1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "qemu/range.h" 29 #include "qapi/qapi-commands-machine-target.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "arm_ldst.h" 34 #include "exec/cpu_ldst.h" 35 #endif 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 #ifndef CONFIG_USER_ONLY 40 41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 42 MMUAccessType access_type, ARMMMUIdx mmu_idx, 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 44 target_ulong *page_size_ptr, 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 46 #endif 47 48 static void switch_mode(CPUARMState *env, int mode); 49 50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 51 { 52 int nregs; 53 54 /* VFP data registers are always little-endian. */ 55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 56 if (reg < nregs) { 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 58 return 8; 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 stq_le_p(buf, q[0]); 66 stq_le_p(buf + 8, q[1]); 67 return 16; 68 } 69 } 70 switch (reg - nregs) { 71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 int nregs; 81 82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 /* 128 bit FP register */ 109 { 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 stq_le_p(buf, q[0]); 112 stq_le_p(buf + 8, q[1]); 113 return 16; 114 } 115 case 32: 116 /* FPSR */ 117 stl_p(buf, vfp_get_fpsr(env)); 118 return 4; 119 case 33: 120 /* FPCR */ 121 stl_p(buf, vfp_get_fpcr(env)); 122 return 4; 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 212 { 213 ARMCPU *cpu = env_archcpu(env); 214 const ARMCPRegInfo *ri; 215 uint32_t key; 216 217 key = cpu->dyn_xml.cpregs_keys[reg]; 218 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 219 if (ri) { 220 if (cpreg_field_is_64bit(ri)) { 221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 222 } else { 223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 224 } 225 } 226 return 0; 227 } 228 229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 230 { 231 return 0; 232 } 233 234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 235 { 236 /* Return true if the regdef would cause an assertion if you called 237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 238 * program bug for it not to have the NO_RAW flag). 239 * NB that returning false here doesn't necessarily mean that calling 240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 241 * read/write access functions which are safe for raw use" from "has 242 * read/write access functions which have side effects but has forgotten 243 * to provide raw access functions". 244 * The tests here line up with the conditions in read/write_raw_cp_reg() 245 * and assertions in raw_read()/raw_write(). 246 */ 247 if ((ri->type & ARM_CP_CONST) || 248 ri->fieldoffset || 249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 250 return false; 251 } 252 return true; 253 } 254 255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 256 { 257 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 258 int i; 259 bool ok = true; 260 261 for (i = 0; i < cpu->cpreg_array_len; i++) { 262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 263 const ARMCPRegInfo *ri; 264 uint64_t newval; 265 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 267 if (!ri) { 268 ok = false; 269 continue; 270 } 271 if (ri->type & ARM_CP_NO_RAW) { 272 continue; 273 } 274 275 newval = read_raw_cp_reg(&cpu->env, ri); 276 if (kvm_sync) { 277 /* 278 * Only sync if the previous list->cpustate sync succeeded. 279 * Rather than tracking the success/failure state for every 280 * item in the list, we just recheck "does the raw write we must 281 * have made in write_list_to_cpustate() read back OK" here. 282 */ 283 uint64_t oldval = cpu->cpreg_values[i]; 284 285 if (oldval == newval) { 286 continue; 287 } 288 289 write_raw_cp_reg(&cpu->env, ri, oldval); 290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 291 continue; 292 } 293 294 write_raw_cp_reg(&cpu->env, ri, newval); 295 } 296 cpu->cpreg_values[i] = newval; 297 } 298 return ok; 299 } 300 301 bool write_list_to_cpustate(ARMCPU *cpu) 302 { 303 int i; 304 bool ok = true; 305 306 for (i = 0; i < cpu->cpreg_array_len; i++) { 307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 308 uint64_t v = cpu->cpreg_values[i]; 309 const ARMCPRegInfo *ri; 310 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 312 if (!ri) { 313 ok = false; 314 continue; 315 } 316 if (ri->type & ARM_CP_NO_RAW) { 317 continue; 318 } 319 /* Write value and confirm it reads back as written 320 * (to catch read-only registers and partially read-only 321 * registers where the incoming migration value doesn't match) 322 */ 323 write_raw_cp_reg(&cpu->env, ri, v); 324 if (read_raw_cp_reg(&cpu->env, ri) != v) { 325 ok = false; 326 } 327 } 328 return ok; 329 } 330 331 static void add_cpreg_to_list(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 342 /* The value array need not be initialized at this point */ 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static void count_cpreg(gpointer key, gpointer opaque) 348 { 349 ARMCPU *cpu = opaque; 350 uint64_t regidx; 351 const ARMCPRegInfo *ri; 352 353 regidx = *(uint32_t *)key; 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 355 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 357 cpu->cpreg_array_len++; 358 } 359 } 360 361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 362 { 363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 365 366 if (aidx > bidx) { 367 return 1; 368 } 369 if (aidx < bidx) { 370 return -1; 371 } 372 return 0; 373 } 374 375 void init_cpreg_list(ARMCPU *cpu) 376 { 377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 378 * Note that we require cpreg_tuples[] to be sorted by key ID. 379 */ 380 GList *keys; 381 int arraylen; 382 383 keys = g_hash_table_get_keys(cpu->cp_regs); 384 keys = g_list_sort(keys, cpreg_key_compare); 385 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, count_cpreg, cpu); 389 390 arraylen = cpu->cpreg_array_len; 391 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 392 cpu->cpreg_values = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 396 cpu->cpreg_array_len = 0; 397 398 g_list_foreach(keys, add_cpreg_to_list, cpu); 399 400 assert(cpu->cpreg_array_len == arraylen); 401 402 g_list_free(keys); 403 } 404 405 /* 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 408 * 409 * access_el3_aa32ns: Used to check AArch32 register views. 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 411 */ 412 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 413 const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 bool secure = arm_is_secure_below_el3(env); 417 418 assert(!arm_el_is_aa64(env, 3)); 419 if (secure) { 420 return CP_ACCESS_TRAP_UNCATEGORIZED; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (!arm_el_is_aa64(env, 3)) { 430 return access_el3_aa32ns(env, ri, isread); 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Some secure-only AArch32 registers trap to EL3 if used from 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 438 * We assume that the .access field is set to PL1_RW. 439 */ 440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 441 const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 3) { 445 return CP_ACCESS_OK; 446 } 447 if (arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL3; 449 } 450 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 451 return CP_ACCESS_TRAP_UNCATEGORIZED; 452 } 453 454 /* Check for traps to "powerdown debug" registers, which are controlled 455 * by MDCR.TDOSA 456 */ 457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 462 (env->cp15.mdcr_el2 & MDCR_TDE) || 463 (arm_hcr_el2_eff(env) & HCR_TGE); 464 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to "debug ROM" registers, which are controlled 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 482 (env->cp15.mdcr_el2 & MDCR_TDE) || 483 (arm_hcr_el2_eff(env) & HCR_TGE); 484 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 486 return CP_ACCESS_TRAP_EL2; 487 } 488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 489 return CP_ACCESS_TRAP_EL3; 490 } 491 return CP_ACCESS_OK; 492 } 493 494 /* Check for traps to general debug registers, which are controlled 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 496 */ 497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 498 bool isread) 499 { 500 int el = arm_current_el(env); 501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 502 (env->cp15.mdcr_el2 & MDCR_TDE) || 503 (arm_hcr_el2_eff(env) & HCR_TGE); 504 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 506 return CP_ACCESS_TRAP_EL2; 507 } 508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 509 return CP_ACCESS_TRAP_EL3; 510 } 511 return CP_ACCESS_OK; 512 } 513 514 /* Check for traps to performance monitor registers, which are controlled 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 516 */ 517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 518 bool isread) 519 { 520 int el = arm_current_el(env); 521 522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 523 && !arm_is_secure_below_el3(env)) { 524 return CP_ACCESS_TRAP_EL2; 525 } 526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 527 return CP_ACCESS_TRAP_EL3; 528 } 529 return CP_ACCESS_OK; 530 } 531 532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 533 { 534 ARMCPU *cpu = env_archcpu(env); 535 536 raw_write(env, ri, value); 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 538 } 539 540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 541 { 542 ARMCPU *cpu = env_archcpu(env); 543 544 if (raw_read(env, ri) != value) { 545 /* Unlike real hardware the qemu TLB uses virtual addresses, 546 * not modified virtual addresses, so this causes a TLB flush. 