1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 55 { 56 assert(ri->fieldoffset); 57 if (cpreg_field_is_64bit(ri)) { 58 CPREG_FIELD64(env, ri) = value; 59 } else { 60 CPREG_FIELD32(env, ri) = value; 61 } 62 } 63 64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 return (char *)env + ri->fieldoffset; 67 } 68 69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 70 { 71 /* Raw read of a coprocessor register (as needed for migration, etc). */ 72 if (ri->type & ARM_CP_CONST) { 73 return ri->resetvalue; 74 } else if (ri->raw_readfn) { 75 return ri->raw_readfn(env, ri); 76 } else if (ri->readfn) { 77 return ri->readfn(env, ri); 78 } else { 79 return raw_read(env, ri); 80 } 81 } 82 83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 84 uint64_t v) 85 { 86 /* Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* Return true if the regdef would cause an assertion if you called 105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 106 * program bug for it not to have the NO_RAW flag). 107 * NB that returning false here doesn't necessarily mean that calling 108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 109 * read/write access functions which are safe for raw use" from "has 110 * read/write access functions which have side effects but has forgotten 111 * to provide raw access functions". 112 * The tests here line up with the conditions in read/write_raw_cp_reg() 113 * and assertions in raw_read()/raw_write(). 114 */ 115 if ((ri->type & ARM_CP_CONST) || 116 ri->fieldoffset || 117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 118 return false; 119 } 120 return true; 121 } 122 123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 124 { 125 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 126 int i; 127 bool ok = true; 128 129 for (i = 0; i < cpu->cpreg_array_len; i++) { 130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 131 const ARMCPRegInfo *ri; 132 uint64_t newval; 133 134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 135 if (!ri) { 136 ok = false; 137 continue; 138 } 139 if (ri->type & ARM_CP_NO_RAW) { 140 continue; 141 } 142 143 newval = read_raw_cp_reg(&cpu->env, ri); 144 if (kvm_sync) { 145 /* 146 * Only sync if the previous list->cpustate sync succeeded. 147 * Rather than tracking the success/failure state for every 148 * item in the list, we just recheck "does the raw write we must 149 * have made in write_list_to_cpustate() read back OK" here. 150 */ 151 uint64_t oldval = cpu->cpreg_values[i]; 152 153 if (oldval == newval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, oldval); 158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 159 continue; 160 } 161 162 write_raw_cp_reg(&cpu->env, ri, newval); 163 } 164 cpu->cpreg_values[i] = newval; 165 } 166 return ok; 167 } 168 169 bool write_list_to_cpustate(ARMCPU *cpu) 170 { 171 int i; 172 bool ok = true; 173 174 for (i = 0; i < cpu->cpreg_array_len; i++) { 175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 176 uint64_t v = cpu->cpreg_values[i]; 177 const ARMCPRegInfo *ri; 178 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 180 if (!ri) { 181 ok = false; 182 continue; 183 } 184 if (ri->type & ARM_CP_NO_RAW) { 185 continue; 186 } 187 /* Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 /* 269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 270 */ 271 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 272 const ARMCPRegInfo *ri, 273 bool isread) 274 { 275 if (!is_a64(env) && arm_current_el(env) == 3 && 276 arm_is_secure_below_el3(env)) { 277 return CP_ACCESS_TRAP_UNCATEGORIZED; 278 } 279 return CP_ACCESS_OK; 280 } 281 282 /* Some secure-only AArch32 registers trap to EL3 if used from 283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 285 * We assume that the .access field is set to PL1_RW. 286 */ 287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 288 const ARMCPRegInfo *ri, 289 bool isread) 290 { 291 if (arm_current_el(env) == 3) { 292 return CP_ACCESS_OK; 293 } 294 if (arm_is_secure_below_el3(env)) { 295 if (env->cp15.scr_el3 & SCR_EEL2) { 296 return CP_ACCESS_TRAP_EL2; 297 } 298 return CP_ACCESS_TRAP_EL3; 299 } 300 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 301 return CP_ACCESS_TRAP_UNCATEGORIZED; 302 } 303 304 /* Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 366 { 367 ARMCPU *cpu = env_archcpu(env); 368 369 raw_write(env, ri, value); 370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 371 } 372 373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 374 { 375 ARMCPU *cpu = env_archcpu(env); 376 377 if (raw_read(env, ri) != value) { 378 /* Unlike real hardware the qemu TLB uses virtual addresses, 379 * not modified virtual addresses, so this causes a TLB flush. 380 */ 381 tlb_flush(CPU(cpu)); 382 raw_write(env, ri, value); 383 } 384 } 385 386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 387 uint64_t value) 388 { 389 ARMCPU *cpu = env_archcpu(env); 390 391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 392 && !extended_addresses_enabled(env)) { 393 /* For VMSA (when not using the LPAE long descriptor page table 394 * format) this register includes the ASID, so do a TLB flush. 395 * For PMSA it is purely a process ID and no action is needed. 396 */ 397 tlb_flush(CPU(cpu)); 398 } 399 raw_write(env, ri, value); 400 } 401 402 static int alle1_tlbmask(CPUARMState *env) 403 { 404 /* 405 * Note that the 'ALL' scope must invalidate both stage 1 and 406 * stage 2 translations, whereas most other scopes only invalidate 407 * stage 1 translations. 408 */ 409 return (ARMMMUIdxBit_E10_1 | 410 ARMMMUIdxBit_E10_1_PAN | 411 ARMMMUIdxBit_E10_0 | 412 ARMMMUIdxBit_Stage2 | 413 ARMMMUIdxBit_Stage2_S); 414 } 415 416 417 /* IS variants of TLB operations must affect all cores */ 418 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 419 uint64_t value) 420 { 421 CPUState *cs = env_cpu(env); 422 423 tlb_flush_all_cpus_synced(cs); 424 } 425 426 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 427 uint64_t value) 428 { 429 CPUState *cs = env_cpu(env); 430 431 tlb_flush_all_cpus_synced(cs); 432 } 433 434 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 435 uint64_t value) 436 { 437 CPUState *cs = env_cpu(env); 438 439 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 440 } 441 442 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 443 uint64_t value) 444 { 445 CPUState *cs = env_cpu(env); 446 447 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 448 } 449 450 /* 451 * Non-IS variants of TLB operations are upgraded to 452 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 453 * force broadcast of these operations. 454 */ 455 static bool tlb_force_broadcast(CPUARMState *env) 456 { 457 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 458 } 459 460 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 /* Invalidate all (TLBIALL) */ 464 CPUState *cs = env_cpu(env); 465 466 if (tlb_force_broadcast(env)) { 467 tlb_flush_all_cpus_synced(cs); 468 } else { 469 tlb_flush(cs); 470 } 471 } 472 473 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 477 CPUState *cs = env_cpu(env); 478 479 value &= TARGET_PAGE_MASK; 480 if (tlb_force_broadcast(env)) { 481 tlb_flush_page_all_cpus_synced(cs, value); 482 } else { 483 tlb_flush_page(cs, value); 484 } 485 } 486 487 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 488 uint64_t value) 489 { 490 /* Invalidate by ASID (TLBIASID) */ 491 CPUState *cs = env_cpu(env); 492 493 if (tlb_force_broadcast(env)) { 494 tlb_flush_all_cpus_synced(cs); 495 } else { 496 tlb_flush(cs); 497 } 498 } 499 500 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 501 uint64_t value) 502 { 503 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 504 CPUState *cs = env_cpu(env); 505 506 value &= TARGET_PAGE_MASK; 507 if (tlb_force_broadcast(env)) { 508 tlb_flush_page_all_cpus_synced(cs, value); 509 } else { 510 tlb_flush_page(cs, value); 511 } 512 } 513 514 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 515 uint64_t value) 516 { 517 CPUState *cs = env_cpu(env); 518 519 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 520 } 521 522 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 523 uint64_t value) 524 { 525 CPUState *cs = env_cpu(env); 526 527 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 528 } 529 530 531 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 532 uint64_t value) 533 { 534 CPUState *cs = env_cpu(env); 535 536 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 537 } 538 539 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 545 } 546 547 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 552 553 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 554 } 555 556 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 561 562 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 563 ARMMMUIdxBit_E2); 564 } 565 566 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *cs = env_cpu(env); 570 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 571 572 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 573 } 574 575 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 576 uint64_t value) 577 { 578 CPUState *cs = env_cpu(env); 579 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 580 581 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 582 } 583 584 static const ARMCPRegInfo cp_reginfo[] = { 585 /* Define the secure and non-secure FCSE identifier CP registers 586 * separately because there is no secure bank in V8 (no _EL3). This allows 587 * the secure register to be properly reset and migrated. There is also no 588 * v8 EL1 version of the register so the non-secure instance stands alone. 589 */ 590 { .name = "FCSEIDR", 591 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 592 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 593 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 594 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 595 { .name = "FCSEIDR_S", 596 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 597 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 598 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 599 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 600 /* Define the secure and non-secure context identifier CP registers 601 * separately because there is no secure bank in V8 (no _EL3). This allows 602 * the secure register to be properly reset and migrated. In the 603 * non-secure case, the 32-bit register will have reset and migration 604 * disabled during registration as it is handled by the 64-bit instance. 605 */ 606 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 607 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 608 .access = PL1_RW, .accessfn = access_tvm_trvm, 609 .secure = ARM_CP_SECSTATE_NS, 610 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 611 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 612 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 613 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 614 .access = PL1_RW, .accessfn = access_tvm_trvm, 615 .secure = ARM_CP_SECSTATE_S, 616 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 617 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 618 }; 619 620 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 621 /* NB: Some of these registers exist in v8 but with more precise 622 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 623 */ 624 /* MMU Domain access control / MPU write buffer control */ 625 { .name = "DACR", 626 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 627 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 628 .writefn = dacr_write, .raw_writefn = raw_write, 629 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 630 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 631 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 632 * For v6 and v5, these mappings are overly broad. 633 */ 634 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 635 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 636 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 637 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 638 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 639 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 640 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 641 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 642 /* Cache maintenance ops; some of this space may be overridden later. */ 643 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 644 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 645 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 646 }; 647 648 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 649 /* Not all pre-v6 cores implemented this WFI, so this is slightly 650 * over-broad. 651 */ 652 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 653 .access = PL1_W, .type = ARM_CP_WFI }, 654 }; 655 656 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 657 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 658 * is UNPREDICTABLE; we choose to NOP as most implementations do). 659 */ 660 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 661 .access = PL1_W, .type = ARM_CP_WFI }, 662 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 663 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 664 * OMAPCP will override this space. 665 */ 666 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 667 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 668 .resetvalue = 0 }, 669 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 670 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 671 .resetvalue = 0 }, 672 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 673 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 674 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 675 .resetvalue = 0 }, 676 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 677 * implementing it as RAZ means the "debug architecture version" bits 678 * will read as a reserved value, which should cause Linux to not try 679 * to use the debug hardware. 680 */ 681 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 682 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 683 /* MMU TLB control. Note that the wildcarding means we cover not just 684 * the unified TLB ops but also the dside/iside/inner-shareable variants. 685 */ 686 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 687 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 688 .type = ARM_CP_NO_RAW }, 689 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 690 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 691 .type = ARM_CP_NO_RAW }, 692 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 693 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 694 .type = ARM_CP_NO_RAW }, 695 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 696 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 697 .type = ARM_CP_NO_RAW }, 698 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 699 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 700 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 701 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 702 }; 703 704 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 705 uint64_t value) 706 { 707 uint32_t mask = 0; 708 709 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 710 if (!arm_feature(env, ARM_FEATURE_V8)) { 711 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 712 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 713 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 714 */ 715 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 716 /* VFP coprocessor: cp10 & cp11 [23:20] */ 717 mask |= R_CPACR_ASEDIS_MASK | 718 R_CPACR_D32DIS_MASK | 719 R_CPACR_CP11_MASK | 720 R_CPACR_CP10_MASK; 721 722 if (!arm_feature(env, ARM_FEATURE_NEON)) { 723 /* ASEDIS [31] bit is RAO/WI */ 724 value |= R_CPACR_ASEDIS_MASK; 725 } 726 727 /* VFPv3 and upwards with NEON implement 32 double precision 728 * registers (D0-D31). 729 */ 730 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 731 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 732 value |= R_CPACR_D32DIS_MASK; 733 } 734 } 735 value &= mask; 736 } 737 738 /* 739 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 740 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 741 */ 742 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 743 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 744 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 745 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 746 } 747 748 env->cp15.cpacr_el1 = value; 749 } 750 751 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 752 { 753 /* 754 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 755 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 756 */ 757 uint64_t value = env->cp15.cpacr_el1; 758 759 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 760 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 761 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 762 } 763 return value; 764 } 765 766 767 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 768 { 769 /* Call cpacr_write() so that we reset with the correct RAO bits set 770 * for our CPU features. 771 */ 772 cpacr_write(env, ri, 0); 773 } 774 775 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 776 bool isread) 777 { 778 if (arm_feature(env, ARM_FEATURE_V8)) { 779 /* Check if CPACR accesses are to be trapped to EL2 */ 780 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 781 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 782 return CP_ACCESS_TRAP_EL2; 783 /* Check if CPACR accesses are to be trapped to EL3 */ 784 } else if (arm_current_el(env) < 3 && 785 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 786 return CP_ACCESS_TRAP_EL3; 787 } 788 } 789 790 return CP_ACCESS_OK; 791 } 792 793 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 794 bool isread) 795 { 796 /* Check if CPTR accesses are set to trap to EL3 */ 797 if (arm_current_el(env) == 2 && 798 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 799 return CP_ACCESS_TRAP_EL3; 800 } 801 802 return CP_ACCESS_OK; 803 } 804 805 static const ARMCPRegInfo v6_cp_reginfo[] = { 806 /* prefetch by MVA in v6, NOP in v7 */ 807 { .name = "MVA_prefetch", 808 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 809 .access = PL1_W, .type = ARM_CP_NOP }, 810 /* We need to break the TB after ISB to execute self-modifying code 811 * correctly and also to take any pending interrupts immediately. 812 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 813 */ 814 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 815 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 816 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 817 .access = PL0_W, .type = ARM_CP_NOP }, 818 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 819 .access = PL0_W, .type = ARM_CP_NOP }, 820 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 821 .access = PL1_RW, .accessfn = access_tvm_trvm, 822 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 823 offsetof(CPUARMState, cp15.ifar_ns) }, 824 .resetvalue = 0, }, 825 /* Watchpoint Fault Address Register : should actually only be present 826 * for 1136, 1176, 11MPCore. 827 */ 828 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 829 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 830 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 831 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 832 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 833 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 834 }; 835 836 typedef struct pm_event { 837 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 838 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 839 bool (*supported)(CPUARMState *); 840 /* 841 * Retrieve the current count of the underlying event. The programmed 842 * counters hold a difference from the return value from this function 843 */ 844 uint64_t (*get_count)(CPUARMState *); 845 /* 846 * Return how many nanoseconds it will take (at a minimum) for count events 847 * to occur. A negative value indicates the counter will never overflow, or 848 * that the counter has otherwise arranged for the overflow bit to be set 849 * and the PMU interrupt to be raised on overflow. 850 */ 851 int64_t (*ns_per_count)(uint64_t); 852 } pm_event; 853 854 static bool event_always_supported(CPUARMState *env) 855 { 856 return true; 857 } 858 859 static uint64_t swinc_get_count(CPUARMState *env) 860 { 861 /* 862 * SW_INCR events are written directly to the pmevcntr's by writes to 863 * PMSWINC, so there is no underlying count maintained by the PMU itself 864 */ 865 return 0; 866 } 867 868 static int64_t swinc_ns_per(uint64_t ignored) 869 { 870 return -1; 871 } 872 873 /* 874 * Return the underlying cycle count for the PMU cycle counters. If we're in 875 * usermode, simply return 0. 876 */ 877 static uint64_t cycles_get_count(CPUARMState *env) 878 { 879 #ifndef CONFIG_USER_ONLY 880 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 881 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 882 #else 883 return cpu_get_host_ticks(); 884 #endif 885 } 886 887 #ifndef CONFIG_USER_ONLY 888 static int64_t cycles_ns_per(uint64_t cycles) 889 { 890 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 891 } 892 893 static bool instructions_supported(CPUARMState *env) 894 { 895 return icount_enabled() == 1; /* Precise instruction counting */ 896 } 897 898 static uint64_t instructions_get_count(CPUARMState *env) 899 { 900 return (uint64_t)icount_get_raw(); 901 } 902 903 static int64_t instructions_ns_per(uint64_t icount) 904 { 905 return icount_to_ns((int64_t)icount); 906 } 907 #endif 908 909 static bool pmuv3p1_events_supported(CPUARMState *env) 910 { 911 /* For events which are supported in any v8.1 PMU */ 912 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 913 } 914 915 static bool pmuv3p4_events_supported(CPUARMState *env) 916 { 917 /* For events which are supported in any v8.1 PMU */ 918 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 919 } 920 921 static uint64_t zero_event_get_count(CPUARMState *env) 922 { 923 /* For events which on QEMU never fire, so their count is always zero */ 924 return 0; 925 } 926 927 static int64_t zero_event_ns_per(uint64_t cycles) 928 { 929 /* An event which never fires can never overflow */ 930 return -1; 931 } 932 933 static const pm_event pm_events[] = { 934 { .number = 0x000, /* SW_INCR */ 935 .supported = event_always_supported, 936 .get_count = swinc_get_count, 937 .ns_per_count = swinc_ns_per, 938 }, 939 #ifndef CONFIG_USER_ONLY 940 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 941 .supported = instructions_supported, 942 .get_count = instructions_get_count, 943 .ns_per_count = instructions_ns_per, 944 }, 945 { .number = 0x011, /* CPU_CYCLES, Cycle */ 946 .supported = event_always_supported, 947 .get_count = cycles_get_count, 948 .ns_per_count = cycles_ns_per, 949 }, 950 #endif 951 { .number = 0x023, /* STALL_FRONTEND */ 952 .supported = pmuv3p1_events_supported, 953 .get_count = zero_event_get_count, 954 .ns_per_count = zero_event_ns_per, 955 }, 956 { .number = 0x024, /* STALL_BACKEND */ 957 .supported = pmuv3p1_events_supported, 958 .get_count = zero_event_get_count, 959 .ns_per_count = zero_event_ns_per, 960 }, 961 { .number = 0x03c, /* STALL */ 962 .supported = pmuv3p4_events_supported, 963 .get_count = zero_event_get_count, 964 .ns_per_count = zero_event_ns_per, 965 }, 966 }; 967 968 /* 969 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 970 * events (i.e. the statistical profiling extension), this implementation 971 * should first be updated to something sparse instead of the current 972 * supported_event_map[] array. 973 */ 974 #define MAX_EVENT_ID 0x3c 975 #define UNSUPPORTED_EVENT UINT16_MAX 976 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 977 978 /* 979 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 980 * of ARM event numbers to indices in our pm_events array. 981 * 982 * Note: Events in the 0x40XX range are not currently supported. 983 */ 984 void pmu_init(ARMCPU *cpu) 985 { 986 unsigned int i; 987 988 /* 989 * Empty supported_event_map and cpu->pmceid[01] before adding supported 990 * events to them 991 */ 992 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 993 supported_event_map[i] = UNSUPPORTED_EVENT; 994 } 995 cpu->pmceid0 = 0; 996 cpu->pmceid1 = 0; 997 998 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 999 const pm_event *cnt = &pm_events[i]; 1000 assert(cnt->number <= MAX_EVENT_ID); 1001 /* We do not currently support events in the 0x40xx range */ 1002 assert(cnt->number <= 0x3f); 1003 1004 if (cnt->supported(&cpu->env)) { 1005 supported_event_map[cnt->number] = i; 1006 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1007 if (cnt->number & 0x20) { 1008 cpu->pmceid1 |= event_mask; 1009 } else { 1010 cpu->pmceid0 |= event_mask; 1011 } 1012 } 1013 } 1014 } 1015 1016 /* 1017 * Check at runtime whether a PMU event is supported for the current machine 1018 */ 1019 static bool event_supported(uint16_t number) 1020 { 1021 if (number > MAX_EVENT_ID) { 1022 return false; 1023 } 1024 return supported_event_map[number] != UNSUPPORTED_EVENT; 1025 } 1026 1027 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1028 bool isread) 1029 { 1030 /* Performance monitor registers user accessibility is controlled 1031 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1032 * trapping to EL2 or EL3 for other accesses. 1033 */ 1034 int el = arm_current_el(env); 1035 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1036 1037 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1038 return CP_ACCESS_TRAP; 1039 } 1040 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1041 return CP_ACCESS_TRAP_EL2; 1042 } 1043 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1044 return CP_ACCESS_TRAP_EL3; 1045 } 1046 1047 return CP_ACCESS_OK; 1048 } 1049 1050 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1051 const ARMCPRegInfo *ri, 1052 bool isread) 1053 { 1054 /* ER: event counter read trap control */ 1055 if (arm_feature(env, ARM_FEATURE_V8) 1056 && arm_current_el(env) == 0 1057 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1058 && isread) { 1059 return CP_ACCESS_OK; 1060 } 1061 1062 return pmreg_access(env, ri, isread); 1063 } 1064 1065 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1066 const ARMCPRegInfo *ri, 1067 bool isread) 1068 { 1069 /* SW: software increment write trap control */ 1070 if (arm_feature(env, ARM_FEATURE_V8) 1071 && arm_current_el(env) == 0 1072 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1073 && !isread) { 1074 return CP_ACCESS_OK; 1075 } 1076 1077 return pmreg_access(env, ri, isread); 1078 } 1079 1080 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1081 const ARMCPRegInfo *ri, 1082 bool isread) 1083 { 1084 /* ER: event counter read trap control */ 1085 if (arm_feature(env, ARM_FEATURE_V8) 1086 && arm_current_el(env) == 0 1087 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1088 return CP_ACCESS_OK; 1089 } 1090 1091 return pmreg_access(env, ri, isread); 1092 } 1093 1094 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1095 const ARMCPRegInfo *ri, 1096 bool isread) 1097 { 1098 /* CR: cycle counter read trap control */ 1099 if (arm_feature(env, ARM_FEATURE_V8) 1100 && arm_current_el(env) == 0 1101 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1102 && isread) { 1103 return CP_ACCESS_OK; 1104 } 1105 1106 return pmreg_access(env, ri, isread); 1107 } 1108 1109 /* 1110 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1111 * We use these to decide whether we need to wrap a write to MDCR_EL2 1112 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1113 */ 1114 #define MDCR_EL2_PMU_ENABLE_BITS \ 1115 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1116 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1117 1118 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1119 * the current EL, security state, and register configuration. 1120 */ 1121 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1122 { 1123 uint64_t filter; 1124 bool e, p, u, nsk, nsu, nsh, m; 1125 bool enabled, prohibited = false, filtered; 1126 bool secure = arm_is_secure(env); 1127 int el = arm_current_el(env); 1128 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1129 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1130 1131 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1132 return false; 1133 } 1134 1135 if (!arm_feature(env, ARM_FEATURE_EL2) || 1136 (counter < hpmn || counter == 31)) { 1137 e = env->cp15.c9_pmcr & PMCRE; 1138 } else { 1139 e = mdcr_el2 & MDCR_HPME; 1140 } 1141 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1142 1143 /* Is event counting prohibited? */ 1144 if (el == 2 && (counter < hpmn || counter == 31)) { 1145 prohibited = mdcr_el2 & MDCR_HPMD; 1146 } 1147 if (secure) { 1148 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1149 } 1150 1151 if (counter == 31) { 1152 /* 1153 * The cycle counter defaults to running. PMCR.DP says "disable 1154 * the cycle counter when event counting is prohibited". 1155 * Some MDCR bits disable the cycle counter specifically. 1156 */ 1157 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1158 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1159 if (secure) { 1160 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1161 } 1162 if (el == 2) { 1163 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1164 } 1165 } 1166 } 1167 1168 if (counter == 31) { 1169 filter = env->cp15.pmccfiltr_el0; 1170 } else { 1171 filter = env->cp15.c14_pmevtyper[counter]; 1172 } 1173 1174 p = filter & PMXEVTYPER_P; 1175 u = filter & PMXEVTYPER_U; 1176 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1177 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1178 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1179 m = arm_el_is_aa64(env, 1) && 1180 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1181 1182 if (el == 0) { 1183 filtered = secure ? u : u != nsu; 1184 } else if (el == 1) { 1185 filtered = secure ? p : p != nsk; 1186 } else if (el == 2) { 1187 filtered = !nsh; 1188 } else { /* EL3 */ 1189 filtered = m != p; 1190 } 1191 1192 if (counter != 31) { 1193 /* 1194 * If not checking PMCCNTR, ensure the counter is setup to an event we 1195 * support 1196 */ 1197 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1198 if (!event_supported(event)) { 1199 return false; 1200 } 1201 } 1202 1203 return enabled && !prohibited && !filtered; 1204 } 1205 1206 static void pmu_update_irq(CPUARMState *env) 1207 { 1208 ARMCPU *cpu = env_archcpu(env); 1209 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1210 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1211 } 1212 1213 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1214 { 1215 /* 1216 * Return true if the clock divider is enabled and the cycle counter 1217 * is supposed to tick only once every 64 clock cycles. This is 1218 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1219 * (64-bit) cycle counter PMCR.D has no effect. 1220 */ 1221 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1222 } 1223 1224 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1225 { 1226 /* Return true if the specified event counter is configured to be 64 bit */ 1227 1228 /* This isn't intended to be used with the cycle counter */ 1229 assert(counter < 31); 1230 1231 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1232 return false; 1233 } 1234 1235 if (arm_feature(env, ARM_FEATURE_EL2)) { 1236 /* 1237 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1238 * current security state, so we don't use arm_mdcr_el2_eff() here. 1239 */ 1240 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1241 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1242 1243 if (hpmn != 0 && counter >= hpmn) { 1244 return hlp; 1245 } 1246 } 1247 return env->cp15.c9_pmcr & PMCRLP; 1248 } 1249 1250 /* 1251 * Ensure c15_ccnt is the guest-visible count so that operations such as 1252 * enabling/disabling the counter or filtering, modifying the count itself, 1253 * etc. can be done logically. This is essentially a no-op if the counter is 1254 * not enabled at the time of the call. 1255 */ 1256 static void pmccntr_op_start(CPUARMState *env) 1257 { 1258 uint64_t cycles = cycles_get_count(env); 1259 1260 if (pmu_counter_enabled(env, 31)) { 1261 uint64_t eff_cycles = cycles; 1262 if (pmccntr_clockdiv_enabled(env)) { 1263 eff_cycles /= 64; 1264 } 1265 1266 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1267 1268 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1269 1ull << 63 : 1ull << 31; 1270 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1271 env->cp15.c9_pmovsr |= (1ULL << 31); 1272 pmu_update_irq(env); 1273 } 1274 1275 env->cp15.c15_ccnt = new_pmccntr; 1276 } 1277 env->cp15.c15_ccnt_delta = cycles; 1278 } 1279 1280 /* 1281 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1282 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1283 * pmccntr_op_start. 1284 */ 1285 static void pmccntr_op_finish(CPUARMState *env) 1286 { 1287 if (pmu_counter_enabled(env, 31)) { 1288 #ifndef CONFIG_USER_ONLY 1289 /* Calculate when the counter will next overflow */ 1290 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1291 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1292 remaining_cycles = (uint32_t)remaining_cycles; 1293 } 1294 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1295 1296 if (overflow_in > 0) { 1297 int64_t overflow_at; 1298 1299 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1300 overflow_in, &overflow_at)) { 1301 ARMCPU *cpu = env_archcpu(env); 1302 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1303 } 1304 } 1305 #endif 1306 1307 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1308 if (pmccntr_clockdiv_enabled(env)) { 1309 prev_cycles /= 64; 1310 } 1311 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1312 } 1313 } 1314 1315 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1316 { 1317 1318 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1319 uint64_t count = 0; 1320 if (event_supported(event)) { 1321 uint16_t event_idx = supported_event_map[event]; 1322 count = pm_events[event_idx].get_count(env); 1323 } 1324 1325 if (pmu_counter_enabled(env, counter)) { 1326 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1327 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1328 1ULL << 63 : 1ULL << 31; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1346 int64_t overflow_in; 1347 1348 if (!pmevcntr_is_64_bit(env, counter)) { 1349 delta = (uint32_t)delta; 1350 } 1351 overflow_in = pm_events[event_idx].ns_per_count(delta); 1352 1353 if (overflow_in > 0) { 1354 int64_t overflow_at; 1355 1356 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1357 overflow_in, &overflow_at)) { 1358 ARMCPU *cpu = env_archcpu(env); 1359 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1360 } 1361 } 1362 #endif 1363 1364 env->cp15.c14_pmevcntr_delta[counter] -= 1365 env->cp15.c14_pmevcntr[counter]; 1366 } 1367 } 1368 1369 void pmu_op_start(CPUARMState *env) 1370 { 1371 unsigned int i; 1372 pmccntr_op_start(env); 1373 for (i = 0; i < pmu_num_counters(env); i++) { 1374 pmevcntr_op_start(env, i); 1375 } 1376 } 1377 1378 void pmu_op_finish(CPUARMState *env) 1379 { 1380 unsigned int i; 1381 pmccntr_op_finish(env); 1382 for (i = 0; i < pmu_num_counters(env); i++) { 1383 pmevcntr_op_finish(env, i); 1384 } 1385 } 1386 1387 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1388 { 1389 pmu_op_start(&cpu->env); 1390 } 1391 1392 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1393 { 1394 pmu_op_finish(&cpu->env); 1395 } 1396 1397 void arm_pmu_timer_cb(void *opaque) 1398 { 1399 ARMCPU *cpu = opaque; 1400 1401 /* 1402 * Update all the counter values based on the current underlying counts, 1403 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1404 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1405 * counter may expire. 1406 */ 1407 pmu_op_start(&cpu->env); 1408 pmu_op_finish(&cpu->env); 1409 } 1410 1411 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1412 uint64_t value) 1413 { 1414 pmu_op_start(env); 1415 1416 if (value & PMCRC) { 1417 /* The counter has been reset */ 1418 env->cp15.c15_ccnt = 0; 1419 } 1420 1421 if (value & PMCRP) { 1422 unsigned int i; 1423 for (i = 0; i < pmu_num_counters(env); i++) { 1424 env->cp15.c14_pmevcntr[i] = 0; 1425 } 1426 } 1427 1428 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1429 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1430 1431 pmu_op_finish(env); 1432 } 1433 1434 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1435 uint64_t value) 1436 { 1437 unsigned int i; 1438 uint64_t overflow_mask, new_pmswinc; 1439 1440 for (i = 0; i < pmu_num_counters(env); i++) { 1441 /* Increment a counter's count iff: */ 1442 if ((value & (1 << i)) && /* counter's bit is set */ 1443 /* counter is enabled and not filtered */ 1444 pmu_counter_enabled(env, i) && 1445 /* counter is SW_INCR */ 1446 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1447 pmevcntr_op_start(env, i); 1448 1449 /* 1450 * Detect if this write causes an overflow since we can't predict 1451 * PMSWINC overflows like we can for other events 1452 */ 1453 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1454 1455 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1456 1ULL << 63 : 1ULL << 31; 1457 1458 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1459 env->cp15.c9_pmovsr |= (1 << i); 1460 pmu_update_irq(env); 1461 } 1462 1463 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1464 1465 pmevcntr_op_finish(env, i); 1466 } 1467 } 1468 } 1469 1470 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1471 { 1472 uint64_t ret; 1473 pmccntr_op_start(env); 1474 ret = env->cp15.c15_ccnt; 1475 pmccntr_op_finish(env); 1476 return ret; 1477 } 1478 1479 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1480 uint64_t value) 1481 { 1482 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1483 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1484 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1485 * accessed. 1486 */ 1487 env->cp15.c9_pmselr = value & 0x1f; 1488 } 1489 1490 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1491 uint64_t value) 1492 { 1493 pmccntr_op_start(env); 1494 env->cp15.c15_ccnt = value; 1495 pmccntr_op_finish(env); 1496 } 1497 1498 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1499 uint64_t value) 1500 { 1501 uint64_t cur_val = pmccntr_read(env, NULL); 1502 1503 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1504 } 1505 1506 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1507 uint64_t value) 1508 { 1509 pmccntr_op_start(env); 1510 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1511 pmccntr_op_finish(env); 1512 } 1513 1514 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1515 uint64_t value) 1516 { 1517 pmccntr_op_start(env); 1518 /* M is not accessible from AArch32 */ 1519 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1520 (value & PMCCFILTR); 1521 pmccntr_op_finish(env); 1522 } 1523 1524 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1525 { 1526 /* M is not visible in AArch32 */ 1527 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1528 } 1529 1530 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 pmu_op_start(env); 1534 value &= pmu_counter_mask(env); 1535 env->cp15.c9_pmcnten |= value; 1536 pmu_op_finish(env); 1537 } 1538 1539 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 pmu_op_start(env); 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmcnten &= ~value; 1545 pmu_op_finish(env); 1546 } 1547 1548 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value) 1550 { 1551 value &= pmu_counter_mask(env); 1552 env->cp15.c9_pmovsr &= ~value; 1553 pmu_update_irq(env); 1554 } 1555 1556 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1557 uint64_t value) 1558 { 1559 value &= pmu_counter_mask(env); 1560 env->cp15.c9_pmovsr |= value; 1561 pmu_update_irq(env); 1562 } 1563 1564 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1565 uint64_t value, const uint8_t counter) 1566 { 1567 if (counter == 31) { 1568 pmccfiltr_write(env, ri, value); 1569 } else if (counter < pmu_num_counters(env)) { 1570 pmevcntr_op_start(env, counter); 1571 1572 /* 1573 * If this counter's event type is changing, store the current 1574 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1575 * pmevcntr_op_finish has the correct baseline when it converts back to 1576 * a delta. 1577 */ 1578 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1579 PMXEVTYPER_EVTCOUNT; 1580 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1581 if (old_event != new_event) { 1582 uint64_t count = 0; 1583 if (event_supported(new_event)) { 1584 uint16_t event_idx = supported_event_map[new_event]; 1585 count = pm_events[event_idx].get_count(env); 1586 } 1587 env->cp15.c14_pmevcntr_delta[counter] = count; 1588 } 1589 1590 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1591 pmevcntr_op_finish(env, counter); 1592 } 1593 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1594 * PMSELR value is equal to or greater than the number of implemented 1595 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1596 */ 1597 } 1598 1599 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1600 const uint8_t counter) 1601 { 1602 if (counter == 31) { 1603 return env->cp15.pmccfiltr_el0; 1604 } else if (counter < pmu_num_counters(env)) { 1605 return env->cp15.c14_pmevtyper[counter]; 1606 } else { 1607 /* 1608 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1609 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1610 */ 1611 return 0; 1612 } 1613 } 1614 1615 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1616 uint64_t value) 1617 { 1618 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1619 pmevtyper_write(env, ri, value, counter); 1620 } 1621 1622 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1623 uint64_t value) 1624 { 1625 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1626 env->cp15.c14_pmevtyper[counter] = value; 1627 1628 /* 1629 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1630 * pmu_op_finish calls when loading saved state for a migration. Because 1631 * we're potentially updating the type of event here, the value written to 1632 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1633 * different counter type. Therefore, we need to set this value to the 1634 * current count for the counter type we're writing so that pmu_op_finish 1635 * has the correct count for its calculation. 1636 */ 1637 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1638 if (event_supported(event)) { 1639 uint16_t event_idx = supported_event_map[event]; 1640 env->cp15.c14_pmevcntr_delta[counter] = 1641 pm_events[event_idx].get_count(env); 1642 } 1643 } 1644 1645 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1646 { 1647 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1648 return pmevtyper_read(env, ri, counter); 1649 } 1650 1651 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1655 } 1656 1657 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1658 { 1659 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1660 } 1661 1662 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1663 uint64_t value, uint8_t counter) 1664 { 1665 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1666 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1667 value &= MAKE_64BIT_MASK(0, 32); 1668 } 1669 if (counter < pmu_num_counters(env)) { 1670 pmevcntr_op_start(env, counter); 1671 env->cp15.c14_pmevcntr[counter] = value; 1672 pmevcntr_op_finish(env, counter); 1673 } 1674 /* 1675 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1676 * are CONSTRAINED UNPREDICTABLE. 1677 */ 1678 } 1679 1680 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1681 uint8_t counter) 1682 { 1683 if (counter < pmu_num_counters(env)) { 1684 uint64_t ret; 1685 pmevcntr_op_start(env, counter); 1686 ret = env->cp15.c14_pmevcntr[counter]; 1687 pmevcntr_op_finish(env, counter); 1688 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1689 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1690 ret &= MAKE_64BIT_MASK(0, 32); 1691 } 1692 return ret; 1693 } else { 1694 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1695 * are CONSTRAINED UNPREDICTABLE. */ 1696 return 0; 1697 } 1698 } 1699 1700 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1701 uint64_t value) 1702 { 1703 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1704 pmevcntr_write(env, ri, value, counter); 1705 } 1706 1707 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1708 { 1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1710 return pmevcntr_read(env, ri, counter); 1711 } 1712 1713 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1717 assert(counter < pmu_num_counters(env)); 1718 env->cp15.c14_pmevcntr[counter] = value; 1719 pmevcntr_write(env, ri, value, counter); 1720 } 1721 1722 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1723 { 1724 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1725 assert(counter < pmu_num_counters(env)); 1726 return env->cp15.c14_pmevcntr[counter]; 1727 } 1728 1729 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1730 uint64_t value) 1731 { 1732 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1733 } 1734 1735 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1736 { 1737 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1738 } 1739 1740 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 if (arm_feature(env, ARM_FEATURE_V8)) { 1744 env->cp15.c9_pmuserenr = value & 0xf; 1745 } else { 1746 env->cp15.c9_pmuserenr = value & 1; 1747 } 1748 } 1749 1750 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value) 1752 { 1753 /* We have no event counters so only the C bit can be changed */ 1754 value &= pmu_counter_mask(env); 1755 env->cp15.c9_pminten |= value; 1756 pmu_update_irq(env); 1757 } 1758 1759 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1760 uint64_t value) 1761 { 1762 value &= pmu_counter_mask(env); 1763 env->cp15.c9_pminten &= ~value; 1764 pmu_update_irq(env); 1765 } 1766 1767 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1768 uint64_t value) 1769 { 1770 /* Note that even though the AArch64 view of this register has bits 1771 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1772 * architectural requirements for bits which are RES0 only in some 1773 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1774 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1775 */ 1776 raw_write(env, ri, value & ~0x1FULL); 1777 } 1778 1779 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1780 { 1781 /* Begin with base v8.0 state. */ 1782 uint64_t valid_mask = 0x3fff; 1783 ARMCPU *cpu = env_archcpu(env); 1784 uint64_t changed; 1785 1786 /* 1787 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1788 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1789 * Instead, choose the format based on the mode of EL3. 