6907 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6908 const struct E2HAlias *a = &aliases[i]; 6909 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6910 bool ok; 6911 6912 if (a->feature && !a->feature(&cpu->isar)) { 6913 continue; 6914 } 6915 6916 src_reg = g_hash_table_lookup(cpu->cp_regs, 6917 (gpointer)(uintptr_t)a->src_key); 6918 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6919 (gpointer)(uintptr_t)a->dst_key); 6920 g_assert(src_reg != NULL); 6921 g_assert(dst_reg != NULL); 6922 6923 /* Cross-compare names to detect typos in the keys. */ 6924 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6925 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6926 6927 /* None of the core system registers use opaque; we will. */ 6928 g_assert(src_reg->opaque == NULL); 6929 6930 /* Create alias before redirection so we dup the right data. */ 6931 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6932 6933 new_reg->name = a->new_name; 6934 new_reg->type |= ARM_CP_ALIAS; 6935 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6936 new_reg->access &= PL2_RW | PL3_RW; 6937 /* The new_reg op fields are as per new_key, not the target reg */ 6938 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6939 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6940 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6941 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6942 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6943 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6944 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6945 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6946 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6947 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6948 new_reg->opaque = src_reg; 6949 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6950 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6951 new_reg->orig_accessfn = src_reg->accessfn; 6952 if (!new_reg->raw_readfn) { 6953 new_reg->raw_readfn = raw_read; 6954 } 6955 if (!new_reg->raw_writefn) { 6956 new_reg->raw_writefn = raw_write; 6957 } 6958 new_reg->readfn = el2_e2h_e12_read; 6959 new_reg->writefn = el2_e2h_e12_write; 6960 new_reg->accessfn = el2_e2h_e12_access; 6961 6962 /* 6963 * If the _EL1 register is redirected to memory by FEAT_NV2, 6964 * then it shares the offset with the _EL12 register, 6965 * and which one is redirected depends on HCR_EL2.NV1. 6966 */ 6967 if (new_reg->nv2_redirect_offset) { 6968 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6969 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6970 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6971 } 6972 6973 ok = g_hash_table_insert(cpu->cp_regs, 6974 (gpointer)(uintptr_t)a->new_key, new_reg); 6975 g_assert(ok); 6976 6977 src_reg->opaque = dst_reg; 6978 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6979 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6980 if (!src_reg->raw_readfn) { 6981 src_reg->raw_readfn = raw_read; 6982 } 6983 if (!src_reg->raw_writefn) { 6984 src_reg->raw_writefn = raw_write; 6985 } 6986 src_reg->readfn = el2_e2h_read; 6987 src_reg->writefn = el2_e2h_write; 6988 } 6989 } 6990 #endif 6991 6992 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6993 bool isread) 6994 { 6995 int cur_el = arm_current_el(env); 6996 6997 if (cur_el < 2) { 6998 uint64_t hcr = arm_hcr_el2_eff(env); 6999 7000 if (cur_el == 0) { 7001 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 7002 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 7003 return CP_ACCESS_TRAP_EL2; 7004 } 7005 } else { 7006 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 7007 return CP_ACCESS_TRAP; 7008 } 7009 if (hcr & HCR_TID2) { 7010 return CP_ACCESS_TRAP_EL2; 7011 } 7012 } 7013 } else if (hcr & HCR_TID2) { 7014 return CP_ACCESS_TRAP_EL2; 7015 } 7016 } 7017 7018 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 7019 return CP_ACCESS_TRAP_EL2; 7020 } 7021 7022 return CP_ACCESS_OK; 7023 } 7024 7025 /* 7026 * Check for traps to RAS registers, which are controlled 7027 * by HCR_EL2.TERR and SCR_EL3.TERR. 7028 */ 7029 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 7030 bool isread) 7031 { 7032 int el = arm_current_el(env); 7033 7034 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 7035 return CP_ACCESS_TRAP_EL2; 7036 } 7037 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 7038 return CP_ACCESS_TRAP_EL3; 7039 } 7040 return CP_ACCESS_OK; 7041 } 7042 7043 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 7044 { 7045 int el = arm_current_el(env); 7046 7047 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7048 return env->cp15.vdisr_el2; 7049 } 7050 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7051 return 0; /* RAZ/WI */ 7052 } 7053 return env->cp15.disr_el1; 7054 } 7055 7056 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7057 { 7058 int el = arm_current_el(env); 7059 7060 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7061 env->cp15.vdisr_el2 = val; 7062 return; 7063 } 7064 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7065 return; /* RAZ/WI */ 7066 } 7067 env->cp15.disr_el1 = val; 7068 } 7069 7070 /* 7071 * Minimal RAS implementation with no Error Records. 7072 * Which means that all of the Error Record registers: 7073 * ERXADDR_EL1 7074 * ERXCTLR_EL1 7075 * ERXFR_EL1 7076 * ERXMISC0_EL1 7077 * ERXMISC1_EL1 7078 * ERXMISC2_EL1 7079 * ERXMISC3_EL1 7080 * ERXPFGCDN_EL1 (RASv1p1) 7081 * ERXPFGCTL_EL1 (RASv1p1) 7082 * ERXPFGF_EL1 (RASv1p1) 7083 * ERXSTATUS_EL1 7084 * and 7085 * ERRSELR_EL1 7086 * may generate UNDEFINED, which is the effect we get by not 7087 * listing them at all. 7088 * 7089 * These registers have fine-grained trap bits, but UNDEF-to-EL1 7090 * is higher priority than FGT-to-EL2 so we do not need to list them 7091 * in order to check for an FGT. 7092 */ 7093 static const ARMCPRegInfo minimal_ras_reginfo[] = { 7094 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 7095 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 7096 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 7097 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 7098 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 7099 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 7100 .access = PL1_R, .accessfn = access_terr, 7101 .fgt = FGT_ERRIDR_EL1, 7102 .type = ARM_CP_CONST, .resetvalue = 0 }, 7103 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 7104 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 7105 .nv2_redirect_offset = 0x500, 7106 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 7107 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 7108 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 7109 .nv2_redirect_offset = 0x508, 7110 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 7111 }; 7112 7113 /* 7114 * Return the exception level to which exceptions should be taken 7115 * via SVEAccessTrap. This excludes the check for whether the exception 7116 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 7117 * be found by testing 0 < fp_exception_el < sve_exception_el. 7118 * 7119 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 7120 * pseudocode does *not* separate out the FP trap checks, but has them 7121 * all in one function. 7122 */ 7123 int sve_exception_el(CPUARMState *env, int el) 7124 { 7125 #ifndef CONFIG_USER_ONLY 7126 if (el <= 1 && !el_is_in_host(env, el)) { 7127 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 7128 case 1: 7129 if (el != 0) { 7130 break; 7131 } 7132 /* fall through */ 7133 case 0: 7134 case 2: 7135 return 1; 7136 } 7137 } 7138 7139 if (el <= 2 && arm_is_el2_enabled(env)) { 7140 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7141 if (env->cp15.hcr_el2 & HCR_E2H) { 7142 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 7143 case 1: 7144 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7145 break; 7146 } 7147 /* fall through */ 7148 case 0: 7149 case 2: 7150 return 2; 7151 } 7152 } else { 7153 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 7154 return 2; 7155 } 7156 } 7157 } 7158 7159 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 7160 if (arm_feature(env, ARM_FEATURE_EL3) 7161 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 7162 return 3; 7163 } 7164 #endif 7165 return 0; 7166 } 7167 7168 /* 7169 * Return the exception level to which exceptions should be taken for SME. 7170 * C.f. the ARM pseudocode function CheckSMEAccess. 7171 */ 7172 int sme_exception_el(CPUARMState *env, int el) 7173 { 7174 #ifndef CONFIG_USER_ONLY 7175 if (el <= 1 && !el_is_in_host(env, el)) { 7176 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 7177 case 1: 7178 if (el != 0) { 7179 break; 7180 } 7181 /* fall through */ 7182 case 0: 7183 case 2: 7184 return 1; 7185 } 7186 } 7187 7188 if (el <= 2 && arm_is_el2_enabled(env)) { 7189 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7190 if (env->cp15.hcr_el2 & HCR_E2H) { 7191 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 7192 case 1: 7193 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7194 break; 7195 } 7196 /* fall through */ 7197 case 0: 7198 case 2: 7199 return 2; 7200 } 7201 } else { 7202 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7203 return 2; 7204 } 7205 } 7206 } 7207 7208 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7209 if (arm_feature(env, ARM_FEATURE_EL3) 7210 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7211 return 3; 7212 } 7213 #endif 7214 return 0; 7215 } 7216 7217 /* 7218 * Given that SVE is enabled, return the vector length for EL. 7219 */ 7220 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7221 { 7222 ARMCPU *cpu = env_archcpu(env); 7223 uint64_t *cr = env->vfp.zcr_el; 7224 uint32_t map = cpu->sve_vq.map; 7225 uint32_t len = ARM_MAX_VQ - 1; 7226 7227 if (sm) { 7228 cr = env->vfp.smcr_el; 7229 map = cpu->sme_vq.map; 7230 } 7231 7232 if (el <= 1 && !el_is_in_host(env, el)) { 7233 len = MIN(len, 0xf & (uint32_t)cr[1]); 7234 } 7235 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7236 len = MIN(len, 0xf & (uint32_t)cr[2]); 7237 } 7238 if (arm_feature(env, ARM_FEATURE_EL3)) { 7239 len = MIN(len, 0xf & (uint32_t)cr[3]); 7240 } 7241 7242 map &= MAKE_64BIT_MASK(0, len + 1); 7243 if (map != 0) { 7244 return 31 - clz32(map); 7245 } 7246 7247 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7248 assert(sm); 7249 return ctz32(cpu->sme_vq.map); 7250 } 7251 7252 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7253 { 7254 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7255 } 7256 7257 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7258 uint64_t value) 7259 { 7260 int cur_el = arm_current_el(env); 7261 int old_len = sve_vqm1_for_el(env, cur_el); 7262 int new_len; 7263 7264 /* Bits other than [3:0] are RAZ/WI. */ 7265 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7266 raw_write(env, ri, value & 0xf); 7267 7268 /* 7269 * Because we arrived here, we know both FP and SVE are enabled; 7270 * otherwise we would have trapped access to the ZCR_ELn register. 7271 */ 7272 new_len = sve_vqm1_for_el(env, cur_el); 7273 if (new_len < old_len) { 7274 aarch64_sve_narrow_vq(env, new_len + 1); 7275 } 7276 } 7277 7278 static const ARMCPRegInfo zcr_reginfo[] = { 7279 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7281 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7282 .access = PL1_RW, .type = ARM_CP_SVE, 7283 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7284 .writefn = zcr_write, .raw_writefn = raw_write }, 7285 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7287 .access = PL2_RW, .type = ARM_CP_SVE, 7288 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7289 .writefn = zcr_write, .raw_writefn = raw_write }, 7290 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7291 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7292 .access = PL3_RW, .type = ARM_CP_SVE, 7293 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7294 .writefn = zcr_write, .raw_writefn = raw_write }, 7295 }; 7296 7297 #ifdef TARGET_AARCH64 7298 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7299 bool isread) 7300 { 7301 int el = arm_current_el(env); 7302 7303 if (el == 0) { 7304 uint64_t sctlr = arm_sctlr(env, el); 7305 if (!(sctlr & SCTLR_EnTP2)) { 7306 return CP_ACCESS_TRAP; 7307 } 7308 } 7309 /* TODO: FEAT_FGT */ 7310 if (el < 3 7311 && arm_feature(env, ARM_FEATURE_EL3) 7312 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7313 return CP_ACCESS_TRAP_EL3; 7314 } 7315 return CP_ACCESS_OK; 7316 } 7317 7318 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7319 bool isread) 7320 { 7321 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7322 if (arm_current_el(env) == 2 7323 && arm_feature(env, ARM_FEATURE_EL3) 7324 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7325 return CP_ACCESS_TRAP_EL3; 7326 } 7327 return CP_ACCESS_OK; 7328 } 7329 7330 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7331 bool isread) 7332 { 7333 if (arm_current_el(env) < 3 7334 && arm_feature(env, ARM_FEATURE_EL3) 7335 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7336 return CP_ACCESS_TRAP_EL3; 7337 } 7338 return CP_ACCESS_OK; 7339 } 7340 7341 /* ResetSVEState */ 7342 static void arm_reset_sve_state(CPUARMState *env) 7343 { 7344 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7345 /* Recall that FFR is stored as pregs[16]. */ 7346 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7347 vfp_set_fpcr(env, 0x0800009f); 7348 } 7349 7350 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7351 { 7352 uint64_t change = (env->svcr ^ new) & mask; 7353 7354 if (change == 0) { 7355 return; 7356 } 7357 env->svcr ^= change; 7358 7359 if (change & R_SVCR_SM_MASK) { 7360 arm_reset_sve_state(env); 7361 } 7362 7363 /* 7364 * ResetSMEState. 7365 * 7366 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7367 * on enable: while disabled, the storage is inaccessible and the 7368 * value does not matter. We're not saving the storage in vmstate 7369 * when disabled either. 7370 */ 7371 if (change & new & R_SVCR_ZA_MASK) { 7372 memset(env->zarray, 0, sizeof(env->zarray)); 7373 } 7374 7375 if (tcg_enabled()) { 7376 arm_rebuild_hflags(env); 7377 } 7378 } 7379 7380 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7381 uint64_t value) 7382 { 7383 aarch64_set_svcr(env, value, -1); 7384 } 7385 7386 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7387 uint64_t value) 7388 { 7389 int cur_el = arm_current_el(env); 7390 int old_len = sve_vqm1_for_el(env, cur_el); 7391 int new_len; 7392 7393 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7394 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7395 raw_write(env, ri, value); 7396 7397 /* 7398 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7399 * when SVL is widened (old values kept, or zeros). Choose to keep the 7400 * current values for simplicity. But for QEMU internals, we must still 7401 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7402 * above aarch64_sve_narrow_vq. 7403 */ 7404 new_len = sve_vqm1_for_el(env, cur_el); 7405 if (new_len < old_len) { 7406 aarch64_sve_narrow_vq(env, new_len + 1); 7407 } 7408 } 7409 7410 static const ARMCPRegInfo sme_reginfo[] = { 7411 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7412 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7413 .access = PL0_RW, .accessfn = access_tpidr2, 7414 .fgt = FGT_NTPIDR2_EL0, 7415 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7416 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7417 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7418 .access = PL0_RW, .type = ARM_CP_SME, 7419 .fieldoffset = offsetof(CPUARMState, svcr), 7420 .writefn = svcr_write, .raw_writefn = raw_write }, 7421 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7422 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7423 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7424 .access = PL1_RW, .type = ARM_CP_SME, 7425 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7426 .writefn = smcr_write, .raw_writefn = raw_write }, 7427 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7429 .access = PL2_RW, .type = ARM_CP_SME, 7430 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7431 .writefn = smcr_write, .raw_writefn = raw_write }, 7432 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7434 .access = PL3_RW, .type = ARM_CP_SME, 7435 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7436 .writefn = smcr_write, .raw_writefn = raw_write }, 7437 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7439 .access = PL1_R, .accessfn = access_aa64_tid1, 7440 /* 7441 * IMPLEMENTOR = 0 (software) 7442 * REVISION = 0 (implementation defined) 7443 * SMPS = 0 (no streaming execution priority in QEMU) 7444 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7445 */ 7446 .type = ARM_CP_CONST, .resetvalue = 0, }, 7447 /* 7448 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7449 */ 7450 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7452 .access = PL1_RW, .accessfn = access_smpri, 7453 .fgt = FGT_NSMPRI_EL1, 7454 .type = ARM_CP_CONST, .resetvalue = 0 }, 7455 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7457 .nv2_redirect_offset = 0x1f8, 7458 .access = PL2_RW, .accessfn = access_smprimap, 7459 .type = ARM_CP_CONST, .resetvalue = 0 }, 7460 }; 7461 7462 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7463 uint64_t value) 7464 { 7465 CPUState *cs = env_cpu(env); 7466 7467 tlb_flush(cs); 7468 } 7469 7470 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7471 uint64_t value) 7472 { 7473 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7474 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7475 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7476 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7477 7478 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7479 } 7480 7481 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7482 { 7483 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7484 env_archcpu(env)->reset_l0gptsz); 7485 } 7486 7487 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7488 uint64_t value) 7489 { 7490 CPUState *cs = env_cpu(env); 7491 7492 tlb_flush_all_cpus_synced(cs); 7493 } 7494 7495 static const ARMCPRegInfo rme_reginfo[] = { 7496 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7497 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7498 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7499 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7500 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7502 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7503 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7505 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7506 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7507 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7508 .access = PL3_W, .type = ARM_CP_NO_RAW, 7509 .writefn = tlbi_aa64_paall_write }, 7510 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7512 .access = PL3_W, .type = ARM_CP_NO_RAW, 7513 .writefn = tlbi_aa64_paallos_write }, 7514 /* 7515 * QEMU does not have a way to invalidate by physical address, thus 7516 * invalidating a range of physical addresses is accomplished by 7517 * flushing all tlb entries in the outer shareable domain, 7518 * just like PAALLOS. 7519 */ 7520 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7522 .access = PL3_W, .type = ARM_CP_NO_RAW, 7523 .writefn = tlbi_aa64_paallos_write }, 7524 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7525 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7526 .access = PL3_W, .type = ARM_CP_NO_RAW, 7527 .writefn = tlbi_aa64_paallos_write }, 7528 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7530 .access = PL3_W, .type = ARM_CP_NOP }, 7531 }; 7532 7533 static const ARMCPRegInfo rme_mte_reginfo[] = { 7534 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7535 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7536 .access = PL3_W, .type = ARM_CP_NOP }, 7537 }; 7538 7539 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 7540 uint64_t value) 7541 { 7542 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 7543 } 7544 7545 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 7546 { 7547 return env->pstate & PSTATE_ALLINT; 7548 } 7549 7550 static CPAccessResult aa64_allint_access(CPUARMState *env, 7551 const ARMCPRegInfo *ri, bool isread) 7552 { 7553 if (!isread && arm_current_el(env) == 1 && 7554 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 7555 return CP_ACCESS_TRAP_EL2; 7556 } 7557 return CP_ACCESS_OK; 7558 } 7559 7560 static const ARMCPRegInfo nmi_reginfo[] = { 7561 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 7562 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 7563 .type = ARM_CP_NO_RAW, 7564 .access = PL1_RW, .accessfn = aa64_allint_access, 7565 .fieldoffset = offsetof(CPUARMState, pstate), 7566 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 7567 .resetfn = arm_cp_reset_ignore }, 7568 }; 7569 #endif /* TARGET_AARCH64 */ 7570 7571 static void define_pmu_regs(ARMCPU *cpu) 7572 { 7573 /* 7574 * v7 performance monitor control register: same implementor 7575 * field as main ID register, and we implement four counters in 7576 * addition to the cycle count register. 7577 */ 7578 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7579 ARMCPRegInfo pmcr = { 7580 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7581 .access = PL0_RW, 7582 .fgt = FGT_PMCR_EL0, 7583 .type = ARM_CP_IO | ARM_CP_ALIAS, 7584 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7585 .accessfn = pmreg_access, 7586 .readfn = pmcr_read, .raw_readfn = raw_read, 7587 .writefn = pmcr_write, .raw_writefn = raw_write, 7588 }; 7589 ARMCPRegInfo pmcr64 = { 7590 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7592 .access = PL0_RW, .accessfn = pmreg_access, 7593 .fgt = FGT_PMCR_EL0, 7594 .type = ARM_CP_IO, 7595 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7596 .resetvalue = cpu->isar.reset_pmcr_el0, 7597 .readfn = pmcr_read, .raw_readfn = raw_read, 7598 .writefn = pmcr_write, .raw_writefn = raw_write, 7599 }; 7600 7601 define_one_arm_cp_reg(cpu, &pmcr); 7602 define_one_arm_cp_reg(cpu, &pmcr64); 7603 for (i = 0; i < pmcrn; i++) { 7604 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7605 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7606 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7607 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7608 ARMCPRegInfo pmev_regs[] = { 7609 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7610 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7611 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7612 .fgt = FGT_PMEVCNTRN_EL0, 7613 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7614 .accessfn = pmreg_access_xevcntr }, 7615 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7616 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7617 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7618 .type = ARM_CP_IO, 7619 .fgt = FGT_PMEVCNTRN_EL0, 7620 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7621 .raw_readfn = pmevcntr_rawread, 7622 .raw_writefn = pmevcntr_rawwrite }, 7623 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7624 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7625 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7626 .fgt = FGT_PMEVTYPERN_EL0, 7627 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7628 .accessfn = pmreg_access }, 7629 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7630 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7631 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7632 .fgt = FGT_PMEVTYPERN_EL0, 7633 .type = ARM_CP_IO, 7634 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7635 .raw_writefn = pmevtyper_rawwrite }, 7636 }; 7637 define_arm_cp_regs(cpu, pmev_regs); 7638 g_free(pmevcntr_name); 7639 g_free(pmevcntr_el0_name); 7640 g_free(pmevtyper_name); 7641 g_free(pmevtyper_el0_name); 7642 } 7643 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7644 ARMCPRegInfo v81_pmu_regs[] = { 7645 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7646 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7647 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7648 .fgt = FGT_PMCEIDN_EL0, 7649 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7650 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7651 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7652 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7653 .fgt = FGT_PMCEIDN_EL0, 7654 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7655 }; 7656 define_arm_cp_regs(cpu, v81_pmu_regs); 7657 } 7658 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7659 static const ARMCPRegInfo v84_pmmir = { 7660 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7661 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7662 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7663 .fgt = FGT_PMMIR_EL1, 7664 .resetvalue = 0 7665 }; 7666 define_one_arm_cp_reg(cpu, &v84_pmmir); 7667 } 7668 } 7669 7670 #ifndef CONFIG_USER_ONLY 7671 /* 7672 * We don't know until after realize whether there's a GICv3 7673 * attached, and that is what registers the gicv3 sysregs. 