xref: /openbmc/qemu/target/arm/helper.c (revision f764718d)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24     unsigned int attrs:8; /* as in the MAIR register encoding */
25     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
27 
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31                           target_ulong *page_size,
32                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
33 
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
36                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37                                target_ulong *page_size_ptr,
38                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42     bool ns;
43     bool nsc;
44     uint8_t sregion;
45     bool srvalid;
46     uint8_t iregion;
47     bool irvalid;
48 } V8M_SAttributes;
49 
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52                                 V8M_SAttributes *sattrs);
53 
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD   0x8
56 #define PMCRC   0x4
57 #define PMCRE   0x1
58 #endif
59 
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 {
62     int nregs;
63 
64     /* VFP data registers are always little-endian.  */
65     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66     if (reg < nregs) {
67         stfq_le_p(buf, env->vfp.regs[reg]);
68         return 8;
69     }
70     if (arm_feature(env, ARM_FEATURE_NEON)) {
71         /* Aliases for Q regs.  */
72         nregs += 16;
73         if (reg < nregs) {
74             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76             return 16;
77         }
78     }
79     switch (reg - nregs) {
80     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83     }
84     return 0;
85 }
86 
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89     int nregs;
90 
91     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92     if (reg < nregs) {
93         env->vfp.regs[reg] = ldfq_le_p(buf);
94         return 8;
95     }
96     if (arm_feature(env, ARM_FEATURE_NEON)) {
97         nregs += 16;
98         if (reg < nregs) {
99             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101             return 16;
102         }
103     }
104     switch (reg - nregs) {
105     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
107     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
108     }
109     return 0;
110 }
111 
112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113 {
114     switch (reg) {
115     case 0 ... 31:
116         /* 128 bit FP register */
117         stfq_le_p(buf, env->vfp.regs[reg * 2]);
118         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119         return 16;
120     case 32:
121         /* FPSR */
122         stl_p(buf, vfp_get_fpsr(env));
123         return 4;
124     case 33:
125         /* FPCR */
126         stl_p(buf, vfp_get_fpcr(env));
127         return 4;
128     default:
129         return 0;
130     }
131 }
132 
133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
134 {
135     switch (reg) {
136     case 0 ... 31:
137         /* 128 bit FP register */
138         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140         return 16;
141     case 32:
142         /* FPSR */
143         vfp_set_fpsr(env, ldl_p(buf));
144         return 4;
145     case 33:
146         /* FPCR */
147         vfp_set_fpcr(env, ldl_p(buf));
148         return 4;
149     default:
150         return 0;
151     }
152 }
153 
154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
155 {
156     assert(ri->fieldoffset);
157     if (cpreg_field_is_64bit(ri)) {
158         return CPREG_FIELD64(env, ri);
159     } else {
160         return CPREG_FIELD32(env, ri);
161     }
162 }
163 
164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165                       uint64_t value)
166 {
167     assert(ri->fieldoffset);
168     if (cpreg_field_is_64bit(ri)) {
169         CPREG_FIELD64(env, ri) = value;
170     } else {
171         CPREG_FIELD32(env, ri) = value;
172     }
173 }
174 
175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
176 {
177     return (char *)env + ri->fieldoffset;
178 }
179 
180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
181 {
182     /* Raw read of a coprocessor register (as needed for migration, etc). */
183     if (ri->type & ARM_CP_CONST) {
184         return ri->resetvalue;
185     } else if (ri->raw_readfn) {
186         return ri->raw_readfn(env, ri);
187     } else if (ri->readfn) {
188         return ri->readfn(env, ri);
189     } else {
190         return raw_read(env, ri);
191     }
192 }
193 
194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
195                              uint64_t v)
196 {
197     /* Raw write of a coprocessor register (as needed for migration, etc).
198      * Note that constant registers are treated as write-ignored; the
199      * caller should check for success by whether a readback gives the
200      * value written.
201      */
202     if (ri->type & ARM_CP_CONST) {
203         return;
204     } else if (ri->raw_writefn) {
205         ri->raw_writefn(env, ri, v);
206     } else if (ri->writefn) {
207         ri->writefn(env, ri, v);
208     } else {
209         raw_write(env, ri, v);
210     }
211 }
212 
213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
214 {
215    /* Return true if the regdef would cause an assertion if you called
216     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217     * program bug for it not to have the NO_RAW flag).
218     * NB that returning false here doesn't necessarily mean that calling
219     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220     * read/write access functions which are safe for raw use" from "has
221     * read/write access functions which have side effects but has forgotten
222     * to provide raw access functions".
223     * The tests here line up with the conditions in read/write_raw_cp_reg()
224     * and assertions in raw_read()/raw_write().
225     */
226     if ((ri->type & ARM_CP_CONST) ||
227         ri->fieldoffset ||
228         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229         return false;
230     }
231     return true;
232 }
233 
234 bool write_cpustate_to_list(ARMCPU *cpu)
235 {
236     /* Write the coprocessor state from cpu->env to the (index,value) list. */
237     int i;
238     bool ok = true;
239 
240     for (i = 0; i < cpu->cpreg_array_len; i++) {
241         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242         const ARMCPRegInfo *ri;
243 
244         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
245         if (!ri) {
246             ok = false;
247             continue;
248         }
249         if (ri->type & ARM_CP_NO_RAW) {
250             continue;
251         }
252         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
253     }
254     return ok;
255 }
256 
257 bool write_list_to_cpustate(ARMCPU *cpu)
258 {
259     int i;
260     bool ok = true;
261 
262     for (i = 0; i < cpu->cpreg_array_len; i++) {
263         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264         uint64_t v = cpu->cpreg_values[i];
265         const ARMCPRegInfo *ri;
266 
267         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268         if (!ri) {
269             ok = false;
270             continue;
271         }
272         if (ri->type & ARM_CP_NO_RAW) {
273             continue;
274         }
275         /* Write value and confirm it reads back as written
276          * (to catch read-only registers and partially read-only
277          * registers where the incoming migration value doesn't match)
278          */
279         write_raw_cp_reg(&cpu->env, ri, v);
280         if (read_raw_cp_reg(&cpu->env, ri) != v) {
281             ok = false;
282         }
283     }
284     return ok;
285 }
286 
287 static void add_cpreg_to_list(gpointer key, gpointer opaque)
288 {
289     ARMCPU *cpu = opaque;
290     uint64_t regidx;
291     const ARMCPRegInfo *ri;
292 
293     regidx = *(uint32_t *)key;
294     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
295 
296     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
297         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298         /* The value array need not be initialized at this point */
299         cpu->cpreg_array_len++;
300     }
301 }
302 
303 static void count_cpreg(gpointer key, gpointer opaque)
304 {
305     ARMCPU *cpu = opaque;
306     uint64_t regidx;
307     const ARMCPRegInfo *ri;
308 
309     regidx = *(uint32_t *)key;
310     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
311 
312     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
313         cpu->cpreg_array_len++;
314     }
315 }
316 
317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
318 {
319     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
321 
322     if (aidx > bidx) {
323         return 1;
324     }
325     if (aidx < bidx) {
326         return -1;
327     }
328     return 0;
329 }
330 
331 void init_cpreg_list(ARMCPU *cpu)
332 {
333     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334      * Note that we require cpreg_tuples[] to be sorted by key ID.
335      */
336     GList *keys;
337     int arraylen;
338 
339     keys = g_hash_table_get_keys(cpu->cp_regs);
340     keys = g_list_sort(keys, cpreg_key_compare);
341 
342     cpu->cpreg_array_len = 0;
343 
344     g_list_foreach(keys, count_cpreg, cpu);
345 
346     arraylen = cpu->cpreg_array_len;
347     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348     cpu->cpreg_values = g_new(uint64_t, arraylen);
349     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352     cpu->cpreg_array_len = 0;
353 
354     g_list_foreach(keys, add_cpreg_to_list, cpu);
355 
356     assert(cpu->cpreg_array_len == arraylen);
357 
358     g_list_free(keys);
359 }
360 
361 /*
362  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
364  *
365  * access_el3_aa32ns: Used to check AArch32 register views.
366  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
367  */
368 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
369                                         const ARMCPRegInfo *ri,
370                                         bool isread)
371 {
372     bool secure = arm_is_secure_below_el3(env);
373 
374     assert(!arm_el_is_aa64(env, 3));
375     if (secure) {
376         return CP_ACCESS_TRAP_UNCATEGORIZED;
377     }
378     return CP_ACCESS_OK;
379 }
380 
381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
382                                                 const ARMCPRegInfo *ri,
383                                                 bool isread)
384 {
385     if (!arm_el_is_aa64(env, 3)) {
386         return access_el3_aa32ns(env, ri, isread);
387     }
388     return CP_ACCESS_OK;
389 }
390 
391 /* Some secure-only AArch32 registers trap to EL3 if used from
392  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394  * We assume that the .access field is set to PL1_RW.
395  */
396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
397                                             const ARMCPRegInfo *ri,
398                                             bool isread)
399 {
400     if (arm_current_el(env) == 3) {
401         return CP_ACCESS_OK;
402     }
403     if (arm_is_secure_below_el3(env)) {
404         return CP_ACCESS_TRAP_EL3;
405     }
406     /* This will be EL1 NS and EL2 NS, which just UNDEF */
407     return CP_ACCESS_TRAP_UNCATEGORIZED;
408 }
409 
410 /* Check for traps to "powerdown debug" registers, which are controlled
411  * by MDCR.TDOSA
412  */
413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414                                    bool isread)
415 {
416     int el = arm_current_el(env);
417 
418     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419         && !arm_is_secure_below_el3(env)) {
420         return CP_ACCESS_TRAP_EL2;
421     }
422     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423         return CP_ACCESS_TRAP_EL3;
424     }
425     return CP_ACCESS_OK;
426 }
427 
428 /* Check for traps to "debug ROM" registers, which are controlled
429  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
430  */
431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432                                   bool isread)
433 {
434     int el = arm_current_el(env);
435 
436     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437         && !arm_is_secure_below_el3(env)) {
438         return CP_ACCESS_TRAP_EL2;
439     }
440     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441         return CP_ACCESS_TRAP_EL3;
442     }
443     return CP_ACCESS_OK;
444 }
445 
446 /* Check for traps to general debug registers, which are controlled
447  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
448  */
449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450                                   bool isread)
451 {
452     int el = arm_current_el(env);
453 
454     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455         && !arm_is_secure_below_el3(env)) {
456         return CP_ACCESS_TRAP_EL2;
457     }
458     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459         return CP_ACCESS_TRAP_EL3;
460     }
461     return CP_ACCESS_OK;
462 }
463 
464 /* Check for traps to performance monitor registers, which are controlled
465  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
466  */
467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468                                  bool isread)
469 {
470     int el = arm_current_el(env);
471 
472     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473         && !arm_is_secure_below_el3(env)) {
474         return CP_ACCESS_TRAP_EL2;
475     }
476     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477         return CP_ACCESS_TRAP_EL3;
478     }
479     return CP_ACCESS_OK;
480 }
481 
482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
483 {
484     ARMCPU *cpu = arm_env_get_cpu(env);
485 
486     raw_write(env, ri, value);
487     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
488 }
489 
490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
491 {
492     ARMCPU *cpu = arm_env_get_cpu(env);
493 
494     if (raw_read(env, ri) != value) {
495         /* Unlike real hardware the qemu TLB uses virtual addresses,
496          * not modified virtual addresses, so this causes a TLB flush.
497          */
498         tlb_flush(CPU(cpu));
499         raw_write(env, ri, value);
500     }
501 }
502 
503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504                              uint64_t value)
505 {
506     ARMCPU *cpu = arm_env_get_cpu(env);
507 
508     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
509         && !extended_addresses_enabled(env)) {
510         /* For VMSA (when not using the LPAE long descriptor page table
511          * format) this register includes the ASID, so do a TLB flush.
512          * For PMSA it is purely a process ID and no action is needed.
513          */
514         tlb_flush(CPU(cpu));
515     }
516     raw_write(env, ri, value);
517 }
518 
519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520                           uint64_t value)
521 {
522     /* Invalidate all (TLBIALL) */
523     ARMCPU *cpu = arm_env_get_cpu(env);
524 
525     tlb_flush(CPU(cpu));
526 }
527 
528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529                           uint64_t value)
530 {
531     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
532     ARMCPU *cpu = arm_env_get_cpu(env);
533 
534     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 }
536 
537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538                            uint64_t value)
539 {
540     /* Invalidate by ASID (TLBIASID) */
541     ARMCPU *cpu = arm_env_get_cpu(env);
542 
543     tlb_flush(CPU(cpu));
544 }
545 
546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547                            uint64_t value)
548 {
549     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
550     ARMCPU *cpu = arm_env_get_cpu(env);
551 
552     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
553 }
554 
555 /* IS variants of TLB operations must affect all cores */
556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                              uint64_t value)
558 {
559     CPUState *cs = ENV_GET_CPU(env);
560 
561     tlb_flush_all_cpus_synced(cs);
562 }
563 
564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                              uint64_t value)
566 {
567     CPUState *cs = ENV_GET_CPU(env);
568 
569     tlb_flush_all_cpus_synced(cs);
570 }
571 
572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                              uint64_t value)
574 {
575     CPUState *cs = ENV_GET_CPU(env);
576 
577     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
578 }
579 
580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581                              uint64_t value)
582 {
583     CPUState *cs = ENV_GET_CPU(env);
584 
585     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
586 }
587 
588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589                                uint64_t value)
590 {
591     CPUState *cs = ENV_GET_CPU(env);
592 
593     tlb_flush_by_mmuidx(cs,
594                         ARMMMUIdxBit_S12NSE1 |
595                         ARMMMUIdxBit_S12NSE0 |
596                         ARMMMUIdxBit_S2NS);
597 }
598 
599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600                                   uint64_t value)
601 {
602     CPUState *cs = ENV_GET_CPU(env);
603 
604     tlb_flush_by_mmuidx_all_cpus_synced(cs,
605                                         ARMMMUIdxBit_S12NSE1 |
606                                         ARMMMUIdxBit_S12NSE0 |
607                                         ARMMMUIdxBit_S2NS);
608 }
609 
610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611                             uint64_t value)
612 {
613     /* Invalidate by IPA. This has to invalidate any structures that
614      * contain only stage 2 translation information, but does not need
615      * to apply to structures that contain combined stage 1 and stage 2
616      * translation information.
617      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
618      */
619     CPUState *cs = ENV_GET_CPU(env);
620     uint64_t pageaddr;
621 
622     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623         return;
624     }
625 
626     pageaddr = sextract64(value << 12, 0, 40);
627 
628     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
629 }
630 
631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632                                uint64_t value)
633 {
634     CPUState *cs = ENV_GET_CPU(env);
635     uint64_t pageaddr;
636 
637     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638         return;
639     }
640 
641     pageaddr = sextract64(value << 12, 0, 40);
642 
643     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
644                                              ARMMMUIdxBit_S2NS);
645 }
646 
647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648                               uint64_t value)
649 {
650     CPUState *cs = ENV_GET_CPU(env);
651 
652     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
653 }
654 
655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                                  uint64_t value)
657 {
658     CPUState *cs = ENV_GET_CPU(env);
659 
660     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
661 }
662 
663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664                               uint64_t value)
665 {
666     CPUState *cs = ENV_GET_CPU(env);
667     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668 
669     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
670 }
671 
672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673                                  uint64_t value)
674 {
675     CPUState *cs = ENV_GET_CPU(env);
676     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677 
678     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
679                                              ARMMMUIdxBit_S1E2);
680 }
681 
682 static const ARMCPRegInfo cp_reginfo[] = {
683     /* Define the secure and non-secure FCSE identifier CP registers
684      * separately because there is no secure bank in V8 (no _EL3).  This allows
685      * the secure register to be properly reset and migrated. There is also no
686      * v8 EL1 version of the register so the non-secure instance stands alone.
687      */
688     { .name = "FCSEIDR(NS)",
689       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693     { .name = "FCSEIDR(S)",
694       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
697       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
698     /* Define the secure and non-secure context identifier CP registers
699      * separately because there is no secure bank in V8 (no _EL3).  This allows
700      * the secure register to be properly reset and migrated.  In the
701      * non-secure case, the 32-bit register will have reset and migration
702      * disabled during registration as it is handled by the 64-bit instance.
703      */
704     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
705       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
706       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
713       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
714     REGINFO_SENTINEL
715 };
716 
717 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718     /* NB: Some of these registers exist in v8 but with more precise
719      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
720      */
721     /* MMU Domain access control / MPU write buffer control */
722     { .name = "DACR",
723       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724       .access = PL1_RW, .resetvalue = 0,
725       .writefn = dacr_write, .raw_writefn = raw_write,
726       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
728     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729      * For v6 and v5, these mappings are overly broad.
730      */
731     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
738       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
739     /* Cache maintenance ops; some of this space may be overridden later. */
740     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
743     REGINFO_SENTINEL
744 };
745 
746 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747     /* Not all pre-v6 cores implemented this WFI, so this is slightly
748      * over-broad.
749      */
750     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751       .access = PL1_W, .type = ARM_CP_WFI },
752     REGINFO_SENTINEL
753 };
754 
755 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757      * is UNPREDICTABLE; we choose to NOP as most implementations do).
758      */
759     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760       .access = PL1_W, .type = ARM_CP_WFI },
761     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763      * OMAPCP will override this space.
764      */
765     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767       .resetvalue = 0 },
768     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770       .resetvalue = 0 },
771     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
773       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
774       .resetvalue = 0 },
775     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776      * implementing it as RAZ means the "debug architecture version" bits
777      * will read as a reserved value, which should cause Linux to not try
778      * to use the debug hardware.
779      */
780     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
782     /* MMU TLB control. Note that the wildcarding means we cover not just
783      * the unified TLB ops but also the dside/iside/inner-shareable variants.
784      */
785     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
787       .type = ARM_CP_NO_RAW },
788     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
790       .type = ARM_CP_NO_RAW },
791     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
793       .type = ARM_CP_NO_RAW },
794     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
796       .type = ARM_CP_NO_RAW },
797     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
801     REGINFO_SENTINEL
802 };
803 
804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805                         uint64_t value)
806 {
807     uint32_t mask = 0;
808 
809     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810     if (!arm_feature(env, ARM_FEATURE_V8)) {
811         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
814          */
815         if (arm_feature(env, ARM_FEATURE_VFP)) {
816             /* VFP coprocessor: cp10 & cp11 [23:20] */
817             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
818 
819             if (!arm_feature(env, ARM_FEATURE_NEON)) {
820                 /* ASEDIS [31] bit is RAO/WI */
821                 value |= (1 << 31);
822             }
823 
824             /* VFPv3 and upwards with NEON implement 32 double precision
825              * registers (D0-D31).
826              */
827             if (!arm_feature(env, ARM_FEATURE_NEON) ||
828                     !arm_feature(env, ARM_FEATURE_VFP3)) {
829                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830                 value |= (1 << 30);
831             }
832         }
833         value &= mask;
834     }
835     env->cp15.cpacr_el1 = value;
836 }
837 
838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839                                    bool isread)
840 {
841     if (arm_feature(env, ARM_FEATURE_V8)) {
842         /* Check if CPACR accesses are to be trapped to EL2 */
843         if (arm_current_el(env) == 1 &&
844             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845             return CP_ACCESS_TRAP_EL2;
846         /* Check if CPACR accesses are to be trapped to EL3 */
847         } else if (arm_current_el(env) < 3 &&
848                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849             return CP_ACCESS_TRAP_EL3;
850         }
851     }
852 
853     return CP_ACCESS_OK;
854 }
855 
856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857                                   bool isread)
858 {
859     /* Check if CPTR accesses are set to trap to EL3 */
860     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861         return CP_ACCESS_TRAP_EL3;
862     }
863 
864     return CP_ACCESS_OK;
865 }
866 
867 static const ARMCPRegInfo v6_cp_reginfo[] = {
868     /* prefetch by MVA in v6, NOP in v7 */
869     { .name = "MVA_prefetch",
870       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871       .access = PL1_W, .type = ARM_CP_NOP },
872     /* We need to break the TB after ISB to execute self-modifying code
873      * correctly and also to take any pending interrupts immediately.
874      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
875      */
876     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
877       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
878     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
879       .access = PL0_W, .type = ARM_CP_NOP },
880     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
881       .access = PL0_W, .type = ARM_CP_NOP },
882     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
883       .access = PL1_RW,
884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885                              offsetof(CPUARMState, cp15.ifar_ns) },
886       .resetvalue = 0, },
887     /* Watchpoint Fault Address Register : should actually only be present
888      * for 1136, 1176, 11MPCore.
889      */
890     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
892     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
893       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
894       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
895       .resetvalue = 0, .writefn = cpacr_write },
896     REGINFO_SENTINEL
897 };
898 
899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900                                    bool isread)
901 {
902     /* Performance monitor registers user accessibility is controlled
903      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904      * trapping to EL2 or EL3 for other accesses.
905      */
906     int el = arm_current_el(env);
907 
908     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
909         return CP_ACCESS_TRAP;
910     }
911     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912         && !arm_is_secure_below_el3(env)) {
913         return CP_ACCESS_TRAP_EL2;
914     }
915     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916         return CP_ACCESS_TRAP_EL3;
917     }
918 
919     return CP_ACCESS_OK;
920 }
921 
922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923                                            const ARMCPRegInfo *ri,
924                                            bool isread)
925 {
926     /* ER: event counter read trap control */
927     if (arm_feature(env, ARM_FEATURE_V8)
928         && arm_current_el(env) == 0
929         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930         && isread) {
931         return CP_ACCESS_OK;
932     }
933 
934     return pmreg_access(env, ri, isread);
935 }
936 
937 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938                                          const ARMCPRegInfo *ri,
939                                          bool isread)
940 {
941     /* SW: software increment write trap control */
942     if (arm_feature(env, ARM_FEATURE_V8)
943         && arm_current_el(env) == 0
944         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945         && !isread) {
946         return CP_ACCESS_OK;
947     }
948 
949     return pmreg_access(env, ri, isread);
950 }
951 
952 #ifndef CONFIG_USER_ONLY
953 
954 static CPAccessResult pmreg_access_selr(CPUARMState *env,
955                                         const ARMCPRegInfo *ri,
956                                         bool isread)
957 {
958     /* ER: event counter read trap control */
959     if (arm_feature(env, ARM_FEATURE_V8)
960         && arm_current_el(env) == 0
961         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962         return CP_ACCESS_OK;
963     }
964 
965     return pmreg_access(env, ri, isread);
966 }
967 
968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969                                          const ARMCPRegInfo *ri,
970                                          bool isread)
971 {
972     /* CR: cycle counter read trap control */
973     if (arm_feature(env, ARM_FEATURE_V8)
974         && arm_current_el(env) == 0
975         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976         && isread) {
977         return CP_ACCESS_OK;
978     }
979 
980     return pmreg_access(env, ri, isread);
981 }
982 
983 static inline bool arm_ccnt_enabled(CPUARMState *env)
984 {
985     /* This does not support checking PMCCFILTR_EL0 register */
986 
987     if (!(env->cp15.c9_pmcr & PMCRE)) {
988         return false;
989     }
990 
991     return true;
992 }
993 
994 void pmccntr_sync(CPUARMState *env)
995 {
996     uint64_t temp_ticks;
997 
998     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1000 
1001     if (env->cp15.c9_pmcr & PMCRD) {
1002         /* Increment once every 64 processor clock cycles */
1003         temp_ticks /= 64;
1004     }
1005 
1006     if (arm_ccnt_enabled(env)) {
1007         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1008     }
1009 }
1010 
1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012                        uint64_t value)
1013 {
1014     pmccntr_sync(env);
1015 
1016     if (value & PMCRC) {
1017         /* The counter has been reset */
1018         env->cp15.c15_ccnt = 0;
1019     }
1020 
1021     /* only the DP, X, D and E bits are writable */
1022     env->cp15.c9_pmcr &= ~0x39;
1023     env->cp15.c9_pmcr |= (value & 0x39);
1024 
1025     pmccntr_sync(env);
1026 }
1027 
1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1029 {
1030     uint64_t total_ticks;
1031 
1032     if (!arm_ccnt_enabled(env)) {
1033         /* Counter is disabled, do not change value */
1034         return env->cp15.c15_ccnt;
1035     }
1036 
1037     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1039 
1040     if (env->cp15.c9_pmcr & PMCRD) {
1041         /* Increment once every 64 processor clock cycles */
1042         total_ticks /= 64;
1043     }
1044     return total_ticks - env->cp15.c15_ccnt;
1045 }
1046 
1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048                          uint64_t value)
1049 {
1050     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053      * accessed.
1054      */
1055     env->cp15.c9_pmselr = value & 0x1f;
1056 }
1057 
1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059                         uint64_t value)
1060 {
1061     uint64_t total_ticks;
1062 
1063     if (!arm_ccnt_enabled(env)) {
1064         /* Counter is disabled, set the absolute value */
1065         env->cp15.c15_ccnt = value;
1066         return;
1067     }
1068 
1069     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1071 
1072     if (env->cp15.c9_pmcr & PMCRD) {
1073         /* Increment once every 64 processor clock cycles */
1074         total_ticks /= 64;
1075     }
1076     env->cp15.c15_ccnt = total_ticks - value;
1077 }
1078 
1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080                             uint64_t value)
1081 {
1082     uint64_t cur_val = pmccntr_read(env, NULL);
1083 
1084     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1085 }
1086 
1087 #else /* CONFIG_USER_ONLY */
1088 
1089 void pmccntr_sync(CPUARMState *env)
1090 {
1091 }
1092 
1093 #endif
1094 
1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096                             uint64_t value)
1097 {
1098     pmccntr_sync(env);
1099     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100     pmccntr_sync(env);
1101 }
1102 
1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                             uint64_t value)
1105 {
1106     value &= (1 << 31);
1107     env->cp15.c9_pmcnten |= value;
1108 }
1109 
1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111                              uint64_t value)
1112 {
1113     value &= (1 << 31);
1114     env->cp15.c9_pmcnten &= ~value;
1115 }
1116 
1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118                          uint64_t value)
1119 {
1120     env->cp15.c9_pmovsr &= ~value;
1121 }
1122 
1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124                              uint64_t value)
1125 {
1126     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127      * PMSELR value is equal to or greater than the number of implemented
1128      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1129      */
1130     if (env->cp15.c9_pmselr == 0x1f) {
1131         pmccfiltr_write(env, ri, value);
1132     }
1133 }
1134 
1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136 {
1137     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1139      */
1140     if (env->cp15.c9_pmselr == 0x1f) {
1141         return env->cp15.pmccfiltr_el0;
1142     } else {
1143         return 0;
1144     }
1145 }
1146 
1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148                             uint64_t value)
1149 {
1150     if (arm_feature(env, ARM_FEATURE_V8)) {
1151         env->cp15.c9_pmuserenr = value & 0xf;
1152     } else {
1153         env->cp15.c9_pmuserenr = value & 1;
1154     }
1155 }
1156 
1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                              uint64_t value)
1159 {
1160     /* We have no event counters so only the C bit can be changed */
1161     value &= (1 << 31);
1162     env->cp15.c9_pminten |= value;
1163 }
1164 
1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166                              uint64_t value)
1167 {
1168     value &= (1 << 31);
1169     env->cp15.c9_pminten &= ~value;
1170 }
1171 
1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173                        uint64_t value)
1174 {
1175     /* Note that even though the AArch64 view of this register has bits
1176      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177      * architectural requirements for bits which are RES0 only in some
1178      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1180      */
1181     raw_write(env, ri, value & ~0x1FULL);
1182 }
1183 
1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1185 {
1186     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187      * For bits that vary between AArch32/64, code needs to check the
1188      * current execution mode before directly using the feature bit.
1189      */
1190     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1191 
1192     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193         valid_mask &= ~SCR_HCE;
1194 
1195         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196          * supported if EL2 exists. The bit is UNK/SBZP when
1197          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198          * when EL2 is unavailable.
1199          * On ARMv8, this bit is always available.
1200          */
1201         if (arm_feature(env, ARM_FEATURE_V7) &&
1202             !arm_feature(env, ARM_FEATURE_V8)) {
1203             valid_mask &= ~SCR_SMD;
1204         }
1205     }
1206 
1207     /* Clear all-context RES0 bits.  */
1208     value &= valid_mask;
1209     raw_write(env, ri, value);
1210 }
1211 
1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 {
1214     ARMCPU *cpu = arm_env_get_cpu(env);
1215 
1216     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217      * bank
1218      */
1219     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220                                         ri->secure & ARM_CP_SECSTATE_S);
1221 
1222     return cpu->ccsidr[index];
1223 }
1224 
1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226                          uint64_t value)
1227 {
1228     raw_write(env, ri, value & 0xf);
1229 }
1230 
1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232 {
1233     CPUState *cs = ENV_GET_CPU(env);
1234     uint64_t ret = 0;
1235 
1236     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237         ret |= CPSR_I;
1238     }
1239     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240         ret |= CPSR_F;
1241     }
1242     /* External aborts are not possible in QEMU so A bit is always clear */
1243     return ret;
1244 }
1245 
1246 static const ARMCPRegInfo v7_cp_reginfo[] = {
1247     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249       .access = PL1_W, .type = ARM_CP_NOP },
1250     /* Performance monitors are implementation defined in v7,
1251      * but with an ARM recommended set of registers, which we
1252      * follow (although we don't actually implement any counters)
1253      *
1254      * Performance registers fall into three categories:
1255      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1260      */
1261     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1262       .access = PL0_RW, .type = ARM_CP_ALIAS,
1263       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1264       .writefn = pmcntenset_write,
1265       .accessfn = pmreg_access,
1266       .raw_writefn = raw_write },
1267     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269       .access = PL0_RW, .accessfn = pmreg_access,
1270       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1272     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1273       .access = PL0_RW,
1274       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1275       .accessfn = pmreg_access,
1276       .writefn = pmcntenclr_write,
1277       .type = ARM_CP_ALIAS },
1278     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280       .access = PL0_RW, .accessfn = pmreg_access,
1281       .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283       .writefn = pmcntenclr_write },
1284     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1286       .accessfn = pmreg_access,
1287       .writefn = pmovsr_write,
1288       .raw_writefn = raw_write },
1289     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291       .access = PL0_RW, .accessfn = pmreg_access,
1292       .type = ARM_CP_ALIAS,
1293       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294       .writefn = pmovsr_write,
1295       .raw_writefn = raw_write },
1296     /* Unimplemented so WI. */
1297     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1298       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1299 #ifndef CONFIG_USER_ONLY
1300     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301       .access = PL0_RW, .type = ARM_CP_ALIAS,
1302       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1303       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1304       .raw_writefn = raw_write},
1305     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1307       .access = PL0_RW, .accessfn = pmreg_access_selr,
1308       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309       .writefn = pmselr_write, .raw_writefn = raw_write, },
1310     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1311       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1312       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1313       .accessfn = pmreg_access_ccntr },
1314     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1316       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1317       .type = ARM_CP_IO,
1318       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1319 #endif
1320     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1322       .writefn = pmccfiltr_write,
1323       .access = PL0_RW, .accessfn = pmreg_access,
1324       .type = ARM_CP_IO,
1325       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326       .resetvalue = 0, },
1327     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1328       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1334     /* Unimplemented, RAZ/WI. */
1335     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1336       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1337       .accessfn = pmreg_access_xevcntr },
1338     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1339       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1340       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341       .resetvalue = 0,
1342       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1345       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1346       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347       .resetvalue = 0,
1348       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1349     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1350       .access = PL1_RW, .accessfn = access_tpm,
1351       .type = ARM_CP_ALIAS,
1352       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1353       .resetvalue = 0,
1354       .writefn = pmintenset_write, .raw_writefn = raw_write },
1355     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357       .access = PL1_RW, .accessfn = access_tpm,
1358       .type = ARM_CP_IO,
1359       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360       .writefn = pmintenset_write, .raw_writefn = raw_write,
1361       .resetvalue = 0x0 },
1362     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1363       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1364       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1365       .writefn = pmintenclr_write, },
1366     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1368       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1369       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370       .writefn = pmintenclr_write },
1371     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1373       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1374     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1376       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378                              offsetof(CPUARMState, cp15.csselr_ns) } },
1379     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380      * just RAZ for all cores:
1381      */
1382     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1384       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1385     /* Auxiliary fault status registers: these also are IMPDEF, and we
1386      * choose to RAZ/WI for all cores.
1387      */
1388     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1394     /* MAIR can just read-as-written because we don't implement caches
1395      * and so don't need to care about memory attributes.
1396      */
1397     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1399       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1400       .resetvalue = 0 },
1401     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404       .resetvalue = 0 },
1405     /* For non-long-descriptor page tables these are PRRR and NMRR;
1406      * regardless they still act as reads-as-written for QEMU.
1407      */
1408      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1409       * allows them to assign the correct fieldoffset based on the endianness
1410       * handled in the field definitions.
1411       */
1412     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1413       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1414       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415                              offsetof(CPUARMState, cp15.mair0_ns) },
1416       .resetfn = arm_cp_reset_ignore },
1417     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1418       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1419       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420                              offsetof(CPUARMState, cp15.mair1_ns) },
1421       .resetfn = arm_cp_reset_ignore },
1422     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1424       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1425     /* 32 bit ITLB invalidates */
1426     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1428     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1429       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1430     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1431       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1432     /* 32 bit DTLB invalidates */
1433     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1435     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1437     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1439     /* 32 bit TLB invalidates */
1440     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1442     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1443       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1444     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1445       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1446     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1447       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1448     REGINFO_SENTINEL
1449 };
1450 
1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452     /* 32 bit TLB invalidates, Inner Shareable */
1453     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1454       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1455     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1456       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1457     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1458       .type = ARM_CP_NO_RAW, .access = PL1_W,
1459       .writefn = tlbiasid_is_write },
1460     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1461       .type = ARM_CP_NO_RAW, .access = PL1_W,
1462       .writefn = tlbimvaa_is_write },
1463     REGINFO_SENTINEL
1464 };
1465 
1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467                         uint64_t value)
1468 {
1469     value &= 1;
1470     env->teecr = value;
1471 }
1472 
1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474                                     bool isread)
1475 {
1476     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1477         return CP_ACCESS_TRAP;
1478     }
1479     return CP_ACCESS_OK;
1480 }
1481 
1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485       .resetvalue = 0,
1486       .writefn = teecr_write },
1487     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1489       .accessfn = teehbr_access, .resetvalue = 0 },
1490     REGINFO_SENTINEL
1491 };
1492 
1493 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1494     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496       .access = PL0_RW,
1497       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1498     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499       .access = PL0_RW,
1500       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1502       .resetfn = arm_cp_reset_ignore },
1503     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505       .access = PL0_R|PL1_W,
1506       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507       .resetvalue = 0},
1508     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509       .access = PL0_R|PL1_W,
1510       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1512       .resetfn = arm_cp_reset_ignore },
1513     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1514       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1515       .access = PL1_RW,
1516       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518       .access = PL1_RW,
1519       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521       .resetvalue = 0 },
1522     REGINFO_SENTINEL
1523 };
1524 
1525 #ifndef CONFIG_USER_ONLY
1526 
1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528                                        bool isread)
1529 {
1530     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531      * Writable only at the highest implemented exception level.
1532      */
1533     int el = arm_current_el(env);
1534 
1535     switch (el) {
1536     case 0:
1537         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538             return CP_ACCESS_TRAP;
1539         }
1540         break;
1541     case 1:
1542         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543             arm_is_secure_below_el3(env)) {
1544             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545             return CP_ACCESS_TRAP_UNCATEGORIZED;
1546         }
1547         break;
1548     case 2:
1549     case 3:
1550         break;
1551     }
1552 
1553     if (!isread && el < arm_highest_el(env)) {
1554         return CP_ACCESS_TRAP_UNCATEGORIZED;
1555     }
1556 
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561                                         bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1567     if (cur_el == 0 &&
1568         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569         return CP_ACCESS_TRAP;
1570     }
1571 
1572     if (arm_feature(env, ARM_FEATURE_EL2) &&
1573         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575         return CP_ACCESS_TRAP_EL2;
1576     }
1577     return CP_ACCESS_OK;
1578 }
1579 
1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581                                       bool isread)
1582 {
1583     unsigned int cur_el = arm_current_el(env);
1584     bool secure = arm_is_secure(env);
1585 
1586     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587      * EL0[PV]TEN is zero.
1588      */
1589     if (cur_el == 0 &&
1590         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591         return CP_ACCESS_TRAP;
1592     }
1593 
1594     if (arm_feature(env, ARM_FEATURE_EL2) &&
1595         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597         return CP_ACCESS_TRAP_EL2;
1598     }
1599     return CP_ACCESS_OK;
1600 }
1601 
1602 static CPAccessResult gt_pct_access(CPUARMState *env,
1603                                     const ARMCPRegInfo *ri,
1604                                     bool isread)
1605 {
1606     return gt_counter_access(env, GTIMER_PHYS, isread);
1607 }
1608 
1609 static CPAccessResult gt_vct_access(CPUARMState *env,
1610                                     const ARMCPRegInfo *ri,
1611                                     bool isread)
1612 {
1613     return gt_counter_access(env, GTIMER_VIRT, isread);
1614 }
1615 
1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617                                        bool isread)
1618 {
1619     return gt_timer_access(env, GTIMER_PHYS, isread);
1620 }
1621 
1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623                                        bool isread)
1624 {
1625     return gt_timer_access(env, GTIMER_VIRT, isread);
1626 }
1627 
1628 static CPAccessResult gt_stimer_access(CPUARMState *env,
1629                                        const ARMCPRegInfo *ri,
1630                                        bool isread)
1631 {
1632     /* The AArch64 register view of the secure physical timer is
1633      * always accessible from EL3, and configurably accessible from
1634      * Secure EL1.
1635      */
1636     switch (arm_current_el(env)) {
1637     case 1:
1638         if (!arm_is_secure(env)) {
1639             return CP_ACCESS_TRAP;
1640         }
1641         if (!(env->cp15.scr_el3 & SCR_ST)) {
1642             return CP_ACCESS_TRAP_EL3;
1643         }
1644         return CP_ACCESS_OK;
1645     case 0:
1646     case 2:
1647         return CP_ACCESS_TRAP;
1648     case 3:
1649         return CP_ACCESS_OK;
1650     default:
1651         g_assert_not_reached();
1652     }
1653 }
1654 
1655 static uint64_t gt_get_countervalue(CPUARMState *env)
1656 {
1657     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1658 }
1659 
1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1661 {
1662     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1663 
1664     if (gt->ctl & 1) {
1665         /* Timer enabled: calculate and set current ISTATUS, irq, and
1666          * reset timer to when ISTATUS next has to change
1667          */
1668         uint64_t offset = timeridx == GTIMER_VIRT ?
1669                                       cpu->env.cp15.cntvoff_el2 : 0;
1670         uint64_t count = gt_get_countervalue(&cpu->env);
1671         /* Note that this must be unsigned 64 bit arithmetic: */
1672         int istatus = count - offset >= gt->cval;
1673         uint64_t nexttick;
1674         int irqstate;
1675 
1676         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1677 
1678         irqstate = (istatus && !(gt->ctl & 2));
1679         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1680 
1681         if (istatus) {
1682             /* Next transition is when count rolls back over to zero */
1683             nexttick = UINT64_MAX;
1684         } else {
1685             /* Next transition is when we hit cval */
1686             nexttick = gt->cval + offset;
1687         }
1688         /* Note that the desired next expiry time might be beyond the
1689          * signed-64-bit range of a QEMUTimer -- in this case we just
1690          * set the timer for as far in the future as possible. When the
1691          * timer expires we will reset the timer for any remaining period.