547 */ 548 tlb_flush(CPU(cpu)); 549 raw_write(env, ri, value); 550 } 551 } 552 553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 ARMCPU *cpu = env_archcpu(env); 557 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 559 && !extended_addresses_enabled(env)) { 560 /* For VMSA (when not using the LPAE long descriptor page table 561 * format) this register includes the ASID, so do a TLB flush. 562 * For PMSA it is purely a process ID and no action is needed. 563 */ 564 tlb_flush(CPU(cpu)); 565 } 566 raw_write(env, ri, value); 567 } 568 569 /* IS variants of TLB operations must affect all cores */ 570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_all_cpus_synced(cs); 576 } 577 578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_all_cpus_synced(cs); 584 } 585 586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 592 } 593 594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 600 } 601 602 /* 603 * Non-IS variants of TLB operations are upgraded to 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 605 * force broadcast of these operations. 606 */ 607 static bool tlb_force_broadcast(CPUARMState *env) 608 { 609 return (env->cp15.hcr_el2 & HCR_FB) && 610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 611 } 612 613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 /* Invalidate all (TLBIALL) */ 617 ARMCPU *cpu = env_archcpu(env); 618 619 if (tlb_force_broadcast(env)) { 620 tlbiall_is_write(env, NULL, value); 621 return; 622 } 623 624 tlb_flush(CPU(cpu)); 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 ARMCPU *cpu = env_archcpu(env); 632 633 if (tlb_force_broadcast(env)) { 634 tlbimva_is_write(env, NULL, value); 635 return; 636 } 637 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 ARMCPU *cpu = env_archcpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlbiasid_is_write(env, NULL, value); 649 return; 650 } 651 652 tlb_flush(CPU(cpu)); 653 } 654 655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 659 ARMCPU *cpu = env_archcpu(env); 660 661 if (tlb_force_broadcast(env)) { 662 tlbimvaa_is_write(env, NULL, value); 663 return; 664 } 665 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 667 } 668 669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = env_cpu(env); 673 674 tlb_flush_by_mmuidx(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_S12NSE1 | 687 ARMMMUIdxBit_S12NSE0 | 688 ARMMMUIdxBit_S2NS); 689 } 690 691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 /* Invalidate by IPA. This has to invalidate any structures that 695 * contain only stage 2 translation information, but does not need 696 * to apply to structures that contain combined stage 1 and stage 2 697 * translation information. 698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 699 */ 700 CPUState *cs = env_cpu(env); 701 uint64_t pageaddr; 702 703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 704 return; 705 } 706 707 pageaddr = sextract64(value << 12, 0, 40); 708 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 710 } 711 712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 uint64_t pageaddr; 717 718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 719 return; 720 } 721 722 pageaddr = sextract64(value << 12, 0, 40); 723 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 725 ARMMMUIdxBit_S2NS); 726 } 727 728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 734 } 735 736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 742 } 743 744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 745 uint64_t value) 746 { 747 CPUState *cs = env_cpu(env); 748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 749 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 758 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 760 ARMMMUIdxBit_S1E2); 761 } 762 763 static const ARMCPRegInfo cp_reginfo[] = { 764 /* Define the secure and non-secure FCSE identifier CP registers 765 * separately because there is no secure bank in V8 (no _EL3). This allows 766 * the secure register to be properly reset and migrated. There is also no 767 * v8 EL1 version of the register so the non-secure instance stands alone. 768 */ 769 { .name = "FCSEIDR", 770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 774 { .name = "FCSEIDR_S", 775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 779 /* Define the secure and non-secure context identifier CP registers 780 * separately because there is no secure bank in V8 (no _EL3). This allows 781 * the secure register to be properly reset and migrated. In the 782 * non-secure case, the 32-bit register will have reset and migration 783 * disabled during registration as it is handled by the 64-bit instance. 784 */ 785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 795 REGINFO_SENTINEL 796 }; 797 798 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 799 /* NB: Some of these registers exist in v8 but with more precise 800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 801 */ 802 /* MMU Domain access control / MPU write buffer control */ 803 { .name = "DACR", 804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 805 .access = PL1_RW, .resetvalue = 0, 806 .writefn = dacr_write, .raw_writefn = raw_write, 807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 808 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 810 * For v6 and v5, these mappings are overly broad. 811 */ 812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 820 /* Cache maintenance ops; some of this space may be overridden later. */ 821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 824 REGINFO_SENTINEL 825 }; 826 827 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 828 /* Not all pre-v6 cores implemented this WFI, so this is slightly 829 * over-broad. 830 */ 831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 832 .access = PL1_W, .type = ARM_CP_WFI }, 833 REGINFO_SENTINEL 834 }; 835 836 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 838 * is UNPREDICTABLE; we choose to NOP as most implementations do). 839 */ 840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 841 .access = PL1_W, .type = ARM_CP_WFI }, 842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 844 * OMAPCP will override this space. 845 */ 846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 848 .resetvalue = 0 }, 849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 851 .resetvalue = 0 }, 852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 855 .resetvalue = 0 }, 856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 857 * implementing it as RAZ means the "debug architecture version" bits 858 * will read as a reserved value, which should cause Linux to not try 859 * to use the debug hardware. 860 */ 861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 863 /* MMU TLB control. Note that the wildcarding means we cover not just 864 * the unified TLB ops but also the dside/iside/inner-shareable variants. 865 */ 866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 868 .type = ARM_CP_NO_RAW }, 869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 871 .type = ARM_CP_NO_RAW }, 872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 874 .type = ARM_CP_NO_RAW }, 875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 877 .type = ARM_CP_NO_RAW }, 878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 882 REGINFO_SENTINEL 883 }; 884 885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 886 uint64_t value) 887 { 888 uint32_t mask = 0; 889 890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 891 if (!arm_feature(env, ARM_FEATURE_V8)) { 892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 895 */ 896 if (arm_feature(env, ARM_FEATURE_VFP)) { 897 /* VFP coprocessor: cp10 & cp11 [23:20] */ 898 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 899 900 if (!arm_feature(env, ARM_FEATURE_NEON)) { 901 /* ASEDIS [31] bit is RAO/WI */ 902 value |= (1 << 31); 903 } 904 905 /* VFPv3 and upwards with NEON implement 32 double precision 906 * registers (D0-D31). 907 */ 908 if (!arm_feature(env, ARM_FEATURE_NEON) || 909 !arm_feature(env, ARM_FEATURE_VFP3)) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x10 1020 #define PMCRD 0x8 1021 #define PMCRC 0x4 1022 #define PMCRP 0x2 1023 #define PMCRE 0x1 1024 1025 #define PMXEVTYPER_P 0x80000000 1026 #define PMXEVTYPER_U 0x40000000 1027 #define PMXEVTYPER_NSK 0x20000000 1028 #define PMXEVTYPER_NSU 0x10000000 1029 #define PMXEVTYPER_NSH 0x08000000 1030 #define PMXEVTYPER_M 0x04000000 1031 #define PMXEVTYPER_MT 0x02000000 1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1035 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1036 PMXEVTYPER_EVTCOUNT) 1037 1038 #define PMCCFILTR 0xf8000000 1039 #define PMCCFILTR_M PMXEVTYPER_M 1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1041 1042 static inline uint32_t pmu_num_counters(CPUARMState *env) 1043 { 1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1045 } 1046 1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1048 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1049 { 1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1051 } 1052 1053 typedef struct pm_event { 1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1056 bool (*supported)(CPUARMState *); 1057 /* 1058 * Retrieve the current count of the underlying event. The programmed 1059 * counters hold a difference from the return value from this function 1060 */ 1061 uint64_t (*get_count)(CPUARMState *); 1062 /* 1063 * Return how many nanoseconds it will take (at a minimum) for count events 1064 * to occur. A negative value indicates the counter will never overflow, or 1065 * that the counter has otherwise arranged for the overflow bit to be set 1066 * and the PMU interrupt to be raised on overflow. 1067 */ 1068 int64_t (*ns_per_count)(uint64_t); 1069 } pm_event; 1070 1071 static bool event_always_supported(CPUARMState *env) 1072 { 1073 return true; 1074 } 1075 1076 static uint64_t swinc_get_count(CPUARMState *env) 1077 { 1078 /* 1079 * SW_INCR events are written directly to the pmevcntr's by writes to 1080 * PMSWINC, so there is no underlying count maintained by the PMU itself 1081 */ 1082 return 0; 1083 } 1084 1085 static int64_t swinc_ns_per(uint64_t ignored) 1086 { 1087 return -1; 1088 } 1089 1090 /* 1091 * Return the underlying cycle count for the PMU cycle counters. If we're in 1092 * usermode, simply return 0. 