7674 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7675 * at runtime. 7676 */ 7677 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7678 { 7679 ARMCPU *cpu = env_archcpu(env); 7680 uint64_t pfr1 = cpu->isar.id_pfr1; 7681 7682 if (env->gicv3state) { 7683 pfr1 |= 1 << 28; 7684 } 7685 return pfr1; 7686 } 7687 7688 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7689 { 7690 ARMCPU *cpu = env_archcpu(env); 7691 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7692 7693 if (env->gicv3state) { 7694 pfr0 |= 1 << 24; 7695 } 7696 return pfr0; 7697 } 7698 #endif 7699 7700 /* 7701 * Shared logic between LORID and the rest of the LOR* registers. 7702 * Secure state exclusion has already been dealt with. 7703 */ 7704 static CPAccessResult access_lor_ns(CPUARMState *env, 7705 const ARMCPRegInfo *ri, bool isread) 7706 { 7707 int el = arm_current_el(env); 7708 7709 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7710 return CP_ACCESS_TRAP_EL2; 7711 } 7712 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7713 return CP_ACCESS_TRAP_EL3; 7714 } 7715 return CP_ACCESS_OK; 7716 } 7717 7718 static CPAccessResult access_lor_other(CPUARMState *env, 7719 const ARMCPRegInfo *ri, bool isread) 7720 { 7721 if (arm_is_secure_below_el3(env)) { 7722 /* Access denied in secure mode. */ 7723 return CP_ACCESS_TRAP; 7724 } 7725 return access_lor_ns(env, ri, isread); 7726 } 7727 7728 /* 7729 * A trivial implementation of ARMv8.1-LOR leaves all of these 7730 * registers fixed at 0, which indicates that there are zero 7731 * supported Limited Ordering regions. 7732 */ 7733 static const ARMCPRegInfo lor_reginfo[] = { 7734 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7736 .access = PL1_RW, .accessfn = access_lor_other, 7737 .fgt = FGT_LORSA_EL1, 7738 .type = ARM_CP_CONST, .resetvalue = 0 }, 7739 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7741 .access = PL1_RW, .accessfn = access_lor_other, 7742 .fgt = FGT_LOREA_EL1, 7743 .type = ARM_CP_CONST, .resetvalue = 0 }, 7744 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7746 .access = PL1_RW, .accessfn = access_lor_other, 7747 .fgt = FGT_LORN_EL1, 7748 .type = ARM_CP_CONST, .resetvalue = 0 }, 7749 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7751 .access = PL1_RW, .accessfn = access_lor_other, 7752 .fgt = FGT_LORC_EL1, 7753 .type = ARM_CP_CONST, .resetvalue = 0 }, 7754 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7756 .access = PL1_R, .accessfn = access_lor_ns, 7757 .fgt = FGT_LORID_EL1, 7758 .type = ARM_CP_CONST, .resetvalue = 0 }, 7759 }; 7760 7761 #ifdef TARGET_AARCH64 7762 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7763 bool isread) 7764 { 7765 int el = arm_current_el(env); 7766 7767 if (el < 2 && 7768 arm_is_el2_enabled(env) && 7769 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7770 return CP_ACCESS_TRAP_EL2; 7771 } 7772 if (el < 3 && 7773 arm_feature(env, ARM_FEATURE_EL3) && 7774 !(env->cp15.scr_el3 & SCR_APK)) { 7775 return CP_ACCESS_TRAP_EL3; 7776 } 7777 return CP_ACCESS_OK; 7778 } 7779 7780 static const ARMCPRegInfo pauth_reginfo[] = { 7781 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7783 .access = PL1_RW, .accessfn = access_pauth, 7784 .fgt = FGT_APDAKEY, 7785 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7786 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7788 .access = PL1_RW, .accessfn = access_pauth, 7789 .fgt = FGT_APDAKEY, 7790 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7791 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7793 .access = PL1_RW, .accessfn = access_pauth, 7794 .fgt = FGT_APDBKEY, 7795 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7796 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7798 .access = PL1_RW, .accessfn = access_pauth, 7799 .fgt = FGT_APDBKEY, 7800 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7801 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7803 .access = PL1_RW, .accessfn = access_pauth, 7804 .fgt = FGT_APGAKEY, 7805 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7806 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7808 .access = PL1_RW, .accessfn = access_pauth, 7809 .fgt = FGT_APGAKEY, 7810 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7811 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7813 .access = PL1_RW, .accessfn = access_pauth, 7814 .fgt = FGT_APIAKEY, 7815 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7816 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7818 .access = PL1_RW, .accessfn = access_pauth, 7819 .fgt = FGT_APIAKEY, 7820 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7821 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7823 .access = PL1_RW, .accessfn = access_pauth, 7824 .fgt = FGT_APIBKEY, 7825 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7826 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7828 .access = PL1_RW, .accessfn = access_pauth, 7829 .fgt = FGT_APIBKEY, 7830 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7831 }; 7832 7833 static const ARMCPRegInfo tlbirange_reginfo[] = { 7834 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7836 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7837 .fgt = FGT_TLBIRVAE1IS, 7838 .writefn = tlbi_aa64_rvae1is_write }, 7839 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7841 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7842 .fgt = FGT_TLBIRVAAE1IS, 7843 .writefn = tlbi_aa64_rvae1is_write }, 7844 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7846 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7847 .fgt = FGT_TLBIRVALE1IS, 7848 .writefn = tlbi_aa64_rvae1is_write }, 7849 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7851 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7852 .fgt = FGT_TLBIRVAALE1IS, 7853 .writefn = tlbi_aa64_rvae1is_write }, 7854 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7856 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7857 .fgt = FGT_TLBIRVAE1OS, 7858 .writefn = tlbi_aa64_rvae1is_write }, 7859 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7861 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7862 .fgt = FGT_TLBIRVAAE1OS, 7863 .writefn = tlbi_aa64_rvae1is_write }, 7864 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7866 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7867 .fgt = FGT_TLBIRVALE1OS, 7868 .writefn = tlbi_aa64_rvae1is_write }, 7869 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7871 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7872 .fgt = FGT_TLBIRVAALE1OS, 7873 .writefn = tlbi_aa64_rvae1is_write }, 7874 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7877 .fgt = FGT_TLBIRVAE1, 7878 .writefn = tlbi_aa64_rvae1_write }, 7879 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7880 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7881 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7882 .fgt = FGT_TLBIRVAAE1, 7883 .writefn = tlbi_aa64_rvae1_write }, 7884 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7887 .fgt = FGT_TLBIRVALE1, 7888 .writefn = tlbi_aa64_rvae1_write }, 7889 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7892 .fgt = FGT_TLBIRVAALE1, 7893 .writefn = tlbi_aa64_rvae1_write }, 7894 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7896 .access = PL2_W, .type = ARM_CP_NO_RAW, 7897 .writefn = tlbi_aa64_ripas2e1is_write }, 7898 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7900 .access = PL2_W, .type = ARM_CP_NO_RAW, 7901 .writefn = tlbi_aa64_ripas2e1is_write }, 7902 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7904 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7905 .writefn = tlbi_aa64_rvae2is_write }, 7906 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7908 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7909 .writefn = tlbi_aa64_rvae2is_write }, 7910 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7912 .access = PL2_W, .type = ARM_CP_NO_RAW, 7913 .writefn = tlbi_aa64_ripas2e1_write }, 7914 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7915 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7916 .access = PL2_W, .type = ARM_CP_NO_RAW, 7917 .writefn = tlbi_aa64_ripas2e1_write }, 7918 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7920 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7921 .writefn = tlbi_aa64_rvae2is_write }, 7922 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7924 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7925 .writefn = tlbi_aa64_rvae2is_write }, 7926 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7928 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7929 .writefn = tlbi_aa64_rvae2_write }, 7930 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7932 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7933 .writefn = tlbi_aa64_rvae2_write }, 7934 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7935 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7936 .access = PL3_W, .type = ARM_CP_NO_RAW, 7937 .writefn = tlbi_aa64_rvae3is_write }, 7938 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7940 .access = PL3_W, .type = ARM_CP_NO_RAW, 7941 .writefn = tlbi_aa64_rvae3is_write }, 7942 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7943 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7944 .access = PL3_W, .type = ARM_CP_NO_RAW, 7945 .writefn = tlbi_aa64_rvae3is_write }, 7946 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7947 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7948 .access = PL3_W, .type = ARM_CP_NO_RAW, 7949 .writefn = tlbi_aa64_rvae3is_write }, 7950 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7951 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7952 .access = PL3_W, .type = ARM_CP_NO_RAW, 7953 .writefn = tlbi_aa64_rvae3_write }, 7954 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7955 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7956 .access = PL3_W, .type = ARM_CP_NO_RAW, 7957 .writefn = tlbi_aa64_rvae3_write }, 7958 }; 7959 7960 static const ARMCPRegInfo tlbios_reginfo[] = { 7961 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7962 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7963 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7964 .fgt = FGT_TLBIVMALLE1OS, 7965 .writefn = tlbi_aa64_vmalle1is_write }, 7966 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7968 .fgt = FGT_TLBIVAE1OS, 7969 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7970 .writefn = tlbi_aa64_vae1is_write }, 7971 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7973 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7974 .fgt = FGT_TLBIASIDE1OS, 7975 .writefn = tlbi_aa64_vmalle1is_write }, 7976 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7977 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7978 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7979 .fgt = FGT_TLBIVAAE1OS, 7980 .writefn = tlbi_aa64_vae1is_write }, 7981 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7982 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7983 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7984 .fgt = FGT_TLBIVALE1OS, 7985 .writefn = tlbi_aa64_vae1is_write }, 7986 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7988 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7989 .fgt = FGT_TLBIVAALE1OS, 7990 .writefn = tlbi_aa64_vae1is_write }, 7991 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7993 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7994 .writefn = tlbi_aa64_alle2is_write }, 7995 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7996 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7997 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7998 .writefn = tlbi_aa64_vae2is_write }, 7999 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 8000 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 8001 .access = PL2_W, .type = ARM_CP_NO_RAW, 8002 .writefn = tlbi_aa64_alle1is_write }, 8003 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 8004 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 8005 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 8006 .writefn = tlbi_aa64_vae2is_write }, 8007 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 8008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 8009 .access = PL2_W, .type = ARM_CP_NO_RAW, 8010 .writefn = tlbi_aa64_alle1is_write }, 8011 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 8012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 8013 .access = PL2_W, .type = ARM_CP_NOP }, 8014 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 8015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 8016 .access = PL2_W, .type = ARM_CP_NOP }, 8017 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 8019 .access = PL2_W, .type = ARM_CP_NOP }, 8020 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 8022 .access = PL2_W, .type = ARM_CP_NOP }, 8023 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 8025 .access = PL3_W, .type = ARM_CP_NO_RAW, 8026 .writefn = tlbi_aa64_alle3is_write }, 8027 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 8028 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 8029 .access = PL3_W, .type = ARM_CP_NO_RAW, 8030 .writefn = tlbi_aa64_vae3is_write }, 8031 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 8033 .access = PL3_W, .type = ARM_CP_NO_RAW, 8034 .writefn = tlbi_aa64_vae3is_write }, 8035 }; 8036 8037 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 8038 { 8039 Error *err = NULL; 8040 uint64_t ret; 8041 8042 /* Success sets NZCV = 0000. */ 8043 env->NF = env->CF = env->VF = 0, env->ZF = 1; 8044 8045 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 8046 /* 8047 * ??? Failed, for unknown reasons in the crypto subsystem. 8048 * The best we can do is log the reason and return the 8049 * timed-out indication to the guest. There is no reason 8050 * we know to expect this failure to be transitory, so the 8051 * guest may well hang retrying the operation. 8052 */ 8053 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 8054 ri->name, error_get_pretty(err)); 8055 error_free(err); 8056 8057 env->ZF = 0; /* NZCF = 0100 */ 8058 return 0; 8059 } 8060 return ret; 8061 } 8062 8063 /* We do not support re-seeding, so the two registers operate the same. */ 8064 static const ARMCPRegInfo rndr_reginfo[] = { 8065 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 8066 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8067 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 8068 .access = PL0_R, .readfn = rndr_readfn }, 8069 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 8070 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8071 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 8072 .access = PL0_R, .readfn = rndr_readfn }, 8073 }; 8074 8075 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 8076 uint64_t value) 8077 { 8078 #ifdef CONFIG_TCG 8079 ARMCPU *cpu = env_archcpu(env); 8080 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 8081 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 8082 uint64_t vaddr_in = (uint64_t) value; 8083 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 8084 void *haddr; 8085 int mem_idx = arm_env_mmu_index(env); 8086 8087 /* This won't be crossing page boundaries */ 8088 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 8089 if (haddr) { 8090 #ifndef CONFIG_USER_ONLY 8091 8092 ram_addr_t offset; 8093 MemoryRegion *mr; 8094 8095 /* RCU lock is already being held */ 8096 mr = memory_region_from_host(haddr, &offset); 8097 8098 if (mr) { 8099 memory_region_writeback(mr, offset, dline_size); 8100 } 8101 #endif /*CONFIG_USER_ONLY*/ 8102 } 8103 #else 8104 /* Handled by hardware accelerator. */ 8105 g_assert_not_reached(); 8106 #endif /* CONFIG_TCG */ 8107 } 8108 8109 static const ARMCPRegInfo dcpop_reg[] = { 8110 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 8111 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 8112 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8113 .fgt = FGT_DCCVAP, 8114 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8115 }; 8116 8117 static const ARMCPRegInfo dcpodp_reg[] = { 8118 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 8119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 8120 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8121 .fgt = FGT_DCCVADP, 8122 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8123 }; 8124 8125 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 8126 bool isread) 8127 { 8128 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 8129 return CP_ACCESS_TRAP_EL2; 8130 } 8131 8132 return CP_ACCESS_OK; 8133 } 8134 8135 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 8136 bool isread) 8137 { 8138 int el = arm_current_el(env); 8139 if (el < 2 && arm_is_el2_enabled(env)) { 8140 uint64_t hcr = arm_hcr_el2_eff(env); 8141 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8142 return CP_ACCESS_TRAP_EL2; 8143 } 8144 } 8145 if (el < 3 && 8146 arm_feature(env, ARM_FEATURE_EL3) && 8147 !(env->cp15.scr_el3 & SCR_ATA)) { 8148 return CP_ACCESS_TRAP_EL3; 8149 } 8150 return CP_ACCESS_OK; 8151 } 8152 8153 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 8154 bool isread) 8155 { 8156 CPAccessResult nv1 = access_nv1(env, ri, isread); 8157 8158 if (nv1 != CP_ACCESS_OK) { 8159 return nv1; 8160 } 8161 return access_mte(env, ri, isread); 8162 } 8163 8164 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 8165 bool isread) 8166 { 8167 /* 8168 * TFSR_EL2: similar to generic access_mte(), but we need to 8169 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 8170 * if NV2 is enabled then we will redirect this to TFSR_EL1 8171 * after doing the HCR and SCR ATA traps; otherwise this will 8172 * be a trap to EL2 and the HCR/SCR traps do not apply. 8173 */ 8174 int el = arm_current_el(env); 8175 8176 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 8177 return CP_ACCESS_OK; 8178 } 8179 if (el < 2 && arm_is_el2_enabled(env)) { 8180 uint64_t hcr = arm_hcr_el2_eff(env); 8181 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8182 return CP_ACCESS_TRAP_EL2; 8183 } 8184 } 8185 if (el < 3 && 8186 arm_feature(env, ARM_FEATURE_EL3) && 8187 !(env->cp15.scr_el3 & SCR_ATA)) { 8188 return CP_ACCESS_TRAP_EL3; 8189 } 8190 return CP_ACCESS_OK; 8191 } 8192 8193 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 8194 { 8195 return env->pstate & PSTATE_TCO; 8196 } 8197 8198 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 8199 { 8200 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 8201 } 8202 8203 static const ARMCPRegInfo mte_reginfo[] = { 8204 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 8205 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 8206 .access = PL1_RW, .accessfn = access_mte, 8207 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 8208 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 8209 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 8210 .access = PL1_RW, .accessfn = access_tfsr_el1, 8211 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 8212 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 8213 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 8214 .type = ARM_CP_NV2_REDIRECT, 8215 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 8216 .access = PL2_RW, .accessfn = access_tfsr_el2, 8217 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 8218 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 8219 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 8220 .access = PL3_RW, 8221 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 8222 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 8223 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 8224 .access = PL1_RW, .accessfn = access_mte, 8225 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 8226 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 8227 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 8228 .access = PL1_RW, .accessfn = access_mte, 8229 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 8230 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8231 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8232 .type = ARM_CP_NO_RAW, 8233 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8234 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8236 .type = ARM_CP_NOP, .access = PL1_W, 8237 .fgt = FGT_DCIVAC, 8238 .accessfn = aa64_cacheop_poc_access }, 8239 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8241 .fgt = FGT_DCISW, 8242 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8243 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8245 .type = ARM_CP_NOP, .access = PL1_W, 8246 .fgt = FGT_DCIVAC, 8247 .accessfn = aa64_cacheop_poc_access }, 8248 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8249 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8250 .fgt = FGT_DCISW, 8251 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8252 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8253 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8254 .fgt = FGT_DCCSW, 8255 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8256 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8258 .fgt = FGT_DCCSW, 8259 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8260 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8261 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8262 .fgt = FGT_DCCISW, 8263 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8264 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8265 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8266 .fgt = FGT_DCCISW, 8267 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8268 }; 8269 8270 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8271 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8272 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8273 .type = ARM_CP_CONST, .access = PL0_RW, }, 8274 }; 8275 8276 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8277 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8278 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8279 .type = ARM_CP_NOP, .access = PL0_W, 8280 .fgt = FGT_DCCVAC, 8281 .accessfn = aa64_cacheop_poc_access }, 8282 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8283 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8284 .type = ARM_CP_NOP, .access = PL0_W, 8285 .fgt = FGT_DCCVAC, 8286 .accessfn = aa64_cacheop_poc_access }, 8287 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8288 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8289 .type = ARM_CP_NOP, .access = PL0_W, 8290 .fgt = FGT_DCCVAP, 8291 .accessfn = aa64_cacheop_poc_access }, 8292 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8293 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8294 .type = ARM_CP_NOP, .access = PL0_W, 8295 .fgt = FGT_DCCVAP, 8296 .accessfn = aa64_cacheop_poc_access }, 8297 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8298 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8299 .type = ARM_CP_NOP, .access = PL0_W, 8300 .fgt = FGT_DCCVADP, 8301 .accessfn = aa64_cacheop_poc_access }, 8302 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8303 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8304 .type = ARM_CP_NOP, .access = PL0_W, 8305 .fgt = FGT_DCCVADP, 8306 .accessfn = aa64_cacheop_poc_access }, 8307 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8308 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8309 .type = ARM_CP_NOP, .access = PL0_W, 8310 .fgt = FGT_DCCIVAC, 8311 .accessfn = aa64_cacheop_poc_access }, 8312 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8314 .type = ARM_CP_NOP, .access = PL0_W, 8315 .fgt = FGT_DCCIVAC, 8316 .accessfn = aa64_cacheop_poc_access }, 8317 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8318 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8319 .access = PL0_W, .type = ARM_CP_DC_GVA, 8320 #ifndef CONFIG_USER_ONLY 8321 /* Avoid overhead of an access check that always passes in user-mode */ 8322 .accessfn = aa64_zva_access, 8323 .fgt = FGT_DCZVA, 8324 #endif 8325 }, 8326 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8328 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8329 #ifndef CONFIG_USER_ONLY 8330 /* Avoid overhead of an access check that always passes in user-mode */ 8331 .accessfn = aa64_zva_access, 8332 .fgt = FGT_DCZVA, 8333 #endif 8334 }, 8335 }; 8336 8337 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8338 bool isread) 8339 { 8340 uint64_t hcr = arm_hcr_el2_eff(env); 8341 int el = arm_current_el(env); 8342 8343 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8344 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8345 if (hcr & HCR_TGE) { 8346 return CP_ACCESS_TRAP_EL2; 8347 } 8348 return CP_ACCESS_TRAP; 8349 } 8350 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8351 return CP_ACCESS_TRAP_EL2; 8352 } 8353 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8354 return CP_ACCESS_TRAP_EL2; 8355 } 8356 if (el < 3 8357 && arm_feature(env, ARM_FEATURE_EL3) 8358 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8359 return CP_ACCESS_TRAP_EL3; 8360 } 8361 return CP_ACCESS_OK; 8362 } 8363 8364 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8365 const ARMCPRegInfo *ri, 8366 bool isread) 8367 { 8368 CPAccessResult nv1 = access_nv1(env, ri, isread); 8369 8370 if (nv1 != CP_ACCESS_OK) { 8371 return nv1; 8372 } 8373 return access_scxtnum(env, ri, isread); 8374 } 8375 8376 static const ARMCPRegInfo scxtnum_reginfo[] = { 8377 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8378 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8379 .access = PL0_RW, .accessfn = access_scxtnum, 8380 .fgt = FGT_SCXTNUM_EL0, 8381 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8382 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8383 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8384 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8385 .fgt = FGT_SCXTNUM_EL1, 8386 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8387 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8388 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8389 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8390 .access = PL2_RW, .accessfn = access_scxtnum, 8391 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8392 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8394 .access = PL3_RW, 8395 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8396 }; 8397 8398 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8399 bool isread) 8400 { 8401 if (arm_current_el(env) == 2 && 8402 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8403 return CP_ACCESS_TRAP_EL3; 8404 } 8405 return CP_ACCESS_OK; 8406 } 8407 8408 static const ARMCPRegInfo fgt_reginfo[] = { 8409 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8410 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8411 .nv2_redirect_offset = 0x1b8, 8412 .access = PL2_RW, .accessfn = access_fgt, 8413 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8414 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8415 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8416 .nv2_redirect_offset = 0x1c0, 8417 .access = PL2_RW, .accessfn = access_fgt, 8418 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8419 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8420 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8421 .nv2_redirect_offset = 0x1d0, 8422 .access = PL2_RW, .accessfn = access_fgt, 8423 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8424 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8425 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8426 .nv2_redirect_offset = 0x1d8, 8427 .access = PL2_RW, .accessfn = access_fgt, 8428 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8429 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8430 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8431 .nv2_redirect_offset = 0x1c8, 8432 .access = PL2_RW, .accessfn = access_fgt, 8433 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8434 }; 8435 8436 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8437 uint64_t value) 8438 { 8439 /* 8440 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8441 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8442 * about the RESS bits at the top -- we choose the "generate an EL2 8443 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8444 * the ptw.c code detect the resulting invalid address). 