1692          */
1693         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694             nexttick = INT64_MAX / GTIMER_SCALE;
1695         }
1696         timer_mod(cpu->gt_timer[timeridx], nexttick);
1697         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1698     } else {
1699         /* Timer disabled: ISTATUS and timer output always clear */
1700         gt->ctl &= ~4;
1701         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1702         timer_del(cpu->gt_timer[timeridx]);
1703         trace_arm_gt_recalc_disabled(timeridx);
1704     }
1705 }
1706 
1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708                            int timeridx)
1709 {
1710     ARMCPU *cpu = arm_env_get_cpu(env);
1711 
1712     timer_del(cpu->gt_timer[timeridx]);
1713 }
1714 
1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 {
1717     return gt_get_countervalue(env);
1718 }
1719 
1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 {
1722     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1723 }
1724 
1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726                           int timeridx,
1727                           uint64_t value)
1728 {
1729     trace_arm_gt_cval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = value;
1731     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1732 }
1733 
1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735                              int timeridx)
1736 {
1737     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1738 
1739     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1740                       (gt_get_countervalue(env) - offset));
1741 }
1742 
1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744                           int timeridx,
1745                           uint64_t value)
1746 {
1747     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748 
1749     trace_arm_gt_tval_write(timeridx, value);
1750     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1751                                          sextract64(value, 0, 32);
1752     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1753 }
1754 
1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756                          int timeridx,
1757                          uint64_t value)
1758 {
1759     ARMCPU *cpu = arm_env_get_cpu(env);
1760     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1761 
1762     trace_arm_gt_ctl_write(timeridx, value);
1763     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1764     if ((oldval ^ value) & 1) {
1765         /* Enable toggled */
1766         gt_recalc_timer(cpu, timeridx);
1767     } else if ((oldval ^ value) & 2) {
1768         /* IMASK toggled: don't need to recalculate,
1769          * just set the interrupt line based on ISTATUS
1770          */
1771         int irqstate = (oldval & 4) && !(value & 2);
1772 
1773         trace_arm_gt_imask_toggle(timeridx, irqstate);
1774         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1775     }
1776 }
1777 
1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     gt_timer_reset(env, ri, GTIMER_PHYS);
1781 }
1782 
1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784                                uint64_t value)
1785 {
1786     gt_cval_write(env, ri, GTIMER_PHYS, value);
1787 }
1788 
1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791     return gt_tval_read(env, ri, GTIMER_PHYS);
1792 }
1793 
1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                                uint64_t value)
1796 {
1797     gt_tval_write(env, ri, GTIMER_PHYS, value);
1798 }
1799 
1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801                               uint64_t value)
1802 {
1803     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1804 }
1805 
1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1807 {
1808     gt_timer_reset(env, ri, GTIMER_VIRT);
1809 }
1810 
1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812                                uint64_t value)
1813 {
1814     gt_cval_write(env, ri, GTIMER_VIRT, value);
1815 }
1816 
1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     return gt_tval_read(env, ri, GTIMER_VIRT);
1820 }
1821 
1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                                uint64_t value)
1824 {
1825     gt_tval_write(env, ri, GTIMER_VIRT, value);
1826 }
1827 
1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829                               uint64_t value)
1830 {
1831     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1832 }
1833 
1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835                               uint64_t value)
1836 {
1837     ARMCPU *cpu = arm_env_get_cpu(env);
1838 
1839     trace_arm_gt_cntvoff_write(value);
1840     raw_write(env, ri, value);
1841     gt_recalc_timer(cpu, GTIMER_VIRT);
1842 }
1843 
1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1845 {
1846     gt_timer_reset(env, ri, GTIMER_HYP);
1847 }
1848 
1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                               uint64_t value)
1851 {
1852     gt_cval_write(env, ri, GTIMER_HYP, value);
1853 }
1854 
1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1856 {
1857     return gt_tval_read(env, ri, GTIMER_HYP);
1858 }
1859 
1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                               uint64_t value)
1862 {
1863     gt_tval_write(env, ri, GTIMER_HYP, value);
1864 }
1865 
1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867                               uint64_t value)
1868 {
1869     gt_ctl_write(env, ri, GTIMER_HYP, value);
1870 }
1871 
1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1873 {
1874     gt_timer_reset(env, ri, GTIMER_SEC);
1875 }
1876 
1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878                               uint64_t value)
1879 {
1880     gt_cval_write(env, ri, GTIMER_SEC, value);
1881 }
1882 
1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1884 {
1885     return gt_tval_read(env, ri, GTIMER_SEC);
1886 }
1887 
1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889                               uint64_t value)
1890 {
1891     gt_tval_write(env, ri, GTIMER_SEC, value);
1892 }
1893 
1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895                               uint64_t value)
1896 {
1897     gt_ctl_write(env, ri, GTIMER_SEC, value);
1898 }
1899 
1900 void arm_gt_ptimer_cb(void *opaque)
1901 {
1902     ARMCPU *cpu = opaque;
1903 
1904     gt_recalc_timer(cpu, GTIMER_PHYS);
1905 }
1906 
1907 void arm_gt_vtimer_cb(void *opaque)
1908 {
1909     ARMCPU *cpu = opaque;
1910 
1911     gt_recalc_timer(cpu, GTIMER_VIRT);
1912 }
1913 
1914 void arm_gt_htimer_cb(void *opaque)
1915 {
1916     ARMCPU *cpu = opaque;
1917 
1918     gt_recalc_timer(cpu, GTIMER_HYP);
1919 }
1920 
1921 void arm_gt_stimer_cb(void *opaque)
1922 {
1923     ARMCPU *cpu = opaque;
1924 
1925     gt_recalc_timer(cpu, GTIMER_SEC);
1926 }
1927 
1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929     /* Note that CNTFRQ is purely reads-as-written for the benefit
1930      * of software; writing it doesn't actually change the timer frequency.
1931      * Our reset value matches the fixed frequency we implement the timer at.
1932      */
1933     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1934       .type = ARM_CP_ALIAS,
1935       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1937     },
1938     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1941       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1943     },
1944     /* overall control: mostly access permissions */
1945     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1947       .access = PL1_RW,
1948       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949       .resetvalue = 0,
1950     },
1951     /* per-timer control */
1952     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1953       .secure = ARM_CP_SECSTATE_NS,
1954       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1955       .accessfn = gt_ptimer_access,
1956       .fieldoffset = offsetoflow32(CPUARMState,
1957                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1958       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1959     },
1960     { .name = "CNTP_CTL(S)",
1961       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962       .secure = ARM_CP_SECSTATE_S,
1963       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964       .accessfn = gt_ptimer_access,
1965       .fieldoffset = offsetoflow32(CPUARMState,
1966                                    cp15.c14_timer[GTIMER_SEC].ctl),
1967       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1968     },
1969     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1971       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1972       .accessfn = gt_ptimer_access,
1973       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974       .resetvalue = 0,
1975       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1976     },
1977     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1978       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1979       .accessfn = gt_vtimer_access,
1980       .fieldoffset = offsetoflow32(CPUARMState,
1981                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1982       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1983     },
1984     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1986       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1987       .accessfn = gt_vtimer_access,
1988       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989       .resetvalue = 0,
1990       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1991     },
1992     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1994       .secure = ARM_CP_SECSTATE_NS,
1995       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1996       .accessfn = gt_ptimer_access,
1997       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1998     },
1999     { .name = "CNTP_TVAL(S)",
2000       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001       .secure = ARM_CP_SECSTATE_S,
2002       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003       .accessfn = gt_ptimer_access,
2004       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2005     },
2006     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2008       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2009       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2011     },
2012     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2013       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014       .accessfn = gt_vtimer_access,
2015       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2016     },
2017     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2019       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2020       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2022     },
2023     /* The counter itself */
2024     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2025       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026       .accessfn = gt_pct_access,
2027       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2028     },
2029     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2031       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2033     },
2034     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2035       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036       .accessfn = gt_vct_access,
2037       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2038     },
2039     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2041       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2043     },
2044     /* Comparison value, indicating when the timer goes off */
2045     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2046       .secure = ARM_CP_SECSTATE_NS,
2047       .access = PL1_RW | PL0_R,
2048       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2049       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2050       .accessfn = gt_ptimer_access,
2051       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2052     },
2053     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054       .secure = ARM_CP_SECSTATE_S,
2055       .access = PL1_RW | PL0_R,
2056       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058       .accessfn = gt_ptimer_access,
2059       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2060     },
2061     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063       .access = PL1_RW | PL0_R,
2064       .type = ARM_CP_IO,
2065       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2066       .resetvalue = 0, .accessfn = gt_ptimer_access,
2067       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2068     },
2069     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070       .access = PL1_RW | PL0_R,
2071       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2072       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2073       .accessfn = gt_vtimer_access,
2074       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2075     },
2076     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078       .access = PL1_RW | PL0_R,
2079       .type = ARM_CP_IO,
2080       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081       .resetvalue = 0, .accessfn = gt_vtimer_access,
2082       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2083     },
2084     /* Secure timer -- this is actually restricted to only EL3
2085      * and configurably Secure-EL1 via the accessfn.
2086      */
2087     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090       .accessfn = gt_stimer_access,
2091       .readfn = gt_sec_tval_read,
2092       .writefn = gt_sec_tval_write,
2093       .resetfn = gt_sec_timer_reset,
2094     },
2095     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097       .type = ARM_CP_IO, .access = PL1_RW,
2098       .accessfn = gt_stimer_access,
2099       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100       .resetvalue = 0,
2101       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2102     },
2103     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105       .type = ARM_CP_IO, .access = PL1_RW,
2106       .accessfn = gt_stimer_access,
2107       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2109     },
2110     REGINFO_SENTINEL
2111 };
2112 
2113 #else
2114 /* In user-mode none of the generic timer registers are accessible,
2115  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2116  * so instead just don't register any of them.
2117  */
2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2119     REGINFO_SENTINEL
2120 };
2121 
2122 #endif
2123 
2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2125 {
2126     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2127         raw_write(env, ri, value);
2128     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2129         raw_write(env, ri, value & 0xfffff6ff);
2130     } else {
2131         raw_write(env, ri, value & 0xfffff1ff);
2132     }
2133 }
2134 
2135 #ifndef CONFIG_USER_ONLY
2136 /* get_phys_addr() isn't present for user-mode-only targets */
2137 
2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139                                  bool isread)
2140 {
2141     if (ri->opc2 & 4) {
2142         /* The ATS12NSO* operations must trap to EL3 if executed in
2143          * Secure EL1 (which can only happen if EL3 is AArch64).
2144          * They are simply UNDEF if executed from NS EL1.
2145          * They function normally from EL2 or EL3.
2146          */
2147         if (arm_current_el(env) == 1) {
2148             if (arm_is_secure_below_el3(env)) {
2149                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2150             }
2151             return CP_ACCESS_TRAP_UNCATEGORIZED;
2152         }
2153     }
2154     return CP_ACCESS_OK;
2155 }
2156 
2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2158                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2159 {
2160     hwaddr phys_addr;
2161     target_ulong page_size;
2162     int prot;
2163     bool ret;
2164     uint64_t par64;
2165     bool format64 = false;
2166     MemTxAttrs attrs = {};
2167     ARMMMUFaultInfo fi = {};
2168     ARMCacheAttrs cacheattrs = {};
2169 
2170     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171                         &prot, &page_size, &fi, &cacheattrs);
2172 
2173     if (is_a64(env)) {
2174         format64 = true;
2175     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2176         /*
2177          * ATS1Cxx:
2178          * * TTBCR.EAE determines whether the result is returned using the
2179          *   32-bit or the 64-bit PAR format
2180          * * Instructions executed in Hyp mode always use the 64bit format
2181          *
2182          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2183          * * The Non-secure TTBCR.EAE bit is set to 1
2184          * * The implementation includes EL2, and the value of HCR.VM is 1
2185          *
2186          * ATS1Hx always uses the 64bit format (not supported yet).
2187          */
2188         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2189 
2190         if (arm_feature(env, ARM_FEATURE_EL2)) {
2191             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2192                 format64 |= env->cp15.hcr_el2 & HCR_VM;
2193             } else {
2194                 format64 |= arm_current_el(env) == 2;
2195             }
2196         }
2197     }
2198 
2199     if (format64) {
2200         /* Create a 64-bit PAR */
2201         par64 = (1 << 11); /* LPAE bit always set */
2202         if (!ret) {
2203             par64 |= phys_addr & ~0xfffULL;
2204             if (!attrs.secure) {
2205                 par64 |= (1 << 9); /* NS */
2206             }
2207             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2208             par64 |= cacheattrs.shareability << 7; /* SH */
2209         } else {
2210             uint32_t fsr = arm_fi_to_lfsc(&fi);
2211 
2212             par64 |= 1; /* F */
2213             par64 |= (fsr & 0x3f) << 1; /* FS */
2214             /* Note that S2WLK and FSTAGE are always zero, because we don't
2215              * implement virtualization and therefore there can't be a stage 2
2216              * fault.
2217              */
2218         }
2219     } else {
2220         /* fsr is a DFSR/IFSR value for the short descriptor
2221          * translation table format (with WnR always clear).
2222          * Convert it to a 32-bit PAR.
2223          */
2224         if (!ret) {
2225             /* We do not set any attribute bits in the PAR */
2226             if (page_size == (1 << 24)
2227                 && arm_feature(env, ARM_FEATURE_V7)) {
2228                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2229             } else {
2230                 par64 = phys_addr & 0xfffff000;
2231             }
2232             if (!attrs.secure) {
2233                 par64 |= (1 << 9); /* NS */
2234             }
2235         } else {
2236             uint32_t fsr = arm_fi_to_sfsc(&fi);
2237 
2238             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2239                     ((fsr & 0xf) << 1) | 1;
2240         }
2241     }
2242     return par64;
2243 }
2244 
2245 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2246 {
2247     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2248     uint64_t par64;
2249     ARMMMUIdx mmu_idx;
2250     int el = arm_current_el(env);
2251     bool secure = arm_is_secure_below_el3(env);
2252 
2253     switch (ri->opc2 & 6) {
2254     case 0:
2255         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2256         switch (el) {
2257         case 3:
2258             mmu_idx = ARMMMUIdx_S1E3;
2259             break;
2260         case 2:
2261             mmu_idx = ARMMMUIdx_S1NSE1;
2262             break;
2263         case 1:
2264             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2265             break;
2266         default:
2267             g_assert_not_reached();
2268         }
2269         break;
2270     case 2:
2271         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2272         switch (el) {
2273         case 3:
2274             mmu_idx = ARMMMUIdx_S1SE0;
2275             break;
2276         case 2:
2277             mmu_idx = ARMMMUIdx_S1NSE0;
2278             break;
2279         case 1:
2280             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2281             break;
2282         default:
2283             g_assert_not_reached();
2284         }
2285         break;
2286     case 4:
2287         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2288         mmu_idx = ARMMMUIdx_S12NSE1;
2289         break;
2290     case 6:
2291         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2292         mmu_idx = ARMMMUIdx_S12NSE0;
2293         break;
2294     default:
2295         g_assert_not_reached();
2296     }
2297 
2298     par64 = do_ats_write(env, value, access_type, mmu_idx);
2299 
2300     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2301 }
2302 
2303 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2304                         uint64_t value)
2305 {
2306     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2307     uint64_t par64;
2308 
2309     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2310 
2311     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2312 }
2313 
2314 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2315                                      bool isread)
2316 {
2317     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2318         return CP_ACCESS_TRAP;
2319     }
2320     return CP_ACCESS_OK;
2321 }
2322 
2323 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2324                         uint64_t value)
2325 {
2326     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2327     ARMMMUIdx mmu_idx;
2328     int secure = arm_is_secure_below_el3(env);
2329 
2330     switch (ri->opc2 & 6) {
2331     case 0:
2332         switch (ri->opc1) {
2333         case 0: /* AT S1E1R, AT S1E1W */
2334             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2335             break;
2336         case 4: /* AT S1E2R, AT S1E2W */
2337             mmu_idx = ARMMMUIdx_S1E2;
2338             break;
2339         case 6: /* AT S1E3R, AT S1E3W */
2340             mmu_idx = ARMMMUIdx_S1E3;
2341             break;
2342         default:
2343             g_assert_not_reached();
2344         }
2345         break;
2346     case 2: /* AT S1E0R, AT S1E0W */
2347         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2348         break;
2349     case 4: /* AT S12E1R, AT S12E1W */
2350         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2351         break;
2352     case 6: /* AT S12E0R, AT S12E0W */
2353         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2354         break;
2355     default:
2356         g_assert_not_reached();
2357     }
2358 
2359     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2360 }
2361 #endif
2362 
2363 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2364     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2365       .access = PL1_RW, .resetvalue = 0,
2366       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2367                              offsetoflow32(CPUARMState, cp15.par_ns) },
2368       .writefn = par_write },
2369 #ifndef CONFIG_USER_ONLY
2370     /* This underdecoding is safe because the reginfo is NO_RAW. */
2371     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2372       .access = PL1_W, .accessfn = ats_access,
2373       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2374 #endif
2375     REGINFO_SENTINEL
2376 };
2377 
2378 /* Return basic MPU access permission bits.  */
2379 static uint32_t simple_mpu_ap_bits(uint32_t val)
2380 {
2381     uint32_t ret;
2382     uint32_t mask;
2383     int i;
2384     ret = 0;
2385     mask = 3;
2386     for (i = 0; i < 16; i += 2) {
2387         ret |= (val >> i) & mask;
2388         mask <<= 2;
2389     }
2390     return ret;
2391 }
2392 
2393 /* Pad basic MPU access permission bits to extended format.  */
2394 static uint32_t extended_mpu_ap_bits(uint32_t val)
2395 {
2396     uint32_t ret;
2397     uint32_t mask;
2398     int i;
2399     ret = 0;
2400     mask = 3;
2401     for (i = 0; i < 16; i += 2) {
2402         ret |= (val & mask) << i;
2403         mask <<= 2;
2404     }
2405     return ret;
2406 }
2407 
2408 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2409                                  uint64_t value)
2410 {
2411     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2412 }
2413 
2414 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2415 {
2416     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2417 }
2418 
2419 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420                                  uint64_t value)
2421 {
2422     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2423 }
2424 
2425 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2426 {
2427     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2428 }
2429 
2430 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2431 {
2432     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2433 
2434     if (!u32p) {
2435         return 0;
2436     }
2437 
2438     u32p += env->pmsav7.rnr[M_REG_NS];
2439     return *u32p;
2440 }
2441 
2442 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                          uint64_t value)
2444 {
2445     ARMCPU *cpu = arm_env_get_cpu(env);
2446     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2447 
2448     if (!u32p) {
2449         return;
2450     }
2451 
2452     u32p += env->pmsav7.rnr[M_REG_NS];
2453     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2454     *u32p = value;
2455 }
2456 
2457 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2458                               uint64_t value)
2459 {
2460     ARMCPU *cpu = arm_env_get_cpu(env);
2461     uint32_t nrgs = cpu->pmsav7_dregion;
2462 
2463     if (value >= nrgs) {
2464         qemu_log_mask(LOG_GUEST_ERROR,
2465                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2466                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2467         return;
2468     }
2469 
2470     raw_write(env, ri, value);
2471 }
2472 
2473 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2474     /* Reset for all these registers is handled in arm_cpu_reset(),
2475      * because the PMSAv7 is also used by M-profile CPUs, which do
2476      * not register cpregs but still need the state to be reset.
2477      */
2478     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2479       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2480       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2481       .readfn = pmsav7_read, .writefn = pmsav7_write,
2482       .resetfn = arm_cp_reset_ignore },
2483     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2484       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2485       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2486       .readfn = pmsav7_read, .writefn = pmsav7_write,
2487       .resetfn = arm_cp_reset_ignore },
2488     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2489       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2490       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2491       .readfn = pmsav7_read, .writefn = pmsav7_write,
2492       .resetfn = arm_cp_reset_ignore },
2493     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2494       .access = PL1_RW,
2495       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2496       .writefn = pmsav7_rgnr_write,
2497       .resetfn = arm_cp_reset_ignore },
2498     REGINFO_SENTINEL
2499 };
2500 
2501 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2502     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2503       .access = PL1_RW, .type = ARM_CP_ALIAS,
2504       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2505       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2506     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2507       .access = PL1_RW, .type = ARM_CP_ALIAS,
2508       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2509       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2510     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2511       .access = PL1_RW,
2512       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2513       .resetvalue = 0, },
2514     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2515       .access = PL1_RW,
2516       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2517       .resetvalue = 0, },
2518     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2519       .access = PL1_RW,
2520       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2521     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2522       .access = PL1_RW,
2523       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2524     /* Protection region base and size registers */
2525     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2526       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2527       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2528     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2529       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2530       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2531     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2532       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2533       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2534     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2535       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2536       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2537     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2538       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2539       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2540     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2541       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2542       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2543     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2544       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2545       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2546     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2547       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2548       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2549     REGINFO_SENTINEL
2550 };
2551 
2552 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2553                                  uint64_t value)
2554 {
2555     TCR *tcr = raw_ptr(env, ri);
2556     int maskshift = extract32(value, 0, 3);
2557 
2558     if (!arm_feature(env, ARM_FEATURE_V8)) {
2559         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2560             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2561              * using Long-desciptor translation table format */
2562             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2563         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2564             /* In an implementation that includes the Security Extensions
2565              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2566              * Short-descriptor translation table format.
2567              */
2568             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2569         } else {
2570             value &= TTBCR_N;
2571         }
2572     }
2573 
2574     /* Update the masks corresponding to the TCR bank being written
2575      * Note that we always calculate mask and base_mask, but
2576      * they are only used for short-descriptor tables (ie if EAE is 0);
2577      * for long-descriptor tables the TCR fields are used differently
2578      * and the mask and base_mask values are meaningless.
2579      */
2580     tcr->raw_tcr = value;
2581     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2582     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2583 }
2584 
2585 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586                              uint64_t value)
2587 {
2588     ARMCPU *cpu = arm_env_get_cpu(env);
2589 
2590     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2591         /* With LPAE the TTBCR could result in a change of ASID
2592          * via the TTBCR.A1 bit, so do a TLB flush.
2593          */
2594         tlb_flush(CPU(cpu));
2595     }
2596     vmsa_ttbcr_raw_write(env, ri, value);
2597 }
2598 
2599 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2600 {
2601     TCR *tcr = raw_ptr(env, ri);
2602 
2603     /* Reset both the TCR as well as the masks corresponding to the bank of
2604      * the TCR being reset.
2605      */
2606     tcr->raw_tcr = 0;
2607     tcr->mask = 0;
2608     tcr->base_mask = 0xffffc000u;
2609 }
2610 
2611 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2612                                uint64_t value)
2613 {
2614     ARMCPU *cpu = arm_env_get_cpu(env);
2615     TCR *tcr = raw_ptr(env, ri);
2616 
2617     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2618     tlb_flush(CPU(cpu));
2619     tcr->raw_tcr = value;
2620 }
2621 
2622 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623                             uint64_t value)
2624 {
2625     /* 64 bit accesses to the TTBRs can change the ASID and so we
2626      * must flush the TLB.
2627      */
2628     if (cpreg_field_is_64bit(ri)) {
2629         ARMCPU *cpu = arm_env_get_cpu(env);
2630 
2631         tlb_flush(CPU(cpu));
2632     }
2633     raw_write(env, ri, value);
2634 }
2635 
2636 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637                         uint64_t value)
2638 {
2639     ARMCPU *cpu = arm_env_get_cpu(env);
2640     CPUState *cs = CPU(cpu);
2641 
2642     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2643     if (raw_read(env, ri) != value) {
2644         tlb_flush_by_mmuidx(cs,
2645                             ARMMMUIdxBit_S12NSE1 |
2646                             ARMMMUIdxBit_S12NSE0 |
2647                             ARMMMUIdxBit_S2NS);
2648         raw_write(env, ri, value);
2649     }
2650 }
2651 
2652 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2653     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2654       .access = PL1_RW, .type = ARM_CP_ALIAS,
2655       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2656                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2657     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2658       .access = PL1_RW, .resetvalue = 0,
2659       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2660                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2661     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2662       .access = PL1_RW, .resetvalue = 0,
2663       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2664                              offsetof(CPUARMState, cp15.dfar_ns) } },
2665     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2666       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2667       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2668       .resetvalue = 0, },
2669     REGINFO_SENTINEL
2670 };
2671 
2672 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2673     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2674       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2675       .access = PL1_RW,
2676       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2677     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2678       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2679       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2680       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2681                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2682     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2683       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2684       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2685       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2686                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2687     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2688       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2689       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2690       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2691       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2692     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2693       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2694       .raw_writefn = vmsa_ttbcr_raw_write,
2695       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2696                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2697     REGINFO_SENTINEL
2698 };
2699 
2700 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2701                                 uint64_t value)
2702 {
2703     env->cp15.c15_ticonfig = value & 0xe7;
2704     /* The OS_TYPE bit in this register changes the reported CPUID! */
2705     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2706         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2707 }
2708 
2709 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2710                                 uint64_t value)
2711 {
2712     env->cp15.c15_threadid = value & 0xffff;
2713 }
2714 
2715 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716                            uint64_t value)
2717 {
2718     /* Wait-for-interrupt (deprecated) */
2719     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2720 }
2721 
2722 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723                                   uint64_t value)
2724 {
2725     /* On OMAP there are registers indicating the max/min index of dcache lines
2726      * containing a dirty line; cache flush operations have to reset these.
2727      */
2728     env->cp15.c15_i_max = 0x000;
2729     env->cp15.c15_i_min = 0xff0;
2730 }
2731 
2732 static const ARMCPRegInfo omap_cp_reginfo[] = {
2733     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2734       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2735       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2736       .resetvalue = 0, },
2737     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2738       .access = PL1_RW, .type = ARM_CP_NOP },
2739     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2740       .access = PL1_RW,
2741       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2742       .writefn = omap_ticonfig_write },
2743     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2744       .access = PL1_RW,
2745       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2746     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2747       .access = PL1_RW, .resetvalue = 0xff0,
2748       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2749     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2750       .access = PL1_RW,
2751       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2752       .writefn = omap_threadid_write },
2753     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2754       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2755       .type = ARM_CP_NO_RAW,
2756       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2757     /* TODO: Peripheral port remap register:
2758      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2759      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2760      * when MMU is off.
2761      */
2762     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2763       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2764       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2765       .writefn = omap_cachemaint_write },
2766     { .name = "C9", .cp = 15, .crn = 9,
2767       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2768       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2769     REGINFO_SENTINEL
2770 };
2771 
2772 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773                               uint64_t value)
2774 {
2775     env->cp15.c15_cpar = value & 0x3fff;
2776 }
2777 
2778 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2779     { .name = "XSCALE_CPAR",
2780       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2781       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2782       .writefn = xscale_cpar_write, },
2783     { .name = "XSCALE_AUXCR",
2784       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2785       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2786       .resetvalue = 0, },
2787     /* XScale specific cache-lockdown: since we have no cache we NOP these
2788      * and hope the guest does not really rely on cache behaviour.
2789      */
2790     { .name = "XSCALE_LOCK_ICACHE_LINE",
2791       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2792       .access = PL1_W, .type = ARM_CP_NOP },
2793     { .name = "XSCALE_UNLOCK_ICACHE",
2794       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2795       .access = PL1_W, .type = ARM_CP_NOP },
2796     { .name = "XSCALE_DCACHE_LOCK",
2797       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2798       .access = PL1_RW, .type = ARM_CP_NOP },
2799     { .name = "XSCALE_UNLOCK_DCACHE",
2800       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2801       .access = PL1_W, .type = ARM_CP_NOP },
2802     REGINFO_SENTINEL
2803 };
2804 
2805 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2806     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2807      * implementation of this implementation-defined space.
2808      * Ideally this should eventually disappear in favour of actually
2809      * implementing the correct behaviour for all cores.
2810      */
2811     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2812       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2813       .access = PL1_RW,
2814       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2815       .resetvalue = 0 },
2816     REGINFO_SENTINEL
2817 };
2818 
2819 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2820     /* Cache status: RAZ because we have no cache so it's always clean */
2821     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2822       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2823       .resetvalue = 0 },
2824     REGINFO_SENTINEL
2825 };
2826 
2827 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2828     /* We never have a a block transfer operation in progress */
2829     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2830       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2831       .resetvalue = 0 },
2832     /* The cache ops themselves: these all NOP for QEMU */
2833     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2834       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2835     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2836       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2837     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2838       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2839     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2840       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2841     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2842       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2843     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2844       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2845     REGINFO_SENTINEL
2846 };
2847 
2848 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2849     /* The cache test-and-clean instructions always return (1 << 30)
2850      * to indicate that there are no dirty cache lines.
2851      */
2852     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2853       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2854       .resetvalue = (1 << 30) },
2855     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2856       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2857       .resetvalue = (1 << 30) },
2858     REGINFO_SENTINEL
2859 };
2860 
2861 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2862     /* Ignore ReadBuffer accesses */
2863     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2864       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2865       .access = PL1_RW, .resetvalue = 0,
2866       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2867     REGINFO_SENTINEL
2868 };
2869 
2870 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2871 {
2872     ARMCPU *cpu = arm_env_get_cpu(env);
2873     unsigned int cur_el = arm_current_el(env);
2874     bool secure = arm_is_secure(env);
2875 
2876     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2877         return env->cp15.vpidr_el2;
2878     }
2879     return raw_read(env, ri);
2880 }
2881 
2882 static uint64_t mpidr_read_val(CPUARMState *env)
2883 {
2884     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2885     uint64_t mpidr = cpu->mp_affinity;
2886 
2887     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2888         mpidr |= (1U << 31);
2889         /* Cores which are uniprocessor (non-coherent)
2890          * but still implement the MP extensions set
2891          * bit 30. (For instance, Cortex-R5).
2892          */
2893         if (cpu->mp_is_up) {
2894             mpidr |= (1u << 30);
2895         }
2896     }
2897     return mpidr;
2898 }
2899 
2900 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2901 {
2902     unsigned int cur_el = arm_current_el(env);
2903     bool secure = arm_is_secure(env);
2904 
2905     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2906         return env->cp15.vmpidr_el2;
2907     }
2908     return mpidr_read_val(env);
2909 }
2910 
2911 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2912     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2913       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2914       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2915     REGINFO_SENTINEL
2916 };
2917 
2918 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2919     /* NOP AMAIR0/1 */
2920     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2921       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2922       .access = PL1_RW, .type = ARM_CP_CONST,
2923       .resetvalue = 0 },
2924     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2925     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2926       .access = PL1_RW, .type = ARM_CP_CONST,
2927       .resetvalue = 0 },
2928     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2929       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2930       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2931                              offsetof(CPUARMState, cp15.par_ns)} },
2932     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2933       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2934       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2935                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2936       .writefn = vmsa_ttbr_write, },
2937     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2938       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2939       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2940                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2941       .writefn = vmsa_ttbr_write, },
2942     REGINFO_SENTINEL
2943 };
2944 
2945 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2946 {
2947     return vfp_get_fpcr(env);
2948 }
2949 
2950 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951                             uint64_t value)
2952 {
2953     vfp_set_fpcr(env, value);
2954 }
2955 
2956 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2957 {
2958     return vfp_get_fpsr(env);
2959 }
2960 
2961 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962                             uint64_t value)
2963 {
2964     vfp_set_fpsr(env, value);
2965 }
2966 
2967 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2968                                        bool isread)
2969 {
2970     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2971         return CP_ACCESS_TRAP;
2972     }
2973     return CP_ACCESS_OK;
2974 }
2975 
2976 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977                             uint64_t value)
2978 {
2979     env->daif = value & PSTATE_DAIF;
2980 }
2981 
2982 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2983                                           const ARMCPRegInfo *ri,
2984                                           bool isread)
2985 {
2986     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2987      * SCTLR_EL1.UCI is set.
2988      */
2989     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2990         return CP_ACCESS_TRAP;
2991     }
2992     return CP_ACCESS_OK;
2993 }
2994 
2995 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2996  * Page D4-1736 (DDI0487A.b)
2997  */
2998 
2999 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3000                                     uint64_t value)
3001 {
3002     CPUState *cs = ENV_GET_CPU(env);
3003 
3004     if (arm_is_secure_below_el3(env)) {
3005         tlb_flush_by_mmuidx(cs,
3006                             ARMMMUIdxBit_S1SE1 |
3007                             ARMMMUIdxBit_S1SE0);
3008     } else {
3009         tlb_flush_by_mmuidx(cs,
3010                             ARMMMUIdxBit_S12NSE1 |
3011                             ARMMMUIdxBit_S12NSE0);
3012     }
3013 }
3014 
3015 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                                       uint64_t value)
3017 {
3018     CPUState *cs = ENV_GET_CPU(env);
3019     bool sec = arm_is_secure_below_el3(env);
3020 
3021     if (sec) {
3022         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3023                                             ARMMMUIdxBit_S1SE1 |
3024                                             ARMMMUIdxBit_S1SE0);
3025     } else {
3026         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3027                                             ARMMMUIdxBit_S12NSE1 |
3028                                             ARMMMUIdxBit_S12NSE0);
3029     }
3030 }
3031 
3032 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033                                   uint64_t value)
3034 {
3035     /* Note that the 'ALL' scope must invalidate both stage 1 and
3036      * stage 2 translations, whereas most other scopes only invalidate
3037      * stage 1 translations.
3038      */
3039     ARMCPU *cpu = arm_env_get_cpu(env);
3040     CPUState *cs = CPU(cpu);
3041 
3042     if (arm_is_secure_below_el3(env)) {
3043         tlb_flush_by_mmuidx(cs,
3044                             ARMMMUIdxBit_S1SE1 |
3045                             ARMMMUIdxBit_S1SE0);
3046     } else {
3047         if (arm_feature(env, ARM_FEATURE_EL2)) {
3048             tlb_flush_by_mmuidx(cs,
3049                                 ARMMMUIdxBit_S12NSE1 |
3050                                 ARMMMUIdxBit_S12NSE0 |
3051                                 ARMMMUIdxBit_S2NS);
3052         } else {
3053             tlb_flush_by_mmuidx(cs,
3054                                 ARMMMUIdxBit_S12NSE1 |
3055                                 ARMMMUIdxBit_S12NSE0);
3056         }
3057     }
3058 }
3059 
3060 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061                                   uint64_t value)
3062 {
3063     ARMCPU *cpu = arm_env_get_cpu(env);
3064     CPUState *cs = CPU(cpu);
3065 
3066     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3067 }
3068 
3069 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070                                   uint64_t value)
3071 {
3072     ARMCPU *cpu = arm_env_get_cpu(env);
3073     CPUState *cs = CPU(cpu);
3074 
3075     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3076 }
3077 
3078 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079                                     uint64_t value)
3080 {
3081     /* Note that the 'ALL' scope must invalidate both stage 1 and
3082      * stage 2 translations, whereas most other scopes only invalidate
3083      * stage 1 translations.
3084      */
3085     CPUState *cs = ENV_GET_CPU(env);
3086     bool sec = arm_is_secure_below_el3(env);
3087     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3088 
3089     if (sec) {
3090         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3091                                             ARMMMUIdxBit_S1SE1 |
3092                                             ARMMMUIdxBit_S1SE0);
3093     } else if (has_el2) {
3094         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3095                                             ARMMMUIdxBit_S12NSE1 |
3096                                             ARMMMUIdxBit_S12NSE0 |
3097                                             ARMMMUIdxBit_S2NS);
3098     } else {
3099           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3100                                               ARMMMUIdxBit_S12NSE1 |
3101                                               ARMMMUIdxBit_S12NSE0);
3102     }
3103 }
3104 
3105 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106                                     uint64_t value)
3107 {
3108     CPUState *cs = ENV_GET_CPU(env);
3109 
3110     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3111 }
3112 
3113 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3114                                     uint64_t value)
3115 {
3116     CPUState *cs = ENV_GET_CPU(env);
3117 
3118     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3119 }
3120 
3121 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3122                                  uint64_t value)
3123 {
3124     /* Invalidate by VA, EL1&0 (AArch64 version).
3125      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3126      * since we don't support flush-for-specific-ASID-only or
3127      * flush-last-level-only.
3128      */
3129     ARMCPU *cpu = arm_env_get_cpu(env);
3130     CPUState *cs = CPU(cpu);
3131     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3132 
3133     if (arm_is_secure_below_el3(env)) {
3134         tlb_flush_page_by_mmuidx(cs, pageaddr,
3135                                  ARMMMUIdxBit_S1SE1 |
3136                                  ARMMMUIdxBit_S1SE0);
3137     } else {
3138         tlb_flush_page_by_mmuidx(cs, pageaddr,
3139                                  ARMMMUIdxBit_S12NSE1 |
3140                                  ARMMMUIdxBit_S12NSE0);
3141     }
3142 }
3143 
3144 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                                  uint64_t value)
3146 {
3147     /* Invalidate by VA, EL2
3148      * Currently handles both VAE2 and VALE2, since we don't support
3149      * flush-last-level-only.
3150      */
3151     ARMCPU *cpu = arm_env_get_cpu(env);
3152     CPUState *cs = CPU(cpu);
3153     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3154 
3155     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3156 }
3157 
3158 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3159                                  uint64_t value)
3160 {
3161     /* Invalidate by VA, EL3
3162      * Currently handles both VAE3 and VALE3, since we don't support
3163      * flush-last-level-only.
3164      */
3165     ARMCPU *cpu = arm_env_get_cpu(env);
3166     CPUState *cs = CPU(cpu);
3167     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3168 
3169     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3170 }
3171 
3172 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173                                    uint64_t value)
3174 {
3175     ARMCPU *cpu = arm_env_get_cpu(env);
3176     CPUState *cs = CPU(cpu);
3177     bool sec = arm_is_secure_below_el3(env);
3178     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3179 
3180     if (sec) {
3181         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3182                                                  ARMMMUIdxBit_S1SE1 |
3183                                                  ARMMMUIdxBit_S1SE0);
3184     } else {
3185         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3186                                                  ARMMMUIdxBit_S12NSE1 |
3187                                                  ARMMMUIdxBit_S12NSE0);
3188     }
3189 }
3190 
3191 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192                                    uint64_t value)
3193 {
3194     CPUState *cs = ENV_GET_CPU(env);
3195     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3196 
3197     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3198                                              ARMMMUIdxBit_S1E2);
3199 }
3200 
3201 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202                                    uint64_t value)
3203 {
3204     CPUState *cs = ENV_GET_CPU(env);
3205     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3206 
3207     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3208                                              ARMMMUIdxBit_S1E3);
3209 }
3210 
3211 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3212                                     uint64_t value)
3213 {
3214     /* Invalidate by IPA. This has to invalidate any structures that
3215      * contain only stage 2 translation information, but does not need
3216      * to apply to structures that contain combined stage 1 and stage 2
3217      * translation information.
3218      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3219      */
3220     ARMCPU *cpu = arm_env_get_cpu(env);
3221     CPUState *cs = CPU(cpu);
3222     uint64_t pageaddr;
3223 
3224     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3225         return;
3226     }
3227 
3228     pageaddr = sextract64(value << 12, 0, 48);
3229 
3230     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3231 }
3232 
3233 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3234                                       uint64_t value)
3235 {
3236     CPUState *cs = ENV_GET_CPU(env);
3237     uint64_t pageaddr;
3238 
3239     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3240         return;
3241     }
3242 
3243     pageaddr = sextract64(value << 12, 0, 48);
3244 
3245     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3246                                              ARMMMUIdxBit_S2NS);
3247 }
3248 
3249 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3250                                       bool isread)
3251 {
3252     /* We don't implement EL2, so the only control on DC ZVA is the
3253      * bit in the SCTLR which can prohibit access for EL0.
3254      */
3255     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3256         return CP_ACCESS_TRAP;
3257     }
3258     return CP_ACCESS_OK;
3259 }
3260 
3261 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3262 {
3263     ARMCPU *cpu = arm_env_get_cpu(env);
3264     int dzp_bit = 1 << 4;
3265 
3266     /* DZP indicates whether DC ZVA access is allowed */
3267     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3268         dzp_bit = 0;
3269     }
3270     return cpu->dcz_blocksize | dzp_bit;
3271 }
3272 
3273 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3274                                     bool isread)
3275 {
3276     if (!(env->pstate & PSTATE_SP)) {
3277         /* Access to SP_EL0 is undefined if it's being used as
3278          * the stack pointer.
3279          */
3280         return CP_ACCESS_TRAP_UNCATEGORIZED;
3281     }
3282     return CP_ACCESS_OK;
3283 }
3284 
3285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3286 {
3287     return env->pstate & PSTATE_SP;
3288 }
3289 
3290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3291 {
3292     update_spsel(env, val);
3293 }
3294 
3295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296                         uint64_t value)
3297 {
3298     ARMCPU *cpu = arm_env_get_cpu(env);
3299 
3300     if (raw_read(env, ri) == value) {
3301         /* Skip the TLB flush if nothing actually changed; Linux likes
3302          * to do a lot of pointless SCTLR writes.
3303          */
3304         return;
3305     }
3306 
3307     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3308         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3309         value &= ~SCTLR_M;
3310     }
3311 
3312     raw_write(env, ri, value);
3313     /* ??? Lots of these bits are not implemented.  */
3314     /* This may enable/disable the MMU, so do a TLB flush.  */
3315     tlb_flush(CPU(cpu));
3316 }
3317 
3318 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3319                                      bool isread)
3320 {
3321     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3322         return CP_ACCESS_TRAP_FP_EL2;
3323     }
3324     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3325         return CP_ACCESS_TRAP_FP_EL3;
3326     }
3327     return CP_ACCESS_OK;
3328 }
3329 
3330 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3331                        uint64_t value)
3332 {
3333     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3334 }
3335 
3336 static const ARMCPRegInfo v8_cp_reginfo[] = {
3337     /* Minimal set of EL0-visible registers. This will need to be expanded
3338      * significantly for system emulation of AArch64 CPUs.