1093 */ 1094 static uint64_t cycles_get_count(CPUARMState *env) 1095 { 1096 #ifndef CONFIG_USER_ONLY 1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1099 #else 1100 return cpu_get_host_ticks(); 1101 #endif 1102 } 1103 1104 #ifndef CONFIG_USER_ONLY 1105 static int64_t cycles_ns_per(uint64_t cycles) 1106 { 1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1108 } 1109 1110 static bool instructions_supported(CPUARMState *env) 1111 { 1112 return use_icount == 1 /* Precise instruction counting */; 1113 } 1114 1115 static uint64_t instructions_get_count(CPUARMState *env) 1116 { 1117 return (uint64_t)cpu_get_icount_raw(); 1118 } 1119 1120 static int64_t instructions_ns_per(uint64_t icount) 1121 { 1122 return cpu_icount_to_ns((int64_t)icount); 1123 } 1124 #endif 1125 1126 static const pm_event pm_events[] = { 1127 { .number = 0x000, /* SW_INCR */ 1128 .supported = event_always_supported, 1129 .get_count = swinc_get_count, 1130 .ns_per_count = swinc_ns_per, 1131 }, 1132 #ifndef CONFIG_USER_ONLY 1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1134 .supported = instructions_supported, 1135 .get_count = instructions_get_count, 1136 .ns_per_count = instructions_ns_per, 1137 }, 1138 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1139 .supported = event_always_supported, 1140 .get_count = cycles_get_count, 1141 .ns_per_count = cycles_ns_per, 1142 } 1143 #endif 1144 }; 1145 1146 /* 1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1148 * events (i.e. the statistical profiling extension), this implementation 1149 * should first be updated to something sparse instead of the current 1150 * supported_event_map[] array. 1151 */ 1152 #define MAX_EVENT_ID 0x11 1153 #define UNSUPPORTED_EVENT UINT16_MAX 1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1155 1156 /* 1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1158 * of ARM event numbers to indices in our pm_events array. 1159 * 1160 * Note: Events in the 0x40XX range are not currently supported. 1161 */ 1162 void pmu_init(ARMCPU *cpu) 1163 { 1164 unsigned int i; 1165 1166 /* 1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1168 * events to them 1169 */ 1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1171 supported_event_map[i] = UNSUPPORTED_EVENT; 1172 } 1173 cpu->pmceid0 = 0; 1174 cpu->pmceid1 = 0; 1175 1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1177 const pm_event *cnt = &pm_events[i]; 1178 assert(cnt->number <= MAX_EVENT_ID); 1179 /* We do not currently support events in the 0x40xx range */ 1180 assert(cnt->number <= 0x3f); 1181 1182 if (cnt->supported(&cpu->env)) { 1183 supported_event_map[cnt->number] = i; 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1185 if (cnt->number & 0x20) { 1186 cpu->pmceid1 |= event_mask; 1187 } else { 1188 cpu->pmceid0 |= event_mask; 1189 } 1190 } 1191 } 1192 } 1193 1194 /* 1195 * Check at runtime whether a PMU event is supported for the current machine 1196 */ 1197 static bool event_supported(uint16_t number) 1198 { 1199 if (number > MAX_EVENT_ID) { 1200 return false; 1201 } 1202 return supported_event_map[number] != UNSUPPORTED_EVENT; 1203 } 1204 1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1206 bool isread) 1207 { 1208 /* Performance monitor registers user accessibility is controlled 1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1210 * trapping to EL2 or EL3 for other accesses. 1211 */ 1212 int el = arm_current_el(env); 1213 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1215 return CP_ACCESS_TRAP; 1216 } 1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1218 && !arm_is_secure_below_el3(env)) { 1219 return CP_ACCESS_TRAP_EL2; 1220 } 1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1222 return CP_ACCESS_TRAP_EL3; 1223 } 1224 1225 return CP_ACCESS_OK; 1226 } 1227 1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1229 const ARMCPRegInfo *ri, 1230 bool isread) 1231 { 1232 /* ER: event counter read trap control */ 1233 if (arm_feature(env, ARM_FEATURE_V8) 1234 && arm_current_el(env) == 0 1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1236 && isread) { 1237 return CP_ACCESS_OK; 1238 } 1239 1240 return pmreg_access(env, ri, isread); 1241 } 1242 1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1244 const ARMCPRegInfo *ri, 1245 bool isread) 1246 { 1247 /* SW: software increment write trap control */ 1248 if (arm_feature(env, ARM_FEATURE_V8) 1249 && arm_current_el(env) == 0 1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1251 && !isread) { 1252 return CP_ACCESS_OK; 1253 } 1254 1255 return pmreg_access(env, ri, isread); 1256 } 1257 1258 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1259 const ARMCPRegInfo *ri, 1260 bool isread) 1261 { 1262 /* ER: event counter read trap control */ 1263 if (arm_feature(env, ARM_FEATURE_V8) 1264 && arm_current_el(env) == 0 1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1266 return CP_ACCESS_OK; 1267 } 1268 1269 return pmreg_access(env, ri, isread); 1270 } 1271 1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1273 const ARMCPRegInfo *ri, 1274 bool isread) 1275 { 1276 /* CR: cycle counter read trap control */ 1277 if (arm_feature(env, ARM_FEATURE_V8) 1278 && arm_current_el(env) == 0 1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1280 && isread) { 1281 return CP_ACCESS_OK; 1282 } 1283 1284 return pmreg_access(env, ri, isread); 1285 } 1286 1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1288 * the current EL, security state, and register configuration. 1289 */ 1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1291 { 1292 uint64_t filter; 1293 bool e, p, u, nsk, nsu, nsh, m; 1294 bool enabled, prohibited, filtered; 1295 bool secure = arm_is_secure(env); 1296 int el = arm_current_el(env); 1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1298 1299 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1300 return false; 1301 } 1302 1303 if (!arm_feature(env, ARM_FEATURE_EL2) || 1304 (counter < hpmn || counter == 31)) { 1305 e = env->cp15.c9_pmcr & PMCRE; 1306 } else { 1307 e = env->cp15.mdcr_el2 & MDCR_HPME; 1308 } 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1310 1311 if (!secure) { 1312 if (el == 2 && (counter < hpmn || counter == 31)) { 1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1314 } else { 1315 prohibited = false; 1316 } 1317 } else { 1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1319 (env->cp15.mdcr_el3 & MDCR_SPME); 1320 } 1321 1322 if (prohibited && counter == 31) { 1323 prohibited = env->cp15.c9_pmcr & PMCRDP; 1324 } 1325 1326 if (counter == 31) { 1327 filter = env->cp15.pmccfiltr_el0; 1328 } else { 1329 filter = env->cp15.c14_pmevtyper[counter]; 1330 } 1331 1332 p = filter & PMXEVTYPER_P; 1333 u = filter & PMXEVTYPER_U; 1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1337 m = arm_el_is_aa64(env, 1) && 1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1339 1340 if (el == 0) { 1341 filtered = secure ? u : u != nsu; 1342 } else if (el == 1) { 1343 filtered = secure ? p : p != nsk; 1344 } else if (el == 2) { 1345 filtered = !nsh; 1346 } else { /* EL3 */ 1347 filtered = m != p; 1348 } 1349 1350 if (counter != 31) { 1351 /* 1352 * If not checking PMCCNTR, ensure the counter is setup to an event we 1353 * support 1354 */ 1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1356 if (!event_supported(event)) { 1357 return false; 1358 } 1359 } 1360 1361 return enabled && !prohibited && !filtered; 1362 } 1363 1364 static void pmu_update_irq(CPUARMState *env) 1365 { 1366 ARMCPU *cpu = env_archcpu(env); 1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1369 } 1370 1371 /* 1372 * Ensure c15_ccnt is the guest-visible count so that operations such as 1373 * enabling/disabling the counter or filtering, modifying the count itself, 1374 * etc. can be done logically. This is essentially a no-op if the counter is 1375 * not enabled at the time of the call. 1376 */ 1377 static void pmccntr_op_start(CPUARMState *env) 1378 { 1379 uint64_t cycles = cycles_get_count(env); 1380 1381 if (pmu_counter_enabled(env, 31)) { 1382 uint64_t eff_cycles = cycles; 1383 if (env->cp15.c9_pmcr & PMCRD) { 1384 /* Increment once every 64 processor clock cycles */ 1385 eff_cycles /= 64; 1386 } 1387 1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1389 1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1391 1ull << 63 : 1ull << 31; 1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1393 env->cp15.c9_pmovsr |= (1 << 31); 1394 pmu_update_irq(env); 1395 } 1396 1397 env->cp15.c15_ccnt = new_pmccntr; 1398 } 1399 env->cp15.c15_ccnt_delta = cycles; 1400 } 1401 1402 /* 1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1405 * pmccntr_op_start. 