1790 */ 1791 if (arm_el_is_aa64(env, 3)) { 1792 value |= SCR_FW | SCR_AW; /* RES1 */ 1793 valid_mask &= ~SCR_NET; /* RES0 */ 1794 1795 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1796 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1797 value |= SCR_RW; /* RAO/WI */ 1798 } 1799 if (cpu_isar_feature(aa64_ras, cpu)) { 1800 valid_mask |= SCR_TERR; 1801 } 1802 if (cpu_isar_feature(aa64_lor, cpu)) { 1803 valid_mask |= SCR_TLOR; 1804 } 1805 if (cpu_isar_feature(aa64_pauth, cpu)) { 1806 valid_mask |= SCR_API | SCR_APK; 1807 } 1808 if (cpu_isar_feature(aa64_sel2, cpu)) { 1809 valid_mask |= SCR_EEL2; 1810 } 1811 if (cpu_isar_feature(aa64_mte, cpu)) { 1812 valid_mask |= SCR_ATA; 1813 } 1814 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1815 valid_mask |= SCR_ENSCXT; 1816 } 1817 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1818 valid_mask |= SCR_EASE | SCR_NMEA; 1819 } 1820 if (cpu_isar_feature(aa64_sme, cpu)) { 1821 valid_mask |= SCR_ENTP2; 1822 } 1823 } else { 1824 valid_mask &= ~(SCR_RW | SCR_ST); 1825 if (cpu_isar_feature(aa32_ras, cpu)) { 1826 valid_mask |= SCR_TERR; 1827 } 1828 } 1829 1830 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1831 valid_mask &= ~SCR_HCE; 1832 1833 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1834 * supported if EL2 exists. The bit is UNK/SBZP when 1835 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1836 * when EL2 is unavailable. 1837 * On ARMv8, this bit is always available. 1838 */ 1839 if (arm_feature(env, ARM_FEATURE_V7) && 1840 !arm_feature(env, ARM_FEATURE_V8)) { 1841 valid_mask &= ~SCR_SMD; 1842 } 1843 } 1844 1845 /* Clear all-context RES0 bits. */ 1846 value &= valid_mask; 1847 changed = env->cp15.scr_el3 ^ value; 1848 env->cp15.scr_el3 = value; 1849 1850 /* 1851 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1852 * we must invalidate all TLBs below EL3. 1853 */ 1854 if (changed & SCR_NS) { 1855 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1856 ARMMMUIdxBit_E20_0 | 1857 ARMMMUIdxBit_E10_1 | 1858 ARMMMUIdxBit_E20_2 | 1859 ARMMMUIdxBit_E10_1_PAN | 1860 ARMMMUIdxBit_E20_2_PAN | 1861 ARMMMUIdxBit_E2)); 1862 } 1863 } 1864 1865 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1866 { 1867 /* 1868 * scr_write will set the RES1 bits on an AArch64-only CPU. 1869 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1870 */ 1871 scr_write(env, ri, 0); 1872 } 1873 1874 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1875 const ARMCPRegInfo *ri, 1876 bool isread) 1877 { 1878 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1879 return CP_ACCESS_TRAP_EL2; 1880 } 1881 1882 return CP_ACCESS_OK; 1883 } 1884 1885 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1886 { 1887 ARMCPU *cpu = env_archcpu(env); 1888 1889 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1890 * bank 1891 */ 1892 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1893 ri->secure & ARM_CP_SECSTATE_S); 1894 1895 return cpu->ccsidr[index]; 1896 } 1897 1898 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1899 uint64_t value) 1900 { 1901 raw_write(env, ri, value & 0xf); 1902 } 1903 1904 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1905 { 1906 CPUState *cs = env_cpu(env); 1907 bool el1 = arm_current_el(env) == 1; 1908 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1909 uint64_t ret = 0; 1910 1911 if (hcr_el2 & HCR_IMO) { 1912 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1913 ret |= CPSR_I; 1914 } 1915 } else { 1916 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1917 ret |= CPSR_I; 1918 } 1919 } 1920 1921 if (hcr_el2 & HCR_FMO) { 1922 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1923 ret |= CPSR_F; 1924 } 1925 } else { 1926 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1927 ret |= CPSR_F; 1928 } 1929 } 1930 1931 if (hcr_el2 & HCR_AMO) { 1932 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1933 ret |= CPSR_A; 1934 } 1935 } 1936 1937 return ret; 1938 } 1939 1940 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1941 bool isread) 1942 { 1943 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1944 return CP_ACCESS_TRAP_EL2; 1945 } 1946 1947 return CP_ACCESS_OK; 1948 } 1949 1950 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1951 bool isread) 1952 { 1953 if (arm_feature(env, ARM_FEATURE_V8)) { 1954 return access_aa64_tid1(env, ri, isread); 1955 } 1956 1957 return CP_ACCESS_OK; 1958 } 1959 1960 static const ARMCPRegInfo v7_cp_reginfo[] = { 1961 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1962 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1963 .access = PL1_W, .type = ARM_CP_NOP }, 1964 /* Performance monitors are implementation defined in v7, 1965 * but with an ARM recommended set of registers, which we 1966 * follow. 1967 * 1968 * Performance registers fall into three categories: 1969 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1970 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1971 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1972 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1973 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1974 */ 1975 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1976 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1977 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1978 .writefn = pmcntenset_write, 1979 .accessfn = pmreg_access, 1980 .raw_writefn = raw_write }, 1981 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1985 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1986 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1987 .access = PL0_RW, 1988 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1989 .accessfn = pmreg_access, 1990 .writefn = pmcntenclr_write, 1991 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1992 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1994 .access = PL0_RW, .accessfn = pmreg_access, 1995 .type = ARM_CP_ALIAS | ARM_CP_IO, 1996 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1997 .writefn = pmcntenclr_write }, 1998 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1999 .access = PL0_RW, .type = ARM_CP_IO, 2000 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2001 .accessfn = pmreg_access, 2002 .writefn = pmovsr_write, 2003 .raw_writefn = raw_write }, 2004 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2006 .access = PL0_RW, .accessfn = pmreg_access, 2007 .type = ARM_CP_ALIAS | ARM_CP_IO, 2008 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2009 .writefn = pmovsr_write, 2010 .raw_writefn = raw_write }, 2011 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2012 .access = PL0_W, .accessfn = pmreg_access_swinc, 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2014 .writefn = pmswinc_write }, 2015 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2016 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2017 .access = PL0_W, .accessfn = pmreg_access_swinc, 2018 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2019 .writefn = pmswinc_write }, 2020 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2021 .access = PL0_RW, .type = ARM_CP_ALIAS, 2022 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2023 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2024 .raw_writefn = raw_write}, 2025 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2026 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2027 .access = PL0_RW, .accessfn = pmreg_access_selr, 2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2029 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2030 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2031 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2032 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2033 .accessfn = pmreg_access_ccntr }, 2034 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2036 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2037 .type = ARM_CP_IO, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2039 .readfn = pmccntr_read, .writefn = pmccntr_write, 2040 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2041 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2042 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2043 .access = PL0_RW, .accessfn = pmreg_access, 2044 .type = ARM_CP_ALIAS | ARM_CP_IO, 2045 .resetvalue = 0, }, 2046 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2047 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2048 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2049 .access = PL0_RW, .accessfn = pmreg_access, 2050 .type = ARM_CP_IO, 2051 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2052 .resetvalue = 0, }, 2053 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2054 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2055 .accessfn = pmreg_access, 2056 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2057 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2058 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2059 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2060 .accessfn = pmreg_access, 2061 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2062 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2063 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2064 .accessfn = pmreg_access_xevcntr, 2065 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2066 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2067 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2068 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2069 .accessfn = pmreg_access_xevcntr, 2070 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2071 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2072 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2073 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2074 .resetvalue = 0, 2075 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2076 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2078 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2080 .resetvalue = 0, 2081 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2082 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2083 .access = PL1_RW, .accessfn = access_tpm, 2084 .type = ARM_CP_ALIAS | ARM_CP_IO, 2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2086 .resetvalue = 0, 2087 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2088 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2089 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2090 .access = PL1_RW, .accessfn = access_tpm, 2091 .type = ARM_CP_IO, 2092 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2093 .writefn = pmintenset_write, .raw_writefn = raw_write, 2094 .resetvalue = 0x0 }, 2095 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2096 .access = PL1_RW, .accessfn = access_tpm, 2097 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2098 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2099 .writefn = pmintenclr_write, }, 2100 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2101 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2102 .access = PL1_RW, .accessfn = access_tpm, 2103 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2104 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2105 .writefn = pmintenclr_write }, 2106 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2108 .access = PL1_R, 2109 .accessfn = access_aa64_tid2, 2110 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2113 .access = PL1_RW, 2114 .accessfn = access_aa64_tid2, 2115 .writefn = csselr_write, .resetvalue = 0, 2116 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2117 offsetof(CPUARMState, cp15.csselr_ns) } }, 2118 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2119 * just RAZ for all cores: 2120 */ 2121 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2122 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2123 .access = PL1_R, .type = ARM_CP_CONST, 2124 .accessfn = access_aa64_tid1, 2125 .resetvalue = 0 }, 2126 /* Auxiliary fault status registers: these also are IMPDEF, and we 2127 * choose to RAZ/WI for all cores. 2128 */ 2129 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2130 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2131 .access = PL1_RW, .accessfn = access_tvm_trvm, 2132 .type = ARM_CP_CONST, .resetvalue = 0 }, 2133 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2134 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2135 .access = PL1_RW, .accessfn = access_tvm_trvm, 2136 .type = ARM_CP_CONST, .resetvalue = 0 }, 2137 /* MAIR can just read-as-written because we don't implement caches 2138 * and so don't need to care about memory attributes. 2139 */ 2140 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2141 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2142 .access = PL1_RW, .accessfn = access_tvm_trvm, 2143 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2144 .resetvalue = 0 }, 2145 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2146 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2147 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2148 .resetvalue = 0 }, 2149 /* For non-long-descriptor page tables these are PRRR and NMRR; 2150 * regardless they still act as reads-as-written for QEMU. 2151 */ 2152 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2153 * allows them to assign the correct fieldoffset based on the endianness 2154 * handled in the field definitions. 2155 */ 2156 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2157 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2158 .access = PL1_RW, .accessfn = access_tvm_trvm, 2159 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2160 offsetof(CPUARMState, cp15.mair0_ns) }, 2161 .resetfn = arm_cp_reset_ignore }, 2162 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2163 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2164 .access = PL1_RW, .accessfn = access_tvm_trvm, 2165 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2166 offsetof(CPUARMState, cp15.mair1_ns) }, 2167 .resetfn = arm_cp_reset_ignore }, 2168 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2169 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2170 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2171 /* 32 bit ITLB invalidates */ 2172 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2174 .writefn = tlbiall_write }, 2175 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2176 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2177 .writefn = tlbimva_write }, 2178 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2179 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2180 .writefn = tlbiasid_write }, 2181 /* 32 bit DTLB invalidates */ 2182 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2184 .writefn = tlbiall_write }, 2185 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2186 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2187 .writefn = tlbimva_write }, 2188 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2189 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2190 .writefn = tlbiasid_write }, 2191 /* 32 bit TLB invalidates */ 2192 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2194 .writefn = tlbiall_write }, 2195 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2196 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2197 .writefn = tlbimva_write }, 2198 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2199 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2200 .writefn = tlbiasid_write }, 2201 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2202 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2203 .writefn = tlbimvaa_write }, 2204 }; 2205 2206 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2207 /* 32 bit TLB invalidates, Inner Shareable */ 2208 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2209 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2210 .writefn = tlbiall_is_write }, 2211 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2212 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2213 .writefn = tlbimva_is_write }, 2214 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2216 .writefn = tlbiasid_is_write }, 2217 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2219 .writefn = tlbimvaa_is_write }, 2220 }; 2221 2222 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2223 /* PMOVSSET is not implemented in v7 before v7ve */ 2224 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2225 .access = PL0_RW, .accessfn = pmreg_access, 2226 .type = ARM_CP_ALIAS | ARM_CP_IO, 2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2228 .writefn = pmovsset_write, 2229 .raw_writefn = raw_write }, 2230 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2232 .access = PL0_RW, .accessfn = pmreg_access, 2233 .type = ARM_CP_ALIAS | ARM_CP_IO, 2234 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2235 .writefn = pmovsset_write, 2236 .raw_writefn = raw_write }, 2237 }; 2238 2239 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2240 uint64_t value) 2241 { 2242 value &= 1; 2243 env->teecr = value; 2244 } 2245 2246 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2247 bool isread) 2248 { 2249 /* 2250 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2251 * at all, so we don't need to check whether we're v8A. 2252 */ 2253 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2254 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2255 return CP_ACCESS_TRAP_EL2; 2256 } 2257 return CP_ACCESS_OK; 2258 } 2259 2260 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2261 bool isread) 2262 { 2263 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2264 return CP_ACCESS_TRAP; 2265 } 2266 return teecr_access(env, ri, isread); 2267 } 2268 2269 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2270 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2271 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2272 .resetvalue = 0, 2273 .writefn = teecr_write, .accessfn = teecr_access }, 2274 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2275 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2276 .accessfn = teehbr_access, .resetvalue = 0 }, 2277 }; 2278 2279 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2280 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2281 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2282 .access = PL0_RW, 2283 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2284 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2285 .access = PL0_RW, 2286 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2287 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2288 .resetfn = arm_cp_reset_ignore }, 2289 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2291 .access = PL0_R|PL1_W, 2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2293 .resetvalue = 0}, 2294 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2295 .access = PL0_R|PL1_W, 2296 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2297 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2298 .resetfn = arm_cp_reset_ignore }, 2299 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2300 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2301 .access = PL1_RW, 2302 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2303 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2304 .access = PL1_RW, 2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2306 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2307 .resetvalue = 0 }, 2308 }; 2309 2310 #ifndef CONFIG_USER_ONLY 2311 2312 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2313 bool isread) 2314 { 2315 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2316 * Writable only at the highest implemented exception level. 2317 */ 2318 int el = arm_current_el(env); 2319 uint64_t hcr; 2320 uint32_t cntkctl; 2321 2322 switch (el) { 2323 case 0: 2324 hcr = arm_hcr_el2_eff(env); 2325 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2326 cntkctl = env->cp15.cnthctl_el2; 2327 } else { 2328 cntkctl = env->cp15.c14_cntkctl; 2329 } 2330 if (!extract32(cntkctl, 0, 2)) { 2331 return CP_ACCESS_TRAP; 2332 } 2333 break; 2334 case 1: 2335 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2336 arm_is_secure_below_el3(env)) { 2337 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2338 return CP_ACCESS_TRAP_UNCATEGORIZED; 2339 } 2340 break; 2341 case 2: 2342 case 3: 2343 break; 2344 } 2345 2346 if (!isread && el < arm_highest_el(env)) { 2347 return CP_ACCESS_TRAP_UNCATEGORIZED; 2348 } 2349 2350 return CP_ACCESS_OK; 2351 } 2352 2353 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2354 bool isread) 2355 { 2356 unsigned int cur_el = arm_current_el(env); 2357 bool has_el2 = arm_is_el2_enabled(env); 2358 uint64_t hcr = arm_hcr_el2_eff(env); 2359 2360 switch (cur_el) { 2361 case 0: 2362 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2363 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2364 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2365 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2366 } 2367 2368 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2369 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2370 return CP_ACCESS_TRAP; 2371 } 2372 2373 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2374 if (hcr & HCR_E2H) { 2375 if (timeridx == GTIMER_PHYS && 2376 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2377 return CP_ACCESS_TRAP_EL2; 2378 } 2379 } else { 2380 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2381 if (has_el2 && timeridx == GTIMER_PHYS && 2382 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2383 return CP_ACCESS_TRAP_EL2; 2384 } 2385 } 2386 break; 2387 2388 case 1: 2389 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2390 if (has_el2 && timeridx == GTIMER_PHYS && 2391 (hcr & HCR_E2H 2392 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2393 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2394 return CP_ACCESS_TRAP_EL2; 2395 } 2396 break; 2397 } 2398 return CP_ACCESS_OK; 2399 } 2400 2401 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2402 bool isread) 2403 { 2404 unsigned int cur_el = arm_current_el(env); 2405 bool has_el2 = arm_is_el2_enabled(env); 2406 uint64_t hcr = arm_hcr_el2_eff(env); 2407 2408 switch (cur_el) { 2409 case 0: 2410 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2411 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2412 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2413 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2414 } 2415 2416 /* 2417 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2418 * EL0 if EL0[PV]TEN is zero. 2419 */ 2420 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2421 return CP_ACCESS_TRAP; 2422 } 2423 /* fall through */ 2424 2425 case 1: 2426 if (has_el2 && timeridx == GTIMER_PHYS) { 2427 if (hcr & HCR_E2H) { 2428 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2429 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2430 return CP_ACCESS_TRAP_EL2; 2431 } 2432 } else { 2433 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2434 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2435 return CP_ACCESS_TRAP_EL2; 2436 } 2437 } 2438 } 2439 break; 2440 } 2441 return CP_ACCESS_OK; 2442 } 2443 2444 static CPAccessResult gt_pct_access(CPUARMState *env, 2445 const ARMCPRegInfo *ri, 2446 bool isread) 2447 { 2448 return gt_counter_access(env, GTIMER_PHYS, isread); 2449 } 2450 2451 static CPAccessResult gt_vct_access(CPUARMState *env, 2452 const ARMCPRegInfo *ri, 2453 bool isread) 2454 { 2455 return gt_counter_access(env, GTIMER_VIRT, isread); 2456 } 2457 2458 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2459 bool isread) 2460 { 2461 return gt_timer_access(env, GTIMER_PHYS, isread); 2462 } 2463 2464 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2465 bool isread) 2466 { 2467 return gt_timer_access(env, GTIMER_VIRT, isread); 2468 } 2469 2470 static CPAccessResult gt_stimer_access(CPUARMState *env, 2471 const ARMCPRegInfo *ri, 2472 bool isread) 2473 { 2474 /* The AArch64 register view of the secure physical timer is 2475 * always accessible from EL3, and configurably accessible from 2476 * Secure EL1. 2477 */ 2478 switch (arm_current_el(env)) { 2479 case 1: 2480 if (!arm_is_secure(env)) { 2481 return CP_ACCESS_TRAP; 2482 } 2483 if (!(env->cp15.scr_el3 & SCR_ST)) { 2484 return CP_ACCESS_TRAP_EL3; 2485 } 2486 return CP_ACCESS_OK; 2487 case 0: 2488 case 2: 2489 return CP_ACCESS_TRAP; 2490 case 3: 2491 return CP_ACCESS_OK; 2492 default: 2493 g_assert_not_reached(); 2494 } 2495 } 2496 2497 static uint64_t gt_get_countervalue(CPUARMState *env) 2498 { 2499 ARMCPU *cpu = env_archcpu(env); 2500 2501 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2502 } 2503 2504 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2505 { 2506 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2507 2508 if (gt->ctl & 1) { 2509 /* Timer enabled: calculate and set current ISTATUS, irq, and 2510 * reset timer to when ISTATUS next has to change 2511 */ 2512 uint64_t offset = timeridx == GTIMER_VIRT ? 2513 cpu->env.cp15.cntvoff_el2 : 0; 2514 uint64_t count = gt_get_countervalue(&cpu->env); 2515 /* Note that this must be unsigned 64 bit arithmetic: */ 2516 int istatus = count - offset >= gt->cval; 2517 uint64_t nexttick; 2518 int irqstate; 2519 2520 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2521 2522 irqstate = (istatus && !(gt->ctl & 2)); 2523 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2524 2525 if (istatus) { 2526 /* Next transition is when count rolls back over to zero */ 2527 nexttick = UINT64_MAX; 2528 } else { 2529 /* Next transition is when we hit cval */ 2530 nexttick = gt->cval + offset; 2531 } 2532 /* Note that the desired next expiry time might be beyond the 2533 * signed-64-bit range of a QEMUTimer -- in this case we just 2534 * set the timer for as far in the future as possible. When the 2535 * timer expires we will reset the timer for any remaining period. 2536 */ 2537 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2538 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2539 } else { 2540 timer_mod(cpu->gt_timer[timeridx], nexttick); 2541 } 2542 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2543 } else { 2544 /* Timer disabled: ISTATUS and timer output always clear */ 2545 gt->ctl &= ~4; 2546 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2547 timer_del(cpu->gt_timer[timeridx]); 2548 trace_arm_gt_recalc_disabled(timeridx); 2549 } 2550 } 2551 2552 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2553 int timeridx) 2554 { 2555 ARMCPU *cpu = env_archcpu(env); 2556 2557 timer_del(cpu->gt_timer[timeridx]); 2558 } 2559 2560 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2561 { 2562 return gt_get_countervalue(env); 2563 } 2564 2565 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2566 { 2567 uint64_t hcr; 2568 2569 switch (arm_current_el(env)) { 2570 case 2: 2571 hcr = arm_hcr_el2_eff(env); 2572 if (hcr & HCR_E2H) { 2573 return 0; 2574 } 2575 break; 2576 case 0: 2577 hcr = arm_hcr_el2_eff(env); 2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2579 return 0; 2580 } 2581 break; 2582 } 2583 2584 return env->cp15.cntvoff_el2; 2585 } 2586 2587 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2588 { 2589 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2590 } 2591 2592 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2593 int timeridx, 2594 uint64_t value) 2595 { 2596 trace_arm_gt_cval_write(timeridx, value); 2597 env->cp15.c14_timer[timeridx].cval = value; 2598 gt_recalc_timer(env_archcpu(env), timeridx); 2599 } 2600 2601 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2602 int timeridx) 2603 { 2604 uint64_t offset = 0; 2605 2606 switch (timeridx) { 2607 case GTIMER_VIRT: 2608 case GTIMER_HYPVIRT: 2609 offset = gt_virt_cnt_offset(env); 2610 break; 2611 } 2612 2613 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2614 (gt_get_countervalue(env) - offset)); 2615 } 2616 2617 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2618 int timeridx, 2619 uint64_t value) 2620 { 2621 uint64_t offset = 0; 2622 2623 switch (timeridx) { 2624 case GTIMER_VIRT: 2625 case GTIMER_HYPVIRT: 2626 offset = gt_virt_cnt_offset(env); 2627 break; 2628 } 2629 2630 trace_arm_gt_tval_write(timeridx, value); 2631 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2632 sextract64(value, 0, 32); 2633 gt_recalc_timer(env_archcpu(env), timeridx); 2634 } 2635 2636 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2637 int timeridx, 2638 uint64_t value) 2639 { 2640 ARMCPU *cpu = env_archcpu(env); 2641 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2642 2643 trace_arm_gt_ctl_write(timeridx, value); 2644 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2645 if ((oldval ^ value) & 1) { 2646 /* Enable toggled */ 2647 gt_recalc_timer(cpu, timeridx); 2648 } else if ((oldval ^ value) & 2) { 2649 /* IMASK toggled: don't need to recalculate, 2650 * just set the interrupt line based on ISTATUS 2651 */ 2652 int irqstate = (oldval & 4) && !(value & 2); 2653 2654 trace_arm_gt_imask_toggle(timeridx, irqstate); 2655 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2656 } 2657 } 2658 2659 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2660 { 2661 gt_timer_reset(env, ri, GTIMER_PHYS); 2662 } 2663 2664 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2665 uint64_t value) 2666 { 2667 gt_cval_write(env, ri, GTIMER_PHYS, value); 2668 } 2669 2670 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2671 { 2672 return gt_tval_read(env, ri, GTIMER_PHYS); 2673 } 2674 2675 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2676 uint64_t value) 2677 { 2678 gt_tval_write(env, ri, GTIMER_PHYS, value); 2679 } 2680 2681 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2682 uint64_t value) 2683 { 2684 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2685 } 2686 2687 static int gt_phys_redir_timeridx(CPUARMState *env) 2688 { 2689 switch (arm_mmu_idx(env)) { 2690 case ARMMMUIdx_E20_0: 2691 case ARMMMUIdx_E20_2: 2692 case ARMMMUIdx_E20_2_PAN: 2693 return GTIMER_HYP; 2694 default: 2695 return GTIMER_PHYS; 2696 } 2697 } 2698 2699 static int gt_virt_redir_timeridx(CPUARMState *env) 2700 { 2701 switch (arm_mmu_idx(env)) { 2702 case ARMMMUIdx_E20_0: 2703 case ARMMMUIdx_E20_2: 2704 case ARMMMUIdx_E20_2_PAN: 2705 return GTIMER_HYPVIRT; 2706 default: 2707 return GTIMER_VIRT; 2708 } 2709 } 2710 2711 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2712 const ARMCPRegInfo *ri) 2713 { 2714 int timeridx = gt_phys_redir_timeridx(env); 2715 return env->cp15.c14_timer[timeridx].cval; 2716 } 2717 2718 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 int timeridx = gt_phys_redir_timeridx(env); 2722 gt_cval_write(env, ri, timeridx, value); 2723 } 2724 2725 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2726 const ARMCPRegInfo *ri) 2727 { 2728 int timeridx = gt_phys_redir_timeridx(env); 2729 return gt_tval_read(env, ri, timeridx); 2730 } 2731 2732 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2733 uint64_t value) 2734 { 2735 int timeridx = gt_phys_redir_timeridx(env); 2736 gt_tval_write(env, ri, timeridx, value); 2737 } 2738 2739 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2740 const ARMCPRegInfo *ri) 2741 { 2742 int timeridx = gt_phys_redir_timeridx(env); 2743 return env->cp15.c14_timer[timeridx].ctl; 2744 } 2745 2746 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2747 uint64_t value) 2748 { 2749 int timeridx = gt_phys_redir_timeridx(env); 2750 gt_ctl_write(env, ri, timeridx, value); 2751 } 2752 2753 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2754 { 2755 gt_timer_reset(env, ri, GTIMER_VIRT); 2756 } 2757 2758 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2759 uint64_t value) 2760 { 2761 gt_cval_write(env, ri, GTIMER_VIRT, value); 2762 } 2763 2764 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2765 { 2766 return gt_tval_read(env, ri, GTIMER_VIRT); 2767 } 2768 2769 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 gt_tval_write(env, ri, GTIMER_VIRT, value); 2773 } 2774 2775 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2776 uint64_t value) 2777 { 2778 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2779 } 2780 2781 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 ARMCPU *cpu = env_archcpu(env); 2785 2786 trace_arm_gt_cntvoff_write(value); 2787 raw_write(env, ri, value); 2788 gt_recalc_timer(cpu, GTIMER_VIRT); 2789 } 2790 2791 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2792 const ARMCPRegInfo *ri) 2793 { 2794 int timeridx = gt_virt_redir_timeridx(env); 2795 return env->cp15.c14_timer[timeridx].cval; 2796 } 2797 2798 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 int timeridx = gt_virt_redir_timeridx(env); 2802 gt_cval_write(env, ri, timeridx, value); 2803 } 2804 2805 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2806 const ARMCPRegInfo *ri) 2807 { 2808 int timeridx = gt_virt_redir_timeridx(env); 2809 return gt_tval_read(env, ri, timeridx); 2810 } 2811 2812 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 int timeridx = gt_virt_redir_timeridx(env); 2816 gt_tval_write(env, ri, timeridx, value); 2817 } 2818 2819 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2820 const ARMCPRegInfo *ri) 2821 { 2822 int timeridx = gt_virt_redir_timeridx(env); 2823 return env->cp15.c14_timer[timeridx].ctl; 2824 } 2825 2826 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 int timeridx = gt_virt_redir_timeridx(env); 2830 gt_ctl_write(env, ri, timeridx, value); 2831 } 2832 2833 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYP); 2836 } 2837 2838 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYP, value); 2842 } 2843 2844 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYP); 2847 } 2848 2849 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYP, value); 2853 } 2854 2855 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYP, value); 2859 } 2860 2861 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 gt_timer_reset(env, ri, GTIMER_SEC); 2864 } 2865 2866 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_cval_write(env, ri, GTIMER_SEC, value); 2870 } 2871 2872 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2873 { 2874 return gt_tval_read(env, ri, GTIMER_SEC); 2875 } 2876 2877 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2878 uint64_t value) 2879 { 2880 gt_tval_write(env, ri, GTIMER_SEC, value); 2881 } 2882 2883 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2884 uint64_t value) 2885 { 2886 gt_ctl_write(env, ri, GTIMER_SEC, value); 2887 } 2888 2889 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2890 { 2891 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2892 } 2893 2894 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2895 uint64_t value) 2896 { 2897 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2898 } 2899 2900 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2901 { 2902 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2903 } 2904 2905 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2906 uint64_t value) 2907 { 2908 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2909 } 2910 2911 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2912 uint64_t value) 2913 { 2914 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2915 } 2916 2917 void arm_gt_ptimer_cb(void *opaque) 2918 { 2919 ARMCPU *cpu = opaque; 2920 2921 gt_recalc_timer(cpu, GTIMER_PHYS); 2922 } 2923 2924 void arm_gt_vtimer_cb(void *opaque) 2925 { 2926 ARMCPU *cpu = opaque; 2927 2928 gt_recalc_timer(cpu, GTIMER_VIRT); 2929 } 2930 2931 void arm_gt_htimer_cb(void *opaque) 2932 { 2933 ARMCPU *cpu = opaque; 2934 2935 gt_recalc_timer(cpu, GTIMER_HYP); 2936 } 2937 2938 void arm_gt_stimer_cb(void *opaque) 2939 { 2940 ARMCPU *cpu = opaque; 2941 2942 gt_recalc_timer(cpu, GTIMER_SEC); 2943 } 2944 2945 void arm_gt_hvtimer_cb(void *opaque) 2946 { 2947 ARMCPU *cpu = opaque; 2948 2949 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2950 } 2951 2952 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2953 { 2954 ARMCPU *cpu = env_archcpu(env); 2955 2956 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2957 } 2958 2959 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2960 /* Note that CNTFRQ is purely reads-as-written for the benefit 2961 * of software; writing it doesn't actually change the timer frequency. 2962 * Our reset value matches the fixed frequency we implement the timer at. 2963 */ 2964 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2965 .type = ARM_CP_ALIAS, 2966 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2967 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2968 }, 2969 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2971 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2972 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2973 .resetfn = arm_gt_cntfrq_reset, 2974 }, 2975 /* overall control: mostly access permissions */ 2976 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2977 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2978 .access = PL1_RW, 2979 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2980 .resetvalue = 0, 2981 }, 2982 /* per-timer control */ 2983 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2984 .secure = ARM_CP_SECSTATE_NS, 2985 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2986 .accessfn = gt_ptimer_access, 2987 .fieldoffset = offsetoflow32(CPUARMState, 2988 cp15.c14_timer[GTIMER_PHYS].ctl), 2989 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2990 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2991 }, 2992 { .name = "CNTP_CTL_S", 2993 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2994 .secure = ARM_CP_SECSTATE_S, 2995 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2996 .accessfn = gt_ptimer_access, 2997 .fieldoffset = offsetoflow32(CPUARMState, 2998 cp15.c14_timer[GTIMER_SEC].ctl), 2999 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3000 }, 3001 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3003 .type = ARM_CP_IO, .access = PL0_RW, 3004 .accessfn = gt_ptimer_access, 3005 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3006 .resetvalue = 0, 3007 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3008 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3009 }, 3010 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3011 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3012 .accessfn = gt_vtimer_access, 3013 .fieldoffset = offsetoflow32(CPUARMState, 3014 cp15.c14_timer[GTIMER_VIRT].ctl), 3015 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3016 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3017 }, 3018 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3020 .type = ARM_CP_IO, .access = PL0_RW, 3021 .accessfn = gt_vtimer_access, 3022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3023 .resetvalue = 0, 3024 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3025 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3026 }, 3027 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3028 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3029 .secure = ARM_CP_SECSTATE_NS, 3030 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3031 .accessfn = gt_ptimer_access, 3032 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3033 }, 3034 { .name = "CNTP_TVAL_S", 3035 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3036 .secure = ARM_CP_SECSTATE_S, 3037 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3038 .accessfn = gt_ptimer_access, 3039 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3040 }, 3041 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3043 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3044 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3045 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3046 }, 3047 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3048 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3049 .accessfn = gt_vtimer_access, 3050 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3051 }, 3052 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3053 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3054 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3055 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3056 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3057 }, 3058 /* The counter itself */ 3059 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3060 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3061 .accessfn = gt_pct_access, 3062 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3063 }, 3064 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3065 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3066 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3067 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3068 }, 3069 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3070 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3071 .accessfn = gt_vct_access, 3072 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3073 }, 3074 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3076 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3077 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3078 }, 3079 /* Comparison value, indicating when the timer goes off */ 3080 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3081 .secure = ARM_CP_SECSTATE_NS, 3082 .access = PL0_RW, 3083 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3084 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3085 .accessfn = gt_ptimer_access, 3086 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3087 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3088 }, 3089 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3090 .secure = ARM_CP_SECSTATE_S, 3091 .access = PL0_RW, 3092 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3093 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3094 .accessfn = gt_ptimer_access, 3095 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3096 }, 3097 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3098 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3099 .access = PL0_RW, 3100 .type = ARM_CP_IO, 3101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3102 .resetvalue = 0, .accessfn = gt_ptimer_access, 3103 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3104 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3105 }, 3106 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3107 .access = PL0_RW, 3108 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3110 .accessfn = gt_vtimer_access, 3111 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3112 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3113 }, 3114 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3115 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3116 .access = PL0_RW, 3117 .type = ARM_CP_IO, 3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3119 .resetvalue = 0, .accessfn = gt_vtimer_access, 3120 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3121 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3122 }, 3123 /* Secure timer -- this is actually restricted to only EL3 3124 * and configurably Secure-EL1 via the accessfn. 3125 */ 3126 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3127 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3128 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3129 .accessfn = gt_stimer_access, 3130 .readfn = gt_sec_tval_read, 3131 .writefn = gt_sec_tval_write, 3132 .resetfn = gt_sec_timer_reset, 3133 }, 3134 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3135 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3136 .type = ARM_CP_IO, .access = PL1_RW, 3137 .accessfn = gt_stimer_access, 3138 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3139 .resetvalue = 0, 3140 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3141 }, 3142 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3143 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3144 .type = ARM_CP_IO, .access = PL1_RW, 3145 .accessfn = gt_stimer_access, 3146 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3147 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3148 }, 3149 }; 3150 3151 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3152 bool isread) 3153 { 3154 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3155 return CP_ACCESS_TRAP; 3156 } 3157 return CP_ACCESS_OK; 3158 } 3159 3160 #else 3161 3162 /* In user-mode most of the generic timer registers are inaccessible 3163 * however modern kernels (4.12+) allow access to cntvct_el0 3164 */ 3165 3166 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3167 { 3168 ARMCPU *cpu = env_archcpu(env); 3169 3170 /* Currently we have no support for QEMUTimer in linux-user so we 3171 * can't call gt_get_countervalue(env), instead we directly 3172 * call the lower level functions. 3173 */ 3174 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3175 } 3176 3177 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3178 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3179 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3180 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3181 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3182 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3183 }, 3184 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3185 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3186 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3187 .readfn = gt_virt_cnt_read, 3188 }, 3189 }; 3190 3191 #endif 3192 3193 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3194 { 3195 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3196 raw_write(env, ri, value); 3197 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3198 raw_write(env, ri, value & 0xfffff6ff); 3199 } else { 3200 raw_write(env, ri, value & 0xfffff1ff); 3201 } 3202 } 3203 3204 #ifndef CONFIG_USER_ONLY 3205 /* get_phys_addr() isn't present for user-mode-only targets */ 3206 3207 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3208 bool isread) 3209 { 3210 if (ri->opc2 & 4) { 3211 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3212 * Secure EL1 (which can only happen if EL3 is AArch64). 3213 * They are simply UNDEF if executed from NS EL1. 3214 * They function normally from EL2 or EL3. 