3339      */
3340     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3341       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3342       .access = PL0_RW, .type = ARM_CP_NZCV },
3343     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3344       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3345       .type = ARM_CP_NO_RAW,
3346       .access = PL0_RW, .accessfn = aa64_daif_access,
3347       .fieldoffset = offsetof(CPUARMState, daif),
3348       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3349     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3350       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3351       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3352     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3353       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3354       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3355     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3356       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3357       .access = PL0_R, .type = ARM_CP_NO_RAW,
3358       .readfn = aa64_dczid_read },
3359     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3360       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3361       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3362 #ifndef CONFIG_USER_ONLY
3363       /* Avoid overhead of an access check that always passes in user-mode */
3364       .accessfn = aa64_zva_access,
3365 #endif
3366     },
3367     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3368       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3369       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3370     /* Cache ops: all NOPs since we don't emulate caches */
3371     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3372       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3373       .access = PL1_W, .type = ARM_CP_NOP },
3374     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3375       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3376       .access = PL1_W, .type = ARM_CP_NOP },
3377     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3378       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3379       .access = PL0_W, .type = ARM_CP_NOP,
3380       .accessfn = aa64_cacheop_access },
3381     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3382       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3383       .access = PL1_W, .type = ARM_CP_NOP },
3384     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3385       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3386       .access = PL1_W, .type = ARM_CP_NOP },
3387     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3388       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3389       .access = PL0_W, .type = ARM_CP_NOP,
3390       .accessfn = aa64_cacheop_access },
3391     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3392       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3393       .access = PL1_W, .type = ARM_CP_NOP },
3394     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3395       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3396       .access = PL0_W, .type = ARM_CP_NOP,
3397       .accessfn = aa64_cacheop_access },
3398     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3399       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3400       .access = PL0_W, .type = ARM_CP_NOP,
3401       .accessfn = aa64_cacheop_access },
3402     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3403       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3404       .access = PL1_W, .type = ARM_CP_NOP },
3405     /* TLBI operations */
3406     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3407       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3408       .access = PL1_W, .type = ARM_CP_NO_RAW,
3409       .writefn = tlbi_aa64_vmalle1is_write },
3410     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3412       .access = PL1_W, .type = ARM_CP_NO_RAW,
3413       .writefn = tlbi_aa64_vae1is_write },
3414     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3416       .access = PL1_W, .type = ARM_CP_NO_RAW,
3417       .writefn = tlbi_aa64_vmalle1is_write },
3418     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3420       .access = PL1_W, .type = ARM_CP_NO_RAW,
3421       .writefn = tlbi_aa64_vae1is_write },
3422     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3424       .access = PL1_W, .type = ARM_CP_NO_RAW,
3425       .writefn = tlbi_aa64_vae1is_write },
3426     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3428       .access = PL1_W, .type = ARM_CP_NO_RAW,
3429       .writefn = tlbi_aa64_vae1is_write },
3430     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3432       .access = PL1_W, .type = ARM_CP_NO_RAW,
3433       .writefn = tlbi_aa64_vmalle1_write },
3434     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3436       .access = PL1_W, .type = ARM_CP_NO_RAW,
3437       .writefn = tlbi_aa64_vae1_write },
3438     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3440       .access = PL1_W, .type = ARM_CP_NO_RAW,
3441       .writefn = tlbi_aa64_vmalle1_write },
3442     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3444       .access = PL1_W, .type = ARM_CP_NO_RAW,
3445       .writefn = tlbi_aa64_vae1_write },
3446     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3447       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3448       .access = PL1_W, .type = ARM_CP_NO_RAW,
3449       .writefn = tlbi_aa64_vae1_write },
3450     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3452       .access = PL1_W, .type = ARM_CP_NO_RAW,
3453       .writefn = tlbi_aa64_vae1_write },
3454     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3455       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3456       .access = PL2_W, .type = ARM_CP_NO_RAW,
3457       .writefn = tlbi_aa64_ipas2e1is_write },
3458     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3459       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3460       .access = PL2_W, .type = ARM_CP_NO_RAW,
3461       .writefn = tlbi_aa64_ipas2e1is_write },
3462     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3463       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3464       .access = PL2_W, .type = ARM_CP_NO_RAW,
3465       .writefn = tlbi_aa64_alle1is_write },
3466     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3468       .access = PL2_W, .type = ARM_CP_NO_RAW,
3469       .writefn = tlbi_aa64_alle1is_write },
3470     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3472       .access = PL2_W, .type = ARM_CP_NO_RAW,
3473       .writefn = tlbi_aa64_ipas2e1_write },
3474     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3475       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3476       .access = PL2_W, .type = ARM_CP_NO_RAW,
3477       .writefn = tlbi_aa64_ipas2e1_write },
3478     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3479       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3480       .access = PL2_W, .type = ARM_CP_NO_RAW,
3481       .writefn = tlbi_aa64_alle1_write },
3482     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3483       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3484       .access = PL2_W, .type = ARM_CP_NO_RAW,
3485       .writefn = tlbi_aa64_alle1is_write },
3486 #ifndef CONFIG_USER_ONLY
3487     /* 64 bit address translation operations */
3488     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3489       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3490       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3491     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3492       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3493       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3494     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3495       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3496       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3497     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3498       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3499       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3500     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3501       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3502       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3503     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3504       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3505       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3506     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3507       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3508       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3509     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3510       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3511       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3512     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3513     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3514       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3515       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3516     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3517       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3518       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3519     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3520       .type = ARM_CP_ALIAS,
3521       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3522       .access = PL1_RW, .resetvalue = 0,
3523       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3524       .writefn = par_write },
3525 #endif
3526     /* TLB invalidate last level of translation table walk */
3527     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3528       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3529     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3530       .type = ARM_CP_NO_RAW, .access = PL1_W,
3531       .writefn = tlbimvaa_is_write },
3532     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3533       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3534     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3535       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3536     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3537       .type = ARM_CP_NO_RAW, .access = PL2_W,
3538       .writefn = tlbimva_hyp_write },
3539     { .name = "TLBIMVALHIS",
3540       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3541       .type = ARM_CP_NO_RAW, .access = PL2_W,
3542       .writefn = tlbimva_hyp_is_write },
3543     { .name = "TLBIIPAS2",
3544       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3545       .type = ARM_CP_NO_RAW, .access = PL2_W,
3546       .writefn = tlbiipas2_write },
3547     { .name = "TLBIIPAS2IS",
3548       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3549       .type = ARM_CP_NO_RAW, .access = PL2_W,
3550       .writefn = tlbiipas2_is_write },
3551     { .name = "TLBIIPAS2L",
3552       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3553       .type = ARM_CP_NO_RAW, .access = PL2_W,
3554       .writefn = tlbiipas2_write },
3555     { .name = "TLBIIPAS2LIS",
3556       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3557       .type = ARM_CP_NO_RAW, .access = PL2_W,
3558       .writefn = tlbiipas2_is_write },
3559     /* 32 bit cache operations */
3560     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3561       .type = ARM_CP_NOP, .access = PL1_W },
3562     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3563       .type = ARM_CP_NOP, .access = PL1_W },
3564     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3565       .type = ARM_CP_NOP, .access = PL1_W },
3566     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3567       .type = ARM_CP_NOP, .access = PL1_W },
3568     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3569       .type = ARM_CP_NOP, .access = PL1_W },
3570     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3571       .type = ARM_CP_NOP, .access = PL1_W },
3572     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3573       .type = ARM_CP_NOP, .access = PL1_W },
3574     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3575       .type = ARM_CP_NOP, .access = PL1_W },
3576     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3577       .type = ARM_CP_NOP, .access = PL1_W },
3578     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3579       .type = ARM_CP_NOP, .access = PL1_W },
3580     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3581       .type = ARM_CP_NOP, .access = PL1_W },
3582     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3583       .type = ARM_CP_NOP, .access = PL1_W },
3584     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3585       .type = ARM_CP_NOP, .access = PL1_W },
3586     /* MMU Domain access control / MPU write buffer control */
3587     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3588       .access = PL1_RW, .resetvalue = 0,
3589       .writefn = dacr_write, .raw_writefn = raw_write,
3590       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3591                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3592     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3593       .type = ARM_CP_ALIAS,
3594       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3595       .access = PL1_RW,
3596       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3597     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3598       .type = ARM_CP_ALIAS,
3599       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3600       .access = PL1_RW,
3601       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3602     /* We rely on the access checks not allowing the guest to write to the
3603      * state field when SPSel indicates that it's being used as the stack
3604      * pointer.
3605      */
3606     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3607       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3608       .access = PL1_RW, .accessfn = sp_el0_access,
3609       .type = ARM_CP_ALIAS,
3610       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3611     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3612       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3613       .access = PL2_RW, .type = ARM_CP_ALIAS,
3614       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3615     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3616       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3617       .type = ARM_CP_NO_RAW,
3618       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3619     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3620       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3621       .type = ARM_CP_ALIAS,
3622       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3623       .access = PL2_RW, .accessfn = fpexc32_access },
3624     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3625       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3626       .access = PL2_RW, .resetvalue = 0,
3627       .writefn = dacr_write, .raw_writefn = raw_write,
3628       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3629     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3630       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3631       .access = PL2_RW, .resetvalue = 0,
3632       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3633     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3634       .type = ARM_CP_ALIAS,
3635       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3636       .access = PL2_RW,
3637       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3638     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3639       .type = ARM_CP_ALIAS,
3640       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3641       .access = PL2_RW,
3642       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3643     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3644       .type = ARM_CP_ALIAS,
3645       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3646       .access = PL2_RW,
3647       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3648     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3649       .type = ARM_CP_ALIAS,
3650       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3651       .access = PL2_RW,
3652       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3653     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3654       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3655       .resetvalue = 0,
3656       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3657     { .name = "SDCR", .type = ARM_CP_ALIAS,
3658       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3659       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3660       .writefn = sdcr_write,
3661       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3662     REGINFO_SENTINEL
3663 };
3664 
3665 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3666 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3667     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3668       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3669       .access = PL2_RW,
3670       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3671     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3672       .type = ARM_CP_NO_RAW,
3673       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3674       .access = PL2_RW,
3675       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3676     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3677       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3678       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3680       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3681       .access = PL2_RW, .type = ARM_CP_CONST,
3682       .resetvalue = 0 },
3683     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3684       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3685       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3686     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3687       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3688       .access = PL2_RW, .type = ARM_CP_CONST,
3689       .resetvalue = 0 },
3690     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3691       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3692       .access = PL2_RW, .type = ARM_CP_CONST,
3693       .resetvalue = 0 },
3694     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3695       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3696       .access = PL2_RW, .type = ARM_CP_CONST,
3697       .resetvalue = 0 },
3698     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3699       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3700       .access = PL2_RW, .type = ARM_CP_CONST,
3701       .resetvalue = 0 },
3702     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3703       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3704       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3705     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3706       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3707       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3708       .type = ARM_CP_CONST, .resetvalue = 0 },
3709     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3710       .cp = 15, .opc1 = 6, .crm = 2,
3711       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3712       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3713     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3714       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3715       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3716     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3717       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3718       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3719     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3720       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3721       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3722     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3723       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3724       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3725     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3726       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3727       .resetvalue = 0 },
3728     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3729       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3730       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3731     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3732       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3733       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3734     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3735       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3736       .resetvalue = 0 },
3737     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3738       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3739       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3740     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3741       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3742       .resetvalue = 0 },
3743     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3744       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3745       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3746     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3747       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3748       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3749     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3750       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3751       .access = PL2_RW, .accessfn = access_tda,
3752       .type = ARM_CP_CONST, .resetvalue = 0 },
3753     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3754       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3755       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3756       .type = ARM_CP_CONST, .resetvalue = 0 },
3757     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3758       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3759       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3760     REGINFO_SENTINEL
3761 };
3762 
3763 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3764 {
3765     ARMCPU *cpu = arm_env_get_cpu(env);
3766     uint64_t valid_mask = HCR_MASK;
3767 
3768     if (arm_feature(env, ARM_FEATURE_EL3)) {
3769         valid_mask &= ~HCR_HCD;
3770     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3771         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3772          * However, if we're using the SMC PSCI conduit then QEMU is
3773          * effectively acting like EL3 firmware and so the guest at
3774          * EL2 should retain the ability to prevent EL1 from being
3775          * able to make SMC calls into the ersatz firmware, so in
3776          * that case HCR.TSC should be read/write.
3777          */
3778         valid_mask &= ~HCR_TSC;
3779     }
3780 
3781     /* Clear RES0 bits.  */
3782     value &= valid_mask;
3783 
3784     /* These bits change the MMU setup:
3785      * HCR_VM enables stage 2 translation
3786      * HCR_PTW forbids certain page-table setups
3787      * HCR_DC Disables stage1 and enables stage2 translation
3788      */
3789     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3790         tlb_flush(CPU(cpu));
3791     }
3792     raw_write(env, ri, value);
3793 }
3794 
3795 static const ARMCPRegInfo el2_cp_reginfo[] = {
3796     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3797       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3798       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3799       .writefn = hcr_write },
3800     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3801       .type = ARM_CP_ALIAS,
3802       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3803       .access = PL2_RW,
3804       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3805     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3806       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3807       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3808     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3809       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3810       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3811     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3812       .type = ARM_CP_ALIAS,
3813       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3814       .access = PL2_RW,
3815       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3816     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3817       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3818       .access = PL2_RW, .writefn = vbar_write,
3819       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3820       .resetvalue = 0 },
3821     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3822       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3823       .access = PL3_RW, .type = ARM_CP_ALIAS,
3824       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3825     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3826       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3827       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3828       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3829     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3830       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3831       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3832       .resetvalue = 0 },
3833     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3834       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3835       .access = PL2_RW, .type = ARM_CP_ALIAS,
3836       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3837     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3838       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3839       .access = PL2_RW, .type = ARM_CP_CONST,
3840       .resetvalue = 0 },
3841     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3842     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3843       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3844       .access = PL2_RW, .type = ARM_CP_CONST,
3845       .resetvalue = 0 },
3846     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3847       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3848       .access = PL2_RW, .type = ARM_CP_CONST,
3849       .resetvalue = 0 },
3850     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3851       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3852       .access = PL2_RW, .type = ARM_CP_CONST,
3853       .resetvalue = 0 },
3854     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3855       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3856       .access = PL2_RW,
3857       /* no .writefn needed as this can't cause an ASID change;
3858        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3859        */
3860       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3861     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3862       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3863       .type = ARM_CP_ALIAS,
3864       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3865       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3866     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3867       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3868       .access = PL2_RW,
3869       /* no .writefn needed as this can't cause an ASID change;
3870        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3871        */
3872       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3873     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3874       .cp = 15, .opc1 = 6, .crm = 2,
3875       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3876       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3877       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3878       .writefn = vttbr_write },
3879     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3880       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3881       .access = PL2_RW, .writefn = vttbr_write,
3882       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3883     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3884       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3885       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3886       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3887     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3888       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3889       .access = PL2_RW, .resetvalue = 0,
3890       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3891     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3892       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3893       .access = PL2_RW, .resetvalue = 0,
3894       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3895     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3896       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3897       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3898     { .name = "TLBIALLNSNH",
3899       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3900       .type = ARM_CP_NO_RAW, .access = PL2_W,
3901       .writefn = tlbiall_nsnh_write },
3902     { .name = "TLBIALLNSNHIS",
3903       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3904       .type = ARM_CP_NO_RAW, .access = PL2_W,
3905       .writefn = tlbiall_nsnh_is_write },
3906     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3907       .type = ARM_CP_NO_RAW, .access = PL2_W,
3908       .writefn = tlbiall_hyp_write },
3909     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3910       .type = ARM_CP_NO_RAW, .access = PL2_W,
3911       .writefn = tlbiall_hyp_is_write },
3912     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3913       .type = ARM_CP_NO_RAW, .access = PL2_W,
3914       .writefn = tlbimva_hyp_write },
3915     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3916       .type = ARM_CP_NO_RAW, .access = PL2_W,
3917       .writefn = tlbimva_hyp_is_write },
3918     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3919       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3920       .type = ARM_CP_NO_RAW, .access = PL2_W,
3921       .writefn = tlbi_aa64_alle2_write },
3922     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3923       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3924       .type = ARM_CP_NO_RAW, .access = PL2_W,
3925       .writefn = tlbi_aa64_vae2_write },
3926     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3927       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3928       .access = PL2_W, .type = ARM_CP_NO_RAW,
3929       .writefn = tlbi_aa64_vae2_write },
3930     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3932       .access = PL2_W, .type = ARM_CP_NO_RAW,
3933       .writefn = tlbi_aa64_alle2is_write },
3934     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3936       .type = ARM_CP_NO_RAW, .access = PL2_W,
3937       .writefn = tlbi_aa64_vae2is_write },
3938     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3940       .access = PL2_W, .type = ARM_CP_NO_RAW,
3941       .writefn = tlbi_aa64_vae2is_write },
3942 #ifndef CONFIG_USER_ONLY
3943     /* Unlike the other EL2-related AT operations, these must
3944      * UNDEF from EL3 if EL2 is not implemented, which is why we
3945      * define them here rather than with the rest of the AT ops.
3946      */
3947     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3948       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3949       .access = PL2_W, .accessfn = at_s1e2_access,
3950       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3951     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3952       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3953       .access = PL2_W, .accessfn = at_s1e2_access,
3954       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3955     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3956      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3957      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3958      * to behave as if SCR.NS was 1.
3959      */
3960     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3961       .access = PL2_W,
3962       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3963     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3964       .access = PL2_W,
3965       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3966     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3967       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3968       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3969        * reset values as IMPDEF. We choose to reset to 3 to comply with
3970        * both ARMv7 and ARMv8.
3971        */
3972       .access = PL2_RW, .resetvalue = 3,
3973       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3974     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3975       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3976       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3977       .writefn = gt_cntvoff_write,
3978       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3979     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3980       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3981       .writefn = gt_cntvoff_write,
3982       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3983     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3984       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3985       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3986       .type = ARM_CP_IO, .access = PL2_RW,
3987       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3988     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3989       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3990       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3991       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3992     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3993       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3994       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3995       .resetfn = gt_hyp_timer_reset,
3996       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3997     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3998       .type = ARM_CP_IO,
3999       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4000       .access = PL2_RW,
4001       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4002       .resetvalue = 0,
4003       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4004 #endif
4005     /* The only field of MDCR_EL2 that has a defined architectural reset value
4006      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4007      * don't impelment any PMU event counters, so using zero as a reset
4008      * value for MDCR_EL2 is okay
4009      */
4010     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4011       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4012       .access = PL2_RW, .resetvalue = 0,
4013       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4014     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4015       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4016       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4017       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4018     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4019       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4020       .access = PL2_RW,
4021       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4022     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4023       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4024       .access = PL2_RW,
4025       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4026     REGINFO_SENTINEL
4027 };
4028 
4029 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4030                                    bool isread)
4031 {
4032     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4033      * At Secure EL1 it traps to EL3.
4034      */
4035     if (arm_current_el(env) == 3) {
4036         return CP_ACCESS_OK;
4037     }
4038     if (arm_is_secure_below_el3(env)) {
4039         return CP_ACCESS_TRAP_EL3;
4040     }
4041     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4042     if (isread) {
4043         return CP_ACCESS_OK;
4044     }
4045     return CP_ACCESS_TRAP_UNCATEGORIZED;
4046 }
4047 
4048 static const ARMCPRegInfo el3_cp_reginfo[] = {
4049     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4050       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4051       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4052       .resetvalue = 0, .writefn = scr_write },
4053     { .name = "SCR",  .type = ARM_CP_ALIAS,
4054       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4055       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4056       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4057       .writefn = scr_write },
4058     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4059       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4060       .access = PL3_RW, .resetvalue = 0,
4061       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4062     { .name = "SDER",
4063       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4064       .access = PL3_RW, .resetvalue = 0,
4065       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4066     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4067       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4068       .writefn = vbar_write, .resetvalue = 0,
4069       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4070     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4071       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4072       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4073       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4074     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4075       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4076       .access = PL3_RW,
4077       /* no .writefn needed as this can't cause an ASID change;
4078        * we must provide a .raw_writefn and .resetfn because we handle
4079        * reset and migration for the AArch32 TTBCR(S), which might be
4080        * using mask and base_mask.
4081        */
4082       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4083       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4084     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4085       .type = ARM_CP_ALIAS,
4086       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4087       .access = PL3_RW,
4088       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4089     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4090       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4091       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4092     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4093       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4094       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4095     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4096       .type = ARM_CP_ALIAS,
4097       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4098       .access = PL3_RW,
4099       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4100     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4101       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4102       .access = PL3_RW, .writefn = vbar_write,
4103       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4104       .resetvalue = 0 },
4105     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4106       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4107       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4108       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4109     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4110       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4111       .access = PL3_RW, .resetvalue = 0,
4112       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4113     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4114       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4115       .access = PL3_RW, .type = ARM_CP_CONST,
4116       .resetvalue = 0 },
4117     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4118       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4119       .access = PL3_RW, .type = ARM_CP_CONST,
4120       .resetvalue = 0 },
4121     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4122       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4123       .access = PL3_RW, .type = ARM_CP_CONST,
4124       .resetvalue = 0 },
4125     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4126       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4127       .access = PL3_W, .type = ARM_CP_NO_RAW,
4128       .writefn = tlbi_aa64_alle3is_write },
4129     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4130       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4131       .access = PL3_W, .type = ARM_CP_NO_RAW,
4132       .writefn = tlbi_aa64_vae3is_write },
4133     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4134       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4135       .access = PL3_W, .type = ARM_CP_NO_RAW,
4136       .writefn = tlbi_aa64_vae3is_write },
4137     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4138       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4139       .access = PL3_W, .type = ARM_CP_NO_RAW,
4140       .writefn = tlbi_aa64_alle3_write },
4141     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4143       .access = PL3_W, .type = ARM_CP_NO_RAW,
4144       .writefn = tlbi_aa64_vae3_write },
4145     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4146       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4147       .access = PL3_W, .type = ARM_CP_NO_RAW,
4148       .writefn = tlbi_aa64_vae3_write },
4149     REGINFO_SENTINEL
4150 };
4151 
4152 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4153                                      bool isread)
4154 {
4155     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4156      * but the AArch32 CTR has its own reginfo struct)
4157      */
4158     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4159         return CP_ACCESS_TRAP;
4160     }
4161     return CP_ACCESS_OK;
4162 }
4163 
4164 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4165                         uint64_t value)
4166 {
4167     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4168      * read via a bit in OSLSR_EL1.
4169      */
4170     int oslock;
4171 
4172     if (ri->state == ARM_CP_STATE_AA32) {
4173         oslock = (value == 0xC5ACCE55);
4174     } else {
4175         oslock = value & 1;
4176     }
4177 
4178     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4179 }
4180 
4181 static const ARMCPRegInfo debug_cp_reginfo[] = {
4182     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4183      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4184      * unlike DBGDRAR it is never accessible from EL0.
4185      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4186      * accessor.
4187      */
4188     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4189       .access = PL0_R, .accessfn = access_tdra,
4190       .type = ARM_CP_CONST, .resetvalue = 0 },
4191     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4192       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4193       .access = PL1_R, .accessfn = access_tdra,
4194       .type = ARM_CP_CONST, .resetvalue = 0 },
4195     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4196       .access = PL0_R, .accessfn = access_tdra,
4197       .type = ARM_CP_CONST, .resetvalue = 0 },
4198     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4199     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4200       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4201       .access = PL1_RW, .accessfn = access_tda,
4202       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4203       .resetvalue = 0 },
4204     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4205      * We don't implement the configurable EL0 access.
4206      */
4207     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4208       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4209       .type = ARM_CP_ALIAS,
4210       .access = PL1_R, .accessfn = access_tda,
4211       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4212     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4213       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4214       .access = PL1_W, .type = ARM_CP_NO_RAW,
4215       .accessfn = access_tdosa,
4216       .writefn = oslar_write },
4217     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4218       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4219       .access = PL1_R, .resetvalue = 10,
4220       .accessfn = access_tdosa,
4221       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4222     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4223     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4224       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4225       .access = PL1_RW, .accessfn = access_tdosa,
4226       .type = ARM_CP_NOP },
4227     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4228      * implement vector catch debug events yet.
4229      */
4230     { .name = "DBGVCR",
4231       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4232       .access = PL1_RW, .accessfn = access_tda,
4233       .type = ARM_CP_NOP },
4234     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4235      * to save and restore a 32-bit guest's DBGVCR)
4236      */
4237     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4238       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4239       .access = PL2_RW, .accessfn = access_tda,
4240       .type = ARM_CP_NOP },
4241     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4242      * Channel but Linux may try to access this register. The 32-bit
4243      * alias is DBGDCCINT.
4244      */
4245     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4246       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4247       .access = PL1_RW, .accessfn = access_tda,
4248       .type = ARM_CP_NOP },
4249     REGINFO_SENTINEL
4250 };
4251 
4252 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4253     /* 64 bit access versions of the (dummy) debug registers */
4254     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4255       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4256     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4257       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4258     REGINFO_SENTINEL
4259 };
4260 
4261 void hw_watchpoint_update(ARMCPU *cpu, int n)
4262 {
4263     CPUARMState *env = &cpu->env;
4264     vaddr len = 0;
4265     vaddr wvr = env->cp15.dbgwvr[n];
4266     uint64_t wcr = env->cp15.dbgwcr[n];
4267     int mask;
4268     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4269 
4270     if (env->cpu_watchpoint[n]) {
4271         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4272         env->cpu_watchpoint[n] = NULL;
4273     }
4274 
4275     if (!extract64(wcr, 0, 1)) {
4276         /* E bit clear : watchpoint disabled */
4277         return;
4278     }
4279 
4280     switch (extract64(wcr, 3, 2)) {
4281     case 0:
4282         /* LSC 00 is reserved and must behave as if the wp is disabled */
4283         return;
4284     case 1:
4285         flags |= BP_MEM_READ;
4286         break;
4287     case 2:
4288         flags |= BP_MEM_WRITE;
4289         break;
4290     case 3:
4291         flags |= BP_MEM_ACCESS;
4292         break;
4293     }
4294 
4295     /* Attempts to use both MASK and BAS fields simultaneously are
4296      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4297      * thus generating a watchpoint for every byte in the masked region.
4298      */
4299     mask = extract64(wcr, 24, 4);
4300     if (mask == 1 || mask == 2) {
4301         /* Reserved values of MASK; we must act as if the mask value was
4302          * some non-reserved value, or as if the watchpoint were disabled.
4303          * We choose the latter.
4304          */
4305         return;
4306     } else if (mask) {
4307         /* Watchpoint covers an aligned area up to 2GB in size */
4308         len = 1ULL << mask;
4309         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4310          * whether the watchpoint fires when the unmasked bits match; we opt
4311          * to generate the exceptions.
4312          */
4313         wvr &= ~(len - 1);
4314     } else {
4315         /* Watchpoint covers bytes defined by the byte address select bits */
4316         int bas = extract64(wcr, 5, 8);
4317         int basstart;
4318 
4319         if (bas == 0) {
4320             /* This must act as if the watchpoint is disabled */
4321             return;
4322         }
4323 
4324         if (extract64(wvr, 2, 1)) {
4325             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4326              * ignored, and BAS[3:0] define which bytes to watch.
4327              */
4328             bas &= 0xf;
4329         }
4330         /* The BAS bits are supposed to be programmed to indicate a contiguous
4331          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4332          * we fire for each byte in the word/doubleword addressed by the WVR.
4333          * We choose to ignore any non-zero bits after the first range of 1s.
4334          */
4335         basstart = ctz32(bas);
4336         len = cto32(bas >> basstart);
4337         wvr += basstart;
4338     }
4339 
4340     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4341                           &env->cpu_watchpoint[n]);
4342 }
4343 
4344 void hw_watchpoint_update_all(ARMCPU *cpu)
4345 {
4346     int i;
4347     CPUARMState *env = &cpu->env;
4348 
4349     /* Completely clear out existing QEMU watchpoints and our array, to
4350      * avoid possible stale entries following migration load.
4351      */
4352     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4353     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4354 
4355     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4356         hw_watchpoint_update(cpu, i);
4357     }
4358 }
4359 
4360 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4361                          uint64_t value)
4362 {
4363     ARMCPU *cpu = arm_env_get_cpu(env);
4364     int i = ri->crm;
4365 
4366     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4367      * register reads and behaves as if values written are sign extended.
4368      * Bits [1:0] are RES0.
4369      */
4370     value = sextract64(value, 0, 49) & ~3ULL;
4371 
4372     raw_write(env, ri, value);
4373     hw_watchpoint_update(cpu, i);
4374 }
4375 
4376 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4377                          uint64_t value)
4378 {
4379     ARMCPU *cpu = arm_env_get_cpu(env);
4380     int i = ri->crm;
4381 
4382     raw_write(env, ri, value);
4383     hw_watchpoint_update(cpu, i);
4384 }
4385 
4386 void hw_breakpoint_update(ARMCPU *cpu, int n)
4387 {
4388     CPUARMState *env = &cpu->env;
4389     uint64_t bvr = env->cp15.dbgbvr[n];
4390     uint64_t bcr = env->cp15.dbgbcr[n];
4391     vaddr addr;
4392     int bt;
4393     int flags = BP_CPU;
4394 
4395     if (env->cpu_breakpoint[n]) {
4396         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4397         env->cpu_breakpoint[n] = NULL;
4398     }
4399 
4400     if (!extract64(bcr, 0, 1)) {
4401         /* E bit clear : watchpoint disabled */
4402         return;
4403     }
4404 
4405     bt = extract64(bcr, 20, 4);
4406 
4407     switch (bt) {
4408     case 4: /* unlinked address mismatch (reserved if AArch64) */
4409     case 5: /* linked address mismatch (reserved if AArch64) */
4410         qemu_log_mask(LOG_UNIMP,
4411                       "arm: address mismatch breakpoint types not implemented");
4412         return;
4413     case 0: /* unlinked address match */
4414     case 1: /* linked address match */
4415     {
4416         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4417          * we behave as if the register was sign extended. Bits [1:0] are
4418          * RES0. The BAS field is used to allow setting breakpoints on 16
4419          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4420          * a bp will fire if the addresses covered by the bp and the addresses
4421          * covered by the insn overlap but the insn doesn't start at the
4422          * start of the bp address range. We choose to require the insn and
4423          * the bp to have the same address. The constraints on writing to
4424          * BAS enforced in dbgbcr_write mean we have only four cases:
4425          *  0b0000  => no breakpoint
4426          *  0b0011  => breakpoint on addr
4427          *  0b1100  => breakpoint on addr + 2
4428          *  0b1111  => breakpoint on addr
4429          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4430          */
4431         int bas = extract64(bcr, 5, 4);
4432         addr = sextract64(bvr, 0, 49) & ~3ULL;
4433         if (bas == 0) {
4434             return;
4435         }
4436         if (bas == 0xc) {
4437             addr += 2;
4438         }
4439         break;
4440     }
4441     case 2: /* unlinked context ID match */
4442     case 8: /* unlinked VMID match (reserved if no EL2) */
4443     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4444         qemu_log_mask(LOG_UNIMP,
4445                       "arm: unlinked context breakpoint types not implemented");
4446         return;
4447     case 9: /* linked VMID match (reserved if no EL2) */
4448     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4449     case 3: /* linked context ID match */
4450     default:
4451         /* We must generate no events for Linked context matches (unless
4452          * they are linked to by some other bp/wp, which is handled in
4453          * updates for the linking bp/wp). We choose to also generate no events
4454          * for reserved values.
4455          */
4456         return;
4457     }
4458 
4459     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4460 }
4461 
4462 void hw_breakpoint_update_all(ARMCPU *cpu)
4463 {
4464     int i;
4465     CPUARMState *env = &cpu->env;
4466 
4467     /* Completely clear out existing QEMU breakpoints and our array, to
4468      * avoid possible stale entries following migration load.
4469      */
4470     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4471     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4472 
4473     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4474         hw_breakpoint_update(cpu, i);
4475     }
4476 }
4477 
4478 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479                          uint64_t value)
4480 {
4481     ARMCPU *cpu = arm_env_get_cpu(env);
4482     int i = ri->crm;
4483 
4484     raw_write(env, ri, value);
4485     hw_breakpoint_update(cpu, i);
4486 }
4487 
4488 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4489                          uint64_t value)
4490 {
4491     ARMCPU *cpu = arm_env_get_cpu(env);
4492     int i = ri->crm;
4493 
4494     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4495      * copy of BAS[0].
4496      */
4497     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4498     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4499 
4500     raw_write(env, ri, value);
4501     hw_breakpoint_update(cpu, i);
4502 }
4503 
4504 static void define_debug_regs(ARMCPU *cpu)
4505 {
4506     /* Define v7 and v8 architectural debug registers.
4507      * These are just dummy implementations for now.
4508      */
4509     int i;
4510     int wrps, brps, ctx_cmps;
4511     ARMCPRegInfo dbgdidr = {
4512         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4513         .access = PL0_R, .accessfn = access_tda,
4514         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4515     };
4516 
4517     /* Note that all these register fields hold "number of Xs minus 1". */
4518     brps = extract32(cpu->dbgdidr, 24, 4);
4519     wrps = extract32(cpu->dbgdidr, 28, 4);
4520     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4521 
4522     assert(ctx_cmps <= brps);
4523 
4524     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4525      * of the debug registers such as number of breakpoints;
4526      * check that if they both exist then they agree.
4527      */
4528     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4529         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4530         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4531         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4532     }
4533 
4534     define_one_arm_cp_reg(cpu, &dbgdidr);
4535     define_arm_cp_regs(cpu, debug_cp_reginfo);
4536 
4537     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4538         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4539     }
4540 
4541     for (i = 0; i < brps + 1; i++) {
4542         ARMCPRegInfo dbgregs[] = {
4543             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4544               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4545               .access = PL1_RW, .accessfn = access_tda,
4546               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4547               .writefn = dbgbvr_write, .raw_writefn = raw_write
4548             },
4549             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4550               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4551               .access = PL1_RW, .accessfn = access_tda,
4552               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4553               .writefn = dbgbcr_write, .raw_writefn = raw_write
4554             },
4555             REGINFO_SENTINEL
4556         };
4557         define_arm_cp_regs(cpu, dbgregs);
4558     }
4559 
4560     for (i = 0; i < wrps + 1; i++) {
4561         ARMCPRegInfo dbgregs[] = {
4562             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4563               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4564               .access = PL1_RW, .accessfn = access_tda,
4565               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4566               .writefn = dbgwvr_write, .raw_writefn = raw_write
4567             },
4568             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4569               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4570               .access = PL1_RW, .accessfn = access_tda,
4571               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4572               .writefn = dbgwcr_write, .raw_writefn = raw_write
4573             },
4574             REGINFO_SENTINEL
4575         };
4576         define_arm_cp_regs(cpu, dbgregs);
4577     }
4578 }
4579 
4580 /* We don't know until after realize whether there's a GICv3
4581  * attached, and that is what registers the gicv3 sysregs.
4582  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4583  * at runtime.
4584  */
4585 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4586 {
4587     ARMCPU *cpu = arm_env_get_cpu(env);
4588     uint64_t pfr1 = cpu->id_pfr1;
4589 
4590     if (env->gicv3state) {
4591         pfr1 |= 1 << 28;
4592     }
4593     return pfr1;
4594 }
4595 
4596 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4597 {
4598     ARMCPU *cpu = arm_env_get_cpu(env);
4599     uint64_t pfr0 = cpu->id_aa64pfr0;
4600 
4601     if (env->gicv3state) {
4602         pfr0 |= 1 << 24;
4603     }
4604     return pfr0;
4605 }
4606 
4607 void register_cp_regs_for_features(ARMCPU *cpu)
4608 {
4609     /* Register all the coprocessor registers based on feature bits */
4610     CPUARMState *env = &cpu->env;
4611     if (arm_feature(env, ARM_FEATURE_M)) {
4612         /* M profile has no coprocessor registers */
4613         return;
4614     }
4615 
4616     define_arm_cp_regs(cpu, cp_reginfo);
4617     if (!arm_feature(env, ARM_FEATURE_V8)) {
4618         /* Must go early as it is full of wildcards that may be
4619          * overridden by later definitions.
4620          */
4621         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4622     }
4623 
4624     if (arm_feature(env, ARM_FEATURE_V6)) {
4625         /* The ID registers all have impdef reset values */
4626         ARMCPRegInfo v6_idregs[] = {
4627             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4628               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4629               .access = PL1_R, .type = ARM_CP_CONST,
4630               .resetvalue = cpu->id_pfr0 },
4631             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4632              * the value of the GIC field until after we define these regs.
4633              */
4634             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4635               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4636               .access = PL1_R, .type = ARM_CP_NO_RAW,
4637               .readfn = id_pfr1_read,
4638               .writefn = arm_cp_write_ignore },
4639             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4640               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4641               .access = PL1_R, .type = ARM_CP_CONST,
4642               .resetvalue = cpu->id_dfr0 },
4643             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4644               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4645               .access = PL1_R, .type = ARM_CP_CONST,
4646               .resetvalue = cpu->id_afr0 },
4647             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4648               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4649               .access = PL1_R, .type = ARM_CP_CONST,
4650               .resetvalue = cpu->id_mmfr0 },
4651             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4652               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4653               .access = PL1_R, .type = ARM_CP_CONST,
4654               .resetvalue = cpu->id_mmfr1 },
4655             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4656               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4657               .access = PL1_R, .type = ARM_CP_CONST,
4658               .resetvalue = cpu->id_mmfr2 },
4659             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4660               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4661               .access = PL1_R, .type = ARM_CP_CONST,
4662               .resetvalue = cpu->id_mmfr3 },
4663             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4664               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4665               .access = PL1_R, .type = ARM_CP_CONST,
4666               .resetvalue = cpu->id_isar0 },
4667             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4668               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4669               .access = PL1_R, .type = ARM_CP_CONST,
4670               .resetvalue = cpu->id_isar1 },
4671             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4672               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4673               .access = PL1_R, .type = ARM_CP_CONST,
4674               .resetvalue = cpu->id_isar2 },
4675             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4676               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4677               .access = PL1_R, .type = ARM_CP_CONST,
4678               .resetvalue = cpu->id_isar3 },
4679             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4680               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4681               .access = PL1_R, .type = ARM_CP_CONST,
4682               .resetvalue = cpu->id_isar4 },
4683             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4684               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4685               .access = PL1_R, .type = ARM_CP_CONST,
4686               .resetvalue = cpu->id_isar5 },
4687             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4688               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4689               .access = PL1_R, .type = ARM_CP_CONST,
4690               .resetvalue = cpu->id_mmfr4 },
4691             /* 7 is as yet unallocated and must RAZ */
4692             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4693               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4694               .access = PL1_R, .type = ARM_CP_CONST,
4695               .resetvalue = 0 },
4696             REGINFO_SENTINEL
4697         };
4698         define_arm_cp_regs(cpu, v6_idregs);
4699         define_arm_cp_regs(cpu, v6_cp_reginfo);
4700     } else {
4701         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4702     }
4703     if (arm_feature(env, ARM_FEATURE_V6K)) {
4704         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4705     }
4706     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4707         !arm_feature(env, ARM_FEATURE_PMSA)) {
4708         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4709     }
4710     if (arm_feature(env, ARM_FEATURE_V7)) {
4711         /* v7 performance monitor control register: same implementor
4712          * field as main ID register, and we implement only the cycle
4713          * count register.
4714          */
4715 #ifndef CONFIG_USER_ONLY
4716         ARMCPRegInfo pmcr = {
4717             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4718             .access = PL0_RW,
4719             .type = ARM_CP_IO | ARM_CP_ALIAS,
4720             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4721             .accessfn = pmreg_access, .writefn = pmcr_write,
4722             .raw_writefn = raw_write,
4723         };
4724         ARMCPRegInfo pmcr64 = {
4725             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4726             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4727             .access = PL0_RW, .accessfn = pmreg_access,
4728             .type = ARM_CP_IO,
4729             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4730             .resetvalue = cpu->midr & 0xff000000,
4731             .writefn = pmcr_write, .raw_writefn = raw_write,
4732         };
4733         define_one_arm_cp_reg(cpu, &pmcr);
4734         define_one_arm_cp_reg(cpu, &pmcr64);
4735 #endif
4736         ARMCPRegInfo clidr = {
4737             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4738             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4739             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4740         };
4741         define_one_arm_cp_reg(cpu, &clidr);
4742         define_arm_cp_regs(cpu, v7_cp_reginfo);
4743         define_debug_regs(cpu);
4744     } else {
4745         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4746     }
4747     if (arm_feature(env, ARM_FEATURE_V8)) {
4748         /* AArch64 ID registers, which all have impdef reset values.
4749          * Note that within the ID register ranges the unused slots
4750          * must all RAZ, not UNDEF; future architecture versions may
4751          * define new registers here.
4752          */
4753         ARMCPRegInfo v8_idregs[] = {
4754             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4755              * know the right value for the GIC field until after we
4756              * define these regs.