1406 */ 1407 static void pmccntr_op_finish(CPUARMState *env) 1408 { 1409 if (pmu_counter_enabled(env, 31)) { 1410 #ifndef CONFIG_USER_ONLY 1411 /* Calculate when the counter will next overflow */ 1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1413 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1414 remaining_cycles = (uint32_t)remaining_cycles; 1415 } 1416 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1417 1418 if (overflow_in > 0) { 1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1420 overflow_in; 1421 ARMCPU *cpu = env_archcpu(env); 1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1423 } 1424 #endif 1425 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1427 if (env->cp15.c9_pmcr & PMCRD) { 1428 /* Increment once every 64 processor clock cycles */ 1429 prev_cycles /= 64; 1430 } 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1432 } 1433 } 1434 1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1436 { 1437 1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1439 uint64_t count = 0; 1440 if (event_supported(event)) { 1441 uint16_t event_idx = supported_event_map[event]; 1442 count = pm_events[event_idx].get_count(env); 1443 } 1444 1445 if (pmu_counter_enabled(env, counter)) { 1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1447 1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1449 env->cp15.c9_pmovsr |= (1 << counter); 1450 pmu_update_irq(env); 1451 } 1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1453 } 1454 env->cp15.c14_pmevcntr_delta[counter] = count; 1455 } 1456 1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1458 { 1459 if (pmu_counter_enabled(env, counter)) { 1460 #ifndef CONFIG_USER_ONLY 1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1462 uint16_t event_idx = supported_event_map[event]; 1463 uint64_t delta = UINT32_MAX - 1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1466 1467 if (overflow_in > 0) { 1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1469 overflow_in; 1470 ARMCPU *cpu = env_archcpu(env); 1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1472 } 1473 #endif 1474 1475 env->cp15.c14_pmevcntr_delta[counter] -= 1476 env->cp15.c14_pmevcntr[counter]; 1477 } 1478 } 1479 1480 void pmu_op_start(CPUARMState *env) 1481 { 1482 unsigned int i; 1483 pmccntr_op_start(env); 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 pmevcntr_op_start(env, i); 1486 } 1487 } 1488 1489 void pmu_op_finish(CPUARMState *env) 1490 { 1491 unsigned int i; 1492 pmccntr_op_finish(env); 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 pmevcntr_op_finish(env, i); 1495 } 1496 } 1497 1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1499 { 1500 pmu_op_start(&cpu->env); 1501 } 1502 1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1504 { 1505 pmu_op_finish(&cpu->env); 1506 } 1507 1508 void arm_pmu_timer_cb(void *opaque) 1509 { 1510 ARMCPU *cpu = opaque; 1511 1512 /* 1513 * Update all the counter values based on the current underlying counts, 1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1516 * counter may expire. 1517 */ 1518 pmu_op_start(&cpu->env); 1519 pmu_op_finish(&cpu->env); 1520 } 1521 1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 pmu_op_start(env); 1526 1527 if (value & PMCRC) { 1528 /* The counter has been reset */ 1529 env->cp15.c15_ccnt = 0; 1530 } 1531 1532 if (value & PMCRP) { 1533 unsigned int i; 1534 for (i = 0; i < pmu_num_counters(env); i++) { 1535 env->cp15.c14_pmevcntr[i] = 0; 1536 } 1537 } 1538 1539 /* only the DP, X, D and E bits are writable */ 1540 env->cp15.c9_pmcr &= ~0x39; 1541 env->cp15.c9_pmcr |= (value & 0x39); 1542 1543 pmu_op_finish(env); 1544 } 1545 1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value) 1548 { 1549 unsigned int i; 1550 for (i = 0; i < pmu_num_counters(env); i++) { 1551 /* Increment a counter's count iff: */ 1552 if ((value & (1 << i)) && /* counter's bit is set */ 1553 /* counter is enabled and not filtered */ 1554 pmu_counter_enabled(env, i) && 1555 /* counter is SW_INCR */ 1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1557 pmevcntr_op_start(env, i); 1558 1559 /* 1560 * Detect if this write causes an overflow since we can't predict 1561 * PMSWINC overflows like we can for other events 1562 */ 1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1564 1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1566 env->cp15.c9_pmovsr |= (1 << i); 1567 pmu_update_irq(env); 1568 } 1569 1570 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1571 1572 pmevcntr_op_finish(env, i); 1573 } 1574 } 1575 } 1576 1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1578 { 1579 uint64_t ret; 1580 pmccntr_op_start(env); 1581 ret = env->cp15.c15_ccnt; 1582 pmccntr_op_finish(env); 1583 return ret; 1584 } 1585 1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1592 * accessed. 1593 */ 1594 env->cp15.c9_pmselr = value & 0x1f; 1595 } 1596 1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 pmccntr_op_start(env); 1601 env->cp15.c15_ccnt = value; 1602 pmccntr_op_finish(env); 1603 } 1604 1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint64_t cur_val = pmccntr_read(env, NULL); 1609 1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1611 } 1612 1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1614 uint64_t value) 1615 { 1616 pmccntr_op_start(env); 1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1622 uint64_t value) 1623 { 1624 pmccntr_op_start(env); 1625 /* M is not accessible from AArch32 */ 1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1627 (value & PMCCFILTR); 1628 pmccntr_op_finish(env); 1629 } 1630 1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 /* M is not visible in AArch32 */ 1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1635 } 1636 1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 value &= pmu_counter_mask(env); 1641 env->cp15.c9_pmcnten |= value; 1642 } 1643 1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 value &= pmu_counter_mask(env); 1648 env->cp15.c9_pmcnten &= ~value; 1649 } 1650 1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 value &= pmu_counter_mask(env); 1655 env->cp15.c9_pmovsr &= ~value; 1656 pmu_update_irq(env); 1657 } 1658 1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 value &= pmu_counter_mask(env); 1663 env->cp15.c9_pmovsr |= value; 1664 pmu_update_irq(env); 1665 } 1666 1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value, const uint8_t counter) 1669 { 1670 if (counter == 31) { 1671 pmccfiltr_write(env, ri, value); 1672 } else if (counter < pmu_num_counters(env)) { 1673 pmevcntr_op_start(env, counter); 1674 1675 /* 1676 * If this counter's event type is changing, store the current 1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1678 * pmevcntr_op_finish has the correct baseline when it converts back to 1679 * a delta. 1680 */ 1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1682 PMXEVTYPER_EVTCOUNT; 1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1684 if (old_event != new_event) { 1685 uint64_t count = 0; 1686 if (event_supported(new_event)) { 1687 uint16_t event_idx = supported_event_map[new_event]; 1688 count = pm_events[event_idx].get_count(env); 1689 } 1690 env->cp15.c14_pmevcntr_delta[counter] = count; 1691 } 1692 1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1694 pmevcntr_op_finish(env, counter); 1695 } 1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1697 * PMSELR value is equal to or greater than the number of implemented 1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1699 */ 1700 } 1701 1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1703 const uint8_t counter) 1704 { 1705 if (counter == 31) { 1706 return env->cp15.pmccfiltr_el0; 1707 } else if (counter < pmu_num_counters(env)) { 1708 return env->cp15.c14_pmevtyper[counter]; 1709 } else { 1710 /* 1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1713 */ 1714 return 0; 1715 } 1716 } 1717 1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1722 pmevtyper_write(env, ri, value, counter); 1723 } 1724 1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1729 env->cp15.c14_pmevtyper[counter] = value; 1730 1731 /* 1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1733 * pmu_op_finish calls when loading saved state for a migration. Because 1734 * we're potentially updating the type of event here, the value written to 1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1736 * different counter type. Therefore, we need to set this value to the 1737 * current count for the counter type we're writing so that pmu_op_finish 1738 * has the correct count for its calculation. 1739 */ 1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1741 if (event_supported(event)) { 1742 uint16_t event_idx = supported_event_map[event]; 1743 env->cp15.c14_pmevcntr_delta[counter] = 1744 pm_events[event_idx].get_count(env); 1745 } 1746 } 1747 1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 return pmevtyper_read(env, ri, counter); 1752 } 1753 1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1758 } 1759 1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1763 } 1764 1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 uint64_t value, uint8_t counter) 1767 { 1768 if (counter < pmu_num_counters(env)) { 1769 pmevcntr_op_start(env, counter); 1770 env->cp15.c14_pmevcntr[counter] = value; 1771 pmevcntr_op_finish(env, counter); 1772 } 1773 /* 1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1775 * are CONSTRAINED UNPREDICTABLE. 1776 */ 1777 } 1778 1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint8_t counter) 1781 { 1782 if (counter < pmu_num_counters(env)) { 1783 uint64_t ret; 1784 pmevcntr_op_start(env, counter); 1785 ret = env->cp15.c14_pmevcntr[counter]; 1786 pmevcntr_op_finish(env, counter); 1787 return ret; 1788 } else { 1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1790 * are CONSTRAINED UNPREDICTABLE. */ 1791 return 0; 1792 } 1793 } 1794 1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1799 pmevcntr_write(env, ri, value, counter); 1800 } 1801 1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1805 return pmevcntr_read(env, ri, counter); 1806 } 1807 1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1812 assert(counter < pmu_num_counters(env)); 1813 env->cp15.c14_pmevcntr[counter] = value; 1814 pmevcntr_write(env, ri, value, counter); 1815 } 1816 1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1820 assert(counter < pmu_num_counters(env)); 1821 return env->cp15.c14_pmevcntr[counter]; 1822 } 1823 1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1833 } 1834 1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 if (arm_feature(env, ARM_FEATURE_V8)) { 1839 env->cp15.c9_pmuserenr = value & 0xf; 1840 } else { 1841 env->cp15.c9_pmuserenr = value & 1; 1842 } 1843 } 1844 1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* We have no event counters so only the C bit can be changed */ 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pminten |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 value &= pmu_counter_mask(env); 1858 env->cp15.c9_pminten &= ~value; 1859 pmu_update_irq(env); 1860 } 1861 1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Note that even though the AArch64 view of this register has bits 1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1867 * architectural requirements for bits which are RES0 only in some 1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1870 */ 1871 raw_write(env, ri, value & ~0x1FULL); 1872 } 1873 1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1875 { 1876 /* Begin with base v8.0 state. */ 1877 uint32_t valid_mask = 0x3fff; 1878 ARMCPU *cpu = env_archcpu(env); 1879 1880 if (arm_el_is_aa64(env, 3)) { 1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1882 valid_mask &= ~SCR_NET; 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 } 1886 1887 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1888 valid_mask &= ~SCR_HCE; 1889 1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1891 * supported if EL2 exists. The bit is UNK/SBZP when 1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1893 * when EL2 is unavailable. 