8445 */ 8446 env->cp15.vncr_el2 = value & ~0xfffULL; 8447 } 8448 8449 static const ARMCPRegInfo nv2_reginfo[] = { 8450 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8451 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8452 .access = PL2_RW, 8453 .writefn = vncr_write, 8454 .nv2_redirect_offset = 0xb0, 8455 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8456 }; 8457 8458 #endif /* TARGET_AARCH64 */ 8459 8460 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8461 bool isread) 8462 { 8463 int el = arm_current_el(env); 8464 8465 if (el == 0) { 8466 uint64_t sctlr = arm_sctlr(env, el); 8467 if (!(sctlr & SCTLR_EnRCTX)) { 8468 return CP_ACCESS_TRAP; 8469 } 8470 } else if (el == 1) { 8471 uint64_t hcr = arm_hcr_el2_eff(env); 8472 if (hcr & HCR_NV) { 8473 return CP_ACCESS_TRAP_EL2; 8474 } 8475 } 8476 return CP_ACCESS_OK; 8477 } 8478 8479 static const ARMCPRegInfo predinv_reginfo[] = { 8480 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8482 .fgt = FGT_CFPRCTX, 8483 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8484 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8486 .fgt = FGT_DVPRCTX, 8487 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8488 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8489 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8490 .fgt = FGT_CPPRCTX, 8491 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8492 /* 8493 * Note the AArch32 opcodes have a different OPC1. 8494 */ 8495 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8496 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8497 .fgt = FGT_CFPRCTX, 8498 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8499 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8500 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8501 .fgt = FGT_DVPRCTX, 8502 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8503 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8504 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8505 .fgt = FGT_CPPRCTX, 8506 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8507 }; 8508 8509 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8510 { 8511 /* Read the high 32 bits of the current CCSIDR */ 8512 return extract64(ccsidr_read(env, ri), 32, 32); 8513 } 8514 8515 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8516 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8517 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8518 .access = PL1_R, 8519 .accessfn = access_tid4, 8520 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8521 }; 8522 8523 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8524 bool isread) 8525 { 8526 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8527 return CP_ACCESS_TRAP_EL2; 8528 } 8529 8530 return CP_ACCESS_OK; 8531 } 8532 8533 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8534 bool isread) 8535 { 8536 if (arm_feature(env, ARM_FEATURE_V8)) { 8537 return access_aa64_tid3(env, ri, isread); 8538 } 8539 8540 return CP_ACCESS_OK; 8541 } 8542 8543 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8544 bool isread) 8545 { 8546 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8547 return CP_ACCESS_TRAP_EL2; 8548 } 8549 8550 return CP_ACCESS_OK; 8551 } 8552 8553 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8554 const ARMCPRegInfo *ri, bool isread) 8555 { 8556 /* 8557 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8558 * in v7A, not in v8A. 8559 */ 8560 if (!arm_feature(env, ARM_FEATURE_V8) && 8561 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8562 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8563 return CP_ACCESS_TRAP_EL2; 8564 } 8565 return CP_ACCESS_OK; 8566 } 8567 8568 static const ARMCPRegInfo jazelle_regs[] = { 8569 { .name = "JIDR", 8570 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8571 .access = PL1_R, .accessfn = access_jazelle, 8572 .type = ARM_CP_CONST, .resetvalue = 0 }, 8573 { .name = "JOSCR", 8574 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8575 .accessfn = access_joscr_jmcr, 8576 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8577 { .name = "JMCR", 8578 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8579 .accessfn = access_joscr_jmcr, 8580 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8581 }; 8582 8583 static const ARMCPRegInfo contextidr_el2 = { 8584 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8585 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8586 .access = PL2_RW, 8587 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8588 }; 8589 8590 static const ARMCPRegInfo vhe_reginfo[] = { 8591 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8593 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8594 .raw_writefn = raw_write, 8595 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8596 #ifndef CONFIG_USER_ONLY 8597 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8598 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8599 .fieldoffset = 8600 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8601 .type = ARM_CP_IO, .access = PL2_RW, 8602 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8603 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8604 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8605 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8606 .resetfn = gt_hv_timer_reset, 8607 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8608 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8609 .type = ARM_CP_IO, 8610 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8611 .access = PL2_RW, 8612 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8613 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8614 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8615 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8616 .type = ARM_CP_IO | ARM_CP_ALIAS, 8617 .access = PL2_RW, .accessfn = access_el1nvpct, 8618 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8619 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8620 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8621 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8622 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8623 .type = ARM_CP_IO | ARM_CP_ALIAS, 8624 .access = PL2_RW, .accessfn = access_el1nvvct, 8625 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8626 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8627 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8628 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8629 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8630 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8631 .access = PL2_RW, .accessfn = e2h_access, 8632 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8633 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8634 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8635 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8636 .access = PL2_RW, .accessfn = e2h_access, 8637 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8638 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8639 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8640 .type = ARM_CP_IO | ARM_CP_ALIAS, 8641 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8642 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8643 .access = PL2_RW, .accessfn = access_el1nvpct, 8644 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8645 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8646 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8647 .type = ARM_CP_IO | ARM_CP_ALIAS, 8648 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8649 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8650 .access = PL2_RW, .accessfn = access_el1nvvct, 8651 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8652 #endif 8653 }; 8654 8655 #ifndef CONFIG_USER_ONLY 8656 static const ARMCPRegInfo ats1e1_reginfo[] = { 8657 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8658 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8659 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8660 .fgt = FGT_ATS1E1RP, 8661 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8662 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8663 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8664 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8665 .fgt = FGT_ATS1E1WP, 8666 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8667 }; 8668 8669 static const ARMCPRegInfo ats1cp_reginfo[] = { 8670 { .name = "ATS1CPRP", 8671 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8672 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8673 .writefn = ats_write }, 8674 { .name = "ATS1CPWP", 8675 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8676 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8677 .writefn = ats_write }, 8678 }; 8679 #endif 8680 8681 /* 8682 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8683 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8684 * is non-zero, which is never for ARMv7, optionally in ARMv8 8685 * and mandatorily for ARMv8.2 and up. 8686 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8687 * implementation is RAZ/WI we can ignore this detail, as we 8688 * do for ACTLR. 8689 */ 8690 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8691 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8693 .access = PL1_RW, .accessfn = access_tacr, 8694 .type = ARM_CP_CONST, .resetvalue = 0 }, 8695 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8696 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8697 .access = PL2_RW, .type = ARM_CP_CONST, 8698 .resetvalue = 0 }, 8699 }; 8700 8701 void register_cp_regs_for_features(ARMCPU *cpu) 8702 { 8703 /* Register all the coprocessor registers based on feature bits */ 8704 CPUARMState *env = &cpu->env; 8705 if (arm_feature(env, ARM_FEATURE_M)) { 8706 /* M profile has no coprocessor registers */ 8707 return; 8708 } 8709 8710 define_arm_cp_regs(cpu, cp_reginfo); 8711 if (!arm_feature(env, ARM_FEATURE_V8)) { 8712 /* 8713 * Must go early as it is full of wildcards that may be 8714 * overridden by later definitions. 8715 */ 8716 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8717 } 8718 8719 if (arm_feature(env, ARM_FEATURE_V6)) { 8720 /* The ID registers all have impdef reset values */ 8721 ARMCPRegInfo v6_idregs[] = { 8722 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8724 .access = PL1_R, .type = ARM_CP_CONST, 8725 .accessfn = access_aa32_tid3, 8726 .resetvalue = cpu->isar.id_pfr0 }, 8727 /* 8728 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8729 * the value of the GIC field until after we define these regs. 8730 */ 8731 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8733 .access = PL1_R, .type = ARM_CP_NO_RAW, 8734 .accessfn = access_aa32_tid3, 8735 #ifdef CONFIG_USER_ONLY 8736 .type = ARM_CP_CONST, 8737 .resetvalue = cpu->isar.id_pfr1, 8738 #else 8739 .type = ARM_CP_NO_RAW, 8740 .accessfn = access_aa32_tid3, 8741 .readfn = id_pfr1_read, 8742 .writefn = arm_cp_write_ignore 8743 #endif 8744 }, 8745 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8747 .access = PL1_R, .type = ARM_CP_CONST, 8748 .accessfn = access_aa32_tid3, 8749 .resetvalue = cpu->isar.id_dfr0 }, 8750 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8752 .access = PL1_R, .type = ARM_CP_CONST, 8753 .accessfn = access_aa32_tid3, 8754 .resetvalue = cpu->id_afr0 }, 8755 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8757 .access = PL1_R, .type = ARM_CP_CONST, 8758 .accessfn = access_aa32_tid3, 8759 .resetvalue = cpu->isar.id_mmfr0 }, 8760 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8762 .access = PL1_R, .type = ARM_CP_CONST, 8763 .accessfn = access_aa32_tid3, 8764 .resetvalue = cpu->isar.id_mmfr1 }, 8765 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8767 .access = PL1_R, .type = ARM_CP_CONST, 8768 .accessfn = access_aa32_tid3, 8769 .resetvalue = cpu->isar.id_mmfr2 }, 8770 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8772 .access = PL1_R, .type = ARM_CP_CONST, 8773 .accessfn = access_aa32_tid3, 8774 .resetvalue = cpu->isar.id_mmfr3 }, 8775 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8777 .access = PL1_R, .type = ARM_CP_CONST, 8778 .accessfn = access_aa32_tid3, 8779 .resetvalue = cpu->isar.id_isar0 }, 8780 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8782 .access = PL1_R, .type = ARM_CP_CONST, 8783 .accessfn = access_aa32_tid3, 8784 .resetvalue = cpu->isar.id_isar1 }, 8785 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8787 .access = PL1_R, .type = ARM_CP_CONST, 8788 .accessfn = access_aa32_tid3, 8789 .resetvalue = cpu->isar.id_isar2 }, 8790 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8792 .access = PL1_R, .type = ARM_CP_CONST, 8793 .accessfn = access_aa32_tid3, 8794 .resetvalue = cpu->isar.id_isar3 }, 8795 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8797 .access = PL1_R, .type = ARM_CP_CONST, 8798 .accessfn = access_aa32_tid3, 8799 .resetvalue = cpu->isar.id_isar4 }, 8800 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8802 .access = PL1_R, .type = ARM_CP_CONST, 8803 .accessfn = access_aa32_tid3, 8804 .resetvalue = cpu->isar.id_isar5 }, 8805 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8807 .access = PL1_R, .type = ARM_CP_CONST, 8808 .accessfn = access_aa32_tid3, 8809 .resetvalue = cpu->isar.id_mmfr4 }, 8810 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8812 .access = PL1_R, .type = ARM_CP_CONST, 8813 .accessfn = access_aa32_tid3, 8814 .resetvalue = cpu->isar.id_isar6 }, 8815 }; 8816 define_arm_cp_regs(cpu, v6_idregs); 8817 define_arm_cp_regs(cpu, v6_cp_reginfo); 8818 } else { 8819 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8820 } 8821 if (arm_feature(env, ARM_FEATURE_V6K)) { 8822 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8823 } 8824 if (arm_feature(env, ARM_FEATURE_V7MP) && 8825 !arm_feature(env, ARM_FEATURE_PMSA)) { 8826 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8827 } 8828 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8829 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8830 } 8831 if (arm_feature(env, ARM_FEATURE_V7)) { 8832 ARMCPRegInfo clidr = { 8833 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8834 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8835 .access = PL1_R, .type = ARM_CP_CONST, 8836 .accessfn = access_tid4, 8837 .fgt = FGT_CLIDR_EL1, 8838 .resetvalue = cpu->clidr 8839 }; 8840 define_one_arm_cp_reg(cpu, &clidr); 8841 define_arm_cp_regs(cpu, v7_cp_reginfo); 8842 define_debug_regs(cpu); 8843 define_pmu_regs(cpu); 8844 } else { 8845 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8846 } 8847 if (arm_feature(env, ARM_FEATURE_V8)) { 8848 /* 8849 * v8 ID registers, which all have impdef reset values. 8850 * Note that within the ID register ranges the unused slots 8851 * must all RAZ, not UNDEF; future architecture versions may 8852 * define new registers here. 8853 * ID registers which are AArch64 views of the AArch32 ID registers 8854 * which already existed in v6 and v7 are handled elsewhere, 8855 * in v6_idregs[]. 8856 */ 8857 int i; 8858 ARMCPRegInfo v8_idregs[] = { 8859 /* 8860 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8861 * emulation because we don't know the right value for the 8862 * GIC field until after we define these regs. 8863 */ 8864 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8866 .access = PL1_R, 8867 #ifdef CONFIG_USER_ONLY 8868 .type = ARM_CP_CONST, 8869 .resetvalue = cpu->isar.id_aa64pfr0 8870 #else 8871 .type = ARM_CP_NO_RAW, 8872 .accessfn = access_aa64_tid3, 8873 .readfn = id_aa64pfr0_read, 8874 .writefn = arm_cp_write_ignore 8875 #endif 8876 }, 8877 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8878 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8879 .access = PL1_R, .type = ARM_CP_CONST, 8880 .accessfn = access_aa64_tid3, 8881 .resetvalue = cpu->isar.id_aa64pfr1}, 8882 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8884 .access = PL1_R, .type = ARM_CP_CONST, 8885 .accessfn = access_aa64_tid3, 8886 .resetvalue = 0 }, 8887 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8889 .access = PL1_R, .type = ARM_CP_CONST, 8890 .accessfn = access_aa64_tid3, 8891 .resetvalue = 0 }, 8892 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8894 .access = PL1_R, .type = ARM_CP_CONST, 8895 .accessfn = access_aa64_tid3, 8896 .resetvalue = cpu->isar.id_aa64zfr0 }, 8897 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8899 .access = PL1_R, .type = ARM_CP_CONST, 8900 .accessfn = access_aa64_tid3, 8901 .resetvalue = cpu->isar.id_aa64smfr0 }, 8902 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8904 .access = PL1_R, .type = ARM_CP_CONST, 8905 .accessfn = access_aa64_tid3, 8906 .resetvalue = 0 }, 8907 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8909 .access = PL1_R, .type = ARM_CP_CONST, 8910 .accessfn = access_aa64_tid3, 8911 .resetvalue = 0 }, 8912 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8914 .access = PL1_R, .type = ARM_CP_CONST, 8915 .accessfn = access_aa64_tid3, 8916 .resetvalue = cpu->isar.id_aa64dfr0 }, 8917 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8919 .access = PL1_R, .type = ARM_CP_CONST, 8920 .accessfn = access_aa64_tid3, 8921 .resetvalue = cpu->isar.id_aa64dfr1 }, 8922 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8923 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8924 .access = PL1_R, .type = ARM_CP_CONST, 8925 .accessfn = access_aa64_tid3, 8926 .resetvalue = 0 }, 8927 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8928 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8929 .access = PL1_R, .type = ARM_CP_CONST, 8930 .accessfn = access_aa64_tid3, 8931 .resetvalue = 0 }, 8932 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8934 .access = PL1_R, .type = ARM_CP_CONST, 8935 .accessfn = access_aa64_tid3, 8936 .resetvalue = cpu->id_aa64afr0 }, 8937 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8939 .access = PL1_R, .type = ARM_CP_CONST, 8940 .accessfn = access_aa64_tid3, 8941 .resetvalue = cpu->id_aa64afr1 }, 8942 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8944 .access = PL1_R, .type = ARM_CP_CONST, 8945 .accessfn = access_aa64_tid3, 8946 .resetvalue = 0 }, 8947 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8948 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8949 .access = PL1_R, .type = ARM_CP_CONST, 8950 .accessfn = access_aa64_tid3, 8951 .resetvalue = 0 }, 8952 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8954 .access = PL1_R, .type = ARM_CP_CONST, 8955 .accessfn = access_aa64_tid3, 8956 .resetvalue = cpu->isar.id_aa64isar0 }, 8957 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8959 .access = PL1_R, .type = ARM_CP_CONST, 8960 .accessfn = access_aa64_tid3, 8961 .resetvalue = cpu->isar.id_aa64isar1 }, 8962 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8964 .access = PL1_R, .type = ARM_CP_CONST, 8965 .accessfn = access_aa64_tid3, 8966 .resetvalue = cpu->isar.id_aa64isar2 }, 8967 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8969 .access = PL1_R, .type = ARM_CP_CONST, 8970 .accessfn = access_aa64_tid3, 8971 .resetvalue = 0 }, 8972 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8973 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8974 .access = PL1_R, .type = ARM_CP_CONST, 8975 .accessfn = access_aa64_tid3, 8976 .resetvalue = 0 }, 8977 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8979 .access = PL1_R, .type = ARM_CP_CONST, 8980 .accessfn = access_aa64_tid3, 8981 .resetvalue = 0 }, 8982 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8984 .access = PL1_R, .type = ARM_CP_CONST, 8985 .accessfn = access_aa64_tid3, 8986 .resetvalue = 0 }, 8987 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8989 .access = PL1_R, .type = ARM_CP_CONST, 8990 .accessfn = access_aa64_tid3, 8991 .resetvalue = 0 }, 8992 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8994 .access = PL1_R, .type = ARM_CP_CONST, 8995 .accessfn = access_aa64_tid3, 8996 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8997 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8999 .access = PL1_R, .type = ARM_CP_CONST, 9000 .accessfn = access_aa64_tid3, 9001 .resetvalue = cpu->isar.id_aa64mmfr1 }, 9002 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 9003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 9004 .access = PL1_R, .type = ARM_CP_CONST, 9005 .accessfn = access_aa64_tid3, 9006 .resetvalue = cpu->isar.id_aa64mmfr2 }, 9007 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 9008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 9009 .access = PL1_R, .type = ARM_CP_CONST, 9010 .accessfn = access_aa64_tid3, 9011 .resetvalue = cpu->isar.id_aa64mmfr3 }, 9012 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 9014 .access = PL1_R, .type = ARM_CP_CONST, 9015 .accessfn = access_aa64_tid3, 9016 .resetvalue = 0 }, 9017 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 9019 .access = PL1_R, .type = ARM_CP_CONST, 9020 .accessfn = access_aa64_tid3, 9021 .resetvalue = 0 }, 9022 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 9024 .access = PL1_R, .type = ARM_CP_CONST, 9025 .accessfn = access_aa64_tid3, 9026 .resetvalue = 0 }, 9027 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 9029 .access = PL1_R, .type = ARM_CP_CONST, 9030 .accessfn = access_aa64_tid3, 9031 .resetvalue = 0 }, 9032 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 9033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9034 .access = PL1_R, .type = ARM_CP_CONST, 9035 .accessfn = access_aa64_tid3, 9036 .resetvalue = cpu->isar.mvfr0 }, 9037 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 9038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9039 .access = PL1_R, .type = ARM_CP_CONST, 9040 .accessfn = access_aa64_tid3, 9041 .resetvalue = cpu->isar.mvfr1 }, 9042 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 9043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9044 .access = PL1_R, .type = ARM_CP_CONST, 9045 .accessfn = access_aa64_tid3, 9046 .resetvalue = cpu->isar.mvfr2 }, 9047 /* 9048 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 9049 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 9050 * as RAZ, since it is in the "reserved for future ID 9051 * registers, RAZ" part of the AArch32 encoding space. 