4757              */
4758             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4759               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4760               .access = PL1_R, .type = ARM_CP_NO_RAW,
4761               .readfn = id_aa64pfr0_read,
4762               .writefn = arm_cp_write_ignore },
4763             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4764               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4765               .access = PL1_R, .type = ARM_CP_CONST,
4766               .resetvalue = cpu->id_aa64pfr1},
4767             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4768               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4769               .access = PL1_R, .type = ARM_CP_CONST,
4770               .resetvalue = 0 },
4771             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4773               .access = PL1_R, .type = ARM_CP_CONST,
4774               .resetvalue = 0 },
4775             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4777               .access = PL1_R, .type = ARM_CP_CONST,
4778               .resetvalue = 0 },
4779             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4781               .access = PL1_R, .type = ARM_CP_CONST,
4782               .resetvalue = 0 },
4783             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4784               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4785               .access = PL1_R, .type = ARM_CP_CONST,
4786               .resetvalue = 0 },
4787             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4789               .access = PL1_R, .type = ARM_CP_CONST,
4790               .resetvalue = 0 },
4791             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4793               .access = PL1_R, .type = ARM_CP_CONST,
4794               .resetvalue = cpu->id_aa64dfr0 },
4795             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4796               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4797               .access = PL1_R, .type = ARM_CP_CONST,
4798               .resetvalue = cpu->id_aa64dfr1 },
4799             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4801               .access = PL1_R, .type = ARM_CP_CONST,
4802               .resetvalue = 0 },
4803             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4805               .access = PL1_R, .type = ARM_CP_CONST,
4806               .resetvalue = 0 },
4807             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4809               .access = PL1_R, .type = ARM_CP_CONST,
4810               .resetvalue = cpu->id_aa64afr0 },
4811             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4813               .access = PL1_R, .type = ARM_CP_CONST,
4814               .resetvalue = cpu->id_aa64afr1 },
4815             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4817               .access = PL1_R, .type = ARM_CP_CONST,
4818               .resetvalue = 0 },
4819             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4821               .access = PL1_R, .type = ARM_CP_CONST,
4822               .resetvalue = 0 },
4823             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4825               .access = PL1_R, .type = ARM_CP_CONST,
4826               .resetvalue = cpu->id_aa64isar0 },
4827             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4829               .access = PL1_R, .type = ARM_CP_CONST,
4830               .resetvalue = cpu->id_aa64isar1 },
4831             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4833               .access = PL1_R, .type = ARM_CP_CONST,
4834               .resetvalue = 0 },
4835             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4837               .access = PL1_R, .type = ARM_CP_CONST,
4838               .resetvalue = 0 },
4839             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4841               .access = PL1_R, .type = ARM_CP_CONST,
4842               .resetvalue = 0 },
4843             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4845               .access = PL1_R, .type = ARM_CP_CONST,
4846               .resetvalue = 0 },
4847             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4849               .access = PL1_R, .type = ARM_CP_CONST,
4850               .resetvalue = 0 },
4851             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4853               .access = PL1_R, .type = ARM_CP_CONST,
4854               .resetvalue = 0 },
4855             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4856               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4857               .access = PL1_R, .type = ARM_CP_CONST,
4858               .resetvalue = cpu->id_aa64mmfr0 },
4859             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4860               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4861               .access = PL1_R, .type = ARM_CP_CONST,
4862               .resetvalue = cpu->id_aa64mmfr1 },
4863             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4864               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4865               .access = PL1_R, .type = ARM_CP_CONST,
4866               .resetvalue = 0 },
4867             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4868               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4869               .access = PL1_R, .type = ARM_CP_CONST,
4870               .resetvalue = 0 },
4871             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4872               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4873               .access = PL1_R, .type = ARM_CP_CONST,
4874               .resetvalue = 0 },
4875             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4876               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4877               .access = PL1_R, .type = ARM_CP_CONST,
4878               .resetvalue = 0 },
4879             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4880               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4881               .access = PL1_R, .type = ARM_CP_CONST,
4882               .resetvalue = 0 },
4883             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4884               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4885               .access = PL1_R, .type = ARM_CP_CONST,
4886               .resetvalue = 0 },
4887             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4888               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4889               .access = PL1_R, .type = ARM_CP_CONST,
4890               .resetvalue = cpu->mvfr0 },
4891             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4892               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4893               .access = PL1_R, .type = ARM_CP_CONST,
4894               .resetvalue = cpu->mvfr1 },
4895             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4896               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4897               .access = PL1_R, .type = ARM_CP_CONST,
4898               .resetvalue = cpu->mvfr2 },
4899             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4900               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4901               .access = PL1_R, .type = ARM_CP_CONST,
4902               .resetvalue = 0 },
4903             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4904               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4905               .access = PL1_R, .type = ARM_CP_CONST,
4906               .resetvalue = 0 },
4907             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4908               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4909               .access = PL1_R, .type = ARM_CP_CONST,
4910               .resetvalue = 0 },
4911             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4912               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4913               .access = PL1_R, .type = ARM_CP_CONST,
4914               .resetvalue = 0 },
4915             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4916               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4917               .access = PL1_R, .type = ARM_CP_CONST,
4918               .resetvalue = 0 },
4919             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4920               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4921               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4922               .resetvalue = cpu->pmceid0 },
4923             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4924               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4925               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4926               .resetvalue = cpu->pmceid0 },
4927             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4928               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4929               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4930               .resetvalue = cpu->pmceid1 },
4931             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4932               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4933               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4934               .resetvalue = cpu->pmceid1 },
4935             REGINFO_SENTINEL
4936         };
4937         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4938         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4939             !arm_feature(env, ARM_FEATURE_EL2)) {
4940             ARMCPRegInfo rvbar = {
4941                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4942                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4943                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4944             };
4945             define_one_arm_cp_reg(cpu, &rvbar);
4946         }
4947         define_arm_cp_regs(cpu, v8_idregs);
4948         define_arm_cp_regs(cpu, v8_cp_reginfo);
4949     }
4950     if (arm_feature(env, ARM_FEATURE_EL2)) {
4951         uint64_t vmpidr_def = mpidr_read_val(env);
4952         ARMCPRegInfo vpidr_regs[] = {
4953             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4954               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4955               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4956               .resetvalue = cpu->midr,
4957               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4958             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4959               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4960               .access = PL2_RW, .resetvalue = cpu->midr,
4961               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4962             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4963               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4964               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4965               .resetvalue = vmpidr_def,
4966               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4967             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4968               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4969               .access = PL2_RW,
4970               .resetvalue = vmpidr_def,
4971               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4972             REGINFO_SENTINEL
4973         };
4974         define_arm_cp_regs(cpu, vpidr_regs);
4975         define_arm_cp_regs(cpu, el2_cp_reginfo);
4976         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4977         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4978             ARMCPRegInfo rvbar = {
4979                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4980                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4981                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4982             };
4983             define_one_arm_cp_reg(cpu, &rvbar);
4984         }
4985     } else {
4986         /* If EL2 is missing but higher ELs are enabled, we need to
4987          * register the no_el2 reginfos.
4988          */
4989         if (arm_feature(env, ARM_FEATURE_EL3)) {
4990             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4991              * of MIDR_EL1 and MPIDR_EL1.
4992              */
4993             ARMCPRegInfo vpidr_regs[] = {
4994                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4995                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4996                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4997                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4998                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4999                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5000                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5001                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5002                   .type = ARM_CP_NO_RAW,
5003                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5004                 REGINFO_SENTINEL
5005             };
5006             define_arm_cp_regs(cpu, vpidr_regs);
5007             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5008         }
5009     }
5010     if (arm_feature(env, ARM_FEATURE_EL3)) {
5011         define_arm_cp_regs(cpu, el3_cp_reginfo);
5012         ARMCPRegInfo el3_regs[] = {
5013             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5014               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5015               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5016             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5017               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5018               .access = PL3_RW,
5019               .raw_writefn = raw_write, .writefn = sctlr_write,
5020               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5021               .resetvalue = cpu->reset_sctlr },
5022             REGINFO_SENTINEL
5023         };
5024 
5025         define_arm_cp_regs(cpu, el3_regs);
5026     }
5027     /* The behaviour of NSACR is sufficiently various that we don't
5028      * try to describe it in a single reginfo:
5029      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5030      *     reads as constant 0xc00 from NS EL1 and NS EL2
5031      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5032      *  if v7 without EL3, register doesn't exist
5033      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5034      */
5035     if (arm_feature(env, ARM_FEATURE_EL3)) {
5036         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5037             ARMCPRegInfo nsacr = {
5038                 .name = "NSACR", .type = ARM_CP_CONST,
5039                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5040                 .access = PL1_RW, .accessfn = nsacr_access,
5041                 .resetvalue = 0xc00
5042             };
5043             define_one_arm_cp_reg(cpu, &nsacr);
5044         } else {
5045             ARMCPRegInfo nsacr = {
5046                 .name = "NSACR",
5047                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5048                 .access = PL3_RW | PL1_R,
5049                 .resetvalue = 0,
5050                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5051             };
5052             define_one_arm_cp_reg(cpu, &nsacr);
5053         }
5054     } else {
5055         if (arm_feature(env, ARM_FEATURE_V8)) {
5056             ARMCPRegInfo nsacr = {
5057                 .name = "NSACR", .type = ARM_CP_CONST,
5058                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5059                 .access = PL1_R,
5060                 .resetvalue = 0xc00
5061             };
5062             define_one_arm_cp_reg(cpu, &nsacr);
5063         }
5064     }
5065 
5066     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5067         if (arm_feature(env, ARM_FEATURE_V6)) {
5068             /* PMSAv6 not implemented */
5069             assert(arm_feature(env, ARM_FEATURE_V7));
5070             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5071             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5072         } else {
5073             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5074         }
5075     } else {
5076         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5077         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5078     }
5079     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5080         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5081     }
5082     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5083         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5084     }
5085     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5086         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5087     }
5088     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5089         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5090     }
5091     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5092         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5093     }
5094     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5095         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5096     }
5097     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5098         define_arm_cp_regs(cpu, omap_cp_reginfo);
5099     }
5100     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5101         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5102     }
5103     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5104         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5105     }
5106     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5107         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5108     }
5109     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5110         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5111     }
5112     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5113      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5114      * be read-only (ie write causes UNDEF exception).
5115      */
5116     {
5117         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5118             /* Pre-v8 MIDR space.
5119              * Note that the MIDR isn't a simple constant register because
5120              * of the TI925 behaviour where writes to another register can
5121              * cause the MIDR value to change.
5122              *
5123              * Unimplemented registers in the c15 0 0 0 space default to
5124              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5125              * and friends override accordingly.
5126              */
5127             { .name = "MIDR",
5128               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5129               .access = PL1_R, .resetvalue = cpu->midr,
5130               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5131               .readfn = midr_read,
5132               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5133               .type = ARM_CP_OVERRIDE },
5134             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5135             { .name = "DUMMY",
5136               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5137               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5138             { .name = "DUMMY",
5139               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5140               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5141             { .name = "DUMMY",
5142               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5143               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5144             { .name = "DUMMY",
5145               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5146               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5147             { .name = "DUMMY",
5148               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5149               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5150             REGINFO_SENTINEL
5151         };
5152         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5153             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5154               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5155               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5156               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5157               .readfn = midr_read },
5158             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5159             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5160               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5161               .access = PL1_R, .resetvalue = cpu->midr },
5162             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5163               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5164               .access = PL1_R, .resetvalue = cpu->midr },
5165             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5166               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5167               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5168             REGINFO_SENTINEL
5169         };
5170         ARMCPRegInfo id_cp_reginfo[] = {
5171             /* These are common to v8 and pre-v8 */
5172             { .name = "CTR",
5173               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5174               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5175             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5176               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5177               .access = PL0_R, .accessfn = ctr_el0_access,
5178               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5179             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5180             { .name = "TCMTR",
5181               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5182               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5183             REGINFO_SENTINEL
5184         };
5185         /* TLBTR is specific to VMSA */
5186         ARMCPRegInfo id_tlbtr_reginfo = {
5187               .name = "TLBTR",
5188               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5189               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5190         };
5191         /* MPUIR is specific to PMSA V6+ */
5192         ARMCPRegInfo id_mpuir_reginfo = {
5193               .name = "MPUIR",
5194               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5195               .access = PL1_R, .type = ARM_CP_CONST,
5196               .resetvalue = cpu->pmsav7_dregion << 8
5197         };
5198         ARMCPRegInfo crn0_wi_reginfo = {
5199             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5200             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5201             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5202         };
5203         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5204             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5205             ARMCPRegInfo *r;
5206             /* Register the blanket "writes ignored" value first to cover the
5207              * whole space. Then update the specific ID registers to allow write
5208              * access, so that they ignore writes rather than causing them to
5209              * UNDEF.
5210              */
5211             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5212             for (r = id_pre_v8_midr_cp_reginfo;
5213                  r->type != ARM_CP_SENTINEL; r++) {
5214                 r->access = PL1_RW;
5215             }
5216             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5217                 r->access = PL1_RW;
5218             }
5219             id_tlbtr_reginfo.access = PL1_RW;
5220             id_tlbtr_reginfo.access = PL1_RW;
5221         }
5222         if (arm_feature(env, ARM_FEATURE_V8)) {
5223             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5224         } else {
5225             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5226         }
5227         define_arm_cp_regs(cpu, id_cp_reginfo);
5228         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5229             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5230         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5231             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5232         }
5233     }
5234 
5235     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5236         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5237     }
5238 
5239     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5240         ARMCPRegInfo auxcr_reginfo[] = {
5241             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5242               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5243               .access = PL1_RW, .type = ARM_CP_CONST,
5244               .resetvalue = cpu->reset_auxcr },
5245             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5246               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5247               .access = PL2_RW, .type = ARM_CP_CONST,
5248               .resetvalue = 0 },
5249             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5250               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5251               .access = PL3_RW, .type = ARM_CP_CONST,
5252               .resetvalue = 0 },
5253             REGINFO_SENTINEL
5254         };
5255         define_arm_cp_regs(cpu, auxcr_reginfo);
5256     }
5257 
5258     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5259         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5260             /* 32 bit view is [31:18] 0...0 [43:32]. */
5261             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5262                 | extract64(cpu->reset_cbar, 32, 12);
5263             ARMCPRegInfo cbar_reginfo[] = {
5264                 { .name = "CBAR",
5265                   .type = ARM_CP_CONST,
5266                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5267                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5268                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5269                   .type = ARM_CP_CONST,
5270                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5271                   .access = PL1_R, .resetvalue = cbar32 },
5272                 REGINFO_SENTINEL
5273             };
5274             /* We don't implement a r/w 64 bit CBAR currently */
5275             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5276             define_arm_cp_regs(cpu, cbar_reginfo);
5277         } else {
5278             ARMCPRegInfo cbar = {
5279                 .name = "CBAR",
5280                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5281                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5282                 .fieldoffset = offsetof(CPUARMState,
5283                                         cp15.c15_config_base_address)
5284             };
5285             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5286                 cbar.access = PL1_R;
5287                 cbar.fieldoffset = 0;
5288                 cbar.type = ARM_CP_CONST;
5289             }
5290             define_one_arm_cp_reg(cpu, &cbar);
5291         }
5292     }
5293 
5294     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5295         ARMCPRegInfo vbar_cp_reginfo[] = {
5296             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5297               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5298               .access = PL1_RW, .writefn = vbar_write,
5299               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5300                                      offsetof(CPUARMState, cp15.vbar_ns) },
5301               .resetvalue = 0 },
5302             REGINFO_SENTINEL
5303         };
5304         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5305     }
5306 
5307     /* Generic registers whose values depend on the implementation */
5308     {
5309         ARMCPRegInfo sctlr = {
5310             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5311             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5312             .access = PL1_RW,
5313             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5314                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5315             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5316             .raw_writefn = raw_write,
5317         };
5318         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5319             /* Normally we would always end the TB on an SCTLR write, but Linux
5320              * arch/arm/mach-pxa/sleep.S expects two instructions following
5321              * an MMU enable to execute from cache.  Imitate this behaviour.
5322              */
5323             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5324         }
5325         define_one_arm_cp_reg(cpu, &sctlr);
5326     }
5327 }
5328 
5329 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5330 {
5331     CPUState *cs = CPU(cpu);
5332     CPUARMState *env = &cpu->env;
5333 
5334     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5335         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5336                                  aarch64_fpu_gdb_set_reg,
5337                                  34, "aarch64-fpu.xml", 0);
5338     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5339         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5340                                  51, "arm-neon.xml", 0);
5341     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5342         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5343                                  35, "arm-vfp3.xml", 0);
5344     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5345         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5346                                  19, "arm-vfp.xml", 0);
5347     }
5348 }
5349 
5350 /* Sort alphabetically by type name, except for "any". */
5351 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5352 {
5353     ObjectClass *class_a = (ObjectClass *)a;
5354     ObjectClass *class_b = (ObjectClass *)b;
5355     const char *name_a, *name_b;
5356 
5357     name_a = object_class_get_name(class_a);
5358     name_b = object_class_get_name(class_b);
5359     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5360         return 1;
5361     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5362         return -1;
5363     } else {
5364         return strcmp(name_a, name_b);
5365     }
5366 }
5367 
5368 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5369 {
5370     ObjectClass *oc = data;
5371     CPUListState *s = user_data;
5372     const char *typename;
5373     char *name;
5374 
5375     typename = object_class_get_name(oc);
5376     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5377     (*s->cpu_fprintf)(s->file, "  %s\n",
5378                       name);
5379     g_free(name);
5380 }
5381 
5382 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5383 {
5384     CPUListState s = {
5385         .file = f,
5386         .cpu_fprintf = cpu_fprintf,
5387     };
5388     GSList *list;
5389 
5390     list = object_class_get_list(TYPE_ARM_CPU, false);
5391     list = g_slist_sort(list, arm_cpu_list_compare);
5392     (*cpu_fprintf)(f, "Available CPUs:\n");
5393     g_slist_foreach(list, arm_cpu_list_entry, &s);
5394     g_slist_free(list);
5395 #ifdef CONFIG_KVM
5396     /* The 'host' CPU type is dynamically registered only if KVM is
5397      * enabled, so we have to special-case it here:
5398      */
5399     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5400 #endif
5401 }
5402 
5403 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5404 {
5405     ObjectClass *oc = data;
5406     CpuDefinitionInfoList **cpu_list = user_data;
5407     CpuDefinitionInfoList *entry;
5408     CpuDefinitionInfo *info;
5409     const char *typename;
5410 
5411     typename = object_class_get_name(oc);
5412     info = g_malloc0(sizeof(*info));
5413     info->name = g_strndup(typename,
5414                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5415     info->q_typename = g_strdup(typename);
5416 
5417     entry = g_malloc0(sizeof(*entry));
5418     entry->value = info;
5419     entry->next = *cpu_list;
5420     *cpu_list = entry;
5421 }
5422 
5423 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5424 {
5425     CpuDefinitionInfoList *cpu_list = NULL;
5426     GSList *list;
5427 
5428     list = object_class_get_list(TYPE_ARM_CPU, false);
5429     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5430     g_slist_free(list);
5431 
5432     return cpu_list;
5433 }
5434 
5435 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5436                                    void *opaque, int state, int secstate,
5437                                    int crm, int opc1, int opc2)
5438 {
5439     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5440      * add a single reginfo struct to the hash table.
5441      */
5442     uint32_t *key = g_new(uint32_t, 1);
5443     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5444     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5445     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5446 
5447     /* Reset the secure state to the specific incoming state.  This is
5448      * necessary as the register may have been defined with both states.
5449      */
5450     r2->secure = secstate;
5451 
5452     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5453         /* Register is banked (using both entries in array).
5454          * Overwriting fieldoffset as the array is only used to define
5455          * banked registers but later only fieldoffset is used.
5456          */
5457         r2->fieldoffset = r->bank_fieldoffsets[ns];
5458     }
5459 
5460     if (state == ARM_CP_STATE_AA32) {
5461         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5462             /* If the register is banked then we don't need to migrate or
5463              * reset the 32-bit instance in certain cases:
5464              *
5465              * 1) If the register has both 32-bit and 64-bit instances then we
5466              *    can count on the 64-bit instance taking care of the
5467              *    non-secure bank.
5468              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5469              *    taking care of the secure bank.  This requires that separate
5470              *    32 and 64-bit definitions are provided.
5471              */
5472             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5473                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5474                 r2->type |= ARM_CP_ALIAS;
5475             }
5476         } else if ((secstate != r->secure) && !ns) {
5477             /* The register is not banked so we only want to allow migration of
5478              * the non-secure instance.
5479              */
5480             r2->type |= ARM_CP_ALIAS;
5481         }
5482 
5483         if (r->state == ARM_CP_STATE_BOTH) {
5484             /* We assume it is a cp15 register if the .cp field is left unset.
5485              */
5486             if (r2->cp == 0) {
5487                 r2->cp = 15;
5488             }
5489 
5490 #ifdef HOST_WORDS_BIGENDIAN
5491             if (r2->fieldoffset) {
5492                 r2->fieldoffset += sizeof(uint32_t);
5493             }
5494 #endif
5495         }
5496     }
5497     if (state == ARM_CP_STATE_AA64) {
5498         /* To allow abbreviation of ARMCPRegInfo
5499          * definitions, we treat cp == 0 as equivalent to
5500          * the value for "standard guest-visible sysreg".
5501          * STATE_BOTH definitions are also always "standard
5502          * sysreg" in their AArch64 view (the .cp value may
5503          * be non-zero for the benefit of the AArch32 view).
5504          */
5505         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5506             r2->cp = CP_REG_ARM64_SYSREG_CP;
5507         }
5508         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5509                                   r2->opc0, opc1, opc2);
5510     } else {
5511         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5512     }
5513     if (opaque) {
5514         r2->opaque = opaque;
5515     }
5516     /* reginfo passed to helpers is correct for the actual access,
5517      * and is never ARM_CP_STATE_BOTH:
5518      */
5519     r2->state = state;
5520     /* Make sure reginfo passed to helpers for wildcarded regs
5521      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5522      */
5523     r2->crm = crm;
5524     r2->opc1 = opc1;
5525     r2->opc2 = opc2;
5526     /* By convention, for wildcarded registers only the first
5527      * entry is used for migration; the others are marked as
5528      * ALIAS so we don't try to transfer the register
5529      * multiple times. Special registers (ie NOP/WFI) are
5530      * never migratable and not even raw-accessible.
5531      */
5532     if ((r->type & ARM_CP_SPECIAL)) {
5533         r2->type |= ARM_CP_NO_RAW;
5534     }
5535     if (((r->crm == CP_ANY) && crm != 0) ||
5536         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5537         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5538         r2->type |= ARM_CP_ALIAS;
5539     }
5540 
5541     /* Check that raw accesses are either forbidden or handled. Note that
5542      * we can't assert this earlier because the setup of fieldoffset for
5543      * banked registers has to be done first.
5544      */
5545     if (!(r2->type & ARM_CP_NO_RAW)) {
5546         assert(!raw_accessors_invalid(r2));
5547     }
5548 
5549     /* Overriding of an existing definition must be explicitly
5550      * requested.
5551      */
5552     if (!(r->type & ARM_CP_OVERRIDE)) {
5553         ARMCPRegInfo *oldreg;
5554         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5555         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5556             fprintf(stderr, "Register redefined: cp=%d %d bit "
5557                     "crn=%d crm=%d opc1=%d opc2=%d, "
5558                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5559                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5560                     oldreg->name, r2->name);
5561             g_assert_not_reached();
5562         }
5563     }
5564     g_hash_table_insert(cpu->cp_regs, key, r2);
5565 }
5566 
5567 
5568 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5569                                        const ARMCPRegInfo *r, void *opaque)
5570 {
5571     /* Define implementations of coprocessor registers.
5572      * We store these in a hashtable because typically
5573      * there are less than 150 registers in a space which
5574      * is 16*16*16*8*8 = 262144 in size.
5575      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5576      * If a register is defined twice then the second definition is
5577      * used, so this can be used to define some generic registers and
5578      * then override them with implementation specific variations.
5579      * At least one of the original and the second definition should
5580      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5581      * against accidental use.
5582      *
5583      * The state field defines whether the register is to be
5584      * visible in the AArch32 or AArch64 execution state. If the
5585      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5586      * reginfo structure for the AArch32 view, which sees the lower
5587      * 32 bits of the 64 bit register.
5588      *
5589      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5590      * be wildcarded. AArch64 registers are always considered to be 64
5591      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5592      * the register, if any.
5593      */
5594     int crm, opc1, opc2, state;
5595     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5596     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5597     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5598     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5599     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5600     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5601     /* 64 bit registers have only CRm and Opc1 fields */
5602     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5603     /* op0 only exists in the AArch64 encodings */
5604     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5605     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5606     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5607     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5608      * encodes a minimum access level for the register. We roll this
5609      * runtime check into our general permission check code, so check
5610      * here that the reginfo's specified permissions are strict enough
5611      * to encompass the generic architectural permission check.
5612      */
5613     if (r->state != ARM_CP_STATE_AA32) {
5614         int mask = 0;
5615         switch (r->opc1) {
5616         case 0: case 1: case 2:
5617             /* min_EL EL1 */
5618             mask = PL1_RW;
5619             break;
5620         case 3:
5621             /* min_EL EL0 */
5622             mask = PL0_RW;
5623             break;
5624         case 4:
5625             /* min_EL EL2 */
5626             mask = PL2_RW;
5627             break;
5628         case 5:
5629             /* unallocated encoding, so not possible */
5630             assert(false);
5631             break;
5632         case 6:
5633             /* min_EL EL3 */
5634             mask = PL3_RW;
5635             break;
5636         case 7:
5637             /* min_EL EL1, secure mode only (we don't check the latter) */
5638             mask = PL1_RW;
5639             break;
5640         default:
5641             /* broken reginfo with out-of-range opc1 */
5642             assert(false);
5643             break;
5644         }
5645         /* assert our permissions are not too lax (stricter is fine) */
5646         assert((r->access & ~mask) == 0);
5647     }
5648 
5649     /* Check that the register definition has enough info to handle
5650      * reads and writes if they are permitted.
5651      */
5652     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5653         if (r->access & PL3_R) {
5654             assert((r->fieldoffset ||
5655                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5656                    r->readfn);
5657         }
5658         if (r->access & PL3_W) {
5659             assert((r->fieldoffset ||
5660                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5661                    r->writefn);
5662         }
5663     }
5664     /* Bad type field probably means missing sentinel at end of reg list */
5665     assert(cptype_valid(r->type));
5666     for (crm = crmmin; crm <= crmmax; crm++) {
5667         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5668             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5669                 for (state = ARM_CP_STATE_AA32;
5670                      state <= ARM_CP_STATE_AA64; state++) {
5671                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5672                         continue;
5673                     }
5674                     if (state == ARM_CP_STATE_AA32) {
5675                         /* Under AArch32 CP registers can be common
5676                          * (same for secure and non-secure world) or banked.
5677                          */
5678                         switch (r->secure) {
5679                         case ARM_CP_SECSTATE_S:
5680                         case ARM_CP_SECSTATE_NS:
5681                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5682                                                    r->secure, crm, opc1, opc2);
5683                             break;
5684                         default:
5685                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5686                                                    ARM_CP_SECSTATE_S,
5687                                                    crm, opc1, opc2);
5688                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5689                                                    ARM_CP_SECSTATE_NS,
5690                                                    crm, opc1, opc2);
5691                             break;
5692                         }
5693                     } else {
5694                         /* AArch64 registers get mapped to non-secure instance
5695                          * of AArch32 */
5696                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5697                                                ARM_CP_SECSTATE_NS,
5698                                                crm, opc1, opc2);
5699                     }
5700                 }
5701             }
5702         }
5703     }
5704 }
5705 
5706 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5707                                     const ARMCPRegInfo *regs, void *opaque)
5708 {
5709     /* Define a whole list of registers */
5710     const ARMCPRegInfo *r;
5711     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5712         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5713     }
5714 }
5715 
5716 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5717 {
5718     return g_hash_table_lookup(cpregs, &encoded_cp);
5719 }
5720 
5721 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5722                          uint64_t value)
5723 {
5724     /* Helper coprocessor write function for write-ignore registers */
5725 }
5726 
5727 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5728 {
5729     /* Helper coprocessor write function for read-as-zero registers */
5730     return 0;
5731 }
5732 
5733 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5734 {
5735     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5736 }
5737 
5738 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5739 {
5740     /* Return true if it is not valid for us to switch to
5741      * this CPU mode (ie all the UNPREDICTABLE cases in
5742      * the ARM ARM CPSRWriteByInstr pseudocode).
5743      */
5744 
5745     /* Changes to or from Hyp via MSR and CPS are illegal. */
5746     if (write_type == CPSRWriteByInstr &&
5747         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5748          mode == ARM_CPU_MODE_HYP)) {
5749         return 1;
5750     }
5751 
5752     switch (mode) {
5753     case ARM_CPU_MODE_USR:
5754         return 0;
5755     case ARM_CPU_MODE_SYS:
5756     case ARM_CPU_MODE_SVC:
5757     case ARM_CPU_MODE_ABT:
5758     case ARM_CPU_MODE_UND:
5759     case ARM_CPU_MODE_IRQ:
5760     case ARM_CPU_MODE_FIQ:
5761         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5762          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5763          */
5764         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5765          * and CPS are treated as illegal mode changes.
5766          */
5767         if (write_type == CPSRWriteByInstr &&
5768             (env->cp15.hcr_el2 & HCR_TGE) &&
5769             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5770             !arm_is_secure_below_el3(env)) {
5771             return 1;
5772         }
5773         return 0;
5774     case ARM_CPU_MODE_HYP:
5775         return !arm_feature(env, ARM_FEATURE_EL2)
5776             || arm_current_el(env) < 2 || arm_is_secure(env);
5777     case ARM_CPU_MODE_MON:
5778         return arm_current_el(env) < 3;
5779     default:
5780         return 1;
5781     }
5782 }
5783 
5784 uint32_t cpsr_read(CPUARMState *env)
5785 {
5786     int ZF;
5787     ZF = (env->ZF == 0);
5788     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5789         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5790         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5791         | ((env->condexec_bits & 0xfc) << 8)
5792         | (env->GE << 16) | (env->daif & CPSR_AIF);
5793 }
5794 
5795 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5796                 CPSRWriteType write_type)
5797 {
5798     uint32_t changed_daif;
5799 
5800     if (mask & CPSR_NZCV) {
5801         env->ZF = (~val) & CPSR_Z;
5802         env->NF = val;
5803         env->CF = (val >> 29) & 1;
5804         env->VF = (val << 3) & 0x80000000;
5805     }
5806     if (mask & CPSR_Q)
5807         env->QF = ((val & CPSR_Q) != 0);
5808     if (mask & CPSR_T)
5809         env->thumb = ((val & CPSR_T) != 0);
5810     if (mask & CPSR_IT_0_1) {
5811         env->condexec_bits &= ~3;
5812         env->condexec_bits |= (val >> 25) & 3;
5813     }
5814     if (mask & CPSR_IT_2_7) {
5815         env->condexec_bits &= 3;
5816         env->condexec_bits |= (val >> 8) & 0xfc;
5817     }
5818     if (mask & CPSR_GE) {
5819         env->GE = (val >> 16) & 0xf;
5820     }
5821 
5822     /* In a V7 implementation that includes the security extensions but does
5823      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5824      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5825      * bits respectively.
5826      *
5827      * In a V8 implementation, it is permitted for privileged software to
5828      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5829      */
5830     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5831         arm_feature(env, ARM_FEATURE_EL3) &&
5832         !arm_feature(env, ARM_FEATURE_EL2) &&
5833         !arm_is_secure(env)) {
5834 
5835         changed_daif = (env->daif ^ val) & mask;
5836 
5837         if (changed_daif & CPSR_A) {
5838             /* Check to see if we are allowed to change the masking of async
5839              * abort exceptions from a non-secure state.
5840              */
5841             if (!(env->cp15.scr_el3 & SCR_AW)) {
5842                 qemu_log_mask(LOG_GUEST_ERROR,
5843                               "Ignoring attempt to switch CPSR_A flag from "
5844                               "non-secure world with SCR.AW bit clear\n");
5845                 mask &= ~CPSR_A;
5846             }
5847         }
5848 
5849         if (changed_daif & CPSR_F) {
5850             /* Check to see if we are allowed to change the masking of FIQ
5851              * exceptions from a non-secure state.
5852              */
5853             if (!(env->cp15.scr_el3 & SCR_FW)) {
5854                 qemu_log_mask(LOG_GUEST_ERROR,
5855                               "Ignoring attempt to switch CPSR_F flag from "
5856                               "non-secure world with SCR.FW bit clear\n");
5857                 mask &= ~CPSR_F;
5858             }
5859 
5860             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5861              * If this bit is set software is not allowed to mask
5862              * FIQs, but is allowed to set CPSR_F to 0.
5863              */
5864             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5865                 (val & CPSR_F)) {
5866                 qemu_log_mask(LOG_GUEST_ERROR,
5867                               "Ignoring attempt to enable CPSR_F flag "
5868                               "(non-maskable FIQ [NMFI] support enabled)\n");
5869                 mask &= ~CPSR_F;
5870             }
5871         }
5872     }
5873 
5874     env->daif &= ~(CPSR_AIF & mask);
5875     env->daif |= val & CPSR_AIF & mask;
5876 
5877     if (write_type != CPSRWriteRaw &&
5878         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5879         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5880             /* Note that we can only get here in USR mode if this is a
5881              * gdb stub write; for this case we follow the architectural
5882              * behaviour for guest writes in USR mode of ignoring an attempt
5883              * to switch mode. (Those are caught by translate.c for writes
5884              * triggered by guest instructions.)
5885              */
5886             mask &= ~CPSR_M;
5887         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5888             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5889              * v7, and has defined behaviour in v8:
5890              *  + leave CPSR.M untouched
5891              *  + allow changes to the other CPSR fields
5892              *  + set PSTATE.IL
5893              * For user changes via the GDB stub, we don't set PSTATE.IL,
5894              * as this would be unnecessarily harsh for a user error.
5895              */
5896             mask &= ~CPSR_M;
5897             if (write_type != CPSRWriteByGDBStub &&
5898                 arm_feature(env, ARM_FEATURE_V8)) {
5899                 mask |= CPSR_IL;
5900                 val |= CPSR_IL;
5901             }
5902         } else {
5903             switch_mode(env, val & CPSR_M);
5904         }
5905     }
5906     mask &= ~CACHED_CPSR_BITS;
5907     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5908 }
5909 
5910 /* Sign/zero extend */
5911 uint32_t HELPER(sxtb16)(uint32_t x)
5912 {
5913     uint32_t res;
5914     res = (uint16_t)(int8_t)x;
5915     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5916     return res;
5917 }
5918 
5919 uint32_t HELPER(uxtb16)(uint32_t x)
5920 {
5921     uint32_t res;
5922     res = (uint16_t)(uint8_t)x;
5923     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5924     return res;
5925 }
5926 
5927 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5928 {
5929     if (den == 0)
5930       return 0;
5931     if (num == INT_MIN && den == -1)
5932       return INT_MIN;
5933     return num / den;
5934 }
5935 
5936 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5937 {
5938     if (den == 0)
5939       return 0;
5940     return num / den;
5941 }
5942 
5943 uint32_t HELPER(rbit)(uint32_t x)
5944 {
5945     return revbit32(x);
5946 }
5947 
5948 #if defined(CONFIG_USER_ONLY)
5949 
5950 /* These should probably raise undefined insn exceptions.  */
5951 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5952 {
5953     ARMCPU *cpu = arm_env_get_cpu(env);
5954 
5955     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5956 }
5957 
5958 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5959 {
5960     ARMCPU *cpu = arm_env_get_cpu(env);
5961 
5962     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5963     return 0;
5964 }
5965 
5966 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5967 {
5968     /* translate.c should never generate calls here in user-only mode */
5969     g_assert_not_reached();
5970 }
5971 
5972 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5973 {
5974     /* translate.c should never generate calls here in user-only mode */
5975     g_assert_not_reached();
5976 }
5977 
5978 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
5979 {
5980     /* The TT instructions can be used by unprivileged code, but in
5981      * user-only emulation we don't have the MPU.
5982      * Luckily since we know we are NonSecure unprivileged (and that in
5983      * turn means that the A flag wasn't specified), all the bits in the
5984      * register must be zero:
5985      *  IREGION: 0 because IRVALID is 0
5986      *  IRVALID: 0 because NS
5987      *  S: 0 because NS
5988      *  NSRW: 0 because NS
5989      *  NSR: 0 because NS
5990      *  RW: 0 because unpriv and A flag not set
5991      *  R: 0 because unpriv and A flag not set
5992      *  SRVALID: 0 because NS
5993      *  MRVALID: 0 because unpriv and A flag not set
5994      *  SREGION: 0 becaus SRVALID is 0
5995      *  MREGION: 0 because MRVALID is 0
5996      */
5997     return 0;
5998 }
5999 
6000 void switch_mode(CPUARMState *env, int mode)
6001 {
6002     ARMCPU *cpu = arm_env_get_cpu(env);
6003 
6004     if (mode != ARM_CPU_MODE_USR) {
6005         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6006     }
6007 }
6008 
6009 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6010                                  uint32_t cur_el, bool secure)
6011 {
6012     return 1;
6013 }
6014 
6015 void aarch64_sync_64_to_32(CPUARMState *env)
6016 {
6017     g_assert_not_reached();
6018 }
6019 
6020 #else
6021 
6022 void switch_mode(CPUARMState *env, int mode)
6023 {
6024     int old_mode;
6025     int i;
6026 
6027     old_mode = env->uncached_cpsr & CPSR_M;
6028     if (mode == old_mode)
6029         return;
6030 
6031     if (old_mode == ARM_CPU_MODE_FIQ) {
6032         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6033         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6034     } else if (mode == ARM_CPU_MODE_FIQ) {
6035         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6036         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6037     }
6038 
6039     i = bank_number(old_mode);
6040     env->banked_r13[i] = env->regs[13];
6041     env->banked_r14[i] = env->regs[14];
6042     env->banked_spsr[i] = env->spsr;
6043 
6044     i = bank_number(mode);
6045     env->regs[13] = env->banked_r13[i];
6046     env->regs[14] = env->banked_r14[i];
6047     env->spsr = env->banked_spsr[i];
6048 }
6049 
6050 /* Physical Interrupt Target EL Lookup Table
6051  *
6052  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6053  *
6054  * The below multi-dimensional table is used for looking up the target
6055  * exception level given numerous condition criteria.  Specifically, the
6056  * target EL is based on SCR and HCR routing controls as well as the
6057  * currently executing EL and secure state.
6058  *
6059  *    Dimensions:
6060  *    target_el_table[2][2][2][2][2][4]
6061  *                    |  |  |  |  |  +--- Current EL
6062  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6063  *                    |  |  |  +--------- HCR mask override
6064  *                    |  |  +------------ SCR exec state control
6065  *                    |  +--------------- SCR mask override
6066  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6067  *
6068  *    The table values are as such:
6069  *    0-3 = EL0-EL3
6070  *     -1 = Cannot occur
6071  *
6072  * The ARM ARM target EL table includes entries indicating that an "exception
6073  * is not taken".  The two cases where this is applicable are:
6074  *    1) An exception is taken from EL3 but the SCR does not have the exception
6075  *    routed to EL3.
6076  *    2) An exception is taken from EL2 but the HCR does not have the exception
6077  *    routed to EL2.
6078  * In these two cases, the below table contain a target of EL1.  This value is
6079  * returned as it is expected that the consumer of the table data will check
6080  * for "target EL >= current EL" to ensure the exception is not taken.
6081  *
6082  *            SCR     HCR
6083  *         64  EA     AMO                 From
6084  *        BIT IRQ     IMO      Non-secure         Secure
6085  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6086  */
6087 static const int8_t target_el_table[2][2][2][2][2][4] = {
6088     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6089        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6090       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6091        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6092      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6093        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6094       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6095        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6096     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6097        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6098       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6099        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6100      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6101        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6102       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6103        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6104 };
6105 
6106 /*
6107  * Determine the target EL for physical exceptions
6108  */
6109 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6110                                  uint32_t cur_el, bool secure)
6111 {
6112     CPUARMState *env = cs->env_ptr;
6113     int rw;
6114     int scr;
6115     int hcr;
6116     int target_el;
6117     /* Is the highest EL AArch64? */
6118     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6119 
6120     if (arm_feature(env, ARM_FEATURE_EL3)) {
6121         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6122     } else {
6123         /* Either EL2 is the highest EL (and so the EL2 register width
6124          * is given by is64); or there is no EL2 or EL3, in which case
6125          * the value of 'rw' does not affect the table lookup anyway.
6126          */
6127         rw = is64;
6128     }
6129 
6130     switch (excp_idx) {
6131     case EXCP_IRQ:
6132         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6133         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6134         break;
6135     case EXCP_FIQ:
6136         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6137         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6138         break;
6139     default:
6140         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6141         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6142         break;
6143     };
6144 
6145     /* If HCR.TGE is set then HCR is treated as being 1 */
6146     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6147 
6148     /* Perform a table-lookup for the target EL given the current state */
6149     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6150 
6151     assert(target_el > 0);
6152 
6153     return target_el;
6154 }
6155 
6156 static void v7m_push(CPUARMState *env, uint32_t val)
6157 {
6158     CPUState *cs = CPU(arm_env_get_cpu(env));
6159 
6160     env->regs[13] -= 4;
6161     stl_phys(cs->as, env->regs[13], val);
6162 }
6163 
6164 /* Return true if we're using the process stack pointer (not the MSP) */
6165 static bool v7m_using_psp(CPUARMState *env)
6166 {
6167     /* Handler mode always uses the main stack; for thread mode
6168      * the CONTROL.SPSEL bit determines the answer.
6169      * Note that in v7M it is not possible to be in Handler mode with
6170      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6171      */
6172     return !arm_v7m_is_handler_mode(env) &&
6173         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6174 }
6175 
6176 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6177  * This may change the current stack pointer between Main and Process
6178  * stack pointers if it is done for the CONTROL register for the current
6179  * security state.
6180  */
6181 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6182                                                  bool new_spsel,
6183                                                  bool secstate)
6184 {
6185     bool old_is_psp = v7m_using_psp(env);
6186 
6187     env->v7m.control[secstate] =
6188         deposit32(env->v7m.control[secstate],
6189                   R_V7M_CONTROL_SPSEL_SHIFT,
6190                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6191 
6192     if (secstate == env->v7m.secure) {
6193         bool new_is_psp = v7m_using_psp(env);
6194         uint32_t tmp;
6195 
6196         if (old_is_psp != new_is_psp) {
6197             tmp = env->v7m.other_sp;
6198             env->v7m.other_sp = env->regs[13];
6199             env->regs[13] = tmp;
6200         }
6201     }
6202 }
6203 
6204 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6205  * stack pointer between Main and Process stack pointers.
6206  */
6207 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6208 {
6209     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6210 }
6211 
6212 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6213 {
6214     /* Write a new value to v7m.exception, thus transitioning into or out
6215      * of Handler mode; this may result in a change of active stack pointer.