1894 * On ARMv8, this bit is always available. 1895 */ 1896 if (arm_feature(env, ARM_FEATURE_V7) && 1897 !arm_feature(env, ARM_FEATURE_V8)) { 1898 valid_mask &= ~SCR_SMD; 1899 } 1900 } 1901 if (cpu_isar_feature(aa64_lor, cpu)) { 1902 valid_mask |= SCR_TLOR; 1903 } 1904 if (cpu_isar_feature(aa64_pauth, cpu)) { 1905 valid_mask |= SCR_API | SCR_APK; 1906 } 1907 1908 /* Clear all-context RES0 bits. */ 1909 value &= valid_mask; 1910 raw_write(env, ri, value); 1911 } 1912 1913 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1914 const ARMCPRegInfo *ri, 1915 bool isread) 1916 { 1917 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1918 return CP_ACCESS_TRAP_EL2; 1919 } 1920 1921 return CP_ACCESS_OK; 1922 } 1923 1924 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1925 { 1926 ARMCPU *cpu = env_archcpu(env); 1927 1928 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1929 * bank 1930 */ 1931 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1932 ri->secure & ARM_CP_SECSTATE_S); 1933 1934 return cpu->ccsidr[index]; 1935 } 1936 1937 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1938 uint64_t value) 1939 { 1940 raw_write(env, ri, value & 0xf); 1941 } 1942 1943 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1944 { 1945 CPUState *cs = env_cpu(env); 1946 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1947 uint64_t ret = 0; 1948 bool allow_virt = (arm_current_el(env) == 1 && 1949 (!arm_is_secure_below_el3(env) || 1950 (env->cp15.scr_el3 & SCR_EEL2))); 1951 1952 if (allow_virt && (hcr_el2 & HCR_IMO)) { 1953 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1954 ret |= CPSR_I; 1955 } 1956 } else { 1957 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1958 ret |= CPSR_I; 1959 } 1960 } 1961 1962 if (allow_virt && (hcr_el2 & HCR_FMO)) { 1963 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1964 ret |= CPSR_F; 1965 } 1966 } else { 1967 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1968 ret |= CPSR_F; 1969 } 1970 } 1971 1972 /* External aborts are not possible in QEMU so A bit is always clear */ 1973 return ret; 1974 } 1975 1976 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1977 bool isread) 1978 { 1979 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1980 return CP_ACCESS_TRAP_EL2; 1981 } 1982 1983 return CP_ACCESS_OK; 1984 } 1985 1986 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1987 bool isread) 1988 { 1989 if (arm_feature(env, ARM_FEATURE_V8)) { 1990 return access_aa64_tid1(env, ri, isread); 1991 } 1992 1993 return CP_ACCESS_OK; 1994 } 1995 1996 static const ARMCPRegInfo v7_cp_reginfo[] = { 1997 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1998 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1999 .access = PL1_W, .type = ARM_CP_NOP }, 2000 /* Performance monitors are implementation defined in v7, 2001 * but with an ARM recommended set of registers, which we 2002 * follow. 2003 * 2004 * Performance registers fall into three categories: 2005 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2006 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2007 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2008 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2009 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2010 */ 2011 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2012 .access = PL0_RW, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2014 .writefn = pmcntenset_write, 2015 .accessfn = pmreg_access, 2016 .raw_writefn = raw_write }, 2017 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2019 .access = PL0_RW, .accessfn = pmreg_access, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2021 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2023 .access = PL0_RW, 2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2025 .accessfn = pmreg_access, 2026 .writefn = pmcntenclr_write, 2027 .type = ARM_CP_ALIAS }, 2028 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2030 .access = PL0_RW, .accessfn = pmreg_access, 2031 .type = ARM_CP_ALIAS, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2033 .writefn = pmcntenclr_write }, 2034 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2035 .access = PL0_RW, .type = ARM_CP_IO, 2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2037 .accessfn = pmreg_access, 2038 .writefn = pmovsr_write, 2039 .raw_writefn = raw_write }, 2040 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2042 .access = PL0_RW, .accessfn = pmreg_access, 2043 .type = ARM_CP_ALIAS | ARM_CP_IO, 2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2045 .writefn = pmovsr_write, 2046 .raw_writefn = raw_write }, 2047 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2048 .access = PL0_W, .accessfn = pmreg_access_swinc, 2049 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2050 .writefn = pmswinc_write }, 2051 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2052 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2053 .access = PL0_W, .accessfn = pmreg_access_swinc, 2054 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2055 .writefn = pmswinc_write }, 2056 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2057 .access = PL0_RW, .type = ARM_CP_ALIAS, 2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2059 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2060 .raw_writefn = raw_write}, 2061 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2063 .access = PL0_RW, .accessfn = pmreg_access_selr, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2065 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2066 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2067 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2068 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2069 .accessfn = pmreg_access_ccntr }, 2070 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2072 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2073 .type = ARM_CP_IO, 2074 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2075 .readfn = pmccntr_read, .writefn = pmccntr_write, 2076 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2077 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2078 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2079 .access = PL0_RW, .accessfn = pmreg_access, 2080 .type = ARM_CP_ALIAS | ARM_CP_IO, 2081 .resetvalue = 0, }, 2082 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2084 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2085 .access = PL0_RW, .accessfn = pmreg_access, 2086 .type = ARM_CP_IO, 2087 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2088 .resetvalue = 0, }, 2089 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2090 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .accessfn = pmreg_access, 2092 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2093 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2095 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2096 .accessfn = pmreg_access, 2097 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2098 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2099 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2100 .accessfn = pmreg_access_xevcntr, 2101 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2102 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2104 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2105 .accessfn = pmreg_access_xevcntr, 2106 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2107 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2108 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2109 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2110 .resetvalue = 0, 2111 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2112 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2114 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2115 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2116 .resetvalue = 0, 2117 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2118 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2119 .access = PL1_RW, .accessfn = access_tpm, 2120 .type = ARM_CP_ALIAS | ARM_CP_IO, 2121 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2122 .resetvalue = 0, 2123 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2124 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2126 .access = PL1_RW, .accessfn = access_tpm, 2127 .type = ARM_CP_IO, 2128 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2129 .writefn = pmintenset_write, .raw_writefn = raw_write, 2130 .resetvalue = 0x0 }, 2131 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2132 .access = PL1_RW, .accessfn = access_tpm, 2133 .type = ARM_CP_ALIAS | ARM_CP_IO, 2134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2135 .writefn = pmintenclr_write, }, 2136 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2138 .access = PL1_RW, .accessfn = access_tpm, 2139 .type = ARM_CP_ALIAS | ARM_CP_IO, 2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2141 .writefn = pmintenclr_write }, 2142 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2143 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2144 .access = PL1_R, 2145 .accessfn = access_aa64_tid2, 2146 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2147 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2148 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2149 .access = PL1_RW, 2150 .accessfn = access_aa64_tid2, 2151 .writefn = csselr_write, .resetvalue = 0, 2152 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2153 offsetof(CPUARMState, cp15.csselr_ns) } }, 2154 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2155 * just RAZ for all cores: 2156 */ 2157 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2158 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2159 .access = PL1_R, .type = ARM_CP_CONST, 2160 .accessfn = access_aa64_tid1, 2161 .resetvalue = 0 }, 2162 /* Auxiliary fault status registers: these also are IMPDEF, and we 2163 * choose to RAZ/WI for all cores. 