9052 */ 9053 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 9054 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9055 .access = PL1_R, .type = ARM_CP_CONST, 9056 .accessfn = access_aa64_tid3, 9057 .resetvalue = 0 }, 9058 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 9059 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9060 .access = PL1_R, .type = ARM_CP_CONST, 9061 .accessfn = access_aa64_tid3, 9062 .resetvalue = 0 }, 9063 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 9064 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9065 .access = PL1_R, .type = ARM_CP_CONST, 9066 .accessfn = access_aa64_tid3, 9067 .resetvalue = 0 }, 9068 /* 9069 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 9070 * they're also RAZ for AArch64, and in v8 are gradually 9071 * being filled with AArch64-view-of-AArch32-ID-register 9072 * for new ID registers. 9073 */ 9074 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 9075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 9076 .access = PL1_R, .type = ARM_CP_CONST, 9077 .accessfn = access_aa64_tid3, 9078 .resetvalue = 0 }, 9079 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 9080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 9081 .access = PL1_R, .type = ARM_CP_CONST, 9082 .accessfn = access_aa64_tid3, 9083 .resetvalue = cpu->isar.id_pfr2 }, 9084 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 9085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 9086 .access = PL1_R, .type = ARM_CP_CONST, 9087 .accessfn = access_aa64_tid3, 9088 .resetvalue = cpu->isar.id_dfr1 }, 9089 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 9090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 9091 .access = PL1_R, .type = ARM_CP_CONST, 9092 .accessfn = access_aa64_tid3, 9093 .resetvalue = cpu->isar.id_mmfr5 }, 9094 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 9095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 9096 .access = PL1_R, .type = ARM_CP_CONST, 9097 .accessfn = access_aa64_tid3, 9098 .resetvalue = 0 }, 9099 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 9100 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 9101 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9102 .fgt = FGT_PMCEIDN_EL0, 9103 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 9104 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 9105 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 9106 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9107 .fgt = FGT_PMCEIDN_EL0, 9108 .resetvalue = cpu->pmceid0 }, 9109 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 9110 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 9111 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9112 .fgt = FGT_PMCEIDN_EL0, 9113 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 9114 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 9115 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 9116 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9117 .fgt = FGT_PMCEIDN_EL0, 9118 .resetvalue = cpu->pmceid1 }, 9119 }; 9120 #ifdef CONFIG_USER_ONLY 9121 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 9122 { .name = "ID_AA64PFR0_EL1", 9123 .exported_bits = R_ID_AA64PFR0_FP_MASK | 9124 R_ID_AA64PFR0_ADVSIMD_MASK | 9125 R_ID_AA64PFR0_SVE_MASK | 9126 R_ID_AA64PFR0_DIT_MASK, 9127 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 9128 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 9129 { .name = "ID_AA64PFR1_EL1", 9130 .exported_bits = R_ID_AA64PFR1_BT_MASK | 9131 R_ID_AA64PFR1_SSBS_MASK | 9132 R_ID_AA64PFR1_MTE_MASK | 9133 R_ID_AA64PFR1_SME_MASK }, 9134 { .name = "ID_AA64PFR*_EL1_RESERVED", 9135 .is_glob = true }, 9136 { .name = "ID_AA64ZFR0_EL1", 9137 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 9138 R_ID_AA64ZFR0_AES_MASK | 9139 R_ID_AA64ZFR0_BITPERM_MASK | 9140 R_ID_AA64ZFR0_BFLOAT16_MASK | 9141 R_ID_AA64ZFR0_B16B16_MASK | 9142 R_ID_AA64ZFR0_SHA3_MASK | 9143 R_ID_AA64ZFR0_SM4_MASK | 9144 R_ID_AA64ZFR0_I8MM_MASK | 9145 R_ID_AA64ZFR0_F32MM_MASK | 9146 R_ID_AA64ZFR0_F64MM_MASK }, 9147 { .name = "ID_AA64SMFR0_EL1", 9148 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 9149 R_ID_AA64SMFR0_BI32I32_MASK | 9150 R_ID_AA64SMFR0_B16F32_MASK | 9151 R_ID_AA64SMFR0_F16F32_MASK | 9152 R_ID_AA64SMFR0_I8I32_MASK | 9153 R_ID_AA64SMFR0_F16F16_MASK | 9154 R_ID_AA64SMFR0_B16B16_MASK | 9155 R_ID_AA64SMFR0_I16I32_MASK | 9156 R_ID_AA64SMFR0_F64F64_MASK | 9157 R_ID_AA64SMFR0_I16I64_MASK | 9158 R_ID_AA64SMFR0_SMEVER_MASK | 9159 R_ID_AA64SMFR0_FA64_MASK }, 9160 { .name = "ID_AA64MMFR0_EL1", 9161 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 9162 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 9163 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 9164 { .name = "ID_AA64MMFR1_EL1", 9165 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 9166 { .name = "ID_AA64MMFR2_EL1", 9167 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 9168 { .name = "ID_AA64MMFR3_EL1", 9169 .exported_bits = 0 }, 9170 { .name = "ID_AA64MMFR*_EL1_RESERVED", 9171 .is_glob = true }, 9172 { .name = "ID_AA64DFR0_EL1", 9173 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 9174 { .name = "ID_AA64DFR1_EL1" }, 9175 { .name = "ID_AA64DFR*_EL1_RESERVED", 9176 .is_glob = true }, 9177 { .name = "ID_AA64AFR*", 9178 .is_glob = true }, 9179 { .name = "ID_AA64ISAR0_EL1", 9180 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 9181 R_ID_AA64ISAR0_SHA1_MASK | 9182 R_ID_AA64ISAR0_SHA2_MASK | 9183 R_ID_AA64ISAR0_CRC32_MASK | 9184 R_ID_AA64ISAR0_ATOMIC_MASK | 9185 R_ID_AA64ISAR0_RDM_MASK | 9186 R_ID_AA64ISAR0_SHA3_MASK | 9187 R_ID_AA64ISAR0_SM3_MASK | 9188 R_ID_AA64ISAR0_SM4_MASK | 9189 R_ID_AA64ISAR0_DP_MASK | 9190 R_ID_AA64ISAR0_FHM_MASK | 9191 R_ID_AA64ISAR0_TS_MASK | 9192 R_ID_AA64ISAR0_RNDR_MASK }, 9193 { .name = "ID_AA64ISAR1_EL1", 9194 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 9195 R_ID_AA64ISAR1_APA_MASK | 9196 R_ID_AA64ISAR1_API_MASK | 9197 R_ID_AA64ISAR1_JSCVT_MASK | 9198 R_ID_AA64ISAR1_FCMA_MASK | 9199 R_ID_AA64ISAR1_LRCPC_MASK | 9200 R_ID_AA64ISAR1_GPA_MASK | 9201 R_ID_AA64ISAR1_GPI_MASK | 9202 R_ID_AA64ISAR1_FRINTTS_MASK | 9203 R_ID_AA64ISAR1_SB_MASK | 9204 R_ID_AA64ISAR1_BF16_MASK | 9205 R_ID_AA64ISAR1_DGH_MASK | 9206 R_ID_AA64ISAR1_I8MM_MASK }, 9207 { .name = "ID_AA64ISAR2_EL1", 9208 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 9209 R_ID_AA64ISAR2_RPRES_MASK | 9210 R_ID_AA64ISAR2_GPA3_MASK | 9211 R_ID_AA64ISAR2_APA3_MASK | 9212 R_ID_AA64ISAR2_MOPS_MASK | 9213 R_ID_AA64ISAR2_BC_MASK | 9214 R_ID_AA64ISAR2_RPRFM_MASK | 9215 R_ID_AA64ISAR2_CSSC_MASK }, 9216 { .name = "ID_AA64ISAR*_EL1_RESERVED", 9217 .is_glob = true }, 9218 }; 9219 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 9220 #endif 9221 /* 9222 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 9223 * TODO: For RMR, a write with bit 1 set should do something with 9224 * cpu_reset(). In the meantime, "the bit is strictly a request", 9225 * so we are in spec just ignoring writes. 9226 */ 9227 if (!arm_feature(env, ARM_FEATURE_EL3) && 9228 !arm_feature(env, ARM_FEATURE_EL2)) { 9229 ARMCPRegInfo el1_reset_regs[] = { 9230 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 9231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9232 .access = PL1_R, 9233 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9234 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9235 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9236 .access = PL1_RW, .type = ARM_CP_CONST, 9237 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9238 }; 9239 define_arm_cp_regs(cpu, el1_reset_regs); 9240 } 9241 define_arm_cp_regs(cpu, v8_idregs); 9242 define_arm_cp_regs(cpu, v8_cp_reginfo); 9243 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9244 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9245 } 9246 9247 for (i = 4; i < 16; i++) { 9248 /* 9249 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9250 * For pre-v8 cores there are RAZ patterns for these in 9251 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9252 * v8 extends the "must RAZ" part of the ID register space 9253 * to also cover c0, 0, c{8-15}, {0-7}. 9254 * These are STATE_AA32 because in the AArch64 sysreg space 9255 * c4-c7 is where the AArch64 ID registers live (and we've 9256 * already defined those in v8_idregs[]), and c8-c15 are not 9257 * "must RAZ" for AArch64. 9258 */ 9259 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9260 ARMCPRegInfo v8_aa32_raz_idregs = { 9261 .name = name, 9262 .state = ARM_CP_STATE_AA32, 9263 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9264 .access = PL1_R, .type = ARM_CP_CONST, 9265 .accessfn = access_aa64_tid3, 9266 .resetvalue = 0 }; 9267 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9268 } 9269 } 9270 9271 /* 9272 * Register the base EL2 cpregs. 9273 * Pre v8, these registers are implemented only as part of the 9274 * Virtualization Extensions (EL2 present). Beginning with v8, 9275 * if EL2 is missing but EL3 is enabled, mostly these become 9276 * RES0 from EL3, with some specific exceptions. 9277 */ 9278 if (arm_feature(env, ARM_FEATURE_EL2) 9279 || (arm_feature(env, ARM_FEATURE_EL3) 9280 && arm_feature(env, ARM_FEATURE_V8))) { 9281 uint64_t vmpidr_def = mpidr_read_val(env); 9282 ARMCPRegInfo vpidr_regs[] = { 9283 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9284 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9285 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9286 .resetvalue = cpu->midr, 9287 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9288 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9289 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9290 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9291 .access = PL2_RW, .resetvalue = cpu->midr, 9292 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9293 .nv2_redirect_offset = 0x88, 9294 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9295 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9296 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9297 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9298 .resetvalue = vmpidr_def, 9299 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9300 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9301 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9302 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9303 .access = PL2_RW, .resetvalue = vmpidr_def, 9304 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9305 .nv2_redirect_offset = 0x50, 9306 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9307 }; 9308 /* 9309 * The only field of MDCR_EL2 that has a defined architectural reset 9310 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9311 */ 9312 ARMCPRegInfo mdcr_el2 = { 9313 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9314 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9315 .writefn = mdcr_el2_write, 9316 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9317 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9318 }; 9319 define_one_arm_cp_reg(cpu, &mdcr_el2); 9320 define_arm_cp_regs(cpu, vpidr_regs); 9321 define_arm_cp_regs(cpu, el2_cp_reginfo); 9322 if (arm_feature(env, ARM_FEATURE_V8)) { 9323 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9324 } 9325 if (cpu_isar_feature(aa64_sel2, cpu)) { 9326 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9327 } 9328 /* 9329 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9330 * See commentary near RMR_EL1. 9331 */ 9332 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9333 static const ARMCPRegInfo el2_reset_regs[] = { 9334 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9335 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9336 .access = PL2_R, 9337 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9338 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9339 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9340 .access = PL2_R, 9341 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9342 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9343 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9344 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9345 }; 9346 define_arm_cp_regs(cpu, el2_reset_regs); 9347 } 9348 } 9349 9350 /* Register the base EL3 cpregs. */ 9351 if (arm_feature(env, ARM_FEATURE_EL3)) { 9352 define_arm_cp_regs(cpu, el3_cp_reginfo); 9353 ARMCPRegInfo el3_regs[] = { 9354 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9355 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9356 .access = PL3_R, 9357 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9358 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9359 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9360 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9361 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9362 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9363 .access = PL3_RW, .type = ARM_CP_CONST, 9364 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9365 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9366 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9367 .access = PL3_RW, 9368 .raw_writefn = raw_write, .writefn = sctlr_write, 9369 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9370 .resetvalue = cpu->reset_sctlr }, 9371 }; 9372 9373 define_arm_cp_regs(cpu, el3_regs); 9374 } 9375 /* 9376 * The behaviour of NSACR is sufficiently various that we don't 9377 * try to describe it in a single reginfo: 9378 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9379 * reads as constant 0xc00 from NS EL1 and NS EL2 9380 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9381 * if v7 without EL3, register doesn't exist 9382 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9383 */ 9384 if (arm_feature(env, ARM_FEATURE_EL3)) { 9385 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9386 static const ARMCPRegInfo nsacr = { 9387 .name = "NSACR", .type = ARM_CP_CONST, 9388 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9389 .access = PL1_RW, .accessfn = nsacr_access, 9390 .resetvalue = 0xc00 9391 }; 9392 define_one_arm_cp_reg(cpu, &nsacr); 9393 } else { 9394 static const ARMCPRegInfo nsacr = { 9395 .name = "NSACR", 9396 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9397 .access = PL3_RW | PL1_R, 9398 .resetvalue = 0, 9399 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9400 }; 9401 define_one_arm_cp_reg(cpu, &nsacr); 9402 } 9403 } else { 9404 if (arm_feature(env, ARM_FEATURE_V8)) { 9405 static const ARMCPRegInfo nsacr = { 9406 .name = "NSACR", .type = ARM_CP_CONST, 9407 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9408 .access = PL1_R, 9409 .resetvalue = 0xc00 9410 }; 9411 define_one_arm_cp_reg(cpu, &nsacr); 9412 } 9413 } 9414 9415 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9416 if (arm_feature(env, ARM_FEATURE_V6)) { 9417 /* PMSAv6 not implemented */ 9418 assert(arm_feature(env, ARM_FEATURE_V7)); 9419 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9420 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9421 } else { 9422 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9423 } 9424 } else { 9425 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9426 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9427 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9428 if (cpu_isar_feature(aa32_hpd, cpu)) { 9429 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9430 } 9431 } 9432 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9433 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9434 } 9435 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9436 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9437 } 9438 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 9439 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 9440 } 9441 #ifndef CONFIG_USER_ONLY 9442 if (cpu_isar_feature(aa64_ecv, cpu)) { 9443 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 9444 } 9445 #endif 9446 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9447 ARMCPRegInfo vapa_cp_reginfo[] = { 9448 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9449 .access = PL1_RW, .resetvalue = 0, 9450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9451 offsetoflow32(CPUARMState, cp15.par_ns) }, 9452 .writefn = par_write}, 9453 #ifndef CONFIG_USER_ONLY 9454 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9455 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9456 .access = PL1_W, .accessfn = ats_access, 9457 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9458 #endif 9459 }; 9460 9461 /* 9462 * When LPAE exists this 32-bit PAR register is an alias of the 9463 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9464 */ 9465 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9466 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9467 } 9468 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9469 } 9470 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9471 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9472 } 9473 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9474 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9475 } 9476 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9477 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9478 } 9479 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9480 define_arm_cp_regs(cpu, omap_cp_reginfo); 9481 } 9482 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9483 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9484 } 9485 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9486 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9487 } 9488 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9489 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9490 } 9491 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9492 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9493 } 9494 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9495 define_arm_cp_regs(cpu, jazelle_regs); 9496 } 9497 /* 9498 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9499 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9500 * be read-only (ie write causes UNDEF exception). 9501 */ 9502 { 9503 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9504 /* 9505 * Pre-v8 MIDR space. 9506 * Note that the MIDR isn't a simple constant register because 9507 * of the TI925 behaviour where writes to another register can 9508 * cause the MIDR value to change. 9509 * 9510 * Unimplemented registers in the c15 0 0 0 space default to 9511 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9512 * and friends override accordingly. 9513 */ 9514 { .name = "MIDR", 9515 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9516 .access = PL1_R, .resetvalue = cpu->midr, 9517 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9518 .readfn = midr_read, 9519 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9520 .type = ARM_CP_OVERRIDE }, 9521 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9522 { .name = "DUMMY", 9523 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9524 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9525 { .name = "DUMMY", 9526 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9527 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9528 { .name = "DUMMY", 9529 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9530 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9531 { .name = "DUMMY", 9532 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9533 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9534 { .name = "DUMMY", 9535 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9536 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9537 }; 9538 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9539 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9541 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9542 .fgt = FGT_MIDR_EL1, 9543 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9544 .readfn = midr_read }, 9545 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9546 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9547 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9548 .access = PL1_R, .resetvalue = cpu->midr }, 9549 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9551 .access = PL1_R, 9552 .accessfn = access_aa64_tid1, 9553 .fgt = FGT_REVIDR_EL1, 9554 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9555 }; 9556 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9557 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9558 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9559 .access = PL1_R, .resetvalue = cpu->midr 9560 }; 9561 ARMCPRegInfo id_cp_reginfo[] = { 9562 /* These are common to v8 and pre-v8 */ 9563 { .name = "CTR", 9564 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9565 .access = PL1_R, .accessfn = ctr_el0_access, 9566 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9567 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9568 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9569 .access = PL0_R, .accessfn = ctr_el0_access, 9570 .fgt = FGT_CTR_EL0, 9571 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9572 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9573 { .name = "TCMTR", 9574 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9575 .access = PL1_R, 9576 .accessfn = access_aa32_tid1, 9577 .type = ARM_CP_CONST, .resetvalue = 0 }, 9578 }; 9579 /* TLBTR is specific to VMSA */ 9580 ARMCPRegInfo id_tlbtr_reginfo = { 9581 .name = "TLBTR", 9582 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9583 .access = PL1_R, 9584 .accessfn = access_aa32_tid1, 9585 .type = ARM_CP_CONST, .resetvalue = 0, 9586 }; 9587 /* MPUIR is specific to PMSA V6+ */ 9588 ARMCPRegInfo id_mpuir_reginfo = { 9589 .name = "MPUIR", 9590 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9591 .access = PL1_R, .type = ARM_CP_CONST, 9592 .resetvalue = cpu->pmsav7_dregion << 8 9593 }; 9594 /* HMPUIR is specific to PMSA V8 */ 9595 ARMCPRegInfo id_hmpuir_reginfo = { 9596 .name = "HMPUIR", 9597 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9598 .access = PL2_R, .type = ARM_CP_CONST, 9599 .resetvalue = cpu->pmsav8r_hdregion 9600 }; 9601 static const ARMCPRegInfo crn0_wi_reginfo = { 9602 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9603 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9604 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9605 }; 9606 #ifdef CONFIG_USER_ONLY 9607 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9608 { .name = "MIDR_EL1", 9609 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9610 R_MIDR_EL1_PARTNUM_MASK | 9611 R_MIDR_EL1_ARCHITECTURE_MASK | 9612 R_MIDR_EL1_VARIANT_MASK | 9613 R_MIDR_EL1_IMPLEMENTER_MASK }, 9614 { .name = "REVIDR_EL1" }, 9615 }; 9616 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9617 #endif 9618 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9619 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9620 size_t i; 9621 /* 9622 * Register the blanket "writes ignored" value first to cover the 9623 * whole space. Then update the specific ID registers to allow write 9624 * access, so that they ignore writes rather than causing them to 9625 * UNDEF. 