6216      */
6217     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6218     uint32_t tmp;
6219 
6220     env->v7m.exception = new_exc;
6221 
6222     new_is_psp = v7m_using_psp(env);
6223 
6224     if (old_is_psp != new_is_psp) {
6225         tmp = env->v7m.other_sp;
6226         env->v7m.other_sp = env->regs[13];
6227         env->regs[13] = tmp;
6228     }
6229 }
6230 
6231 /* Switch M profile security state between NS and S */
6232 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6233 {
6234     uint32_t new_ss_msp, new_ss_psp;
6235 
6236     if (env->v7m.secure == new_secstate) {
6237         return;
6238     }
6239 
6240     /* All the banked state is accessed by looking at env->v7m.secure
6241      * except for the stack pointer; rearrange the SP appropriately.
6242      */
6243     new_ss_msp = env->v7m.other_ss_msp;
6244     new_ss_psp = env->v7m.other_ss_psp;
6245 
6246     if (v7m_using_psp(env)) {
6247         env->v7m.other_ss_psp = env->regs[13];
6248         env->v7m.other_ss_msp = env->v7m.other_sp;
6249     } else {
6250         env->v7m.other_ss_msp = env->regs[13];
6251         env->v7m.other_ss_psp = env->v7m.other_sp;
6252     }
6253 
6254     env->v7m.secure = new_secstate;
6255 
6256     if (v7m_using_psp(env)) {
6257         env->regs[13] = new_ss_psp;
6258         env->v7m.other_sp = new_ss_msp;
6259     } else {
6260         env->regs[13] = new_ss_msp;
6261         env->v7m.other_sp = new_ss_psp;
6262     }
6263 }
6264 
6265 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6266 {
6267     /* Handle v7M BXNS:
6268      *  - if the return value is a magic value, do exception return (like BX)
6269      *  - otherwise bit 0 of the return value is the target security state
6270      */
6271     uint32_t min_magic;
6272 
6273     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6274         /* Covers FNC_RETURN and EXC_RETURN magic */
6275         min_magic = FNC_RETURN_MIN_MAGIC;
6276     } else {
6277         /* EXC_RETURN magic only */
6278         min_magic = EXC_RETURN_MIN_MAGIC;
6279     }
6280 
6281     if (dest >= min_magic) {
6282         /* This is an exception return magic value; put it where
6283          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6284          * Note that if we ever add gen_ss_advance() singlestep support to
6285          * M profile this should count as an "instruction execution complete"
6286          * event (compare gen_bx_excret_final_code()).
6287          */
6288         env->regs[15] = dest & ~1;
6289         env->thumb = dest & 1;
6290         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6291         /* notreached */
6292     }
6293 
6294     /* translate.c should have made BXNS UNDEF unless we're secure */
6295     assert(env->v7m.secure);
6296 
6297     switch_v7m_security_state(env, dest & 1);
6298     env->thumb = 1;
6299     env->regs[15] = dest & ~1;
6300 }
6301 
6302 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6303 {
6304     /* Handle v7M BLXNS:
6305      *  - bit 0 of the destination address is the target security state
6306      */
6307 
6308     /* At this point regs[15] is the address just after the BLXNS */
6309     uint32_t nextinst = env->regs[15] | 1;
6310     uint32_t sp = env->regs[13] - 8;
6311     uint32_t saved_psr;
6312 
6313     /* translate.c will have made BLXNS UNDEF unless we're secure */
6314     assert(env->v7m.secure);
6315 
6316     if (dest & 1) {
6317         /* target is Secure, so this is just a normal BLX,
6318          * except that the low bit doesn't indicate Thumb/not.
6319          */
6320         env->regs[14] = nextinst;
6321         env->thumb = 1;
6322         env->regs[15] = dest & ~1;
6323         return;
6324     }
6325 
6326     /* Target is non-secure: first push a stack frame */
6327     if (!QEMU_IS_ALIGNED(sp, 8)) {
6328         qemu_log_mask(LOG_GUEST_ERROR,
6329                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6330     }
6331 
6332     saved_psr = env->v7m.exception;
6333     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6334         saved_psr |= XPSR_SFPA;
6335     }
6336 
6337     /* Note that these stores can throw exceptions on MPU faults */
6338     cpu_stl_data(env, sp, nextinst);
6339     cpu_stl_data(env, sp + 4, saved_psr);
6340 
6341     env->regs[13] = sp;
6342     env->regs[14] = 0xfeffffff;
6343     if (arm_v7m_is_handler_mode(env)) {
6344         /* Write a dummy value to IPSR, to avoid leaking the current secure
6345          * exception number to non-secure code. This is guaranteed not
6346          * to cause write_v7m_exception() to actually change stacks.
6347          */
6348         write_v7m_exception(env, 1);
6349     }
6350     switch_v7m_security_state(env, 0);
6351     env->thumb = 1;
6352     env->regs[15] = dest;
6353 }
6354 
6355 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6356                                 bool spsel)
6357 {
6358     /* Return a pointer to the location where we currently store the
6359      * stack pointer for the requested security state and thread mode.
6360      * This pointer will become invalid if the CPU state is updated
6361      * such that the stack pointers are switched around (eg changing
6362      * the SPSEL control bit).
6363      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6364      * Unlike that pseudocode, we require the caller to pass us in the
6365      * SPSEL control bit value; this is because we also use this
6366      * function in handling of pushing of the callee-saves registers
6367      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6368      * and in the tailchain codepath the SPSEL bit comes from the exception
6369      * return magic LR value from the previous exception. The pseudocode
6370      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6371      * to make this utility function generic enough to do the job.
6372      */
6373     bool want_psp = threadmode && spsel;
6374 
6375     if (secure == env->v7m.secure) {
6376         if (want_psp == v7m_using_psp(env)) {
6377             return &env->regs[13];
6378         } else {
6379             return &env->v7m.other_sp;
6380         }
6381     } else {
6382         if (want_psp) {
6383             return &env->v7m.other_ss_psp;
6384         } else {
6385             return &env->v7m.other_ss_msp;
6386         }
6387     }
6388 }
6389 
6390 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6391 {
6392     CPUState *cs = CPU(cpu);
6393     CPUARMState *env = &cpu->env;
6394     MemTxResult result;
6395     hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6396     uint32_t addr;
6397 
6398     addr = address_space_ldl(cs->as, vec,
6399                              MEMTXATTRS_UNSPECIFIED, &result);
6400     if (result != MEMTX_OK) {
6401         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6402          * which would then be immediately followed by our failing to load
6403          * the entry vector for that HardFault, which is a Lockup case.
6404          * Since we don't model Lockup, we just report this guest error
6405          * via cpu_abort().
6406          */
6407         cpu_abort(cs, "Failed to read from %s exception vector table "
6408                   "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6409                   (unsigned)vec);
6410     }
6411     return addr;
6412 }
6413 
6414 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6415 {
6416     /* For v8M, push the callee-saves register part of the stack frame.
6417      * Compare the v8M pseudocode PushCalleeStack().
6418      * In the tailchaining case this may not be the current stack.
6419      */
6420     CPUARMState *env = &cpu->env;
6421     CPUState *cs = CPU(cpu);
6422     uint32_t *frame_sp_p;
6423     uint32_t frameptr;
6424 
6425     if (dotailchain) {
6426         frame_sp_p = get_v7m_sp_ptr(env, true,
6427                                     lr & R_V7M_EXCRET_MODE_MASK,
6428                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6429     } else {
6430         frame_sp_p = &env->regs[13];
6431     }
6432 
6433     frameptr = *frame_sp_p - 0x28;
6434 
6435     stl_phys(cs->as, frameptr, 0xfefa125b);
6436     stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6437     stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6438     stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6439     stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6440     stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6441     stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6442     stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6443     stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6444 
6445     *frame_sp_p = frameptr;
6446 }
6447 
6448 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6449 {
6450     /* Do the "take the exception" parts of exception entry,
6451      * but not the pushing of state to the stack. This is
6452      * similar to the pseudocode ExceptionTaken() function.
6453      */
6454     CPUARMState *env = &cpu->env;
6455     uint32_t addr;
6456     bool targets_secure;
6457 
6458     targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6459 
6460     if (arm_feature(env, ARM_FEATURE_V8)) {
6461         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6462             (lr & R_V7M_EXCRET_S_MASK)) {
6463             /* The background code (the owner of the registers in the
6464              * exception frame) is Secure. This means it may either already
6465              * have or now needs to push callee-saves registers.
6466              */
6467             if (targets_secure) {
6468                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6469                     /* We took an exception from Secure to NonSecure
6470                      * (which means the callee-saved registers got stacked)
6471                      * and are now tailchaining to a Secure exception.
6472                      * Clear DCRS so eventual return from this Secure
6473                      * exception unstacks the callee-saved registers.
6474                      */
6475                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6476                 }
6477             } else {
6478                 /* We're going to a non-secure exception; push the
6479                  * callee-saves registers to the stack now, if they're
6480                  * not already saved.
6481                  */
6482                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6483                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6484                     v7m_push_callee_stack(cpu, lr, dotailchain);
6485                 }
6486                 lr |= R_V7M_EXCRET_DCRS_MASK;
6487             }
6488         }
6489 
6490         lr &= ~R_V7M_EXCRET_ES_MASK;
6491         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6492             lr |= R_V7M_EXCRET_ES_MASK;
6493         }
6494         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6495         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6496             lr |= R_V7M_EXCRET_SPSEL_MASK;
6497         }
6498 
6499         /* Clear registers if necessary to prevent non-secure exception
6500          * code being able to see register values from secure code.
6501          * Where register values become architecturally UNKNOWN we leave
6502          * them with their previous values.
6503          */
6504         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6505             if (!targets_secure) {
6506                 /* Always clear the caller-saved registers (they have been
6507                  * pushed to the stack earlier in v7m_push_stack()).
6508                  * Clear callee-saved registers if the background code is
6509                  * Secure (in which case these regs were saved in
6510                  * v7m_push_callee_stack()).
6511                  */
6512                 int i;
6513 
6514                 for (i = 0; i < 13; i++) {
6515                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6516                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6517                         env->regs[i] = 0;
6518                     }
6519                 }
6520                 /* Clear EAPSR */
6521                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6522             }
6523         }
6524     }
6525 
6526     /* Switch to target security state -- must do this before writing SPSEL */
6527     switch_v7m_security_state(env, targets_secure);
6528     write_v7m_control_spsel(env, 0);
6529     arm_clear_exclusive(env);
6530     /* Clear IT bits */
6531     env->condexec_bits = 0;
6532     env->regs[14] = lr;
6533     addr = arm_v7m_load_vector(cpu, targets_secure);
6534     env->regs[15] = addr & 0xfffffffe;
6535     env->thumb = addr & 1;
6536 }
6537 
6538 static void v7m_push_stack(ARMCPU *cpu)
6539 {
6540     /* Do the "set up stack frame" part of exception entry,
6541      * similar to pseudocode PushStack().
6542      */
6543     CPUARMState *env = &cpu->env;
6544     uint32_t xpsr = xpsr_read(env);
6545 
6546     /* Align stack pointer if the guest wants that */
6547     if ((env->regs[13] & 4) &&
6548         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6549         env->regs[13] -= 4;
6550         xpsr |= XPSR_SPREALIGN;
6551     }
6552     /* Switch to the handler mode.  */
6553     v7m_push(env, xpsr);
6554     v7m_push(env, env->regs[15]);
6555     v7m_push(env, env->regs[14]);
6556     v7m_push(env, env->regs[12]);
6557     v7m_push(env, env->regs[3]);
6558     v7m_push(env, env->regs[2]);
6559     v7m_push(env, env->regs[1]);
6560     v7m_push(env, env->regs[0]);
6561 }
6562 
6563 static void do_v7m_exception_exit(ARMCPU *cpu)
6564 {
6565     CPUARMState *env = &cpu->env;
6566     CPUState *cs = CPU(cpu);
6567     uint32_t excret;
6568     uint32_t xpsr;
6569     bool ufault = false;
6570     bool sfault = false;
6571     bool return_to_sp_process;
6572     bool return_to_handler;
6573     bool rettobase = false;
6574     bool exc_secure = false;
6575     bool return_to_secure;
6576 
6577     /* If we're not in Handler mode then jumps to magic exception-exit
6578      * addresses don't have magic behaviour. However for the v8M
6579      * security extensions the magic secure-function-return has to
6580      * work in thread mode too, so to avoid doing an extra check in
6581      * the generated code we allow exception-exit magic to also cause the
6582      * internal exception and bring us here in thread mode. Correct code
6583      * will never try to do this (the following insn fetch will always
6584      * fault) so we the overhead of having taken an unnecessary exception
6585      * doesn't matter.
6586      */
6587     if (!arm_v7m_is_handler_mode(env)) {
6588         return;
6589     }
6590 
6591     /* In the spec pseudocode ExceptionReturn() is called directly
6592      * from BXWritePC() and gets the full target PC value including
6593      * bit zero. In QEMU's implementation we treat it as a normal
6594      * jump-to-register (which is then caught later on), and so split
6595      * the target value up between env->regs[15] and env->thumb in
6596      * gen_bx(). Reconstitute it.
6597      */
6598     excret = env->regs[15];
6599     if (env->thumb) {
6600         excret |= 1;
6601     }
6602 
6603     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6604                   " previous exception %d\n",
6605                   excret, env->v7m.exception);
6606 
6607     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6608         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6609                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6610                       excret);
6611     }
6612 
6613     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6614         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6615          * we pick which FAULTMASK to clear.
6616          */
6617         if (!env->v7m.secure &&
6618             ((excret & R_V7M_EXCRET_ES_MASK) ||
6619              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6620             sfault = 1;
6621             /* For all other purposes, treat ES as 0 (R_HXSR) */
6622             excret &= ~R_V7M_EXCRET_ES_MASK;
6623         }
6624     }
6625 
6626     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6627         /* Auto-clear FAULTMASK on return from other than NMI.
6628          * If the security extension is implemented then this only
6629          * happens if the raw execution priority is >= 0; the
6630          * value of the ES bit in the exception return value indicates
6631          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6632          */
6633         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6634             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6635             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6636                 env->v7m.faultmask[exc_secure] = 0;
6637             }
6638         } else {
6639             env->v7m.faultmask[M_REG_NS] = 0;
6640         }
6641     }
6642 
6643     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6644                                      exc_secure)) {
6645     case -1:
6646         /* attempt to exit an exception that isn't active */
6647         ufault = true;
6648         break;
6649     case 0:
6650         /* still an irq active now */
6651         break;
6652     case 1:
6653         /* we returned to base exception level, no nesting.
6654          * (In the pseudocode this is written using "NestedActivation != 1"
6655          * where we have 'rettobase == false'.)
6656          */
6657         rettobase = true;
6658         break;
6659     default:
6660         g_assert_not_reached();
6661     }
6662 
6663     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6664     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6665     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6666         (excret & R_V7M_EXCRET_S_MASK);
6667 
6668     if (arm_feature(env, ARM_FEATURE_V8)) {
6669         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6670             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6671              * we choose to take the UsageFault.
6672              */
6673             if ((excret & R_V7M_EXCRET_S_MASK) ||
6674                 (excret & R_V7M_EXCRET_ES_MASK) ||
6675                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6676                 ufault = true;
6677             }
6678         }
6679         if (excret & R_V7M_EXCRET_RES0_MASK) {
6680             ufault = true;
6681         }
6682     } else {
6683         /* For v7M we only recognize certain combinations of the low bits */
6684         switch (excret & 0xf) {
6685         case 1: /* Return to Handler */
6686             break;
6687         case 13: /* Return to Thread using Process stack */
6688         case 9: /* Return to Thread using Main stack */
6689             /* We only need to check NONBASETHRDENA for v7M, because in
6690              * v8M this bit does not exist (it is RES1).
6691              */
6692             if (!rettobase &&
6693                 !(env->v7m.ccr[env->v7m.secure] &
6694                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
6695                 ufault = true;
6696             }
6697             break;
6698         default:
6699             ufault = true;
6700         }
6701     }
6702 
6703     if (sfault) {
6704         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6705         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6706         v7m_exception_taken(cpu, excret, true);
6707         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6708                       "stackframe: failed EXC_RETURN.ES validity check\n");
6709         return;
6710     }
6711 
6712     if (ufault) {
6713         /* Bad exception return: instead of popping the exception
6714          * stack, directly take a usage fault on the current stack.
6715          */
6716         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6717         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6718         v7m_exception_taken(cpu, excret, true);
6719         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6720                       "stackframe: failed exception return integrity check\n");
6721         return;
6722     }
6723 
6724     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6725      * Handler mode (and will be until we write the new XPSR.Interrupt
6726      * field) this does not switch around the current stack pointer.
6727      */
6728     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6729 
6730     switch_v7m_security_state(env, return_to_secure);
6731 
6732     {
6733         /* The stack pointer we should be reading the exception frame from
6734          * depends on bits in the magic exception return type value (and
6735          * for v8M isn't necessarily the stack pointer we will eventually
6736          * end up resuming execution with). Get a pointer to the location
6737          * in the CPU state struct where the SP we need is currently being
6738          * stored; we will use and modify it in place.
6739          * We use this limited C variable scope so we don't accidentally
6740          * use 'frame_sp_p' after we do something that makes it invalid.
6741          */
6742         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6743                                               return_to_secure,
6744                                               !return_to_handler,
6745                                               return_to_sp_process);
6746         uint32_t frameptr = *frame_sp_p;
6747 
6748         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6749             arm_feature(env, ARM_FEATURE_V8)) {
6750             qemu_log_mask(LOG_GUEST_ERROR,
6751                           "M profile exception return with non-8-aligned SP "
6752                           "for destination state is UNPREDICTABLE\n");
6753         }
6754 
6755         /* Do we need to pop callee-saved registers? */
6756         if (return_to_secure &&
6757             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6758              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6759             uint32_t expected_sig = 0xfefa125b;
6760             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6761 
6762             if (expected_sig != actual_sig) {
6763                 /* Take a SecureFault on the current stack */
6764                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6765                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6766                 v7m_exception_taken(cpu, excret, true);
6767                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6768                               "stackframe: failed exception return integrity "
6769                               "signature check\n");
6770                 return;
6771             }
6772 
6773             env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6774             env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6775             env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6776             env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6777             env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6778             env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6779             env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6780             env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6781 
6782             frameptr += 0x28;
6783         }
6784 
6785         /* Pop registers. TODO: make these accesses use the correct
6786          * attributes and address space (S/NS, priv/unpriv) and handle
6787          * memory transaction failures.
6788          */
6789         env->regs[0] = ldl_phys(cs->as, frameptr);
6790         env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6791         env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6792         env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6793         env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6794         env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6795         env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6796 
6797         /* Returning from an exception with a PC with bit 0 set is defined
6798          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6799          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6800          * the lsbit, and there are several RTOSes out there which incorrectly
6801          * assume the r15 in the stack frame should be a Thumb-style "lsbit
6802          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6803          * complain about the badly behaved guest.
6804          */
6805         if (env->regs[15] & 1) {
6806             env->regs[15] &= ~1U;
6807             if (!arm_feature(env, ARM_FEATURE_V8)) {
6808                 qemu_log_mask(LOG_GUEST_ERROR,
6809                               "M profile return from interrupt with misaligned "
6810                               "PC is UNPREDICTABLE on v7M\n");
6811             }
6812         }
6813 
6814         xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6815 
6816         if (arm_feature(env, ARM_FEATURE_V8)) {
6817             /* For v8M we have to check whether the xPSR exception field
6818              * matches the EXCRET value for return to handler/thread
6819              * before we commit to changing the SP and xPSR.
6820              */
6821             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6822             if (return_to_handler != will_be_handler) {
6823                 /* Take an INVPC UsageFault on the current stack.
6824                  * By this point we will have switched to the security state
6825                  * for the background state, so this UsageFault will target
6826                  * that state.
6827                  */
6828                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6829                                         env->v7m.secure);
6830                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6831                 v7m_exception_taken(cpu, excret, true);
6832                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6833                               "stackframe: failed exception return integrity "
6834                               "check\n");
6835                 return;
6836             }
6837         }
6838 
6839         /* Commit to consuming the stack frame */
6840         frameptr += 0x20;
6841         /* Undo stack alignment (the SPREALIGN bit indicates that the original
6842          * pre-exception SP was not 8-aligned and we added a padding word to
6843          * align it, so we undo this by ORing in the bit that increases it
6844          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6845          * would work too but a logical OR is how the pseudocode specifies it.)
6846          */
6847         if (xpsr & XPSR_SPREALIGN) {
6848             frameptr |= 4;
6849         }
6850         *frame_sp_p = frameptr;
6851     }
6852     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6853     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6854 
6855     /* The restored xPSR exception field will be zero if we're
6856      * resuming in Thread mode. If that doesn't match what the
6857      * exception return excret specified then this is a UsageFault.
6858      * v7M requires we make this check here; v8M did it earlier.
6859      */
6860     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6861         /* Take an INVPC UsageFault by pushing the stack again;
6862          * we know we're v7M so this is never a Secure UsageFault.
6863          */
6864         assert(!arm_feature(env, ARM_FEATURE_V8));
6865         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6866         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6867         v7m_push_stack(cpu);
6868         v7m_exception_taken(cpu, excret, false);
6869         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6870                       "failed exception return integrity check\n");
6871         return;
6872     }
6873 
6874     /* Otherwise, we have a successful exception exit. */
6875     arm_clear_exclusive(env);
6876     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6877 }
6878 
6879 static bool do_v7m_function_return(ARMCPU *cpu)
6880 {
6881     /* v8M security extensions magic function return.
6882      * We may either:
6883      *  (1) throw an exception (longjump)
6884      *  (2) return true if we successfully handled the function return
6885      *  (3) return false if we failed a consistency check and have
6886      *      pended a UsageFault that needs to be taken now
6887      *
6888      * At this point the magic return value is split between env->regs[15]
6889      * and env->thumb. We don't bother to reconstitute it because we don't
6890      * need it (all values are handled the same way).
6891      */
6892     CPUARMState *env = &cpu->env;
6893     uint32_t newpc, newpsr, newpsr_exc;
6894 
6895     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6896 
6897     {
6898         bool threadmode, spsel;
6899         TCGMemOpIdx oi;
6900         ARMMMUIdx mmu_idx;
6901         uint32_t *frame_sp_p;
6902         uint32_t frameptr;
6903 
6904         /* Pull the return address and IPSR from the Secure stack */
6905         threadmode = !arm_v7m_is_handler_mode(env);
6906         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6907 
6908         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6909         frameptr = *frame_sp_p;
6910 
6911         /* These loads may throw an exception (for MPU faults). We want to
6912          * do them as secure, so work out what MMU index that is.
6913          */
6914         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6915         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6916         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6917         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6918 
6919         /* Consistency checks on new IPSR */
6920         newpsr_exc = newpsr & XPSR_EXCP;
6921         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6922               (env->v7m.exception == 1 && newpsr_exc != 0))) {
6923             /* Pend the fault and tell our caller to take it */
6924             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6925             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6926                                     env->v7m.secure);
6927             qemu_log_mask(CPU_LOG_INT,
6928                           "...taking INVPC UsageFault: "
6929                           "IPSR consistency check failed\n");
6930             return false;
6931         }
6932 
6933         *frame_sp_p = frameptr + 8;
6934     }
6935 
6936     /* This invalidates frame_sp_p */
6937     switch_v7m_security_state(env, true);
6938     env->v7m.exception = newpsr_exc;
6939     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6940     if (newpsr & XPSR_SFPA) {
6941         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6942     }
6943     xpsr_write(env, 0, XPSR_IT);
6944     env->thumb = newpc & 1;
6945     env->regs[15] = newpc & ~1;
6946 
6947     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6948     return true;
6949 }
6950 
6951 static void arm_log_exception(int idx)
6952 {
6953     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6954         const char *exc = NULL;
6955         static const char * const excnames[] = {
6956             [EXCP_UDEF] = "Undefined Instruction",
6957             [EXCP_SWI] = "SVC",
6958             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6959             [EXCP_DATA_ABORT] = "Data Abort",
6960             [EXCP_IRQ] = "IRQ",
6961             [EXCP_FIQ] = "FIQ",
6962             [EXCP_BKPT] = "Breakpoint",
6963             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6964             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6965             [EXCP_HVC] = "Hypervisor Call",
6966             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6967             [EXCP_SMC] = "Secure Monitor Call",
6968             [EXCP_VIRQ] = "Virtual IRQ",
6969             [EXCP_VFIQ] = "Virtual FIQ",
6970             [EXCP_SEMIHOST] = "Semihosting call",
6971             [EXCP_NOCP] = "v7M NOCP UsageFault",
6972             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6973         };
6974 
6975         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6976             exc = excnames[idx];
6977         }
6978         if (!exc) {
6979             exc = "unknown";
6980         }
6981         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6982     }
6983 }
6984 
6985 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6986                                uint32_t addr, uint16_t *insn)
6987 {
6988     /* Load a 16-bit portion of a v7M instruction, returning true on success,
6989      * or false on failure (in which case we will have pended the appropriate
6990      * exception).
6991      * We need to do the instruction fetch's MPU and SAU checks
6992      * like this because there is no MMU index that would allow
6993      * doing the load with a single function call. Instead we must
6994      * first check that the security attributes permit the load
6995      * and that they don't mismatch on the two halves of the instruction,
6996      * and then we do the load as a secure load (ie using the security
6997      * attributes of the address, not the CPU, as architecturally required).
6998      */
6999     CPUState *cs = CPU(cpu);
7000     CPUARMState *env = &cpu->env;
7001     V8M_SAttributes sattrs = {};
7002     MemTxAttrs attrs = {};
7003     ARMMMUFaultInfo fi = {};
7004     MemTxResult txres;
7005     target_ulong page_size;
7006     hwaddr physaddr;
7007     int prot;
7008 
7009     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7010     if (!sattrs.nsc || sattrs.ns) {
7011         /* This must be the second half of the insn, and it straddles a
7012          * region boundary with the second half not being S&NSC.
7013          */
7014         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7015         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7016         qemu_log_mask(CPU_LOG_INT,
7017                       "...really SecureFault with SFSR.INVEP\n");
7018         return false;
7019     }
7020     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7021                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7022         /* the MPU lookup failed */
7023         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7024         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7025         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7026         return false;
7027     }
7028     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7029                                  attrs, &txres);
7030     if (txres != MEMTX_OK) {
7031         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7032         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7033         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7034         return false;
7035     }
7036     return true;
7037 }
7038 
7039 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7040 {
7041     /* Check whether this attempt to execute code in a Secure & NS-Callable
7042      * memory region is for an SG instruction; if so, then emulate the
7043      * effect of the SG instruction and return true. Otherwise pend
7044      * the correct kind of exception and return false.
7045      */
7046     CPUARMState *env = &cpu->env;
7047     ARMMMUIdx mmu_idx;
7048     uint16_t insn;
7049 
7050     /* We should never get here unless get_phys_addr_pmsav8() caused
7051      * an exception for NS executing in S&NSC memory.
7052      */
7053     assert(!env->v7m.secure);
7054     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7055 
7056     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7057     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7058 
7059     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7060         return false;
7061     }
7062 
7063     if (!env->thumb) {
7064         goto gen_invep;
7065     }
7066 
7067     if (insn != 0xe97f) {
7068         /* Not an SG instruction first half (we choose the IMPDEF
7069          * early-SG-check option).
7070          */
7071         goto gen_invep;
7072     }
7073 
7074     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7075         return false;
7076     }
7077 
7078     if (insn != 0xe97f) {
7079         /* Not an SG instruction second half (yes, both halves of the SG
7080          * insn have the same hex value)
7081          */
7082         goto gen_invep;
7083     }
7084 
7085     /* OK, we have confirmed that we really have an SG instruction.
7086      * We know we're NS in S memory so don't need to repeat those checks.
7087      */
7088     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7089                   ", executing it\n", env->regs[15]);
7090     env->regs[14] &= ~1;
7091     switch_v7m_security_state(env, true);
7092     xpsr_write(env, 0, XPSR_IT);
7093     env->regs[15] += 4;
7094     return true;
7095 
7096 gen_invep:
7097     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7098     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7099     qemu_log_mask(CPU_LOG_INT,
7100                   "...really SecureFault with SFSR.INVEP\n");
7101     return false;
7102 }
7103 
7104 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7105 {
7106     ARMCPU *cpu = ARM_CPU(cs);
7107     CPUARMState *env = &cpu->env;
7108     uint32_t lr;
7109 
7110     arm_log_exception(cs->exception_index);
7111 
7112     /* For exceptions we just mark as pending on the NVIC, and let that
7113        handle it.  */
7114     switch (cs->exception_index) {
7115     case EXCP_UDEF:
7116         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7117         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7118         break;
7119     case EXCP_NOCP:
7120         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7121         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7122         break;
7123     case EXCP_INVSTATE:
7124         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7125         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7126         break;
7127     case EXCP_SWI:
7128         /* The PC already points to the next instruction.  */
7129         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7130         break;
7131     case EXCP_PREFETCH_ABORT:
7132     case EXCP_DATA_ABORT:
7133         /* Note that for M profile we don't have a guest facing FSR, but
7134          * the env->exception.fsr will be populated by the code that
7135          * raises the fault, in the A profile short-descriptor format.
7136          */
7137         switch (env->exception.fsr & 0xf) {
7138         case M_FAKE_FSR_NSC_EXEC:
7139             /* Exception generated when we try to execute code at an address
7140              * which is marked as Secure & Non-Secure Callable and the CPU
7141              * is in the Non-Secure state. The only instruction which can
7142              * be executed like this is SG (and that only if both halves of
7143              * the SG instruction have the same security attributes.)
7144              * Everything else must generate an INVEP SecureFault, so we
7145              * emulate the SG instruction here.
7146              */
7147             if (v7m_handle_execute_nsc(cpu)) {
7148                 return;
7149             }
7150             break;
7151         case M_FAKE_FSR_SFAULT:
7152             /* Various flavours of SecureFault for attempts to execute or
7153              * access data in the wrong security state.
7154              */
7155             switch (cs->exception_index) {
7156             case EXCP_PREFETCH_ABORT:
7157                 if (env->v7m.secure) {
7158                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7159                     qemu_log_mask(CPU_LOG_INT,
7160                                   "...really SecureFault with SFSR.INVTRAN\n");
7161                 } else {
7162                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7163                     qemu_log_mask(CPU_LOG_INT,
7164                                   "...really SecureFault with SFSR.INVEP\n");
7165                 }
7166                 break;
7167             case EXCP_DATA_ABORT:
7168                 /* This must be an NS access to S memory */
7169                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7170                 qemu_log_mask(CPU_LOG_INT,
7171                               "...really SecureFault with SFSR.AUVIOL\n");
7172                 break;
7173             }
7174             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7175             break;
7176         case 0x8: /* External Abort */
7177             switch (cs->exception_index) {
7178             case EXCP_PREFETCH_ABORT:
7179                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7180                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7181                 break;
7182             case EXCP_DATA_ABORT:
7183                 env->v7m.cfsr[M_REG_NS] |=
7184                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7185                 env->v7m.bfar = env->exception.vaddress;
7186                 qemu_log_mask(CPU_LOG_INT,
7187                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7188                               env->v7m.bfar);
7189                 break;
7190             }
7191             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7192             break;
7193         default:
7194             /* All other FSR values are either MPU faults or "can't happen
7195              * for M profile" cases.
7196              */
7197             switch (cs->exception_index) {
7198             case EXCP_PREFETCH_ABORT:
7199                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7200                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7201                 break;
7202             case EXCP_DATA_ABORT:
7203                 env->v7m.cfsr[env->v7m.secure] |=
7204                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7205                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7206                 qemu_log_mask(CPU_LOG_INT,
7207                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7208                               env->v7m.mmfar[env->v7m.secure]);
7209                 break;
7210             }
7211             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7212                                     env->v7m.secure);
7213             break;
7214         }
7215         break;
7216     case EXCP_BKPT:
7217         if (semihosting_enabled()) {
7218             int nr;
7219             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7220             if (nr == 0xab) {
7221                 env->regs[15] += 2;
7222                 qemu_log_mask(CPU_LOG_INT,
7223                               "...handling as semihosting call 0x%x\n",
7224                               env->regs[0]);
7225                 env->regs[0] = do_arm_semihosting(env);
7226                 return;
7227             }
7228         }
7229         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7230         break;
7231     case EXCP_IRQ:
7232         break;
7233     case EXCP_EXCEPTION_EXIT:
7234         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7235             /* Must be v8M security extension function return */
7236             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7237             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7238             if (do_v7m_function_return(cpu)) {
7239                 return;
7240             }
7241         } else {
7242             do_v7m_exception_exit(cpu);
7243             return;
7244         }
7245         break;
7246     default:
7247         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7248         return; /* Never happens.  Keep compiler happy.  */
7249     }
7250 
7251     if (arm_feature(env, ARM_FEATURE_V8)) {
7252         lr = R_V7M_EXCRET_RES1_MASK |
7253             R_V7M_EXCRET_DCRS_MASK |
7254             R_V7M_EXCRET_FTYPE_MASK;
7255         /* The S bit indicates whether we should return to Secure
7256          * or NonSecure (ie our current state).
7257          * The ES bit indicates whether we're taking this exception
7258          * to Secure or NonSecure (ie our target state). We set it
7259          * later, in v7m_exception_taken().
7260          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7261          * This corresponds to the ARM ARM pseudocode for v8M setting
7262          * some LR bits in PushStack() and some in ExceptionTaken();
7263          * the distinction matters for the tailchain cases where we
7264          * can take an exception without pushing the stack.
7265          */
7266         if (env->v7m.secure) {
7267             lr |= R_V7M_EXCRET_S_MASK;
7268         }
7269     } else {
7270         lr = R_V7M_EXCRET_RES1_MASK |
7271             R_V7M_EXCRET_S_MASK |
7272             R_V7M_EXCRET_DCRS_MASK |
7273             R_V7M_EXCRET_FTYPE_MASK |
7274             R_V7M_EXCRET_ES_MASK;
7275         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7276             lr |= R_V7M_EXCRET_SPSEL_MASK;
7277         }
7278     }
7279     if (!arm_v7m_is_handler_mode(env)) {
7280         lr |= R_V7M_EXCRET_MODE_MASK;
7281     }
7282 
7283     v7m_push_stack(cpu);
7284     v7m_exception_taken(cpu, lr, false);
7285     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7286 }
7287 
7288 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7289  * register set.  This is necessary when switching between AArch32 and AArch64
7290  * execution state.
7291  */
7292 void aarch64_sync_32_to_64(CPUARMState *env)
7293 {
7294     int i;
7295     uint32_t mode = env->uncached_cpsr & CPSR_M;
7296 
7297     /* We can blanket copy R[0:7] to X[0:7] */
7298     for (i = 0; i < 8; i++) {
7299         env->xregs[i] = env->regs[i];
7300     }
7301 
7302     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7303      * Otherwise, they come from the banked user regs.
7304      */
7305     if (mode == ARM_CPU_MODE_FIQ) {
7306         for (i = 8; i < 13; i++) {
7307             env->xregs[i] = env->usr_regs[i - 8];
7308         }
7309     } else {
7310         for (i = 8; i < 13; i++) {
7311             env->xregs[i] = env->regs[i];
7312         }
7313     }
7314 
7315     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7316      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7317      * from the mode banked register.
7318      */
7319     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7320         env->xregs[13] = env->regs[13];
7321         env->xregs[14] = env->regs[14];
7322     } else {
7323         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7324         /* HYP is an exception in that it is copied from r14 */
7325         if (mode == ARM_CPU_MODE_HYP) {
7326             env->xregs[14] = env->regs[14];
7327         } else {
7328             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7329         }
7330     }
7331 
7332     if (mode == ARM_CPU_MODE_HYP) {
7333         env->xregs[15] = env->regs[13];
7334     } else {
7335         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7336     }
7337 
7338     if (mode == ARM_CPU_MODE_IRQ) {
7339         env->xregs[16] = env->regs[14];
7340         env->xregs[17] = env->regs[13];
7341     } else {
7342         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7343         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7344     }
7345 
7346     if (mode == ARM_CPU_MODE_SVC) {
7347         env->xregs[18] = env->regs[14];
7348         env->xregs[19] = env->regs[13];
7349     } else {
7350         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7351         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7352     }
7353 
7354     if (mode == ARM_CPU_MODE_ABT) {
7355         env->xregs[20] = env->regs[14];
7356         env->xregs[21] = env->regs[13];
7357     } else {
7358         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7359         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7360     }
7361 
7362     if (mode == ARM_CPU_MODE_UND) {
7363         env->xregs[22] = env->regs[14];
7364         env->xregs[23] = env->regs[13];
7365     } else {
7366         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7367         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7368     }
7369 
7370     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7371      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7372      * FIQ bank for r8-r14.
7373      */
7374     if (mode == ARM_CPU_MODE_FIQ) {
7375         for (i = 24; i < 31; i++) {
7376             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7377         }
7378     } else {
7379         for (i = 24; i < 29; i++) {
7380             env->xregs[i] = env->fiq_regs[i - 24];
7381         }
7382         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7383         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7384     }
7385 
7386     env->pc = env->regs[15];
7387 }
7388 
7389 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7390  * register set.  This is necessary when switching between AArch32 and AArch64
7391  * execution state.
7392  */
7393 void aarch64_sync_64_to_32(CPUARMState *env)
7394 {
7395     int i;
7396     uint32_t mode = env->uncached_cpsr & CPSR_M;
7397 
7398     /* We can blanket copy X[0:7] to R[0:7] */
7399     for (i = 0; i < 8; i++) {
7400         env->regs[i] = env->xregs[i];
7401     }
7402 
7403     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7404      * Otherwise, we copy x8-x12 into the banked user regs.
7405      */
7406     if (mode == ARM_CPU_MODE_FIQ) {
7407         for (i = 8; i < 13; i++) {
7408             env->usr_regs[i - 8] = env->xregs[i];
7409         }
7410     } else {
7411         for (i = 8; i < 13; i++) {
7412             env->regs[i] = env->xregs[i];
7413         }
7414     }
7415 
7416     /* Registers r13 & r14 depend on the current mode.
7417      * If we are in a given mode, we copy the corresponding x registers to r13
7418      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7419      * for the mode.
7420      */
7421     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7422         env->regs[13] = env->xregs[13];
7423         env->regs[14] = env->xregs[14];
7424     } else {
7425         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7426 
7427         /* HYP is an exception in that it does not have its own banked r14 but
7428          * shares the USR r14
7429          */
7430         if (mode == ARM_CPU_MODE_HYP) {
7431             env->regs[14] = env->xregs[14];
7432         } else {
7433             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7434         }
7435     }
7436 
7437     if (mode == ARM_CPU_MODE_HYP) {
7438         env->regs[13] = env->xregs[15];
7439     } else {
7440         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7441     }
7442 
7443     if (mode == ARM_CPU_MODE_IRQ) {
7444         env->regs[14] = env->xregs[16];
7445         env->regs[13] = env->xregs[17];
7446     } else {
7447         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7448         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7449     }
7450 
7451     if (mode == ARM_CPU_MODE_SVC) {
7452         env->regs[14] = env->xregs[18];
7453         env->regs[13] = env->xregs[19];
7454     } else {
7455         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7456         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7457     }
7458 
7459     if (mode == ARM_CPU_MODE_ABT) {
7460         env->regs[14] = env->xregs[20];
7461         env->regs[13] = env->xregs[21];
7462     } else {
7463         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7464         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7465     }
7466 
7467     if (mode == ARM_CPU_MODE_UND) {
7468         env->regs[14] = env->xregs[22];
7469         env->regs[13] = env->xregs[23];
7470     } else {
7471         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7472         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7473     }
7474 
7475     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7476      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7477      * FIQ bank for r8-r14.