2164 */ 2165 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2166 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2167 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2168 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2169 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2170 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2171 /* MAIR can just read-as-written because we don't implement caches 2172 * and so don't need to care about memory attributes. 2173 */ 2174 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2175 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2176 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2177 .resetvalue = 0 }, 2178 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2179 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2181 .resetvalue = 0 }, 2182 /* For non-long-descriptor page tables these are PRRR and NMRR; 2183 * regardless they still act as reads-as-written for QEMU. 2184 */ 2185 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2186 * allows them to assign the correct fieldoffset based on the endianness 2187 * handled in the field definitions. 2188 */ 2189 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2190 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2191 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2192 offsetof(CPUARMState, cp15.mair0_ns) }, 2193 .resetfn = arm_cp_reset_ignore }, 2194 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2195 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2196 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2197 offsetof(CPUARMState, cp15.mair1_ns) }, 2198 .resetfn = arm_cp_reset_ignore }, 2199 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2200 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2201 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2202 /* 32 bit ITLB invalidates */ 2203 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2204 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2205 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2206 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2207 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2209 /* 32 bit DTLB invalidates */ 2210 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2211 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2212 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2213 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2214 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2216 /* 32 bit TLB invalidates */ 2217 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2219 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2220 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2221 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2222 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2223 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2224 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2225 REGINFO_SENTINEL 2226 }; 2227 2228 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2229 /* 32 bit TLB invalidates, Inner Shareable */ 2230 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2231 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2232 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2234 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2235 .type = ARM_CP_NO_RAW, .access = PL1_W, 2236 .writefn = tlbiasid_is_write }, 2237 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2238 .type = ARM_CP_NO_RAW, .access = PL1_W, 2239 .writefn = tlbimvaa_is_write }, 2240 REGINFO_SENTINEL 2241 }; 2242 2243 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2244 /* PMOVSSET is not implemented in v7 before v7ve */ 2245 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2246 .access = PL0_RW, .accessfn = pmreg_access, 2247 .type = ARM_CP_ALIAS | ARM_CP_IO, 2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2249 .writefn = pmovsset_write, 2250 .raw_writefn = raw_write }, 2251 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2253 .access = PL0_RW, .accessfn = pmreg_access, 2254 .type = ARM_CP_ALIAS | ARM_CP_IO, 2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2256 .writefn = pmovsset_write, 2257 .raw_writefn = raw_write }, 2258 REGINFO_SENTINEL 2259 }; 2260 2261 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2262 uint64_t value) 2263 { 2264 value &= 1; 2265 env->teecr = value; 2266 } 2267 2268 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2269 bool isread) 2270 { 2271 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2272 return CP_ACCESS_TRAP; 2273 } 2274 return CP_ACCESS_OK; 2275 } 2276 2277 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2278 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2279 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2280 .resetvalue = 0, 2281 .writefn = teecr_write }, 2282 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2283 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2284 .accessfn = teehbr_access, .resetvalue = 0 }, 2285 REGINFO_SENTINEL 2286 }; 2287 2288 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2289 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2291 .access = PL0_RW, 2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2293 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2294 .access = PL0_RW, 2295 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2296 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2297 .resetfn = arm_cp_reset_ignore }, 2298 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2299 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2300 .access = PL0_R|PL1_W, 2301 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2302 .resetvalue = 0}, 2303 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2304 .access = PL0_R|PL1_W, 2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2306 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2307 .resetfn = arm_cp_reset_ignore }, 2308 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2309 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2310 .access = PL1_RW, 2311 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2312 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2313 .access = PL1_RW, 2314 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2315 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2316 .resetvalue = 0 }, 2317 REGINFO_SENTINEL 2318 }; 2319 2320 #ifndef CONFIG_USER_ONLY 2321 2322 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2323 bool isread) 2324 { 2325 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2326 * Writable only at the highest implemented exception level. 2327 */ 2328 int el = arm_current_el(env); 2329 2330 switch (el) { 2331 case 0: 2332 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2333 return CP_ACCESS_TRAP; 2334 } 2335 break; 2336 case 1: 2337 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2338 arm_is_secure_below_el3(env)) { 2339 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2340 return CP_ACCESS_TRAP_UNCATEGORIZED; 2341 } 2342 break; 2343 case 2: 2344 case 3: 2345 break; 2346 } 2347 2348 if (!isread && el < arm_highest_el(env)) { 2349 return CP_ACCESS_TRAP_UNCATEGORIZED; 2350 } 2351 2352 return CP_ACCESS_OK; 2353 } 2354 2355 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2356 bool isread) 2357 { 2358 unsigned int cur_el = arm_current_el(env); 2359 bool secure = arm_is_secure(env); 2360 2361 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2362 if (cur_el == 0 && 2363 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 2367 if (arm_feature(env, ARM_FEATURE_EL2) && 2368 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2369 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2370 return CP_ACCESS_TRAP_EL2; 2371 } 2372 return CP_ACCESS_OK; 2373 } 2374 2375 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2376 bool isread) 2377 { 2378 unsigned int cur_el = arm_current_el(env); 2379 bool secure = arm_is_secure(env); 2380 2381 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2382 * EL0[PV]TEN is zero. 2383 */ 2384 if (cur_el == 0 && 2385 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2386 return CP_ACCESS_TRAP; 2387 } 2388 2389 if (arm_feature(env, ARM_FEATURE_EL2) && 2390 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2391 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2392 return CP_ACCESS_TRAP_EL2; 2393 } 2394 return CP_ACCESS_OK; 2395 } 2396 2397 static CPAccessResult gt_pct_access(CPUARMState *env, 2398 const ARMCPRegInfo *ri, 2399 bool isread) 2400 { 2401 return gt_counter_access(env, GTIMER_PHYS, isread); 2402 } 2403 2404 static CPAccessResult gt_vct_access(CPUARMState *env, 2405 const ARMCPRegInfo *ri, 2406 bool isread) 2407 { 2408 return gt_counter_access(env, GTIMER_VIRT, isread); 2409 } 2410 2411 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2412 bool isread) 2413 { 2414 return gt_timer_access(env, GTIMER_PHYS, isread); 2415 } 2416 2417 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 return gt_timer_access(env, GTIMER_VIRT, isread); 2421 } 2422 2423 static CPAccessResult gt_stimer_access(CPUARMState *env, 2424 const ARMCPRegInfo *ri, 2425 bool isread) 2426 { 2427 /* The AArch64 register view of the secure physical timer is 2428 * always accessible from EL3, and configurably accessible from 2429 * Secure EL1. 