9626 */ 9627 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9628 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9629 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9630 } 9631 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9632 id_cp_reginfo[i].access = PL1_RW; 9633 } 9634 id_mpuir_reginfo.access = PL1_RW; 9635 id_tlbtr_reginfo.access = PL1_RW; 9636 } 9637 if (arm_feature(env, ARM_FEATURE_V8)) { 9638 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9639 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9640 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9641 } 9642 } else { 9643 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9644 } 9645 define_arm_cp_regs(cpu, id_cp_reginfo); 9646 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9647 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9648 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9649 arm_feature(env, ARM_FEATURE_V8)) { 9650 uint32_t i = 0; 9651 char *tmp_string; 9652 9653 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9654 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9655 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9656 9657 /* Register alias is only valid for first 32 indexes */ 9658 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9659 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9660 uint8_t opc1 = extract32(i, 4, 1); 9661 uint8_t opc2 = extract32(i, 0, 1) << 2; 9662 9663 tmp_string = g_strdup_printf("PRBAR%u", i); 9664 ARMCPRegInfo tmp_prbarn_reginfo = { 9665 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9666 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9667 .access = PL1_RW, .resetvalue = 0, 9668 .accessfn = access_tvm_trvm, 9669 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9670 }; 9671 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9672 g_free(tmp_string); 9673 9674 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9675 tmp_string = g_strdup_printf("PRLAR%u", i); 9676 ARMCPRegInfo tmp_prlarn_reginfo = { 9677 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9678 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9679 .access = PL1_RW, .resetvalue = 0, 9680 .accessfn = access_tvm_trvm, 9681 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9682 }; 9683 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9684 g_free(tmp_string); 9685 } 9686 9687 /* Register alias is only valid for first 32 indexes */ 9688 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9689 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9690 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9691 uint8_t opc2 = extract32(i, 0, 1) << 2; 9692 9693 tmp_string = g_strdup_printf("HPRBAR%u", i); 9694 ARMCPRegInfo tmp_hprbarn_reginfo = { 9695 .name = tmp_string, 9696 .type = ARM_CP_NO_RAW, 9697 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9698 .access = PL2_RW, .resetvalue = 0, 9699 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9700 }; 9701 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9702 g_free(tmp_string); 9703 9704 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9705 tmp_string = g_strdup_printf("HPRLAR%u", i); 9706 ARMCPRegInfo tmp_hprlarn_reginfo = { 9707 .name = tmp_string, 9708 .type = ARM_CP_NO_RAW, 9709 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9710 .access = PL2_RW, .resetvalue = 0, 9711 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9712 }; 9713 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9714 g_free(tmp_string); 9715 } 9716 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9717 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9718 } 9719 } 9720 9721 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9722 ARMCPRegInfo mpidr_cp_reginfo[] = { 9723 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9724 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9725 .fgt = FGT_MPIDR_EL1, 9726 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9727 }; 9728 #ifdef CONFIG_USER_ONLY 9729 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9730 { .name = "MPIDR_EL1", 9731 .fixed_bits = 0x0000000080000000 }, 9732 }; 9733 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9734 #endif 9735 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9736 } 9737 9738 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9739 ARMCPRegInfo auxcr_reginfo[] = { 9740 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9741 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9742 .access = PL1_RW, .accessfn = access_tacr, 9743 .nv2_redirect_offset = 0x118, 9744 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9745 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9746 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9747 .access = PL2_RW, .type = ARM_CP_CONST, 9748 .resetvalue = 0 }, 9749 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9750 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9751 .access = PL3_RW, .type = ARM_CP_CONST, 9752 .resetvalue = 0 }, 9753 }; 9754 define_arm_cp_regs(cpu, auxcr_reginfo); 9755 if (cpu_isar_feature(aa32_ac2, cpu)) { 9756 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9757 } 9758 } 9759 9760 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9761 /* 9762 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9763 * There are two flavours: 9764 * (1) older 32-bit only cores have a simple 32-bit CBAR 9765 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9766 * 32-bit register visible to AArch32 at a different encoding 9767 * to the "flavour 1" register and with the bits rearranged to 9768 * be able to squash a 64-bit address into the 32-bit view. 9769 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9770 * in future if we support AArch32-only configs of some of the 9771 * AArch64 cores we might need to add a specific feature flag 9772 * to indicate cores with "flavour 2" CBAR. 9773 */ 9774 if (arm_feature(env, ARM_FEATURE_V8)) { 9775 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9776 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9777 | extract64(cpu->reset_cbar, 32, 12); 9778 ARMCPRegInfo cbar_reginfo[] = { 9779 { .name = "CBAR", 9780 .type = ARM_CP_CONST, 9781 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9782 .access = PL1_R, .resetvalue = cbar32 }, 9783 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9784 .type = ARM_CP_CONST, 9785 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9786 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9787 }; 9788 /* We don't implement a r/w 64 bit CBAR currently */ 9789 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9790 define_arm_cp_regs(cpu, cbar_reginfo); 9791 } else { 9792 ARMCPRegInfo cbar = { 9793 .name = "CBAR", 9794 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9795 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9796 .fieldoffset = offsetof(CPUARMState, 9797 cp15.c15_config_base_address) 9798 }; 9799 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9800 cbar.access = PL1_R; 9801 cbar.fieldoffset = 0; 9802 cbar.type = ARM_CP_CONST; 9803 } 9804 define_one_arm_cp_reg(cpu, &cbar); 9805 } 9806 } 9807 9808 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9809 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9810 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9811 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9812 .access = PL1_RW, .writefn = vbar_write, 9813 .accessfn = access_nv1, 9814 .fgt = FGT_VBAR_EL1, 9815 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9816 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9817 offsetof(CPUARMState, cp15.vbar_ns) }, 9818 .resetvalue = 0 }, 9819 }; 9820 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9821 } 9822 9823 /* Generic registers whose values depend on the implementation */ 9824 { 9825 ARMCPRegInfo sctlr = { 9826 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9827 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9828 .access = PL1_RW, .accessfn = access_tvm_trvm, 9829 .fgt = FGT_SCTLR_EL1, 9830 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9831 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9832 offsetof(CPUARMState, cp15.sctlr_ns) }, 9833 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9834 .raw_writefn = raw_write, 9835 }; 9836 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9837 /* 9838 * Normally we would always end the TB on an SCTLR write, but Linux 9839 * arch/arm/mach-pxa/sleep.S expects two instructions following 9840 * an MMU enable to execute from cache. Imitate this behaviour. 9841 */ 9842 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9843 } 9844 define_one_arm_cp_reg(cpu, &sctlr); 9845 9846 if (arm_feature(env, ARM_FEATURE_PMSA) && 9847 arm_feature(env, ARM_FEATURE_V8)) { 9848 ARMCPRegInfo vsctlr = { 9849 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9850 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9851 .access = PL2_RW, .resetvalue = 0x0, 9852 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9853 }; 9854 define_one_arm_cp_reg(cpu, &vsctlr); 9855 } 9856 } 9857 9858 if (cpu_isar_feature(aa64_lor, cpu)) { 9859 define_arm_cp_regs(cpu, lor_reginfo); 9860 } 9861 if (cpu_isar_feature(aa64_pan, cpu)) { 9862 define_one_arm_cp_reg(cpu, &pan_reginfo); 9863 } 9864 #ifndef CONFIG_USER_ONLY 9865 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9866 define_arm_cp_regs(cpu, ats1e1_reginfo); 9867 } 9868 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9869 define_arm_cp_regs(cpu, ats1cp_reginfo); 9870 } 9871 #endif 9872 if (cpu_isar_feature(aa64_uao, cpu)) { 9873 define_one_arm_cp_reg(cpu, &uao_reginfo); 9874 } 9875 9876 if (cpu_isar_feature(aa64_dit, cpu)) { 9877 define_one_arm_cp_reg(cpu, &dit_reginfo); 9878 } 9879 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9880 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9881 } 9882 if (cpu_isar_feature(any_ras, cpu)) { 9883 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9884 } 9885 9886 if (cpu_isar_feature(aa64_vh, cpu) || 9887 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9888 define_one_arm_cp_reg(cpu, &contextidr_el2); 9889 } 9890 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9891 define_arm_cp_regs(cpu, vhe_reginfo); 9892 } 9893 9894 if (cpu_isar_feature(aa64_sve, cpu)) { 9895 define_arm_cp_regs(cpu, zcr_reginfo); 9896 } 9897 9898 if (cpu_isar_feature(aa64_hcx, cpu)) { 9899 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9900 } 9901 9902 #ifdef TARGET_AARCH64 9903 if (cpu_isar_feature(aa64_sme, cpu)) { 9904 define_arm_cp_regs(cpu, sme_reginfo); 9905 } 9906 if (cpu_isar_feature(aa64_pauth, cpu)) { 9907 define_arm_cp_regs(cpu, pauth_reginfo); 9908 } 9909 if (cpu_isar_feature(aa64_rndr, cpu)) { 9910 define_arm_cp_regs(cpu, rndr_reginfo); 9911 } 9912 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9913 define_arm_cp_regs(cpu, tlbirange_reginfo); 9914 } 9915 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9916 define_arm_cp_regs(cpu, tlbios_reginfo); 9917 } 9918 /* Data Cache clean instructions up to PoP */ 9919 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9920 define_one_arm_cp_reg(cpu, dcpop_reg); 9921 9922 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9923 define_one_arm_cp_reg(cpu, dcpodp_reg); 9924 } 9925 } 9926 9927 /* 9928 * If full MTE is enabled, add all of the system registers. 9929 * If only "instructions available at EL0" are enabled, 9930 * then define only a RAZ/WI version of PSTATE.TCO. 9931 */ 9932 if (cpu_isar_feature(aa64_mte, cpu)) { 9933 ARMCPRegInfo gmid_reginfo = { 9934 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9935 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9936 .access = PL1_R, .accessfn = access_aa64_tid5, 9937 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9938 }; 9939 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9940 define_arm_cp_regs(cpu, mte_reginfo); 9941 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9942 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9943 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9944 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9945 } 9946 9947 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9948 define_arm_cp_regs(cpu, scxtnum_reginfo); 9949 } 9950 9951 if (cpu_isar_feature(aa64_fgt, cpu)) { 9952 define_arm_cp_regs(cpu, fgt_reginfo); 9953 } 9954 9955 if (cpu_isar_feature(aa64_rme, cpu)) { 9956 define_arm_cp_regs(cpu, rme_reginfo); 9957 if (cpu_isar_feature(aa64_mte, cpu)) { 9958 define_arm_cp_regs(cpu, rme_mte_reginfo); 9959 } 9960 } 9961 9962 if (cpu_isar_feature(aa64_nv2, cpu)) { 9963 define_arm_cp_regs(cpu, nv2_reginfo); 9964 } 9965 9966 if (cpu_isar_feature(aa64_nmi, cpu)) { 9967 define_arm_cp_regs(cpu, nmi_reginfo); 9968 } 9969 #endif 9970 9971 if (cpu_isar_feature(any_predinv, cpu)) { 9972 define_arm_cp_regs(cpu, predinv_reginfo); 9973 } 9974 9975 if (cpu_isar_feature(any_ccidx, cpu)) { 9976 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9977 } 9978 9979 #ifndef CONFIG_USER_ONLY 9980 /* 9981 * Register redirections and aliases must be done last, 9982 * after the registers from the other extensions have been defined. 9983 */ 9984 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9985 define_arm_vh_e2h_redirects_aliases(cpu); 9986 } 9987 #endif 9988 } 9989 9990 /* 9991 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9992 * add a single reginfo struct to the hash table. 9993 */ 9994 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9995 void *opaque, CPState state, 9996 CPSecureState secstate, 9997 int crm, int opc1, int opc2, 9998 const char *name) 9999 { 10000 CPUARMState *env = &cpu->env; 10001 uint32_t key; 10002 ARMCPRegInfo *r2; 10003 bool is64 = r->type & ARM_CP_64BIT; 10004 bool ns = secstate & ARM_CP_SECSTATE_NS; 10005 int cp = r->cp; 10006 size_t name_len; 10007 bool make_const; 10008 10009 switch (state) { 10010 case ARM_CP_STATE_AA32: 10011 /* We assume it is a cp15 register if the .cp field is left unset. */ 10012 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 10013 cp = 15; 10014 } 10015 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 10016 break; 10017 case ARM_CP_STATE_AA64: 10018 /* 10019 * To allow abbreviation of ARMCPRegInfo definitions, we treat 10020 * cp == 0 as equivalent to the value for "standard guest-visible 10021 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 10022 * in their AArch64 view (the .cp value may be non-zero for the 10023 * benefit of the AArch32 view). 10024 */ 10025 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 10026 cp = CP_REG_ARM64_SYSREG_CP; 10027 } 10028 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 10029 break; 10030 default: 10031 g_assert_not_reached(); 10032 } 10033 10034 /* Overriding of an existing definition must be explicitly requested. */ 10035 if (!(r->type & ARM_CP_OVERRIDE)) { 10036 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 10037 if (oldreg) { 10038 assert(oldreg->type & ARM_CP_OVERRIDE); 10039 } 10040 } 10041 10042 /* 10043 * Eliminate registers that are not present because the EL is missing. 10044 * Doing this here makes it easier to put all registers for a given 10045 * feature into the same ARMCPRegInfo array and define them all at once. 10046 */ 10047 make_const = false; 10048 if (arm_feature(env, ARM_FEATURE_EL3)) { 10049 /* 10050 * An EL2 register without EL2 but with EL3 is (usually) RES0. 10051 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 10052 */ 10053 int min_el = ctz32(r->access) / 2; 10054 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 10055 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 10056 return; 10057 } 10058 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 10059 } 10060 } else { 10061 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 10062 ? PL2_RW : PL1_RW); 10063 if ((r->access & max_el) == 0) { 10064 return; 10065 } 10066 } 10067 10068 /* Combine cpreg and name into one allocation. */ 10069 name_len = strlen(name) + 1; 10070 r2 = g_malloc(sizeof(*r2) + name_len); 10071 *r2 = *r; 10072 r2->name = memcpy(r2 + 1, name, name_len); 10073 10074 /* 10075 * Update fields to match the instantiation, overwiting wildcards 10076 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 10077 */ 10078 r2->cp = cp; 10079 r2->crm = crm; 10080 r2->opc1 = opc1; 10081 r2->opc2 = opc2; 10082 r2->state = state; 10083 r2->secure = secstate; 10084 if (opaque) { 10085 r2->opaque = opaque; 10086 } 10087 10088 if (make_const) { 10089 /* This should not have been a very special register to begin. */ 10090 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 10091 assert(old_special == 0 || old_special == ARM_CP_NOP); 10092 /* 10093 * Set the special function to CONST, retaining the other flags. 10094 * This is important for e.g. ARM_CP_SVE so that we still 10095 * take the SVE trap if CPTR_EL3.EZ == 0. 10096 */ 10097 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 10098 /* 10099 * Usually, these registers become RES0, but there are a few 10100 * special cases like VPIDR_EL2 which have a constant non-zero 10101 * value with writes ignored. 10102 */ 10103 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 10104 r2->resetvalue = 0; 10105 } 10106 /* 10107 * ARM_CP_CONST has precedence, so removing the callbacks and 10108 * offsets are not strictly necessary, but it is potentially 10109 * less confusing to debug later. 10110 */ 10111 r2->readfn = NULL; 10112 r2->writefn = NULL; 10113 r2->raw_readfn = NULL; 10114 r2->raw_writefn = NULL; 10115 r2->resetfn = NULL; 10116 r2->fieldoffset = 0; 10117 r2->bank_fieldoffsets[0] = 0; 10118 r2->bank_fieldoffsets[1] = 0; 10119 } else { 10120 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 10121 10122 if (isbanked) { 10123 /* 10124 * Register is banked (using both entries in array). 10125 * Overwriting fieldoffset as the array is only used to define 10126 * banked registers but later only fieldoffset is used. 10127 */ 10128 r2->fieldoffset = r->bank_fieldoffsets[ns]; 10129 } 10130 if (state == ARM_CP_STATE_AA32) { 10131 if (isbanked) { 10132 /* 10133 * If the register is banked then we don't need to migrate or 10134 * reset the 32-bit instance in certain cases: 10135 * 10136 * 1) If the register has both 32-bit and 64-bit instances 10137 * then we can count on the 64-bit instance taking care 10138 * of the non-secure bank. 10139 * 2) If ARMv8 is enabled then we can count on a 64-bit 10140 * version taking care of the secure bank. This requires 10141 * that separate 32 and 64-bit definitions are provided. 10142 */ 10143 if ((r->state == ARM_CP_STATE_BOTH && ns) || 10144 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 10145 r2->type |= ARM_CP_ALIAS; 10146 } 10147 } else if ((secstate != r->secure) && !ns) { 10148 /* 10149 * The register is not banked so we only want to allow 10150 * migration of the non-secure instance. 10151 */ 10152 r2->type |= ARM_CP_ALIAS; 10153 } 10154 10155 if (HOST_BIG_ENDIAN && 10156 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 10157 r2->fieldoffset += sizeof(uint32_t); 10158 } 10159 } 10160 } 10161 10162 /* 10163 * By convention, for wildcarded registers only the first 10164 * entry is used for migration; the others are marked as 10165 * ALIAS so we don't try to transfer the register 10166 * multiple times. Special registers (ie NOP/WFI) are 10167 * never migratable and not even raw-accessible. 10168 */ 10169 if (r2->type & ARM_CP_SPECIAL_MASK) { 10170 r2->type |= ARM_CP_NO_RAW; 10171 } 10172 if (((r->crm == CP_ANY) && crm != 0) || 10173 ((r->opc1 == CP_ANY) && opc1 != 0) || 10174 ((r->opc2 == CP_ANY) && opc2 != 0)) { 10175 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 10176 } 10177 10178 /* 10179 * Check that raw accesses are either forbidden or handled. Note that 10180 * we can't assert this earlier because the setup of fieldoffset for 10181 * banked registers has to be done first. 10182 */ 10183 if (!(r2->type & ARM_CP_NO_RAW)) { 10184 assert(!raw_accessors_invalid(r2)); 10185 } 10186 10187 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 10188 } 10189 10190 10191 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 10192 const ARMCPRegInfo *r, void *opaque) 10193 { 10194 /* 10195 * Define implementations of coprocessor registers. 10196 * We store these in a hashtable because typically 10197 * there are less than 150 registers in a space which 10198 * is 16*16*16*8*8 = 262144 in size. 10199 * Wildcarding is supported for the crm, opc1 and opc2 fields. 10200 * If a register is defined twice then the second definition is 10201 * used, so this can be used to define some generic registers and 10202 * then override them with implementation specific variations. 10203 * At least one of the original and the second definition should 10204 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 10205 * against accidental use. 10206 * 10207 * The state field defines whether the register is to be 10208 * visible in the AArch32 or AArch64 execution state. If the 10209 * state is set to ARM_CP_STATE_BOTH then we synthesise a 10210 * reginfo structure for the AArch32 view, which sees the lower 10211 * 32 bits of the 64 bit register. 10212 * 10213 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 10214 * be wildcarded. AArch64 registers are always considered to be 64 10215 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 10216 * the register, if any. 10217 */ 10218 int crm, opc1, opc2; 10219 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 10220 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 10221 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 10222 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 10223 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 10224 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 10225 CPState state; 10226 10227 /* 64 bit registers have only CRm and Opc1 fields */ 10228 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 10229 /* op0 only exists in the AArch64 encodings */ 10230 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 10231 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 10232 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 10233 /* 10234 * This API is only for Arm's system coprocessors (14 and 15) or 10235 * (M-profile or v7A-and-earlier only) for implementation defined 10236 * coprocessors in the range 0..7. Our decode assumes this, since 10237 * 8..13 can be used for other insns including VFP and Neon. See 10238 * valid_cp() in translate.c. Assert here that we haven't tried 10239 * to use an invalid coprocessor number. 10240 */ 10241 switch (r->state) { 10242 case ARM_CP_STATE_BOTH: 10243 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 10244 if (r->cp == 0) { 10245 break; 10246 } 10247 /* fall through */ 10248 case ARM_CP_STATE_AA32: 10249 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10250 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10251 assert(r->cp >= 14 && r->cp <= 15); 10252 } else { 10253 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10254 } 10255 break; 10256 case ARM_CP_STATE_AA64: 10257 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10258 break; 10259 default: 10260 g_assert_not_reached(); 10261 } 10262 /* 10263 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10264 * encodes a minimum access level for the register. We roll this 10265 * runtime check into our general permission check code, so check 10266 * here that the reginfo's specified permissions are strict enough 10267 * to encompass the generic architectural permission check. 10268 */ 10269 if (r->state != ARM_CP_STATE_AA32) { 10270 CPAccessRights mask; 10271 switch (r->opc1) { 10272 case 0: 10273 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10274 mask = PL0U_R | PL1_RW; 10275 break; 10276 case 1: case 2: 10277 /* min_EL EL1 */ 10278 mask = PL1_RW; 10279 break; 10280 case 3: 10281 /* min_EL EL0 */ 10282 mask = PL0_RW; 10283 break; 10284 case 4: 10285 case 5: 10286 /* min_EL EL2 */ 10287 mask = PL2_RW; 10288 break; 10289 case 6: 10290 /* min_EL EL3 */ 10291 mask = PL3_RW; 10292 break; 10293 case 7: 10294 /* min_EL EL1, secure mode only (we don't check the latter) */ 10295 mask = PL1_RW; 10296 break; 10297 default: 10298 /* broken reginfo with out-of-range opc1 */ 10299 g_assert_not_reached(); 10300 } 10301 /* assert our permissions are not too lax (stricter is fine) */ 10302 assert((r->access & ~mask) == 0); 10303 } 10304 10305 /* 10306 * Check that the register definition has enough info to handle 10307 * reads and writes if they are permitted. 10308 */ 10309 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10310 if (r->access & PL3_R) { 10311 assert((r->fieldoffset || 10312 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10313 r->readfn); 10314 } 10315 if (r->access & PL3_W) { 10316 assert((r->fieldoffset || 10317 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10318 r->writefn); 10319 } 10320 } 10321 10322 for (crm = crmmin; crm <= crmmax; crm++) { 10323 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10324 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10325 for (state = ARM_CP_STATE_AA32; 10326 state <= ARM_CP_STATE_AA64; state++) { 10327 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10328 continue; 10329 } 10330 if (state == ARM_CP_STATE_AA32) { 10331 /* 10332 * Under AArch32 CP registers can be common 10333 * (same for secure and non-secure world) or banked. 10334 */ 10335 char *name; 10336 10337 switch (r->secure) { 10338 case ARM_CP_SECSTATE_S: 10339 case ARM_CP_SECSTATE_NS: 10340 add_cpreg_to_hashtable(cpu, r, opaque, state, 10341 r->secure, crm, opc1, opc2, 10342 r->name); 10343 break; 10344 case ARM_CP_SECSTATE_BOTH: 10345 name = g_strdup_printf("%s_S", r->name); 10346 add_cpreg_to_hashtable(cpu, r, opaque, state, 10347 ARM_CP_SECSTATE_S, 10348 crm, opc1, opc2, name); 10349 g_free(name); 10350 add_cpreg_to_hashtable(cpu, r, opaque, state, 10351 ARM_CP_SECSTATE_NS, 10352 crm, opc1, opc2, r->name); 10353 break; 10354 default: 10355 g_assert_not_reached(); 10356 } 10357 } else { 10358 /* 10359 * AArch64 registers get mapped to non-secure instance 10360 * of AArch32 10361 */ 10362 add_cpreg_to_hashtable(cpu, r, opaque, state, 10363 ARM_CP_SECSTATE_NS, 10364 crm, opc1, opc2, r->name); 10365 } 10366 } 10367 } 10368 } 10369 } 10370 } 10371 10372 /* Define a whole list of registers */ 10373 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10374 void *opaque, size_t len) 10375 { 10376 size_t i; 10377 for (i = 0; i < len; ++i) { 10378 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10379 } 10380 } 10381 10382 /* 10383 * Modify ARMCPRegInfo for access from userspace. 