7478      */
7479     if (mode == ARM_CPU_MODE_FIQ) {
7480         for (i = 24; i < 31; i++) {
7481             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7482         }
7483     } else {
7484         for (i = 24; i < 29; i++) {
7485             env->fiq_regs[i - 24] = env->xregs[i];
7486         }
7487         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7488         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7489     }
7490 
7491     env->regs[15] = env->pc;
7492 }
7493 
7494 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7495 {
7496     ARMCPU *cpu = ARM_CPU(cs);
7497     CPUARMState *env = &cpu->env;
7498     uint32_t addr;
7499     uint32_t mask;
7500     int new_mode;
7501     uint32_t offset;
7502     uint32_t moe;
7503 
7504     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7505     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7506     case EC_BREAKPOINT:
7507     case EC_BREAKPOINT_SAME_EL:
7508         moe = 1;
7509         break;
7510     case EC_WATCHPOINT:
7511     case EC_WATCHPOINT_SAME_EL:
7512         moe = 10;
7513         break;
7514     case EC_AA32_BKPT:
7515         moe = 3;
7516         break;
7517     case EC_VECTORCATCH:
7518         moe = 5;
7519         break;
7520     default:
7521         moe = 0;
7522         break;
7523     }
7524 
7525     if (moe) {
7526         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7527     }
7528 
7529     /* TODO: Vectored interrupt controller.  */
7530     switch (cs->exception_index) {
7531     case EXCP_UDEF:
7532         new_mode = ARM_CPU_MODE_UND;
7533         addr = 0x04;
7534         mask = CPSR_I;
7535         if (env->thumb)
7536             offset = 2;
7537         else
7538             offset = 4;
7539         break;
7540     case EXCP_SWI:
7541         new_mode = ARM_CPU_MODE_SVC;
7542         addr = 0x08;
7543         mask = CPSR_I;
7544         /* The PC already points to the next instruction.  */
7545         offset = 0;
7546         break;
7547     case EXCP_BKPT:
7548         env->exception.fsr = 2;
7549         /* Fall through to prefetch abort.  */
7550     case EXCP_PREFETCH_ABORT:
7551         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7552         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7553         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7554                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7555         new_mode = ARM_CPU_MODE_ABT;
7556         addr = 0x0c;
7557         mask = CPSR_A | CPSR_I;
7558         offset = 4;
7559         break;
7560     case EXCP_DATA_ABORT:
7561         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7562         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7563         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7564                       env->exception.fsr,
7565                       (uint32_t)env->exception.vaddress);
7566         new_mode = ARM_CPU_MODE_ABT;
7567         addr = 0x10;
7568         mask = CPSR_A | CPSR_I;
7569         offset = 8;
7570         break;
7571     case EXCP_IRQ:
7572         new_mode = ARM_CPU_MODE_IRQ;
7573         addr = 0x18;
7574         /* Disable IRQ and imprecise data aborts.  */
7575         mask = CPSR_A | CPSR_I;
7576         offset = 4;
7577         if (env->cp15.scr_el3 & SCR_IRQ) {
7578             /* IRQ routed to monitor mode */
7579             new_mode = ARM_CPU_MODE_MON;
7580             mask |= CPSR_F;
7581         }
7582         break;
7583     case EXCP_FIQ:
7584         new_mode = ARM_CPU_MODE_FIQ;
7585         addr = 0x1c;
7586         /* Disable FIQ, IRQ and imprecise data aborts.  */
7587         mask = CPSR_A | CPSR_I | CPSR_F;
7588         if (env->cp15.scr_el3 & SCR_FIQ) {
7589             /* FIQ routed to monitor mode */
7590             new_mode = ARM_CPU_MODE_MON;
7591         }
7592         offset = 4;
7593         break;
7594     case EXCP_VIRQ:
7595         new_mode = ARM_CPU_MODE_IRQ;
7596         addr = 0x18;
7597         /* Disable IRQ and imprecise data aborts.  */
7598         mask = CPSR_A | CPSR_I;
7599         offset = 4;
7600         break;
7601     case EXCP_VFIQ:
7602         new_mode = ARM_CPU_MODE_FIQ;
7603         addr = 0x1c;
7604         /* Disable FIQ, IRQ and imprecise data aborts.  */
7605         mask = CPSR_A | CPSR_I | CPSR_F;
7606         offset = 4;
7607         break;
7608     case EXCP_SMC:
7609         new_mode = ARM_CPU_MODE_MON;
7610         addr = 0x08;
7611         mask = CPSR_A | CPSR_I | CPSR_F;
7612         offset = 0;
7613         break;
7614     default:
7615         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7616         return; /* Never happens.  Keep compiler happy.  */
7617     }
7618 
7619     if (new_mode == ARM_CPU_MODE_MON) {
7620         addr += env->cp15.mvbar;
7621     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7622         /* High vectors. When enabled, base address cannot be remapped. */
7623         addr += 0xffff0000;
7624     } else {
7625         /* ARM v7 architectures provide a vector base address register to remap
7626          * the interrupt vector table.
7627          * This register is only followed in non-monitor mode, and is banked.
7628          * Note: only bits 31:5 are valid.
7629          */
7630         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7631     }
7632 
7633     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7634         env->cp15.scr_el3 &= ~SCR_NS;
7635     }
7636 
7637     switch_mode (env, new_mode);
7638     /* For exceptions taken to AArch32 we must clear the SS bit in both
7639      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7640      */
7641     env->uncached_cpsr &= ~PSTATE_SS;
7642     env->spsr = cpsr_read(env);
7643     /* Clear IT bits.  */
7644     env->condexec_bits = 0;
7645     /* Switch to the new mode, and to the correct instruction set.  */
7646     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7647     /* Set new mode endianness */
7648     env->uncached_cpsr &= ~CPSR_E;
7649     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7650         env->uncached_cpsr |= CPSR_E;
7651     }
7652     env->daif |= mask;
7653     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7654      * and we should just guard the thumb mode on V4 */
7655     if (arm_feature(env, ARM_FEATURE_V4T)) {
7656         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7657     }
7658     env->regs[14] = env->regs[15] + offset;
7659     env->regs[15] = addr;
7660 }
7661 
7662 /* Handle exception entry to a target EL which is using AArch64 */
7663 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7664 {
7665     ARMCPU *cpu = ARM_CPU(cs);
7666     CPUARMState *env = &cpu->env;
7667     unsigned int new_el = env->exception.target_el;
7668     target_ulong addr = env->cp15.vbar_el[new_el];
7669     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7670 
7671     if (arm_current_el(env) < new_el) {
7672         /* Entry vector offset depends on whether the implemented EL
7673          * immediately lower than the target level is using AArch32 or AArch64
7674          */
7675         bool is_aa64;
7676 
7677         switch (new_el) {
7678         case 3:
7679             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7680             break;
7681         case 2:
7682             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7683             break;
7684         case 1:
7685             is_aa64 = is_a64(env);
7686             break;
7687         default:
7688             g_assert_not_reached();
7689         }
7690 
7691         if (is_aa64) {
7692             addr += 0x400;
7693         } else {
7694             addr += 0x600;
7695         }
7696     } else if (pstate_read(env) & PSTATE_SP) {
7697         addr += 0x200;
7698     }
7699 
7700     switch (cs->exception_index) {
7701     case EXCP_PREFETCH_ABORT:
7702     case EXCP_DATA_ABORT:
7703         env->cp15.far_el[new_el] = env->exception.vaddress;
7704         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7705                       env->cp15.far_el[new_el]);
7706         /* fall through */
7707     case EXCP_BKPT:
7708     case EXCP_UDEF:
7709     case EXCP_SWI:
7710     case EXCP_HVC:
7711     case EXCP_HYP_TRAP:
7712     case EXCP_SMC:
7713         env->cp15.esr_el[new_el] = env->exception.syndrome;
7714         break;
7715     case EXCP_IRQ:
7716     case EXCP_VIRQ:
7717         addr += 0x80;
7718         break;
7719     case EXCP_FIQ:
7720     case EXCP_VFIQ:
7721         addr += 0x100;
7722         break;
7723     case EXCP_SEMIHOST:
7724         qemu_log_mask(CPU_LOG_INT,
7725                       "...handling as semihosting call 0x%" PRIx64 "\n",
7726                       env->xregs[0]);
7727         env->xregs[0] = do_arm_semihosting(env);
7728         return;
7729     default:
7730         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7731     }
7732 
7733     if (is_a64(env)) {
7734         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7735         aarch64_save_sp(env, arm_current_el(env));
7736         env->elr_el[new_el] = env->pc;
7737     } else {
7738         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7739         env->elr_el[new_el] = env->regs[15];
7740 
7741         aarch64_sync_32_to_64(env);
7742 
7743         env->condexec_bits = 0;
7744     }
7745     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7746                   env->elr_el[new_el]);
7747 
7748     pstate_write(env, PSTATE_DAIF | new_mode);
7749     env->aarch64 = 1;
7750     aarch64_restore_sp(env, new_el);
7751 
7752     env->pc = addr;
7753 
7754     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7755                   new_el, env->pc, pstate_read(env));
7756 }
7757 
7758 static inline bool check_for_semihosting(CPUState *cs)
7759 {
7760     /* Check whether this exception is a semihosting call; if so
7761      * then handle it and return true; otherwise return false.
7762      */
7763     ARMCPU *cpu = ARM_CPU(cs);
7764     CPUARMState *env = &cpu->env;
7765 
7766     if (is_a64(env)) {
7767         if (cs->exception_index == EXCP_SEMIHOST) {
7768             /* This is always the 64-bit semihosting exception.
7769              * The "is this usermode" and "is semihosting enabled"
7770              * checks have been done at translate time.
7771              */
7772             qemu_log_mask(CPU_LOG_INT,
7773                           "...handling as semihosting call 0x%" PRIx64 "\n",
7774                           env->xregs[0]);
7775             env->xregs[0] = do_arm_semihosting(env);
7776             return true;
7777         }
7778         return false;
7779     } else {
7780         uint32_t imm;
7781 
7782         /* Only intercept calls from privileged modes, to provide some
7783          * semblance of security.
7784          */
7785         if (cs->exception_index != EXCP_SEMIHOST &&
7786             (!semihosting_enabled() ||
7787              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7788             return false;
7789         }
7790 
7791         switch (cs->exception_index) {
7792         case EXCP_SEMIHOST:
7793             /* This is always a semihosting call; the "is this usermode"
7794              * and "is semihosting enabled" checks have been done at
7795              * translate time.
7796              */
7797             break;
7798         case EXCP_SWI:
7799             /* Check for semihosting interrupt.  */
7800             if (env->thumb) {
7801                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7802                     & 0xff;
7803                 if (imm == 0xab) {
7804                     break;
7805                 }
7806             } else {
7807                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7808                     & 0xffffff;
7809                 if (imm == 0x123456) {
7810                     break;
7811                 }
7812             }
7813             return false;
7814         case EXCP_BKPT:
7815             /* See if this is a semihosting syscall.  */
7816             if (env->thumb) {
7817                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7818                     & 0xff;
7819                 if (imm == 0xab) {
7820                     env->regs[15] += 2;
7821                     break;
7822                 }
7823             }
7824             return false;
7825         default:
7826             return false;
7827         }
7828 
7829         qemu_log_mask(CPU_LOG_INT,
7830                       "...handling as semihosting call 0x%x\n",
7831                       env->regs[0]);
7832         env->regs[0] = do_arm_semihosting(env);
7833         return true;
7834     }
7835 }
7836 
7837 /* Handle a CPU exception for A and R profile CPUs.
7838  * Do any appropriate logging, handle PSCI calls, and then hand off
7839  * to the AArch64-entry or AArch32-entry function depending on the
7840  * target exception level's register width.
7841  */
7842 void arm_cpu_do_interrupt(CPUState *cs)
7843 {
7844     ARMCPU *cpu = ARM_CPU(cs);
7845     CPUARMState *env = &cpu->env;
7846     unsigned int new_el = env->exception.target_el;
7847 
7848     assert(!arm_feature(env, ARM_FEATURE_M));
7849 
7850     arm_log_exception(cs->exception_index);
7851     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7852                   new_el);
7853     if (qemu_loglevel_mask(CPU_LOG_INT)
7854         && !excp_is_internal(cs->exception_index)) {
7855         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7856                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7857                       env->exception.syndrome);
7858     }
7859 
7860     if (arm_is_psci_call(cpu, cs->exception_index)) {
7861         arm_handle_psci_call(cpu);
7862         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7863         return;
7864     }
7865 
7866     /* Semihosting semantics depend on the register width of the
7867      * code that caused the exception, not the target exception level,
7868      * so must be handled here.
7869      */
7870     if (check_for_semihosting(cs)) {
7871         return;
7872     }
7873 
7874     assert(!excp_is_internal(cs->exception_index));
7875     if (arm_el_is_aa64(env, new_el)) {
7876         arm_cpu_do_interrupt_aarch64(cs);
7877     } else {
7878         arm_cpu_do_interrupt_aarch32(cs);
7879     }
7880 
7881     /* Hooks may change global state so BQL should be held, also the
7882      * BQL needs to be held for any modification of
7883      * cs->interrupt_request.
7884      */
7885     g_assert(qemu_mutex_iothread_locked());
7886 
7887     arm_call_el_change_hook(cpu);
7888 
7889     if (!kvm_enabled()) {
7890         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7891     }
7892 }
7893 
7894 /* Return the exception level which controls this address translation regime */
7895 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7896 {
7897     switch (mmu_idx) {
7898     case ARMMMUIdx_S2NS:
7899     case ARMMMUIdx_S1E2:
7900         return 2;
7901     case ARMMMUIdx_S1E3:
7902         return 3;
7903     case ARMMMUIdx_S1SE0:
7904         return arm_el_is_aa64(env, 3) ? 1 : 3;
7905     case ARMMMUIdx_S1SE1:
7906     case ARMMMUIdx_S1NSE0:
7907     case ARMMMUIdx_S1NSE1:
7908     case ARMMMUIdx_MPrivNegPri:
7909     case ARMMMUIdx_MUserNegPri:
7910     case ARMMMUIdx_MPriv:
7911     case ARMMMUIdx_MUser:
7912     case ARMMMUIdx_MSPrivNegPri:
7913     case ARMMMUIdx_MSUserNegPri:
7914     case ARMMMUIdx_MSPriv:
7915     case ARMMMUIdx_MSUser:
7916         return 1;
7917     default:
7918         g_assert_not_reached();
7919     }
7920 }
7921 
7922 /* Return the SCTLR value which controls this address translation regime */
7923 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7924 {
7925     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7926 }
7927 
7928 /* Return true if the specified stage of address translation is disabled */
7929 static inline bool regime_translation_disabled(CPUARMState *env,
7930                                                ARMMMUIdx mmu_idx)
7931 {
7932     if (arm_feature(env, ARM_FEATURE_M)) {
7933         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7934                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7935         case R_V7M_MPU_CTRL_ENABLE_MASK:
7936             /* Enabled, but not for HardFault and NMI */
7937             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
7938         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7939             /* Enabled for all cases */
7940             return false;
7941         case 0:
7942         default:
7943             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7944              * we warned about that in armv7m_nvic.c when the guest set it.
7945              */
7946             return true;
7947         }
7948     }
7949 
7950     if (mmu_idx == ARMMMUIdx_S2NS) {
7951         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7952     }
7953     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7954 }
7955 
7956 static inline bool regime_translation_big_endian(CPUARMState *env,
7957                                                  ARMMMUIdx mmu_idx)
7958 {
7959     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7960 }
7961 
7962 /* Return the TCR controlling this translation regime */
7963 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7964 {
7965     if (mmu_idx == ARMMMUIdx_S2NS) {
7966         return &env->cp15.vtcr_el2;
7967     }
7968     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7969 }
7970 
7971 /* Convert a possible stage1+2 MMU index into the appropriate
7972  * stage 1 MMU index
7973  */
7974 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7975 {
7976     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7977         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7978     }
7979     return mmu_idx;
7980 }
7981 
7982 /* Returns TBI0 value for current regime el */
7983 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7984 {
7985     TCR *tcr;
7986     uint32_t el;
7987 
7988     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7989      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7990      */
7991     mmu_idx = stage_1_mmu_idx(mmu_idx);
7992 
7993     tcr = regime_tcr(env, mmu_idx);
7994     el = regime_el(env, mmu_idx);
7995 
7996     if (el > 1) {
7997         return extract64(tcr->raw_tcr, 20, 1);
7998     } else {
7999         return extract64(tcr->raw_tcr, 37, 1);
8000     }
8001 }
8002 
8003 /* Returns TBI1 value for current regime el */
8004 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8005 {
8006     TCR *tcr;
8007     uint32_t el;
8008 
8009     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8010      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8011      */
8012     mmu_idx = stage_1_mmu_idx(mmu_idx);
8013 
8014     tcr = regime_tcr(env, mmu_idx);
8015     el = regime_el(env, mmu_idx);
8016 
8017     if (el > 1) {
8018         return 0;
8019     } else {
8020         return extract64(tcr->raw_tcr, 38, 1);
8021     }
8022 }
8023 
8024 /* Return the TTBR associated with this translation regime */
8025 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8026                                    int ttbrn)
8027 {
8028     if (mmu_idx == ARMMMUIdx_S2NS) {
8029         return env->cp15.vttbr_el2;
8030     }
8031     if (ttbrn == 0) {
8032         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8033     } else {
8034         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8035     }
8036 }
8037 
8038 /* Return true if the translation regime is using LPAE format page tables */
8039 static inline bool regime_using_lpae_format(CPUARMState *env,
8040                                             ARMMMUIdx mmu_idx)
8041 {
8042     int el = regime_el(env, mmu_idx);
8043     if (el == 2 || arm_el_is_aa64(env, el)) {
8044         return true;
8045     }
8046     if (arm_feature(env, ARM_FEATURE_LPAE)
8047         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8048         return true;
8049     }
8050     return false;
8051 }
8052 
8053 /* Returns true if the stage 1 translation regime is using LPAE format page
8054  * tables. Used when raising alignment exceptions, whose FSR changes depending
8055  * on whether the long or short descriptor format is in use. */
8056 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8057 {
8058     mmu_idx = stage_1_mmu_idx(mmu_idx);
8059 
8060     return regime_using_lpae_format(env, mmu_idx);
8061 }
8062 
8063 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8064 {
8065     switch (mmu_idx) {
8066     case ARMMMUIdx_S1SE0:
8067     case ARMMMUIdx_S1NSE0:
8068     case ARMMMUIdx_MUser:
8069     case ARMMMUIdx_MSUser:
8070     case ARMMMUIdx_MUserNegPri:
8071     case ARMMMUIdx_MSUserNegPri:
8072         return true;
8073     default:
8074         return false;
8075     case ARMMMUIdx_S12NSE0:
8076     case ARMMMUIdx_S12NSE1:
8077         g_assert_not_reached();
8078     }
8079 }
8080 
8081 /* Translate section/page access permissions to page
8082  * R/W protection flags
8083  *
8084  * @env:         CPUARMState
8085  * @mmu_idx:     MMU index indicating required translation regime
8086  * @ap:          The 3-bit access permissions (AP[2:0])
8087  * @domain_prot: The 2-bit domain access permissions
8088  */
8089 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8090                                 int ap, int domain_prot)
8091 {
8092     bool is_user = regime_is_user(env, mmu_idx);
8093 
8094     if (domain_prot == 3) {
8095         return PAGE_READ | PAGE_WRITE;
8096     }
8097 
8098     switch (ap) {
8099     case 0:
8100         if (arm_feature(env, ARM_FEATURE_V7)) {
8101             return 0;
8102         }
8103         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8104         case SCTLR_S:
8105             return is_user ? 0 : PAGE_READ;
8106         case SCTLR_R:
8107             return PAGE_READ;
8108         default:
8109             return 0;
8110         }
8111     case 1:
8112         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8113     case 2:
8114         if (is_user) {
8115             return PAGE_READ;
8116         } else {
8117             return PAGE_READ | PAGE_WRITE;
8118         }
8119     case 3:
8120         return PAGE_READ | PAGE_WRITE;
8121     case 4: /* Reserved.  */
8122         return 0;
8123     case 5:
8124         return is_user ? 0 : PAGE_READ;
8125     case 6:
8126         return PAGE_READ;
8127     case 7:
8128         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8129             return 0;
8130         }
8131         return PAGE_READ;
8132     default:
8133         g_assert_not_reached();
8134     }
8135 }
8136 
8137 /* Translate section/page access permissions to page
8138  * R/W protection flags.
8139  *
8140  * @ap:      The 2-bit simple AP (AP[2:1])
8141  * @is_user: TRUE if accessing from PL0
8142  */
8143 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8144 {
8145     switch (ap) {
8146     case 0:
8147         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8148     case 1:
8149         return PAGE_READ | PAGE_WRITE;
8150     case 2:
8151         return is_user ? 0 : PAGE_READ;
8152     case 3:
8153         return PAGE_READ;
8154     default:
8155         g_assert_not_reached();
8156     }
8157 }
8158 
8159 static inline int
8160 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8161 {
8162     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8163 }
8164 
8165 /* Translate S2 section/page access permissions to protection flags
8166  *
8167  * @env:     CPUARMState
8168  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8169  * @xn:      XN (execute-never) bit
8170  */
8171 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8172 {
8173     int prot = 0;
8174 
8175     if (s2ap & 1) {
8176         prot |= PAGE_READ;
8177     }
8178     if (s2ap & 2) {
8179         prot |= PAGE_WRITE;
8180     }
8181     if (!xn) {
8182         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8183             prot |= PAGE_EXEC;
8184         }
8185     }
8186     return prot;
8187 }
8188 
8189 /* Translate section/page access permissions to protection flags
8190  *
8191  * @env:     CPUARMState
8192  * @mmu_idx: MMU index indicating required translation regime
8193  * @is_aa64: TRUE if AArch64
8194  * @ap:      The 2-bit simple AP (AP[2:1])
8195  * @ns:      NS (non-secure) bit
8196  * @xn:      XN (execute-never) bit
8197  * @pxn:     PXN (privileged execute-never) bit
8198  */
8199 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8200                       int ap, int ns, int xn, int pxn)
8201 {
8202     bool is_user = regime_is_user(env, mmu_idx);
8203     int prot_rw, user_rw;
8204     bool have_wxn;
8205     int wxn = 0;
8206 
8207     assert(mmu_idx != ARMMMUIdx_S2NS);
8208 
8209     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8210     if (is_user) {
8211         prot_rw = user_rw;
8212     } else {
8213         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8214     }
8215 
8216     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8217         return prot_rw;
8218     }
8219 
8220     /* TODO have_wxn should be replaced with
8221      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8222      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8223      * compatible processors have EL2, which is required for [U]WXN.
8224      */
8225     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8226 
8227     if (have_wxn) {
8228         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8229     }
8230 
8231     if (is_aa64) {
8232         switch (regime_el(env, mmu_idx)) {
8233         case 1:
8234             if (!is_user) {
8235                 xn = pxn || (user_rw & PAGE_WRITE);
8236             }
8237             break;
8238         case 2:
8239         case 3:
8240             break;
8241         }
8242     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8243         switch (regime_el(env, mmu_idx)) {
8244         case 1:
8245         case 3:
8246             if (is_user) {
8247                 xn = xn || !(user_rw & PAGE_READ);
8248             } else {
8249                 int uwxn = 0;
8250                 if (have_wxn) {
8251                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8252                 }
8253                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8254                      (uwxn && (user_rw & PAGE_WRITE));
8255             }
8256             break;
8257         case 2:
8258             break;
8259         }
8260     } else {
8261         xn = wxn = 0;
8262     }
8263 
8264     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8265         return prot_rw;
8266     }
8267     return prot_rw | PAGE_EXEC;
8268 }
8269 
8270 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8271                                      uint32_t *table, uint32_t address)
8272 {
8273     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8274     TCR *tcr = regime_tcr(env, mmu_idx);
8275 
8276     if (address & tcr->mask) {
8277         if (tcr->raw_tcr & TTBCR_PD1) {
8278             /* Translation table walk disabled for TTBR1 */
8279             return false;
8280         }
8281         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8282     } else {
8283         if (tcr->raw_tcr & TTBCR_PD0) {
8284             /* Translation table walk disabled for TTBR0 */
8285             return false;
8286         }
8287         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8288     }
8289     *table |= (address >> 18) & 0x3ffc;
8290     return true;
8291 }
8292 
8293 /* Translate a S1 pagetable walk through S2 if needed.  */
8294 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8295                                hwaddr addr, MemTxAttrs txattrs,
8296                                ARMMMUFaultInfo *fi)
8297 {
8298     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8299         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8300         target_ulong s2size;
8301         hwaddr s2pa;
8302         int s2prot;
8303         int ret;
8304 
8305         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8306                                  &txattrs, &s2prot, &s2size, fi, NULL);
8307         if (ret) {
8308             fi->s2addr = addr;
8309             fi->stage2 = true;
8310             fi->s1ptw = true;
8311             return ~0;
8312         }
8313         addr = s2pa;
8314     }
8315     return addr;
8316 }
8317 
8318 /* All loads done in the course of a page table walk go through here.
8319  * TODO: rather than ignoring errors from physical memory reads (which
8320  * are external aborts in ARM terminology) we should propagate this
8321  * error out so that we can turn it into a Data Abort if this walk
8322  * was being done for a CPU load/store or an address translation instruction
8323  * (but not if it was for a debug access).
8324  */
8325 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8326                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8327 {
8328     ARMCPU *cpu = ARM_CPU(cs);
8329     CPUARMState *env = &cpu->env;
8330     MemTxAttrs attrs = {};
8331     AddressSpace *as;
8332 
8333     attrs.secure = is_secure;
8334     as = arm_addressspace(cs, attrs);
8335     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8336     if (fi->s1ptw) {
8337         return 0;
8338     }
8339     if (regime_translation_big_endian(env, mmu_idx)) {
8340         return address_space_ldl_be(as, addr, attrs, NULL);
8341     } else {
8342         return address_space_ldl_le(as, addr, attrs, NULL);
8343     }
8344 }
8345 
8346 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8347                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8348 {
8349     ARMCPU *cpu = ARM_CPU(cs);
8350     CPUARMState *env = &cpu->env;
8351     MemTxAttrs attrs = {};
8352     AddressSpace *as;
8353 
8354     attrs.secure = is_secure;
8355     as = arm_addressspace(cs, attrs);
8356     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8357     if (fi->s1ptw) {
8358         return 0;
8359     }
8360     if (regime_translation_big_endian(env, mmu_idx)) {
8361         return address_space_ldq_be(as, addr, attrs, NULL);
8362     } else {
8363         return address_space_ldq_le(as, addr, attrs, NULL);
8364     }
8365 }
8366 
8367 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8368                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8369                              hwaddr *phys_ptr, int *prot,
8370                              target_ulong *page_size,
8371                              ARMMMUFaultInfo *fi)
8372 {
8373     CPUState *cs = CPU(arm_env_get_cpu(env));
8374     int level = 1;
8375     uint32_t table;
8376     uint32_t desc;
8377     int type;
8378     int ap;
8379     int domain = 0;
8380     int domain_prot;
8381     hwaddr phys_addr;
8382     uint32_t dacr;
8383 
8384     /* Pagetable walk.  */
8385     /* Lookup l1 descriptor.  */
8386     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8387         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8388         fi->type = ARMFault_Translation;
8389         goto do_fault;
8390     }
8391     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8392                        mmu_idx, fi);
8393     type = (desc & 3);
8394     domain = (desc >> 5) & 0x0f;
8395     if (regime_el(env, mmu_idx) == 1) {
8396         dacr = env->cp15.dacr_ns;
8397     } else {
8398         dacr = env->cp15.dacr_s;
8399     }
8400     domain_prot = (dacr >> (domain * 2)) & 3;
8401     if (type == 0) {
8402         /* Section translation fault.  */
8403         fi->type = ARMFault_Translation;
8404         goto do_fault;
8405     }
8406     if (type != 2) {
8407         level = 2;
8408     }
8409     if (domain_prot == 0 || domain_prot == 2) {
8410         fi->type = ARMFault_Domain;
8411         goto do_fault;
8412     }
8413     if (type == 2) {
8414         /* 1Mb section.  */
8415         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8416         ap = (desc >> 10) & 3;
8417         *page_size = 1024 * 1024;
8418     } else {
8419         /* Lookup l2 entry.  */
8420         if (type == 1) {
8421             /* Coarse pagetable.  */
8422             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8423         } else {
8424             /* Fine pagetable.  */
8425             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8426         }
8427         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8428                            mmu_idx, fi);
8429         switch (desc & 3) {
8430         case 0: /* Page translation fault.  */
8431             fi->type = ARMFault_Translation;
8432             goto do_fault;
8433         case 1: /* 64k page.  */
8434             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8435             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8436             *page_size = 0x10000;
8437             break;
8438         case 2: /* 4k page.  */
8439             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8440             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8441             *page_size = 0x1000;
8442             break;
8443         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8444             if (type == 1) {
8445                 /* ARMv6/XScale extended small page format */
8446                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8447                     || arm_feature(env, ARM_FEATURE_V6)) {
8448                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8449                     *page_size = 0x1000;
8450                 } else {
8451                     /* UNPREDICTABLE in ARMv5; we choose to take a
8452                      * page translation fault.
8453                      */
8454                     fi->type = ARMFault_Translation;
8455                     goto do_fault;
8456                 }
8457             } else {
8458                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8459                 *page_size = 0x400;
8460             }
8461             ap = (desc >> 4) & 3;
8462             break;
8463         default:
8464             /* Never happens, but compiler isn't smart enough to tell.  */
8465             abort();
8466         }
8467     }
8468     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8469     *prot |= *prot ? PAGE_EXEC : 0;
8470     if (!(*prot & (1 << access_type))) {
8471         /* Access permission fault.  */
8472         fi->type = ARMFault_Permission;
8473         goto do_fault;
8474     }
8475     *phys_ptr = phys_addr;
8476     return false;
8477 do_fault:
8478     fi->domain = domain;
8479     fi->level = level;
8480     return true;
8481 }
8482 
8483 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8484                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8485                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8486                              target_ulong *page_size, ARMMMUFaultInfo *fi)
8487 {
8488     CPUState *cs = CPU(arm_env_get_cpu(env));
8489     int level = 1;
8490     uint32_t table;
8491     uint32_t desc;
8492     uint32_t xn;
8493     uint32_t pxn = 0;
8494     int type;
8495     int ap;
8496     int domain = 0;
8497     int domain_prot;
8498     hwaddr phys_addr;
8499     uint32_t dacr;
8500     bool ns;
8501 
8502     /* Pagetable walk.  */
8503     /* Lookup l1 descriptor.  */
8504     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8505         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8506         fi->type = ARMFault_Translation;
8507         goto do_fault;
8508     }
8509     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8510                        mmu_idx, fi);
8511     type = (desc & 3);
8512     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8513         /* Section translation fault, or attempt to use the encoding
8514          * which is Reserved on implementations without PXN.
8515          */
8516         fi->type = ARMFault_Translation;
8517         goto do_fault;
8518     }
8519     if ((type == 1) || !(desc & (1 << 18))) {
8520         /* Page or Section.  */
8521         domain = (desc >> 5) & 0x0f;
8522     }
8523     if (regime_el(env, mmu_idx) == 1) {
8524         dacr = env->cp15.dacr_ns;
8525     } else {
8526         dacr = env->cp15.dacr_s;
8527     }
8528     if (type == 1) {
8529         level = 2;
8530     }
8531     domain_prot = (dacr >> (domain * 2)) & 3;
8532     if (domain_prot == 0 || domain_prot == 2) {
8533         /* Section or Page domain fault */
8534         fi->type = ARMFault_Domain;
8535         goto do_fault;
8536     }
8537     if (type != 1) {
8538         if (desc & (1 << 18)) {
8539             /* Supersection.  */
8540             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8541             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8542             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8543             *page_size = 0x1000000;
8544         } else {
8545             /* Section.  */
8546             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8547             *page_size = 0x100000;
8548         }
8549         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8550         xn = desc & (1 << 4);
8551         pxn = desc & 1;
8552         ns = extract32(desc, 19, 1);
8553     } else {
8554         if (arm_feature(env, ARM_FEATURE_PXN)) {
8555             pxn = (desc >> 2) & 1;
8556         }
8557         ns = extract32(desc, 3, 1);
8558         /* Lookup l2 entry.  */
8559         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8560         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8561                            mmu_idx, fi);
8562         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8563         switch (desc & 3) {
8564         case 0: /* Page translation fault.  */
8565             fi->type = ARMFault_Translation;
8566             goto do_fault;
8567         case 1: /* 64k page.  */
8568             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8569             xn = desc & (1 << 15);
8570             *page_size = 0x10000;
8571             break;
8572         case 2: case 3: /* 4k page.  */
8573             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8574             xn = desc & 1;
8575             *page_size = 0x1000;
8576             break;
8577         default:
8578             /* Never happens, but compiler isn't smart enough to tell.  */
8579             abort();
8580         }
8581     }
8582     if (domain_prot == 3) {
8583         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8584     } else {
8585         if (pxn && !regime_is_user(env, mmu_idx)) {
8586             xn = 1;
8587         }
8588         if (xn && access_type == MMU_INST_FETCH) {
8589             fi->type = ARMFault_Permission;
8590             goto do_fault;
8591         }
8592 
8593         if (arm_feature(env, ARM_FEATURE_V6K) &&
8594                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8595             /* The simplified model uses AP[0] as an access control bit.  */
8596             if ((ap & 1) == 0) {
8597                 /* Access flag fault.  */
8598                 fi->type = ARMFault_AccessFlag;
8599                 goto do_fault;
8600             }
8601             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8602         } else {
8603             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8604         }
8605         if (*prot && !xn) {
8606             *prot |= PAGE_EXEC;
8607         }
8608         if (!(*prot & (1 << access_type))) {
8609             /* Access permission fault.  */
8610             fi->type = ARMFault_Permission;
8611             goto do_fault;
8612         }
8613     }
8614     if (ns) {
8615         /* The NS bit will (as required by the architecture) have no effect if
8616          * the CPU doesn't support TZ or this is a non-secure translation
8617          * regime, because the attribute will already be non-secure.
8618          */
8619         attrs->secure = false;
8620     }
8621     *phys_ptr = phys_addr;
8622     return false;
8623 do_fault:
8624     fi->domain = domain;
8625     fi->level = level;
8626     return true;
8627 }
8628 
8629 /*
8630  * check_s2_mmu_setup
8631  * @cpu:        ARMCPU
8632  * @is_aa64:    True if the translation regime is in AArch64 state
8633  * @startlevel: Suggested starting level
8634  * @inputsize:  Bitsize of IPAs
8635  * @stride:     Page-table stride (See the ARM ARM)
8636  *
8637  * Returns true if the suggested S2 translation parameters are OK and
8638  * false otherwise.
8639  */
8640 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8641                                int inputsize, int stride)
8642 {
8643     const int grainsize = stride + 3;
8644     int startsizecheck;
8645 
8646     /* Negative levels are never allowed.  */
8647     if (level < 0) {
8648         return false;
8649     }
8650 
8651     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8652     if (startsizecheck < 1 || startsizecheck > stride + 4) {
8653         return false;
8654     }
8655 
8656     if (is_aa64) {
8657         CPUARMState *env = &cpu->env;
8658         unsigned int pamax = arm_pamax(cpu);
8659 
8660         switch (stride) {
8661         case 13: /* 64KB Pages.  */
8662             if (level == 0 || (level == 1 && pamax <= 42)) {
8663                 return false;
8664             }
8665             break;
8666         case 11: /* 16KB Pages.  */
8667             if (level == 0 || (level == 1 && pamax <= 40)) {
8668                 return false;
8669             }
8670             break;
8671         case 9: /* 4KB Pages.  */
8672             if (level == 0 && pamax <= 42) {
8673                 return false;
8674             }
8675             break;
8676         default:
8677             g_assert_not_reached();
8678         }
8679 
8680         /* Inputsize checks.  */
8681         if (inputsize > pamax &&
8682             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8683             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
8684             return false;
8685         }
8686     } else {
8687         /* AArch32 only supports 4KB pages. Assert on that.  */
8688         assert(stride == 9);
8689 
8690         if (level == 0) {
8691             return false;
8692         }
8693     }
8694     return true;
8695 }
8696 
8697 /* Translate from the 4-bit stage 2 representation of
8698  * memory attributes (without cache-allocation hints) to
8699  * the 8-bit representation of the stage 1 MAIR registers
8700  * (which includes allocation hints).
8701  *
8702  * ref: shared/translation/attrs/S2AttrDecode()
8703  *      .../S2ConvertAttrsHints()
8704  */
8705 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8706 {
8707     uint8_t hiattr = extract32(s2attrs, 2, 2);
8708     uint8_t loattr = extract32(s2attrs, 0, 2);
8709     uint8_t hihint = 0, lohint = 0;
8710 
8711     if (hiattr != 0) { /* normal memory */
8712         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8713             hiattr = loattr = 1; /* non-cacheable */
8714         } else {
8715             if (hiattr != 1) { /* Write-through or write-back */
8716                 hihint = 3; /* RW allocate */
8717             }
8718             if (loattr != 1) { /* Write-through or write-back */
8719                 lohint = 3; /* RW allocate */
8720             }
8721         }
8722     }
8723 
8724     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8725 }
8726 
8727 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8728                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
8729                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8730                                target_ulong *page_size_ptr,
8731                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
8732 {
8733     ARMCPU *cpu = arm_env_get_cpu(env);
8734     CPUState *cs = CPU(cpu);
8735     /* Read an LPAE long-descriptor translation table. */
8736     ARMFaultType fault_type = ARMFault_Translation;
8737     uint32_t level;
8738     uint32_t epd = 0;
8739     int32_t t0sz, t1sz;
8740     uint32_t tg;
8741     uint64_t ttbr;
8742     int ttbr_select;
8743     hwaddr descaddr, indexmask, indexmask_grainsize;
8744     uint32_t tableattrs;
8745     target_ulong page_size;
8746     uint32_t attrs;
8747     int32_t stride = 9;
8748     int32_t addrsize;
8749     int inputsize;
8750     int32_t tbi = 0;
8751     TCR *tcr = regime_tcr(env, mmu_idx);
8752     int ap, ns, xn, pxn;
8753     uint32_t el = regime_el(env, mmu_idx);
8754     bool ttbr1_valid = true;
8755     uint64_t descaddrmask;
8756     bool aarch64 = arm_el_is_aa64(env, el);
8757 
8758     /* TODO:
8759      * This code does not handle the different format TCR for VTCR_EL2.
8760      * This code also does not support shareability levels.
8761      * Attribute and permission bit handling should also be checked when adding
8762      * support for those page table walks.
8763      */
8764     if (aarch64) {
8765         level = 0;
8766         addrsize = 64;
8767         if (el > 1) {
8768             if (mmu_idx != ARMMMUIdx_S2NS) {
8769                 tbi = extract64(tcr->raw_tcr, 20, 1);
8770             }
8771         } else {
8772             if (extract64(address, 55, 1)) {
8773                 tbi = extract64(tcr->raw_tcr, 38, 1);
8774             } else {
8775                 tbi = extract64(tcr->raw_tcr, 37, 1);
8776             }
8777         }
8778         tbi *= 8;
8779 
8780         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8781          * invalid.
8782          */
8783         if (el > 1) {
8784             ttbr1_valid = false;
8785         }
8786     } else {
8787         level = 1;
8788         addrsize = 32;
8789         /* There is no TTBR1 for EL2 */
8790         if (el == 2) {
8791             ttbr1_valid = false;
8792         }
8793     }
8794 
8795     /* Determine whether this address is in the region controlled by
8796      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8797      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8798      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8799      */
8800     if (aarch64) {
8801         /* AArch64 translation.  */
8802         t0sz = extract32(tcr->raw_tcr, 0, 6);
8803         t0sz = MIN(t0sz, 39);
8804         t0sz = MAX(t0sz, 16);
8805     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8806         /* AArch32 stage 1 translation.  */
8807         t0sz = extract32(tcr->raw_tcr, 0, 3);
8808     } else {
8809         /* AArch32 stage 2 translation.  */
8810         bool sext = extract32(tcr->raw_tcr, 4, 1);
8811         bool sign = extract32(tcr->raw_tcr, 3, 1);
8812         /* Address size is 40-bit for a stage 2 translation,
8813          * and t0sz can be negative (from -8 to 7),
8814          * so we need to adjust it to use the TTBR selecting logic below.
8815          */
8816         addrsize = 40;
8817         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8818 
8819         /* If the sign-extend bit is not the same as t0sz[3], the result
8820          * is unpredictable. Flag this as a guest error.  */
8821         if (sign != sext) {
8822             qemu_log_mask(LOG_GUEST_ERROR,
8823                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8824         }
8825     }
8826     t1sz = extract32(tcr->raw_tcr, 16, 6);
8827     if (aarch64) {
8828         t1sz = MIN(t1sz, 39);
8829         t1sz = MAX(t1sz, 16);
8830     }
8831     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8832         /* there is a ttbr0 region and we are in it (high bits all zero) */
8833         ttbr_select = 0;
8834     } else if (ttbr1_valid && t1sz &&
8835                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8836         /* there is a ttbr1 region and we are in it (high bits all one) */
8837         ttbr_select = 1;
8838     } else if (!t0sz) {
8839         /* ttbr0 region is "everything not in the ttbr1 region" */
8840         ttbr_select = 0;
8841     } else if (!t1sz && ttbr1_valid) {
8842         /* ttbr1 region is "everything not in the ttbr0 region" */
8843         ttbr_select = 1;
8844     } else {
8845         /* in the gap between the two regions, this is a Translation fault */
8846         fault_type = ARMFault_Translation;
8847         goto do_fault;
8848     }
8849 
8850     /* Note that QEMU ignores shareability and cacheability attributes,
8851      * so we don't need to do anything with the SH, ORGN, IRGN fields
8852      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8853      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8854      * implement any ASID-like capability so we can ignore it (instead
8855      * we will always flush the TLB any time the ASID is changed).
8856      */
8857     if (ttbr_select == 0) {
8858         ttbr = regime_ttbr(env, mmu_idx, 0);
8859         if (el < 2) {
8860             epd = extract32(tcr->raw_tcr, 7, 1);
8861         }
8862         inputsize = addrsize - t0sz;
8863 
8864         tg = extract32(tcr->raw_tcr, 14, 2);
8865         if (tg == 1) { /* 64KB pages */
8866             stride = 13;
8867         }
8868         if (tg == 2) { /* 16KB pages */
8869             stride = 11;
8870         }
8871     } else {
8872         /* We should only be here if TTBR1 is valid */
8873         assert(ttbr1_valid);
8874 
8875         ttbr = regime_ttbr(env, mmu_idx, 1);
8876         epd = extract32(tcr->raw_tcr, 23, 1);
8877         inputsize = addrsize - t1sz;
8878 
8879         tg = extract32(tcr->raw_tcr, 30, 2);
8880         if (tg == 3)  { /* 64KB pages */
8881             stride = 13;
8882         }
8883         if (tg == 1) { /* 16KB pages */
8884             stride = 11;
8885         }
8886     }
8887 
8888     /* Here we should have set up all the parameters for the translation:
8889      * inputsize, ttbr, epd, stride, tbi
8890      */
8891 
8892     if (epd) {
8893         /* Translation table walk disabled => Translation fault on TLB miss
8894          * Note: This is always 0 on 64-bit EL2 and EL3.