3215 */ 3216 if (arm_current_el(env) == 1) { 3217 if (arm_is_secure_below_el3(env)) { 3218 if (env->cp15.scr_el3 & SCR_EEL2) { 3219 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3220 } 3221 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3222 } 3223 return CP_ACCESS_TRAP_UNCATEGORIZED; 3224 } 3225 } 3226 return CP_ACCESS_OK; 3227 } 3228 3229 #ifdef CONFIG_TCG 3230 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3231 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3232 bool is_secure) 3233 { 3234 bool ret; 3235 uint64_t par64; 3236 bool format64 = false; 3237 ARMMMUFaultInfo fi = {}; 3238 GetPhysAddrResult res = {}; 3239 3240 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3241 is_secure, &res, &fi); 3242 3243 /* 3244 * ATS operations only do S1 or S1+S2 translations, so we never 3245 * have to deal with the ARMCacheAttrs format for S2 only. 3246 */ 3247 assert(!res.cacheattrs.is_s2_format); 3248 3249 if (ret) { 3250 /* 3251 * Some kinds of translation fault must cause exceptions rather 3252 * than being reported in the PAR. 3253 */ 3254 int current_el = arm_current_el(env); 3255 int target_el; 3256 uint32_t syn, fsr, fsc; 3257 bool take_exc = false; 3258 3259 if (fi.s1ptw && current_el == 1 3260 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3261 /* 3262 * Synchronous stage 2 fault on an access made as part of the 3263 * translation table walk for AT S1E0* or AT S1E1* insn 3264 * executed from NS EL1. If this is a synchronous external abort 3265 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3266 * to EL3. Otherwise the fault is taken as an exception to EL2, 3267 * and HPFAR_EL2 holds the faulting IPA. 3268 */ 3269 if (fi.type == ARMFault_SyncExternalOnWalk && 3270 (env->cp15.scr_el3 & SCR_EA)) { 3271 target_el = 3; 3272 } else { 3273 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3274 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3275 env->cp15.hpfar_el2 |= HPFAR_NS; 3276 } 3277 target_el = 2; 3278 } 3279 take_exc = true; 3280 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3281 /* 3282 * Synchronous external aborts during a translation table walk 3283 * are taken as Data Abort exceptions. 3284 */ 3285 if (fi.stage2) { 3286 if (current_el == 3) { 3287 target_el = 3; 3288 } else { 3289 target_el = 2; 3290 } 3291 } else { 3292 target_el = exception_target_el(env); 3293 } 3294 take_exc = true; 3295 } 3296 3297 if (take_exc) { 3298 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3299 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3300 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3301 fsr = arm_fi_to_lfsc(&fi); 3302 fsc = extract32(fsr, 0, 6); 3303 } else { 3304 fsr = arm_fi_to_sfsc(&fi); 3305 fsc = 0x3f; 3306 } 3307 /* 3308 * Report exception with ESR indicating a fault due to a 3309 * translation table walk for a cache maintenance instruction. 3310 */ 3311 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3312 fi.ea, 1, fi.s1ptw, 1, fsc); 3313 env->exception.vaddress = value; 3314 env->exception.fsr = fsr; 3315 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3316 } 3317 } 3318 3319 if (is_a64(env)) { 3320 format64 = true; 3321 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3322 /* 3323 * ATS1Cxx: 3324 * * TTBCR.EAE determines whether the result is returned using the 3325 * 32-bit or the 64-bit PAR format 3326 * * Instructions executed in Hyp mode always use the 64bit format 3327 * 3328 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3329 * * The Non-secure TTBCR.EAE bit is set to 1 3330 * * The implementation includes EL2, and the value of HCR.VM is 1 3331 * 3332 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3333 * 3334 * ATS1Hx always uses the 64bit format. 3335 */ 3336 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3337 3338 if (arm_feature(env, ARM_FEATURE_EL2)) { 3339 if (mmu_idx == ARMMMUIdx_E10_0 || 3340 mmu_idx == ARMMMUIdx_E10_1 || 3341 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3342 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3343 } else { 3344 format64 |= arm_current_el(env) == 2; 3345 } 3346 } 3347 } 3348 3349 if (format64) { 3350 /* Create a 64-bit PAR */ 3351 par64 = (1 << 11); /* LPAE bit always set */ 3352 if (!ret) { 3353 par64 |= res.f.phys_addr & ~0xfffULL; 3354 if (!res.f.attrs.secure) { 3355 par64 |= (1 << 9); /* NS */ 3356 } 3357 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3358 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3359 } else { 3360 uint32_t fsr = arm_fi_to_lfsc(&fi); 3361 3362 par64 |= 1; /* F */ 3363 par64 |= (fsr & 0x3f) << 1; /* FS */ 3364 if (fi.stage2) { 3365 par64 |= (1 << 9); /* S */ 3366 } 3367 if (fi.s1ptw) { 3368 par64 |= (1 << 8); /* PTW */ 3369 } 3370 } 3371 } else { 3372 /* fsr is a DFSR/IFSR value for the short descriptor 3373 * translation table format (with WnR always clear). 3374 * Convert it to a 32-bit PAR. 3375 */ 3376 if (!ret) { 3377 /* We do not set any attribute bits in the PAR */ 3378 if (res.f.lg_page_size == 24 3379 && arm_feature(env, ARM_FEATURE_V7)) { 3380 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3381 } else { 3382 par64 = res.f.phys_addr & 0xfffff000; 3383 } 3384 if (!res.f.attrs.secure) { 3385 par64 |= (1 << 9); /* NS */ 3386 } 3387 } else { 3388 uint32_t fsr = arm_fi_to_sfsc(&fi); 3389 3390 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3391 ((fsr & 0xf) << 1) | 1; 3392 } 3393 } 3394 return par64; 3395 } 3396 #endif /* CONFIG_TCG */ 3397 3398 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3399 { 3400 #ifdef CONFIG_TCG 3401 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3402 uint64_t par64; 3403 ARMMMUIdx mmu_idx; 3404 int el = arm_current_el(env); 3405 bool secure = arm_is_secure_below_el3(env); 3406 3407 switch (ri->opc2 & 6) { 3408 case 0: 3409 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3410 switch (el) { 3411 case 3: 3412 mmu_idx = ARMMMUIdx_E3; 3413 secure = true; 3414 break; 3415 case 2: 3416 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3417 /* fall through */ 3418 case 1: 3419 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3420 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3421 } else { 3422 mmu_idx = ARMMMUIdx_Stage1_E1; 3423 } 3424 break; 3425 default: 3426 g_assert_not_reached(); 3427 } 3428 break; 3429 case 2: 3430 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3431 switch (el) { 3432 case 3: 3433 mmu_idx = ARMMMUIdx_E10_0; 3434 secure = true; 3435 break; 3436 case 2: 3437 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3438 mmu_idx = ARMMMUIdx_Stage1_E0; 3439 break; 3440 case 1: 3441 mmu_idx = ARMMMUIdx_Stage1_E0; 3442 break; 3443 default: 3444 g_assert_not_reached(); 3445 } 3446 break; 3447 case 4: 3448 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3449 mmu_idx = ARMMMUIdx_E10_1; 3450 secure = false; 3451 break; 3452 case 6: 3453 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3454 mmu_idx = ARMMMUIdx_E10_0; 3455 secure = false; 3456 break; 3457 default: 3458 g_assert_not_reached(); 3459 } 3460 3461 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3462 3463 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3464 #else 3465 /* Handled by hardware accelerator. */ 3466 g_assert_not_reached(); 3467 #endif /* CONFIG_TCG */ 3468 } 3469 3470 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3471 uint64_t value) 3472 { 3473 #ifdef CONFIG_TCG 3474 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3475 uint64_t par64; 3476 3477 /* There is no SecureEL2 for AArch32. */ 3478 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3479 3480 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3481 #else 3482 /* Handled by hardware accelerator. */ 3483 g_assert_not_reached(); 3484 #endif /* CONFIG_TCG */ 3485 } 3486 3487 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3488 bool isread) 3489 { 3490 if (arm_current_el(env) == 3 && 3491 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3492 return CP_ACCESS_TRAP; 3493 } 3494 return CP_ACCESS_OK; 3495 } 3496 3497 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3498 uint64_t value) 3499 { 3500 #ifdef CONFIG_TCG 3501 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3502 ARMMMUIdx mmu_idx; 3503 int secure = arm_is_secure_below_el3(env); 3504 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3505 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3506 3507 switch (ri->opc2 & 6) { 3508 case 0: 3509 switch (ri->opc1) { 3510 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3511 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3512 mmu_idx = regime_e20 ? 3513 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3514 } else { 3515 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3516 } 3517 break; 3518 case 4: /* AT S1E2R, AT S1E2W */ 3519 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3520 break; 3521 case 6: /* AT S1E3R, AT S1E3W */ 3522 mmu_idx = ARMMMUIdx_E3; 3523 secure = true; 3524 break; 3525 default: 3526 g_assert_not_reached(); 3527 } 3528 break; 3529 case 2: /* AT S1E0R, AT S1E0W */ 3530 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3531 break; 3532 case 4: /* AT S12E1R, AT S12E1W */ 3533 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3534 break; 3535 case 6: /* AT S12E0R, AT S12E0W */ 3536 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3537 break; 3538 default: 3539 g_assert_not_reached(); 3540 } 3541 3542 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3543 mmu_idx, secure); 3544 #else 3545 /* Handled by hardware accelerator. */ 3546 g_assert_not_reached(); 3547 #endif /* CONFIG_TCG */ 3548 } 3549 #endif 3550 3551 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3552 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3553 .access = PL1_RW, .resetvalue = 0, 3554 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3555 offsetoflow32(CPUARMState, cp15.par_ns) }, 3556 .writefn = par_write }, 3557 #ifndef CONFIG_USER_ONLY 3558 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3559 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3560 .access = PL1_W, .accessfn = ats_access, 3561 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3562 #endif 3563 }; 3564 3565 /* Return basic MPU access permission bits. */ 3566 static uint32_t simple_mpu_ap_bits(uint32_t val) 3567 { 3568 uint32_t ret; 3569 uint32_t mask; 3570 int i; 3571 ret = 0; 3572 mask = 3; 3573 for (i = 0; i < 16; i += 2) { 3574 ret |= (val >> i) & mask; 3575 mask <<= 2; 3576 } 3577 return ret; 3578 } 3579 3580 /* Pad basic MPU access permission bits to extended format. */ 3581 static uint32_t extended_mpu_ap_bits(uint32_t val) 3582 { 3583 uint32_t ret; 3584 uint32_t mask; 3585 int i; 3586 ret = 0; 3587 mask = 3; 3588 for (i = 0; i < 16; i += 2) { 3589 ret |= (val & mask) << i; 3590 mask <<= 2; 3591 } 3592 return ret; 3593 } 3594 3595 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3596 uint64_t value) 3597 { 3598 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3599 } 3600 3601 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3602 { 3603 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3604 } 3605 3606 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3607 uint64_t value) 3608 { 3609 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3610 } 3611 3612 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3613 { 3614 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3615 } 3616 3617 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3618 { 3619 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3620 3621 if (!u32p) { 3622 return 0; 3623 } 3624 3625 u32p += env->pmsav7.rnr[M_REG_NS]; 3626 return *u32p; 3627 } 3628 3629 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3630 uint64_t value) 3631 { 3632 ARMCPU *cpu = env_archcpu(env); 3633 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3634 3635 if (!u32p) { 3636 return; 3637 } 3638 3639 u32p += env->pmsav7.rnr[M_REG_NS]; 3640 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3641 *u32p = value; 3642 } 3643 3644 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3645 uint64_t value) 3646 { 3647 ARMCPU *cpu = env_archcpu(env); 3648 uint32_t nrgs = cpu->pmsav7_dregion; 3649 3650 if (value >= nrgs) { 3651 qemu_log_mask(LOG_GUEST_ERROR, 3652 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3653 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3654 return; 3655 } 3656 3657 raw_write(env, ri, value); 3658 } 3659 3660 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3661 /* Reset for all these registers is handled in arm_cpu_reset(), 3662 * because the PMSAv7 is also used by M-profile CPUs, which do 3663 * not register cpregs but still need the state to be reset. 3664 */ 3665 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3666 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3667 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3668 .readfn = pmsav7_read, .writefn = pmsav7_write, 3669 .resetfn = arm_cp_reset_ignore }, 3670 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3671 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3672 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3673 .readfn = pmsav7_read, .writefn = pmsav7_write, 3674 .resetfn = arm_cp_reset_ignore }, 3675 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3676 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3677 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3678 .readfn = pmsav7_read, .writefn = pmsav7_write, 3679 .resetfn = arm_cp_reset_ignore }, 3680 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3681 .access = PL1_RW, 3682 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3683 .writefn = pmsav7_rgnr_write, 3684 .resetfn = arm_cp_reset_ignore }, 3685 }; 3686 3687 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3688 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3689 .access = PL1_RW, .type = ARM_CP_ALIAS, 3690 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3691 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3692 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3693 .access = PL1_RW, .type = ARM_CP_ALIAS, 3694 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3695 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3696 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3697 .access = PL1_RW, 3698 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3699 .resetvalue = 0, }, 3700 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3701 .access = PL1_RW, 3702 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3703 .resetvalue = 0, }, 3704 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3705 .access = PL1_RW, 3706 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3707 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3708 .access = PL1_RW, 3709 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3710 /* Protection region base and size registers */ 3711 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3712 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3713 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3714 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3715 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3716 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3717 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3718 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3719 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3720 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3721 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3722 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3723 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3724 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3725 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3726 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3727 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3728 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3729 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3730 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3731 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3732 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3733 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3734 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3735 }; 3736 3737 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3738 uint64_t value) 3739 { 3740 ARMCPU *cpu = env_archcpu(env); 3741 3742 if (!arm_feature(env, ARM_FEATURE_V8)) { 3743 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3744 /* 3745 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3746 * using Long-descriptor translation table format 3747 */ 3748 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3749 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3750 /* 3751 * In an implementation that includes the Security Extensions 3752 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3753 * Short-descriptor translation table format. 3754 */ 3755 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3756 } else { 3757 value &= TTBCR_N; 3758 } 3759 } 3760 3761 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3762 /* With LPAE the TTBCR could result in a change of ASID 3763 * via the TTBCR.A1 bit, so do a TLB flush. 3764 */ 3765 tlb_flush(CPU(cpu)); 3766 } 3767 raw_write(env, ri, value); 3768 } 3769 3770 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3771 uint64_t value) 3772 { 3773 ARMCPU *cpu = env_archcpu(env); 3774 3775 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3776 tlb_flush(CPU(cpu)); 3777 raw_write(env, ri, value); 3778 } 3779 3780 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3781 uint64_t value) 3782 { 3783 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3784 if (cpreg_field_is_64bit(ri) && 3785 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3786 ARMCPU *cpu = env_archcpu(env); 3787 tlb_flush(CPU(cpu)); 3788 } 3789 raw_write(env, ri, value); 3790 } 3791 3792 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3793 uint64_t value) 3794 { 3795 /* 3796 * If we are running with E2&0 regime, then an ASID is active. 3797 * Flush if that might be changing. Note we're not checking 3798 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3799 * holds the active ASID, only checking the field that might. 3800 */ 3801 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3802 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3803 uint16_t mask = ARMMMUIdxBit_E20_2 | 3804 ARMMMUIdxBit_E20_2_PAN | 3805 ARMMMUIdxBit_E20_0; 3806 tlb_flush_by_mmuidx(env_cpu(env), mask); 3807 } 3808 raw_write(env, ri, value); 3809 } 3810 3811 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3812 uint64_t value) 3813 { 3814 ARMCPU *cpu = env_archcpu(env); 3815 CPUState *cs = CPU(cpu); 3816 3817 /* 3818 * A change in VMID to the stage2 page table (Stage2) invalidates 3819 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 3820 */ 3821 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3822 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 3823 } 3824 raw_write(env, ri, value); 3825 } 3826 3827 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3828 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3829 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3830 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3831 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3832 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3834 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3835 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3836 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3837 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3839 offsetof(CPUARMState, cp15.dfar_ns) } }, 3840 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3841 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3844 .resetvalue = 0, }, 3845 }; 3846 3847 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3848 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3849 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3850 .access = PL1_RW, .accessfn = access_tvm_trvm, 3851 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3852 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, 3855 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3856 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3857 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3858 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3860 .access = PL1_RW, .accessfn = access_tvm_trvm, 3861 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3863 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3864 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3865 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3866 .access = PL1_RW, .accessfn = access_tvm_trvm, 3867 .writefn = vmsa_tcr_el12_write, 3868 .raw_writefn = raw_write, 3869 .resetvalue = 0, 3870 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3871 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3872 .access = PL1_RW, .accessfn = access_tvm_trvm, 3873 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3874 .raw_writefn = raw_write, 3875 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3876 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3877 }; 3878 3879 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3880 * qemu tlbs nor adjusting cached masks. 3881 */ 3882 static const ARMCPRegInfo ttbcr2_reginfo = { 3883 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3884 .access = PL1_RW, .accessfn = access_tvm_trvm, 3885 .type = ARM_CP_ALIAS, 3886 .bank_fieldoffsets = { 3887 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3888 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 3889 }, 3890 }; 3891 3892 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 env->cp15.c15_ticonfig = value & 0xe7; 3896 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3897 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3898 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3899 } 3900 3901 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3902 uint64_t value) 3903 { 3904 env->cp15.c15_threadid = value & 0xffff; 3905 } 3906 3907 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3908 uint64_t value) 3909 { 3910 /* Wait-for-interrupt (deprecated) */ 3911 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3912 } 3913 3914 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3915 uint64_t value) 3916 { 3917 /* On OMAP there are registers indicating the max/min index of dcache lines 3918 * containing a dirty line; cache flush operations have to reset these. 3919 */ 3920 env->cp15.c15_i_max = 0x000; 3921 env->cp15.c15_i_min = 0xff0; 3922 } 3923 3924 static const ARMCPRegInfo omap_cp_reginfo[] = { 3925 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3926 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3927 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3928 .resetvalue = 0, }, 3929 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3930 .access = PL1_RW, .type = ARM_CP_NOP }, 3931 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3932 .access = PL1_RW, 3933 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3934 .writefn = omap_ticonfig_write }, 3935 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3936 .access = PL1_RW, 3937 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3938 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3939 .access = PL1_RW, .resetvalue = 0xff0, 3940 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3941 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3942 .access = PL1_RW, 3943 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3944 .writefn = omap_threadid_write }, 3945 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3946 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3947 .type = ARM_CP_NO_RAW, 3948 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3949 /* TODO: Peripheral port remap register: 3950 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3951 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3952 * when MMU is off. 3953 */ 3954 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3955 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3956 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3957 .writefn = omap_cachemaint_write }, 3958 { .name = "C9", .cp = 15, .crn = 9, 3959 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3960 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3961 }; 3962 3963 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3964 uint64_t value) 3965 { 3966 env->cp15.c15_cpar = value & 0x3fff; 3967 } 3968 3969 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3970 { .name = "XSCALE_CPAR", 3971 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3972 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3973 .writefn = xscale_cpar_write, }, 3974 { .name = "XSCALE_AUXCR", 3975 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3976 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3977 .resetvalue = 0, }, 3978 /* XScale specific cache-lockdown: since we have no cache we NOP these 3979 * and hope the guest does not really rely on cache behaviour. 3980 */ 3981 { .name = "XSCALE_LOCK_ICACHE_LINE", 3982 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3983 .access = PL1_W, .type = ARM_CP_NOP }, 3984 { .name = "XSCALE_UNLOCK_ICACHE", 3985 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3986 .access = PL1_W, .type = ARM_CP_NOP }, 3987 { .name = "XSCALE_DCACHE_LOCK", 3988 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3989 .access = PL1_RW, .type = ARM_CP_NOP }, 3990 { .name = "XSCALE_UNLOCK_DCACHE", 3991 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3992 .access = PL1_W, .type = ARM_CP_NOP }, 3993 }; 3994 3995 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3996 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3997 * implementation of this implementation-defined space. 3998 * Ideally this should eventually disappear in favour of actually 3999 * implementing the correct behaviour for all cores. 4000 */ 4001 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4002 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4003 .access = PL1_RW, 4004 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4005 .resetvalue = 0 }, 4006 }; 4007 4008 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4009 /* Cache status: RAZ because we have no cache so it's always clean */ 4010 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4011 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4012 .resetvalue = 0 }, 4013 }; 4014 4015 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4016 /* We never have a block transfer operation in progress */ 4017 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4018 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4019 .resetvalue = 0 }, 4020 /* The cache ops themselves: these all NOP for QEMU */ 4021 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4022 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4023 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4024 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4025 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4026 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4027 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4028 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4029 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4030 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4031 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4032 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4033 }; 4034 4035 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4036 /* The cache test-and-clean instructions always return (1 << 30) 4037 * to indicate that there are no dirty cache lines. 4038 */ 4039 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4040 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4041 .resetvalue = (1 << 30) }, 4042 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4043 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4044 .resetvalue = (1 << 30) }, 4045 }; 4046 4047 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4048 /* Ignore ReadBuffer accesses */ 4049 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4050 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4051 .access = PL1_RW, .resetvalue = 0, 4052 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4053 }; 4054 4055 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4056 { 4057 unsigned int cur_el = arm_current_el(env); 4058 4059 if (arm_is_el2_enabled(env) && cur_el == 1) { 4060 return env->cp15.vpidr_el2; 4061 } 4062 return raw_read(env, ri); 4063 } 4064 4065 static uint64_t mpidr_read_val(CPUARMState *env) 4066 { 4067 ARMCPU *cpu = env_archcpu(env); 4068 uint64_t mpidr = cpu->mp_affinity; 4069 4070 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4071 mpidr |= (1U << 31); 4072 /* Cores which are uniprocessor (non-coherent) 4073 * but still implement the MP extensions set 4074 * bit 30. (For instance, Cortex-R5). 4075 */ 4076 if (cpu->mp_is_up) { 4077 mpidr |= (1u << 30); 4078 } 4079 } 4080 return mpidr; 4081 } 4082 4083 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4084 { 4085 unsigned int cur_el = arm_current_el(env); 4086 4087 if (arm_is_el2_enabled(env) && cur_el == 1) { 4088 return env->cp15.vmpidr_el2; 4089 } 4090 return mpidr_read_val(env); 4091 } 4092 4093 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4094 /* NOP AMAIR0/1 */ 4095 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4096 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4097 .access = PL1_RW, .accessfn = access_tvm_trvm, 4098 .type = ARM_CP_CONST, .resetvalue = 0 }, 4099 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4100 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4101 .access = PL1_RW, .accessfn = access_tvm_trvm, 4102 .type = ARM_CP_CONST, .resetvalue = 0 }, 4103 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4104 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4105 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4106 offsetof(CPUARMState, cp15.par_ns)} }, 4107 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4108 .access = PL1_RW, .accessfn = access_tvm_trvm, 4109 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4111 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4112 .writefn = vmsa_ttbr_write, }, 4113 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4114 .access = PL1_RW, .accessfn = access_tvm_trvm, 4115 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4116 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4117 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4118 .writefn = vmsa_ttbr_write, }, 4119 }; 4120 4121 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4122 { 4123 return vfp_get_fpcr(env); 4124 } 4125 4126 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4127 uint64_t value) 4128 { 4129 vfp_set_fpcr(env, value); 4130 } 4131 4132 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4133 { 4134 return vfp_get_fpsr(env); 4135 } 4136 4137 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4138 uint64_t value) 4139 { 4140 vfp_set_fpsr(env, value); 4141 } 4142 4143 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4144 bool isread) 4145 { 4146 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4147 return CP_ACCESS_TRAP; 4148 } 4149 return CP_ACCESS_OK; 4150 } 4151 4152 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4153 uint64_t value) 4154 { 4155 env->daif = value & PSTATE_DAIF; 4156 } 4157 4158 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4159 { 4160 return env->pstate & PSTATE_PAN; 4161 } 4162 4163 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4164 uint64_t value) 4165 { 4166 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4167 } 4168 4169 static const ARMCPRegInfo pan_reginfo = { 4170 .name = "PAN", .state = ARM_CP_STATE_AA64, 4171 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4172 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4173 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4174 }; 4175 4176 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4177 { 4178 return env->pstate & PSTATE_UAO; 4179 } 4180 4181 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4182 uint64_t value) 4183 { 4184 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4185 } 4186 4187 static const ARMCPRegInfo uao_reginfo = { 4188 .name = "UAO", .state = ARM_CP_STATE_AA64, 4189 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4190 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4191 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4192 }; 4193 4194 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4195 { 4196 return env->pstate & PSTATE_DIT; 4197 } 4198 4199 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4200 uint64_t value) 4201 { 4202 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4203 } 4204 4205 static const ARMCPRegInfo dit_reginfo = { 4206 .name = "DIT", .state = ARM_CP_STATE_AA64, 4207 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4208 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4209 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4210 }; 4211 4212 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4213 { 4214 return env->pstate & PSTATE_SSBS; 4215 } 4216 4217 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4218 uint64_t value) 4219 { 4220 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4221 } 4222 4223 static const ARMCPRegInfo ssbs_reginfo = { 4224 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4225 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4226 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4227 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4228 }; 4229 4230 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4231 const ARMCPRegInfo *ri, 4232 bool isread) 4233 { 4234 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4235 switch (arm_current_el(env)) { 4236 case 0: 4237 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4238 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4239 return CP_ACCESS_TRAP; 4240 } 4241 /* fall through */ 4242 case 1: 4243 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4244 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4245 return CP_ACCESS_TRAP_EL2; 4246 } 4247 break; 4248 } 4249 return CP_ACCESS_OK; 4250 } 4251 4252 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4253 const ARMCPRegInfo *ri, 4254 bool isread) 4255 { 4256 /* Cache invalidate/clean to Point of Unification... */ 4257 switch (arm_current_el(env)) { 4258 case 0: 4259 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4260 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4261 return CP_ACCESS_TRAP; 4262 } 4263 /* fall through */ 4264 case 1: 4265 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4266 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4267 return CP_ACCESS_TRAP_EL2; 4268 } 4269 break; 4270 } 4271 return CP_ACCESS_OK; 4272 } 4273 4274 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4275 * Page D4-1736 (DDI0487A.b) 4276 */ 4277 4278 static int vae1_tlbmask(CPUARMState *env) 4279 { 4280 uint64_t hcr = arm_hcr_el2_eff(env); 4281 uint16_t mask; 4282 4283 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4284 mask = ARMMMUIdxBit_E20_2 | 4285 ARMMMUIdxBit_E20_2_PAN | 4286 ARMMMUIdxBit_E20_0; 4287 } else { 4288 mask = ARMMMUIdxBit_E10_1 | 4289 ARMMMUIdxBit_E10_1_PAN | 4290 ARMMMUIdxBit_E10_0; 4291 } 4292 return mask; 4293 } 4294 4295 /* Return 56 if TBI is enabled, 64 otherwise. */ 4296 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4297 uint64_t addr) 4298 { 4299 uint64_t tcr = regime_tcr(env, mmu_idx); 4300 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4301 int select = extract64(addr, 55, 1); 4302 4303 return (tbi >> select) & 1 ? 56 : 64; 4304 } 4305 4306 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4307 { 4308 uint64_t hcr = arm_hcr_el2_eff(env); 4309 ARMMMUIdx mmu_idx; 4310 4311 /* Only the regime of the mmu_idx below is significant. */ 4312 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4313 mmu_idx = ARMMMUIdx_E20_0; 4314 } else { 4315 mmu_idx = ARMMMUIdx_E10_0; 4316 } 4317 4318 return tlbbits_for_regime(env, mmu_idx, addr); 4319 } 4320 4321 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4322 uint64_t value) 4323 { 4324 CPUState *cs = env_cpu(env); 4325 int mask = vae1_tlbmask(env); 4326 4327 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4328 } 4329 4330 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4331 uint64_t value) 4332 { 4333 CPUState *cs = env_cpu(env); 4334 int mask = vae1_tlbmask(env); 4335 4336 if (tlb_force_broadcast(env)) { 4337 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4338 } else { 4339 tlb_flush_by_mmuidx(cs, mask); 4340 } 4341 } 4342 4343 static int e2_tlbmask(CPUARMState *env) 4344 { 4345 return (ARMMMUIdxBit_E20_0 | 4346 ARMMMUIdxBit_E20_2 | 4347 ARMMMUIdxBit_E20_2_PAN | 4348 ARMMMUIdxBit_E2); 4349 } 4350 4351 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4352 uint64_t value) 4353 { 4354 CPUState *cs = env_cpu(env); 4355 int mask = alle1_tlbmask(env); 4356 4357 tlb_flush_by_mmuidx(cs, mask); 4358 } 4359 4360 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4361 uint64_t value) 4362 { 4363 CPUState *cs = env_cpu(env); 4364 int mask = e2_tlbmask(env); 4365 4366 tlb_flush_by_mmuidx(cs, mask); 4367 } 4368 4369 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4370 uint64_t value) 4371 { 4372 ARMCPU *cpu = env_archcpu(env); 4373 CPUState *cs = CPU(cpu); 4374 4375 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4376 } 4377 4378 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4379 uint64_t value) 4380 { 4381 CPUState *cs = env_cpu(env); 4382 int mask = alle1_tlbmask(env); 4383 4384 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4385 } 4386 4387 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4388 uint64_t value) 4389 { 4390 CPUState *cs = env_cpu(env); 4391 int mask = e2_tlbmask(env); 4392 4393 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4394 } 4395 4396 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4397 uint64_t value) 4398 { 4399 CPUState *cs = env_cpu(env); 4400 4401 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4402 } 4403 4404 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 /* Invalidate by VA, EL2 4408 * Currently handles both VAE2 and VALE2, since we don't support 4409 * flush-last-level-only. 4410 */ 4411 CPUState *cs = env_cpu(env); 4412 int mask = e2_tlbmask(env); 4413 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4414 4415 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4416 } 4417 4418 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4419 uint64_t value) 4420 { 4421 /* Invalidate by VA, EL3 4422 * Currently handles both VAE3 and VALE3, since we don't support 4423 * flush-last-level-only. 4424 */ 4425 ARMCPU *cpu = env_archcpu(env); 4426 CPUState *cs = CPU(cpu); 4427 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4428 4429 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4430 } 4431 4432 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4433 uint64_t value) 4434 { 4435 CPUState *cs = env_cpu(env); 4436 int mask = vae1_tlbmask(env); 4437 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4438 int bits = vae1_tlbbits(env, pageaddr); 4439 4440 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4441 } 4442 4443 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 /* Invalidate by VA, EL1&0 (AArch64 version). 4447 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4448 * since we don't support flush-for-specific-ASID-only or 4449 * flush-last-level-only. 4450 */ 4451 CPUState *cs = env_cpu(env); 4452 int mask = vae1_tlbmask(env); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 int bits = vae1_tlbbits(env, pageaddr); 4455 4456 if (tlb_force_broadcast(env)) { 4457 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4458 } else { 4459 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4460 } 4461 } 4462 4463 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4464 uint64_t value) 4465 { 4466 CPUState *cs = env_cpu(env); 4467 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4468 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4469 4470 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4471 ARMMMUIdxBit_E2, bits); 4472 } 4473 4474 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4475 uint64_t value) 4476 { 4477 CPUState *cs = env_cpu(env); 4478 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4479 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4480 4481 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4482 ARMMMUIdxBit_E3, bits); 4483 } 4484 4485 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4486 { 4487 /* 4488 * The MSB of value is the NS field, which only applies if SEL2 4489 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4490 */ 4491 return (value >= 0 4492 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4493 && arm_is_secure_below_el3(env) 4494 ? ARMMMUIdxBit_Stage2_S 4495 : ARMMMUIdxBit_Stage2); 4496 } 4497 4498 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4499 uint64_t value) 4500 { 4501 CPUState *cs = env_cpu(env); 4502 int mask = ipas2e1_tlbmask(env, value); 4503 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4504 4505 if (tlb_force_broadcast(env)) { 4506 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4507 } else { 4508 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4509 } 4510 } 4511 4512 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4513 uint64_t value) 4514 { 4515 CPUState *cs = env_cpu(env); 4516 int mask = ipas2e1_tlbmask(env, value); 4517 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4518 4519 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4520 } 4521 4522 #ifdef TARGET_AARCH64 4523 typedef struct { 4524 uint64_t base; 4525 uint64_t length; 4526 } TLBIRange; 4527 4528 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4529 { 4530 /* 4531 * Note that the TLBI range TG field encoding differs from both 4532 * TG0 and TG1 encodings. 4533 */ 4534 switch (tg) { 4535 case 1: 4536 return Gran4K; 4537 case 2: 4538 return Gran16K; 4539 case 3: 4540 return Gran64K; 4541 default: 4542 return GranInvalid; 4543 } 4544 } 4545 4546 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4547 uint64_t value) 4548 { 4549 unsigned int page_size_granule, page_shift, num, scale, exponent; 4550 /* Extract one bit to represent the va selector in use. */ 4551 uint64_t select = sextract64(value, 36, 1); 4552 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4553 TLBIRange ret = { }; 4554 ARMGranuleSize gran; 4555 4556 page_size_granule = extract64(value, 46, 2); 4557 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4558 4559 /* The granule encoded in value must match the granule in use. */ 4560 if (gran != param.gran) { 4561 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4562 page_size_granule); 4563 return ret; 4564 } 4565 4566 page_shift = arm_granule_bits(gran); 4567 num = extract64(value, 39, 5); 4568 scale = extract64(value, 44, 2); 4569 exponent = (5 * scale) + 1; 4570 4571 ret.length = (num + 1) << (exponent + page_shift); 4572 4573 if (param.select) { 4574 ret.base = sextract64(value, 0, 37); 4575 } else { 4576 ret.base = extract64(value, 0, 37); 4577 } 4578 if (param.ds) { 4579 /* 4580 * With DS=1, BaseADDR is always shifted 16 so that it is able 4581 * to address all 52 va bits. The input address is perforce 4582 * aligned on a 64k boundary regardless of translation granule. 4583 */ 4584 page_shift = 16; 4585 } 4586 ret.base <<= page_shift; 4587 4588 return ret; 4589 } 4590 4591 static void do_rvae_write(CPUARMState *env, uint64_t value, 4592 int idxmap, bool synced) 4593 { 4594 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4595 TLBIRange range; 4596 int bits; 4597 4598 range = tlbi_aa64_get_range(env, one_idx, value); 4599 bits = tlbbits_for_regime(env, one_idx, range.base); 4600 4601 if (synced) { 4602 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4603 range.base, 4604 range.length, 4605 idxmap, 4606 bits); 4607 } else { 4608 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4609 range.length, idxmap, bits); 4610 } 4611 } 4612 4613 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4614 const ARMCPRegInfo *ri, 4615 uint64_t value) 4616 { 4617 /* 4618 * Invalidate by VA range, EL1&0. 4619 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4620 * since we don't support flush-for-specific-ASID-only or 4621 * flush-last-level-only. 4622 */ 4623 4624 do_rvae_write(env, value, vae1_tlbmask(env), 4625 tlb_force_broadcast(env)); 4626 } 4627 4628 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4629 const ARMCPRegInfo *ri, 4630 uint64_t value) 4631 { 4632 /* 4633 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4634 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4635 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4636 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4637 * shareable specific flushes. 4638 */ 4639 4640 do_rvae_write(env, value, vae1_tlbmask(env), true); 4641 } 4642 4643 static int vae2_tlbmask(CPUARMState *env) 4644 { 4645 return ARMMMUIdxBit_E2; 4646 } 4647 4648 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4649 const ARMCPRegInfo *ri, 4650 uint64_t value) 4651 { 4652 /* 4653 * Invalidate by VA range, EL2. 4654 * Currently handles all of RVAE2 and RVALE2, 4655 * since we don't support flush-for-specific-ASID-only or 4656 * flush-last-level-only. 4657 */ 4658 4659 do_rvae_write(env, value, vae2_tlbmask(env), 4660 tlb_force_broadcast(env)); 4661 4662 4663 } 4664 4665 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4666 const ARMCPRegInfo *ri, 4667 uint64_t value) 4668 { 4669 /* 4670 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4671 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4672 * since we don't support flush-for-specific-ASID-only, 4673 * flush-last-level-only or inner/outer shareable specific flushes. 4674 */ 4675 4676 do_rvae_write(env, value, vae2_tlbmask(env), true); 4677 4678 } 4679 4680 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4681 const ARMCPRegInfo *ri, 4682 uint64_t value) 4683 { 4684 /* 4685 * Invalidate by VA range, EL3. 4686 * Currently handles all of RVAE3 and RVALE3, 4687 * since we don't support flush-for-specific-ASID-only or 4688 * flush-last-level-only. 4689 */ 4690 4691 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 4692 } 4693 4694 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4695 const ARMCPRegInfo *ri, 4696 uint64_t value) 4697 { 4698 /* 4699 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4700 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4701 * since we don't support flush-for-specific-ASID-only, 4702 * flush-last-level-only or inner/outer specific flushes. 