10384 * 10385 * This is a data driven modification directed by 10386 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10387 * user-space cannot alter any values and dynamic values pertaining to 10388 * execution state are hidden from user space view anyway. 10389 */ 10390 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10391 const ARMCPRegUserSpaceInfo *mods, 10392 size_t mods_len) 10393 { 10394 for (size_t mi = 0; mi < mods_len; ++mi) { 10395 const ARMCPRegUserSpaceInfo *m = mods + mi; 10396 GPatternSpec *pat = NULL; 10397 10398 if (m->is_glob) { 10399 pat = g_pattern_spec_new(m->name); 10400 } 10401 for (size_t ri = 0; ri < regs_len; ++ri) { 10402 ARMCPRegInfo *r = regs + ri; 10403 10404 if (pat && g_pattern_match_string(pat, r->name)) { 10405 r->type = ARM_CP_CONST; 10406 r->access = PL0U_R; 10407 r->resetvalue = 0; 10408 /* continue */ 10409 } else if (strcmp(r->name, m->name) == 0) { 10410 r->type = ARM_CP_CONST; 10411 r->access = PL0U_R; 10412 r->resetvalue &= m->exported_bits; 10413 r->resetvalue |= m->fixed_bits; 10414 break; 10415 } 10416 } 10417 if (pat) { 10418 g_pattern_spec_free(pat); 10419 } 10420 } 10421 } 10422 10423 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10424 { 10425 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10426 } 10427 10428 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10429 uint64_t value) 10430 { 10431 /* Helper coprocessor write function for write-ignore registers */ 10432 } 10433 10434 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10435 { 10436 /* Helper coprocessor write function for read-as-zero registers */ 10437 return 0; 10438 } 10439 10440 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10441 { 10442 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10443 } 10444 10445 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10446 { 10447 /* 10448 * Return true if it is not valid for us to switch to 10449 * this CPU mode (ie all the UNPREDICTABLE cases in 10450 * the ARM ARM CPSRWriteByInstr pseudocode). 10451 */ 10452 10453 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10454 if (write_type == CPSRWriteByInstr && 10455 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10456 mode == ARM_CPU_MODE_HYP)) { 10457 return 1; 10458 } 10459 10460 switch (mode) { 10461 case ARM_CPU_MODE_USR: 10462 return 0; 10463 case ARM_CPU_MODE_SYS: 10464 case ARM_CPU_MODE_SVC: 10465 case ARM_CPU_MODE_ABT: 10466 case ARM_CPU_MODE_UND: 10467 case ARM_CPU_MODE_IRQ: 10468 case ARM_CPU_MODE_FIQ: 10469 /* 10470 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10471 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10472 */ 10473 /* 10474 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10475 * and CPS are treated as illegal mode changes. 10476 */ 10477 if (write_type == CPSRWriteByInstr && 10478 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10479 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10480 return 1; 10481 } 10482 return 0; 10483 case ARM_CPU_MODE_HYP: 10484 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10485 case ARM_CPU_MODE_MON: 10486 return arm_current_el(env) < 3; 10487 default: 10488 return 1; 10489 } 10490 } 10491 10492 uint32_t cpsr_read(CPUARMState *env) 10493 { 10494 int ZF; 10495 ZF = (env->ZF == 0); 10496 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10497 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10498 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10499 | ((env->condexec_bits & 0xfc) << 8) 10500 | (env->GE << 16) | (env->daif & CPSR_AIF); 10501 } 10502 10503 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10504 CPSRWriteType write_type) 10505 { 10506 uint32_t changed_daif; 10507 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10508 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10509 10510 if (mask & CPSR_NZCV) { 10511 env->ZF = (~val) & CPSR_Z; 10512 env->NF = val; 10513 env->CF = (val >> 29) & 1; 10514 env->VF = (val << 3) & 0x80000000; 10515 } 10516 if (mask & CPSR_Q) { 10517 env->QF = ((val & CPSR_Q) != 0); 10518 } 10519 if (mask & CPSR_T) { 10520 env->thumb = ((val & CPSR_T) != 0); 10521 } 10522 if (mask & CPSR_IT_0_1) { 10523 env->condexec_bits &= ~3; 10524 env->condexec_bits |= (val >> 25) & 3; 10525 } 10526 if (mask & CPSR_IT_2_7) { 10527 env->condexec_bits &= 3; 10528 env->condexec_bits |= (val >> 8) & 0xfc; 10529 } 10530 if (mask & CPSR_GE) { 10531 env->GE = (val >> 16) & 0xf; 10532 } 10533 10534 /* 10535 * In a V7 implementation that includes the security extensions but does 10536 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10537 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10538 * bits respectively. 10539 * 10540 * In a V8 implementation, it is permitted for privileged software to 10541 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10542 */ 10543 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10544 arm_feature(env, ARM_FEATURE_EL3) && 10545 !arm_feature(env, ARM_FEATURE_EL2) && 10546 !arm_is_secure(env)) { 10547 10548 changed_daif = (env->daif ^ val) & mask; 10549 10550 if (changed_daif & CPSR_A) { 10551 /* 10552 * Check to see if we are allowed to change the masking of async 10553 * abort exceptions from a non-secure state. 10554 */ 10555 if (!(env->cp15.scr_el3 & SCR_AW)) { 10556 qemu_log_mask(LOG_GUEST_ERROR, 10557 "Ignoring attempt to switch CPSR_A flag from " 10558 "non-secure world with SCR.AW bit clear\n"); 10559 mask &= ~CPSR_A; 10560 } 10561 } 10562 10563 if (changed_daif & CPSR_F) { 10564 /* 10565 * Check to see if we are allowed to change the masking of FIQ 10566 * exceptions from a non-secure state. 10567 */ 10568 if (!(env->cp15.scr_el3 & SCR_FW)) { 10569 qemu_log_mask(LOG_GUEST_ERROR, 10570 "Ignoring attempt to switch CPSR_F flag from " 10571 "non-secure world with SCR.FW bit clear\n"); 10572 mask &= ~CPSR_F; 10573 } 10574 10575 /* 10576 * Check whether non-maskable FIQ (NMFI) support is enabled. 10577 * If this bit is set software is not allowed to mask 10578 * FIQs, but is allowed to set CPSR_F to 0. 10579 */ 10580 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10581 (val & CPSR_F)) { 10582 qemu_log_mask(LOG_GUEST_ERROR, 10583 "Ignoring attempt to enable CPSR_F flag " 10584 "(non-maskable FIQ [NMFI] support enabled)\n"); 10585 mask &= ~CPSR_F; 10586 } 10587 } 10588 } 10589 10590 env->daif &= ~(CPSR_AIF & mask); 10591 env->daif |= val & CPSR_AIF & mask; 10592 10593 if (write_type != CPSRWriteRaw && 10594 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10595 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10596 /* 10597 * Note that we can only get here in USR mode if this is a 10598 * gdb stub write; for this case we follow the architectural 10599 * behaviour for guest writes in USR mode of ignoring an attempt 10600 * to switch mode. (Those are caught by translate.c for writes 10601 * triggered by guest instructions.) 10602 */ 10603 mask &= ~CPSR_M; 10604 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10605 /* 10606 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10607 * v7, and has defined behaviour in v8: 10608 * + leave CPSR.M untouched 10609 * + allow changes to the other CPSR fields 10610 * + set PSTATE.IL 10611 * For user changes via the GDB stub, we don't set PSTATE.IL, 10612 * as this would be unnecessarily harsh for a user error. 10613 */ 10614 mask &= ~CPSR_M; 10615 if (write_type != CPSRWriteByGDBStub && 10616 arm_feature(env, ARM_FEATURE_V8)) { 10617 mask |= CPSR_IL; 10618 val |= CPSR_IL; 10619 } 10620 qemu_log_mask(LOG_GUEST_ERROR, 10621 "Illegal AArch32 mode switch attempt from %s to %s\n", 10622 aarch32_mode_name(env->uncached_cpsr), 10623 aarch32_mode_name(val)); 10624 } else { 10625 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10626 write_type == CPSRWriteExceptionReturn ? 10627 "Exception return from AArch32" : 10628 "AArch32 mode switch from", 10629 aarch32_mode_name(env->uncached_cpsr), 10630 aarch32_mode_name(val), env->regs[15]); 10631 switch_mode(env, val & CPSR_M); 10632 } 10633 } 10634 mask &= ~CACHED_CPSR_BITS; 10635 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10636 if (tcg_enabled() && rebuild_hflags) { 10637 arm_rebuild_hflags(env); 10638 } 10639 } 10640 10641 #ifdef CONFIG_USER_ONLY 10642 10643 static void switch_mode(CPUARMState *env, int mode) 10644 { 10645 ARMCPU *cpu = env_archcpu(env); 10646 10647 if (mode != ARM_CPU_MODE_USR) { 10648 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10649 } 10650 } 10651 10652 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10653 uint32_t cur_el, bool secure) 10654 { 10655 return 1; 10656 } 10657 10658 void aarch64_sync_64_to_32(CPUARMState *env) 10659 { 10660 g_assert_not_reached(); 10661 } 10662 10663 #else 10664 10665 static void switch_mode(CPUARMState *env, int mode) 10666 { 10667 int old_mode; 10668 int i; 10669 10670 old_mode = env->uncached_cpsr & CPSR_M; 10671 if (mode == old_mode) { 10672 return; 10673 } 10674 10675 if (old_mode == ARM_CPU_MODE_FIQ) { 10676 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10677 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10678 } else if (mode == ARM_CPU_MODE_FIQ) { 10679 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10680 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10681 } 10682 10683 i = bank_number(old_mode); 10684 env->banked_r13[i] = env->regs[13]; 10685 env->banked_spsr[i] = env->spsr; 10686 10687 i = bank_number(mode); 10688 env->regs[13] = env->banked_r13[i]; 10689 env->spsr = env->banked_spsr[i]; 10690 10691 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10692 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10693 } 10694 10695 /* 10696 * Physical Interrupt Target EL Lookup Table 10697 * 10698 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10699 * 10700 * The below multi-dimensional table is used for looking up the target 10701 * exception level given numerous condition criteria. Specifically, the 10702 * target EL is based on SCR and HCR routing controls as well as the 10703 * currently executing EL and secure state. 10704 * 10705 * Dimensions: 10706 * target_el_table[2][2][2][2][2][4] 10707 * | | | | | +--- Current EL 10708 * | | | | +------ Non-secure(0)/Secure(1) 10709 * | | | +--------- HCR mask override 10710 * | | +------------ SCR exec state control 10711 * | +--------------- SCR mask override 10712 * +------------------ 32-bit(0)/64-bit(1) EL3 10713 * 10714 * The table values are as such: 10715 * 0-3 = EL0-EL3 10716 * -1 = Cannot occur 10717 * 10718 * The ARM ARM target EL table includes entries indicating that an "exception 10719 * is not taken". The two cases where this is applicable are: 10720 * 1) An exception is taken from EL3 but the SCR does not have the exception 10721 * routed to EL3. 10722 * 2) An exception is taken from EL2 but the HCR does not have the exception 10723 * routed to EL2. 10724 * In these two cases, the below table contain a target of EL1. This value is 10725 * returned as it is expected that the consumer of the table data will check 10726 * for "target EL >= current EL" to ensure the exception is not taken. 10727 * 10728 * SCR HCR 10729 * 64 EA AMO From 10730 * BIT IRQ IMO Non-secure Secure 10731 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10732 */ 10733 static const int8_t target_el_table[2][2][2][2][2][4] = { 10734 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10735 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10736 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10737 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10738 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10739 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10740 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10741 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10742 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10743 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10744 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10745 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10746 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10747 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10748 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10749 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10750 }; 10751 10752 /* 10753 * Determine the target EL for physical exceptions 10754 */ 10755 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10756 uint32_t cur_el, bool secure) 10757 { 10758 CPUARMState *env = cpu_env(cs); 10759 bool rw; 10760 bool scr; 10761 bool hcr; 10762 int target_el; 10763 /* Is the highest EL AArch64? */ 10764 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10765 uint64_t hcr_el2; 10766 10767 if (arm_feature(env, ARM_FEATURE_EL3)) { 10768 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10769 } else { 10770 /* 10771 * Either EL2 is the highest EL (and so the EL2 register width 10772 * is given by is64); or there is no EL2 or EL3, in which case 10773 * the value of 'rw' does not affect the table lookup anyway. 10774 */ 10775 rw = is64; 10776 } 10777 10778 hcr_el2 = arm_hcr_el2_eff(env); 10779 switch (excp_idx) { 10780 case EXCP_IRQ: 10781 case EXCP_NMI: 10782 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10783 hcr = hcr_el2 & HCR_IMO; 10784 break; 10785 case EXCP_FIQ: 10786 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10787 hcr = hcr_el2 & HCR_FMO; 10788 break; 10789 default: 10790 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10791 hcr = hcr_el2 & HCR_AMO; 10792 break; 10793 }; 10794 10795 /* 10796 * For these purposes, TGE and AMO/IMO/FMO both force the 10797 * interrupt to EL2. Fold TGE into the bit extracted above. 10798 */ 10799 hcr |= (hcr_el2 & HCR_TGE) != 0; 10800 10801 /* Perform a table-lookup for the target EL given the current state */ 10802 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10803 10804 assert(target_el > 0); 10805 10806 return target_el; 10807 } 10808 10809 void arm_log_exception(CPUState *cs) 10810 { 10811 int idx = cs->exception_index; 10812 10813 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10814 const char *exc = NULL; 10815 static const char * const excnames[] = { 10816 [EXCP_UDEF] = "Undefined Instruction", 10817 [EXCP_SWI] = "SVC", 10818 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10819 [EXCP_DATA_ABORT] = "Data Abort", 10820 [EXCP_IRQ] = "IRQ", 10821 [EXCP_FIQ] = "FIQ", 10822 [EXCP_BKPT] = "Breakpoint", 10823 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10824 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10825 [EXCP_HVC] = "Hypervisor Call", 10826 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10827 [EXCP_SMC] = "Secure Monitor Call", 10828 [EXCP_VIRQ] = "Virtual IRQ", 10829 [EXCP_VFIQ] = "Virtual FIQ", 10830 [EXCP_SEMIHOST] = "Semihosting call", 10831 [EXCP_NOCP] = "v7M NOCP UsageFault", 10832 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10833 [EXCP_STKOF] = "v8M STKOF UsageFault", 10834 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10835 [EXCP_LSERR] = "v8M LSERR UsageFault", 10836 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10837 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10838 [EXCP_VSERR] = "Virtual SERR", 10839 [EXCP_GPC] = "Granule Protection Check", 10840 [EXCP_NMI] = "NMI", 10841 [EXCP_VINMI] = "Virtual IRQ NMI", 10842 [EXCP_VFNMI] = "Virtual FIQ NMI", 10843 }; 10844 10845 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10846 exc = excnames[idx]; 10847 } 10848 if (!exc) { 10849 exc = "unknown"; 10850 } 10851 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10852 idx, exc, cs->cpu_index); 10853 } 10854 } 10855 10856 /* 10857 * Function used to synchronize QEMU's AArch64 register set with AArch32 10858 * register set. This is necessary when switching between AArch32 and AArch64 10859 * execution state. 10860 */ 10861 void aarch64_sync_32_to_64(CPUARMState *env) 10862 { 10863 int i; 10864 uint32_t mode = env->uncached_cpsr & CPSR_M; 10865 10866 /* We can blanket copy R[0:7] to X[0:7] */ 10867 for (i = 0; i < 8; i++) { 10868 env->xregs[i] = env->regs[i]; 10869 } 10870 10871 /* 10872 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10873 * Otherwise, they come from the banked user regs. 10874 */ 10875 if (mode == ARM_CPU_MODE_FIQ) { 10876 for (i = 8; i < 13; i++) { 10877 env->xregs[i] = env->usr_regs[i - 8]; 10878 } 10879 } else { 10880 for (i = 8; i < 13; i++) { 10881 env->xregs[i] = env->regs[i]; 10882 } 10883 } 10884 10885 /* 10886 * Registers x13-x23 are the various mode SP and FP registers. Registers 10887 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10888 * from the mode banked register. 10889 */ 10890 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10891 env->xregs[13] = env->regs[13]; 10892 env->xregs[14] = env->regs[14]; 10893 } else { 10894 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10895 /* HYP is an exception in that it is copied from r14 */ 10896 if (mode == ARM_CPU_MODE_HYP) { 10897 env->xregs[14] = env->regs[14]; 10898 } else { 10899 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10900 } 10901 } 10902 10903 if (mode == ARM_CPU_MODE_HYP) { 10904 env->xregs[15] = env->regs[13]; 10905 } else { 10906 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10907 } 10908 10909 if (mode == ARM_CPU_MODE_IRQ) { 10910 env->xregs[16] = env->regs[14]; 10911 env->xregs[17] = env->regs[13]; 10912 } else { 10913 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10914 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10915 } 10916 10917 if (mode == ARM_CPU_MODE_SVC) { 10918 env->xregs[18] = env->regs[14]; 10919 env->xregs[19] = env->regs[13]; 10920 } else { 10921 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10922 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10923 } 10924 10925 if (mode == ARM_CPU_MODE_ABT) { 10926 env->xregs[20] = env->regs[14]; 10927 env->xregs[21] = env->regs[13]; 10928 } else { 10929 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10930 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10931 } 10932 10933 if (mode == ARM_CPU_MODE_UND) { 10934 env->xregs[22] = env->regs[14]; 10935 env->xregs[23] = env->regs[13]; 10936 } else { 10937 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10938 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10939 } 10940 10941 /* 10942 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10943 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10944 * FIQ bank for r8-r14. 10945 */ 10946 if (mode == ARM_CPU_MODE_FIQ) { 10947 for (i = 24; i < 31; i++) { 10948 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10949 } 10950 } else { 10951 for (i = 24; i < 29; i++) { 10952 env->xregs[i] = env->fiq_regs[i - 24]; 10953 } 10954 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10955 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10956 } 10957 10958 env->pc = env->regs[15]; 10959 } 10960 10961 /* 10962 * Function used to synchronize QEMU's AArch32 register set with AArch64 10963 * register set. This is necessary when switching between AArch32 and AArch64 10964 * execution state. 10965 */ 10966 void aarch64_sync_64_to_32(CPUARMState *env) 10967 { 10968 int i; 10969 uint32_t mode = env->uncached_cpsr & CPSR_M; 10970 10971 /* We can blanket copy X[0:7] to R[0:7] */ 10972 for (i = 0; i < 8; i++) { 10973 env->regs[i] = env->xregs[i]; 10974 } 10975 10976 /* 10977 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10978 * Otherwise, we copy x8-x12 into the banked user regs. 10979 */ 10980 if (mode == ARM_CPU_MODE_FIQ) { 10981 for (i = 8; i < 13; i++) { 10982 env->usr_regs[i - 8] = env->xregs[i]; 10983 } 10984 } else { 10985 for (i = 8; i < 13; i++) { 10986 env->regs[i] = env->xregs[i]; 10987 } 10988 } 10989 10990 /* 10991 * Registers r13 & r14 depend on the current mode. 10992 * If we are in a given mode, we copy the corresponding x registers to r13 10993 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10994 * for the mode. 10995 */ 10996 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10997 env->regs[13] = env->xregs[13]; 10998 env->regs[14] = env->xregs[14]; 10999 } else { 11000 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 11001 11002 /* 11003 * HYP is an exception in that it does not have its own banked r14 but 11004 * shares the USR r14 11005 */ 11006 if (mode == ARM_CPU_MODE_HYP) { 11007 env->regs[14] = env->xregs[14]; 11008 } else { 11009 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 11010 } 11011 } 11012 11013 if (mode == ARM_CPU_MODE_HYP) { 11014 env->regs[13] = env->xregs[15]; 11015 } else { 11016 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 11017 } 11018 11019 if (mode == ARM_CPU_MODE_IRQ) { 11020 env->regs[14] = env->xregs[16]; 11021 env->regs[13] = env->xregs[17]; 11022 } else { 11023 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 11024 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 11025 } 11026 11027 if (mode == ARM_CPU_MODE_SVC) { 11028 env->regs[14] = env->xregs[18]; 11029 env->regs[13] = env->xregs[19]; 11030 } else { 11031 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 11032 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 11033 } 11034 11035 if (mode == ARM_CPU_MODE_ABT) { 11036 env->regs[14] = env->xregs[20]; 11037 env->regs[13] = env->xregs[21]; 11038 } else { 11039 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 11040 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 11041 } 11042 11043 if (mode == ARM_CPU_MODE_UND) { 11044 env->regs[14] = env->xregs[22]; 11045 env->regs[13] = env->xregs[23]; 11046 } else { 11047 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 11048 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 11049 } 11050 11051 /* 11052 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 11053 * mode, then we can copy to r8-r14. Otherwise, we copy to the 11054 * FIQ bank for r8-r14. 11055 */ 11056 if (mode == ARM_CPU_MODE_FIQ) { 11057 for (i = 24; i < 31; i++) { 11058 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 11059 } 11060 } else { 11061 for (i = 24; i < 29; i++) { 11062 env->fiq_regs[i - 24] = env->xregs[i]; 11063 } 11064 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 11065 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 11066 } 11067 11068 env->regs[15] = env->pc; 11069 } 11070 11071 static void take_aarch32_exception(CPUARMState *env, int new_mode, 11072 uint32_t mask, uint32_t offset, 11073 uint32_t newpc) 11074 { 11075 int new_el; 11076 11077 /* Change the CPU state so as to actually take the exception. */ 11078 switch_mode(env, new_mode); 11079 11080 /* 11081 * For exceptions taken to AArch32 we must clear the SS bit in both 11082 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 11083 */ 11084 env->pstate &= ~PSTATE_SS; 11085 env->spsr = cpsr_read(env); 11086 /* Clear IT bits. */ 11087 env->condexec_bits = 0; 11088 /* Switch to the new mode, and to the correct instruction set. */ 11089 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 11090 11091 /* This must be after mode switching. */ 11092 new_el = arm_current_el(env); 11093 11094 /* Set new mode endianness */ 11095 env->uncached_cpsr &= ~CPSR_E; 11096 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 11097 env->uncached_cpsr |= CPSR_E; 11098 } 11099 /* J and IL must always be cleared for exception entry */ 11100 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 11101 env->daif |= mask; 11102 11103 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 11104 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 11105 env->uncached_cpsr |= CPSR_SSBS; 11106 } else { 11107 env->uncached_cpsr &= ~CPSR_SSBS; 11108 } 11109 } 11110 11111 if (new_mode == ARM_CPU_MODE_HYP) { 11112 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 11113 env->elr_el[2] = env->regs[15]; 11114 } else { 11115 /* CPSR.PAN is normally preserved preserved unless... */ 11116 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 11117 switch (new_el) { 11118 case 3: 11119 if (!arm_is_secure_below_el3(env)) { 11120 /* ... the target is EL3, from non-secure state. */ 11121 env->uncached_cpsr &= ~CPSR_PAN; 11122 break; 11123 } 11124 /* ... the target is EL3, from secure state ... */ 11125 /* fall through */ 11126 case 1: 11127 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 11128 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 11129 env->uncached_cpsr |= CPSR_PAN; 11130 } 11131 break; 11132 } 11133 } 11134 /* 11135 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 11136 * and we should just guard the thumb mode on V4 11137 */ 11138 if (arm_feature(env, ARM_FEATURE_V4T)) { 11139 env->thumb = 11140 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 11141 } 11142 env->regs[14] = env->regs[15] + offset; 11143 } 11144 env->regs[15] = newpc; 11145 11146 if (tcg_enabled()) { 11147 arm_rebuild_hflags(env); 11148 } 11149 } 11150 11151 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 11152 { 11153 /* 11154 * Handle exception entry to Hyp mode; this is sufficiently 11155 * different to entry to other AArch32 modes that we handle it 11156 * separately here. 11157 * 11158 * The vector table entry used is always the 0x14 Hyp mode entry point, 11159 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 11160 * The offset applied to the preferred return address is always zero 11161 * (see DDI0487C.a section G1.12.3). 