8895          */
8896         goto do_fault;
8897     }
8898 
8899     if (mmu_idx != ARMMMUIdx_S2NS) {
8900         /* The starting level depends on the virtual address size (which can
8901          * be up to 48 bits) and the translation granule size. It indicates
8902          * the number of strides (stride bits at a time) needed to
8903          * consume the bits of the input address. In the pseudocode this is:
8904          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8905          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8906          * our 'stride + 3' and 'stride' is our 'stride'.
8907          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8908          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8909          * = 4 - (inputsize - 4) / stride;
8910          */
8911         level = 4 - (inputsize - 4) / stride;
8912     } else {
8913         /* For stage 2 translations the starting level is specified by the
8914          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8915          */
8916         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8917         uint32_t startlevel;
8918         bool ok;
8919 
8920         if (!aarch64 || stride == 9) {
8921             /* AArch32 or 4KB pages */
8922             startlevel = 2 - sl0;
8923         } else {
8924             /* 16KB or 64KB pages */
8925             startlevel = 3 - sl0;
8926         }
8927 
8928         /* Check that the starting level is valid. */
8929         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8930                                 inputsize, stride);
8931         if (!ok) {
8932             fault_type = ARMFault_Translation;
8933             goto do_fault;
8934         }
8935         level = startlevel;
8936     }
8937 
8938     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8939     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8940 
8941     /* Now we can extract the actual base address from the TTBR */
8942     descaddr = extract64(ttbr, 0, 48);
8943     descaddr &= ~indexmask;
8944 
8945     /* The address field in the descriptor goes up to bit 39 for ARMv7
8946      * but up to bit 47 for ARMv8, but we use the descaddrmask
8947      * up to bit 39 for AArch32, because we don't need other bits in that case
8948      * to construct next descriptor address (anyway they should be all zeroes).
8949      */
8950     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8951                    ~indexmask_grainsize;
8952 
8953     /* Secure accesses start with the page table in secure memory and
8954      * can be downgraded to non-secure at any step. Non-secure accesses
8955      * remain non-secure. We implement this by just ORing in the NSTable/NS
8956      * bits at each step.
8957      */
8958     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8959     for (;;) {
8960         uint64_t descriptor;
8961         bool nstable;
8962 
8963         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8964         descaddr &= ~7ULL;
8965         nstable = extract32(tableattrs, 4, 1);
8966         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
8967         if (fi->s1ptw) {
8968             goto do_fault;
8969         }
8970 
8971         if (!(descriptor & 1) ||
8972             (!(descriptor & 2) && (level == 3))) {
8973             /* Invalid, or the Reserved level 3 encoding */
8974             goto do_fault;
8975         }
8976         descaddr = descriptor & descaddrmask;
8977 
8978         if ((descriptor & 2) && (level < 3)) {
8979             /* Table entry. The top five bits are attributes which  may
8980              * propagate down through lower levels of the table (and
8981              * which are all arranged so that 0 means "no effect", so
8982              * we can gather them up by ORing in the bits at each level).
8983              */
8984             tableattrs |= extract64(descriptor, 59, 5);
8985             level++;
8986             indexmask = indexmask_grainsize;
8987             continue;
8988         }
8989         /* Block entry at level 1 or 2, or page entry at level 3.
8990          * These are basically the same thing, although the number
8991          * of bits we pull in from the vaddr varies.
8992          */
8993         page_size = (1ULL << ((stride * (4 - level)) + 3));
8994         descaddr |= (address & (page_size - 1));
8995         /* Extract attributes from the descriptor */
8996         attrs = extract64(descriptor, 2, 10)
8997             | (extract64(descriptor, 52, 12) << 10);
8998 
8999         if (mmu_idx == ARMMMUIdx_S2NS) {
9000             /* Stage 2 table descriptors do not include any attribute fields */
9001             break;
9002         }
9003         /* Merge in attributes from table descriptors */
9004         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9005         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9006         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9007          * means "force PL1 access only", which means forcing AP[1] to 0.
9008          */
9009         if (extract32(tableattrs, 2, 1)) {
9010             attrs &= ~(1 << 4);
9011         }
9012         attrs |= nstable << 3; /* NS */
9013         break;
9014     }
9015     /* Here descaddr is the final physical address, and attributes
9016      * are all in attrs.
9017      */
9018     fault_type = ARMFault_AccessFlag;
9019     if ((attrs & (1 << 8)) == 0) {
9020         /* Access flag */
9021         goto do_fault;
9022     }
9023 
9024     ap = extract32(attrs, 4, 2);
9025     xn = extract32(attrs, 12, 1);
9026 
9027     if (mmu_idx == ARMMMUIdx_S2NS) {
9028         ns = true;
9029         *prot = get_S2prot(env, ap, xn);
9030     } else {
9031         ns = extract32(attrs, 3, 1);
9032         pxn = extract32(attrs, 11, 1);
9033         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9034     }
9035 
9036     fault_type = ARMFault_Permission;
9037     if (!(*prot & (1 << access_type))) {
9038         goto do_fault;
9039     }
9040 
9041     if (ns) {
9042         /* The NS bit will (as required by the architecture) have no effect if
9043          * the CPU doesn't support TZ or this is a non-secure translation
9044          * regime, because the attribute will already be non-secure.
9045          */
9046         txattrs->secure = false;
9047     }
9048 
9049     if (cacheattrs != NULL) {
9050         if (mmu_idx == ARMMMUIdx_S2NS) {
9051             cacheattrs->attrs = convert_stage2_attrs(env,
9052                                                      extract32(attrs, 0, 4));
9053         } else {
9054             /* Index into MAIR registers for cache attributes */
9055             uint8_t attrindx = extract32(attrs, 0, 3);
9056             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9057             assert(attrindx <= 7);
9058             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9059         }
9060         cacheattrs->shareability = extract32(attrs, 6, 2);
9061     }
9062 
9063     *phys_ptr = descaddr;
9064     *page_size_ptr = page_size;
9065     return false;
9066 
9067 do_fault:
9068     fi->type = fault_type;
9069     fi->level = level;
9070     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9071     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9072     return true;
9073 }
9074 
9075 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9076                                                 ARMMMUIdx mmu_idx,
9077                                                 int32_t address, int *prot)
9078 {
9079     if (!arm_feature(env, ARM_FEATURE_M)) {
9080         *prot = PAGE_READ | PAGE_WRITE;
9081         switch (address) {
9082         case 0xF0000000 ... 0xFFFFFFFF:
9083             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9084                 /* hivecs execing is ok */
9085                 *prot |= PAGE_EXEC;
9086             }
9087             break;
9088         case 0x00000000 ... 0x7FFFFFFF:
9089             *prot |= PAGE_EXEC;
9090             break;
9091         }
9092     } else {
9093         /* Default system address map for M profile cores.
9094          * The architecture specifies which regions are execute-never;
9095          * at the MPU level no other checks are defined.
9096          */
9097         switch (address) {
9098         case 0x00000000 ... 0x1fffffff: /* ROM */
9099         case 0x20000000 ... 0x3fffffff: /* SRAM */
9100         case 0x60000000 ... 0x7fffffff: /* RAM */
9101         case 0x80000000 ... 0x9fffffff: /* RAM */
9102             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9103             break;
9104         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9105         case 0xa0000000 ... 0xbfffffff: /* Device */
9106         case 0xc0000000 ... 0xdfffffff: /* Device */
9107         case 0xe0000000 ... 0xffffffff: /* System */
9108             *prot = PAGE_READ | PAGE_WRITE;
9109             break;
9110         default:
9111             g_assert_not_reached();
9112         }
9113     }
9114 }
9115 
9116 static bool pmsav7_use_background_region(ARMCPU *cpu,
9117                                          ARMMMUIdx mmu_idx, bool is_user)
9118 {
9119     /* Return true if we should use the default memory map as a
9120      * "background" region if there are no hits against any MPU regions.
9121      */
9122     CPUARMState *env = &cpu->env;
9123 
9124     if (is_user) {
9125         return false;
9126     }
9127 
9128     if (arm_feature(env, ARM_FEATURE_M)) {
9129         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9130             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9131     } else {
9132         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9133     }
9134 }
9135 
9136 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9137 {
9138     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9139     return arm_feature(env, ARM_FEATURE_M) &&
9140         extract32(address, 20, 12) == 0xe00;
9141 }
9142 
9143 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9144 {
9145     /* True if address is in the M profile system region
9146      * 0xe0000000 - 0xffffffff
9147      */
9148     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9149 }
9150 
9151 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9152                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9153                                  hwaddr *phys_ptr, int *prot,
9154                                  ARMMMUFaultInfo *fi)
9155 {
9156     ARMCPU *cpu = arm_env_get_cpu(env);
9157     int n;
9158     bool is_user = regime_is_user(env, mmu_idx);
9159 
9160     *phys_ptr = address;
9161     *prot = 0;
9162 
9163     if (regime_translation_disabled(env, mmu_idx) ||
9164         m_is_ppb_region(env, address)) {
9165         /* MPU disabled or M profile PPB access: use default memory map.
9166          * The other case which uses the default memory map in the
9167          * v7M ARM ARM pseudocode is exception vector reads from the vector
9168          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9169          * which always does a direct read using address_space_ldl(), rather
9170          * than going via this function, so we don't need to check that here.
9171          */
9172         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9173     } else { /* MPU enabled */
9174         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9175             /* region search */
9176             uint32_t base = env->pmsav7.drbar[n];
9177             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9178             uint32_t rmask;
9179             bool srdis = false;
9180 
9181             if (!(env->pmsav7.drsr[n] & 0x1)) {
9182                 continue;
9183             }
9184 
9185             if (!rsize) {
9186                 qemu_log_mask(LOG_GUEST_ERROR,
9187                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9188                 continue;
9189             }
9190             rsize++;
9191             rmask = (1ull << rsize) - 1;
9192 
9193             if (base & rmask) {
9194                 qemu_log_mask(LOG_GUEST_ERROR,
9195                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9196                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9197                               n, base, rmask);
9198                 continue;
9199             }
9200 
9201             if (address < base || address > base + rmask) {
9202                 continue;
9203             }
9204 
9205             /* Region matched */
9206 
9207             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9208                 int i, snd;
9209                 uint32_t srdis_mask;
9210 
9211                 rsize -= 3; /* sub region size (power of 2) */
9212                 snd = ((address - base) >> rsize) & 0x7;
9213                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9214 
9215                 srdis_mask = srdis ? 0x3 : 0x0;
9216                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9217                     /* This will check in groups of 2, 4 and then 8, whether
9218                      * the subregion bits are consistent. rsize is incremented
9219                      * back up to give the region size, considering consistent
9220                      * adjacent subregions as one region. Stop testing if rsize
9221                      * is already big enough for an entire QEMU page.
9222                      */
9223                     int snd_rounded = snd & ~(i - 1);
9224                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9225                                                      snd_rounded + 8, i);
9226                     if (srdis_mask ^ srdis_multi) {
9227                         break;
9228                     }
9229                     srdis_mask = (srdis_mask << i) | srdis_mask;
9230                     rsize++;
9231                 }
9232             }
9233             if (rsize < TARGET_PAGE_BITS) {
9234                 qemu_log_mask(LOG_UNIMP,
9235                               "DRSR[%d]: No support for MPU (sub)region "
9236                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
9237                               n, rsize, TARGET_PAGE_BITS);
9238                 continue;
9239             }
9240             if (srdis) {
9241                 continue;
9242             }
9243             break;
9244         }
9245 
9246         if (n == -1) { /* no hits */
9247             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9248                 /* background fault */
9249                 fi->type = ARMFault_Background;
9250                 return true;
9251             }
9252             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9253         } else { /* a MPU hit! */
9254             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9255             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9256 
9257             if (m_is_system_region(env, address)) {
9258                 /* System space is always execute never */
9259                 xn = 1;
9260             }
9261 
9262             if (is_user) { /* User mode AP bit decoding */
9263                 switch (ap) {
9264                 case 0:
9265                 case 1:
9266                 case 5:
9267                     break; /* no access */
9268                 case 3:
9269                     *prot |= PAGE_WRITE;
9270                     /* fall through */
9271                 case 2:
9272                 case 6:
9273                     *prot |= PAGE_READ | PAGE_EXEC;
9274                     break;
9275                 default:
9276                     qemu_log_mask(LOG_GUEST_ERROR,
9277                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9278                                   PRIx32 "\n", n, ap);
9279                 }
9280             } else { /* Priv. mode AP bits decoding */
9281                 switch (ap) {
9282                 case 0:
9283                     break; /* no access */
9284                 case 1:
9285                 case 2:
9286                 case 3:
9287                     *prot |= PAGE_WRITE;
9288                     /* fall through */
9289                 case 5:
9290                 case 6:
9291                     *prot |= PAGE_READ | PAGE_EXEC;
9292                     break;
9293                 default:
9294                     qemu_log_mask(LOG_GUEST_ERROR,
9295                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9296                                   PRIx32 "\n", n, ap);
9297                 }
9298             }
9299 
9300             /* execute never */
9301             if (xn) {
9302                 *prot &= ~PAGE_EXEC;
9303             }
9304         }
9305     }
9306 
9307     fi->type = ARMFault_Permission;
9308     fi->level = 1;
9309     return !(*prot & (1 << access_type));
9310 }
9311 
9312 static bool v8m_is_sau_exempt(CPUARMState *env,
9313                               uint32_t address, MMUAccessType access_type)
9314 {
9315     /* The architecture specifies that certain address ranges are
9316      * exempt from v8M SAU/IDAU checks.
9317      */
9318     return
9319         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9320         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9321         (address >= 0xe000e000 && address <= 0xe000efff) ||
9322         (address >= 0xe002e000 && address <= 0xe002efff) ||
9323         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9324         (address >= 0xe00ff000 && address <= 0xe00fffff);
9325 }
9326 
9327 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9328                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9329                                 V8M_SAttributes *sattrs)
9330 {
9331     /* Look up the security attributes for this address. Compare the
9332      * pseudocode SecurityCheck() function.
9333      * We assume the caller has zero-initialized *sattrs.
9334      */
9335     ARMCPU *cpu = arm_env_get_cpu(env);
9336     int r;
9337 
9338     /* TODO: implement IDAU */
9339 
9340     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9341         /* 0xf0000000..0xffffffff is always S for insn fetches */
9342         return;
9343     }
9344 
9345     if (v8m_is_sau_exempt(env, address, access_type)) {
9346         sattrs->ns = !regime_is_secure(env, mmu_idx);
9347         return;
9348     }
9349 
9350     switch (env->sau.ctrl & 3) {
9351     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9352         break;
9353     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9354         sattrs->ns = true;
9355         break;
9356     default: /* SAU.ENABLE == 1 */
9357         for (r = 0; r < cpu->sau_sregion; r++) {
9358             if (env->sau.rlar[r] & 1) {
9359                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9360                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9361 
9362                 if (base <= address && limit >= address) {
9363                     if (sattrs->srvalid) {
9364                         /* If we hit in more than one region then we must report
9365                          * as Secure, not NS-Callable, with no valid region
9366                          * number info.
9367                          */
9368                         sattrs->ns = false;
9369                         sattrs->nsc = false;
9370                         sattrs->sregion = 0;
9371                         sattrs->srvalid = false;
9372                         break;
9373                     } else {
9374                         if (env->sau.rlar[r] & 2) {
9375                             sattrs->nsc = true;
9376                         } else {
9377                             sattrs->ns = true;
9378                         }
9379                         sattrs->srvalid = true;
9380                         sattrs->sregion = r;
9381                     }
9382                 }
9383             }
9384         }
9385 
9386         /* TODO when we support the IDAU then it may override the result here */
9387         break;
9388     }
9389 }
9390 
9391 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9392                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9393                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
9394                               int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9395 {
9396     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9397      * that a full phys-to-virt translation does).
9398      * mregion is (if not NULL) set to the region number which matched,
9399      * or -1 if no region number is returned (MPU off, address did not
9400      * hit a region, address hit in multiple regions).
9401      */
9402     ARMCPU *cpu = arm_env_get_cpu(env);
9403     bool is_user = regime_is_user(env, mmu_idx);
9404     uint32_t secure = regime_is_secure(env, mmu_idx);
9405     int n;
9406     int matchregion = -1;
9407     bool hit = false;
9408 
9409     *phys_ptr = address;
9410     *prot = 0;
9411     if (mregion) {
9412         *mregion = -1;
9413     }
9414 
9415     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9416      * was an exception vector read from the vector table (which is always
9417      * done using the default system address map), because those accesses
9418      * are done in arm_v7m_load_vector(), which always does a direct
9419      * read using address_space_ldl(), rather than going via this function.
9420      */
9421     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9422         hit = true;
9423     } else if (m_is_ppb_region(env, address)) {
9424         hit = true;
9425     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9426         hit = true;
9427     } else {
9428         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9429             /* region search */
9430             /* Note that the base address is bits [31:5] from the register
9431              * with bits [4:0] all zeroes, but the limit address is bits
9432              * [31:5] from the register with bits [4:0] all ones.
9433              */
9434             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9435             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9436 
9437             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9438                 /* Region disabled */
9439                 continue;
9440             }
9441 
9442             if (address < base || address > limit) {
9443                 continue;
9444             }
9445 
9446             if (hit) {
9447                 /* Multiple regions match -- always a failure (unlike
9448                  * PMSAv7 where highest-numbered-region wins)
9449                  */
9450                 fi->type = ARMFault_Permission;
9451                 fi->level = 1;
9452                 return true;
9453             }
9454 
9455             matchregion = n;
9456             hit = true;
9457 
9458             if (base & ~TARGET_PAGE_MASK) {
9459                 qemu_log_mask(LOG_UNIMP,
9460                               "MPU_RBAR[%d]: No support for MPU region base"
9461                               "address of 0x%" PRIx32 ". Minimum alignment is "
9462                               "%d\n",
9463                               n, base, TARGET_PAGE_BITS);
9464                 continue;
9465             }
9466             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9467                 qemu_log_mask(LOG_UNIMP,
9468                               "MPU_RBAR[%d]: No support for MPU region limit"
9469                               "address of 0x%" PRIx32 ". Minimum alignment is "
9470                               "%d\n",
9471                               n, limit, TARGET_PAGE_BITS);
9472                 continue;
9473             }
9474         }
9475     }
9476 
9477     if (!hit) {
9478         /* background fault */
9479         fi->type = ARMFault_Background;
9480         return true;
9481     }
9482 
9483     if (matchregion == -1) {
9484         /* hit using the background region */
9485         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9486     } else {
9487         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9488         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9489 
9490         if (m_is_system_region(env, address)) {
9491             /* System space is always execute never */
9492             xn = 1;
9493         }
9494 
9495         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9496         if (*prot && !xn) {
9497             *prot |= PAGE_EXEC;
9498         }
9499         /* We don't need to look the attribute up in the MAIR0/MAIR1
9500          * registers because that only tells us about cacheability.
9501          */
9502         if (mregion) {
9503             *mregion = matchregion;
9504         }
9505     }
9506 
9507     fi->type = ARMFault_Permission;
9508     fi->level = 1;
9509     return !(*prot & (1 << access_type));
9510 }
9511 
9512 
9513 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9514                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9515                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9516                                  int *prot, ARMMMUFaultInfo *fi)
9517 {
9518     uint32_t secure = regime_is_secure(env, mmu_idx);
9519     V8M_SAttributes sattrs = {};
9520 
9521     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9522         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9523         if (access_type == MMU_INST_FETCH) {
9524             /* Instruction fetches always use the MMU bank and the
9525              * transaction attribute determined by the fetch address,
9526              * regardless of CPU state. This is painful for QEMU
9527              * to handle, because it would mean we need to encode
9528              * into the mmu_idx not just the (user, negpri) information
9529              * for the current security state but also that for the
9530              * other security state, which would balloon the number
9531              * of mmu_idx values needed alarmingly.
9532              * Fortunately we can avoid this because it's not actually
9533              * possible to arbitrarily execute code from memory with
9534              * the wrong security attribute: it will always generate
9535              * an exception of some kind or another, apart from the
9536              * special case of an NS CPU executing an SG instruction
9537              * in S&NSC memory. So we always just fail the translation
9538              * here and sort things out in the exception handler
9539              * (including possibly emulating an SG instruction).
9540              */
9541             if (sattrs.ns != !secure) {
9542                 if (sattrs.nsc) {
9543                     fi->type = ARMFault_QEMU_NSCExec;
9544                 } else {
9545                     fi->type = ARMFault_QEMU_SFault;
9546                 }
9547                 *phys_ptr = address;
9548                 *prot = 0;
9549                 return true;
9550             }
9551         } else {
9552             /* For data accesses we always use the MMU bank indicated
9553              * by the current CPU state, but the security attributes
9554              * might downgrade a secure access to nonsecure.
9555              */
9556             if (sattrs.ns) {
9557                 txattrs->secure = false;
9558             } else if (!secure) {
9559                 /* NS access to S memory must fault.
9560                  * Architecturally we should first check whether the
9561                  * MPU information for this address indicates that we
9562                  * are doing an unaligned access to Device memory, which
9563                  * should generate a UsageFault instead. QEMU does not
9564                  * currently check for that kind of unaligned access though.
9565                  * If we added it we would need to do so as a special case
9566                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9567                  */
9568                 fi->type = ARMFault_QEMU_SFault;
9569                 *phys_ptr = address;
9570                 *prot = 0;
9571                 return true;
9572             }
9573         }
9574     }
9575 
9576     return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9577                              txattrs, prot, fi, NULL);
9578 }
9579 
9580 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9581                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9582                                  hwaddr *phys_ptr, int *prot,
9583                                  ARMMMUFaultInfo *fi)
9584 {
9585     int n;
9586     uint32_t mask;
9587     uint32_t base;
9588     bool is_user = regime_is_user(env, mmu_idx);
9589 
9590     if (regime_translation_disabled(env, mmu_idx)) {
9591         /* MPU disabled.  */
9592         *phys_ptr = address;
9593         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9594         return false;
9595     }
9596 
9597     *phys_ptr = address;
9598     for (n = 7; n >= 0; n--) {
9599         base = env->cp15.c6_region[n];
9600         if ((base & 1) == 0) {
9601             continue;
9602         }
9603         mask = 1 << ((base >> 1) & 0x1f);
9604         /* Keep this shift separate from the above to avoid an
9605            (undefined) << 32.  */
9606         mask = (mask << 1) - 1;
9607         if (((base ^ address) & ~mask) == 0) {
9608             break;
9609         }
9610     }
9611     if (n < 0) {
9612         fi->type = ARMFault_Background;
9613         return true;
9614     }
9615 
9616     if (access_type == MMU_INST_FETCH) {
9617         mask = env->cp15.pmsav5_insn_ap;
9618     } else {
9619         mask = env->cp15.pmsav5_data_ap;
9620     }
9621     mask = (mask >> (n * 4)) & 0xf;
9622     switch (mask) {
9623     case 0:
9624         fi->type = ARMFault_Permission;
9625         fi->level = 1;
9626         return true;
9627     case 1:
9628         if (is_user) {
9629             fi->type = ARMFault_Permission;
9630             fi->level = 1;
9631             return true;
9632         }
9633         *prot = PAGE_READ | PAGE_WRITE;
9634         break;
9635     case 2:
9636         *prot = PAGE_READ;
9637         if (!is_user) {
9638             *prot |= PAGE_WRITE;
9639         }
9640         break;
9641     case 3:
9642         *prot = PAGE_READ | PAGE_WRITE;
9643         break;
9644     case 5:
9645         if (is_user) {
9646             fi->type = ARMFault_Permission;
9647             fi->level = 1;
9648             return true;
9649         }
9650         *prot = PAGE_READ;
9651         break;
9652     case 6:
9653         *prot = PAGE_READ;
9654         break;
9655     default:
9656         /* Bad permission.  */
9657         fi->type = ARMFault_Permission;
9658         fi->level = 1;
9659         return true;
9660     }
9661     *prot |= PAGE_EXEC;
9662     return false;
9663 }
9664 
9665 /* Combine either inner or outer cacheability attributes for normal
9666  * memory, according to table D4-42 and pseudocode procedure
9667  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9668  *
9669  * NB: only stage 1 includes allocation hints (RW bits), leading to
9670  * some asymmetry.
9671  */
9672 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9673 {
9674     if (s1 == 4 || s2 == 4) {
9675         /* non-cacheable has precedence */
9676         return 4;
9677     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9678         /* stage 1 write-through takes precedence */
9679         return s1;
9680     } else if (extract32(s2, 2, 2) == 2) {
9681         /* stage 2 write-through takes precedence, but the allocation hint
9682          * is still taken from stage 1
9683          */
9684         return (2 << 2) | extract32(s1, 0, 2);
9685     } else { /* write-back */
9686         return s1;
9687     }
9688 }
9689 
9690 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9691  * and CombineS1S2Desc()
9692  *
9693  * @s1:      Attributes from stage 1 walk
9694  * @s2:      Attributes from stage 2 walk
9695  */
9696 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9697 {
9698     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9699     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9700     ARMCacheAttrs ret;
9701 
9702     /* Combine shareability attributes (table D4-43) */
9703     if (s1.shareability == 2 || s2.shareability == 2) {
9704         /* if either are outer-shareable, the result is outer-shareable */
9705         ret.shareability = 2;
9706     } else if (s1.shareability == 3 || s2.shareability == 3) {
9707         /* if either are inner-shareable, the result is inner-shareable */
9708         ret.shareability = 3;
9709     } else {
9710         /* both non-shareable */
9711         ret.shareability = 0;
9712     }
9713 
9714     /* Combine memory type and cacheability attributes */
9715     if (s1hi == 0 || s2hi == 0) {
9716         /* Device has precedence over normal */
9717         if (s1lo == 0 || s2lo == 0) {
9718             /* nGnRnE has precedence over anything */
9719             ret.attrs = 0;
9720         } else if (s1lo == 4 || s2lo == 4) {
9721             /* non-Reordering has precedence over Reordering */
9722             ret.attrs = 4;  /* nGnRE */
9723         } else if (s1lo == 8 || s2lo == 8) {
9724             /* non-Gathering has precedence over Gathering */
9725             ret.attrs = 8;  /* nGRE */
9726         } else {
9727             ret.attrs = 0xc; /* GRE */
9728         }
9729 
9730         /* Any location for which the resultant memory type is any
9731          * type of Device memory is always treated as Outer Shareable.
9732          */
9733         ret.shareability = 2;
9734     } else { /* Normal memory */
9735         /* Outer/inner cacheability combine independently */
9736         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9737                   | combine_cacheattr_nibble(s1lo, s2lo);
9738 
9739         if (ret.attrs == 0x44) {
9740             /* Any location for which the resultant memory type is Normal
9741              * Inner Non-cacheable, Outer Non-cacheable is always treated
9742              * as Outer Shareable.
9743              */
9744             ret.shareability = 2;
9745         }
9746     }
9747 
9748     return ret;
9749 }
9750 
9751 
9752 /* get_phys_addr - get the physical address for this virtual address
9753  *
9754  * Find the physical address corresponding to the given virtual address,
9755  * by doing a translation table walk on MMU based systems or using the
9756  * MPU state on MPU based systems.
9757  *
9758  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9759  * prot and page_size may not be filled in, and the populated fsr value provides
9760  * information on why the translation aborted, in the format of a
9761  * DFSR/IFSR fault register, with the following caveats:
9762  *  * we honour the short vs long DFSR format differences.
9763  *  * the WnR bit is never set (the caller must do this).
9764  *  * for PSMAv5 based systems we don't bother to return a full FSR format
9765  *    value.
9766  *
9767  * @env: CPUARMState
9768  * @address: virtual address to get physical address for
9769  * @access_type: 0 for read, 1 for write, 2 for execute
9770  * @mmu_idx: MMU index indicating required translation regime
9771  * @phys_ptr: set to the physical address corresponding to the virtual address
9772  * @attrs: set to the memory transaction attributes to use
9773  * @prot: set to the permissions for the page containing phys_ptr
9774  * @page_size: set to the size of the page containing phys_ptr
9775  * @fi: set to fault info if the translation fails
9776  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
9777  */
9778 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9779                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
9780                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9781                           target_ulong *page_size,
9782                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9783 {
9784     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9785         /* Call ourselves recursively to do the stage 1 and then stage 2
9786          * translations.
9787          */
9788         if (arm_feature(env, ARM_FEATURE_EL2)) {
9789             hwaddr ipa;
9790             int s2_prot;
9791             int ret;
9792             ARMCacheAttrs cacheattrs2 = {};
9793 
9794             ret = get_phys_addr(env, address, access_type,
9795                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9796                                 prot, page_size, fi, cacheattrs);
9797 
9798             /* If S1 fails or S2 is disabled, return early.  */
9799             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9800                 *phys_ptr = ipa;
9801                 return ret;
9802             }
9803 
9804             /* S1 is done. Now do S2 translation.  */
9805             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9806                                      phys_ptr, attrs, &s2_prot,
9807                                      page_size, fi,
9808                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
9809             fi->s2addr = ipa;
9810             /* Combine the S1 and S2 perms.  */
9811             *prot &= s2_prot;
9812 
9813             /* Combine the S1 and S2 cache attributes, if needed */
9814             if (!ret && cacheattrs != NULL) {
9815                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9816             }
9817 
9818             return ret;
9819         } else {
9820             /*
9821              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9822              */
9823             mmu_idx = stage_1_mmu_idx(mmu_idx);
9824         }
9825     }
9826 
9827     /* The page table entries may downgrade secure to non-secure, but
9828      * cannot upgrade an non-secure translation regime's attributes
9829      * to secure.
9830      */
9831     attrs->secure = regime_is_secure(env, mmu_idx);
9832     attrs->user = regime_is_user(env, mmu_idx);
9833 
9834     /* Fast Context Switch Extension. This doesn't exist at all in v8.
9835      * In v7 and earlier it affects all stage 1 translations.
9836      */
9837     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9838         && !arm_feature(env, ARM_FEATURE_V8)) {
9839         if (regime_el(env, mmu_idx) == 3) {
9840             address += env->cp15.fcseidr_s;
9841         } else {
9842             address += env->cp15.fcseidr_ns;
9843         }
9844     }
9845 
9846     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9847         bool ret;
9848         *page_size = TARGET_PAGE_SIZE;
9849 
9850         if (arm_feature(env, ARM_FEATURE_V8)) {
9851             /* PMSAv8 */
9852             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9853                                        phys_ptr, attrs, prot, fi);
9854         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9855             /* PMSAv7 */
9856             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9857                                        phys_ptr, prot, fi);
9858         } else {
9859             /* Pre-v7 MPU */
9860             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9861                                        phys_ptr, prot, fi);
9862         }
9863         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9864                       " mmu_idx %u -> %s (prot %c%c%c)\n",
9865                       access_type == MMU_DATA_LOAD ? "reading" :
9866                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9867                       (uint32_t)address, mmu_idx,
9868                       ret ? "Miss" : "Hit",
9869                       *prot & PAGE_READ ? 'r' : '-',
9870                       *prot & PAGE_WRITE ? 'w' : '-',
9871                       *prot & PAGE_EXEC ? 'x' : '-');
9872 
9873         return ret;
9874     }
9875 
9876     /* Definitely a real MMU, not an MPU */
9877 
9878     if (regime_translation_disabled(env, mmu_idx)) {
9879         /* MMU disabled. */
9880         *phys_ptr = address;
9881         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9882         *page_size = TARGET_PAGE_SIZE;
9883         return 0;
9884     }
9885 
9886     if (regime_using_lpae_format(env, mmu_idx)) {
9887         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
9888                                   phys_ptr, attrs, prot, page_size,
9889                                   fi, cacheattrs);
9890     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9891         return get_phys_addr_v6(env, address, access_type, mmu_idx,
9892                                 phys_ptr, attrs, prot, page_size, fi);
9893     } else {
9894         return get_phys_addr_v5(env, address, access_type, mmu_idx,
9895                                     phys_ptr, prot, page_size, fi);
9896     }
9897 }
9898 
9899 /* Walk the page table and (if the mapping exists) add the page
9900  * to the TLB. Return false on success, or true on failure. Populate
9901  * fsr with ARM DFSR/IFSR fault register format value on failure.
9902  */
9903 bool arm_tlb_fill(CPUState *cs, vaddr address,
9904                   MMUAccessType access_type, int mmu_idx,
9905                   ARMMMUFaultInfo *fi)
9906 {
9907     ARMCPU *cpu = ARM_CPU(cs);
9908     CPUARMState *env = &cpu->env;
9909     hwaddr phys_addr;
9910     target_ulong page_size;
9911     int prot;
9912     int ret;
9913     MemTxAttrs attrs = {};
9914 
9915     ret = get_phys_addr(env, address, access_type,
9916                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9917                         &attrs, &prot, &page_size, fi, NULL);
9918     if (!ret) {
9919         /* Map a single [sub]page.  */
9920         phys_addr &= TARGET_PAGE_MASK;
9921         address &= TARGET_PAGE_MASK;
9922         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9923                                 prot, mmu_idx, page_size);
9924         return 0;
9925     }
9926 
9927     return ret;
9928 }
9929 
9930 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9931                                          MemTxAttrs *attrs)
9932 {
9933     ARMCPU *cpu = ARM_CPU(cs);
9934     CPUARMState *env = &cpu->env;
9935     hwaddr phys_addr;
9936     target_ulong page_size;
9937     int prot;
9938     bool ret;
9939     ARMMMUFaultInfo fi = {};
9940     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9941 
9942     *attrs = (MemTxAttrs) {};
9943 
9944     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9945                         attrs, &prot, &page_size, &fi, NULL);
9946 
9947     if (ret) {
9948         return -1;
9949     }
9950     return phys_addr;
9951 }
9952 
9953 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9954 {
9955     uint32_t mask;
9956     unsigned el = arm_current_el(env);
9957 
9958     /* First handle registers which unprivileged can read */
9959 
9960     switch (reg) {
9961     case 0 ... 7: /* xPSR sub-fields */
9962         mask = 0;
9963         if ((reg & 1) && el) {
9964             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9965         }
9966         if (!(reg & 4)) {
9967             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9968         }
9969         /* EPSR reads as zero */
9970         return xpsr_read(env) & mask;
9971         break;
9972     case 20: /* CONTROL */
9973         return env->v7m.control[env->v7m.secure];
9974     case 0x94: /* CONTROL_NS */
9975         /* We have to handle this here because unprivileged Secure code
9976          * can read the NS CONTROL register.
9977          */
9978         if (!env->v7m.secure) {
9979             return 0;
9980         }
9981         return env->v7m.control[M_REG_NS];
9982     }
9983 
9984     if (el == 0) {
9985         return 0; /* unprivileged reads others as zero */
9986     }
9987 
9988     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9989         switch (reg) {
9990         case 0x88: /* MSP_NS */
9991             if (!env->v7m.secure) {
9992                 return 0;
9993             }
9994             return env->v7m.other_ss_msp;
9995         case 0x89: /* PSP_NS */
9996             if (!env->v7m.secure) {
9997                 return 0;
9998             }
9999             return env->v7m.other_ss_psp;
10000         case 0x90: /* PRIMASK_NS */
10001             if (!env->v7m.secure) {
10002                 return 0;
10003             }
10004             return env->v7m.primask[M_REG_NS];
10005         case 0x91: /* BASEPRI_NS */
10006             if (!env->v7m.secure) {
10007                 return 0;
10008             }
10009             return env->v7m.basepri[M_REG_NS];
10010         case 0x93: /* FAULTMASK_NS */
10011             if (!env->v7m.secure) {
10012                 return 0;
10013             }
10014             return env->v7m.faultmask[M_REG_NS];
10015         case 0x98: /* SP_NS */
10016         {
10017             /* This gives the non-secure SP selected based on whether we're
10018              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10019              */
10020             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10021 
10022             if (!env->v7m.secure) {
10023                 return 0;
10024             }
10025             if (!arm_v7m_is_handler_mode(env) && spsel) {
10026                 return env->v7m.other_ss_psp;
10027             } else {
10028                 return env->v7m.other_ss_msp;
10029             }
10030         }
10031         default:
10032             break;
10033         }
10034     }
10035 
10036     switch (reg) {
10037     case 8: /* MSP */
10038         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10039     case 9: /* PSP */
10040         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10041     case 16: /* PRIMASK */
10042         return env->v7m.primask[env->v7m.secure];
10043     case 17: /* BASEPRI */
10044     case 18: /* BASEPRI_MAX */
10045         return env->v7m.basepri[env->v7m.secure];
10046     case 19: /* FAULTMASK */
10047         return env->v7m.faultmask[env->v7m.secure];
10048     default:
10049         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10050                                        " register %d\n", reg);
10051         return 0;
10052     }
10053 }
10054 
10055 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10056 {
10057     /* We're passed bits [11..0] of the instruction; extract
10058      * SYSm and the mask bits.
10059      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10060      * we choose to treat them as if the mask bits were valid.
10061      * NB that the pseudocode 'mask' variable is bits [11..10],
10062      * whereas ours is [11..8].
10063      */
10064     uint32_t mask = extract32(maskreg, 8, 4);
10065     uint32_t reg = extract32(maskreg, 0, 8);
10066 
10067     if (arm_current_el(env) == 0 && reg > 7) {
10068         /* only xPSR sub-fields may be written by unprivileged */
10069         return;
10070     }
10071 
10072     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10073         switch (reg) {
10074         case 0x88: /* MSP_NS */
10075             if (!env->v7m.secure) {
10076                 return;
10077             }
10078             env->v7m.other_ss_msp = val;
10079             return;
10080         case 0x89: /* PSP_NS */
10081             if (!env->v7m.secure) {
10082                 return;
10083             }
10084             env->v7m.other_ss_psp = val;
10085             return;
10086         case 0x90: /* PRIMASK_NS */
10087             if (!env->v7m.secure) {
10088                 return;
10089             }
10090             env->v7m.primask[M_REG_NS] = val & 1;
10091             return;
10092         case 0x91: /* BASEPRI_NS */
10093             if (!env->v7m.secure) {
10094                 return;
10095             }
10096             env->v7m.basepri[M_REG_NS] = val & 0xff;
10097             return;
10098         case 0x93: /* FAULTMASK_NS */
10099             if (!env->v7m.secure) {
10100                 return;
10101             }
10102             env->v7m.faultmask[M_REG_NS] = val & 1;
10103             return;
10104         case 0x98: /* SP_NS */
10105         {
10106             /* This gives the non-secure SP selected based on whether we're
10107              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10108              */
10109             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10110 
10111             if (!env->v7m.secure) {
10112                 return;
10113             }
10114             if (!arm_v7m_is_handler_mode(env) && spsel) {
10115                 env->v7m.other_ss_psp = val;
10116             } else {
10117                 env->v7m.other_ss_msp = val;
10118             }
10119             return;
10120         }
10121         default:
10122             break;
10123         }
10124     }
10125 
10126     switch (reg) {
10127     case 0 ... 7: /* xPSR sub-fields */
10128         /* only APSR is actually writable */
10129         if (!(reg & 4)) {
10130             uint32_t apsrmask = 0;
10131 
10132             if (mask & 8) {
10133                 apsrmask |= XPSR_NZCV | XPSR_Q;
10134             }
10135             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10136                 apsrmask |= XPSR_GE;
10137             }
10138             xpsr_write(env, val, apsrmask);
10139         }
10140         break;
10141     case 8: /* MSP */
10142         if (v7m_using_psp(env)) {
10143             env->v7m.other_sp = val;
10144         } else {
10145             env->regs[13] = val;
10146         }
10147         break;
10148     case 9: /* PSP */
10149         if (v7m_using_psp(env)) {
10150             env->regs[13] = val;
10151         } else {
10152             env->v7m.other_sp = val;
10153         }
10154         break;
10155     case 16: /* PRIMASK */
10156         env->v7m.primask[env->v7m.secure] = val & 1;
10157         break;
10158     case 17: /* BASEPRI */
10159         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10160         break;
10161     case 18: /* BASEPRI_MAX */
10162         val &= 0xff;
10163         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10164                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10165             env->v7m.basepri[env->v7m.secure] = val;
10166         }
10167         break;
10168     case 19: /* FAULTMASK */
10169         env->v7m.faultmask[env->v7m.secure] = val & 1;
10170         break;
10171     case 20: /* CONTROL */
10172         /* Writing to the SPSEL bit only has an effect if we are in
10173          * thread mode; other bits can be updated by any privileged code.
10174          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10175          * env->v7m.control, so we only need update the others.
10176          * For v7M, we must just ignore explicit writes to SPSEL in handler
10177          * mode; for v8M the write is permitted but will have no effect.
10178          */
10179         if (arm_feature(env, ARM_FEATURE_V8) ||
10180             !arm_v7m_is_handler_mode(env)) {
10181             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10182         }
10183         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10184         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10185         break;
10186     default:
10187         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10188                                        " register %d\n", reg);
10189         return;
10190     }
10191 }
10192 
10193 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10194 {
10195     /* Implement the TT instruction. op is bits [7:6] of the insn. */
10196     bool forceunpriv = op & 1;
10197     bool alt = op & 2;
10198     V8M_SAttributes sattrs = {};
10199     uint32_t tt_resp;
10200     bool r, rw, nsr, nsrw, mrvalid;
10201     int prot;
10202     ARMMMUFaultInfo fi = {};
10203     MemTxAttrs attrs = {};
10204     hwaddr phys_addr;
10205     ARMMMUIdx mmu_idx;
10206     uint32_t mregion;
10207     bool targetpriv;
10208     bool targetsec = env->v7m.secure;
10209 
10210     /* Work out what the security state and privilege level we're
10211      * interested in is...