2430 */ 2431 switch (arm_current_el(env)) { 2432 case 1: 2433 if (!arm_is_secure(env)) { 2434 return CP_ACCESS_TRAP; 2435 } 2436 if (!(env->cp15.scr_el3 & SCR_ST)) { 2437 return CP_ACCESS_TRAP_EL3; 2438 } 2439 return CP_ACCESS_OK; 2440 case 0: 2441 case 2: 2442 return CP_ACCESS_TRAP; 2443 case 3: 2444 return CP_ACCESS_OK; 2445 default: 2446 g_assert_not_reached(); 2447 } 2448 } 2449 2450 static uint64_t gt_get_countervalue(CPUARMState *env) 2451 { 2452 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2453 } 2454 2455 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2456 { 2457 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2458 2459 if (gt->ctl & 1) { 2460 /* Timer enabled: calculate and set current ISTATUS, irq, and 2461 * reset timer to when ISTATUS next has to change 2462 */ 2463 uint64_t offset = timeridx == GTIMER_VIRT ? 2464 cpu->env.cp15.cntvoff_el2 : 0; 2465 uint64_t count = gt_get_countervalue(&cpu->env); 2466 /* Note that this must be unsigned 64 bit arithmetic: */ 2467 int istatus = count - offset >= gt->cval; 2468 uint64_t nexttick; 2469 int irqstate; 2470 2471 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2472 2473 irqstate = (istatus && !(gt->ctl & 2)); 2474 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2475 2476 if (istatus) { 2477 /* Next transition is when count rolls back over to zero */ 2478 nexttick = UINT64_MAX; 2479 } else { 2480 /* Next transition is when we hit cval */ 2481 nexttick = gt->cval + offset; 2482 } 2483 /* Note that the desired next expiry time might be beyond the 2484 * signed-64-bit range of a QEMUTimer -- in this case we just 2485 * set the timer for as far in the future as possible. When the 2486 * timer expires we will reset the timer for any remaining period. 2487 */ 2488 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2489 nexttick = INT64_MAX / GTIMER_SCALE; 2490 } 2491 timer_mod(cpu->gt_timer[timeridx], nexttick); 2492 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2493 } else { 2494 /* Timer disabled: ISTATUS and timer output always clear */ 2495 gt->ctl &= ~4; 2496 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2497 timer_del(cpu->gt_timer[timeridx]); 2498 trace_arm_gt_recalc_disabled(timeridx); 2499 } 2500 } 2501 2502 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2503 int timeridx) 2504 { 2505 ARMCPU *cpu = env_archcpu(env); 2506 2507 timer_del(cpu->gt_timer[timeridx]); 2508 } 2509 2510 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2511 { 2512 return gt_get_countervalue(env); 2513 } 2514 2515 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2516 { 2517 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2518 } 2519 2520 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2521 int timeridx, 2522 uint64_t value) 2523 { 2524 trace_arm_gt_cval_write(timeridx, value); 2525 env->cp15.c14_timer[timeridx].cval = value; 2526 gt_recalc_timer(env_archcpu(env), timeridx); 2527 } 2528 2529 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2530 int timeridx) 2531 { 2532 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2533 2534 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2535 (gt_get_countervalue(env) - offset)); 2536 } 2537 2538 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2539 int timeridx, 2540 uint64_t value) 2541 { 2542 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2543 2544 trace_arm_gt_tval_write(timeridx, value); 2545 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2546 sextract64(value, 0, 32); 2547 gt_recalc_timer(env_archcpu(env), timeridx); 2548 } 2549 2550 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2551 int timeridx, 2552 uint64_t value) 2553 { 2554 ARMCPU *cpu = env_archcpu(env); 2555 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2556 2557 trace_arm_gt_ctl_write(timeridx, value); 2558 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2559 if ((oldval ^ value) & 1) { 2560 /* Enable toggled */ 2561 gt_recalc_timer(cpu, timeridx); 2562 } else if ((oldval ^ value) & 2) { 2563 /* IMASK toggled: don't need to recalculate, 2564 * just set the interrupt line based on ISTATUS 2565 */ 2566 int irqstate = (oldval & 4) && !(value & 2); 2567 2568 trace_arm_gt_imask_toggle(timeridx, irqstate); 2569 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2570 } 2571 } 2572 2573 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2574 { 2575 gt_timer_reset(env, ri, GTIMER_PHYS); 2576 } 2577 2578 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2579 uint64_t value) 2580 { 2581 gt_cval_write(env, ri, GTIMER_PHYS, value); 2582 } 2583 2584 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2585 { 2586 return gt_tval_read(env, ri, GTIMER_PHYS); 2587 } 2588 2589 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2590 uint64_t value) 2591 { 2592 gt_tval_write(env, ri, GTIMER_PHYS, value); 2593 } 2594 2595 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2596 uint64_t value) 2597 { 2598 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2599 } 2600 2601 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2602 { 2603 gt_timer_reset(env, ri, GTIMER_VIRT); 2604 } 2605 2606 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2607 uint64_t value) 2608 { 2609 gt_cval_write(env, ri, GTIMER_VIRT, value); 2610 } 2611 2612 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2613 { 2614 return gt_tval_read(env, ri, GTIMER_VIRT); 2615 } 2616 2617 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2618 uint64_t value) 2619 { 2620 gt_tval_write(env, ri, GTIMER_VIRT, value); 2621 } 2622 2623 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2624 uint64_t value) 2625 { 2626 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2627 } 2628 2629 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2630 uint64_t value) 2631 { 2632 ARMCPU *cpu = env_archcpu(env); 2633 2634 trace_arm_gt_cntvoff_write(value); 2635 raw_write(env, ri, value); 2636 gt_recalc_timer(cpu, GTIMER_VIRT); 2637 } 2638 2639 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2640 { 2641 gt_timer_reset(env, ri, GTIMER_HYP); 2642 } 2643 2644 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2645 uint64_t value) 2646 { 2647 gt_cval_write(env, ri, GTIMER_HYP, value); 2648 } 2649 2650 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2651 { 2652 return gt_tval_read(env, ri, GTIMER_HYP); 2653 } 2654 2655 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2656 uint64_t value) 2657 { 2658 gt_tval_write(env, ri, GTIMER_HYP, value); 2659 } 2660 2661 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2662 uint64_t value) 2663 { 2664 gt_ctl_write(env, ri, GTIMER_HYP, value); 2665 } 2666 2667 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2668 { 2669 gt_timer_reset(env, ri, GTIMER_SEC); 2670 } 2671 2672 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2673 uint64_t value) 2674 { 2675 gt_cval_write(env, ri, GTIMER_SEC, value); 2676 } 2677 2678 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2679 { 2680 return gt_tval_read(env, ri, GTIMER_SEC); 2681 } 2682 2683 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2684 uint64_t value) 2685 { 2686 gt_tval_write(env, ri, GTIMER_SEC, value); 2687 } 2688 2689 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2690 uint64_t value) 2691 { 2692 gt_ctl_write(env, ri, GTIMER_SEC, value); 2693 } 2694 2695 void arm_gt_ptimer_cb(void *opaque) 2696 { 2697 ARMCPU *cpu = opaque; 2698 2699 gt_recalc_timer(cpu, GTIMER_PHYS); 2700 } 2701 2702 void arm_gt_vtimer_cb(void *opaque) 2703 { 2704 ARMCPU *cpu = opaque; 2705 2706 gt_recalc_timer(cpu, GTIMER_VIRT); 2707 } 2708 2709 void arm_gt_htimer_cb(void *opaque) 2710 { 2711 ARMCPU *cpu = opaque; 2712 2713 gt_recalc_timer(cpu, GTIMER_HYP); 2714 } 2715 2716 void arm_gt_stimer_cb(void *opaque) 2717 { 2718 ARMCPU *cpu = opaque; 2719 2720 gt_recalc_timer(cpu, GTIMER_SEC); 2721 } 2722 2723 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2724 /* Note that CNTFRQ is purely reads-as-written for the benefit 2725 * of software; writing it doesn't actually change the timer frequency. 