11162 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 11163 */ 11164 uint32_t addr, mask; 11165 ARMCPU *cpu = ARM_CPU(cs); 11166 CPUARMState *env = &cpu->env; 11167 11168 switch (cs->exception_index) { 11169 case EXCP_UDEF: 11170 addr = 0x04; 11171 break; 11172 case EXCP_SWI: 11173 addr = 0x08; 11174 break; 11175 case EXCP_BKPT: 11176 /* Fall through to prefetch abort. */ 11177 case EXCP_PREFETCH_ABORT: 11178 env->cp15.ifar_s = env->exception.vaddress; 11179 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 11180 (uint32_t)env->exception.vaddress); 11181 addr = 0x0c; 11182 break; 11183 case EXCP_DATA_ABORT: 11184 env->cp15.dfar_s = env->exception.vaddress; 11185 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 11186 (uint32_t)env->exception.vaddress); 11187 addr = 0x10; 11188 break; 11189 case EXCP_IRQ: 11190 addr = 0x18; 11191 break; 11192 case EXCP_FIQ: 11193 addr = 0x1c; 11194 break; 11195 case EXCP_HVC: 11196 addr = 0x08; 11197 break; 11198 case EXCP_HYP_TRAP: 11199 addr = 0x14; 11200 break; 11201 default: 11202 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11203 } 11204 11205 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 11206 if (!arm_feature(env, ARM_FEATURE_V8)) { 11207 /* 11208 * QEMU syndrome values are v8-style. v7 has the IL bit 11209 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 11210 * If this is a v7 CPU, squash the IL bit in those cases. 11211 */ 11212 if (cs->exception_index == EXCP_PREFETCH_ABORT || 11213 (cs->exception_index == EXCP_DATA_ABORT && 11214 !(env->exception.syndrome & ARM_EL_ISV)) || 11215 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 11216 env->exception.syndrome &= ~ARM_EL_IL; 11217 } 11218 } 11219 env->cp15.esr_el[2] = env->exception.syndrome; 11220 } 11221 11222 if (arm_current_el(env) != 2 && addr < 0x14) { 11223 addr = 0x14; 11224 } 11225 11226 mask = 0; 11227 if (!(env->cp15.scr_el3 & SCR_EA)) { 11228 mask |= CPSR_A; 11229 } 11230 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 11231 mask |= CPSR_I; 11232 } 11233 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 11234 mask |= CPSR_F; 11235 } 11236 11237 addr += env->cp15.hvbar; 11238 11239 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 11240 } 11241 11242 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 11243 { 11244 ARMCPU *cpu = ARM_CPU(cs); 11245 CPUARMState *env = &cpu->env; 11246 uint32_t addr; 11247 uint32_t mask; 11248 int new_mode; 11249 uint32_t offset; 11250 uint32_t moe; 11251 11252 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11253 switch (syn_get_ec(env->exception.syndrome)) { 11254 case EC_BREAKPOINT: 11255 case EC_BREAKPOINT_SAME_EL: 11256 moe = 1; 11257 break; 11258 case EC_WATCHPOINT: 11259 case EC_WATCHPOINT_SAME_EL: 11260 moe = 10; 11261 break; 11262 case EC_AA32_BKPT: 11263 moe = 3; 11264 break; 11265 case EC_VECTORCATCH: 11266 moe = 5; 11267 break; 11268 default: 11269 moe = 0; 11270 break; 11271 } 11272 11273 if (moe) { 11274 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11275 } 11276 11277 if (env->exception.target_el == 2) { 11278 /* Debug exceptions are reported differently on AArch32 */ 11279 switch (syn_get_ec(env->exception.syndrome)) { 11280 case EC_BREAKPOINT: 11281 case EC_BREAKPOINT_SAME_EL: 11282 case EC_AA32_BKPT: 11283 case EC_VECTORCATCH: 11284 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11285 0, 0, 0x22); 11286 break; 11287 case EC_WATCHPOINT: 11288 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11289 EC_DATAABORT); 11290 break; 11291 case EC_WATCHPOINT_SAME_EL: 11292 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11293 EC_DATAABORT_SAME_EL); 11294 break; 11295 } 11296 arm_cpu_do_interrupt_aarch32_hyp(cs); 11297 return; 11298 } 11299 11300 switch (cs->exception_index) { 11301 case EXCP_UDEF: 11302 new_mode = ARM_CPU_MODE_UND; 11303 addr = 0x04; 11304 mask = CPSR_I; 11305 if (env->thumb) { 11306 offset = 2; 11307 } else { 11308 offset = 4; 11309 } 11310 break; 11311 case EXCP_SWI: 11312 new_mode = ARM_CPU_MODE_SVC; 11313 addr = 0x08; 11314 mask = CPSR_I; 11315 /* The PC already points to the next instruction. */ 11316 offset = 0; 11317 break; 11318 case EXCP_BKPT: 11319 /* Fall through to prefetch abort. */ 11320 case EXCP_PREFETCH_ABORT: 11321 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11322 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11323 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11324 env->exception.fsr, (uint32_t)env->exception.vaddress); 11325 new_mode = ARM_CPU_MODE_ABT; 11326 addr = 0x0c; 11327 mask = CPSR_A | CPSR_I; 11328 offset = 4; 11329 break; 11330 case EXCP_DATA_ABORT: 11331 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11332 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11333 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11334 env->exception.fsr, 11335 (uint32_t)env->exception.vaddress); 11336 new_mode = ARM_CPU_MODE_ABT; 11337 addr = 0x10; 11338 mask = CPSR_A | CPSR_I; 11339 offset = 8; 11340 break; 11341 case EXCP_IRQ: 11342 new_mode = ARM_CPU_MODE_IRQ; 11343 addr = 0x18; 11344 /* Disable IRQ and imprecise data aborts. */ 11345 mask = CPSR_A | CPSR_I; 11346 offset = 4; 11347 if (env->cp15.scr_el3 & SCR_IRQ) { 11348 /* IRQ routed to monitor mode */ 11349 new_mode = ARM_CPU_MODE_MON; 11350 mask |= CPSR_F; 11351 } 11352 break; 11353 case EXCP_FIQ: 11354 new_mode = ARM_CPU_MODE_FIQ; 11355 addr = 0x1c; 11356 /* Disable FIQ, IRQ and imprecise data aborts. */ 11357 mask = CPSR_A | CPSR_I | CPSR_F; 11358 if (env->cp15.scr_el3 & SCR_FIQ) { 11359 /* FIQ routed to monitor mode */ 11360 new_mode = ARM_CPU_MODE_MON; 11361 } 11362 offset = 4; 11363 break; 11364 case EXCP_VIRQ: 11365 new_mode = ARM_CPU_MODE_IRQ; 11366 addr = 0x18; 11367 /* Disable IRQ and imprecise data aborts. */ 11368 mask = CPSR_A | CPSR_I; 11369 offset = 4; 11370 break; 11371 case EXCP_VFIQ: 11372 new_mode = ARM_CPU_MODE_FIQ; 11373 addr = 0x1c; 11374 /* Disable FIQ, IRQ and imprecise data aborts. */ 11375 mask = CPSR_A | CPSR_I | CPSR_F; 11376 offset = 4; 11377 break; 11378 case EXCP_VSERR: 11379 { 11380 /* 11381 * Note that this is reported as a data abort, but the DFAR 11382 * has an UNKNOWN value. Construct the SError syndrome from 11383 * AET and ExT fields. 11384 */ 11385 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11386 11387 if (extended_addresses_enabled(env)) { 11388 env->exception.fsr = arm_fi_to_lfsc(&fi); 11389 } else { 11390 env->exception.fsr = arm_fi_to_sfsc(&fi); 11391 } 11392 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11393 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11394 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11395 env->exception.fsr); 11396 11397 new_mode = ARM_CPU_MODE_ABT; 11398 addr = 0x10; 11399 mask = CPSR_A | CPSR_I; 11400 offset = 8; 11401 } 11402 break; 11403 case EXCP_SMC: 11404 new_mode = ARM_CPU_MODE_MON; 11405 addr = 0x08; 11406 mask = CPSR_A | CPSR_I | CPSR_F; 11407 offset = 0; 11408 break; 11409 default: 11410 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11411 return; /* Never happens. Keep compiler happy. */ 11412 } 11413 11414 if (new_mode == ARM_CPU_MODE_MON) { 11415 addr += env->cp15.mvbar; 11416 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11417 /* High vectors. When enabled, base address cannot be remapped. */ 11418 addr += 0xffff0000; 11419 } else { 11420 /* 11421 * ARM v7 architectures provide a vector base address register to remap 11422 * the interrupt vector table. 11423 * This register is only followed in non-monitor mode, and is banked. 11424 * Note: only bits 31:5 are valid. 11425 */ 11426 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11427 } 11428 11429 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11430 env->cp15.scr_el3 &= ~SCR_NS; 11431 } 11432 11433 take_aarch32_exception(env, new_mode, mask, offset, addr); 11434 } 11435 11436 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11437 { 11438 /* 11439 * Return the register number of the AArch64 view of the AArch32 11440 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11441 * be that of the AArch32 mode the exception came from. 11442 */ 11443 int mode = env->uncached_cpsr & CPSR_M; 11444 11445 switch (aarch32_reg) { 11446 case 0 ... 7: 11447 return aarch32_reg; 11448 case 8 ... 12: 11449 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11450 case 13: 11451 switch (mode) { 11452 case ARM_CPU_MODE_USR: 11453 case ARM_CPU_MODE_SYS: 11454 return 13; 11455 case ARM_CPU_MODE_HYP: 11456 return 15; 11457 case ARM_CPU_MODE_IRQ: 11458 return 17; 11459 case ARM_CPU_MODE_SVC: 11460 return 19; 11461 case ARM_CPU_MODE_ABT: 11462 return 21; 11463 case ARM_CPU_MODE_UND: 11464 return 23; 11465 case ARM_CPU_MODE_FIQ: 11466 return 29; 11467 default: 11468 g_assert_not_reached(); 11469 } 11470 case 14: 11471 switch (mode) { 11472 case ARM_CPU_MODE_USR: 11473 case ARM_CPU_MODE_SYS: 11474 case ARM_CPU_MODE_HYP: 11475 return 14; 11476 case ARM_CPU_MODE_IRQ: 11477 return 16; 11478 case ARM_CPU_MODE_SVC: 11479 return 18; 11480 case ARM_CPU_MODE_ABT: 11481 return 20; 11482 case ARM_CPU_MODE_UND: 11483 return 22; 11484 case ARM_CPU_MODE_FIQ: 11485 return 30; 11486 default: 11487 g_assert_not_reached(); 11488 } 11489 case 15: 11490 return 31; 11491 default: 11492 g_assert_not_reached(); 11493 } 11494 } 11495 11496 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11497 { 11498 uint32_t ret = cpsr_read(env); 11499 11500 /* Move DIT to the correct location for SPSR_ELx */ 11501 if (ret & CPSR_DIT) { 11502 ret &= ~CPSR_DIT; 11503 ret |= PSTATE_DIT; 11504 } 11505 /* Merge PSTATE.SS into SPSR_ELx */ 11506 ret |= env->pstate & PSTATE_SS; 11507 11508 return ret; 11509 } 11510 11511 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11512 { 11513 /* Return true if this syndrome value is a synchronous external abort */ 11514 switch (syn_get_ec(syndrome)) { 11515 case EC_INSNABORT: 11516 case EC_INSNABORT_SAME_EL: 11517 case EC_DATAABORT: 11518 case EC_DATAABORT_SAME_EL: 11519 /* Look at fault status code for all the synchronous ext abort cases */ 11520 switch (syndrome & 0x3f) { 11521 case 0x10: 11522 case 0x13: 11523 case 0x14: 11524 case 0x15: 11525 case 0x16: 11526 case 0x17: 11527 return true; 11528 default: 11529 return false; 11530 } 11531 default: 11532 return false; 11533 } 11534 } 11535 11536 /* Handle exception entry to a target EL which is using AArch64 */ 11537 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11538 { 11539 ARMCPU *cpu = ARM_CPU(cs); 11540 CPUARMState *env = &cpu->env; 11541 unsigned int new_el = env->exception.target_el; 11542 target_ulong addr = env->cp15.vbar_el[new_el]; 11543 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11544 unsigned int old_mode; 11545 unsigned int cur_el = arm_current_el(env); 11546 int rt; 11547 11548 if (tcg_enabled()) { 11549 /* 11550 * Note that new_el can never be 0. If cur_el is 0, then 11551 * el0_a64 is is_a64(), else el0_a64 is ignored. 11552 */ 11553 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11554 } 11555 11556 if (cur_el < new_el) { 11557 /* 11558 * Entry vector offset depends on whether the implemented EL 11559 * immediately lower than the target level is using AArch32 or AArch64 11560 */ 11561 bool is_aa64; 11562 uint64_t hcr; 11563 11564 switch (new_el) { 11565 case 3: 11566 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11567 break; 11568 case 2: 11569 hcr = arm_hcr_el2_eff(env); 11570 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11571 is_aa64 = (hcr & HCR_RW) != 0; 11572 break; 11573 } 11574 /* fall through */ 11575 case 1: 11576 is_aa64 = is_a64(env); 11577 break; 11578 default: 11579 g_assert_not_reached(); 11580 } 11581 11582 if (is_aa64) { 11583 addr += 0x400; 11584 } else { 11585 addr += 0x600; 11586 } 11587 } else if (pstate_read(env) & PSTATE_SP) { 11588 addr += 0x200; 11589 } 11590 11591 switch (cs->exception_index) { 11592 case EXCP_GPC: 11593 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11594 env->cp15.mfar_el3); 11595 /* fall through */ 11596 case EXCP_PREFETCH_ABORT: 11597 case EXCP_DATA_ABORT: 11598 /* 11599 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11600 * to be taken to the SError vector entrypoint. 11601 */ 11602 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11603 syndrome_is_sync_extabt(env->exception.syndrome)) { 11604 addr += 0x180; 11605 } 11606 env->cp15.far_el[new_el] = env->exception.vaddress; 11607 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11608 env->cp15.far_el[new_el]); 11609 /* fall through */ 11610 case EXCP_BKPT: 11611 case EXCP_UDEF: 11612 case EXCP_SWI: 11613 case EXCP_HVC: 11614 case EXCP_HYP_TRAP: 11615 case EXCP_SMC: 11616 switch (syn_get_ec(env->exception.syndrome)) { 11617 case EC_ADVSIMDFPACCESSTRAP: 11618 /* 11619 * QEMU internal FP/SIMD syndromes from AArch32 include the 11620 * TA and coproc fields which are only exposed if the exception 11621 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11622 * AArch64 format syndrome. 11623 */ 11624 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11625 break; 11626 case EC_CP14RTTRAP: 11627 case EC_CP15RTTRAP: 11628 case EC_CP14DTTRAP: 11629 /* 11630 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11631 * the raw register field from the insn; when taking this to 11632 * AArch64 we must convert it to the AArch64 view of the register 11633 * number. Notice that we read a 4-bit AArch32 register number and 11634 * write back a 5-bit AArch64 one. 11635 */ 11636 rt = extract32(env->exception.syndrome, 5, 4); 11637 rt = aarch64_regnum(env, rt); 11638 env->exception.syndrome = deposit32(env->exception.syndrome, 11639 5, 5, rt); 11640 break; 11641 case EC_CP15RRTTRAP: 11642 case EC_CP14RRTTRAP: 11643 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11644 rt = extract32(env->exception.syndrome, 5, 4); 11645 rt = aarch64_regnum(env, rt); 11646 env->exception.syndrome = deposit32(env->exception.syndrome, 11647 5, 5, rt); 11648 rt = extract32(env->exception.syndrome, 10, 4); 11649 rt = aarch64_regnum(env, rt); 11650 env->exception.syndrome = deposit32(env->exception.syndrome, 11651 10, 5, rt); 11652 break; 11653 } 11654 env->cp15.esr_el[new_el] = env->exception.syndrome; 11655 break; 11656 case EXCP_IRQ: 11657 case EXCP_VIRQ: 11658 case EXCP_NMI: 11659 case EXCP_VINMI: 11660 addr += 0x80; 11661 break; 11662 case EXCP_FIQ: 11663 case EXCP_VFIQ: 11664 case EXCP_VFNMI: 11665 addr += 0x100; 11666 break; 11667 case EXCP_VSERR: 11668 addr += 0x180; 11669 /* Construct the SError syndrome from IDS and ISS fields. */ 11670 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11671 env->cp15.esr_el[new_el] = env->exception.syndrome; 11672 break; 11673 default: 11674 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11675 } 11676 11677 if (is_a64(env)) { 11678 old_mode = pstate_read(env); 11679 aarch64_save_sp(env, arm_current_el(env)); 11680 env->elr_el[new_el] = env->pc; 11681 11682 if (cur_el == 1 && new_el == 1) { 11683 uint64_t hcr = arm_hcr_el2_eff(env); 11684 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11685 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11686 /* 11687 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11688 * by setting M[3:2] to 0b10. 11689 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11690 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11691 */ 11692 old_mode = deposit32(old_mode, 2, 2, 2); 11693 } 11694 } 11695 } else { 11696 old_mode = cpsr_read_for_spsr_elx(env); 11697 env->elr_el[new_el] = env->regs[15]; 11698 11699 aarch64_sync_32_to_64(env); 11700 11701 env->condexec_bits = 0; 11702 } 11703 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11704 11705 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11706 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11707 env->elr_el[new_el]); 11708 11709 if (cpu_isar_feature(aa64_pan, cpu)) { 11710 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11711 new_mode |= old_mode & PSTATE_PAN; 11712 switch (new_el) { 11713 case 2: 11714 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11715 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11716 != (HCR_E2H | HCR_TGE)) { 11717 break; 11718 } 11719 /* fall through */ 11720 case 1: 11721 /* ... the target is EL1 ... */ 11722 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11723 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11724 new_mode |= PSTATE_PAN; 11725 } 11726 break; 11727 } 11728 } 11729 if (cpu_isar_feature(aa64_mte, cpu)) { 11730 new_mode |= PSTATE_TCO; 11731 } 11732 11733 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11734 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11735 new_mode |= PSTATE_SSBS; 11736 } else { 11737 new_mode &= ~PSTATE_SSBS; 11738 } 11739 } 11740 11741 if (cpu_isar_feature(aa64_nmi, cpu)) { 11742 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 11743 new_mode |= PSTATE_ALLINT; 11744 } else { 11745 new_mode &= ~PSTATE_ALLINT; 11746 } 11747 } 11748 11749 pstate_write(env, PSTATE_DAIF | new_mode); 11750 env->aarch64 = true; 11751 aarch64_restore_sp(env, new_el); 11752 11753 if (tcg_enabled()) { 11754 helper_rebuild_hflags_a64(env, new_el); 11755 } 11756 11757 env->pc = addr; 11758 11759 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11760 new_el, env->pc, pstate_read(env)); 11761 } 11762 11763 /* 11764 * Do semihosting call and set the appropriate return value. All the 11765 * permission and validity checks have been done at translate time. 11766 * 11767 * We only see semihosting exceptions in TCG only as they are not 11768 * trapped to the hypervisor in KVM. 11769 */ 11770 #ifdef CONFIG_TCG 11771 static void tcg_handle_semihosting(CPUState *cs) 11772 { 11773 ARMCPU *cpu = ARM_CPU(cs); 11774 CPUARMState *env = &cpu->env; 11775 11776 if (is_a64(env)) { 11777 qemu_log_mask(CPU_LOG_INT, 11778 "...handling as semihosting call 0x%" PRIx64 "\n", 11779 env->xregs[0]); 11780 do_common_semihosting(cs); 11781 env->pc += 4; 11782 } else { 11783 qemu_log_mask(CPU_LOG_INT, 11784 "...handling as semihosting call 0x%x\n", 11785 env->regs[0]); 11786 do_common_semihosting(cs); 11787 env->regs[15] += env->thumb ? 2 : 4; 11788 } 11789 } 11790 #endif 11791 11792 /* 11793 * Handle a CPU exception for A and R profile CPUs. 11794 * Do any appropriate logging, handle PSCI calls, and then hand off 11795 * to the AArch64-entry or AArch32-entry function depending on the 11796 * target exception level's register width. 11797 * 11798 * Note: this is used for both TCG (as the do_interrupt tcg op), 11799 * and KVM to re-inject guest debug exceptions, and to 11800 * inject a Synchronous-External-Abort. 11801 */ 11802 void arm_cpu_do_interrupt(CPUState *cs) 11803 { 11804 ARMCPU *cpu = ARM_CPU(cs); 11805 CPUARMState *env = &cpu->env; 11806 unsigned int new_el = env->exception.target_el; 11807 11808 assert(!arm_feature(env, ARM_FEATURE_M)); 11809 11810 arm_log_exception(cs); 11811 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11812 new_el); 11813 if (qemu_loglevel_mask(CPU_LOG_INT) 11814 && !excp_is_internal(cs->exception_index)) { 11815 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11816 syn_get_ec(env->exception.syndrome), 11817 env->exception.syndrome); 11818 } 11819 11820 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11821 arm_handle_psci_call(cpu); 11822 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11823 return; 11824 } 11825 11826 /* 11827 * Semihosting semantics depend on the register width of the code 11828 * that caused the exception, not the target exception level, so 11829 * must be handled here. 11830 */ 11831 #ifdef CONFIG_TCG 11832 if (cs->exception_index == EXCP_SEMIHOST) { 11833 tcg_handle_semihosting(cs); 11834 return; 11835 } 11836 #endif 11837 11838 /* 11839 * Hooks may change global state so BQL should be held, also the 11840 * BQL needs to be held for any modification of 11841 * cs->interrupt_request. 11842 */ 11843 g_assert(bql_locked()); 11844 11845 arm_call_pre_el_change_hook(cpu); 11846 11847 assert(!excp_is_internal(cs->exception_index)); 11848 if (arm_el_is_aa64(env, new_el)) { 11849 arm_cpu_do_interrupt_aarch64(cs); 11850 } else { 11851 arm_cpu_do_interrupt_aarch32(cs); 11852 } 11853 11854 arm_call_el_change_hook(cpu); 11855 11856 if (!kvm_enabled()) { 11857 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11858 } 11859 } 11860 #endif /* !CONFIG_USER_ONLY */ 11861 11862 uint64_t arm_sctlr(CPUARMState *env, int el) 11863 { 11864 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11865 if (el == 0) { 11866 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11867 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11868 } 11869 return env->cp15.sctlr_el[el]; 11870 } 11871 11872 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11873 { 11874 if (regime_has_2_ranges(mmu_idx)) { 11875 return extract64(tcr, 37, 2); 11876 } else if (regime_is_stage2(mmu_idx)) { 11877 return 0; /* VTCR_EL2 */ 11878 } else { 11879 /* Replicate the single TBI bit so we always have 2 bits. */ 11880 return extract32(tcr, 20, 1) * 3; 11881 } 11882 } 11883 11884 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11885 { 11886 if (regime_has_2_ranges(mmu_idx)) { 11887 return extract64(tcr, 51, 2); 11888 } else if (regime_is_stage2(mmu_idx)) { 11889 return 0; /* VTCR_EL2 */ 11890 } else { 11891 /* Replicate the single TBID bit so we always have 2 bits. */ 11892 return extract32(tcr, 29, 1) * 3; 11893 } 11894 } 11895 11896 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11897 { 11898 if (regime_has_2_ranges(mmu_idx)) { 11899 return extract64(tcr, 57, 2); 11900 } else { 11901 /* Replicate the single TCMA bit so we always have 2 bits. */ 11902 return extract32(tcr, 30, 1) * 3; 11903 } 11904 } 11905 11906 static ARMGranuleSize tg0_to_gran_size(int tg) 11907 { 11908 switch (tg) { 11909 case 0: 11910 return Gran4K; 11911 case 1: 11912 return Gran64K; 11913 case 2: 11914 return Gran16K; 11915 default: 11916 return GranInvalid; 11917 } 11918 } 11919 11920 static ARMGranuleSize tg1_to_gran_size(int tg) 11921 { 11922 switch (tg) { 11923 case 1: 11924 return Gran16K; 11925 case 2: 11926 return Gran4K; 11927 case 3: 11928 return Gran64K; 11929 default: 11930 return GranInvalid; 11931 } 11932 } 11933 11934 static inline bool have4k(ARMCPU *cpu, bool stage2) 11935 { 11936 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11937 : cpu_isar_feature(aa64_tgran4, cpu); 11938 } 11939 11940 static inline bool have16k(ARMCPU *cpu, bool stage2) 11941 { 11942 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11943 : cpu_isar_feature(aa64_tgran16, cpu); 11944 } 11945 11946 static inline bool have64k(ARMCPU *cpu, bool stage2) 11947 { 11948 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11949 : cpu_isar_feature(aa64_tgran64, cpu); 11950 } 11951 11952 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11953 bool stage2) 11954 { 11955 switch (gran) { 11956 case Gran4K: 11957 if (have4k(cpu, stage2)) { 11958 return gran; 11959 } 11960 break; 11961 case Gran16K: 11962 if (have16k(cpu, stage2)) { 11963 return gran; 11964 } 11965 break; 11966 case Gran64K: 11967 if (have64k(cpu, stage2)) { 11968 return gran; 11969 } 11970 break; 11971 case GranInvalid: 11972 break; 11973 } 11974 /* 11975 * If the guest selects a granule size that isn't implemented, 11976 * the architecture requires that we behave as if it selected one 11977 * that is (with an IMPDEF choice of which one to pick). We choose 11978 * to implement the smallest supported granule size. 11979 */ 11980 if (have4k(cpu, stage2)) { 11981 return Gran4K; 11982 } 11983 if (have16k(cpu, stage2)) { 11984 return Gran16K; 11985 } 11986 assert(have64k(cpu, stage2)); 11987 return Gran64K; 11988 } 11989 11990 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11991 ARMMMUIdx mmu_idx, bool data, 11992 bool el1_is_aa32) 11993 { 11994 uint64_t tcr = regime_tcr(env, mmu_idx); 11995 bool epd, hpd, tsz_oob, ds, ha, hd; 11996 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11997 ARMGranuleSize gran; 11998 ARMCPU *cpu = env_archcpu(env); 11999 bool stage2 = regime_is_stage2(mmu_idx); 12000 12001 if (!regime_has_2_ranges(mmu_idx)) { 12002 select = 0; 12003 tsz = extract32(tcr, 0, 6); 12004 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12005 if (stage2) { 12006 /* VTCR_EL2 */ 12007 hpd = false; 12008 } else { 12009 hpd = extract32(tcr, 24, 1); 12010 } 12011 epd = false; 12012 sh = extract32(tcr, 12, 2); 12013 ps = extract32(tcr, 16, 3); 12014 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 12015 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12016 ds = extract64(tcr, 32, 1); 12017 } else { 12018 bool e0pd; 12019 12020 /* 12021 * Bit 55 is always between the two regions, and is canonical for 12022 * determining if address tagging is enabled. 