4703 */ 4704 4705 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 4706 } 4707 4708 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4709 uint64_t value) 4710 { 4711 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 4712 tlb_force_broadcast(env)); 4713 } 4714 4715 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 4716 const ARMCPRegInfo *ri, 4717 uint64_t value) 4718 { 4719 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 4720 } 4721 #endif 4722 4723 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4724 bool isread) 4725 { 4726 int cur_el = arm_current_el(env); 4727 4728 if (cur_el < 2) { 4729 uint64_t hcr = arm_hcr_el2_eff(env); 4730 4731 if (cur_el == 0) { 4732 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4733 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4734 return CP_ACCESS_TRAP_EL2; 4735 } 4736 } else { 4737 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4738 return CP_ACCESS_TRAP; 4739 } 4740 if (hcr & HCR_TDZ) { 4741 return CP_ACCESS_TRAP_EL2; 4742 } 4743 } 4744 } else if (hcr & HCR_TDZ) { 4745 return CP_ACCESS_TRAP_EL2; 4746 } 4747 } 4748 return CP_ACCESS_OK; 4749 } 4750 4751 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4752 { 4753 ARMCPU *cpu = env_archcpu(env); 4754 int dzp_bit = 1 << 4; 4755 4756 /* DZP indicates whether DC ZVA access is allowed */ 4757 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4758 dzp_bit = 0; 4759 } 4760 return cpu->dcz_blocksize | dzp_bit; 4761 } 4762 4763 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4764 bool isread) 4765 { 4766 if (!(env->pstate & PSTATE_SP)) { 4767 /* Access to SP_EL0 is undefined if it's being used as 4768 * the stack pointer. 4769 */ 4770 return CP_ACCESS_TRAP_UNCATEGORIZED; 4771 } 4772 return CP_ACCESS_OK; 4773 } 4774 4775 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4776 { 4777 return env->pstate & PSTATE_SP; 4778 } 4779 4780 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4781 { 4782 update_spsel(env, val); 4783 } 4784 4785 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4786 uint64_t value) 4787 { 4788 ARMCPU *cpu = env_archcpu(env); 4789 4790 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4791 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4792 value &= ~SCTLR_M; 4793 } 4794 4795 /* ??? Lots of these bits are not implemented. */ 4796 4797 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4798 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4799 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4800 } else { 4801 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4802 SCTLR_ATA0 | SCTLR_ATA); 4803 } 4804 } 4805 4806 if (raw_read(env, ri) == value) { 4807 /* Skip the TLB flush if nothing actually changed; Linux likes 4808 * to do a lot of pointless SCTLR writes. 4809 */ 4810 return; 4811 } 4812 4813 raw_write(env, ri, value); 4814 4815 /* This may enable/disable the MMU, so do a TLB flush. */ 4816 tlb_flush(CPU(cpu)); 4817 4818 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4819 /* 4820 * Normally we would always end the TB on an SCTLR write; see the 4821 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4822 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4823 * of hflags from the translator, so do it here. 4824 */ 4825 arm_rebuild_hflags(env); 4826 } 4827 } 4828 4829 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 /* 4833 * Some MDCR_EL3 bits affect whether PMU counters are running: 4834 * if we are trying to change any of those then we must 4835 * bracket this update with PMU start/finish calls. 4836 */ 4837 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4838 4839 if (pmu_op) { 4840 pmu_op_start(env); 4841 } 4842 env->cp15.mdcr_el3 = value; 4843 if (pmu_op) { 4844 pmu_op_finish(env); 4845 } 4846 } 4847 4848 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4849 uint64_t value) 4850 { 4851 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4852 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4853 } 4854 4855 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4856 uint64_t value) 4857 { 4858 /* 4859 * Some MDCR_EL2 bits affect whether PMU counters are running: 4860 * if we are trying to change any of those then we must 4861 * bracket this update with PMU start/finish calls. 4862 */ 4863 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4864 4865 if (pmu_op) { 4866 pmu_op_start(env); 4867 } 4868 env->cp15.mdcr_el2 = value; 4869 if (pmu_op) { 4870 pmu_op_finish(env); 4871 } 4872 } 4873 4874 static const ARMCPRegInfo v8_cp_reginfo[] = { 4875 /* Minimal set of EL0-visible registers. This will need to be expanded 4876 * significantly for system emulation of AArch64 CPUs. 4877 */ 4878 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4880 .access = PL0_RW, .type = ARM_CP_NZCV }, 4881 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4883 .type = ARM_CP_NO_RAW, 4884 .access = PL0_RW, .accessfn = aa64_daif_access, 4885 .fieldoffset = offsetof(CPUARMState, daif), 4886 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4887 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4889 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4890 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4891 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4893 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4894 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4895 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4897 .access = PL0_R, .type = ARM_CP_NO_RAW, 4898 .readfn = aa64_dczid_read }, 4899 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4901 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4902 #ifndef CONFIG_USER_ONLY 4903 /* Avoid overhead of an access check that always passes in user-mode */ 4904 .accessfn = aa64_zva_access, 4905 #endif 4906 }, 4907 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4909 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4910 /* Cache ops: all NOPs since we don't emulate caches */ 4911 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4913 .access = PL1_W, .type = ARM_CP_NOP, 4914 .accessfn = aa64_cacheop_pou_access }, 4915 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4917 .access = PL1_W, .type = ARM_CP_NOP, 4918 .accessfn = aa64_cacheop_pou_access }, 4919 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4921 .access = PL0_W, .type = ARM_CP_NOP, 4922 .accessfn = aa64_cacheop_pou_access }, 4923 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4925 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4926 .type = ARM_CP_NOP }, 4927 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4929 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4930 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4932 .access = PL0_W, .type = ARM_CP_NOP, 4933 .accessfn = aa64_cacheop_poc_access }, 4934 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4936 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4937 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4939 .access = PL0_W, .type = ARM_CP_NOP, 4940 .accessfn = aa64_cacheop_pou_access }, 4941 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4943 .access = PL0_W, .type = ARM_CP_NOP, 4944 .accessfn = aa64_cacheop_poc_access }, 4945 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4947 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4948 /* TLBI operations */ 4949 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4951 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_vmalle1is_write }, 4953 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4955 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4956 .writefn = tlbi_aa64_vae1is_write }, 4957 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4959 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4960 .writefn = tlbi_aa64_vmalle1is_write }, 4961 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4963 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4964 .writefn = tlbi_aa64_vae1is_write }, 4965 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4967 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4968 .writefn = tlbi_aa64_vae1is_write }, 4969 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4971 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4972 .writefn = tlbi_aa64_vae1is_write }, 4973 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4975 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4976 .writefn = tlbi_aa64_vmalle1_write }, 4977 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4979 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4980 .writefn = tlbi_aa64_vae1_write }, 4981 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4983 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4984 .writefn = tlbi_aa64_vmalle1_write }, 4985 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4987 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4988 .writefn = tlbi_aa64_vae1_write }, 4989 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4991 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4992 .writefn = tlbi_aa64_vae1_write }, 4993 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4995 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4996 .writefn = tlbi_aa64_vae1_write }, 4997 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4999 .access = PL2_W, .type = ARM_CP_NO_RAW, 5000 .writefn = tlbi_aa64_ipas2e1is_write }, 5001 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5003 .access = PL2_W, .type = ARM_CP_NO_RAW, 5004 .writefn = tlbi_aa64_ipas2e1is_write }, 5005 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5007 .access = PL2_W, .type = ARM_CP_NO_RAW, 5008 .writefn = tlbi_aa64_alle1is_write }, 5009 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5011 .access = PL2_W, .type = ARM_CP_NO_RAW, 5012 .writefn = tlbi_aa64_alle1is_write }, 5013 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5015 .access = PL2_W, .type = ARM_CP_NO_RAW, 5016 .writefn = tlbi_aa64_ipas2e1_write }, 5017 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5019 .access = PL2_W, .type = ARM_CP_NO_RAW, 5020 .writefn = tlbi_aa64_ipas2e1_write }, 5021 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5023 .access = PL2_W, .type = ARM_CP_NO_RAW, 5024 .writefn = tlbi_aa64_alle1_write }, 5025 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5027 .access = PL2_W, .type = ARM_CP_NO_RAW, 5028 .writefn = tlbi_aa64_alle1is_write }, 5029 #ifndef CONFIG_USER_ONLY 5030 /* 64 bit address translation operations */ 5031 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5032 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5033 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5034 .writefn = ats_write64 }, 5035 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5036 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5037 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5038 .writefn = ats_write64 }, 5039 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5040 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5041 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5042 .writefn = ats_write64 }, 5043 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5045 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5046 .writefn = ats_write64 }, 5047 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5049 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5050 .writefn = ats_write64 }, 5051 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5052 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5053 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5054 .writefn = ats_write64 }, 5055 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5056 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5057 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5058 .writefn = ats_write64 }, 5059 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5060 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5061 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5062 .writefn = ats_write64 }, 5063 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5064 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5065 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5066 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5067 .writefn = ats_write64 }, 5068 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5070 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5071 .writefn = ats_write64 }, 5072 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_ALIAS, 5074 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5075 .access = PL1_RW, .resetvalue = 0, 5076 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5077 .writefn = par_write }, 5078 #endif 5079 /* TLB invalidate last level of translation table walk */ 5080 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5081 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5082 .writefn = tlbimva_is_write }, 5083 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5084 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5085 .writefn = tlbimvaa_is_write }, 5086 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5087 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5088 .writefn = tlbimva_write }, 5089 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5090 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5091 .writefn = tlbimvaa_write }, 5092 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5093 .type = ARM_CP_NO_RAW, .access = PL2_W, 5094 .writefn = tlbimva_hyp_write }, 5095 { .name = "TLBIMVALHIS", 5096 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5097 .type = ARM_CP_NO_RAW, .access = PL2_W, 5098 .writefn = tlbimva_hyp_is_write }, 5099 { .name = "TLBIIPAS2", 5100 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5101 .type = ARM_CP_NO_RAW, .access = PL2_W, 5102 .writefn = tlbiipas2_hyp_write }, 5103 { .name = "TLBIIPAS2IS", 5104 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5105 .type = ARM_CP_NO_RAW, .access = PL2_W, 5106 .writefn = tlbiipas2is_hyp_write }, 5107 { .name = "TLBIIPAS2L", 5108 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5109 .type = ARM_CP_NO_RAW, .access = PL2_W, 5110 .writefn = tlbiipas2_hyp_write }, 5111 { .name = "TLBIIPAS2LIS", 5112 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5113 .type = ARM_CP_NO_RAW, .access = PL2_W, 5114 .writefn = tlbiipas2is_hyp_write }, 5115 /* 32 bit cache operations */ 5116 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5117 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5118 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5119 .type = ARM_CP_NOP, .access = PL1_W }, 5120 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5121 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5122 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5123 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5124 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5125 .type = ARM_CP_NOP, .access = PL1_W }, 5126 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5127 .type = ARM_CP_NOP, .access = PL1_W }, 5128 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5129 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5130 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5131 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5132 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5133 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5134 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5135 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5136 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5137 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5138 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5139 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5140 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5141 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5142 /* MMU Domain access control / MPU write buffer control */ 5143 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5144 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5145 .writefn = dacr_write, .raw_writefn = raw_write, 5146 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5147 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5148 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5149 .type = ARM_CP_ALIAS, 5150 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5151 .access = PL1_RW, 5152 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5153 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5154 .type = ARM_CP_ALIAS, 5155 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5156 .access = PL1_RW, 5157 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5158 /* We rely on the access checks not allowing the guest to write to the 5159 * state field when SPSel indicates that it's being used as the stack 5160 * pointer. 5161 */ 5162 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5164 .access = PL1_RW, .accessfn = sp_el0_access, 5165 .type = ARM_CP_ALIAS, 5166 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5167 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5168 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5169 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5170 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5171 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5172 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5173 .type = ARM_CP_NO_RAW, 5174 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5175 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5176 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5177 .access = PL2_RW, 5178 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5179 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5180 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5181 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5182 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5183 .writefn = dacr_write, .raw_writefn = raw_write, 5184 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5185 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5186 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5187 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5188 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5189 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5190 .type = ARM_CP_ALIAS, 5191 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5192 .access = PL2_RW, 5193 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5194 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5195 .type = ARM_CP_ALIAS, 5196 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5197 .access = PL2_RW, 5198 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5199 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5200 .type = ARM_CP_ALIAS, 5201 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5202 .access = PL2_RW, 5203 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5204 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5205 .type = ARM_CP_ALIAS, 5206 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5207 .access = PL2_RW, 5208 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5209 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5210 .type = ARM_CP_IO, 5211 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5212 .resetvalue = 0, 5213 .access = PL3_RW, 5214 .writefn = mdcr_el3_write, 5215 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5216 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5217 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5218 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5219 .writefn = sdcr_write, 5220 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5221 }; 5222 5223 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5224 { 5225 ARMCPU *cpu = env_archcpu(env); 5226 5227 if (arm_feature(env, ARM_FEATURE_V8)) { 5228 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5229 } else { 5230 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5231 } 5232 5233 if (arm_feature(env, ARM_FEATURE_EL3)) { 5234 valid_mask &= ~HCR_HCD; 5235 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5236 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5237 * However, if we're using the SMC PSCI conduit then QEMU is 5238 * effectively acting like EL3 firmware and so the guest at 5239 * EL2 should retain the ability to prevent EL1 from being 5240 * able to make SMC calls into the ersatz firmware, so in 5241 * that case HCR.TSC should be read/write. 5242 */ 5243 valid_mask &= ~HCR_TSC; 5244 } 5245 5246 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5247 if (cpu_isar_feature(aa64_vh, cpu)) { 5248 valid_mask |= HCR_E2H; 5249 } 5250 if (cpu_isar_feature(aa64_ras, cpu)) { 5251 valid_mask |= HCR_TERR | HCR_TEA; 5252 } 5253 if (cpu_isar_feature(aa64_lor, cpu)) { 5254 valid_mask |= HCR_TLOR; 5255 } 5256 if (cpu_isar_feature(aa64_pauth, cpu)) { 5257 valid_mask |= HCR_API | HCR_APK; 5258 } 5259 if (cpu_isar_feature(aa64_mte, cpu)) { 5260 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5261 } 5262 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5263 valid_mask |= HCR_ENSCXT; 5264 } 5265 if (cpu_isar_feature(aa64_fwb, cpu)) { 5266 valid_mask |= HCR_FWB; 5267 } 5268 } 5269 5270 /* Clear RES0 bits. */ 5271 value &= valid_mask; 5272 5273 /* 5274 * These bits change the MMU setup: 5275 * HCR_VM enables stage 2 translation 5276 * HCR_PTW forbids certain page-table setups 5277 * HCR_DC disables stage1 and enables stage2 translation 5278 * HCR_DCT enables tagging on (disabled) stage1 translation 5279 * HCR_FWB changes the interpretation of stage2 descriptor bits 5280 */ 5281 if ((env->cp15.hcr_el2 ^ value) & 5282 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5283 tlb_flush(CPU(cpu)); 5284 } 5285 env->cp15.hcr_el2 = value; 5286 5287 /* 5288 * Updates to VI and VF require us to update the status of 5289 * virtual interrupts, which are the logical OR of these bits 5290 * and the state of the input lines from the GIC. (This requires 5291 * that we have the iothread lock, which is done by marking the 5292 * reginfo structs as ARM_CP_IO.) 5293 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5294 * possible for it to be taken immediately, because VIRQ and 5295 * VFIQ are masked unless running at EL0 or EL1, and HCR 5296 * can only be written at EL2. 5297 */ 5298 g_assert(qemu_mutex_iothread_locked()); 5299 arm_cpu_update_virq(cpu); 5300 arm_cpu_update_vfiq(cpu); 5301 arm_cpu_update_vserr(cpu); 5302 } 5303 5304 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5305 { 5306 do_hcr_write(env, value, 0); 5307 } 5308 5309 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5310 uint64_t value) 5311 { 5312 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5313 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5314 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5315 } 5316 5317 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5318 uint64_t value) 5319 { 5320 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5321 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5322 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5323 } 5324 5325 /* 5326 * Return the effective value of HCR_EL2, at the given security state. 5327 * Bits that are not included here: 5328 * RW (read from SCR_EL3.RW as needed) 5329 */ 5330 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5331 { 5332 uint64_t ret = env->cp15.hcr_el2; 5333 5334 if (!arm_is_el2_enabled_secstate(env, secure)) { 5335 /* 5336 * "This register has no effect if EL2 is not enabled in the 5337 * current Security state". This is ARMv8.4-SecEL2 speak for 5338 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5339 * 5340 * Prior to that, the language was "In an implementation that 5341 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5342 * as if this field is 0 for all purposes other than a direct 5343 * read or write access of HCR_EL2". With lots of enumeration 5344 * on a per-field basis. In current QEMU, this is condition 5345 * is arm_is_secure_below_el3. 5346 * 5347 * Since the v8.4 language applies to the entire register, and 5348 * appears to be backward compatible, use that. 5349 */ 5350 return 0; 5351 } 5352 5353 /* 5354 * For a cpu that supports both aarch64 and aarch32, we can set bits 5355 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5356 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5357 */ 5358 if (!arm_el_is_aa64(env, 2)) { 5359 uint64_t aa32_valid; 5360 5361 /* 5362 * These bits are up-to-date as of ARMv8.6. 5363 * For HCR, it's easiest to list just the 2 bits that are invalid. 5364 * For HCR2, list those that are valid. 5365 */ 5366 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5367 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5368 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5369 ret &= aa32_valid; 5370 } 5371 5372 if (ret & HCR_TGE) { 5373 /* These bits are up-to-date as of ARMv8.6. */ 5374 if (ret & HCR_E2H) { 5375 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5376 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5377 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5378 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5379 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5380 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5381 } else { 5382 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5383 } 5384 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5385 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5386 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5387 HCR_TLOR); 5388 } 5389 5390 return ret; 5391 } 5392 5393 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5394 { 5395 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5396 } 5397 5398 /* 5399 * Corresponds to ARM pseudocode function ELIsInHost(). 5400 */ 5401 bool el_is_in_host(CPUARMState *env, int el) 5402 { 5403 uint64_t mask; 5404 5405 /* 5406 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5407 * Perform the simplest bit tests first, and validate EL2 afterward. 5408 */ 5409 if (el & 1) { 5410 return false; /* EL1 or EL3 */ 5411 } 5412 5413 /* 5414 * Note that hcr_write() checks isar_feature_aa64_vh(), 5415 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5416 */ 5417 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5418 if ((env->cp15.hcr_el2 & mask) != mask) { 5419 return false; 5420 } 5421 5422 /* TGE and/or E2H set: double check those bits are currently legal. */ 5423 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5424 } 5425 5426 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5427 uint64_t value) 5428 { 5429 uint64_t valid_mask = 0; 5430 5431 /* No features adding bits to HCRX are implemented. */ 5432 5433 /* Clear RES0 bits. */ 5434 env->cp15.hcrx_el2 = value & valid_mask; 5435 } 5436 5437 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5438 bool isread) 5439 { 5440 if (arm_current_el(env) < 3 5441 && arm_feature(env, ARM_FEATURE_EL3) 5442 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5443 return CP_ACCESS_TRAP_EL3; 5444 } 5445 return CP_ACCESS_OK; 5446 } 5447 5448 static const ARMCPRegInfo hcrx_el2_reginfo = { 5449 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5451 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5452 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5453 }; 5454 5455 /* Return the effective value of HCRX_EL2. */ 5456 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5457 { 5458 /* 5459 * The bits in this register behave as 0 for all purposes other than 5460 * direct reads of the register if: 5461 * - EL2 is not enabled in the current security state, 5462 * - SCR_EL3.HXEn is 0. 5463 */ 5464 if (!arm_is_el2_enabled(env) 5465 || (arm_feature(env, ARM_FEATURE_EL3) 5466 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5467 return 0; 5468 } 5469 return env->cp15.hcrx_el2; 5470 } 5471 5472 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5473 uint64_t value) 5474 { 5475 /* 5476 * For A-profile AArch32 EL3, if NSACR.CP10 5477 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5478 */ 5479 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5480 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5481 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5482 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5483 } 5484 env->cp15.cptr_el[2] = value; 5485 } 5486 5487 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5488 { 5489 /* 5490 * For A-profile AArch32 EL3, if NSACR.CP10 5491 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5492 */ 5493 uint64_t value = env->cp15.cptr_el[2]; 5494 5495 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5496 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5497 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5498 } 5499 return value; 5500 } 5501 5502 static const ARMCPRegInfo el2_cp_reginfo[] = { 5503 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5504 .type = ARM_CP_IO, 5505 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5506 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5507 .writefn = hcr_write }, 5508 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5509 .type = ARM_CP_ALIAS | ARM_CP_IO, 5510 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5511 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5512 .writefn = hcr_writelow }, 5513 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5514 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5515 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5516 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5517 .type = ARM_CP_ALIAS, 5518 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5519 .access = PL2_RW, 5520 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5521 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5522 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5523 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5524 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5525 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5526 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5527 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5528 .type = ARM_CP_ALIAS, 5529 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5530 .access = PL2_RW, 5531 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5532 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5533 .type = ARM_CP_ALIAS, 5534 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5535 .access = PL2_RW, 5536 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5537 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5538 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5539 .access = PL2_RW, .writefn = vbar_write, 5540 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5541 .resetvalue = 0 }, 5542 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5543 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5544 .access = PL3_RW, .type = ARM_CP_ALIAS, 5545 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5546 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5547 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5548 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5549 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5550 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5551 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5552 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5553 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5554 .resetvalue = 0 }, 5555 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5556 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5557 .access = PL2_RW, .type = ARM_CP_ALIAS, 5558 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5559 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5560 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5561 .access = PL2_RW, .type = ARM_CP_CONST, 5562 .resetvalue = 0 }, 5563 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5564 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5565 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5566 .access = PL2_RW, .type = ARM_CP_CONST, 5567 .resetvalue = 0 }, 5568 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5569 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5570 .access = PL2_RW, .type = ARM_CP_CONST, 5571 .resetvalue = 0 }, 5572 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5573 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5574 .access = PL2_RW, .type = ARM_CP_CONST, 5575 .resetvalue = 0 }, 5576 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5577 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5578 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5579 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5580 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5581 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5582 .type = ARM_CP_ALIAS, 5583 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5584 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5585 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5587 .access = PL2_RW, 5588 /* no .writefn needed as this can't cause an ASID change */ 5589 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5590 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5591 .cp = 15, .opc1 = 6, .crm = 2, 5592 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5593 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5594 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5595 .writefn = vttbr_write }, 5596 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5597 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5598 .access = PL2_RW, .writefn = vttbr_write, 5599 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5600 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5601 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5602 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5603 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5604 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5605 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5606 .access = PL2_RW, .resetvalue = 0, 5607 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5608 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5609 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5610 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5611 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5612 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5613 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5614 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5615 { .name = "TLBIALLNSNH", 5616 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5617 .type = ARM_CP_NO_RAW, .access = PL2_W, 5618 .writefn = tlbiall_nsnh_write }, 5619 { .name = "TLBIALLNSNHIS", 5620 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5621 .type = ARM_CP_NO_RAW, .access = PL2_W, 5622 .writefn = tlbiall_nsnh_is_write }, 5623 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5624 .type = ARM_CP_NO_RAW, .access = PL2_W, 5625 .writefn = tlbiall_hyp_write }, 5626 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5627 .type = ARM_CP_NO_RAW, .access = PL2_W, 5628 .writefn = tlbiall_hyp_is_write }, 5629 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5630 .type = ARM_CP_NO_RAW, .access = PL2_W, 5631 .writefn = tlbimva_hyp_write }, 5632 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5633 .type = ARM_CP_NO_RAW, .access = PL2_W, 5634 .writefn = tlbimva_hyp_is_write }, 5635 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5636 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5637 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5638 .writefn = tlbi_aa64_alle2_write }, 5639 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5640 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5641 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5642 .writefn = tlbi_aa64_vae2_write }, 5643 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5644 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5645 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5646 .writefn = tlbi_aa64_vae2_write }, 5647 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5648 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5649 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5650 .writefn = tlbi_aa64_alle2is_write }, 5651 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5653 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5654 .writefn = tlbi_aa64_vae2is_write }, 5655 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5656 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5657 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5658 .writefn = tlbi_aa64_vae2is_write }, 5659 #ifndef CONFIG_USER_ONLY 5660 /* Unlike the other EL2-related AT operations, these must 5661 * UNDEF from EL3 if EL2 is not implemented, which is why we 5662 * define them here rather than with the rest of the AT ops. 5663 */ 5664 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5665 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5666 .access = PL2_W, .accessfn = at_s1e2_access, 5667 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5668 .writefn = ats_write64 }, 5669 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5671 .access = PL2_W, .accessfn = at_s1e2_access, 5672 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5673 .writefn = ats_write64 }, 5674 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5675 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5676 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5677 * to behave as if SCR.NS was 1. 5678 */ 5679 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5680 .access = PL2_W, 5681 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5682 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5683 .access = PL2_W, 5684 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5685 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5687 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5688 * reset values as IMPDEF. We choose to reset to 3 to comply with 5689 * both ARMv7 and ARMv8. 5690 */ 5691 .access = PL2_RW, .resetvalue = 3, 5692 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5693 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5695 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5696 .writefn = gt_cntvoff_write, 5697 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5698 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5699 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5700 .writefn = gt_cntvoff_write, 5701 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5702 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5704 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5705 .type = ARM_CP_IO, .access = PL2_RW, 5706 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5707 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5708 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5709 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5710 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5711 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5712 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5713 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5714 .resetfn = gt_hyp_timer_reset, 5715 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5716 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5717 .type = ARM_CP_IO, 5718 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5719 .access = PL2_RW, 5720 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5721 .resetvalue = 0, 5722 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5723 #endif 5724 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5725 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5726 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5727 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5728 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5729 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5730 .access = PL2_RW, 5731 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5732 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5733 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5734 .access = PL2_RW, 5735 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5736 }; 5737 5738 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5739 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5740 .type = ARM_CP_ALIAS | ARM_CP_IO, 5741 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5742 .access = PL2_RW, 5743 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5744 .writefn = hcr_writehigh }, 5745 }; 5746 5747 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5748 bool isread) 5749 { 5750 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5751 return CP_ACCESS_OK; 5752 } 5753 return CP_ACCESS_TRAP_UNCATEGORIZED; 5754 } 5755 5756 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5757 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5758 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5759 .access = PL2_RW, .accessfn = sel2_access, 5760 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5761 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5763 .access = PL2_RW, .accessfn = sel2_access, 5764 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5765 }; 5766 5767 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5768 bool isread) 5769 { 5770 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5771 * At Secure EL1 it traps to EL3 or EL2. 5772 */ 5773 if (arm_current_el(env) == 3) { 5774 return CP_ACCESS_OK; 5775 } 5776 if (arm_is_secure_below_el3(env)) { 5777 if (env->cp15.scr_el3 & SCR_EEL2) { 5778 return CP_ACCESS_TRAP_EL2; 5779 } 5780 return CP_ACCESS_TRAP_EL3; 5781 } 5782 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5783 if (isread) { 5784 return CP_ACCESS_OK; 5785 } 5786 return CP_ACCESS_TRAP_UNCATEGORIZED; 5787 } 5788 5789 static const ARMCPRegInfo el3_cp_reginfo[] = { 5790 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5792 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5793 .resetfn = scr_reset, .writefn = scr_write }, 5794 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5795 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5796 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5797 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5798 .writefn = scr_write }, 5799 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5801 .access = PL3_RW, .resetvalue = 0, 5802 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5803 { .name = "SDER", 5804 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5805 .access = PL3_RW, .resetvalue = 0, 5806 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5807 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5808 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5809 .writefn = vbar_write, .resetvalue = 0, 5810 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5811 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5813 .access = PL3_RW, .resetvalue = 0, 5814 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5815 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5817 .access = PL3_RW, 5818 /* no .writefn needed as this can't cause an ASID change */ 5819 .resetvalue = 0, 5820 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5821 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5822 .type = ARM_CP_ALIAS, 5823 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5824 .access = PL3_RW, 5825 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5826 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5827 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5828 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5829 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5830 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5831 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5832 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5833 .type = ARM_CP_ALIAS, 5834 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5835 .access = PL3_RW, 5836 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5837 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5838 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5839 .access = PL3_RW, .writefn = vbar_write, 5840 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5841 .resetvalue = 0 }, 5842 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5843 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5844 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5845 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5846 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5847 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5848 .access = PL3_RW, .resetvalue = 0, 5849 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5850 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5851 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5852 .access = PL3_RW, .type = ARM_CP_CONST, 5853 .resetvalue = 0 }, 5854 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5855 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5856 .access = PL3_RW, .type = ARM_CP_CONST, 5857 .resetvalue = 0 }, 5858 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5859 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5860 .access = PL3_RW, .type = ARM_CP_CONST, 5861 .resetvalue = 0 }, 5862 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5863 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5864 .access = PL3_W, .type = ARM_CP_NO_RAW, 5865 .writefn = tlbi_aa64_alle3is_write }, 5866 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5867 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5868 .access = PL3_W, .type = ARM_CP_NO_RAW, 5869 .writefn = tlbi_aa64_vae3is_write }, 5870 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5872 .access = PL3_W, .type = ARM_CP_NO_RAW, 5873 .writefn = tlbi_aa64_vae3is_write }, 5874 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5875 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5876 .access = PL3_W, .type = ARM_CP_NO_RAW, 5877 .writefn = tlbi_aa64_alle3_write }, 5878 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5879 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5880 .access = PL3_W, .type = ARM_CP_NO_RAW, 5881 .writefn = tlbi_aa64_vae3_write }, 5882 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5883 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5884 .access = PL3_W, .type = ARM_CP_NO_RAW, 5885 .writefn = tlbi_aa64_vae3_write }, 5886 }; 5887 5888 #ifndef CONFIG_USER_ONLY 5889 /* Test if system register redirection is to occur in the current state. */ 5890 static bool redirect_for_e2h(CPUARMState *env) 5891 { 5892 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5893 } 5894 5895 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5896 { 5897 CPReadFn *readfn; 5898 5899 if (redirect_for_e2h(env)) { 5900 /* Switch to the saved EL2 version of the register. */ 5901 ri = ri->opaque; 5902 readfn = ri->readfn; 5903 } else { 5904 readfn = ri->orig_readfn; 5905 } 5906 if (readfn == NULL) { 5907 readfn = raw_read; 5908 } 5909 return readfn(env, ri); 5910 } 5911 5912 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5913 uint64_t value) 5914 { 5915 CPWriteFn *writefn; 5916 5917 if (redirect_for_e2h(env)) { 5918 /* Switch to the saved EL2 version of the register. */ 5919 ri = ri->opaque; 5920 writefn = ri->writefn; 5921 } else { 5922 writefn = ri->orig_writefn; 5923 } 5924 if (writefn == NULL) { 5925 writefn = raw_write; 5926 } 5927 writefn(env, ri, value); 5928 } 5929 5930 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5931 { 5932 struct E2HAlias { 5933 uint32_t src_key, dst_key, new_key; 5934 const char *src_name, *dst_name, *new_name; 5935 bool (*feature)(const ARMISARegisters *id); 5936 }; 5937 5938 #define K(op0, op1, crn, crm, op2) \ 5939 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5940 5941 static const struct E2HAlias aliases[] = { 5942 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5943 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5944 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5945 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5946 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5947 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5948 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5949 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5950 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5951 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5952 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5953 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5954 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5955 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5956 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5957 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5958 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5959 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5960 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5961 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5962 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5963 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5964 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5965 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5966 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5967 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5968 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5969 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5970 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5971 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5972 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5973 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5974 5975 /* 5976 * Note that redirection of ZCR is mentioned in the description 5977 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5978 * not in the summary table. 