10212      */
10213     if (alt) {
10214         targetsec = !targetsec;
10215     }
10216 
10217     if (forceunpriv) {
10218         targetpriv = false;
10219     } else {
10220         targetpriv = arm_v7m_is_handler_mode(env) ||
10221             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10222     }
10223 
10224     /* ...and then figure out which MMU index this is */
10225     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10226 
10227     /* We know that the MPU and SAU don't care about the access type
10228      * for our purposes beyond that we don't want to claim to be
10229      * an insn fetch, so we arbitrarily call this a read.
10230      */
10231 
10232     /* MPU region info only available for privileged or if
10233      * inspecting the other MPU state.
10234      */
10235     if (arm_current_el(env) != 0 || alt) {
10236         /* We can ignore the return value as prot is always set */
10237         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10238                           &phys_addr, &attrs, &prot, &fi, &mregion);
10239         if (mregion == -1) {
10240             mrvalid = false;
10241             mregion = 0;
10242         } else {
10243             mrvalid = true;
10244         }
10245         r = prot & PAGE_READ;
10246         rw = prot & PAGE_WRITE;
10247     } else {
10248         r = false;
10249         rw = false;
10250         mrvalid = false;
10251         mregion = 0;
10252     }
10253 
10254     if (env->v7m.secure) {
10255         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10256         nsr = sattrs.ns && r;
10257         nsrw = sattrs.ns && rw;
10258     } else {
10259         sattrs.ns = true;
10260         nsr = false;
10261         nsrw = false;
10262     }
10263 
10264     tt_resp = (sattrs.iregion << 24) |
10265         (sattrs.irvalid << 23) |
10266         ((!sattrs.ns) << 22) |
10267         (nsrw << 21) |
10268         (nsr << 20) |
10269         (rw << 19) |
10270         (r << 18) |
10271         (sattrs.srvalid << 17) |
10272         (mrvalid << 16) |
10273         (sattrs.sregion << 8) |
10274         mregion;
10275 
10276     return tt_resp;
10277 }
10278 
10279 #endif
10280 
10281 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10282 {
10283     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10284      * Note that we do not implement the (architecturally mandated)
10285      * alignment fault for attempts to use this on Device memory
10286      * (which matches the usual QEMU behaviour of not implementing either
10287      * alignment faults or any memory attribute handling).
10288      */
10289 
10290     ARMCPU *cpu = arm_env_get_cpu(env);
10291     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10292     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10293 
10294 #ifndef CONFIG_USER_ONLY
10295     {
10296         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10297          * the block size so we might have to do more than one TLB lookup.
10298          * We know that in fact for any v8 CPU the page size is at least 4K
10299          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10300          * 1K as an artefact of legacy v5 subpage support being present in the
10301          * same QEMU executable.
10302          */
10303         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10304         void *hostaddr[maxidx];
10305         int try, i;
10306         unsigned mmu_idx = cpu_mmu_index(env, false);
10307         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10308 
10309         for (try = 0; try < 2; try++) {
10310 
10311             for (i = 0; i < maxidx; i++) {
10312                 hostaddr[i] = tlb_vaddr_to_host(env,
10313                                                 vaddr + TARGET_PAGE_SIZE * i,
10314                                                 1, mmu_idx);
10315                 if (!hostaddr[i]) {
10316                     break;
10317                 }
10318             }
10319             if (i == maxidx) {
10320                 /* If it's all in the TLB it's fair game for just writing to;
10321                  * we know we don't need to update dirty status, etc.
10322                  */
10323                 for (i = 0; i < maxidx - 1; i++) {
10324                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10325                 }
10326                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10327                 return;
10328             }
10329             /* OK, try a store and see if we can populate the tlb. This
10330              * might cause an exception if the memory isn't writable,
10331              * in which case we will longjmp out of here. We must for
10332              * this purpose use the actual register value passed to us
10333              * so that we get the fault address right.
10334              */
10335             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10336             /* Now we can populate the other TLB entries, if any */
10337             for (i = 0; i < maxidx; i++) {
10338                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10339                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10340                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10341                 }
10342             }
10343         }
10344 
10345         /* Slow path (probably attempt to do this to an I/O device or
10346          * similar, or clearing of a block of code we have translations
10347          * cached for). Just do a series of byte writes as the architecture
10348          * demands. It's not worth trying to use a cpu_physical_memory_map(),
10349          * memset(), unmap() sequence here because:
10350          *  + we'd need to account for the blocksize being larger than a page
10351          *  + the direct-RAM access case is almost always going to be dealt
10352          *    with in the fastpath code above, so there's no speed benefit
10353          *  + we would have to deal with the map returning NULL because the
10354          *    bounce buffer was in use
10355          */
10356         for (i = 0; i < blocklen; i++) {
10357             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10358         }
10359     }
10360 #else
10361     memset(g2h(vaddr), 0, blocklen);
10362 #endif
10363 }
10364 
10365 /* Note that signed overflow is undefined in C.  The following routines are
10366    careful to use unsigned types where modulo arithmetic is required.
10367    Failure to do so _will_ break on newer gcc.  */
10368 
10369 /* Signed saturating arithmetic.  */
10370 
10371 /* Perform 16-bit signed saturating addition.  */
10372 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10373 {
10374     uint16_t res;
10375 
10376     res = a + b;
10377     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10378         if (a & 0x8000)
10379             res = 0x8000;
10380         else
10381             res = 0x7fff;
10382     }
10383     return res;
10384 }
10385 
10386 /* Perform 8-bit signed saturating addition.  */
10387 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10388 {
10389     uint8_t res;
10390 
10391     res = a + b;
10392     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10393         if (a & 0x80)
10394             res = 0x80;
10395         else
10396             res = 0x7f;
10397     }
10398     return res;
10399 }
10400 
10401 /* Perform 16-bit signed saturating subtraction.  */
10402 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10403 {
10404     uint16_t res;
10405 
10406     res = a - b;
10407     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10408         if (a & 0x8000)
10409             res = 0x8000;
10410         else
10411             res = 0x7fff;
10412     }
10413     return res;
10414 }
10415 
10416 /* Perform 8-bit signed saturating subtraction.  */
10417 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10418 {
10419     uint8_t res;
10420 
10421     res = a - b;
10422     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10423         if (a & 0x80)
10424             res = 0x80;
10425         else
10426             res = 0x7f;
10427     }
10428     return res;
10429 }
10430 
10431 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10432 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10433 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10434 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10435 #define PFX q
10436 
10437 #include "op_addsub.h"
10438 
10439 /* Unsigned saturating arithmetic.  */
10440 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10441 {
10442     uint16_t res;
10443     res = a + b;
10444     if (res < a)
10445         res = 0xffff;
10446     return res;
10447 }
10448 
10449 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10450 {
10451     if (a > b)
10452         return a - b;
10453     else
10454         return 0;
10455 }
10456 
10457 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10458 {
10459     uint8_t res;
10460     res = a + b;
10461     if (res < a)
10462         res = 0xff;
10463     return res;
10464 }
10465 
10466 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10467 {
10468     if (a > b)
10469         return a - b;
10470     else
10471         return 0;
10472 }
10473 
10474 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10475 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10476 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10477 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10478 #define PFX uq
10479 
10480 #include "op_addsub.h"
10481 
10482 /* Signed modulo arithmetic.  */
10483 #define SARITH16(a, b, n, op) do { \
10484     int32_t sum; \
10485     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10486     RESULT(sum, n, 16); \
10487     if (sum >= 0) \
10488         ge |= 3 << (n * 2); \
10489     } while(0)
10490 
10491 #define SARITH8(a, b, n, op) do { \
10492     int32_t sum; \
10493     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10494     RESULT(sum, n, 8); \
10495     if (sum >= 0) \
10496         ge |= 1 << n; \
10497     } while(0)
10498 
10499 
10500 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10501 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10502 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10503 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10504 #define PFX s
10505 #define ARITH_GE
10506 
10507 #include "op_addsub.h"
10508 
10509 /* Unsigned modulo arithmetic.  */
10510 #define ADD16(a, b, n) do { \
10511     uint32_t sum; \
10512     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10513     RESULT(sum, n, 16); \
10514     if ((sum >> 16) == 1) \
10515         ge |= 3 << (n * 2); \
10516     } while(0)
10517 
10518 #define ADD8(a, b, n) do { \
10519     uint32_t sum; \
10520     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10521     RESULT(sum, n, 8); \
10522     if ((sum >> 8) == 1) \
10523         ge |= 1 << n; \
10524     } while(0)
10525 
10526 #define SUB16(a, b, n) do { \
10527     uint32_t sum; \
10528     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10529     RESULT(sum, n, 16); \
10530     if ((sum >> 16) == 0) \
10531         ge |= 3 << (n * 2); \
10532     } while(0)
10533 
10534 #define SUB8(a, b, n) do { \
10535     uint32_t sum; \
10536     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10537     RESULT(sum, n, 8); \
10538     if ((sum >> 8) == 0) \
10539         ge |= 1 << n; \
10540     } while(0)
10541 
10542 #define PFX u
10543 #define ARITH_GE
10544 
10545 #include "op_addsub.h"
10546 
10547 /* Halved signed arithmetic.  */
10548 #define ADD16(a, b, n) \
10549   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10550 #define SUB16(a, b, n) \
10551   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10552 #define ADD8(a, b, n) \
10553   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10554 #define SUB8(a, b, n) \
10555   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10556 #define PFX sh
10557 
10558 #include "op_addsub.h"
10559 
10560 /* Halved unsigned arithmetic.  */
10561 #define ADD16(a, b, n) \
10562   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10563 #define SUB16(a, b, n) \
10564   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10565 #define ADD8(a, b, n) \
10566   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10567 #define SUB8(a, b, n) \
10568   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10569 #define PFX uh
10570 
10571 #include "op_addsub.h"
10572 
10573 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10574 {
10575     if (a > b)
10576         return a - b;
10577     else
10578         return b - a;
10579 }
10580 
10581 /* Unsigned sum of absolute byte differences.  */
10582 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10583 {
10584     uint32_t sum;
10585     sum = do_usad(a, b);
10586     sum += do_usad(a >> 8, b >> 8);
10587     sum += do_usad(a >> 16, b >>16);
10588     sum += do_usad(a >> 24, b >> 24);
10589     return sum;
10590 }
10591 
10592 /* For ARMv6 SEL instruction.  */
10593 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10594 {
10595     uint32_t mask;
10596 
10597     mask = 0;
10598     if (flags & 1)
10599         mask |= 0xff;
10600     if (flags & 2)
10601         mask |= 0xff00;
10602     if (flags & 4)
10603         mask |= 0xff0000;
10604     if (flags & 8)
10605         mask |= 0xff000000;
10606     return (a & mask) | (b & ~mask);
10607 }
10608 
10609 /* VFP support.  We follow the convention used for VFP instructions:
10610    Single precision routines have a "s" suffix, double precision a
10611    "d" suffix.  */
10612 
10613 /* Convert host exception flags to vfp form.  */
10614 static inline int vfp_exceptbits_from_host(int host_bits)
10615 {
10616     int target_bits = 0;
10617 
10618     if (host_bits & float_flag_invalid)
10619         target_bits |= 1;
10620     if (host_bits & float_flag_divbyzero)
10621         target_bits |= 2;
10622     if (host_bits & float_flag_overflow)
10623         target_bits |= 4;
10624     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10625         target_bits |= 8;
10626     if (host_bits & float_flag_inexact)
10627         target_bits |= 0x10;
10628     if (host_bits & float_flag_input_denormal)
10629         target_bits |= 0x80;
10630     return target_bits;
10631 }
10632 
10633 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10634 {
10635     int i;
10636     uint32_t fpscr;
10637 
10638     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10639             | (env->vfp.vec_len << 16)
10640             | (env->vfp.vec_stride << 20);
10641     i = get_float_exception_flags(&env->vfp.fp_status);
10642     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10643     fpscr |= vfp_exceptbits_from_host(i);
10644     return fpscr;
10645 }
10646 
10647 uint32_t vfp_get_fpscr(CPUARMState *env)
10648 {
10649     return HELPER(vfp_get_fpscr)(env);
10650 }
10651 
10652 /* Convert vfp exception flags to target form.  */
10653 static inline int vfp_exceptbits_to_host(int target_bits)
10654 {
10655     int host_bits = 0;
10656 
10657     if (target_bits & 1)
10658         host_bits |= float_flag_invalid;
10659     if (target_bits & 2)
10660         host_bits |= float_flag_divbyzero;
10661     if (target_bits & 4)
10662         host_bits |= float_flag_overflow;
10663     if (target_bits & 8)
10664         host_bits |= float_flag_underflow;
10665     if (target_bits & 0x10)
10666         host_bits |= float_flag_inexact;
10667     if (target_bits & 0x80)
10668         host_bits |= float_flag_input_denormal;
10669     return host_bits;
10670 }
10671 
10672 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10673 {
10674     int i;
10675     uint32_t changed;
10676 
10677     changed = env->vfp.xregs[ARM_VFP_FPSCR];
10678     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10679     env->vfp.vec_len = (val >> 16) & 7;
10680     env->vfp.vec_stride = (val >> 20) & 3;
10681 
10682     changed ^= val;
10683     if (changed & (3 << 22)) {
10684         i = (val >> 22) & 3;
10685         switch (i) {
10686         case FPROUNDING_TIEEVEN:
10687             i = float_round_nearest_even;
10688             break;
10689         case FPROUNDING_POSINF:
10690             i = float_round_up;
10691             break;
10692         case FPROUNDING_NEGINF:
10693             i = float_round_down;
10694             break;
10695         case FPROUNDING_ZERO:
10696             i = float_round_to_zero;
10697             break;
10698         }
10699         set_float_rounding_mode(i, &env->vfp.fp_status);
10700     }
10701     if (changed & (1 << 24)) {
10702         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10703         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10704     }
10705     if (changed & (1 << 25))
10706         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10707 
10708     i = vfp_exceptbits_to_host(val);
10709     set_float_exception_flags(i, &env->vfp.fp_status);
10710     set_float_exception_flags(0, &env->vfp.standard_fp_status);
10711 }
10712 
10713 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10714 {
10715     HELPER(vfp_set_fpscr)(env, val);
10716 }
10717 
10718 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10719 
10720 #define VFP_BINOP(name) \
10721 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10722 { \
10723     float_status *fpst = fpstp; \
10724     return float32_ ## name(a, b, fpst); \
10725 } \
10726 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10727 { \
10728     float_status *fpst = fpstp; \
10729     return float64_ ## name(a, b, fpst); \
10730 }
10731 VFP_BINOP(add)
10732 VFP_BINOP(sub)
10733 VFP_BINOP(mul)
10734 VFP_BINOP(div)
10735 VFP_BINOP(min)
10736 VFP_BINOP(max)
10737 VFP_BINOP(minnum)
10738 VFP_BINOP(maxnum)
10739 #undef VFP_BINOP
10740 
10741 float32 VFP_HELPER(neg, s)(float32 a)
10742 {
10743     return float32_chs(a);
10744 }
10745 
10746 float64 VFP_HELPER(neg, d)(float64 a)
10747 {
10748     return float64_chs(a);
10749 }
10750 
10751 float32 VFP_HELPER(abs, s)(float32 a)
10752 {
10753     return float32_abs(a);
10754 }
10755 
10756 float64 VFP_HELPER(abs, d)(float64 a)
10757 {
10758     return float64_abs(a);
10759 }
10760 
10761 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10762 {
10763     return float32_sqrt(a, &env->vfp.fp_status);
10764 }
10765 
10766 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10767 {
10768     return float64_sqrt(a, &env->vfp.fp_status);
10769 }
10770 
10771 /* XXX: check quiet/signaling case */
10772 #define DO_VFP_cmp(p, type) \
10773 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
10774 { \
10775     uint32_t flags; \
10776     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10777     case 0: flags = 0x6; break; \
10778     case -1: flags = 0x8; break; \
10779     case 1: flags = 0x2; break; \
10780     default: case 2: flags = 0x3; break; \
10781     } \
10782     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10783         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10784 } \
10785 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10786 { \
10787     uint32_t flags; \
10788     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10789     case 0: flags = 0x6; break; \
10790     case -1: flags = 0x8; break; \
10791     case 1: flags = 0x2; break; \
10792     default: case 2: flags = 0x3; break; \
10793     } \
10794     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10795         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10796 }
10797 DO_VFP_cmp(s, float32)
10798 DO_VFP_cmp(d, float64)
10799 #undef DO_VFP_cmp
10800 
10801 /* Integer to float and float to integer conversions */
10802 
10803 #define CONV_ITOF(name, fsz, sign) \
10804     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10805 { \
10806     float_status *fpst = fpstp; \
10807     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10808 }
10809 
10810 #define CONV_FTOI(name, fsz, sign, round) \
10811 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10812 { \
10813     float_status *fpst = fpstp; \
10814     if (float##fsz##_is_any_nan(x)) { \
10815         float_raise(float_flag_invalid, fpst); \
10816         return 0; \
10817     } \
10818     return float##fsz##_to_##sign##int32##round(x, fpst); \
10819 }
10820 
10821 #define FLOAT_CONVS(name, p, fsz, sign) \
10822 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10823 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10824 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10825 
10826 FLOAT_CONVS(si, s, 32, )
10827 FLOAT_CONVS(si, d, 64, )
10828 FLOAT_CONVS(ui, s, 32, u)
10829 FLOAT_CONVS(ui, d, 64, u)
10830 
10831 #undef CONV_ITOF
10832 #undef CONV_FTOI
10833 #undef FLOAT_CONVS
10834 
10835 /* floating point conversion */
10836 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10837 {
10838     float64 r = float32_to_float64(x, &env->vfp.fp_status);
10839     /* ARM requires that S<->D conversion of any kind of NaN generates
10840      * a quiet NaN by forcing the most significant frac bit to 1.
10841      */
10842     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10843 }
10844 
10845 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10846 {
10847     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
10848     /* ARM requires that S<->D conversion of any kind of NaN generates
10849      * a quiet NaN by forcing the most significant frac bit to 1.
10850      */
10851     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10852 }
10853 
10854 /* VFP3 fixed point conversion.  */
10855 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10856 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
10857                                      void *fpstp) \
10858 { \
10859     float_status *fpst = fpstp; \
10860     float##fsz tmp; \
10861     tmp = itype##_to_##float##fsz(x, fpst); \
10862     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10863 }
10864 
10865 /* Notice that we want only input-denormal exception flags from the
10866  * scalbn operation: the other possible flags (overflow+inexact if
10867  * we overflow to infinity, output-denormal) aren't correct for the
10868  * complete scale-and-convert operation.
10869  */
10870 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10871 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10872                                              uint32_t shift, \
10873                                              void *fpstp) \
10874 { \
10875     float_status *fpst = fpstp; \
10876     int old_exc_flags = get_float_exception_flags(fpst); \
10877     float##fsz tmp; \
10878     if (float##fsz##_is_any_nan(x)) { \
10879         float_raise(float_flag_invalid, fpst); \
10880         return 0; \
10881     } \
10882     tmp = float##fsz##_scalbn(x, shift, fpst); \
10883     old_exc_flags |= get_float_exception_flags(fpst) \
10884         & float_flag_input_denormal; \
10885     set_float_exception_flags(old_exc_flags, fpst); \
10886     return float##fsz##_to_##itype##round(tmp, fpst); \
10887 }
10888 
10889 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
10890 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10891 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10892 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10893 
10894 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
10895 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10896 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10897 
10898 VFP_CONV_FIX(sh, d, 64, 64, int16)
10899 VFP_CONV_FIX(sl, d, 64, 64, int32)
10900 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10901 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10902 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10903 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10904 VFP_CONV_FIX(sh, s, 32, 32, int16)
10905 VFP_CONV_FIX(sl, s, 32, 32, int32)
10906 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10907 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10908 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10909 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10910 #undef VFP_CONV_FIX
10911 #undef VFP_CONV_FIX_FLOAT
10912 #undef VFP_CONV_FLOAT_FIX_ROUND
10913 
10914 /* Set the current fp rounding mode and return the old one.
10915  * The argument is a softfloat float_round_ value.
10916  */
10917 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10918 {
10919     float_status *fp_status = &env->vfp.fp_status;
10920 
10921     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10922     set_float_rounding_mode(rmode, fp_status);
10923 
10924     return prev_rmode;
10925 }
10926 
10927 /* Set the current fp rounding mode in the standard fp status and return
10928  * the old one. This is for NEON instructions that need to change the
10929  * rounding mode but wish to use the standard FPSCR values for everything
10930  * else. Always set the rounding mode back to the correct value after
10931  * modifying it.
10932  * The argument is a softfloat float_round_ value.
10933  */
10934 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10935 {
10936     float_status *fp_status = &env->vfp.standard_fp_status;
10937 
10938     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10939     set_float_rounding_mode(rmode, fp_status);
10940 
10941     return prev_rmode;
10942 }
10943 
10944 /* Half precision conversions.  */
10945 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10946 {
10947     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10948     float32 r = float16_to_float32(make_float16(a), ieee, s);
10949     if (ieee) {
10950         return float32_maybe_silence_nan(r, s);
10951     }
10952     return r;
10953 }
10954 
10955 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10956 {
10957     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10958     float16 r = float32_to_float16(a, ieee, s);
10959     if (ieee) {
10960         r = float16_maybe_silence_nan(r, s);
10961     }
10962     return float16_val(r);
10963 }
10964 
10965 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10966 {
10967     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10968 }
10969 
10970 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10971 {
10972     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10973 }
10974 
10975 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10976 {
10977     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10978 }
10979 
10980 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10981 {
10982     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10983 }
10984 
10985 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10986 {
10987     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10988     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10989     if (ieee) {
10990         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10991     }
10992     return r;
10993 }
10994 
10995 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10996 {
10997     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10998     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10999     if (ieee) {
11000         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11001     }
11002     return float16_val(r);
11003 }
11004 
11005 #define float32_two make_float32(0x40000000)
11006 #define float32_three make_float32(0x40400000)
11007 #define float32_one_point_five make_float32(0x3fc00000)
11008 
11009 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11010 {
11011     float_status *s = &env->vfp.standard_fp_status;
11012     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11013         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11014         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11015             float_raise(float_flag_input_denormal, s);
11016         }
11017         return float32_two;
11018     }
11019     return float32_sub(float32_two, float32_mul(a, b, s), s);
11020 }
11021 
11022 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11023 {
11024     float_status *s = &env->vfp.standard_fp_status;
11025     float32 product;
11026     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11027         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11028         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11029             float_raise(float_flag_input_denormal, s);
11030         }
11031         return float32_one_point_five;
11032     }
11033     product = float32_mul(a, b, s);
11034     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11035 }
11036 
11037 /* NEON helpers.  */
11038 
11039 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11040  * int->float conversions at run-time.  */
11041 #define float64_256 make_float64(0x4070000000000000LL)
11042 #define float64_512 make_float64(0x4080000000000000LL)
11043 #define float32_maxnorm make_float32(0x7f7fffff)
11044 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11045 
11046 /* Reciprocal functions
11047  *
11048  * The algorithm that must be used to calculate the estimate
11049  * is specified by the ARM ARM, see FPRecipEstimate()
11050  */
11051 
11052 static float64 recip_estimate(float64 a, float_status *real_fp_status)
11053 {
11054     /* These calculations mustn't set any fp exception flags,
11055      * so we use a local copy of the fp_status.
11056      */
11057     float_status dummy_status = *real_fp_status;
11058     float_status *s = &dummy_status;
11059     /* q = (int)(a * 512.0) */
11060     float64 q = float64_mul(float64_512, a, s);
11061     int64_t q_int = float64_to_int64_round_to_zero(q, s);
11062 
11063     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
11064     q = int64_to_float64(q_int, s);
11065     q = float64_add(q, float64_half, s);
11066     q = float64_div(q, float64_512, s);
11067     q = float64_div(float64_one, q, s);
11068 
11069     /* s = (int)(256.0 * r + 0.5) */
11070     q = float64_mul(q, float64_256, s);
11071     q = float64_add(q, float64_half, s);
11072     q_int = float64_to_int64_round_to_zero(q, s);
11073 
11074     /* return (double)s / 256.0 */
11075     return float64_div(int64_to_float64(q_int, s), float64_256, s);
11076 }
11077 
11078 /* Common wrapper to call recip_estimate */
11079 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
11080 {
11081     uint64_t val64 = float64_val(num);
11082     uint64_t frac = extract64(val64, 0, 52);
11083     int64_t exp = extract64(val64, 52, 11);
11084     uint64_t sbit;
11085     float64 scaled, estimate;
11086 
11087     /* Generate the scaled number for the estimate function */
11088     if (exp == 0) {
11089         if (extract64(frac, 51, 1) == 0) {
11090             exp = -1;
11091             frac = extract64(frac, 0, 50) << 2;
11092         } else {
11093             frac = extract64(frac, 0, 51) << 1;
11094         }
11095     }
11096 
11097     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
11098     scaled = make_float64((0x3feULL << 52)
11099                           | extract64(frac, 44, 8) << 44);
11100 
11101     estimate = recip_estimate(scaled, fpst);
11102 
11103     /* Build new result */
11104     val64 = float64_val(estimate);
11105     sbit = 0x8000000000000000ULL & val64;
11106     exp = off - exp;
11107     frac = extract64(val64, 0, 52);
11108 
11109     if (exp == 0) {
11110         frac = 1ULL << 51 | extract64(frac, 1, 51);
11111     } else if (exp == -1) {
11112         frac = 1ULL << 50 | extract64(frac, 2, 50);
11113         exp = 0;
11114     }
11115 
11116     return make_float64(sbit | (exp << 52) | frac);
11117 }
11118 
11119 static bool round_to_inf(float_status *fpst, bool sign_bit)
11120 {
11121     switch (fpst->float_rounding_mode) {
11122     case float_round_nearest_even: /* Round to Nearest */
11123         return true;
11124     case float_round_up: /* Round to +Inf */
11125         return !sign_bit;
11126     case float_round_down: /* Round to -Inf */
11127         return sign_bit;
11128     case float_round_to_zero: /* Round to Zero */
11129         return false;
11130     }
11131 
11132     g_assert_not_reached();
11133 }
11134 
11135 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11136 {
11137     float_status *fpst = fpstp;
11138     float32 f32 = float32_squash_input_denormal(input, fpst);
11139     uint32_t f32_val = float32_val(f32);
11140     uint32_t f32_sbit = 0x80000000ULL & f32_val;
11141     int32_t f32_exp = extract32(f32_val, 23, 8);
11142     uint32_t f32_frac = extract32(f32_val, 0, 23);
11143     float64 f64, r64;
11144     uint64_t r64_val;
11145     int64_t r64_exp;
11146     uint64_t r64_frac;
11147 
11148     if (float32_is_any_nan(f32)) {
11149         float32 nan = f32;
11150         if (float32_is_signaling_nan(f32, fpst)) {
11151             float_raise(float_flag_invalid, fpst);
11152             nan = float32_maybe_silence_nan(f32, fpst);
11153         }
11154         if (fpst->default_nan_mode) {
11155             nan =  float32_default_nan(fpst);
11156         }
11157         return nan;
11158     } else if (float32_is_infinity(f32)) {
11159         return float32_set_sign(float32_zero, float32_is_neg(f32));
11160     } else if (float32_is_zero(f32)) {
11161         float_raise(float_flag_divbyzero, fpst);
11162         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11163     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11164         /* Abs(value) < 2.0^-128 */
11165         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11166         if (round_to_inf(fpst, f32_sbit)) {
11167             return float32_set_sign(float32_infinity, float32_is_neg(f32));
11168         } else {
11169             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11170         }
11171     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11172         float_raise(float_flag_underflow, fpst);
11173         return float32_set_sign(float32_zero, float32_is_neg(f32));
11174     }
11175 
11176 
11177     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11178     r64 = call_recip_estimate(f64, 253, fpst);
11179     r64_val = float64_val(r64);
11180     r64_exp = extract64(r64_val, 52, 11);
11181     r64_frac = extract64(r64_val, 0, 52);
11182 
11183     /* result = sign : result_exp<7:0> : fraction<51:29>; */
11184     return make_float32(f32_sbit |
11185                         (r64_exp & 0xff) << 23 |
11186                         extract64(r64_frac, 29, 24));
11187 }
11188 
11189 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11190 {
11191     float_status *fpst = fpstp;
11192     float64 f64 = float64_squash_input_denormal(input, fpst);
11193     uint64_t f64_val = float64_val(f64);
11194     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11195     int64_t f64_exp = extract64(f64_val, 52, 11);
11196     float64 r64;
11197     uint64_t r64_val;
11198     int64_t r64_exp;
11199     uint64_t r64_frac;
11200 
11201     /* Deal with any special cases */
11202     if (float64_is_any_nan(f64)) {
11203         float64 nan = f64;
11204         if (float64_is_signaling_nan(f64, fpst)) {
11205             float_raise(float_flag_invalid, fpst);
11206             nan = float64_maybe_silence_nan(f64, fpst);
11207         }
11208         if (fpst->default_nan_mode) {
11209             nan =  float64_default_nan(fpst);
11210         }
11211         return nan;
11212     } else if (float64_is_infinity(f64)) {
11213         return float64_set_sign(float64_zero, float64_is_neg(f64));
11214     } else if (float64_is_zero(f64)) {
11215         float_raise(float_flag_divbyzero, fpst);
11216         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11217     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11218         /* Abs(value) < 2.0^-1024 */
11219         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11220         if (round_to_inf(fpst, f64_sbit)) {
11221             return float64_set_sign(float64_infinity, float64_is_neg(f64));
11222         } else {
11223             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11224         }
11225     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11226         float_raise(float_flag_underflow, fpst);
11227         return float64_set_sign(float64_zero, float64_is_neg(f64));
11228     }
11229 
11230     r64 = call_recip_estimate(f64, 2045, fpst);
11231     r64_val = float64_val(r64);
11232     r64_exp = extract64(r64_val, 52, 11);
11233     r64_frac = extract64(r64_val, 0, 52);
11234 
11235     /* result = sign : result_exp<10:0> : fraction<51:0> */
11236     return make_float64(f64_sbit |
11237                         ((r64_exp & 0x7ff) << 52) |
11238                         r64_frac);
11239 }
11240 
11241 /* The algorithm that must be used to calculate the estimate
11242  * is specified by the ARM ARM.
11243  */
11244 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11245 {
11246     /* These calculations mustn't set any fp exception flags,
11247      * so we use a local copy of the fp_status.
11248      */
11249     float_status dummy_status = *real_fp_status;
11250     float_status *s = &dummy_status;
11251     float64 q;
11252     int64_t q_int;
11253 
11254     if (float64_lt(a, float64_half, s)) {
11255         /* range 0.25 <= a < 0.5 */
11256 
11257         /* a in units of 1/512 rounded down */
11258         /* q0 = (int)(a * 512.0);  */
11259         q = float64_mul(float64_512, a, s);
11260         q_int = float64_to_int64_round_to_zero(q, s);
11261 
11262         /* reciprocal root r */
11263         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
11264         q = int64_to_float64(q_int, s);
11265         q = float64_add(q, float64_half, s);
11266         q = float64_div(q, float64_512, s);
11267         q = float64_sqrt(q, s);
11268         q = float64_div(float64_one, q, s);
11269     } else {
11270         /* range 0.5 <= a < 1.0 */
11271 
11272         /* a in units of 1/256 rounded down */
11273         /* q1 = (int)(a * 256.0); */
11274         q = float64_mul(float64_256, a, s);
11275         int64_t q_int = float64_to_int64_round_to_zero(q, s);
11276 
11277         /* reciprocal root r */
11278         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11279         q = int64_to_float64(q_int, s);
11280         q = float64_add(q, float64_half, s);
11281         q = float64_div(q, float64_256, s);
11282         q = float64_sqrt(q, s);
11283         q = float64_div(float64_one, q, s);
11284     }
11285     /* r in units of 1/256 rounded to nearest */
11286     /* s = (int)(256.0 * r + 0.5); */
11287 
11288     q = float64_mul(q, float64_256,s );
11289     q = float64_add(q, float64_half, s);
11290     q_int = float64_to_int64_round_to_zero(q, s);
11291 
11292     /* return (double)s / 256.0;*/
11293     return float64_div(int64_to_float64(q_int, s), float64_256, s);
11294 }
11295 
11296 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11297 {
11298     float_status *s = fpstp;
11299     float32 f32 = float32_squash_input_denormal(input, s);
11300     uint32_t val = float32_val(f32);
11301     uint32_t f32_sbit = 0x80000000 & val;
11302     int32_t f32_exp = extract32(val, 23, 8);
11303     uint32_t f32_frac = extract32(val, 0, 23);
11304     uint64_t f64_frac;
11305     uint64_t val64;
11306     int result_exp;
11307     float64 f64;
11308 
11309     if (float32_is_any_nan(f32)) {
11310         float32 nan = f32;
11311         if (float32_is_signaling_nan(f32, s)) {
11312             float_raise(float_flag_invalid, s);
11313             nan = float32_maybe_silence_nan(f32, s);
11314         }
11315         if (s->default_nan_mode) {
11316             nan =  float32_default_nan(s);
11317         }
11318         return nan;
11319     } else if (float32_is_zero(f32)) {
11320         float_raise(float_flag_divbyzero, s);
11321         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11322     } else if (float32_is_neg(f32)) {
11323         float_raise(float_flag_invalid, s);
11324         return float32_default_nan(s);
11325     } else if (float32_is_infinity(f32)) {
11326         return float32_zero;
11327     }
11328 
11329     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11330      * preserving the parity of the exponent.  */
11331 
11332     f64_frac = ((uint64_t) f32_frac) << 29;
11333     if (f32_exp == 0) {
11334         while (extract64(f64_frac, 51, 1) == 0) {
11335             f64_frac = f64_frac << 1;
11336             f32_exp = f32_exp-1;
11337         }
11338         f64_frac = extract64(f64_frac, 0, 51) << 1;
11339     }
11340 
11341     if (extract64(f32_exp, 0, 1) == 0) {
11342         f64 = make_float64(((uint64_t) f32_sbit) << 32
11343                            | (0x3feULL << 52)
11344                            | f64_frac);
11345     } else {
11346         f64 = make_float64(((uint64_t) f32_sbit) << 32
11347                            | (0x3fdULL << 52)
11348                            | f64_frac);
11349     }
11350 
11351     result_exp = (380 - f32_exp) / 2;
11352 
11353     f64 = recip_sqrt_estimate(f64, s);
11354 
11355     val64 = float64_val(f64);
11356 
11357     val = ((result_exp & 0xff) << 23)
11358         | ((val64 >> 29)  & 0x7fffff);
11359     return make_float32(val);
11360 }
11361 
11362 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11363 {
11364     float_status *s = fpstp;
11365     float64 f64 = float64_squash_input_denormal(input, s);
11366     uint64_t val = float64_val(f64);
11367     uint64_t f64_sbit = 0x8000000000000000ULL & val;
11368     int64_t f64_exp = extract64(val, 52, 11);
11369     uint64_t f64_frac = extract64(val, 0, 52);
11370     int64_t result_exp;
11371     uint64_t result_frac;
11372 
11373     if (float64_is_any_nan(f64)) {
11374         float64 nan = f64;
11375         if (float64_is_signaling_nan(f64, s)) {
11376             float_raise(float_flag_invalid, s);
11377             nan = float64_maybe_silence_nan(f64, s);
11378         }
11379         if (s->default_nan_mode) {
11380             nan =  float64_default_nan(s);
11381         }
11382         return nan;
11383     } else if (float64_is_zero(f64)) {
11384         float_raise(float_flag_divbyzero, s);
11385         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11386     } else if (float64_is_neg(f64)) {
11387         float_raise(float_flag_invalid, s);
11388         return float64_default_nan(s);
11389     } else if (float64_is_infinity(f64)) {
11390         return float64_zero;
11391     }
11392 
11393     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11394      * preserving the parity of the exponent.  */
11395 
11396     if (f64_exp == 0) {
11397         while (extract64(f64_frac, 51, 1) == 0) {
11398             f64_frac = f64_frac << 1;
11399             f64_exp = f64_exp - 1;
11400         }
11401         f64_frac = extract64(f64_frac, 0, 51) << 1;
11402     }
11403 
11404     if (extract64(f64_exp, 0, 1) == 0) {
11405         f64 = make_float64(f64_sbit
11406                            | (0x3feULL << 52)
11407                            | f64_frac);
11408     } else {
11409         f64 = make_float64(f64_sbit
11410                            | (0x3fdULL << 52)
11411                            | f64_frac);
11412     }
11413 
11414     result_exp = (3068 - f64_exp) / 2;
11415 
11416     f64 = recip_sqrt_estimate(f64, s);
11417 
11418     result_frac = extract64(float64_val(f64), 0, 52);
11419 
11420     return make_float64(f64_sbit |
11421                         ((result_exp & 0x7ff) << 52) |
11422                         result_frac);
11423 }
11424 
11425 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11426 {
11427     float_status *s = fpstp;
11428     float64 f64;
11429 
11430     if ((a & 0x80000000) == 0) {
11431         return 0xffffffff;
11432     }
11433 
11434     f64 = make_float64((0x3feULL << 52)
11435                        | ((int64_t)(a & 0x7fffffff) << 21));
11436 
11437     f64 = recip_estimate(f64, s);
11438 
11439     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11440 }
11441 
11442 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11443 {
11444     float_status *fpst = fpstp;
11445     float64 f64;
11446 
11447     if ((a & 0xc0000000) == 0) {
11448         return 0xffffffff;
11449     }
11450 
11451     if (a & 0x80000000) {
11452         f64 = make_float64((0x3feULL << 52)
11453                            | ((uint64_t)(a & 0x7fffffff) << 21));
11454     } else { /* bits 31-30 == '01' */
11455         f64 = make_float64((0x3fdULL << 52)
11456                            | ((uint64_t)(a & 0x3fffffff) << 22));
11457     }
11458 
11459     f64 = recip_sqrt_estimate(f64, fpst);
11460 
11461     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11462 }
11463 
11464 /* VFPv4 fused multiply-accumulate */
11465 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11466 {
11467     float_status *fpst = fpstp;
11468     return float32_muladd(a, b, c, 0, fpst);
11469 }
11470 
11471 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11472 {
11473     float_status *fpst = fpstp;
11474     return float64_muladd(a, b, c, 0, fpst);
11475 }
11476 
11477 /* ARMv8 round to integral */
11478 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11479 {
11480     return float32_round_to_int(x, fp_status);
11481 }
11482 
11483 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11484 {
11485     return float64_round_to_int(x, fp_status);
11486 }
11487 
11488 float32 HELPER(rints)(float32 x, void *fp_status)
11489 {
11490     int old_flags = get_float_exception_flags(fp_status), new_flags;
11491     float32 ret;
11492 
11493     ret = float32_round_to_int(x, fp_status);
11494 
11495     /* Suppress any inexact exceptions the conversion produced */
11496     if (!(old_flags & float_flag_inexact)) {
11497         new_flags = get_float_exception_flags(fp_status);
11498         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11499     }
11500 
11501     return ret;
11502 }
11503 
11504 float64 HELPER(rintd)(float64 x, void *fp_status)
11505 {
11506     int old_flags = get_float_exception_flags(fp_status), new_flags;
11507     float64 ret;
11508 
11509     ret = float64_round_to_int(x, fp_status);
11510 
11511     new_flags = get_float_exception_flags(fp_status);
11512 
11513     /* Suppress any inexact exceptions the conversion produced */
11514     if (!(old_flags & float_flag_inexact)) {
11515         new_flags = get_float_exception_flags(fp_status);
11516         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11517     }
11518 
11519     return ret;
11520 }
11521 
11522 /* Convert ARM rounding mode to softfloat */
11523 int arm_rmode_to_sf(int rmode)
11524 {
11525     switch (rmode) {
11526     case FPROUNDING_TIEAWAY:
11527         rmode = float_round_ties_away;
11528         break;
11529     case FPROUNDING_ODD:
11530         /* FIXME: add support for TIEAWAY and ODD */
11531         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11532                       rmode);
11533     case FPROUNDING_TIEEVEN:
11534     default:
11535         rmode = float_round_nearest_even;
11536         break;
11537     case FPROUNDING_POSINF:
11538         rmode = float_round_up;
11539         break;
11540     case FPROUNDING_NEGINF:
11541         rmode = float_round_down;
11542         break;
11543     case FPROUNDING_ZERO:
11544         rmode = float_round_to_zero;
11545         break;
11546     }
11547     return rmode;
11548 }
11549 
11550 /* CRC helpers.
11551  * The upper bytes of val (above the number specified by 'bytes') must have
11552  * been zeroed out by the caller.
11553  */
11554 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11555 {
11556     uint8_t buf[4];
11557 
11558     stl_le_p(buf, val);
11559 
11560     /* zlib crc32 converts the accumulator and output to one's complement.  */
11561     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11562 }
11563 
11564 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11565 {
11566     uint8_t buf[4];
11567 
11568     stl_le_p(buf, val);
11569 
11570     /* Linux crc32c converts the output to one's complement.  */
11571     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11572 }
11573