12023 */ 12024 select = extract64(va, 55, 1); 12025 if (!select) { 12026 tsz = extract32(tcr, 0, 6); 12027 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12028 epd = extract32(tcr, 7, 1); 12029 sh = extract32(tcr, 12, 2); 12030 hpd = extract64(tcr, 41, 1); 12031 e0pd = extract64(tcr, 55, 1); 12032 } else { 12033 tsz = extract32(tcr, 16, 6); 12034 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 12035 epd = extract32(tcr, 23, 1); 12036 sh = extract32(tcr, 28, 2); 12037 hpd = extract64(tcr, 42, 1); 12038 e0pd = extract64(tcr, 56, 1); 12039 } 12040 ps = extract64(tcr, 32, 3); 12041 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 12042 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12043 ds = extract64(tcr, 59, 1); 12044 12045 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 12046 regime_is_user(env, mmu_idx)) { 12047 epd = true; 12048 } 12049 } 12050 12051 gran = sanitize_gran_size(cpu, gran, stage2); 12052 12053 if (cpu_isar_feature(aa64_st, cpu)) { 12054 max_tsz = 48 - (gran == Gran64K); 12055 } else { 12056 max_tsz = 39; 12057 } 12058 12059 /* 12060 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 12061 * adjust the effective value of DS, as documented. 12062 */ 12063 min_tsz = 16; 12064 if (gran == Gran64K) { 12065 if (cpu_isar_feature(aa64_lva, cpu)) { 12066 min_tsz = 12; 12067 } 12068 ds = false; 12069 } else if (ds) { 12070 if (regime_is_stage2(mmu_idx)) { 12071 if (gran == Gran16K) { 12072 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 12073 } else { 12074 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 12075 } 12076 } else { 12077 if (gran == Gran16K) { 12078 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 12079 } else { 12080 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 12081 } 12082 } 12083 if (ds) { 12084 min_tsz = 12; 12085 } 12086 } 12087 12088 if (stage2 && el1_is_aa32) { 12089 /* 12090 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 12091 * are loosened: a configured IPA of 40 bits is permitted even if 12092 * the implemented PA is less than that (and so a 40 bit IPA would 12093 * fault for an AArch64 EL1). See R_DTLMN. 12094 */ 12095 min_tsz = MIN(min_tsz, 24); 12096 } 12097 12098 if (tsz > max_tsz) { 12099 tsz = max_tsz; 12100 tsz_oob = true; 12101 } else if (tsz < min_tsz) { 12102 tsz = min_tsz; 12103 tsz_oob = true; 12104 } else { 12105 tsz_oob = false; 12106 } 12107 12108 /* Present TBI as a composite with TBID. */ 12109 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12110 if (!data) { 12111 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12112 } 12113 tbi = (tbi >> select) & 1; 12114 12115 return (ARMVAParameters) { 12116 .tsz = tsz, 12117 .ps = ps, 12118 .sh = sh, 12119 .select = select, 12120 .tbi = tbi, 12121 .epd = epd, 12122 .hpd = hpd, 12123 .tsz_oob = tsz_oob, 12124 .ds = ds, 12125 .ha = ha, 12126 .hd = ha && hd, 12127 .gran = gran, 12128 }; 12129 } 12130 12131 /* 12132 * Note that signed overflow is undefined in C. The following routines are 12133 * careful to use unsigned types where modulo arithmetic is required. 12134 * Failure to do so _will_ break on newer gcc. 12135 */ 12136 12137 /* Signed saturating arithmetic. */ 12138 12139 /* Perform 16-bit signed saturating addition. */ 12140 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12141 { 12142 uint16_t res; 12143 12144 res = a + b; 12145 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12146 if (a & 0x8000) { 12147 res = 0x8000; 12148 } else { 12149 res = 0x7fff; 12150 } 12151 } 12152 return res; 12153 } 12154 12155 /* Perform 8-bit signed saturating addition. */ 12156 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12157 { 12158 uint8_t res; 12159 12160 res = a + b; 12161 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12162 if (a & 0x80) { 12163 res = 0x80; 12164 } else { 12165 res = 0x7f; 12166 } 12167 } 12168 return res; 12169 } 12170 12171 /* Perform 16-bit signed saturating subtraction. */ 12172 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12173 { 12174 uint16_t res; 12175 12176 res = a - b; 12177 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12178 if (a & 0x8000) { 12179 res = 0x8000; 12180 } else { 12181 res = 0x7fff; 12182 } 12183 } 12184 return res; 12185 } 12186 12187 /* Perform 8-bit signed saturating subtraction. */ 12188 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12189 { 12190 uint8_t res; 12191 12192 res = a - b; 12193 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12194 if (a & 0x80) { 12195 res = 0x80; 12196 } else { 12197 res = 0x7f; 12198 } 12199 } 12200 return res; 12201 } 12202 12203 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12204 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12205 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12206 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12207 #define PFX q 12208 12209 #include "op_addsub.h" 12210 12211 /* Unsigned saturating arithmetic. */ 12212 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12213 { 12214 uint16_t res; 12215 res = a + b; 12216 if (res < a) { 12217 res = 0xffff; 12218 } 12219 return res; 12220 } 12221 12222 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12223 { 12224 if (a > b) { 12225 return a - b; 12226 } else { 12227 return 0; 12228 } 12229 } 12230 12231 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12232 { 12233 uint8_t res; 12234 res = a + b; 12235 if (res < a) { 12236 res = 0xff; 12237 } 12238 return res; 12239 } 12240 12241 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12242 { 12243 if (a > b) { 12244 return a - b; 12245 } else { 12246 return 0; 12247 } 12248 } 12249 12250 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12251 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12252 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12253 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12254 #define PFX uq 12255 12256 #include "op_addsub.h" 12257 12258 /* Signed modulo arithmetic. */ 12259 #define SARITH16(a, b, n, op) do { \ 12260 int32_t sum; \ 12261 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12262 RESULT(sum, n, 16); \ 12263 if (sum >= 0) \ 12264 ge |= 3 << (n * 2); \ 12265 } while (0) 12266 12267 #define SARITH8(a, b, n, op) do { \ 12268 int32_t sum; \ 12269 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12270 RESULT(sum, n, 8); \ 12271 if (sum >= 0) \ 12272 ge |= 1 << n; \ 12273 } while (0) 12274 12275 12276 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12277 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12278 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12279 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12280 #define PFX s 12281 #define ARITH_GE 12282 12283 #include "op_addsub.h" 12284 12285 /* Unsigned modulo arithmetic. */ 12286 #define ADD16(a, b, n) do { \ 12287 uint32_t sum; \ 12288 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12289 RESULT(sum, n, 16); \ 12290 if ((sum >> 16) == 1) \ 12291 ge |= 3 << (n * 2); \ 12292 } while (0) 12293 12294 #define ADD8(a, b, n) do { \ 12295 uint32_t sum; \ 12296 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12297 RESULT(sum, n, 8); \ 12298 if ((sum >> 8) == 1) \ 12299 ge |= 1 << n; \ 12300 } while (0) 12301 12302 #define SUB16(a, b, n) do { \ 12303 uint32_t sum; \ 12304 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12305 RESULT(sum, n, 16); \ 12306 if ((sum >> 16) == 0) \ 12307 ge |= 3 << (n * 2); \ 12308 } while (0) 12309 12310 #define SUB8(a, b, n) do { \ 12311 uint32_t sum; \ 12312 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12313 RESULT(sum, n, 8); \ 12314 if ((sum >> 8) == 0) \ 12315 ge |= 1 << n; \ 12316 } while (0) 12317 12318 #define PFX u 12319 #define ARITH_GE 12320 12321 #include "op_addsub.h" 12322 12323 /* Halved signed arithmetic. */ 12324 #define ADD16(a, b, n) \ 12325 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12326 #define SUB16(a, b, n) \ 12327 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12328 #define ADD8(a, b, n) \ 12329 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12330 #define SUB8(a, b, n) \ 12331 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12332 #define PFX sh 12333 12334 #include "op_addsub.h" 12335 12336 /* Halved unsigned arithmetic. */ 12337 #define ADD16(a, b, n) \ 12338 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12339 #define SUB16(a, b, n) \ 12340 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12341 #define ADD8(a, b, n) \ 12342 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12343 #define SUB8(a, b, n) \ 12344 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12345 #define PFX uh 12346 12347 #include "op_addsub.h" 12348 12349 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12350 { 12351 if (a > b) { 12352 return a - b; 12353 } else { 12354 return b - a; 12355 } 12356 } 12357 12358 /* Unsigned sum of absolute byte differences. */ 12359 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12360 { 12361 uint32_t sum; 12362 sum = do_usad(a, b); 12363 sum += do_usad(a >> 8, b >> 8); 12364 sum += do_usad(a >> 16, b >> 16); 12365 sum += do_usad(a >> 24, b >> 24); 12366 return sum; 12367 } 12368 12369 /* For ARMv6 SEL instruction. */ 12370 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12371 { 12372 uint32_t mask; 12373 12374 mask = 0; 12375 if (flags & 1) { 12376 mask |= 0xff; 12377 } 12378 if (flags & 2) { 12379 mask |= 0xff00; 12380 } 12381 if (flags & 4) { 12382 mask |= 0xff0000; 12383 } 12384 if (flags & 8) { 12385 mask |= 0xff000000; 12386 } 12387 return (a & mask) | (b & ~mask); 12388 } 12389 12390 /* 12391 * CRC helpers. 12392 * The upper bytes of val (above the number specified by 'bytes') must have 12393 * been zeroed out by the caller. 12394 */ 12395 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12396 { 12397 uint8_t buf[4]; 12398 12399 stl_le_p(buf, val); 12400 12401 /* zlib crc32 converts the accumulator and output to one's complement. */ 12402 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12403 } 12404 12405 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12406 { 12407 uint8_t buf[4]; 12408 12409 stl_le_p(buf, val); 12410 12411 /* Linux crc32c converts the output to one's complement. */ 12412 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12413 } 12414 12415 /* 12416 * Return the exception level to which FP-disabled exceptions should 12417 * be taken, or 0 if FP is enabled. 12418 */ 12419 int fp_exception_el(CPUARMState *env, int cur_el) 12420 { 12421 #ifndef CONFIG_USER_ONLY 12422 uint64_t hcr_el2; 12423 12424 /* 12425 * CPACR and the CPTR registers don't exist before v6, so FP is 12426 * always accessible 12427 */ 12428 if (!arm_feature(env, ARM_FEATURE_V6)) { 12429 return 0; 12430 } 12431 12432 if (arm_feature(env, ARM_FEATURE_M)) { 12433 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12434 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12435 return 1; 12436 } 12437 12438 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12439 if (!extract32(env->v7m.nsacr, 10, 1)) { 12440 /* FP insns cause a NOCP UsageFault taken to Secure */ 12441 return 3; 12442 } 12443 } 12444 12445 return 0; 12446 } 12447 12448 hcr_el2 = arm_hcr_el2_eff(env); 12449 12450 /* 12451 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12452 * 0, 2 : trap EL0 and EL1/PL1 accesses 12453 * 1 : trap only EL0 accesses 12454 * 3 : trap no accesses 12455 * This register is ignored if E2H+TGE are both set. 12456 */ 12457 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12458 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12459 12460 switch (fpen) { 12461 case 1: 12462 if (cur_el != 0) { 12463 break; 12464 } 12465 /* fall through */ 12466 case 0: 12467 case 2: 12468 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12469 if (!arm_el_is_aa64(env, 3) 12470 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12471 return 3; 12472 } 12473 if (cur_el <= 1) { 12474 return 1; 12475 } 12476 break; 12477 } 12478 } 12479 12480 /* 12481 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12482 * to control non-secure access to the FPU. It doesn't have any 12483 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12484 */ 12485 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12486 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12487 if (!extract32(env->cp15.nsacr, 10, 1)) { 12488 /* FP insns act as UNDEF */ 12489 return cur_el == 2 ? 2 : 1; 12490 } 12491 } 12492 12493 /* 12494 * CPTR_EL2 is present in v7VE or v8, and changes format 12495 * with HCR_EL2.E2H (regardless of TGE). 12496 */ 12497 if (cur_el <= 2) { 12498 if (hcr_el2 & HCR_E2H) { 12499 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12500 case 1: 12501 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12502 break; 12503 } 12504 /* fall through */ 12505 case 0: 12506 case 2: 12507 return 2; 12508 } 12509 } else if (arm_is_el2_enabled(env)) { 12510 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12511 return 2; 12512 } 12513 } 12514 } 12515 12516 /* CPTR_EL3 : present in v8 */ 12517 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12518 /* Trap all FP ops to EL3 */ 12519 return 3; 12520 } 12521 #endif 12522 return 0; 12523 } 12524 12525 /* Return the exception level we're running at if this is our mmu_idx */ 12526 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12527 { 12528 if (mmu_idx & ARM_MMU_IDX_M) { 12529 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12530 } 12531 12532 switch (mmu_idx) { 12533 case ARMMMUIdx_E10_0: 12534 case ARMMMUIdx_E20_0: 12535 return 0; 12536 case ARMMMUIdx_E10_1: 12537 case ARMMMUIdx_E10_1_PAN: 12538 return 1; 12539 case ARMMMUIdx_E2: 12540 case ARMMMUIdx_E20_2: 12541 case ARMMMUIdx_E20_2_PAN: 12542 return 2; 12543 case ARMMMUIdx_E3: 12544 return 3; 12545 default: 12546 g_assert_not_reached(); 12547 } 12548 } 12549 12550 #ifndef CONFIG_TCG 12551 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12552 { 12553 g_assert_not_reached(); 12554 } 12555 #endif 12556 12557 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12558 { 12559 ARMMMUIdx idx; 12560 uint64_t hcr; 12561 12562 if (arm_feature(env, ARM_FEATURE_M)) { 12563 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12564 } 12565 12566 /* See ARM pseudo-function ELIsInHost. */ 12567 switch (el) { 12568 case 0: 12569 hcr = arm_hcr_el2_eff(env); 12570 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12571 idx = ARMMMUIdx_E20_0; 12572 } else { 12573 idx = ARMMMUIdx_E10_0; 12574 } 12575 break; 12576 case 1: 12577 if (arm_pan_enabled(env)) { 12578 idx = ARMMMUIdx_E10_1_PAN; 12579 } else { 12580 idx = ARMMMUIdx_E10_1; 12581 } 12582 break; 12583 case 2: 12584 /* Note that TGE does not apply at EL2. */ 12585 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12586 if (arm_pan_enabled(env)) { 12587 idx = ARMMMUIdx_E20_2_PAN; 12588 } else { 12589 idx = ARMMMUIdx_E20_2; 12590 } 12591 } else { 12592 idx = ARMMMUIdx_E2; 12593 } 12594 break; 12595 case 3: 12596 return ARMMMUIdx_E3; 12597 default: 12598 g_assert_not_reached(); 12599 } 12600 12601 return idx; 12602 } 12603 12604 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12605 { 12606 return arm_mmu_idx_el(env, arm_current_el(env)); 12607 } 12608 12609 static bool mve_no_pred(CPUARMState *env) 12610 { 12611 /* 12612 * Return true if there is definitely no predication of MVE 12613 * instructions by VPR or LTPSIZE. (Returning false even if there 12614 * isn't any predication is OK; generated code will just be 12615 * a little worse.) 12616 * If the CPU does not implement MVE then this TB flag is always 0. 12617 * 12618 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12619 * logic in gen_update_fp_context() needs to be updated to match. 12620 * 12621 * We do not include the effect of the ECI bits here -- they are 12622 * tracked in other TB flags. This simplifies the logic for 12623 * "when did we emit code that changes the MVE_NO_PRED TB flag 12624 * and thus need to end the TB?". 12625 */ 12626 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12627 return false; 12628 } 12629 if (env->v7m.vpr) { 12630 return false; 12631 } 12632 if (env->v7m.ltpsize < 4) { 12633 return false; 12634 } 12635 return true; 12636 } 12637 12638 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12639 uint64_t *cs_base, uint32_t *pflags) 12640 { 12641 CPUARMTBFlags flags; 12642 12643 assert_hflags_rebuild_correctly(env); 12644 flags = env->hflags; 12645 12646 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12647 *pc = env->pc; 12648 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12649 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12650 } 12651 } else { 12652 *pc = env->regs[15]; 12653 12654 if (arm_feature(env, ARM_FEATURE_M)) { 12655 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12656 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12657 != env->v7m.secure) { 12658 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12659 } 12660 12661 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12662 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12663 (env->v7m.secure && 12664 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12665 /* 12666 * ASPEN is set, but FPCA/SFPA indicate that there is no 12667 * active FP context; we must create a new FP context before 12668 * executing any FP insn. 12669 */ 12670 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12671 } 12672 12673 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12674 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12675 DP_TBFLAG_M32(flags, LSPACT, 1); 12676 } 12677 12678 if (mve_no_pred(env)) { 12679 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12680 } 12681 } else { 12682 /* 12683 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12684 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12685 */ 12686 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12687 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12688 } else { 12689 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12690 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12691 } 12692 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12693 DP_TBFLAG_A32(flags, VFPEN, 1); 12694 } 12695 } 12696 12697 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12698 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12699 } 12700 12701 /* 12702 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12703 * states defined in the ARM ARM for software singlestep: 12704 * SS_ACTIVE PSTATE.SS State 12705 * 0 x Inactive (the TB flag for SS is always 0) 12706 * 1 0 Active-pending 12707 * 1 1 Active-not-pending 12708 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12709 */ 12710 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12711 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12712 } 12713 12714 *pflags = flags.flags; 12715 *cs_base = flags.flags2; 12716 } 12717 12718 #ifdef TARGET_AARCH64 12719 /* 12720 * The manual says that when SVE is enabled and VQ is widened the 12721 * implementation is allowed to zero the previously inaccessible 12722 * portion of the registers. The corollary to that is that when 12723 * SVE is enabled and VQ is narrowed we are also allowed to zero 12724 * the now inaccessible portion of the registers. 12725 * 12726 * The intent of this is that no predicate bit beyond VQ is ever set. 12727 * Which means that some operations on predicate registers themselves 12728 * may operate on full uint64_t or even unrolled across the maximum 12729 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12730 * may well be cheaper than conditionals to restrict the operation 12731 * to the relevant portion of a uint16_t[16]. 12732 */ 12733 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12734 { 12735 int i, j; 12736 uint64_t pmask; 12737 12738 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12739 assert(vq <= env_archcpu(env)->sve_max_vq); 12740 12741 /* Zap the high bits of the zregs. */ 12742 for (i = 0; i < 32; i++) { 12743 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12744 } 12745 12746 /* Zap the high bits of the pregs and ffr. */ 12747 pmask = 0; 12748 if (vq & 3) { 12749 pmask = ~(-1ULL << (16 * (vq & 3))); 12750 } 12751 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12752 for (i = 0; i < 17; ++i) { 12753 env->vfp.pregs[i].p[j] &= pmask; 12754 } 12755 pmask = 0; 12756 } 12757 } 12758 12759 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12760 { 12761 int exc_el; 12762 12763 if (sm) { 12764 exc_el = sme_exception_el(env, el); 12765 } else { 12766 exc_el = sve_exception_el(env, el); 12767 } 12768 if (exc_el) { 12769 return 0; /* disabled */ 12770 } 12771 return sve_vqm1_for_el_sm(env, el, sm); 12772 } 12773 12774 /* 12775 * Notice a change in SVE vector size when changing EL. 12776 */ 12777 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12778 int new_el, bool el0_a64) 12779 { 12780 ARMCPU *cpu = env_archcpu(env); 12781 int old_len, new_len; 12782 bool old_a64, new_a64, sm; 12783 12784 /* Nothing to do if no SVE. */ 12785 if (!cpu_isar_feature(aa64_sve, cpu)) { 12786 return; 12787 } 12788 12789 /* Nothing to do if FP is disabled in either EL. */ 12790 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12791 return; 12792 } 12793 12794 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12795 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12796 12797 /* 12798 * Both AArch64.TakeException and AArch64.ExceptionReturn 12799 * invoke ResetSVEState when taking an exception from, or 12800 * returning to, AArch32 state when PSTATE.SM is enabled. 12801 */ 12802 sm = FIELD_EX64(env->svcr, SVCR, SM); 12803 if (old_a64 != new_a64 && sm) { 12804 arm_reset_sve_state(env); 12805 return; 12806 } 12807 12808 /* 12809 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12810 * at ELx, or not available because the EL is in AArch32 state, then 12811 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12812 * has an effective value of 0". 12813 * 12814 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12815 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12816 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12817 * we already have the correct register contents when encountering the 12818 * vq0->vq0 transition between EL0->EL1. 12819 */ 12820 old_len = new_len = 0; 12821 if (old_a64) { 12822 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12823 } 12824 if (new_a64) { 12825 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12826 } 12827 12828 /* When changing vector length, clear inaccessible state. */ 12829 if (new_len < old_len) { 12830 aarch64_sve_narrow_vq(env, new_len + 1); 12831 } 12832 } 12833 #endif 12834 12835 #ifndef CONFIG_USER_ONLY 12836 ARMSecuritySpace arm_security_space(CPUARMState *env) 12837 { 12838 if (arm_feature(env, ARM_FEATURE_M)) { 12839 return arm_secure_to_space(env->v7m.secure); 12840 } 12841 12842 /* 12843 * If EL3 is not supported then the secure state is implementation 12844 * defined, in which case QEMU defaults to non-secure. 12845 */ 12846 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12847 return ARMSS_NonSecure; 12848 } 12849 12850 /* Check for AArch64 EL3 or AArch32 Mon. */ 12851 if (is_a64(env)) { 12852 if (extract32(env->pstate, 2, 2) == 3) { 12853 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12854 return ARMSS_Root; 12855 } else { 12856 return ARMSS_Secure; 12857 } 12858 } 12859 } else { 12860 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12861 return ARMSS_Secure; 12862 } 12863 } 12864 12865 return arm_security_space_below_el3(env); 12866 } 12867 12868 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12869 { 12870 assert(!arm_feature(env, ARM_FEATURE_M)); 12871 12872 /* 12873 * If EL3 is not supported then the secure state is implementation 12874 * defined, in which case QEMU defaults to non-secure. 12875 */ 12876 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12877 return ARMSS_NonSecure; 12878 } 12879 12880 /* 12881 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12882 * Ignoring NSE when !NS retains consistency without having to 12883 * modify other predicates. 12884 */ 12885 if (!(env->cp15.scr_el3 & SCR_NS)) { 12886 return ARMSS_Secure; 12887 } else if (env->cp15.scr_el3 & SCR_NSE) { 12888 return ARMSS_Realm; 12889 } else { 12890 return ARMSS_NonSecure; 12891 } 12892 } 12893 #endif /* !CONFIG_USER_ONLY */ 12894