5979 */ 5980 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5981 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5982 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5983 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5984 5985 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5986 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5987 5988 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5989 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5990 isar_feature_aa64_scxtnum }, 5991 5992 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5993 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5994 }; 5995 #undef K 5996 5997 size_t i; 5998 5999 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6000 const struct E2HAlias *a = &aliases[i]; 6001 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6002 bool ok; 6003 6004 if (a->feature && !a->feature(&cpu->isar)) { 6005 continue; 6006 } 6007 6008 src_reg = g_hash_table_lookup(cpu->cp_regs, 6009 (gpointer)(uintptr_t)a->src_key); 6010 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6011 (gpointer)(uintptr_t)a->dst_key); 6012 g_assert(src_reg != NULL); 6013 g_assert(dst_reg != NULL); 6014 6015 /* Cross-compare names to detect typos in the keys. */ 6016 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6017 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6018 6019 /* None of the core system registers use opaque; we will. */ 6020 g_assert(src_reg->opaque == NULL); 6021 6022 /* Create alias before redirection so we dup the right data. */ 6023 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6024 6025 new_reg->name = a->new_name; 6026 new_reg->type |= ARM_CP_ALIAS; 6027 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6028 new_reg->access &= PL2_RW | PL3_RW; 6029 6030 ok = g_hash_table_insert(cpu->cp_regs, 6031 (gpointer)(uintptr_t)a->new_key, new_reg); 6032 g_assert(ok); 6033 6034 src_reg->opaque = dst_reg; 6035 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6036 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6037 if (!src_reg->raw_readfn) { 6038 src_reg->raw_readfn = raw_read; 6039 } 6040 if (!src_reg->raw_writefn) { 6041 src_reg->raw_writefn = raw_write; 6042 } 6043 src_reg->readfn = el2_e2h_read; 6044 src_reg->writefn = el2_e2h_write; 6045 } 6046 } 6047 #endif 6048 6049 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6050 bool isread) 6051 { 6052 int cur_el = arm_current_el(env); 6053 6054 if (cur_el < 2) { 6055 uint64_t hcr = arm_hcr_el2_eff(env); 6056 6057 if (cur_el == 0) { 6058 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6059 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6060 return CP_ACCESS_TRAP_EL2; 6061 } 6062 } else { 6063 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6064 return CP_ACCESS_TRAP; 6065 } 6066 if (hcr & HCR_TID2) { 6067 return CP_ACCESS_TRAP_EL2; 6068 } 6069 } 6070 } else if (hcr & HCR_TID2) { 6071 return CP_ACCESS_TRAP_EL2; 6072 } 6073 } 6074 6075 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6076 return CP_ACCESS_TRAP_EL2; 6077 } 6078 6079 return CP_ACCESS_OK; 6080 } 6081 6082 /* 6083 * Check for traps to RAS registers, which are controlled 6084 * by HCR_EL2.TERR and SCR_EL3.TERR. 6085 */ 6086 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6087 bool isread) 6088 { 6089 int el = arm_current_el(env); 6090 6091 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6092 return CP_ACCESS_TRAP_EL2; 6093 } 6094 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6095 return CP_ACCESS_TRAP_EL3; 6096 } 6097 return CP_ACCESS_OK; 6098 } 6099 6100 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6101 { 6102 int el = arm_current_el(env); 6103 6104 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6105 return env->cp15.vdisr_el2; 6106 } 6107 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6108 return 0; /* RAZ/WI */ 6109 } 6110 return env->cp15.disr_el1; 6111 } 6112 6113 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6114 { 6115 int el = arm_current_el(env); 6116 6117 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6118 env->cp15.vdisr_el2 = val; 6119 return; 6120 } 6121 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6122 return; /* RAZ/WI */ 6123 } 6124 env->cp15.disr_el1 = val; 6125 } 6126 6127 /* 6128 * Minimal RAS implementation with no Error Records. 6129 * Which means that all of the Error Record registers: 6130 * ERXADDR_EL1 6131 * ERXCTLR_EL1 6132 * ERXFR_EL1 6133 * ERXMISC0_EL1 6134 * ERXMISC1_EL1 6135 * ERXMISC2_EL1 6136 * ERXMISC3_EL1 6137 * ERXPFGCDN_EL1 (RASv1p1) 6138 * ERXPFGCTL_EL1 (RASv1p1) 6139 * ERXPFGF_EL1 (RASv1p1) 6140 * ERXSTATUS_EL1 6141 * and 6142 * ERRSELR_EL1 6143 * may generate UNDEFINED, which is the effect we get by not 6144 * listing them at all. 6145 */ 6146 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6147 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6148 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6149 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6150 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6151 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6152 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6153 .access = PL1_R, .accessfn = access_terr, 6154 .type = ARM_CP_CONST, .resetvalue = 0 }, 6155 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6156 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6157 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6158 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6159 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6160 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6161 }; 6162 6163 /* 6164 * Return the exception level to which exceptions should be taken 6165 * via SVEAccessTrap. This excludes the check for whether the exception 6166 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6167 * be found by testing 0 < fp_exception_el < sve_exception_el. 6168 * 6169 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6170 * pseudocode does *not* separate out the FP trap checks, but has them 6171 * all in one function. 6172 */ 6173 int sve_exception_el(CPUARMState *env, int el) 6174 { 6175 #ifndef CONFIG_USER_ONLY 6176 if (el <= 1 && !el_is_in_host(env, el)) { 6177 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6178 case 1: 6179 if (el != 0) { 6180 break; 6181 } 6182 /* fall through */ 6183 case 0: 6184 case 2: 6185 return 1; 6186 } 6187 } 6188 6189 if (el <= 2 && arm_is_el2_enabled(env)) { 6190 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6191 if (env->cp15.hcr_el2 & HCR_E2H) { 6192 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6193 case 1: 6194 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6195 break; 6196 } 6197 /* fall through */ 6198 case 0: 6199 case 2: 6200 return 2; 6201 } 6202 } else { 6203 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6204 return 2; 6205 } 6206 } 6207 } 6208 6209 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6210 if (arm_feature(env, ARM_FEATURE_EL3) 6211 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6212 return 3; 6213 } 6214 #endif 6215 return 0; 6216 } 6217 6218 /* 6219 * Return the exception level to which exceptions should be taken for SME. 6220 * C.f. the ARM pseudocode function CheckSMEAccess. 6221 */ 6222 int sme_exception_el(CPUARMState *env, int el) 6223 { 6224 #ifndef CONFIG_USER_ONLY 6225 if (el <= 1 && !el_is_in_host(env, el)) { 6226 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6227 case 1: 6228 if (el != 0) { 6229 break; 6230 } 6231 /* fall through */ 6232 case 0: 6233 case 2: 6234 return 1; 6235 } 6236 } 6237 6238 if (el <= 2 && arm_is_el2_enabled(env)) { 6239 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6240 if (env->cp15.hcr_el2 & HCR_E2H) { 6241 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6242 case 1: 6243 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6244 break; 6245 } 6246 /* fall through */ 6247 case 0: 6248 case 2: 6249 return 2; 6250 } 6251 } else { 6252 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6253 return 2; 6254 } 6255 } 6256 } 6257 6258 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6259 if (arm_feature(env, ARM_FEATURE_EL3) 6260 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6261 return 3; 6262 } 6263 #endif 6264 return 0; 6265 } 6266 6267 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6268 static bool sme_fa64(CPUARMState *env, int el) 6269 { 6270 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6271 return false; 6272 } 6273 6274 if (el <= 1 && !el_is_in_host(env, el)) { 6275 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6276 return false; 6277 } 6278 } 6279 if (el <= 2 && arm_is_el2_enabled(env)) { 6280 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6281 return false; 6282 } 6283 } 6284 if (arm_feature(env, ARM_FEATURE_EL3)) { 6285 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6286 return false; 6287 } 6288 } 6289 6290 return true; 6291 } 6292 6293 /* 6294 * Given that SVE is enabled, return the vector length for EL. 6295 */ 6296 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6297 { 6298 ARMCPU *cpu = env_archcpu(env); 6299 uint64_t *cr = env->vfp.zcr_el; 6300 uint32_t map = cpu->sve_vq.map; 6301 uint32_t len = ARM_MAX_VQ - 1; 6302 6303 if (sm) { 6304 cr = env->vfp.smcr_el; 6305 map = cpu->sme_vq.map; 6306 } 6307 6308 if (el <= 1 && !el_is_in_host(env, el)) { 6309 len = MIN(len, 0xf & (uint32_t)cr[1]); 6310 } 6311 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6312 len = MIN(len, 0xf & (uint32_t)cr[2]); 6313 } 6314 if (arm_feature(env, ARM_FEATURE_EL3)) { 6315 len = MIN(len, 0xf & (uint32_t)cr[3]); 6316 } 6317 6318 map &= MAKE_64BIT_MASK(0, len + 1); 6319 if (map != 0) { 6320 return 31 - clz32(map); 6321 } 6322 6323 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6324 assert(sm); 6325 return ctz32(cpu->sme_vq.map); 6326 } 6327 6328 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6329 { 6330 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6331 } 6332 6333 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6334 uint64_t value) 6335 { 6336 int cur_el = arm_current_el(env); 6337 int old_len = sve_vqm1_for_el(env, cur_el); 6338 int new_len; 6339 6340 /* Bits other than [3:0] are RAZ/WI. */ 6341 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6342 raw_write(env, ri, value & 0xf); 6343 6344 /* 6345 * Because we arrived here, we know both FP and SVE are enabled; 6346 * otherwise we would have trapped access to the ZCR_ELn register. 6347 */ 6348 new_len = sve_vqm1_for_el(env, cur_el); 6349 if (new_len < old_len) { 6350 aarch64_sve_narrow_vq(env, new_len + 1); 6351 } 6352 } 6353 6354 static const ARMCPRegInfo zcr_reginfo[] = { 6355 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6356 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6357 .access = PL1_RW, .type = ARM_CP_SVE, 6358 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6359 .writefn = zcr_write, .raw_writefn = raw_write }, 6360 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6361 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6362 .access = PL2_RW, .type = ARM_CP_SVE, 6363 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6364 .writefn = zcr_write, .raw_writefn = raw_write }, 6365 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6366 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6367 .access = PL3_RW, .type = ARM_CP_SVE, 6368 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6369 .writefn = zcr_write, .raw_writefn = raw_write }, 6370 }; 6371 6372 #ifdef TARGET_AARCH64 6373 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6374 bool isread) 6375 { 6376 int el = arm_current_el(env); 6377 6378 if (el == 0) { 6379 uint64_t sctlr = arm_sctlr(env, el); 6380 if (!(sctlr & SCTLR_EnTP2)) { 6381 return CP_ACCESS_TRAP; 6382 } 6383 } 6384 /* TODO: FEAT_FGT */ 6385 if (el < 3 6386 && arm_feature(env, ARM_FEATURE_EL3) 6387 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6388 return CP_ACCESS_TRAP_EL3; 6389 } 6390 return CP_ACCESS_OK; 6391 } 6392 6393 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6394 bool isread) 6395 { 6396 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6397 if (arm_current_el(env) < 3 6398 && arm_feature(env, ARM_FEATURE_EL3) 6399 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6400 return CP_ACCESS_TRAP_EL3; 6401 } 6402 return CP_ACCESS_OK; 6403 } 6404 6405 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6406 uint64_t value) 6407 { 6408 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6409 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6410 arm_rebuild_hflags(env); 6411 } 6412 6413 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6414 uint64_t value) 6415 { 6416 int cur_el = arm_current_el(env); 6417 int old_len = sve_vqm1_for_el(env, cur_el); 6418 int new_len; 6419 6420 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6421 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6422 raw_write(env, ri, value); 6423 6424 /* 6425 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6426 * when SVL is widened (old values kept, or zeros). Choose to keep the 6427 * current values for simplicity. But for QEMU internals, we must still 6428 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6429 * above aarch64_sve_narrow_vq. 6430 */ 6431 new_len = sve_vqm1_for_el(env, cur_el); 6432 if (new_len < old_len) { 6433 aarch64_sve_narrow_vq(env, new_len + 1); 6434 } 6435 } 6436 6437 static const ARMCPRegInfo sme_reginfo[] = { 6438 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6439 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6440 .access = PL0_RW, .accessfn = access_tpidr2, 6441 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6442 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6443 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6444 .access = PL0_RW, .type = ARM_CP_SME, 6445 .fieldoffset = offsetof(CPUARMState, svcr), 6446 .writefn = svcr_write, .raw_writefn = raw_write }, 6447 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6448 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6449 .access = PL1_RW, .type = ARM_CP_SME, 6450 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6451 .writefn = smcr_write, .raw_writefn = raw_write }, 6452 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6453 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6454 .access = PL2_RW, .type = ARM_CP_SME, 6455 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6456 .writefn = smcr_write, .raw_writefn = raw_write }, 6457 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6458 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6459 .access = PL3_RW, .type = ARM_CP_SME, 6460 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6461 .writefn = smcr_write, .raw_writefn = raw_write }, 6462 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6463 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6464 .access = PL1_R, .accessfn = access_aa64_tid1, 6465 /* 6466 * IMPLEMENTOR = 0 (software) 6467 * REVISION = 0 (implementation defined) 6468 * SMPS = 0 (no streaming execution priority in QEMU) 6469 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6470 */ 6471 .type = ARM_CP_CONST, .resetvalue = 0, }, 6472 /* 6473 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6474 */ 6475 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6476 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6477 .access = PL1_RW, .accessfn = access_esm, 6478 .type = ARM_CP_CONST, .resetvalue = 0 }, 6479 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6480 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6481 .access = PL2_RW, .accessfn = access_esm, 6482 .type = ARM_CP_CONST, .resetvalue = 0 }, 6483 }; 6484 #endif /* TARGET_AARCH64 */ 6485 6486 static void define_pmu_regs(ARMCPU *cpu) 6487 { 6488 /* 6489 * v7 performance monitor control register: same implementor 6490 * field as main ID register, and we implement four counters in 6491 * addition to the cycle count register. 6492 */ 6493 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6494 ARMCPRegInfo pmcr = { 6495 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6496 .access = PL0_RW, 6497 .type = ARM_CP_IO | ARM_CP_ALIAS, 6498 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6499 .accessfn = pmreg_access, .writefn = pmcr_write, 6500 .raw_writefn = raw_write, 6501 }; 6502 ARMCPRegInfo pmcr64 = { 6503 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6504 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6505 .access = PL0_RW, .accessfn = pmreg_access, 6506 .type = ARM_CP_IO, 6507 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6508 .resetvalue = cpu->isar.reset_pmcr_el0, 6509 .writefn = pmcr_write, .raw_writefn = raw_write, 6510 }; 6511 6512 define_one_arm_cp_reg(cpu, &pmcr); 6513 define_one_arm_cp_reg(cpu, &pmcr64); 6514 for (i = 0; i < pmcrn; i++) { 6515 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6516 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6517 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6518 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6519 ARMCPRegInfo pmev_regs[] = { 6520 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6521 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6522 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6523 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6524 .accessfn = pmreg_access_xevcntr }, 6525 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6526 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6527 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6528 .type = ARM_CP_IO, 6529 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6530 .raw_readfn = pmevcntr_rawread, 6531 .raw_writefn = pmevcntr_rawwrite }, 6532 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6533 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6534 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6535 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6536 .accessfn = pmreg_access }, 6537 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6538 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6539 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6540 .type = ARM_CP_IO, 6541 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6542 .raw_writefn = pmevtyper_rawwrite }, 6543 }; 6544 define_arm_cp_regs(cpu, pmev_regs); 6545 g_free(pmevcntr_name); 6546 g_free(pmevcntr_el0_name); 6547 g_free(pmevtyper_name); 6548 g_free(pmevtyper_el0_name); 6549 } 6550 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6551 ARMCPRegInfo v81_pmu_regs[] = { 6552 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6553 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6554 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6555 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6556 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6557 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6558 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6559 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6560 }; 6561 define_arm_cp_regs(cpu, v81_pmu_regs); 6562 } 6563 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6564 static const ARMCPRegInfo v84_pmmir = { 6565 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6566 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6567 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6568 .resetvalue = 0 6569 }; 6570 define_one_arm_cp_reg(cpu, &v84_pmmir); 6571 } 6572 } 6573 6574 /* We don't know until after realize whether there's a GICv3 6575 * attached, and that is what registers the gicv3 sysregs. 6576 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6577 * at runtime. 6578 */ 6579 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6580 { 6581 ARMCPU *cpu = env_archcpu(env); 6582 uint64_t pfr1 = cpu->isar.id_pfr1; 6583 6584 if (env->gicv3state) { 6585 pfr1 |= 1 << 28; 6586 } 6587 return pfr1; 6588 } 6589 6590 #ifndef CONFIG_USER_ONLY 6591 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6592 { 6593 ARMCPU *cpu = env_archcpu(env); 6594 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6595 6596 if (env->gicv3state) { 6597 pfr0 |= 1 << 24; 6598 } 6599 return pfr0; 6600 } 6601 #endif 6602 6603 /* Shared logic between LORID and the rest of the LOR* registers. 6604 * Secure state exclusion has already been dealt with. 6605 */ 6606 static CPAccessResult access_lor_ns(CPUARMState *env, 6607 const ARMCPRegInfo *ri, bool isread) 6608 { 6609 int el = arm_current_el(env); 6610 6611 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6612 return CP_ACCESS_TRAP_EL2; 6613 } 6614 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6615 return CP_ACCESS_TRAP_EL3; 6616 } 6617 return CP_ACCESS_OK; 6618 } 6619 6620 static CPAccessResult access_lor_other(CPUARMState *env, 6621 const ARMCPRegInfo *ri, bool isread) 6622 { 6623 if (arm_is_secure_below_el3(env)) { 6624 /* Access denied in secure mode. */ 6625 return CP_ACCESS_TRAP; 6626 } 6627 return access_lor_ns(env, ri, isread); 6628 } 6629 6630 /* 6631 * A trivial implementation of ARMv8.1-LOR leaves all of these 6632 * registers fixed at 0, which indicates that there are zero 6633 * supported Limited Ordering regions. 6634 */ 6635 static const ARMCPRegInfo lor_reginfo[] = { 6636 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6637 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6638 .access = PL1_RW, .accessfn = access_lor_other, 6639 .type = ARM_CP_CONST, .resetvalue = 0 }, 6640 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6641 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6642 .access = PL1_RW, .accessfn = access_lor_other, 6643 .type = ARM_CP_CONST, .resetvalue = 0 }, 6644 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6645 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6646 .access = PL1_RW, .accessfn = access_lor_other, 6647 .type = ARM_CP_CONST, .resetvalue = 0 }, 6648 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6649 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6650 .access = PL1_RW, .accessfn = access_lor_other, 6651 .type = ARM_CP_CONST, .resetvalue = 0 }, 6652 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6653 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6654 .access = PL1_R, .accessfn = access_lor_ns, 6655 .type = ARM_CP_CONST, .resetvalue = 0 }, 6656 }; 6657 6658 #ifdef TARGET_AARCH64 6659 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6660 bool isread) 6661 { 6662 int el = arm_current_el(env); 6663 6664 if (el < 2 && 6665 arm_is_el2_enabled(env) && 6666 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6667 return CP_ACCESS_TRAP_EL2; 6668 } 6669 if (el < 3 && 6670 arm_feature(env, ARM_FEATURE_EL3) && 6671 !(env->cp15.scr_el3 & SCR_APK)) { 6672 return CP_ACCESS_TRAP_EL3; 6673 } 6674 return CP_ACCESS_OK; 6675 } 6676 6677 static const ARMCPRegInfo pauth_reginfo[] = { 6678 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6679 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6680 .access = PL1_RW, .accessfn = access_pauth, 6681 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6682 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6684 .access = PL1_RW, .accessfn = access_pauth, 6685 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6686 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6687 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6688 .access = PL1_RW, .accessfn = access_pauth, 6689 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6690 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6691 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6692 .access = PL1_RW, .accessfn = access_pauth, 6693 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6694 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6695 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6696 .access = PL1_RW, .accessfn = access_pauth, 6697 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6698 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6699 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6700 .access = PL1_RW, .accessfn = access_pauth, 6701 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6702 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6703 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6704 .access = PL1_RW, .accessfn = access_pauth, 6705 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6706 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6707 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6708 .access = PL1_RW, .accessfn = access_pauth, 6709 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6710 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6712 .access = PL1_RW, .accessfn = access_pauth, 6713 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6714 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6715 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6716 .access = PL1_RW, .accessfn = access_pauth, 6717 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6718 }; 6719 6720 static const ARMCPRegInfo tlbirange_reginfo[] = { 6721 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6722 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6723 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6724 .writefn = tlbi_aa64_rvae1is_write }, 6725 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6726 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6727 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6728 .writefn = tlbi_aa64_rvae1is_write }, 6729 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6730 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6731 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6732 .writefn = tlbi_aa64_rvae1is_write }, 6733 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6734 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6735 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6736 .writefn = tlbi_aa64_rvae1is_write }, 6737 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6738 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6739 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6740 .writefn = tlbi_aa64_rvae1is_write }, 6741 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6742 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6743 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6744 .writefn = tlbi_aa64_rvae1is_write }, 6745 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6746 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6747 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6748 .writefn = tlbi_aa64_rvae1is_write }, 6749 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6750 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6751 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6752 .writefn = tlbi_aa64_rvae1is_write }, 6753 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6754 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6755 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6756 .writefn = tlbi_aa64_rvae1_write }, 6757 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6758 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6759 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6760 .writefn = tlbi_aa64_rvae1_write }, 6761 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6762 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6763 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6764 .writefn = tlbi_aa64_rvae1_write }, 6765 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6766 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6767 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6768 .writefn = tlbi_aa64_rvae1_write }, 6769 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6770 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6771 .access = PL2_W, .type = ARM_CP_NO_RAW, 6772 .writefn = tlbi_aa64_ripas2e1is_write }, 6773 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6775 .access = PL2_W, .type = ARM_CP_NO_RAW, 6776 .writefn = tlbi_aa64_ripas2e1is_write }, 6777 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6778 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6779 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6780 .writefn = tlbi_aa64_rvae2is_write }, 6781 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6782 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6783 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6784 .writefn = tlbi_aa64_rvae2is_write }, 6785 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6787 .access = PL2_W, .type = ARM_CP_NO_RAW, 6788 .writefn = tlbi_aa64_ripas2e1_write }, 6789 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6791 .access = PL2_W, .type = ARM_CP_NO_RAW, 6792 .writefn = tlbi_aa64_ripas2e1_write }, 6793 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6795 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6796 .writefn = tlbi_aa64_rvae2is_write }, 6797 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6799 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6800 .writefn = tlbi_aa64_rvae2is_write }, 6801 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6803 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6804 .writefn = tlbi_aa64_rvae2_write }, 6805 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6807 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6808 .writefn = tlbi_aa64_rvae2_write }, 6809 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6811 .access = PL3_W, .type = ARM_CP_NO_RAW, 6812 .writefn = tlbi_aa64_rvae3is_write }, 6813 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6815 .access = PL3_W, .type = ARM_CP_NO_RAW, 6816 .writefn = tlbi_aa64_rvae3is_write }, 6817 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6819 .access = PL3_W, .type = ARM_CP_NO_RAW, 6820 .writefn = tlbi_aa64_rvae3is_write }, 6821 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6822 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6823 .access = PL3_W, .type = ARM_CP_NO_RAW, 6824 .writefn = tlbi_aa64_rvae3is_write }, 6825 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6826 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6827 .access = PL3_W, .type = ARM_CP_NO_RAW, 6828 .writefn = tlbi_aa64_rvae3_write }, 6829 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6830 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6831 .access = PL3_W, .type = ARM_CP_NO_RAW, 6832 .writefn = tlbi_aa64_rvae3_write }, 6833 }; 6834 6835 static const ARMCPRegInfo tlbios_reginfo[] = { 6836 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6838 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6839 .writefn = tlbi_aa64_vmalle1is_write }, 6840 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6842 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6843 .writefn = tlbi_aa64_vae1is_write }, 6844 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6846 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6847 .writefn = tlbi_aa64_vmalle1is_write }, 6848 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6850 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6851 .writefn = tlbi_aa64_vae1is_write }, 6852 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6854 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6855 .writefn = tlbi_aa64_vae1is_write }, 6856 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6858 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 6859 .writefn = tlbi_aa64_vae1is_write }, 6860 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6862 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6863 .writefn = tlbi_aa64_alle2is_write }, 6864 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6866 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6867 .writefn = tlbi_aa64_vae2is_write }, 6868 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6870 .access = PL2_W, .type = ARM_CP_NO_RAW, 6871 .writefn = tlbi_aa64_alle1is_write }, 6872 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6874 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6875 .writefn = tlbi_aa64_vae2is_write }, 6876 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6878 .access = PL2_W, .type = ARM_CP_NO_RAW, 6879 .writefn = tlbi_aa64_alle1is_write }, 6880 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6882 .access = PL2_W, .type = ARM_CP_NOP }, 6883 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6885 .access = PL2_W, .type = ARM_CP_NOP }, 6886 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6888 .access = PL2_W, .type = ARM_CP_NOP }, 6889 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6891 .access = PL2_W, .type = ARM_CP_NOP }, 6892 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6894 .access = PL3_W, .type = ARM_CP_NO_RAW, 6895 .writefn = tlbi_aa64_alle3is_write }, 6896 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6897 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6898 .access = PL3_W, .type = ARM_CP_NO_RAW, 6899 .writefn = tlbi_aa64_vae3is_write }, 6900 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6902 .access = PL3_W, .type = ARM_CP_NO_RAW, 6903 .writefn = tlbi_aa64_vae3is_write }, 6904 }; 6905 6906 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6907 { 6908 Error *err = NULL; 6909 uint64_t ret; 6910 6911 /* Success sets NZCV = 0000. */ 6912 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6913 6914 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6915 /* 6916 * ??? Failed, for unknown reasons in the crypto subsystem. 6917 * The best we can do is log the reason and return the 6918 * timed-out indication to the guest. There is no reason 6919 * we know to expect this failure to be transitory, so the 6920 * guest may well hang retrying the operation. 6921 */ 6922 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6923 ri->name, error_get_pretty(err)); 6924 error_free(err); 6925 6926 env->ZF = 0; /* NZCF = 0100 */ 6927 return 0; 6928 } 6929 return ret; 6930 } 6931 6932 /* We do not support re-seeding, so the two registers operate the same. */ 6933 static const ARMCPRegInfo rndr_reginfo[] = { 6934 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6935 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6936 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6937 .access = PL0_R, .readfn = rndr_readfn }, 6938 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6939 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6940 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6941 .access = PL0_R, .readfn = rndr_readfn }, 6942 }; 6943 6944 #ifndef CONFIG_USER_ONLY 6945 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6946 uint64_t value) 6947 { 6948 ARMCPU *cpu = env_archcpu(env); 6949 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6950 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6951 uint64_t vaddr_in = (uint64_t) value; 6952 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6953 void *haddr; 6954 int mem_idx = cpu_mmu_index(env, false); 6955 6956 /* This won't be crossing page boundaries */ 6957 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6958 if (haddr) { 6959 6960 ram_addr_t offset; 6961 MemoryRegion *mr; 6962 6963 /* RCU lock is already being held */ 6964 mr = memory_region_from_host(haddr, &offset); 6965 6966 if (mr) { 6967 memory_region_writeback(mr, offset, dline_size); 6968 } 6969 } 6970 } 6971 6972 static const ARMCPRegInfo dcpop_reg[] = { 6973 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6975 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6976 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6977 }; 6978 6979 static const ARMCPRegInfo dcpodp_reg[] = { 6980 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6982 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6983 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6984 }; 6985 #endif /*CONFIG_USER_ONLY*/ 6986 6987 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6988 bool isread) 6989 { 6990 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6991 return CP_ACCESS_TRAP_EL2; 6992 } 6993 6994 return CP_ACCESS_OK; 6995 } 6996 6997 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6998 bool isread) 6999 { 7000 int el = arm_current_el(env); 7001 7002 if (el < 2 && arm_is_el2_enabled(env)) { 7003 uint64_t hcr = arm_hcr_el2_eff(env); 7004 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7005 return CP_ACCESS_TRAP_EL2; 7006 } 7007 } 7008 if (el < 3 && 7009 arm_feature(env, ARM_FEATURE_EL3) && 7010 !(env->cp15.scr_el3 & SCR_ATA)) { 7011 return CP_ACCESS_TRAP_EL3; 7012 } 7013 return CP_ACCESS_OK; 7014 } 7015 7016 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7017 { 7018 return env->pstate & PSTATE_TCO; 7019 } 7020 7021 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7022 { 7023 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7024 } 7025 7026 static const ARMCPRegInfo mte_reginfo[] = { 7027 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7028 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7029 .access = PL1_RW, .accessfn = access_mte, 7030 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7031 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7033 .access = PL1_RW, .accessfn = access_mte, 7034 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7035 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7037 .access = PL2_RW, .accessfn = access_mte, 7038 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7039 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7040 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7041 .access = PL3_RW, 7042 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7043 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7045 .access = PL1_RW, .accessfn = access_mte, 7046 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7047 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7048 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7049 .access = PL1_RW, .accessfn = access_mte, 7050 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7051 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7053 .access = PL1_R, .accessfn = access_aa64_tid5, 7054 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7055 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7057 .type = ARM_CP_NO_RAW, 7058 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7059 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7061 .type = ARM_CP_NOP, .access = PL1_W, 7062 .accessfn = aa64_cacheop_poc_access }, 7063 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7065 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7066 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7068 .type = ARM_CP_NOP, .access = PL1_W, 7069 .accessfn = aa64_cacheop_poc_access }, 7070 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7072 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7073 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7075 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7076 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7078 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7079 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7081 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7082 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7083 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7084 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7085 }; 7086 7087 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7088 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7090 .type = ARM_CP_CONST, .access = PL0_RW, }, 7091 }; 7092 7093 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7094 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7095 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7096 .type = ARM_CP_NOP, .access = PL0_W, 7097 .accessfn = aa64_cacheop_poc_access }, 7098 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7100 .type = ARM_CP_NOP, .access = PL0_W, 7101 .accessfn = aa64_cacheop_poc_access }, 7102 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7104 .type = ARM_CP_NOP, .access = PL0_W, 7105 .accessfn = aa64_cacheop_poc_access }, 7106 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7108 .type = ARM_CP_NOP, .access = PL0_W, 7109 .accessfn = aa64_cacheop_poc_access }, 7110 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7112 .type = ARM_CP_NOP, .access = PL0_W, 7113 .accessfn = aa64_cacheop_poc_access }, 7114 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7116 .type = ARM_CP_NOP, .access = PL0_W, 7117 .accessfn = aa64_cacheop_poc_access }, 7118 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7120 .type = ARM_CP_NOP, .access = PL0_W, 7121 .accessfn = aa64_cacheop_poc_access }, 7122 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7124 .type = ARM_CP_NOP, .access = PL0_W, 7125 .accessfn = aa64_cacheop_poc_access }, 7126 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7128 .access = PL0_W, .type = ARM_CP_DC_GVA, 7129 #ifndef CONFIG_USER_ONLY 7130 /* Avoid overhead of an access check that always passes in user-mode */ 7131 .accessfn = aa64_zva_access, 7132 #endif 7133 }, 7134 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7136 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7137 #ifndef CONFIG_USER_ONLY 7138 /* Avoid overhead of an access check that always passes in user-mode */ 7139 .accessfn = aa64_zva_access, 7140 #endif 7141 }, 7142 }; 7143 7144 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7145 bool isread) 7146 { 7147 uint64_t hcr = arm_hcr_el2_eff(env); 7148 int el = arm_current_el(env); 7149 7150 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7151 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7152 if (hcr & HCR_TGE) { 7153 return CP_ACCESS_TRAP_EL2; 7154 } 7155 return CP_ACCESS_TRAP; 7156 } 7157 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7158 return CP_ACCESS_TRAP_EL2; 7159 } 7160 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7161 return CP_ACCESS_TRAP_EL2; 7162 } 7163 if (el < 3 7164 && arm_feature(env, ARM_FEATURE_EL3) 7165 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7166 return CP_ACCESS_TRAP_EL3; 7167 } 7168 return CP_ACCESS_OK; 7169 } 7170 7171 static const ARMCPRegInfo scxtnum_reginfo[] = { 7172 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7173 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7174 .access = PL0_RW, .accessfn = access_scxtnum, 7175 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7176 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7177 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7178 .access = PL1_RW, .accessfn = access_scxtnum, 7179 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7180 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7182 .access = PL2_RW, .accessfn = access_scxtnum, 7183 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7184 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7186 .access = PL3_RW, 7187 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7188 }; 7189 #endif /* TARGET_AARCH64 */ 7190 7191 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7192 bool isread) 7193 { 7194 int el = arm_current_el(env); 7195 7196 if (el == 0) { 7197 uint64_t sctlr = arm_sctlr(env, el); 7198 if (!(sctlr & SCTLR_EnRCTX)) { 7199 return CP_ACCESS_TRAP; 7200 } 7201 } else if (el == 1) { 7202 uint64_t hcr = arm_hcr_el2_eff(env); 7203 if (hcr & HCR_NV) { 7204 return CP_ACCESS_TRAP_EL2; 7205 } 7206 } 7207 return CP_ACCESS_OK; 7208 } 7209 7210 static const ARMCPRegInfo predinv_reginfo[] = { 7211 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7213 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7214 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7216 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7217 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7219 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7220 /* 7221 * Note the AArch32 opcodes have a different OPC1. 7222 */ 7223 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7224 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7225 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7226 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7227 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7228 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7229 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7230 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7231 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7232 }; 7233 7234 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7235 { 7236 /* Read the high 32 bits of the current CCSIDR */ 7237 return extract64(ccsidr_read(env, ri), 32, 32); 7238 } 7239 7240 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7241 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7242 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7243 .access = PL1_R, 7244 .accessfn = access_aa64_tid2, 7245 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7246 }; 7247 7248 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7249 bool isread) 7250 { 7251 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7252 return CP_ACCESS_TRAP_EL2; 7253 } 7254 7255 return CP_ACCESS_OK; 7256 } 7257 7258 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7259 bool isread) 7260 { 7261 if (arm_feature(env, ARM_FEATURE_V8)) { 7262 return access_aa64_tid3(env, ri, isread); 7263 } 7264 7265 return CP_ACCESS_OK; 7266 } 7267 7268 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7269 bool isread) 7270 { 7271 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7272 return CP_ACCESS_TRAP_EL2; 7273 } 7274 7275 return CP_ACCESS_OK; 7276 } 7277 7278 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7279 const ARMCPRegInfo *ri, bool isread) 7280 { 7281 /* 7282 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7283 * in v7A, not in v8A. 7284 */ 7285 if (!arm_feature(env, ARM_FEATURE_V8) && 7286 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7287 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7288 return CP_ACCESS_TRAP_EL2; 7289 } 7290 return CP_ACCESS_OK; 7291 } 7292 7293 static const ARMCPRegInfo jazelle_regs[] = { 7294 { .name = "JIDR", 7295 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7296 .access = PL1_R, .accessfn = access_jazelle, 7297 .type = ARM_CP_CONST, .resetvalue = 0 }, 7298 { .name = "JOSCR", 7299 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7300 .accessfn = access_joscr_jmcr, 7301 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7302 { .name = "JMCR", 7303 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7304 .accessfn = access_joscr_jmcr, 7305 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7306 }; 7307 7308 static const ARMCPRegInfo contextidr_el2 = { 7309 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7311 .access = PL2_RW, 7312 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7313 }; 7314 7315 static const ARMCPRegInfo vhe_reginfo[] = { 7316 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7318 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7319 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7320 #ifndef CONFIG_USER_ONLY 7321 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7323 .fieldoffset = 7324 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7325 .type = ARM_CP_IO, .access = PL2_RW, 7326 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7327 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7328 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7329 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7330 .resetfn = gt_hv_timer_reset, 7331 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7332 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7333 .type = ARM_CP_IO, 7334 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7335 .access = PL2_RW, 7336 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7337 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7338 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7339 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7340 .type = ARM_CP_IO | ARM_CP_ALIAS, 7341 .access = PL2_RW, .accessfn = e2h_access, 7342 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7343 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7344 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7345 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7346 .type = ARM_CP_IO | ARM_CP_ALIAS, 7347 .access = PL2_RW, .accessfn = e2h_access, 7348 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7349 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7350 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7352 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7353 .access = PL2_RW, .accessfn = e2h_access, 7354 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7355 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7356 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7357 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7358 .access = PL2_RW, .accessfn = e2h_access, 7359 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7360 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7362 .type = ARM_CP_IO | ARM_CP_ALIAS, 7363 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7364 .access = PL2_RW, .accessfn = e2h_access, 7365 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7366 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7368 .type = ARM_CP_IO | ARM_CP_ALIAS, 7369 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7370 .access = PL2_RW, .accessfn = e2h_access, 7371 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7372 #endif 7373 }; 7374 7375 #ifndef CONFIG_USER_ONLY 7376 static const ARMCPRegInfo ats1e1_reginfo[] = { 7377 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7379 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7380 .writefn = ats_write64 }, 7381 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7383 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7384 .writefn = ats_write64 }, 7385 }; 7386 7387 static const ARMCPRegInfo ats1cp_reginfo[] = { 7388 { .name = "ATS1CPRP", 7389 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7390 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7391 .writefn = ats_write }, 7392 { .name = "ATS1CPWP", 7393 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7394 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7395 .writefn = ats_write }, 7396 }; 7397 #endif 7398 7399 /* 7400 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7401 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7402 * is non-zero, which is never for ARMv7, optionally in ARMv8 7403 * and mandatorily for ARMv8.2 and up. 7404 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7405 * implementation is RAZ/WI we can ignore this detail, as we 7406 * do for ACTLR. 7407 */ 7408 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7409 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7410 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7411 .access = PL1_RW, .accessfn = access_tacr, 7412 .type = ARM_CP_CONST, .resetvalue = 0 }, 7413 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7414 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7415 .access = PL2_RW, .type = ARM_CP_CONST, 7416 .resetvalue = 0 }, 7417 }; 7418 7419 void register_cp_regs_for_features(ARMCPU *cpu) 7420 { 7421 /* Register all the coprocessor registers based on feature bits */ 7422 CPUARMState *env = &cpu->env; 7423 if (arm_feature(env, ARM_FEATURE_M)) { 7424 /* M profile has no coprocessor registers */ 7425 return; 7426 } 7427 7428 define_arm_cp_regs(cpu, cp_reginfo); 7429 if (!arm_feature(env, ARM_FEATURE_V8)) { 7430 /* Must go early as it is full of wildcards that may be 7431 * overridden by later definitions. 7432 */ 7433 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7434 } 7435 7436 if (arm_feature(env, ARM_FEATURE_V6)) { 7437 /* The ID registers all have impdef reset values */ 7438 ARMCPRegInfo v6_idregs[] = { 7439 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7441 .access = PL1_R, .type = ARM_CP_CONST, 7442 .accessfn = access_aa32_tid3, 7443 .resetvalue = cpu->isar.id_pfr0 }, 7444 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7445 * the value of the GIC field until after we define these regs. 7446 */ 7447 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7449 .access = PL1_R, .type = ARM_CP_NO_RAW, 7450 .accessfn = access_aa32_tid3, 7451 .readfn = id_pfr1_read, 7452 .writefn = arm_cp_write_ignore }, 7453 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7455 .access = PL1_R, .type = ARM_CP_CONST, 7456 .accessfn = access_aa32_tid3, 7457 .resetvalue = cpu->isar.id_dfr0 }, 7458 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7460 .access = PL1_R, .type = ARM_CP_CONST, 7461 .accessfn = access_aa32_tid3, 7462 .resetvalue = cpu->id_afr0 }, 7463 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7465 .access = PL1_R, .type = ARM_CP_CONST, 7466 .accessfn = access_aa32_tid3, 7467 .resetvalue = cpu->isar.id_mmfr0 }, 7468 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7470 .access = PL1_R, .type = ARM_CP_CONST, 7471 .accessfn = access_aa32_tid3, 7472 .resetvalue = cpu->isar.id_mmfr1 }, 7473 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7475 .access = PL1_R, .type = ARM_CP_CONST, 7476 .accessfn = access_aa32_tid3, 7477 .resetvalue = cpu->isar.id_mmfr2 }, 7478 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7480 .access = PL1_R, .type = ARM_CP_CONST, 7481 .accessfn = access_aa32_tid3, 7482 .resetvalue = cpu->isar.id_mmfr3 }, 7483 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7485 .access = PL1_R, .type = ARM_CP_CONST, 7486 .accessfn = access_aa32_tid3, 7487 .resetvalue = cpu->isar.id_isar0 }, 7488 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7490 .access = PL1_R, .type = ARM_CP_CONST, 7491 .accessfn = access_aa32_tid3, 7492 .resetvalue = cpu->isar.id_isar1 }, 7493 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7495 .access = PL1_R, .type = ARM_CP_CONST, 7496 .accessfn = access_aa32_tid3, 7497 .resetvalue = cpu->isar.id_isar2 }, 7498 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7500 .access = PL1_R, .type = ARM_CP_CONST, 7501 .accessfn = access_aa32_tid3, 7502 .resetvalue = cpu->isar.id_isar3 }, 7503 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7505 .access = PL1_R, .type = ARM_CP_CONST, 7506 .accessfn = access_aa32_tid3, 7507 .resetvalue = cpu->isar.id_isar4 }, 7508 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7510 .access = PL1_R, .type = ARM_CP_CONST, 7511 .accessfn = access_aa32_tid3, 7512 .resetvalue = cpu->isar.id_isar5 }, 7513 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7515 .access = PL1_R, .type = ARM_CP_CONST, 7516 .accessfn = access_aa32_tid3, 7517 .resetvalue = cpu->isar.id_mmfr4 }, 7518 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7520 .access = PL1_R, .type = ARM_CP_CONST, 7521 .accessfn = access_aa32_tid3, 7522 .resetvalue = cpu->isar.id_isar6 }, 7523 }; 7524 define_arm_cp_regs(cpu, v6_idregs); 7525 define_arm_cp_regs(cpu, v6_cp_reginfo); 7526 } else { 7527 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7528 } 7529 if (arm_feature(env, ARM_FEATURE_V6K)) { 7530 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7531 } 7532 if (arm_feature(env, ARM_FEATURE_V7MP) && 7533 !arm_feature(env, ARM_FEATURE_PMSA)) { 7534 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7535 } 7536 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7537 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7538 } 7539 if (arm_feature(env, ARM_FEATURE_V7)) { 7540 ARMCPRegInfo clidr = { 7541 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7542 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7543 .access = PL1_R, .type = ARM_CP_CONST, 7544 .accessfn = access_aa64_tid2, 7545 .resetvalue = cpu->clidr 7546 }; 7547 define_one_arm_cp_reg(cpu, &clidr); 7548 define_arm_cp_regs(cpu, v7_cp_reginfo); 7549 define_debug_regs(cpu); 7550 define_pmu_regs(cpu); 7551 } else { 7552 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7553 } 7554 if (arm_feature(env, ARM_FEATURE_V8)) { 7555 /* 7556 * v8 ID registers, which all have impdef reset values. 7557 * Note that within the ID register ranges the unused slots 7558 * must all RAZ, not UNDEF; future architecture versions may 7559 * define new registers here. 7560 * ID registers which are AArch64 views of the AArch32 ID registers 7561 * which already existed in v6 and v7 are handled elsewhere, 7562 * in v6_idregs[]. 7563 */ 7564 int i; 7565 ARMCPRegInfo v8_idregs[] = { 7566 /* 7567 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7568 * emulation because we don't know the right value for the 7569 * GIC field until after we define these regs. 7570 */ 7571 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7573 .access = PL1_R, 7574 #ifdef CONFIG_USER_ONLY 7575 .type = ARM_CP_CONST, 7576 .resetvalue = cpu->isar.id_aa64pfr0 7577 #else 7578 .type = ARM_CP_NO_RAW, 7579 .accessfn = access_aa64_tid3, 7580 .readfn = id_aa64pfr0_read, 7581 .writefn = arm_cp_write_ignore 7582 #endif 7583 }, 7584 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa64_tid3, 7588 .resetvalue = cpu->isar.id_aa64pfr1}, 7589 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa64_tid3, 7593 .resetvalue = 0 }, 7594 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa64_tid3, 7598 .resetvalue = 0 }, 7599 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa64_tid3, 7603 .resetvalue = cpu->isar.id_aa64zfr0 }, 7604 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa64_tid3, 7608 .resetvalue = cpu->isar.id_aa64smfr0 }, 7609 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa64_tid3, 7613 .resetvalue = 0 }, 7614 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa64_tid3, 7618 .resetvalue = 0 }, 7619 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa64_tid3, 7623 .resetvalue = cpu->isar.id_aa64dfr0 }, 7624 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa64_tid3, 7628 .resetvalue = cpu->isar.id_aa64dfr1 }, 7629 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa64_tid3, 7633 .resetvalue = 0 }, 7634 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7636 .access = PL1_R, .type = ARM_CP_CONST, 7637 .accessfn = access_aa64_tid3, 7638 .resetvalue = 0 }, 7639 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7641 .access = PL1_R, .type = ARM_CP_CONST, 7642 .accessfn = access_aa64_tid3, 7643 .resetvalue = cpu->id_aa64afr0 }, 7644 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7646 .access = PL1_R, .type = ARM_CP_CONST, 7647 .accessfn = access_aa64_tid3, 7648 .resetvalue = cpu->id_aa64afr1 }, 7649 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7651 .access = PL1_R, .type = ARM_CP_CONST, 7652 .accessfn = access_aa64_tid3, 7653 .resetvalue = 0 }, 7654 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7656 .access = PL1_R, .type = ARM_CP_CONST, 7657 .accessfn = access_aa64_tid3, 7658 .resetvalue = 0 }, 7659 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7661 .access = PL1_R, .type = ARM_CP_CONST, 7662 .accessfn = access_aa64_tid3, 7663 .resetvalue = cpu->isar.id_aa64isar0 }, 7664 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7666 .access = PL1_R, .type = ARM_CP_CONST, 7667 .accessfn = access_aa64_tid3, 7668 .resetvalue = cpu->isar.id_aa64isar1 }, 7669 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7671 .access = PL1_R, .type = ARM_CP_CONST, 7672 .accessfn = access_aa64_tid3, 7673 .resetvalue = 0 }, 7674 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7676 .access = PL1_R, .type = ARM_CP_CONST, 7677 .accessfn = access_aa64_tid3, 7678 .resetvalue = 0 }, 7679 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7681 .access = PL1_R, .type = ARM_CP_CONST, 7682 .accessfn = access_aa64_tid3, 7683 .resetvalue = 0 }, 7684 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7686 .access = PL1_R, .type = ARM_CP_CONST, 7687 .accessfn = access_aa64_tid3, 7688 .resetvalue = 0 }, 7689 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7691 .access = PL1_R, .type = ARM_CP_CONST, 7692 .accessfn = access_aa64_tid3, 7693 .resetvalue = 0 }, 7694 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7696 .access = PL1_R, .type = ARM_CP_CONST, 7697 .accessfn = access_aa64_tid3, 7698 .resetvalue = 0 }, 7699 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7701 .access = PL1_R, .type = ARM_CP_CONST, 7702 .accessfn = access_aa64_tid3, 7703 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7704 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7706 .access = PL1_R, .type = ARM_CP_CONST, 7707 .accessfn = access_aa64_tid3, 7708 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7709 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7711 .access = PL1_R, .type = ARM_CP_CONST, 7712 .accessfn = access_aa64_tid3, 7713 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7714 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7716 .access = PL1_R, .type = ARM_CP_CONST, 7717 .accessfn = access_aa64_tid3, 7718 .resetvalue = 0 }, 7719 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7721 .access = PL1_R, .type = ARM_CP_CONST, 7722 .accessfn = access_aa64_tid3, 7723 .resetvalue = 0 }, 7724 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7726 .access = PL1_R, .type = ARM_CP_CONST, 7727 .accessfn = access_aa64_tid3, 7728 .resetvalue = 0 }, 7729 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7731 .access = PL1_R, .type = ARM_CP_CONST, 7732 .accessfn = access_aa64_tid3, 7733 .resetvalue = 0 }, 7734 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7736 .access = PL1_R, .type = ARM_CP_CONST, 7737 .accessfn = access_aa64_tid3, 7738 .resetvalue = 0 }, 7739 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7741 .access = PL1_R, .type = ARM_CP_CONST, 7742 .accessfn = access_aa64_tid3, 7743 .resetvalue = cpu->isar.mvfr0 }, 7744 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7746 .access = PL1_R, .type = ARM_CP_CONST, 7747 .accessfn = access_aa64_tid3, 7748 .resetvalue = cpu->isar.mvfr1 }, 7749 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7751 .access = PL1_R, .type = ARM_CP_CONST, 7752 .accessfn = access_aa64_tid3, 7753 .resetvalue = cpu->isar.mvfr2 }, 7754 /* 7755 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7756 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7757 * as RAZ, since it is in the "reserved for future ID 7758 * registers, RAZ" part of the AArch32 encoding space. 7759 */ 7760 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7761 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = 0 }, 7765 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7766 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = 0 }, 7770 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7771 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = 0 }, 7775 /* 7776 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7777 * they're also RAZ for AArch64, and in v8 are gradually 7778 * being filled with AArch64-view-of-AArch32-ID-register 7779 * for new ID registers. 7780 */ 7781 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = 0 }, 7786 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = cpu->isar.id_pfr2 }, 7791 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = cpu->isar.id_dfr1 }, 7796 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = cpu->isar.id_mmfr5 }, 7801 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7807 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7808 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7809 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7810 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7812 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7813 .resetvalue = cpu->pmceid0 }, 7814 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7815 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7816 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7817 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7818 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7820 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7821 .resetvalue = cpu->pmceid1 }, 7822 }; 7823 #ifdef CONFIG_USER_ONLY 7824 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7825 { .name = "ID_AA64PFR0_EL1", 7826 .exported_bits = 0x000f000f00ff0000, 7827 .fixed_bits = 0x0000000000000011 }, 7828 { .name = "ID_AA64PFR1_EL1", 7829 .exported_bits = 0x00000000000000f0 }, 7830 { .name = "ID_AA64PFR*_EL1_RESERVED", 7831 .is_glob = true }, 7832 { .name = "ID_AA64ZFR0_EL1" }, 7833 { .name = "ID_AA64MMFR0_EL1", 7834 .fixed_bits = 0x00000000ff000000 }, 7835 { .name = "ID_AA64MMFR1_EL1" }, 7836 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7837 .is_glob = true }, 7838 { .name = "ID_AA64DFR0_EL1", 7839 .fixed_bits = 0x0000000000000006 }, 7840 { .name = "ID_AA64DFR1_EL1" }, 7841 { .name = "ID_AA64DFR*_EL1_RESERVED", 7842 .is_glob = true }, 7843 { .name = "ID_AA64AFR*", 7844 .is_glob = true }, 7845 { .name = "ID_AA64ISAR0_EL1", 7846 .exported_bits = 0x00fffffff0fffff0 }, 7847 { .name = "ID_AA64ISAR1_EL1", 7848 .exported_bits = 0x000000f0ffffffff }, 7849 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7850 .is_glob = true }, 7851 }; 7852 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7853 #endif 7854 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7855 if (!arm_feature(env, ARM_FEATURE_EL3) && 7856 !arm_feature(env, ARM_FEATURE_EL2)) { 7857 ARMCPRegInfo rvbar = { 7858 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7860 .access = PL1_R, 7861 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7862 }; 7863 define_one_arm_cp_reg(cpu, &rvbar); 7864 } 7865 define_arm_cp_regs(cpu, v8_idregs); 7866 define_arm_cp_regs(cpu, v8_cp_reginfo); 7867 7868 for (i = 4; i < 16; i++) { 7869 /* 7870 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 7871 * For pre-v8 cores there are RAZ patterns for these in 7872 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 7873 * v8 extends the "must RAZ" part of the ID register space 7874 * to also cover c0, 0, c{8-15}, {0-7}. 7875 * These are STATE_AA32 because in the AArch64 sysreg space 7876 * c4-c7 is where the AArch64 ID registers live (and we've 7877 * already defined those in v8_idregs[]), and c8-c15 are not 7878 * "must RAZ" for AArch64. 7879 */ 7880 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 7881 ARMCPRegInfo v8_aa32_raz_idregs = { 7882 .name = name, 7883 .state = ARM_CP_STATE_AA32, 7884 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = 0 }; 7888 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 7889 } 7890 } 7891 7892 /* 7893 * Register the base EL2 cpregs. 7894 * Pre v8, these registers are implemented only as part of the 7895 * Virtualization Extensions (EL2 present). Beginning with v8, 7896 * if EL2 is missing but EL3 is enabled, mostly these become 7897 * RES0 from EL3, with some specific exceptions. 7898 */ 7899 if (arm_feature(env, ARM_FEATURE_EL2) 7900 || (arm_feature(env, ARM_FEATURE_EL3) 7901 && arm_feature(env, ARM_FEATURE_V8))) { 7902 uint64_t vmpidr_def = mpidr_read_val(env); 7903 ARMCPRegInfo vpidr_regs[] = { 7904 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7905 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7906 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7907 .resetvalue = cpu->midr, 7908 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7909 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7910 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7912 .access = PL2_RW, .resetvalue = cpu->midr, 7913 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7914 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7915 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7916 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7917 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7918 .resetvalue = vmpidr_def, 7919 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7920 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7921 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7923 .access = PL2_RW, .resetvalue = vmpidr_def, 7924 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7925 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7926 }; 7927 /* 7928 * The only field of MDCR_EL2 that has a defined architectural reset 7929 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7930 */ 7931 ARMCPRegInfo mdcr_el2 = { 7932 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 7933 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7934 .writefn = mdcr_el2_write, 7935 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7936 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7937 }; 7938 define_one_arm_cp_reg(cpu, &mdcr_el2); 7939 define_arm_cp_regs(cpu, vpidr_regs); 7940 define_arm_cp_regs(cpu, el2_cp_reginfo); 7941 if (arm_feature(env, ARM_FEATURE_V8)) { 7942 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7943 } 7944 if (cpu_isar_feature(aa64_sel2, cpu)) { 7945 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7946 } 7947 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7948 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7949 ARMCPRegInfo rvbar = { 7950 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7951 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7952 .access = PL2_R, 7953 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7954 }; 7955 define_one_arm_cp_reg(cpu, &rvbar); 7956 } 7957 } 7958 7959 /* Register the base EL3 cpregs. */ 7960 if (arm_feature(env, ARM_FEATURE_EL3)) { 7961 define_arm_cp_regs(cpu, el3_cp_reginfo); 7962 ARMCPRegInfo el3_regs[] = { 7963 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7965 .access = PL3_R, 7966 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7967 }, 7968 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7970 .access = PL3_RW, 7971 .raw_writefn = raw_write, .writefn = sctlr_write, 7972 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7973 .resetvalue = cpu->reset_sctlr }, 7974 }; 7975 7976 define_arm_cp_regs(cpu, el3_regs); 7977 } 7978 /* The behaviour of NSACR is sufficiently various that we don't 7979 * try to describe it in a single reginfo: 7980 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7981 * reads as constant 0xc00 from NS EL1 and NS EL2 7982 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7983 * if v7 without EL3, register doesn't exist 7984 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7985 */ 7986 if (arm_feature(env, ARM_FEATURE_EL3)) { 7987 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7988 static const ARMCPRegInfo nsacr = { 7989 .name = "NSACR", .type = ARM_CP_CONST, 7990 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7991 .access = PL1_RW, .accessfn = nsacr_access, 7992 .resetvalue = 0xc00 7993 }; 7994 define_one_arm_cp_reg(cpu, &nsacr); 7995 } else { 7996 static const ARMCPRegInfo nsacr = { 7997 .name = "NSACR", 7998 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7999 .access = PL3_RW | PL1_R, 8000 .resetvalue = 0, 8001 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8002 }; 8003 define_one_arm_cp_reg(cpu, &nsacr); 8004 } 8005 } else { 8006 if (arm_feature(env, ARM_FEATURE_V8)) { 8007 static const ARMCPRegInfo nsacr = { 8008 .name = "NSACR", .type = ARM_CP_CONST, 8009 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8010 .access = PL1_R, 8011 .resetvalue = 0xc00 8012 }; 8013 define_one_arm_cp_reg(cpu, &nsacr); 8014 } 8015 } 8016 8017 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8018 if (arm_feature(env, ARM_FEATURE_V6)) { 8019 /* PMSAv6 not implemented */ 8020 assert(arm_feature(env, ARM_FEATURE_V7)); 8021 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8022 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8023 } else { 8024 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8025 } 8026 } else { 8027 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8028 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8029 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8030 if (cpu_isar_feature(aa32_hpd, cpu)) { 8031 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8032 } 8033 } 8034 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8035 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8036 } 8037 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8038 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8039 } 8040 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8041 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8042 } 8043 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8044 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8045 } 8046 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8047 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8048 } 8049 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8050 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8051 } 8052 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8053 define_arm_cp_regs(cpu, omap_cp_reginfo); 8054 } 8055 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8056 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8057 } 8058 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8059 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8060 } 8061 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8062 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8063 } 8064 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8065 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8066 } 8067 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8068 define_arm_cp_regs(cpu, jazelle_regs); 8069 } 8070 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8071 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8072 * be read-only (ie write causes UNDEF exception). 8073 */ 8074 { 8075 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8076 /* Pre-v8 MIDR space. 8077 * Note that the MIDR isn't a simple constant register because 8078 * of the TI925 behaviour where writes to another register can 8079 * cause the MIDR value to change. 8080 * 8081 * Unimplemented registers in the c15 0 0 0 space default to 8082 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8083 * and friends override accordingly. 8084 */ 8085 { .name = "MIDR", 8086 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8087 .access = PL1_R, .resetvalue = cpu->midr, 8088 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8089 .readfn = midr_read, 8090 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8091 .type = ARM_CP_OVERRIDE }, 8092 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8093 { .name = "DUMMY", 8094 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8096 { .name = "DUMMY", 8097 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8098 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8099 { .name = "DUMMY", 8100 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8101 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8102 { .name = "DUMMY", 8103 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8104 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8105 { .name = "DUMMY", 8106 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8107 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8108 }; 8109 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8110 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8111 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8112 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8113 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8114 .readfn = midr_read }, 8115 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8116 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8117 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8118 .access = PL1_R, .resetvalue = cpu->midr }, 8119 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8120 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8121 .access = PL1_R, .resetvalue = cpu->midr }, 8122 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8124 .access = PL1_R, 8125 .accessfn = access_aa64_tid1, 8126 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8127 }; 8128 ARMCPRegInfo id_cp_reginfo[] = { 8129 /* These are common to v8 and pre-v8 */ 8130 { .name = "CTR", 8131 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8132 .access = PL1_R, .accessfn = ctr_el0_access, 8133 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8134 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8135 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8136 .access = PL0_R, .accessfn = ctr_el0_access, 8137 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8138 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8139 { .name = "TCMTR", 8140 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8141 .access = PL1_R, 8142 .accessfn = access_aa32_tid1, 8143 .type = ARM_CP_CONST, .resetvalue = 0 }, 8144 }; 8145 /* TLBTR is specific to VMSA */ 8146 ARMCPRegInfo id_tlbtr_reginfo = { 8147 .name = "TLBTR", 8148 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8149 .access = PL1_R, 8150 .accessfn = access_aa32_tid1, 8151 .type = ARM_CP_CONST, .resetvalue = 0, 8152 }; 8153 /* MPUIR is specific to PMSA V6+ */ 8154 ARMCPRegInfo id_mpuir_reginfo = { 8155 .name = "MPUIR", 8156 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8157 .access = PL1_R, .type = ARM_CP_CONST, 8158 .resetvalue = cpu->pmsav7_dregion << 8 8159 }; 8160 static const ARMCPRegInfo crn0_wi_reginfo = { 8161 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8162 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8163 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8164 }; 8165 #ifdef CONFIG_USER_ONLY 8166 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8167 { .name = "MIDR_EL1", 8168 .exported_bits = 0x00000000ffffffff }, 8169 { .name = "REVIDR_EL1" }, 8170 }; 8171 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8172 #endif 8173 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8174 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8175 size_t i; 8176 /* Register the blanket "writes ignored" value first to cover the 8177 * whole space. Then update the specific ID registers to allow write 8178 * access, so that they ignore writes rather than causing them to 8179 * UNDEF. 8180 */ 8181 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8182 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8183 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8184 } 8185 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8186 id_cp_reginfo[i].access = PL1_RW; 8187 } 8188 id_mpuir_reginfo.access = PL1_RW; 8189 id_tlbtr_reginfo.access = PL1_RW; 8190 } 8191 if (arm_feature(env, ARM_FEATURE_V8)) { 8192 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8193 } else { 8194 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8195 } 8196 define_arm_cp_regs(cpu, id_cp_reginfo); 8197 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8198 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8199 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8200 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8201 } 8202 } 8203 8204 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8205 ARMCPRegInfo mpidr_cp_reginfo[] = { 8206 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8207 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8208 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8209 }; 8210 #ifdef CONFIG_USER_ONLY 8211 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8212 { .name = "MPIDR_EL1", 8213 .fixed_bits = 0x0000000080000000 }, 8214 }; 8215 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8216 #endif 8217 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8218 } 8219 8220 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8221 ARMCPRegInfo auxcr_reginfo[] = { 8222 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8223 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8224 .access = PL1_RW, .accessfn = access_tacr, 8225 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8226 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8227 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8228 .access = PL2_RW, .type = ARM_CP_CONST, 8229 .resetvalue = 0 }, 8230 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8231 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8232 .access = PL3_RW, .type = ARM_CP_CONST, 8233 .resetvalue = 0 }, 8234 }; 8235 define_arm_cp_regs(cpu, auxcr_reginfo); 8236 if (cpu_isar_feature(aa32_ac2, cpu)) { 8237 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8238 } 8239 } 8240 8241 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8242 /* 8243 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8244 * There are two flavours: 8245 * (1) older 32-bit only cores have a simple 32-bit CBAR 8246 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8247 * 32-bit register visible to AArch32 at a different encoding 8248 * to the "flavour 1" register and with the bits rearranged to 8249 * be able to squash a 64-bit address into the 32-bit view. 8250 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8251 * in future if we support AArch32-only configs of some of the 8252 * AArch64 cores we might need to add a specific feature flag 8253 * to indicate cores with "flavour 2" CBAR. 8254 */ 8255 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8256 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8257 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8258 | extract64(cpu->reset_cbar, 32, 12); 8259 ARMCPRegInfo cbar_reginfo[] = { 8260 { .name = "CBAR", 8261 .type = ARM_CP_CONST, 8262 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8263 .access = PL1_R, .resetvalue = cbar32 }, 8264 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8265 .type = ARM_CP_CONST, 8266 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8267 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8268 }; 8269 /* We don't implement a r/w 64 bit CBAR currently */ 8270 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8271 define_arm_cp_regs(cpu, cbar_reginfo); 8272 } else { 8273 ARMCPRegInfo cbar = { 8274 .name = "CBAR", 8275 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8276 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8277 .fieldoffset = offsetof(CPUARMState, 8278 cp15.c15_config_base_address) 8279 }; 8280 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8281 cbar.access = PL1_R; 8282 cbar.fieldoffset = 0; 8283 cbar.type = ARM_CP_CONST; 8284 } 8285 define_one_arm_cp_reg(cpu, &cbar); 8286 } 8287 } 8288 8289 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8290 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8291 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8292 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8293 .access = PL1_RW, .writefn = vbar_write, 8294 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8295 offsetof(CPUARMState, cp15.vbar_ns) }, 8296 .resetvalue = 0 }, 8297 }; 8298 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8299 } 8300 8301 /* Generic registers whose values depend on the implementation */ 8302 { 8303 ARMCPRegInfo sctlr = { 8304 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8305 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8306 .access = PL1_RW, .accessfn = access_tvm_trvm, 8307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8308 offsetof(CPUARMState, cp15.sctlr_ns) }, 8309 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8310 .raw_writefn = raw_write, 8311 }; 8312 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8313 /* Normally we would always end the TB on an SCTLR write, but Linux 8314 * arch/arm/mach-pxa/sleep.S expects two instructions following 8315 * an MMU enable to execute from cache. Imitate this behaviour. 8316 */ 8317 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8318 } 8319 define_one_arm_cp_reg(cpu, &sctlr); 8320 } 8321 8322 if (cpu_isar_feature(aa64_lor, cpu)) { 8323 define_arm_cp_regs(cpu, lor_reginfo); 8324 } 8325 if (cpu_isar_feature(aa64_pan, cpu)) { 8326 define_one_arm_cp_reg(cpu, &pan_reginfo); 8327 } 8328 #ifndef CONFIG_USER_ONLY 8329 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8330 define_arm_cp_regs(cpu, ats1e1_reginfo); 8331 } 8332 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8333 define_arm_cp_regs(cpu, ats1cp_reginfo); 8334 } 8335 #endif 8336 if (cpu_isar_feature(aa64_uao, cpu)) { 8337 define_one_arm_cp_reg(cpu, &uao_reginfo); 8338 } 8339 8340 if (cpu_isar_feature(aa64_dit, cpu)) { 8341 define_one_arm_cp_reg(cpu, &dit_reginfo); 8342 } 8343 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8344 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8345 } 8346 if (cpu_isar_feature(any_ras, cpu)) { 8347 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8348 } 8349 8350 if (cpu_isar_feature(aa64_vh, cpu) || 8351 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8352 define_one_arm_cp_reg(cpu, &contextidr_el2); 8353 } 8354 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8355 define_arm_cp_regs(cpu, vhe_reginfo); 8356 } 8357 8358 if (cpu_isar_feature(aa64_sve, cpu)) { 8359 define_arm_cp_regs(cpu, zcr_reginfo); 8360 } 8361 8362 if (cpu_isar_feature(aa64_hcx, cpu)) { 8363 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8364 } 8365 8366 #ifdef TARGET_AARCH64 8367 if (cpu_isar_feature(aa64_sme, cpu)) { 8368 define_arm_cp_regs(cpu, sme_reginfo); 8369 } 8370 if (cpu_isar_feature(aa64_pauth, cpu)) { 8371 define_arm_cp_regs(cpu, pauth_reginfo); 8372 } 8373 if (cpu_isar_feature(aa64_rndr, cpu)) { 8374 define_arm_cp_regs(cpu, rndr_reginfo); 8375 } 8376 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8377 define_arm_cp_regs(cpu, tlbirange_reginfo); 8378 } 8379 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8380 define_arm_cp_regs(cpu, tlbios_reginfo); 8381 } 8382 #ifndef CONFIG_USER_ONLY 8383 /* Data Cache clean instructions up to PoP */ 8384 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8385 define_one_arm_cp_reg(cpu, dcpop_reg); 8386 8387 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8388 define_one_arm_cp_reg(cpu, dcpodp_reg); 8389 } 8390 } 8391 #endif /*CONFIG_USER_ONLY*/ 8392 8393 /* 8394 * If full MTE is enabled, add all of the system registers. 8395 * If only "instructions available at EL0" are enabled, 8396 * then define only a RAZ/WI version of PSTATE.TCO. 8397 */ 8398 if (cpu_isar_feature(aa64_mte, cpu)) { 8399 define_arm_cp_regs(cpu, mte_reginfo); 8400 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8401 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8402 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8403 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8404 } 8405 8406 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8407 define_arm_cp_regs(cpu, scxtnum_reginfo); 8408 } 8409 #endif 8410 8411 if (cpu_isar_feature(any_predinv, cpu)) { 8412 define_arm_cp_regs(cpu, predinv_reginfo); 8413 } 8414 8415 if (cpu_isar_feature(any_ccidx, cpu)) { 8416 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8417 } 8418 8419 #ifndef CONFIG_USER_ONLY 8420 /* 8421 * Register redirections and aliases must be done last, 8422 * after the registers from the other extensions have been defined. 8423 */ 8424 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8425 define_arm_vh_e2h_redirects_aliases(cpu); 8426 } 8427 #endif 8428 } 8429 8430 /* Sort alphabetically by type name, except for "any". */ 8431 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8432 { 8433 ObjectClass *class_a = (ObjectClass *)a; 8434 ObjectClass *class_b = (ObjectClass *)b; 8435 const char *name_a, *name_b; 8436 8437 name_a = object_class_get_name(class_a); 8438 name_b = object_class_get_name(class_b); 8439 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8440 return 1; 8441 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8442 return -1; 8443 } else { 8444 return strcmp(name_a, name_b); 8445 } 8446 } 8447 8448 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8449 { 8450 ObjectClass *oc = data; 8451 CPUClass *cc = CPU_CLASS(oc); 8452 const char *typename; 8453 char *name; 8454 8455 typename = object_class_get_name(oc); 8456 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8457 if (cc->deprecation_note) { 8458 qemu_printf(" %s (deprecated)\n", name); 8459 } else { 8460 qemu_printf(" %s\n", name); 8461 } 8462 g_free(name); 8463 } 8464 8465 void arm_cpu_list(void) 8466 { 8467 GSList *list; 8468 8469 list = object_class_get_list(TYPE_ARM_CPU, false); 8470 list = g_slist_sort(list, arm_cpu_list_compare); 8471 qemu_printf("Available CPUs:\n"); 8472 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8473 g_slist_free(list); 8474 } 8475 8476 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8477 { 8478 ObjectClass *oc = data; 8479 CpuDefinitionInfoList **cpu_list = user_data; 8480 CpuDefinitionInfo *info; 8481 const char *typename; 8482 8483 typename = object_class_get_name(oc); 8484 info = g_malloc0(sizeof(*info)); 8485 info->name = g_strndup(typename, 8486 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8487 info->q_typename = g_strdup(typename); 8488 8489 QAPI_LIST_PREPEND(*cpu_list, info); 8490 } 8491 8492 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8493 { 8494 CpuDefinitionInfoList *cpu_list = NULL; 8495 GSList *list; 8496 8497 list = object_class_get_list(TYPE_ARM_CPU, false); 8498 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8499 g_slist_free(list); 8500 8501 return cpu_list; 8502 } 8503 8504 /* 8505 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8506 * add a single reginfo struct to the hash table. 8507 */ 8508 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8509 void *opaque, CPState state, 8510 CPSecureState secstate, 8511 int crm, int opc1, int opc2, 8512 const char *name) 8513 { 8514 CPUARMState *env = &cpu->env; 8515 uint32_t key; 8516 ARMCPRegInfo *r2; 8517 bool is64 = r->type & ARM_CP_64BIT; 8518 bool ns = secstate & ARM_CP_SECSTATE_NS; 8519 int cp = r->cp; 8520 size_t name_len; 8521 bool make_const; 8522 8523 switch (state) { 8524 case ARM_CP_STATE_AA32: 8525 /* We assume it is a cp15 register if the .cp field is left unset. */ 8526 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8527 cp = 15; 8528 } 8529 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8530 break; 8531 case ARM_CP_STATE_AA64: 8532 /* 8533 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8534 * cp == 0 as equivalent to the value for "standard guest-visible 8535 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8536 * in their AArch64 view (the .cp value may be non-zero for the 8537 * benefit of the AArch32 view). 8538 */ 8539 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8540 cp = CP_REG_ARM64_SYSREG_CP; 8541 } 8542 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8543 break; 8544 default: 8545 g_assert_not_reached(); 8546 } 8547 8548 /* Overriding of an existing definition must be explicitly requested. */ 8549 if (!(r->type & ARM_CP_OVERRIDE)) { 8550 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8551 if (oldreg) { 8552 assert(oldreg->type & ARM_CP_OVERRIDE); 8553 } 8554 } 8555 8556 /* 8557 * Eliminate registers that are not present because the EL is missing. 8558 * Doing this here makes it easier to put all registers for a given 8559 * feature into the same ARMCPRegInfo array and define them all at once. 8560 */ 8561 make_const = false; 8562 if (arm_feature(env, ARM_FEATURE_EL3)) { 8563 /* 8564 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8565 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8566 */ 8567 int min_el = ctz32(r->access) / 2; 8568 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8569 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8570 return; 8571 } 8572 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8573 } 8574 } else { 8575 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8576 ? PL2_RW : PL1_RW); 8577 if ((r->access & max_el) == 0) { 8578 return; 8579 } 8580 } 8581 8582 /* Combine cpreg and name into one allocation. */ 8583 name_len = strlen(name) + 1; 8584 r2 = g_malloc(sizeof(*r2) + name_len); 8585 *r2 = *r; 8586 r2->name = memcpy(r2 + 1, name, name_len); 8587 8588 /* 8589 * Update fields to match the instantiation, overwiting wildcards 8590 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8591 */ 8592 r2->cp = cp; 8593 r2->crm = crm; 8594 r2->opc1 = opc1; 8595 r2->opc2 = opc2; 8596 r2->state = state; 8597 r2->secure = secstate; 8598 if (opaque) { 8599 r2->opaque = opaque; 8600 } 8601 8602 if (make_const) { 8603 /* This should not have been a very special register to begin. */ 8604 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8605 assert(old_special == 0 || old_special == ARM_CP_NOP); 8606 /* 8607 * Set the special function to CONST, retaining the other flags. 8608 * This is important for e.g. ARM_CP_SVE so that we still 8609 * take the SVE trap if CPTR_EL3.EZ == 0. 8610 */ 8611 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8612 /* 8613 * Usually, these registers become RES0, but there are a few 8614 * special cases like VPIDR_EL2 which have a constant non-zero 8615 * value with writes ignored. 8616 */ 8617 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8618 r2->resetvalue = 0; 8619 } 8620 /* 8621 * ARM_CP_CONST has precedence, so removing the callbacks and 8622 * offsets are not strictly necessary, but it is potentially 8623 * less confusing to debug later. 8624 */ 8625 r2->readfn = NULL; 8626 r2->writefn = NULL; 8627 r2->raw_readfn = NULL; 8628 r2->raw_writefn = NULL; 8629 r2->resetfn = NULL; 8630 r2->fieldoffset = 0; 8631 r2->bank_fieldoffsets[0] = 0; 8632 r2->bank_fieldoffsets[1] = 0; 8633 } else { 8634 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8635 8636 if (isbanked) { 8637 /* 8638 * Register is banked (using both entries in array). 8639 * Overwriting fieldoffset as the array is only used to define 8640 * banked registers but later only fieldoffset is used. 8641 */ 8642 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8643 } 8644 if (state == ARM_CP_STATE_AA32) { 8645 if (isbanked) { 8646 /* 8647 * If the register is banked then we don't need to migrate or 8648 * reset the 32-bit instance in certain cases: 8649 * 8650 * 1) If the register has both 32-bit and 64-bit instances 8651 * then we can count on the 64-bit instance taking care 8652 * of the non-secure bank. 8653 * 2) If ARMv8 is enabled then we can count on a 64-bit 8654 * version taking care of the secure bank. This requires 8655 * that separate 32 and 64-bit definitions are provided. 8656 */ 8657 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8658 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8659 r2->type |= ARM_CP_ALIAS; 8660 } 8661 } else if ((secstate != r->secure) && !ns) { 8662 /* 8663 * The register is not banked so we only want to allow 8664 * migration of the non-secure instance. 8665 */ 8666 r2->type |= ARM_CP_ALIAS; 8667 } 8668 8669 if (HOST_BIG_ENDIAN && 8670 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8671 r2->fieldoffset += sizeof(uint32_t); 8672 } 8673 } 8674 } 8675 8676 /* 8677 * By convention, for wildcarded registers only the first 8678 * entry is used for migration; the others are marked as 8679 * ALIAS so we don't try to transfer the register 8680 * multiple times. Special registers (ie NOP/WFI) are 8681 * never migratable and not even raw-accessible. 8682 */ 8683 if (r2->type & ARM_CP_SPECIAL_MASK) { 8684 r2->type |= ARM_CP_NO_RAW; 8685 } 8686 if (((r->crm == CP_ANY) && crm != 0) || 8687 ((r->opc1 == CP_ANY) && opc1 != 0) || 8688 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8689 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8690 } 8691 8692 /* 8693 * Check that raw accesses are either forbidden or handled. Note that 8694 * we can't assert this earlier because the setup of fieldoffset for 8695 * banked registers has to be done first. 8696 */ 8697 if (!(r2->type & ARM_CP_NO_RAW)) { 8698 assert(!raw_accessors_invalid(r2)); 8699 } 8700 8701 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8702 } 8703 8704 8705 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8706 const ARMCPRegInfo *r, void *opaque) 8707 { 8708 /* Define implementations of coprocessor registers. 8709 * We store these in a hashtable because typically 8710 * there are less than 150 registers in a space which 8711 * is 16*16*16*8*8 = 262144 in size. 8712 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8713 * If a register is defined twice then the second definition is 8714 * used, so this can be used to define some generic registers and 8715 * then override them with implementation specific variations. 8716 * At least one of the original and the second definition should 8717 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8718 * against accidental use. 8719 * 8720 * The state field defines whether the register is to be 8721 * visible in the AArch32 or AArch64 execution state. If the 8722 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8723 * reginfo structure for the AArch32 view, which sees the lower 8724 * 32 bits of the 64 bit register. 8725 * 8726 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8727 * be wildcarded. AArch64 registers are always considered to be 64 8728 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8729 * the register, if any. 8730 */ 8731 int crm, opc1, opc2; 8732 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8733 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8734 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8735 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8736 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8737 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8738 CPState state; 8739 8740 /* 64 bit registers have only CRm and Opc1 fields */ 8741 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8742 /* op0 only exists in the AArch64 encodings */ 8743 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8744 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8745 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8746 /* 8747 * This API is only for Arm's system coprocessors (14 and 15) or 8748 * (M-profile or v7A-and-earlier only) for implementation defined 8749 * coprocessors in the range 0..7. Our decode assumes this, since 8750 * 8..13 can be used for other insns including VFP and Neon. See 8751 * valid_cp() in translate.c. Assert here that we haven't tried 8752 * to use an invalid coprocessor number. 8753 */ 8754 switch (r->state) { 8755 case ARM_CP_STATE_BOTH: 8756 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8757 if (r->cp == 0) { 8758 break; 8759 } 8760 /* fall through */ 8761 case ARM_CP_STATE_AA32: 8762 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8763 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8764 assert(r->cp >= 14 && r->cp <= 15); 8765 } else { 8766 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8767 } 8768 break; 8769 case ARM_CP_STATE_AA64: 8770 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8771 break; 8772 default: 8773 g_assert_not_reached(); 8774 } 8775 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8776 * encodes a minimum access level for the register. We roll this 8777 * runtime check into our general permission check code, so check 8778 * here that the reginfo's specified permissions are strict enough 8779 * to encompass the generic architectural permission check. 8780 */ 8781 if (r->state != ARM_CP_STATE_AA32) { 8782 CPAccessRights mask; 8783 switch (r->opc1) { 8784 case 0: 8785 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8786 mask = PL0U_R | PL1_RW; 8787 break; 8788 case 1: case 2: 8789 /* min_EL EL1 */ 8790 mask = PL1_RW; 8791 break; 8792 case 3: 8793 /* min_EL EL0 */ 8794 mask = PL0_RW; 8795 break; 8796 case 4: 8797 case 5: 8798 /* min_EL EL2 */ 8799 mask = PL2_RW; 8800 break; 8801 case 6: 8802 /* min_EL EL3 */ 8803 mask = PL3_RW; 8804 break; 8805 case 7: 8806 /* min_EL EL1, secure mode only (we don't check the latter) */ 8807 mask = PL1_RW; 8808 break; 8809 default: 8810 /* broken reginfo with out-of-range opc1 */ 8811 g_assert_not_reached(); 8812 } 8813 /* assert our permissions are not too lax (stricter is fine) */ 8814 assert((r->access & ~mask) == 0); 8815 } 8816 8817 /* Check that the register definition has enough info to handle 8818 * reads and writes if they are permitted. 8819 */ 8820 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8821 if (r->access & PL3_R) { 8822 assert((r->fieldoffset || 8823 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8824 r->readfn); 8825 } 8826 if (r->access & PL3_W) { 8827 assert((r->fieldoffset || 8828 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8829 r->writefn); 8830 } 8831 } 8832 8833 for (crm = crmmin; crm <= crmmax; crm++) { 8834 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8835 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8836 for (state = ARM_CP_STATE_AA32; 8837 state <= ARM_CP_STATE_AA64; state++) { 8838 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8839 continue; 8840 } 8841 if (state == ARM_CP_STATE_AA32) { 8842 /* Under AArch32 CP registers can be common 8843 * (same for secure and non-secure world) or banked. 8844 */ 8845 char *name; 8846 8847 switch (r->secure) { 8848 case ARM_CP_SECSTATE_S: 8849 case ARM_CP_SECSTATE_NS: 8850 add_cpreg_to_hashtable(cpu, r, opaque, state, 8851 r->secure, crm, opc1, opc2, 8852 r->name); 8853 break; 8854 case ARM_CP_SECSTATE_BOTH: 8855 name = g_strdup_printf("%s_S", r->name); 8856 add_cpreg_to_hashtable(cpu, r, opaque, state, 8857 ARM_CP_SECSTATE_S, 8858 crm, opc1, opc2, name); 8859 g_free(name); 8860 add_cpreg_to_hashtable(cpu, r, opaque, state, 8861 ARM_CP_SECSTATE_NS, 8862 crm, opc1, opc2, r->name); 8863 break; 8864 default: 8865 g_assert_not_reached(); 8866 } 8867 } else { 8868 /* AArch64 registers get mapped to non-secure instance 8869 * of AArch32 */ 8870 add_cpreg_to_hashtable(cpu, r, opaque, state, 8871 ARM_CP_SECSTATE_NS, 8872 crm, opc1, opc2, r->name); 8873 } 8874 } 8875 } 8876 } 8877 } 8878 } 8879 8880 /* Define a whole list of registers */ 8881 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8882 void *opaque, size_t len) 8883 { 8884 size_t i; 8885 for (i = 0; i < len; ++i) { 8886 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8887 } 8888 } 8889 8890 /* 8891 * Modify ARMCPRegInfo for access from userspace. 8892 * 8893 * This is a data driven modification directed by 8894 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8895 * user-space cannot alter any values and dynamic values pertaining to 8896 * execution state are hidden from user space view anyway. 8897 */ 8898 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8899 const ARMCPRegUserSpaceInfo *mods, 8900 size_t mods_len) 8901 { 8902 for (size_t mi = 0; mi < mods_len; ++mi) { 8903 const ARMCPRegUserSpaceInfo *m = mods + mi; 8904 GPatternSpec *pat = NULL; 8905 8906 if (m->is_glob) { 8907 pat = g_pattern_spec_new(m->name); 8908 } 8909 for (size_t ri = 0; ri < regs_len; ++ri) { 8910 ARMCPRegInfo *r = regs + ri; 8911 8912 if (pat && g_pattern_match_string(pat, r->name)) { 8913 r->type = ARM_CP_CONST; 8914 r->access = PL0U_R; 8915 r->resetvalue = 0; 8916 /* continue */ 8917 } else if (strcmp(r->name, m->name) == 0) { 8918 r->type = ARM_CP_CONST; 8919 r->access = PL0U_R; 8920 r->resetvalue &= m->exported_bits; 8921 r->resetvalue |= m->fixed_bits; 8922 break; 8923 } 8924 } 8925 if (pat) { 8926 g_pattern_spec_free(pat); 8927 } 8928 } 8929 } 8930 8931 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8932 { 8933 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8934 } 8935 8936 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8937 uint64_t value) 8938 { 8939 /* Helper coprocessor write function for write-ignore registers */ 8940 } 8941 8942 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8943 { 8944 /* Helper coprocessor write function for read-as-zero registers */ 8945 return 0; 8946 } 8947 8948 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8949 { 8950 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8951 } 8952 8953 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8954 { 8955 /* Return true if it is not valid for us to switch to 8956 * this CPU mode (ie all the UNPREDICTABLE cases in 8957 * the ARM ARM CPSRWriteByInstr pseudocode). 8958 */ 8959 8960 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8961 if (write_type == CPSRWriteByInstr && 8962 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8963 mode == ARM_CPU_MODE_HYP)) { 8964 return 1; 8965 } 8966 8967 switch (mode) { 8968 case ARM_CPU_MODE_USR: 8969 return 0; 8970 case ARM_CPU_MODE_SYS: 8971 case ARM_CPU_MODE_SVC: 8972 case ARM_CPU_MODE_ABT: 8973 case ARM_CPU_MODE_UND: 8974 case ARM_CPU_MODE_IRQ: 8975 case ARM_CPU_MODE_FIQ: 8976 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8977 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8978 */ 8979 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8980 * and CPS are treated as illegal mode changes. 8981 */ 8982 if (write_type == CPSRWriteByInstr && 8983 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8984 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8985 return 1; 8986 } 8987 return 0; 8988 case ARM_CPU_MODE_HYP: 8989 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8990 case ARM_CPU_MODE_MON: 8991 return arm_current_el(env) < 3; 8992 default: 8993 return 1; 8994 } 8995 } 8996 8997 uint32_t cpsr_read(CPUARMState *env) 8998 { 8999 int ZF; 9000 ZF = (env->ZF == 0); 9001 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9002 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9003 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9004 | ((env->condexec_bits & 0xfc) << 8) 9005 | (env->GE << 16) | (env->daif & CPSR_AIF); 9006 } 9007 9008 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9009 CPSRWriteType write_type) 9010 { 9011 uint32_t changed_daif; 9012 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9013 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9014 9015 if (mask & CPSR_NZCV) { 9016 env->ZF = (~val) & CPSR_Z; 9017 env->NF = val; 9018 env->CF = (val >> 29) & 1; 9019 env->VF = (val << 3) & 0x80000000; 9020 } 9021 if (mask & CPSR_Q) 9022 env->QF = ((val & CPSR_Q) != 0); 9023 if (mask & CPSR_T) 9024 env->thumb = ((val & CPSR_T) != 0); 9025 if (mask & CPSR_IT_0_1) { 9026 env->condexec_bits &= ~3; 9027 env->condexec_bits |= (val >> 25) & 3; 9028 } 9029 if (mask & CPSR_IT_2_7) { 9030 env->condexec_bits &= 3; 9031 env->condexec_bits |= (val >> 8) & 0xfc; 9032 } 9033 if (mask & CPSR_GE) { 9034 env->GE = (val >> 16) & 0xf; 9035 } 9036 9037 /* In a V7 implementation that includes the security extensions but does 9038 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9039 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9040 * bits respectively. 9041 * 9042 * In a V8 implementation, it is permitted for privileged software to 9043 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9044 */ 9045 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9046 arm_feature(env, ARM_FEATURE_EL3) && 9047 !arm_feature(env, ARM_FEATURE_EL2) && 9048 !arm_is_secure(env)) { 9049 9050 changed_daif = (env->daif ^ val) & mask; 9051 9052 if (changed_daif & CPSR_A) { 9053 /* Check to see if we are allowed to change the masking of async 9054 * abort exceptions from a non-secure state. 9055 */ 9056 if (!(env->cp15.scr_el3 & SCR_AW)) { 9057 qemu_log_mask(LOG_GUEST_ERROR, 9058 "Ignoring attempt to switch CPSR_A flag from " 9059 "non-secure world with SCR.AW bit clear\n"); 9060 mask &= ~CPSR_A; 9061 } 9062 } 9063 9064 if (changed_daif & CPSR_F) { 9065 /* Check to see if we are allowed to change the masking of FIQ 9066 * exceptions from a non-secure state. 9067 */ 9068 if (!(env->cp15.scr_el3 & SCR_FW)) { 9069 qemu_log_mask(LOG_GUEST_ERROR, 9070 "Ignoring attempt to switch CPSR_F flag from " 9071 "non-secure world with SCR.FW bit clear\n"); 9072 mask &= ~CPSR_F; 9073 } 9074 9075 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9076 * If this bit is set software is not allowed to mask 9077 * FIQs, but is allowed to set CPSR_F to 0. 9078 */ 9079 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9080 (val & CPSR_F)) { 9081 qemu_log_mask(LOG_GUEST_ERROR, 9082 "Ignoring attempt to enable CPSR_F flag " 9083 "(non-maskable FIQ [NMFI] support enabled)\n"); 9084 mask &= ~CPSR_F; 9085 } 9086 } 9087 } 9088 9089 env->daif &= ~(CPSR_AIF & mask); 9090 env->daif |= val & CPSR_AIF & mask; 9091 9092 if (write_type != CPSRWriteRaw && 9093 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9094 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9095 /* Note that we can only get here in USR mode if this is a 9096 * gdb stub write; for this case we follow the architectural 9097 * behaviour for guest writes in USR mode of ignoring an attempt 9098 * to switch mode. (Those are caught by translate.c for writes 9099 * triggered by guest instructions.) 9100 */ 9101 mask &= ~CPSR_M; 9102 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9103 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9104 * v7, and has defined behaviour in v8: 9105 * + leave CPSR.M untouched 9106 * + allow changes to the other CPSR fields 9107 * + set PSTATE.IL 9108 * For user changes via the GDB stub, we don't set PSTATE.IL, 9109 * as this would be unnecessarily harsh for a user error. 9110 */ 9111 mask &= ~CPSR_M; 9112 if (write_type != CPSRWriteByGDBStub && 9113 arm_feature(env, ARM_FEATURE_V8)) { 9114 mask |= CPSR_IL; 9115 val |= CPSR_IL; 9116 } 9117 qemu_log_mask(LOG_GUEST_ERROR, 9118 "Illegal AArch32 mode switch attempt from %s to %s\n", 9119 aarch32_mode_name(env->uncached_cpsr), 9120 aarch32_mode_name(val)); 9121 } else { 9122 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9123 write_type == CPSRWriteExceptionReturn ? 9124 "Exception return from AArch32" : 9125 "AArch32 mode switch from", 9126 aarch32_mode_name(env->uncached_cpsr), 9127 aarch32_mode_name(val), env->regs[15]); 9128 switch_mode(env, val & CPSR_M); 9129 } 9130 } 9131 mask &= ~CACHED_CPSR_BITS; 9132 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9133 if (rebuild_hflags) { 9134 arm_rebuild_hflags(env); 9135 } 9136 } 9137 9138 /* Sign/zero extend */ 9139 uint32_t HELPER(sxtb16)(uint32_t x) 9140 { 9141 uint32_t res; 9142 res = (uint16_t)(int8_t)x; 9143 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9144 return res; 9145 } 9146 9147 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9148 { 9149 /* 9150 * Take a division-by-zero exception if necessary; otherwise return 9151 * to get the usual non-trapping division behaviour (result of 0) 9152 */ 9153 if (arm_feature(env, ARM_FEATURE_M) 9154 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9155 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9156 } 9157 } 9158 9159 uint32_t HELPER(uxtb16)(uint32_t x) 9160 { 9161 uint32_t res; 9162 res = (uint16_t)(uint8_t)x; 9163 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9164 return res; 9165 } 9166 9167 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9168 { 9169 if (den == 0) { 9170 handle_possible_div0_trap(env, GETPC()); 9171 return 0; 9172 } 9173 if (num == INT_MIN && den == -1) { 9174 return INT_MIN; 9175 } 9176 return num / den; 9177 } 9178 9179 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9180 { 9181 if (den == 0) { 9182 handle_possible_div0_trap(env, GETPC()); 9183 return 0; 9184 } 9185 return num / den; 9186 } 9187 9188 uint32_t HELPER(rbit)(uint32_t x) 9189 { 9190 return revbit32(x); 9191 } 9192 9193 #ifdef CONFIG_USER_ONLY 9194 9195 static void switch_mode(CPUARMState *env, int mode) 9196 { 9197 ARMCPU *cpu = env_archcpu(env); 9198 9199 if (mode != ARM_CPU_MODE_USR) { 9200 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9201 } 9202 } 9203 9204 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9205 uint32_t cur_el, bool secure) 9206 { 9207 return 1; 9208 } 9209 9210 void aarch64_sync_64_to_32(CPUARMState *env) 9211 { 9212 g_assert_not_reached(); 9213 } 9214 9215 #else 9216 9217 static void switch_mode(CPUARMState *env, int mode) 9218 { 9219 int old_mode; 9220 int i; 9221 9222 old_mode = env->uncached_cpsr & CPSR_M; 9223 if (mode == old_mode) 9224 return; 9225 9226 if (old_mode == ARM_CPU_MODE_FIQ) { 9227 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9228 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9229 } else if (mode == ARM_CPU_MODE_FIQ) { 9230 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9231 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9232 } 9233 9234 i = bank_number(old_mode); 9235 env->banked_r13[i] = env->regs[13]; 9236 env->banked_spsr[i] = env->spsr; 9237 9238 i = bank_number(mode); 9239 env->regs[13] = env->banked_r13[i]; 9240 env->spsr = env->banked_spsr[i]; 9241 9242 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9243 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9244 } 9245 9246 /* Physical Interrupt Target EL Lookup Table 9247 * 9248 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9249 * 9250 * The below multi-dimensional table is used for looking up the target 9251 * exception level given numerous condition criteria. Specifically, the 9252 * target EL is based on SCR and HCR routing controls as well as the 9253 * currently executing EL and secure state. 9254 * 9255 * Dimensions: 9256 * target_el_table[2][2][2][2][2][4] 9257 * | | | | | +--- Current EL 9258 * | | | | +------ Non-secure(0)/Secure(1) 9259 * | | | +--------- HCR mask override 9260 * | | +------------ SCR exec state control 9261 * | +--------------- SCR mask override 9262 * +------------------ 32-bit(0)/64-bit(1) EL3 9263 * 9264 * The table values are as such: 9265 * 0-3 = EL0-EL3 9266 * -1 = Cannot occur 9267 * 9268 * The ARM ARM target EL table includes entries indicating that an "exception 9269 * is not taken". The two cases where this is applicable are: 9270 * 1) An exception is taken from EL3 but the SCR does not have the exception 9271 * routed to EL3. 9272 * 2) An exception is taken from EL2 but the HCR does not have the exception 9273 * routed to EL2. 9274 * In these two cases, the below table contain a target of EL1. This value is 9275 * returned as it is expected that the consumer of the table data will check 9276 * for "target EL >= current EL" to ensure the exception is not taken. 9277 * 9278 * SCR HCR 9279 * 64 EA AMO From 9280 * BIT IRQ IMO Non-secure Secure 9281 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9282 */ 9283 static const int8_t target_el_table[2][2][2][2][2][4] = { 9284 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9285 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9286 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9287 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9288 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9289 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9290 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9291 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9292 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9293 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9294 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9295 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9296 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9297 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9298 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9299 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9300 }; 9301 9302 /* 9303 * Determine the target EL for physical exceptions 9304 */ 9305 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9306 uint32_t cur_el, bool secure) 9307 { 9308 CPUARMState *env = cs->env_ptr; 9309 bool rw; 9310 bool scr; 9311 bool hcr; 9312 int target_el; 9313 /* Is the highest EL AArch64? */ 9314 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9315 uint64_t hcr_el2; 9316 9317 if (arm_feature(env, ARM_FEATURE_EL3)) { 9318 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9319 } else { 9320 /* Either EL2 is the highest EL (and so the EL2 register width 9321 * is given by is64); or there is no EL2 or EL3, in which case 9322 * the value of 'rw' does not affect the table lookup anyway. 9323 */ 9324 rw = is64; 9325 } 9326 9327 hcr_el2 = arm_hcr_el2_eff(env); 9328 switch (excp_idx) { 9329 case EXCP_IRQ: 9330 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9331 hcr = hcr_el2 & HCR_IMO; 9332 break; 9333 case EXCP_FIQ: 9334 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9335 hcr = hcr_el2 & HCR_FMO; 9336 break; 9337 default: 9338 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9339 hcr = hcr_el2 & HCR_AMO; 9340 break; 9341 }; 9342 9343 /* 9344 * For these purposes, TGE and AMO/IMO/FMO both force the 9345 * interrupt to EL2. Fold TGE into the bit extracted above. 9346 */ 9347 hcr |= (hcr_el2 & HCR_TGE) != 0; 9348 9349 /* Perform a table-lookup for the target EL given the current state */ 9350 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9351 9352 assert(target_el > 0); 9353 9354 return target_el; 9355 } 9356 9357 void arm_log_exception(CPUState *cs) 9358 { 9359 int idx = cs->exception_index; 9360 9361 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9362 const char *exc = NULL; 9363 static const char * const excnames[] = { 9364 [EXCP_UDEF] = "Undefined Instruction", 9365 [EXCP_SWI] = "SVC", 9366 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9367 [EXCP_DATA_ABORT] = "Data Abort", 9368 [EXCP_IRQ] = "IRQ", 9369 [EXCP_FIQ] = "FIQ", 9370 [EXCP_BKPT] = "Breakpoint", 9371 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9372 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9373 [EXCP_HVC] = "Hypervisor Call", 9374 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9375 [EXCP_SMC] = "Secure Monitor Call", 9376 [EXCP_VIRQ] = "Virtual IRQ", 9377 [EXCP_VFIQ] = "Virtual FIQ", 9378 [EXCP_SEMIHOST] = "Semihosting call", 9379 [EXCP_NOCP] = "v7M NOCP UsageFault", 9380 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9381 [EXCP_STKOF] = "v8M STKOF UsageFault", 9382 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9383 [EXCP_LSERR] = "v8M LSERR UsageFault", 9384 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9385 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9386 [EXCP_VSERR] = "Virtual SERR", 9387 }; 9388 9389 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9390 exc = excnames[idx]; 9391 } 9392 if (!exc) { 9393 exc = "unknown"; 9394 } 9395 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9396 idx, exc, cs->cpu_index); 9397 } 9398 } 9399 9400 /* 9401 * Function used to synchronize QEMU's AArch64 register set with AArch32 9402 * register set. This is necessary when switching between AArch32 and AArch64 9403 * execution state. 9404 */ 9405 void aarch64_sync_32_to_64(CPUARMState *env) 9406 { 9407 int i; 9408 uint32_t mode = env->uncached_cpsr & CPSR_M; 9409 9410 /* We can blanket copy R[0:7] to X[0:7] */ 9411 for (i = 0; i < 8; i++) { 9412 env->xregs[i] = env->regs[i]; 9413 } 9414 9415 /* 9416 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9417 * Otherwise, they come from the banked user regs. 9418 */ 9419 if (mode == ARM_CPU_MODE_FIQ) { 9420 for (i = 8; i < 13; i++) { 9421 env->xregs[i] = env->usr_regs[i - 8]; 9422 } 9423 } else { 9424 for (i = 8; i < 13; i++) { 9425 env->xregs[i] = env->regs[i]; 9426 } 9427 } 9428 9429 /* 9430 * Registers x13-x23 are the various mode SP and FP registers. Registers 9431 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9432 * from the mode banked register. 9433 */ 9434 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9435 env->xregs[13] = env->regs[13]; 9436 env->xregs[14] = env->regs[14]; 9437 } else { 9438 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9439 /* HYP is an exception in that it is copied from r14 */ 9440 if (mode == ARM_CPU_MODE_HYP) { 9441 env->xregs[14] = env->regs[14]; 9442 } else { 9443 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9444 } 9445 } 9446 9447 if (mode == ARM_CPU_MODE_HYP) { 9448 env->xregs[15] = env->regs[13]; 9449 } else { 9450 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9451 } 9452 9453 if (mode == ARM_CPU_MODE_IRQ) { 9454 env->xregs[16] = env->regs[14]; 9455 env->xregs[17] = env->regs[13]; 9456 } else { 9457 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9458 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9459 } 9460 9461 if (mode == ARM_CPU_MODE_SVC) { 9462 env->xregs[18] = env->regs[14]; 9463 env->xregs[19] = env->regs[13]; 9464 } else { 9465 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9466 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9467 } 9468 9469 if (mode == ARM_CPU_MODE_ABT) { 9470 env->xregs[20] = env->regs[14]; 9471 env->xregs[21] = env->regs[13]; 9472 } else { 9473 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9474 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9475 } 9476 9477 if (mode == ARM_CPU_MODE_UND) { 9478 env->xregs[22] = env->regs[14]; 9479 env->xregs[23] = env->regs[13]; 9480 } else { 9481 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9482 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9483 } 9484 9485 /* 9486 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9487 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9488 * FIQ bank for r8-r14. 9489 */ 9490 if (mode == ARM_CPU_MODE_FIQ) { 9491 for (i = 24; i < 31; i++) { 9492 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9493 } 9494 } else { 9495 for (i = 24; i < 29; i++) { 9496 env->xregs[i] = env->fiq_regs[i - 24]; 9497 } 9498 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9499 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9500 } 9501 9502 env->pc = env->regs[15]; 9503 } 9504 9505 /* 9506 * Function used to synchronize QEMU's AArch32 register set with AArch64 9507 * register set. This is necessary when switching between AArch32 and AArch64 9508 * execution state. 9509 */ 9510 void aarch64_sync_64_to_32(CPUARMState *env) 9511 { 9512 int i; 9513 uint32_t mode = env->uncached_cpsr & CPSR_M; 9514 9515 /* We can blanket copy X[0:7] to R[0:7] */ 9516 for (i = 0; i < 8; i++) { 9517 env->regs[i] = env->xregs[i]; 9518 } 9519 9520 /* 9521 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9522 * Otherwise, we copy x8-x12 into the banked user regs. 9523 */ 9524 if (mode == ARM_CPU_MODE_FIQ) { 9525 for (i = 8; i < 13; i++) { 9526 env->usr_regs[i - 8] = env->xregs[i]; 9527 } 9528 } else { 9529 for (i = 8; i < 13; i++) { 9530 env->regs[i] = env->xregs[i]; 9531 } 9532 } 9533 9534 /* 9535 * Registers r13 & r14 depend on the current mode. 9536 * If we are in a given mode, we copy the corresponding x registers to r13 9537 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9538 * for the mode. 9539 */ 9540 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9541 env->regs[13] = env->xregs[13]; 9542 env->regs[14] = env->xregs[14]; 9543 } else { 9544 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9545 9546 /* 9547 * HYP is an exception in that it does not have its own banked r14 but 9548 * shares the USR r14 9549 */ 9550 if (mode == ARM_CPU_MODE_HYP) { 9551 env->regs[14] = env->xregs[14]; 9552 } else { 9553 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9554 } 9555 } 9556 9557 if (mode == ARM_CPU_MODE_HYP) { 9558 env->regs[13] = env->xregs[15]; 9559 } else { 9560 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9561 } 9562 9563 if (mode == ARM_CPU_MODE_IRQ) { 9564 env->regs[14] = env->xregs[16]; 9565 env->regs[13] = env->xregs[17]; 9566 } else { 9567 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9568 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9569 } 9570 9571 if (mode == ARM_CPU_MODE_SVC) { 9572 env->regs[14] = env->xregs[18]; 9573 env->regs[13] = env->xregs[19]; 9574 } else { 9575 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9576 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9577 } 9578 9579 if (mode == ARM_CPU_MODE_ABT) { 9580 env->regs[14] = env->xregs[20]; 9581 env->regs[13] = env->xregs[21]; 9582 } else { 9583 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9584 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9585 } 9586 9587 if (mode == ARM_CPU_MODE_UND) { 9588 env->regs[14] = env->xregs[22]; 9589 env->regs[13] = env->xregs[23]; 9590 } else { 9591 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9592 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9593 } 9594 9595 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9596 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9597 * FIQ bank for r8-r14. 9598 */ 9599 if (mode == ARM_CPU_MODE_FIQ) { 9600 for (i = 24; i < 31; i++) { 9601 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9602 } 9603 } else { 9604 for (i = 24; i < 29; i++) { 9605 env->fiq_regs[i - 24] = env->xregs[i]; 9606 } 9607 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9608 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9609 } 9610 9611 env->regs[15] = env->pc; 9612 } 9613 9614 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9615 uint32_t mask, uint32_t offset, 9616 uint32_t newpc) 9617 { 9618 int new_el; 9619 9620 /* Change the CPU state so as to actually take the exception. */ 9621 switch_mode(env, new_mode); 9622 9623 /* 9624 * For exceptions taken to AArch32 we must clear the SS bit in both 9625 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9626 */ 9627 env->pstate &= ~PSTATE_SS; 9628 env->spsr = cpsr_read(env); 9629 /* Clear IT bits. */ 9630 env->condexec_bits = 0; 9631 /* Switch to the new mode, and to the correct instruction set. */ 9632 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9633 9634 /* This must be after mode switching. */ 9635 new_el = arm_current_el(env); 9636 9637 /* Set new mode endianness */ 9638 env->uncached_cpsr &= ~CPSR_E; 9639 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9640 env->uncached_cpsr |= CPSR_E; 9641 } 9642 /* J and IL must always be cleared for exception entry */ 9643 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9644 env->daif |= mask; 9645 9646 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9647 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9648 env->uncached_cpsr |= CPSR_SSBS; 9649 } else { 9650 env->uncached_cpsr &= ~CPSR_SSBS; 9651 } 9652 } 9653 9654 if (new_mode == ARM_CPU_MODE_HYP) { 9655 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9656 env->elr_el[2] = env->regs[15]; 9657 } else { 9658 /* CPSR.PAN is normally preserved preserved unless... */ 9659 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9660 switch (new_el) { 9661 case 3: 9662 if (!arm_is_secure_below_el3(env)) { 9663 /* ... the target is EL3, from non-secure state. */ 9664 env->uncached_cpsr &= ~CPSR_PAN; 9665 break; 9666 } 9667 /* ... the target is EL3, from secure state ... */ 9668 /* fall through */ 9669 case 1: 9670 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9671 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9672 env->uncached_cpsr |= CPSR_PAN; 9673 } 9674 break; 9675 } 9676 } 9677 /* 9678 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9679 * and we should just guard the thumb mode on V4 9680 */ 9681 if (arm_feature(env, ARM_FEATURE_V4T)) { 9682 env->thumb = 9683 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9684 } 9685 env->regs[14] = env->regs[15] + offset; 9686 } 9687 env->regs[15] = newpc; 9688 arm_rebuild_hflags(env); 9689 } 9690 9691 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9692 { 9693 /* 9694 * Handle exception entry to Hyp mode; this is sufficiently 9695 * different to entry to other AArch32 modes that we handle it 9696 * separately here. 9697 * 9698 * The vector table entry used is always the 0x14 Hyp mode entry point, 9699 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9700 * The offset applied to the preferred return address is always zero 9701 * (see DDI0487C.a section G1.12.3). 9702 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9703 */ 9704 uint32_t addr, mask; 9705 ARMCPU *cpu = ARM_CPU(cs); 9706 CPUARMState *env = &cpu->env; 9707 9708 switch (cs->exception_index) { 9709 case EXCP_UDEF: 9710 addr = 0x04; 9711 break; 9712 case EXCP_SWI: 9713 addr = 0x08; 9714 break; 9715 case EXCP_BKPT: 9716 /* Fall through to prefetch abort. */ 9717 case EXCP_PREFETCH_ABORT: 9718 env->cp15.ifar_s = env->exception.vaddress; 9719 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9720 (uint32_t)env->exception.vaddress); 9721 addr = 0x0c; 9722 break; 9723 case EXCP_DATA_ABORT: 9724 env->cp15.dfar_s = env->exception.vaddress; 9725 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9726 (uint32_t)env->exception.vaddress); 9727 addr = 0x10; 9728 break; 9729 case EXCP_IRQ: 9730 addr = 0x18; 9731 break; 9732 case EXCP_FIQ: 9733 addr = 0x1c; 9734 break; 9735 case EXCP_HVC: 9736 addr = 0x08; 9737 break; 9738 case EXCP_HYP_TRAP: 9739 addr = 0x14; 9740 break; 9741 default: 9742 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9743 } 9744 9745 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9746 if (!arm_feature(env, ARM_FEATURE_V8)) { 9747 /* 9748 * QEMU syndrome values are v8-style. v7 has the IL bit 9749 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9750 * If this is a v7 CPU, squash the IL bit in those cases. 9751 */ 9752 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9753 (cs->exception_index == EXCP_DATA_ABORT && 9754 !(env->exception.syndrome & ARM_EL_ISV)) || 9755 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9756 env->exception.syndrome &= ~ARM_EL_IL; 9757 } 9758 } 9759 env->cp15.esr_el[2] = env->exception.syndrome; 9760 } 9761 9762 if (arm_current_el(env) != 2 && addr < 0x14) { 9763 addr = 0x14; 9764 } 9765 9766 mask = 0; 9767 if (!(env->cp15.scr_el3 & SCR_EA)) { 9768 mask |= CPSR_A; 9769 } 9770 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9771 mask |= CPSR_I; 9772 } 9773 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9774 mask |= CPSR_F; 9775 } 9776 9777 addr += env->cp15.hvbar; 9778 9779 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9780 } 9781 9782 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9783 { 9784 ARMCPU *cpu = ARM_CPU(cs); 9785 CPUARMState *env = &cpu->env; 9786 uint32_t addr; 9787 uint32_t mask; 9788 int new_mode; 9789 uint32_t offset; 9790 uint32_t moe; 9791 9792 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9793 switch (syn_get_ec(env->exception.syndrome)) { 9794 case EC_BREAKPOINT: 9795 case EC_BREAKPOINT_SAME_EL: 9796 moe = 1; 9797 break; 9798 case EC_WATCHPOINT: 9799 case EC_WATCHPOINT_SAME_EL: 9800 moe = 10; 9801 break; 9802 case EC_AA32_BKPT: 9803 moe = 3; 9804 break; 9805 case EC_VECTORCATCH: 9806 moe = 5; 9807 break; 9808 default: 9809 moe = 0; 9810 break; 9811 } 9812 9813 if (moe) { 9814 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9815 } 9816 9817 if (env->exception.target_el == 2) { 9818 arm_cpu_do_interrupt_aarch32_hyp(cs); 9819 return; 9820 } 9821 9822 switch (cs->exception_index) { 9823 case EXCP_UDEF: 9824 new_mode = ARM_CPU_MODE_UND; 9825 addr = 0x04; 9826 mask = CPSR_I; 9827 if (env->thumb) 9828 offset = 2; 9829 else 9830 offset = 4; 9831 break; 9832 case EXCP_SWI: 9833 new_mode = ARM_CPU_MODE_SVC; 9834 addr = 0x08; 9835 mask = CPSR_I; 9836 /* The PC already points to the next instruction. */ 9837 offset = 0; 9838 break; 9839 case EXCP_BKPT: 9840 /* Fall through to prefetch abort. */ 9841 case EXCP_PREFETCH_ABORT: 9842 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9843 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9844 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9845 env->exception.fsr, (uint32_t)env->exception.vaddress); 9846 new_mode = ARM_CPU_MODE_ABT; 9847 addr = 0x0c; 9848 mask = CPSR_A | CPSR_I; 9849 offset = 4; 9850 break; 9851 case EXCP_DATA_ABORT: 9852 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9853 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9854 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9855 env->exception.fsr, 9856 (uint32_t)env->exception.vaddress); 9857 new_mode = ARM_CPU_MODE_ABT; 9858 addr = 0x10; 9859 mask = CPSR_A | CPSR_I; 9860 offset = 8; 9861 break; 9862 case EXCP_IRQ: 9863 new_mode = ARM_CPU_MODE_IRQ; 9864 addr = 0x18; 9865 /* Disable IRQ and imprecise data aborts. */ 9866 mask = CPSR_A | CPSR_I; 9867 offset = 4; 9868 if (env->cp15.scr_el3 & SCR_IRQ) { 9869 /* IRQ routed to monitor mode */ 9870 new_mode = ARM_CPU_MODE_MON; 9871 mask |= CPSR_F; 9872 } 9873 break; 9874 case EXCP_FIQ: 9875 new_mode = ARM_CPU_MODE_FIQ; 9876 addr = 0x1c; 9877 /* Disable FIQ, IRQ and imprecise data aborts. */ 9878 mask = CPSR_A | CPSR_I | CPSR_F; 9879 if (env->cp15.scr_el3 & SCR_FIQ) { 9880 /* FIQ routed to monitor mode */ 9881 new_mode = ARM_CPU_MODE_MON; 9882 } 9883 offset = 4; 9884 break; 9885 case EXCP_VIRQ: 9886 new_mode = ARM_CPU_MODE_IRQ; 9887 addr = 0x18; 9888 /* Disable IRQ and imprecise data aborts. */ 9889 mask = CPSR_A | CPSR_I; 9890 offset = 4; 9891 break; 9892 case EXCP_VFIQ: 9893 new_mode = ARM_CPU_MODE_FIQ; 9894 addr = 0x1c; 9895 /* Disable FIQ, IRQ and imprecise data aborts. */ 9896 mask = CPSR_A | CPSR_I | CPSR_F; 9897 offset = 4; 9898 break; 9899 case EXCP_VSERR: 9900 { 9901 /* 9902 * Note that this is reported as a data abort, but the DFAR 9903 * has an UNKNOWN value. Construct the SError syndrome from 9904 * AET and ExT fields. 9905 */ 9906 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9907 9908 if (extended_addresses_enabled(env)) { 9909 env->exception.fsr = arm_fi_to_lfsc(&fi); 9910 } else { 9911 env->exception.fsr = arm_fi_to_sfsc(&fi); 9912 } 9913 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9914 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9915 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9916 env->exception.fsr); 9917 9918 new_mode = ARM_CPU_MODE_ABT; 9919 addr = 0x10; 9920 mask = CPSR_A | CPSR_I; 9921 offset = 8; 9922 } 9923 break; 9924 case EXCP_SMC: 9925 new_mode = ARM_CPU_MODE_MON; 9926 addr = 0x08; 9927 mask = CPSR_A | CPSR_I | CPSR_F; 9928 offset = 0; 9929 break; 9930 default: 9931 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9932 return; /* Never happens. Keep compiler happy. */ 9933 } 9934 9935 if (new_mode == ARM_CPU_MODE_MON) { 9936 addr += env->cp15.mvbar; 9937 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9938 /* High vectors. When enabled, base address cannot be remapped. */ 9939 addr += 0xffff0000; 9940 } else { 9941 /* ARM v7 architectures provide a vector base address register to remap 9942 * the interrupt vector table. 9943 * This register is only followed in non-monitor mode, and is banked. 9944 * Note: only bits 31:5 are valid. 9945 */ 9946 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9947 } 9948 9949 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9950 env->cp15.scr_el3 &= ~SCR_NS; 9951 } 9952 9953 take_aarch32_exception(env, new_mode, mask, offset, addr); 9954 } 9955 9956 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9957 { 9958 /* 9959 * Return the register number of the AArch64 view of the AArch32 9960 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9961 * be that of the AArch32 mode the exception came from. 9962 */ 9963 int mode = env->uncached_cpsr & CPSR_M; 9964 9965 switch (aarch32_reg) { 9966 case 0 ... 7: 9967 return aarch32_reg; 9968 case 8 ... 12: 9969 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9970 case 13: 9971 switch (mode) { 9972 case ARM_CPU_MODE_USR: 9973 case ARM_CPU_MODE_SYS: 9974 return 13; 9975 case ARM_CPU_MODE_HYP: 9976 return 15; 9977 case ARM_CPU_MODE_IRQ: 9978 return 17; 9979 case ARM_CPU_MODE_SVC: 9980 return 19; 9981 case ARM_CPU_MODE_ABT: 9982 return 21; 9983 case ARM_CPU_MODE_UND: 9984 return 23; 9985 case ARM_CPU_MODE_FIQ: 9986 return 29; 9987 default: 9988 g_assert_not_reached(); 9989 } 9990 case 14: 9991 switch (mode) { 9992 case ARM_CPU_MODE_USR: 9993 case ARM_CPU_MODE_SYS: 9994 case ARM_CPU_MODE_HYP: 9995 return 14; 9996 case ARM_CPU_MODE_IRQ: 9997 return 16; 9998 case ARM_CPU_MODE_SVC: 9999 return 18; 10000 case ARM_CPU_MODE_ABT: 10001 return 20; 10002 case ARM_CPU_MODE_UND: 10003 return 22; 10004 case ARM_CPU_MODE_FIQ: 10005 return 30; 10006 default: 10007 g_assert_not_reached(); 10008 } 10009 case 15: 10010 return 31; 10011 default: 10012 g_assert_not_reached(); 10013 } 10014 } 10015 10016 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10017 { 10018 uint32_t ret = cpsr_read(env); 10019 10020 /* Move DIT to the correct location for SPSR_ELx */ 10021 if (ret & CPSR_DIT) { 10022 ret &= ~CPSR_DIT; 10023 ret |= PSTATE_DIT; 10024 } 10025 /* Merge PSTATE.SS into SPSR_ELx */ 10026 ret |= env->pstate & PSTATE_SS; 10027 10028 return ret; 10029 } 10030 10031 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10032 { 10033 /* Return true if this syndrome value is a synchronous external abort */ 10034 switch (syn_get_ec(syndrome)) { 10035 case EC_INSNABORT: 10036 case EC_INSNABORT_SAME_EL: 10037 case EC_DATAABORT: 10038 case EC_DATAABORT_SAME_EL: 10039 /* Look at fault status code for all the synchronous ext abort cases */ 10040 switch (syndrome & 0x3f) { 10041 case 0x10: 10042 case 0x13: 10043 case 0x14: 10044 case 0x15: 10045 case 0x16: 10046 case 0x17: 10047 return true; 10048 default: 10049 return false; 10050 } 10051 default: 10052 return false; 10053 } 10054 } 10055 10056 /* Handle exception entry to a target EL which is using AArch64 */ 10057 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10058 { 10059 ARMCPU *cpu = ARM_CPU(cs); 10060 CPUARMState *env = &cpu->env; 10061 unsigned int new_el = env->exception.target_el; 10062 target_ulong addr = env->cp15.vbar_el[new_el]; 10063 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10064 unsigned int old_mode; 10065 unsigned int cur_el = arm_current_el(env); 10066 int rt; 10067 10068 /* 10069 * Note that new_el can never be 0. If cur_el is 0, then 10070 * el0_a64 is is_a64(), else el0_a64 is ignored. 10071 */ 10072 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10073 10074 if (cur_el < new_el) { 10075 /* Entry vector offset depends on whether the implemented EL 10076 * immediately lower than the target level is using AArch32 or AArch64 10077 */ 10078 bool is_aa64; 10079 uint64_t hcr; 10080 10081 switch (new_el) { 10082 case 3: 10083 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10084 break; 10085 case 2: 10086 hcr = arm_hcr_el2_eff(env); 10087 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10088 is_aa64 = (hcr & HCR_RW) != 0; 10089 break; 10090 } 10091 /* fall through */ 10092 case 1: 10093 is_aa64 = is_a64(env); 10094 break; 10095 default: 10096 g_assert_not_reached(); 10097 } 10098 10099 if (is_aa64) { 10100 addr += 0x400; 10101 } else { 10102 addr += 0x600; 10103 } 10104 } else if (pstate_read(env) & PSTATE_SP) { 10105 addr += 0x200; 10106 } 10107 10108 switch (cs->exception_index) { 10109 case EXCP_PREFETCH_ABORT: 10110 case EXCP_DATA_ABORT: 10111 /* 10112 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10113 * to be taken to the SError vector entrypoint. 10114 */ 10115 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10116 syndrome_is_sync_extabt(env->exception.syndrome)) { 10117 addr += 0x180; 10118 } 10119 env->cp15.far_el[new_el] = env->exception.vaddress; 10120 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10121 env->cp15.far_el[new_el]); 10122 /* fall through */ 10123 case EXCP_BKPT: 10124 case EXCP_UDEF: 10125 case EXCP_SWI: 10126 case EXCP_HVC: 10127 case EXCP_HYP_TRAP: 10128 case EXCP_SMC: 10129 switch (syn_get_ec(env->exception.syndrome)) { 10130 case EC_ADVSIMDFPACCESSTRAP: 10131 /* 10132 * QEMU internal FP/SIMD syndromes from AArch32 include the 10133 * TA and coproc fields which are only exposed if the exception 10134 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10135 * AArch64 format syndrome. 10136 */ 10137 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10138 break; 10139 case EC_CP14RTTRAP: 10140 case EC_CP15RTTRAP: 10141 case EC_CP14DTTRAP: 10142 /* 10143 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10144 * the raw register field from the insn; when taking this to 10145 * AArch64 we must convert it to the AArch64 view of the register 10146 * number. Notice that we read a 4-bit AArch32 register number and 10147 * write back a 5-bit AArch64 one. 10148 */ 10149 rt = extract32(env->exception.syndrome, 5, 4); 10150 rt = aarch64_regnum(env, rt); 10151 env->exception.syndrome = deposit32(env->exception.syndrome, 10152 5, 5, rt); 10153 break; 10154 case EC_CP15RRTTRAP: 10155 case EC_CP14RRTTRAP: 10156 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10157 rt = extract32(env->exception.syndrome, 5, 4); 10158 rt = aarch64_regnum(env, rt); 10159 env->exception.syndrome = deposit32(env->exception.syndrome, 10160 5, 5, rt); 10161 rt = extract32(env->exception.syndrome, 10, 4); 10162 rt = aarch64_regnum(env, rt); 10163 env->exception.syndrome = deposit32(env->exception.syndrome, 10164 10, 5, rt); 10165 break; 10166 } 10167 env->cp15.esr_el[new_el] = env->exception.syndrome; 10168 break; 10169 case EXCP_IRQ: 10170 case EXCP_VIRQ: 10171 addr += 0x80; 10172 break; 10173 case EXCP_FIQ: 10174 case EXCP_VFIQ: 10175 addr += 0x100; 10176 break; 10177 case EXCP_VSERR: 10178 addr += 0x180; 10179 /* Construct the SError syndrome from IDS and ISS fields. */ 10180 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10181 env->cp15.esr_el[new_el] = env->exception.syndrome; 10182 break; 10183 default: 10184 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10185 } 10186 10187 if (is_a64(env)) { 10188 old_mode = pstate_read(env); 10189 aarch64_save_sp(env, arm_current_el(env)); 10190 env->elr_el[new_el] = env->pc; 10191 } else { 10192 old_mode = cpsr_read_for_spsr_elx(env); 10193 env->elr_el[new_el] = env->regs[15]; 10194 10195 aarch64_sync_32_to_64(env); 10196 10197 env->condexec_bits = 0; 10198 } 10199 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10200 10201 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10202 env->elr_el[new_el]); 10203 10204 if (cpu_isar_feature(aa64_pan, cpu)) { 10205 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10206 new_mode |= old_mode & PSTATE_PAN; 10207 switch (new_el) { 10208 case 2: 10209 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10210 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10211 != (HCR_E2H | HCR_TGE)) { 10212 break; 10213 } 10214 /* fall through */ 10215 case 1: 10216 /* ... the target is EL1 ... */ 10217 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10218 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10219 new_mode |= PSTATE_PAN; 10220 } 10221 break; 10222 } 10223 } 10224 if (cpu_isar_feature(aa64_mte, cpu)) { 10225 new_mode |= PSTATE_TCO; 10226 } 10227 10228 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10229 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10230 new_mode |= PSTATE_SSBS; 10231 } else { 10232 new_mode &= ~PSTATE_SSBS; 10233 } 10234 } 10235 10236 pstate_write(env, PSTATE_DAIF | new_mode); 10237 env->aarch64 = true; 10238 aarch64_restore_sp(env, new_el); 10239 helper_rebuild_hflags_a64(env, new_el); 10240 10241 env->pc = addr; 10242 10243 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10244 new_el, env->pc, pstate_read(env)); 10245 } 10246 10247 /* 10248 * Do semihosting call and set the appropriate return value. All the 10249 * permission and validity checks have been done at translate time. 10250 * 10251 * We only see semihosting exceptions in TCG only as they are not 10252 * trapped to the hypervisor in KVM. 10253 */ 10254 #ifdef CONFIG_TCG 10255 static void handle_semihosting(CPUState *cs) 10256 { 10257 ARMCPU *cpu = ARM_CPU(cs); 10258 CPUARMState *env = &cpu->env; 10259 10260 if (is_a64(env)) { 10261 qemu_log_mask(CPU_LOG_INT, 10262 "...handling as semihosting call 0x%" PRIx64 "\n", 10263 env->xregs[0]); 10264 do_common_semihosting(cs); 10265 env->pc += 4; 10266 } else { 10267 qemu_log_mask(CPU_LOG_INT, 10268 "...handling as semihosting call 0x%x\n", 10269 env->regs[0]); 10270 do_common_semihosting(cs); 10271 env->regs[15] += env->thumb ? 2 : 4; 10272 } 10273 } 10274 #endif 10275 10276 /* Handle a CPU exception for A and R profile CPUs. 10277 * Do any appropriate logging, handle PSCI calls, and then hand off 10278 * to the AArch64-entry or AArch32-entry function depending on the 10279 * target exception level's register width. 10280 * 10281 * Note: this is used for both TCG (as the do_interrupt tcg op), 10282 * and KVM to re-inject guest debug exceptions, and to 10283 * inject a Synchronous-External-Abort. 10284 */ 10285 void arm_cpu_do_interrupt(CPUState *cs) 10286 { 10287 ARMCPU *cpu = ARM_CPU(cs); 10288 CPUARMState *env = &cpu->env; 10289 unsigned int new_el = env->exception.target_el; 10290 10291 assert(!arm_feature(env, ARM_FEATURE_M)); 10292 10293 arm_log_exception(cs); 10294 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10295 new_el); 10296 if (qemu_loglevel_mask(CPU_LOG_INT) 10297 && !excp_is_internal(cs->exception_index)) { 10298 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10299 syn_get_ec(env->exception.syndrome), 10300 env->exception.syndrome); 10301 } 10302 10303 if (arm_is_psci_call(cpu, cs->exception_index)) { 10304 arm_handle_psci_call(cpu); 10305 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10306 return; 10307 } 10308 10309 /* 10310 * Semihosting semantics depend on the register width of the code 10311 * that caused the exception, not the target exception level, so 10312 * must be handled here. 10313 */ 10314 #ifdef CONFIG_TCG 10315 if (cs->exception_index == EXCP_SEMIHOST) { 10316 handle_semihosting(cs); 10317 return; 10318 } 10319 #endif 10320 10321 /* Hooks may change global state so BQL should be held, also the 10322 * BQL needs to be held for any modification of 10323 * cs->interrupt_request. 10324 */ 10325 g_assert(qemu_mutex_iothread_locked()); 10326 10327 arm_call_pre_el_change_hook(cpu); 10328 10329 assert(!excp_is_internal(cs->exception_index)); 10330 if (arm_el_is_aa64(env, new_el)) { 10331 arm_cpu_do_interrupt_aarch64(cs); 10332 } else { 10333 arm_cpu_do_interrupt_aarch32(cs); 10334 } 10335 10336 arm_call_el_change_hook(cpu); 10337 10338 if (!kvm_enabled()) { 10339 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10340 } 10341 } 10342 #endif /* !CONFIG_USER_ONLY */ 10343 10344 uint64_t arm_sctlr(CPUARMState *env, int el) 10345 { 10346 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10347 if (el == 0) { 10348 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10349 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 10350 } 10351 return env->cp15.sctlr_el[el]; 10352 } 10353 10354 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10355 { 10356 if (regime_has_2_ranges(mmu_idx)) { 10357 return extract64(tcr, 37, 2); 10358 } else if (regime_is_stage2(mmu_idx)) { 10359 return 0; /* VTCR_EL2 */ 10360 } else { 10361 /* Replicate the single TBI bit so we always have 2 bits. */ 10362 return extract32(tcr, 20, 1) * 3; 10363 } 10364 } 10365 10366 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10367 { 10368 if (regime_has_2_ranges(mmu_idx)) { 10369 return extract64(tcr, 51, 2); 10370 } else if (regime_is_stage2(mmu_idx)) { 10371 return 0; /* VTCR_EL2 */ 10372 } else { 10373 /* Replicate the single TBID bit so we always have 2 bits. */ 10374 return extract32(tcr, 29, 1) * 3; 10375 } 10376 } 10377 10378 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10379 { 10380 if (regime_has_2_ranges(mmu_idx)) { 10381 return extract64(tcr, 57, 2); 10382 } else { 10383 /* Replicate the single TCMA bit so we always have 2 bits. */ 10384 return extract32(tcr, 30, 1) * 3; 10385 } 10386 } 10387 10388 static ARMGranuleSize tg0_to_gran_size(int tg) 10389 { 10390 switch (tg) { 10391 case 0: 10392 return Gran4K; 10393 case 1: 10394 return Gran64K; 10395 case 2: 10396 return Gran16K; 10397 default: 10398 return GranInvalid; 10399 } 10400 } 10401 10402 static ARMGranuleSize tg1_to_gran_size(int tg) 10403 { 10404 switch (tg) { 10405 case 1: 10406 return Gran16K; 10407 case 2: 10408 return Gran4K; 10409 case 3: 10410 return Gran64K; 10411 default: 10412 return GranInvalid; 10413 } 10414 } 10415 10416 static inline bool have4k(ARMCPU *cpu, bool stage2) 10417 { 10418 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10419 : cpu_isar_feature(aa64_tgran4, cpu); 10420 } 10421 10422 static inline bool have16k(ARMCPU *cpu, bool stage2) 10423 { 10424 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10425 : cpu_isar_feature(aa64_tgran16, cpu); 10426 } 10427 10428 static inline bool have64k(ARMCPU *cpu, bool stage2) 10429 { 10430 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10431 : cpu_isar_feature(aa64_tgran64, cpu); 10432 } 10433 10434 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10435 bool stage2) 10436 { 10437 switch (gran) { 10438 case Gran4K: 10439 if (have4k(cpu, stage2)) { 10440 return gran; 10441 } 10442 break; 10443 case Gran16K: 10444 if (have16k(cpu, stage2)) { 10445 return gran; 10446 } 10447 break; 10448 case Gran64K: 10449 if (have64k(cpu, stage2)) { 10450 return gran; 10451 } 10452 break; 10453 case GranInvalid: 10454 break; 10455 } 10456 /* 10457 * If the guest selects a granule size that isn't implemented, 10458 * the architecture requires that we behave as if it selected one 10459 * that is (with an IMPDEF choice of which one to pick). We choose 10460 * to implement the smallest supported granule size. 10461 */ 10462 if (have4k(cpu, stage2)) { 10463 return Gran4K; 10464 } 10465 if (have16k(cpu, stage2)) { 10466 return Gran16K; 10467 } 10468 assert(have64k(cpu, stage2)); 10469 return Gran64K; 10470 } 10471 10472 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10473 ARMMMUIdx mmu_idx, bool data) 10474 { 10475 uint64_t tcr = regime_tcr(env, mmu_idx); 10476 bool epd, hpd, tsz_oob, ds, ha, hd; 10477 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10478 ARMGranuleSize gran; 10479 ARMCPU *cpu = env_archcpu(env); 10480 bool stage2 = regime_is_stage2(mmu_idx); 10481 10482 if (!regime_has_2_ranges(mmu_idx)) { 10483 select = 0; 10484 tsz = extract32(tcr, 0, 6); 10485 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10486 if (stage2) { 10487 /* VTCR_EL2 */ 10488 hpd = false; 10489 } else { 10490 hpd = extract32(tcr, 24, 1); 10491 } 10492 epd = false; 10493 sh = extract32(tcr, 12, 2); 10494 ps = extract32(tcr, 16, 3); 10495 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 10496 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10497 ds = extract64(tcr, 32, 1); 10498 } else { 10499 bool e0pd; 10500 10501 /* 10502 * Bit 55 is always between the two regions, and is canonical for 10503 * determining if address tagging is enabled. 10504 */ 10505 select = extract64(va, 55, 1); 10506 if (!select) { 10507 tsz = extract32(tcr, 0, 6); 10508 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10509 epd = extract32(tcr, 7, 1); 10510 sh = extract32(tcr, 12, 2); 10511 hpd = extract64(tcr, 41, 1); 10512 e0pd = extract64(tcr, 55, 1); 10513 } else { 10514 tsz = extract32(tcr, 16, 6); 10515 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 10516 epd = extract32(tcr, 23, 1); 10517 sh = extract32(tcr, 28, 2); 10518 hpd = extract64(tcr, 42, 1); 10519 e0pd = extract64(tcr, 56, 1); 10520 } 10521 ps = extract64(tcr, 32, 3); 10522 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 10523 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10524 ds = extract64(tcr, 59, 1); 10525 10526 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 10527 regime_is_user(env, mmu_idx)) { 10528 epd = true; 10529 } 10530 } 10531 10532 gran = sanitize_gran_size(cpu, gran, stage2); 10533 10534 if (cpu_isar_feature(aa64_st, cpu)) { 10535 max_tsz = 48 - (gran == Gran64K); 10536 } else { 10537 max_tsz = 39; 10538 } 10539 10540 /* 10541 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10542 * adjust the effective value of DS, as documented. 10543 */ 10544 min_tsz = 16; 10545 if (gran == Gran64K) { 10546 if (cpu_isar_feature(aa64_lva, cpu)) { 10547 min_tsz = 12; 10548 } 10549 ds = false; 10550 } else if (ds) { 10551 if (regime_is_stage2(mmu_idx)) { 10552 if (gran == Gran16K) { 10553 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10554 } else { 10555 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10556 } 10557 } else { 10558 if (gran == Gran16K) { 10559 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10560 } else { 10561 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10562 } 10563 } 10564 if (ds) { 10565 min_tsz = 12; 10566 } 10567 } 10568 10569 if (tsz > max_tsz) { 10570 tsz = max_tsz; 10571 tsz_oob = true; 10572 } else if (tsz < min_tsz) { 10573 tsz = min_tsz; 10574 tsz_oob = true; 10575 } else { 10576 tsz_oob = false; 10577 } 10578 10579 /* Present TBI as a composite with TBID. */ 10580 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10581 if (!data) { 10582 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10583 } 10584 tbi = (tbi >> select) & 1; 10585 10586 return (ARMVAParameters) { 10587 .tsz = tsz, 10588 .ps = ps, 10589 .sh = sh, 10590 .select = select, 10591 .tbi = tbi, 10592 .epd = epd, 10593 .hpd = hpd, 10594 .tsz_oob = tsz_oob, 10595 .ds = ds, 10596 .ha = ha, 10597 .hd = ha && hd, 10598 .gran = gran, 10599 }; 10600 } 10601 10602 /* Note that signed overflow is undefined in C. The following routines are 10603 careful to use unsigned types where modulo arithmetic is required. 10604 Failure to do so _will_ break on newer gcc. */ 10605 10606 /* Signed saturating arithmetic. */ 10607 10608 /* Perform 16-bit signed saturating addition. */ 10609 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10610 { 10611 uint16_t res; 10612 10613 res = a + b; 10614 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10615 if (a & 0x8000) 10616 res = 0x8000; 10617 else 10618 res = 0x7fff; 10619 } 10620 return res; 10621 } 10622 10623 /* Perform 8-bit signed saturating addition. */ 10624 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10625 { 10626 uint8_t res; 10627 10628 res = a + b; 10629 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10630 if (a & 0x80) 10631 res = 0x80; 10632 else 10633 res = 0x7f; 10634 } 10635 return res; 10636 } 10637 10638 /* Perform 16-bit signed saturating subtraction. */ 10639 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10640 { 10641 uint16_t res; 10642 10643 res = a - b; 10644 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10645 if (a & 0x8000) 10646 res = 0x8000; 10647 else 10648 res = 0x7fff; 10649 } 10650 return res; 10651 } 10652 10653 /* Perform 8-bit signed saturating subtraction. */ 10654 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10655 { 10656 uint8_t res; 10657 10658 res = a - b; 10659 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10660 if (a & 0x80) 10661 res = 0x80; 10662 else 10663 res = 0x7f; 10664 } 10665 return res; 10666 } 10667 10668 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10669 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10670 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10671 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10672 #define PFX q 10673 10674 #include "op_addsub.h" 10675 10676 /* Unsigned saturating arithmetic. */ 10677 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10678 { 10679 uint16_t res; 10680 res = a + b; 10681 if (res < a) 10682 res = 0xffff; 10683 return res; 10684 } 10685 10686 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10687 { 10688 if (a > b) 10689 return a - b; 10690 else 10691 return 0; 10692 } 10693 10694 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10695 { 10696 uint8_t res; 10697 res = a + b; 10698 if (res < a) 10699 res = 0xff; 10700 return res; 10701 } 10702 10703 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10704 { 10705 if (a > b) 10706 return a - b; 10707 else 10708 return 0; 10709 } 10710 10711 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10712 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10713 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10714 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10715 #define PFX uq 10716 10717 #include "op_addsub.h" 10718 10719 /* Signed modulo arithmetic. */ 10720 #define SARITH16(a, b, n, op) do { \ 10721 int32_t sum; \ 10722 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10723 RESULT(sum, n, 16); \ 10724 if (sum >= 0) \ 10725 ge |= 3 << (n * 2); \ 10726 } while(0) 10727 10728 #define SARITH8(a, b, n, op) do { \ 10729 int32_t sum; \ 10730 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10731 RESULT(sum, n, 8); \ 10732 if (sum >= 0) \ 10733 ge |= 1 << n; \ 10734 } while(0) 10735 10736 10737 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10738 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10739 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10740 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10741 #define PFX s 10742 #define ARITH_GE 10743 10744 #include "op_addsub.h" 10745 10746 /* Unsigned modulo arithmetic. */ 10747 #define ADD16(a, b, n) do { \ 10748 uint32_t sum; \ 10749 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10750 RESULT(sum, n, 16); \ 10751 if ((sum >> 16) == 1) \ 10752 ge |= 3 << (n * 2); \ 10753 } while(0) 10754 10755 #define ADD8(a, b, n) do { \ 10756 uint32_t sum; \ 10757 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10758 RESULT(sum, n, 8); \ 10759 if ((sum >> 8) == 1) \ 10760 ge |= 1 << n; \ 10761 } while(0) 10762 10763 #define SUB16(a, b, n) do { \ 10764 uint32_t sum; \ 10765 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10766 RESULT(sum, n, 16); \ 10767 if ((sum >> 16) == 0) \ 10768 ge |= 3 << (n * 2); \ 10769 } while(0) 10770 10771 #define SUB8(a, b, n) do { \ 10772 uint32_t sum; \ 10773 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10774 RESULT(sum, n, 8); \ 10775 if ((sum >> 8) == 0) \ 10776 ge |= 1 << n; \ 10777 } while(0) 10778 10779 #define PFX u 10780 #define ARITH_GE 10781 10782 #include "op_addsub.h" 10783 10784 /* Halved signed arithmetic. */ 10785 #define ADD16(a, b, n) \ 10786 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10787 #define SUB16(a, b, n) \ 10788 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10789 #define ADD8(a, b, n) \ 10790 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10791 #define SUB8(a, b, n) \ 10792 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10793 #define PFX sh 10794 10795 #include "op_addsub.h" 10796 10797 /* Halved unsigned arithmetic. */ 10798 #define ADD16(a, b, n) \ 10799 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10800 #define SUB16(a, b, n) \ 10801 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10802 #define ADD8(a, b, n) \ 10803 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10804 #define SUB8(a, b, n) \ 10805 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10806 #define PFX uh 10807 10808 #include "op_addsub.h" 10809 10810 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10811 { 10812 if (a > b) 10813 return a - b; 10814 else 10815 return b - a; 10816 } 10817 10818 /* Unsigned sum of absolute byte differences. */ 10819 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10820 { 10821 uint32_t sum; 10822 sum = do_usad(a, b); 10823 sum += do_usad(a >> 8, b >> 8); 10824 sum += do_usad(a >> 16, b >> 16); 10825 sum += do_usad(a >> 24, b >> 24); 10826 return sum; 10827 } 10828 10829 /* For ARMv6 SEL instruction. */ 10830 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10831 { 10832 uint32_t mask; 10833 10834 mask = 0; 10835 if (flags & 1) 10836 mask |= 0xff; 10837 if (flags & 2) 10838 mask |= 0xff00; 10839 if (flags & 4) 10840 mask |= 0xff0000; 10841 if (flags & 8) 10842 mask |= 0xff000000; 10843 return (a & mask) | (b & ~mask); 10844 } 10845 10846 /* CRC helpers. 10847 * The upper bytes of val (above the number specified by 'bytes') must have 10848 * been zeroed out by the caller. 10849 */ 10850 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10851 { 10852 uint8_t buf[4]; 10853 10854 stl_le_p(buf, val); 10855 10856 /* zlib crc32 converts the accumulator and output to one's complement. */ 10857 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10858 } 10859 10860 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10861 { 10862 uint8_t buf[4]; 10863 10864 stl_le_p(buf, val); 10865 10866 /* Linux crc32c converts the output to one's complement. */ 10867 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10868 } 10869 10870 /* Return the exception level to which FP-disabled exceptions should 10871 * be taken, or 0 if FP is enabled. 10872 */ 10873 int fp_exception_el(CPUARMState *env, int cur_el) 10874 { 10875 #ifndef CONFIG_USER_ONLY 10876 uint64_t hcr_el2; 10877 10878 /* CPACR and the CPTR registers don't exist before v6, so FP is 10879 * always accessible 10880 */ 10881 if (!arm_feature(env, ARM_FEATURE_V6)) { 10882 return 0; 10883 } 10884 10885 if (arm_feature(env, ARM_FEATURE_M)) { 10886 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10887 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10888 return 1; 10889 } 10890 10891 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10892 if (!extract32(env->v7m.nsacr, 10, 1)) { 10893 /* FP insns cause a NOCP UsageFault taken to Secure */ 10894 return 3; 10895 } 10896 } 10897 10898 return 0; 10899 } 10900 10901 hcr_el2 = arm_hcr_el2_eff(env); 10902 10903 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10904 * 0, 2 : trap EL0 and EL1/PL1 accesses 10905 * 1 : trap only EL0 accesses 10906 * 3 : trap no accesses 10907 * This register is ignored if E2H+TGE are both set. 10908 */ 10909 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10910 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10911 10912 switch (fpen) { 10913 case 1: 10914 if (cur_el != 0) { 10915 break; 10916 } 10917 /* fall through */ 10918 case 0: 10919 case 2: 10920 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10921 if (!arm_el_is_aa64(env, 3) 10922 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10923 return 3; 10924 } 10925 if (cur_el <= 1) { 10926 return 1; 10927 } 10928 break; 10929 } 10930 } 10931 10932 /* 10933 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10934 * to control non-secure access to the FPU. It doesn't have any 10935 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10936 */ 10937 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10938 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10939 if (!extract32(env->cp15.nsacr, 10, 1)) { 10940 /* FP insns act as UNDEF */ 10941 return cur_el == 2 ? 2 : 1; 10942 } 10943 } 10944 10945 /* 10946 * CPTR_EL2 is present in v7VE or v8, and changes format 10947 * with HCR_EL2.E2H (regardless of TGE). 10948 */ 10949 if (cur_el <= 2) { 10950 if (hcr_el2 & HCR_E2H) { 10951 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10952 case 1: 10953 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10954 break; 10955 } 10956 /* fall through */ 10957 case 0: 10958 case 2: 10959 return 2; 10960 } 10961 } else if (arm_is_el2_enabled(env)) { 10962 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10963 return 2; 10964 } 10965 } 10966 } 10967 10968 /* CPTR_EL3 : present in v8 */ 10969 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10970 /* Trap all FP ops to EL3 */ 10971 return 3; 10972 } 10973 #endif 10974 return 0; 10975 } 10976 10977 /* Return the exception level we're running at if this is our mmu_idx */ 10978 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10979 { 10980 if (mmu_idx & ARM_MMU_IDX_M) { 10981 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10982 } 10983 10984 switch (mmu_idx) { 10985 case ARMMMUIdx_E10_0: 10986 case ARMMMUIdx_E20_0: 10987 return 0; 10988 case ARMMMUIdx_E10_1: 10989 case ARMMMUIdx_E10_1_PAN: 10990 return 1; 10991 case ARMMMUIdx_E2: 10992 case ARMMMUIdx_E20_2: 10993 case ARMMMUIdx_E20_2_PAN: 10994 return 2; 10995 case ARMMMUIdx_E3: 10996 return 3; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 } 11001 11002 #ifndef CONFIG_TCG 11003 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11004 { 11005 g_assert_not_reached(); 11006 } 11007 #endif 11008 11009 static bool arm_pan_enabled(CPUARMState *env) 11010 { 11011 if (is_a64(env)) { 11012 return env->pstate & PSTATE_PAN; 11013 } else { 11014 return env->uncached_cpsr & CPSR_PAN; 11015 } 11016 } 11017 11018 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11019 { 11020 ARMMMUIdx idx; 11021 uint64_t hcr; 11022 11023 if (arm_feature(env, ARM_FEATURE_M)) { 11024 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11025 } 11026 11027 /* See ARM pseudo-function ELIsInHost. */ 11028 switch (el) { 11029 case 0: 11030 hcr = arm_hcr_el2_eff(env); 11031 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11032 idx = ARMMMUIdx_E20_0; 11033 } else { 11034 idx = ARMMMUIdx_E10_0; 11035 } 11036 break; 11037 case 1: 11038 if (arm_pan_enabled(env)) { 11039 idx = ARMMMUIdx_E10_1_PAN; 11040 } else { 11041 idx = ARMMMUIdx_E10_1; 11042 } 11043 break; 11044 case 2: 11045 /* Note that TGE does not apply at EL2. */ 11046 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11047 if (arm_pan_enabled(env)) { 11048 idx = ARMMMUIdx_E20_2_PAN; 11049 } else { 11050 idx = ARMMMUIdx_E20_2; 11051 } 11052 } else { 11053 idx = ARMMMUIdx_E2; 11054 } 11055 break; 11056 case 3: 11057 return ARMMMUIdx_E3; 11058 default: 11059 g_assert_not_reached(); 11060 } 11061 11062 return idx; 11063 } 11064 11065 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11066 { 11067 return arm_mmu_idx_el(env, arm_current_el(env)); 11068 } 11069 11070 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11071 ARMMMUIdx mmu_idx, 11072 CPUARMTBFlags flags) 11073 { 11074 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11075 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11076 11077 if (arm_singlestep_active(env)) { 11078 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11079 } 11080 return flags; 11081 } 11082 11083 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11084 ARMMMUIdx mmu_idx, 11085 CPUARMTBFlags flags) 11086 { 11087 bool sctlr_b = arm_sctlr_b(env); 11088 11089 if (sctlr_b) { 11090 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11091 } 11092 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11093 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11094 } 11095 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11096 11097 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11098 } 11099 11100 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11101 ARMMMUIdx mmu_idx) 11102 { 11103 CPUARMTBFlags flags = {}; 11104 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11105 11106 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11107 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11108 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11109 } 11110 11111 if (arm_v7m_is_handler_mode(env)) { 11112 DP_TBFLAG_M32(flags, HANDLER, 1); 11113 } 11114 11115 /* 11116 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11117 * is suppressing them because the requested execution priority 11118 * is less than 0. 11119 */ 11120 if (arm_feature(env, ARM_FEATURE_V8) && 11121 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11122 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11123 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11124 } 11125 11126 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11127 DP_TBFLAG_M32(flags, SECURE, 1); 11128 } 11129 11130 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11131 } 11132 11133 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11134 ARMMMUIdx mmu_idx) 11135 { 11136 CPUARMTBFlags flags = {}; 11137 int el = arm_current_el(env); 11138 11139 if (arm_sctlr(env, el) & SCTLR_A) { 11140 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11141 } 11142 11143 if (arm_el_is_aa64(env, 1)) { 11144 DP_TBFLAG_A32(flags, VFPEN, 1); 11145 } 11146 11147 if (el < 2 && env->cp15.hstr_el2 && 11148 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11149 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11150 } 11151 11152 if (env->uncached_cpsr & CPSR_IL) { 11153 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11154 } 11155 11156 /* 11157 * The SME exception we are testing for is raised via 11158 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11159 * AArch32.CheckAdvSIMDOrFPEnabled(). 11160 */ 11161 if (el == 0 11162 && FIELD_EX64(env->svcr, SVCR, SM) 11163 && (!arm_is_el2_enabled(env) 11164 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11165 && arm_el_is_aa64(env, 1) 11166 && !sme_fa64(env, el)) { 11167 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11168 } 11169 11170 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11171 } 11172 11173 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11174 ARMMMUIdx mmu_idx) 11175 { 11176 CPUARMTBFlags flags = {}; 11177 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11178 uint64_t tcr = regime_tcr(env, mmu_idx); 11179 uint64_t sctlr; 11180 int tbii, tbid; 11181 11182 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11183 11184 /* Get control bits for tagged addresses. */ 11185 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11186 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11187 11188 DP_TBFLAG_A64(flags, TBII, tbii); 11189 DP_TBFLAG_A64(flags, TBID, tbid); 11190 11191 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11192 int sve_el = sve_exception_el(env, el); 11193 11194 /* 11195 * If either FP or SVE are disabled, translator does not need len. 11196 * If SVE EL > FP EL, FP exception has precedence, and translator 11197 * does not need SVE EL. Save potential re-translations by forcing 11198 * the unneeded data to zero. 11199 */ 11200 if (fp_el != 0) { 11201 if (sve_el > fp_el) { 11202 sve_el = 0; 11203 } 11204 } else if (sve_el == 0) { 11205 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11206 } 11207 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11208 } 11209 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11210 int sme_el = sme_exception_el(env, el); 11211 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11212 11213 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11214 if (sme_el == 0) { 11215 /* Similarly, do not compute SVL if SME is disabled. */ 11216 int svl = sve_vqm1_for_el_sm(env, el, true); 11217 DP_TBFLAG_A64(flags, SVL, svl); 11218 if (sm) { 11219 /* If SVE is disabled, we will not have set VL above. */ 11220 DP_TBFLAG_A64(flags, VL, svl); 11221 } 11222 } 11223 if (sm) { 11224 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11225 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11226 } 11227 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11228 } 11229 11230 sctlr = regime_sctlr(env, stage1); 11231 11232 if (sctlr & SCTLR_A) { 11233 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11234 } 11235 11236 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11237 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11238 } 11239 11240 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11241 /* 11242 * In order to save space in flags, we record only whether 11243 * pauth is "inactive", meaning all insns are implemented as 11244 * a nop, or "active" when some action must be performed. 11245 * The decision of which action to take is left to a helper. 11246 */ 11247 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11248 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11249 } 11250 } 11251 11252 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11253 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11254 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11255 DP_TBFLAG_A64(flags, BT, 1); 11256 } 11257 } 11258 11259 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11260 if (!(env->pstate & PSTATE_UAO)) { 11261 switch (mmu_idx) { 11262 case ARMMMUIdx_E10_1: 11263 case ARMMMUIdx_E10_1_PAN: 11264 /* TODO: ARMv8.3-NV */ 11265 DP_TBFLAG_A64(flags, UNPRIV, 1); 11266 break; 11267 case ARMMMUIdx_E20_2: 11268 case ARMMMUIdx_E20_2_PAN: 11269 /* 11270 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11271 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11272 */ 11273 if (env->cp15.hcr_el2 & HCR_TGE) { 11274 DP_TBFLAG_A64(flags, UNPRIV, 1); 11275 } 11276 break; 11277 default: 11278 break; 11279 } 11280 } 11281 11282 if (env->pstate & PSTATE_IL) { 11283 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11284 } 11285 11286 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11287 /* 11288 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11289 * if all accesses must be Unchecked: 11290 * 1) If no TBI, then there are no tags in the address to check, 11291 * 2) If Tag Check Override, then all accesses are Unchecked, 11292 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11293 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11294 */ 11295 if (allocation_tag_access_enabled(env, el, sctlr)) { 11296 DP_TBFLAG_A64(flags, ATA, 1); 11297 if (tbid 11298 && !(env->pstate & PSTATE_TCO) 11299 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11300 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11301 } 11302 } 11303 /* And again for unprivileged accesses, if required. */ 11304 if (EX_TBFLAG_A64(flags, UNPRIV) 11305 && tbid 11306 && !(env->pstate & PSTATE_TCO) 11307 && (sctlr & SCTLR_TCF0) 11308 && allocation_tag_access_enabled(env, 0, sctlr)) { 11309 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11310 } 11311 /* Cache TCMA as well as TBI. */ 11312 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11313 } 11314 11315 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11316 } 11317 11318 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11319 { 11320 int el = arm_current_el(env); 11321 int fp_el = fp_exception_el(env, el); 11322 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11323 11324 if (is_a64(env)) { 11325 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11326 } else if (arm_feature(env, ARM_FEATURE_M)) { 11327 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11328 } else { 11329 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11330 } 11331 } 11332 11333 void arm_rebuild_hflags(CPUARMState *env) 11334 { 11335 env->hflags = rebuild_hflags_internal(env); 11336 } 11337 11338 /* 11339 * If we have triggered a EL state change we can't rely on the 11340 * translator having passed it to us, we need to recompute. 11341 */ 11342 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11343 { 11344 int el = arm_current_el(env); 11345 int fp_el = fp_exception_el(env, el); 11346 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11347 11348 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11349 } 11350 11351 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11352 { 11353 int fp_el = fp_exception_el(env, el); 11354 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11355 11356 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11357 } 11358 11359 /* 11360 * If we have triggered a EL state change we can't rely on the 11361 * translator having passed it to us, we need to recompute. 11362 */ 11363 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11364 { 11365 int el = arm_current_el(env); 11366 int fp_el = fp_exception_el(env, el); 11367 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11368 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11369 } 11370 11371 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11372 { 11373 int fp_el = fp_exception_el(env, el); 11374 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11375 11376 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11377 } 11378 11379 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11380 { 11381 int fp_el = fp_exception_el(env, el); 11382 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11383 11384 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11385 } 11386 11387 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11388 { 11389 #ifdef CONFIG_DEBUG_TCG 11390 CPUARMTBFlags c = env->hflags; 11391 CPUARMTBFlags r = rebuild_hflags_internal(env); 11392 11393 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11394 fprintf(stderr, "TCG hflags mismatch " 11395 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11396 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11397 c.flags, c.flags2, r.flags, r.flags2); 11398 abort(); 11399 } 11400 #endif 11401 } 11402 11403 static bool mve_no_pred(CPUARMState *env) 11404 { 11405 /* 11406 * Return true if there is definitely no predication of MVE 11407 * instructions by VPR or LTPSIZE. (Returning false even if there 11408 * isn't any predication is OK; generated code will just be 11409 * a little worse.) 11410 * If the CPU does not implement MVE then this TB flag is always 0. 11411 * 11412 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11413 * logic in gen_update_fp_context() needs to be updated to match. 11414 * 11415 * We do not include the effect of the ECI bits here -- they are 11416 * tracked in other TB flags. This simplifies the logic for 11417 * "when did we emit code that changes the MVE_NO_PRED TB flag 11418 * and thus need to end the TB?". 11419 */ 11420 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11421 return false; 11422 } 11423 if (env->v7m.vpr) { 11424 return false; 11425 } 11426 if (env->v7m.ltpsize < 4) { 11427 return false; 11428 } 11429 return true; 11430 } 11431 11432 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11433 target_ulong *cs_base, uint32_t *pflags) 11434 { 11435 CPUARMTBFlags flags; 11436 11437 assert_hflags_rebuild_correctly(env); 11438 flags = env->hflags; 11439 11440 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11441 *pc = env->pc; 11442 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11443 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11444 } 11445 } else { 11446 *pc = env->regs[15]; 11447 11448 if (arm_feature(env, ARM_FEATURE_M)) { 11449 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11450 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11451 != env->v7m.secure) { 11452 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11453 } 11454 11455 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11456 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11457 (env->v7m.secure && 11458 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11459 /* 11460 * ASPEN is set, but FPCA/SFPA indicate that there is no 11461 * active FP context; we must create a new FP context before 11462 * executing any FP insn. 11463 */ 11464 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11465 } 11466 11467 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11468 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11469 DP_TBFLAG_M32(flags, LSPACT, 1); 11470 } 11471 11472 if (mve_no_pred(env)) { 11473 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11474 } 11475 } else { 11476 /* 11477 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11478 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11479 */ 11480 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11481 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11482 } else { 11483 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11484 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11485 } 11486 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11487 DP_TBFLAG_A32(flags, VFPEN, 1); 11488 } 11489 } 11490 11491 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11492 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11493 } 11494 11495 /* 11496 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11497 * states defined in the ARM ARM for software singlestep: 11498 * SS_ACTIVE PSTATE.SS State 11499 * 0 x Inactive (the TB flag for SS is always 0) 11500 * 1 0 Active-pending 11501 * 1 1 Active-not-pending 11502 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11503 */ 11504 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11505 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11506 } 11507 11508 *pflags = flags.flags; 11509 *cs_base = flags.flags2; 11510 } 11511 11512 #ifdef TARGET_AARCH64 11513 /* 11514 * The manual says that when SVE is enabled and VQ is widened the 11515 * implementation is allowed to zero the previously inaccessible 11516 * portion of the registers. The corollary to that is that when 11517 * SVE is enabled and VQ is narrowed we are also allowed to zero 11518 * the now inaccessible portion of the registers. 11519 * 11520 * The intent of this is that no predicate bit beyond VQ is ever set. 11521 * Which means that some operations on predicate registers themselves 11522 * may operate on full uint64_t or even unrolled across the maximum 11523 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11524 * may well be cheaper than conditionals to restrict the operation 11525 * to the relevant portion of a uint16_t[16]. 11526 */ 11527 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11528 { 11529 int i, j; 11530 uint64_t pmask; 11531 11532 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11533 assert(vq <= env_archcpu(env)->sve_max_vq); 11534 11535 /* Zap the high bits of the zregs. */ 11536 for (i = 0; i < 32; i++) { 11537 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11538 } 11539 11540 /* Zap the high bits of the pregs and ffr. */ 11541 pmask = 0; 11542 if (vq & 3) { 11543 pmask = ~(-1ULL << (16 * (vq & 3))); 11544 } 11545 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11546 for (i = 0; i < 17; ++i) { 11547 env->vfp.pregs[i].p[j] &= pmask; 11548 } 11549 pmask = 0; 11550 } 11551 } 11552 11553 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11554 { 11555 int exc_el; 11556 11557 if (sm) { 11558 exc_el = sme_exception_el(env, el); 11559 } else { 11560 exc_el = sve_exception_el(env, el); 11561 } 11562 if (exc_el) { 11563 return 0; /* disabled */ 11564 } 11565 return sve_vqm1_for_el_sm(env, el, sm); 11566 } 11567 11568 /* 11569 * Notice a change in SVE vector size when changing EL. 11570 */ 11571 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11572 int new_el, bool el0_a64) 11573 { 11574 ARMCPU *cpu = env_archcpu(env); 11575 int old_len, new_len; 11576 bool old_a64, new_a64, sm; 11577 11578 /* Nothing to do if no SVE. */ 11579 if (!cpu_isar_feature(aa64_sve, cpu)) { 11580 return; 11581 } 11582 11583 /* Nothing to do if FP is disabled in either EL. */ 11584 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11585 return; 11586 } 11587 11588 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11589 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11590 11591 /* 11592 * Both AArch64.TakeException and AArch64.ExceptionReturn 11593 * invoke ResetSVEState when taking an exception from, or 11594 * returning to, AArch32 state when PSTATE.SM is enabled. 11595 */ 11596 sm = FIELD_EX64(env->svcr, SVCR, SM); 11597 if (old_a64 != new_a64 && sm) { 11598 arm_reset_sve_state(env); 11599 return; 11600 } 11601 11602 /* 11603 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11604 * at ELx, or not available because the EL is in AArch32 state, then 11605 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11606 * has an effective value of 0". 11607 * 11608 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11609 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11610 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11611 * we already have the correct register contents when encountering the 11612 * vq0->vq0 transition between EL0->EL1. 11613 */ 11614 old_len = new_len = 0; 11615 if (old_a64) { 11616 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11617 } 11618 if (new_a64) { 11619 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11620 } 11621 11622 /* When changing vector length, clear inaccessible state. */ 11623 if (new_len < old_len) { 11624 aarch64_sve_narrow_vq(env, new_len + 1); 11625 } 11626 } 11627 #endif 11628