2726 * Our reset value matches the fixed frequency we implement the timer at. 2727 */ 2728 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2729 .type = ARM_CP_ALIAS, 2730 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2731 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2732 }, 2733 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2734 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2735 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2736 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2737 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2738 }, 2739 /* overall control: mostly access permissions */ 2740 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2741 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2742 .access = PL1_RW, 2743 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2744 .resetvalue = 0, 2745 }, 2746 /* per-timer control */ 2747 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2748 .secure = ARM_CP_SECSTATE_NS, 2749 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2750 .accessfn = gt_ptimer_access, 2751 .fieldoffset = offsetoflow32(CPUARMState, 2752 cp15.c14_timer[GTIMER_PHYS].ctl), 2753 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2754 }, 2755 { .name = "CNTP_CTL_S", 2756 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2757 .secure = ARM_CP_SECSTATE_S, 2758 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2759 .accessfn = gt_ptimer_access, 2760 .fieldoffset = offsetoflow32(CPUARMState, 2761 cp15.c14_timer[GTIMER_SEC].ctl), 2762 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2763 }, 2764 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2765 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2766 .type = ARM_CP_IO, .access = PL0_RW, 2767 .accessfn = gt_ptimer_access, 2768 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2769 .resetvalue = 0, 2770 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2771 }, 2772 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2773 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2774 .accessfn = gt_vtimer_access, 2775 .fieldoffset = offsetoflow32(CPUARMState, 2776 cp15.c14_timer[GTIMER_VIRT].ctl), 2777 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2778 }, 2779 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2780 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2781 .type = ARM_CP_IO, .access = PL0_RW, 2782 .accessfn = gt_vtimer_access, 2783 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2784 .resetvalue = 0, 2785 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2786 }, 2787 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2788 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2789 .secure = ARM_CP_SECSTATE_NS, 2790 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2791 .accessfn = gt_ptimer_access, 2792 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2793 }, 2794 { .name = "CNTP_TVAL_S", 2795 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2796 .secure = ARM_CP_SECSTATE_S, 2797 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2798 .accessfn = gt_ptimer_access, 2799 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2800 }, 2801 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2802 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2803 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2804 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2805 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2806 }, 2807 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2808 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2809 .accessfn = gt_vtimer_access, 2810 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2811 }, 2812 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2813 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2814 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2815 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2816 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2817 }, 2818 /* The counter itself */ 2819 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2820 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2821 .accessfn = gt_pct_access, 2822 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2823 }, 2824 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2825 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2826 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2827 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2828 }, 2829 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2830 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2831 .accessfn = gt_vct_access, 2832 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2833 }, 2834 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2835 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2836 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2837 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2838 }, 2839 /* Comparison value, indicating when the timer goes off */ 2840 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2841 .secure = ARM_CP_SECSTATE_NS, 2842 .access = PL0_RW, 2843 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2844 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2845 .accessfn = gt_ptimer_access, 2846 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2847 }, 2848 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2849 .secure = ARM_CP_SECSTATE_S, 2850 .access = PL0_RW, 2851 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2853 .accessfn = gt_ptimer_access, 2854 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2855 }, 2856 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2857 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2858 .access = PL0_RW, 2859 .type = ARM_CP_IO, 2860 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2861 .resetvalue = 0, .accessfn = gt_ptimer_access, 2862 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2863 }, 2864 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2865 .access = PL0_RW, 2866 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2867 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2868 .accessfn = gt_vtimer_access, 2869 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2870 }, 2871 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2872 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2873 .access = PL0_RW, 2874 .type = ARM_CP_IO, 2875 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2876 .resetvalue = 0, .accessfn = gt_vtimer_access, 2877 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2878 }, 2879 /* Secure timer -- this is actually restricted to only EL3 2880 * and configurably Secure-EL1 via the accessfn. 2881 */ 2882 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2883 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2884 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2885 .accessfn = gt_stimer_access, 2886 .readfn = gt_sec_tval_read, 2887 .writefn = gt_sec_tval_write, 2888 .resetfn = gt_sec_timer_reset, 2889 }, 2890 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2891 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2892 .type = ARM_CP_IO, .access = PL1_RW, 2893 .accessfn = gt_stimer_access, 2894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2895 .resetvalue = 0, 2896 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2897 }, 2898 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2899 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2900 .type = ARM_CP_IO, .access = PL1_RW, 2901 .accessfn = gt_stimer_access, 2902 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2903 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2904 }, 2905 REGINFO_SENTINEL 2906 }; 2907 2908 #else 2909 2910 /* In user-mode most of the generic timer registers are inaccessible 2911 * however modern kernels (4.12+) allow access to cntvct_el0 2912 */ 2913 2914 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2915 { 2916 /* Currently we have no support for QEMUTimer in linux-user so we 2917 * can't call gt_get_countervalue(env), instead we directly 2918 * call the lower level functions. 2919 */ 2920 return cpu_get_clock() / GTIMER_SCALE; 2921 } 2922 2923 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2924 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2925 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2926 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2927 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2928 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2929 }, 2930 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2931 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2932 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2933 .readfn = gt_virt_cnt_read, 2934 }, 2935 REGINFO_SENTINEL 2936 }; 2937 2938 #endif 2939 2940 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2941 { 2942 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2943 raw_write(env, ri, value); 2944 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2945 raw_write(env, ri, value & 0xfffff6ff); 2946 } else { 2947 raw_write(env, ri, value & 0xfffff1ff); 2948 } 2949 } 2950 2951 #ifndef CONFIG_USER_ONLY 2952 /* get_phys_addr() isn't present for user-mode-only targets */ 2953 2954 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2955 bool isread) 2956 { 2957 if (ri->opc2 & 4) { 2958 /* The ATS12NSO* operations must trap to EL3 if executed in 2959 * Secure EL1 (which can only happen if EL3 is AArch64). 2960 * They are simply UNDEF if executed from NS EL1. 2961 * They function normally from EL2 or EL3. 2962 */ 2963 if (arm_current_el(env) == 1) { 2964 if (arm_is_secure_below_el3(env)) { 2965 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2966 } 2967 return CP_ACCESS_TRAP_UNCATEGORIZED; 2968 } 2969 } 2970 return CP_ACCESS_OK; 2971 } 2972 2973 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2974 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2975 { 2976 hwaddr phys_addr; 2977 target_ulong page_size; 2978 int prot; 2979 bool ret; 2980 uint64_t par64; 2981 bool format64 = false; 2982 MemTxAttrs attrs = {}; 2983 ARMMMUFaultInfo fi = {}; 2984 ARMCacheAttrs cacheattrs = {}; 2985 2986 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2987 &prot, &page_size, &fi, &cacheattrs); 2988 2989 if (ret) { 2990 /* 2991 * Some kinds of translation fault must cause exceptions rather 2992 * than being reported in the PAR. 2993 */ 2994 int current_el = arm_current_el(env); 2995 int target_el; 2996 uint32_t syn, fsr, fsc; 2997 bool take_exc = false; 2998 2999 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3000 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { 3001 /* 3002 * Synchronous stage 2 fault on an access made as part of the 3003 * translation table walk for AT S1E0* or AT S1E1* insn 3004 * executed from NS EL1. If this is a synchronous external abort 3005 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3006 * to EL3. Otherwise the fault is taken as an exception to EL2, 3007 * and HPFAR_EL2 holds the faulting IPA. 3008 */ 3009 if (fi.type == ARMFault_SyncExternalOnWalk && 3010 (env->cp15.scr_el3 & SCR_EA)) { 3011 target_el = 3; 3012 } else { 3013 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3014 target_el = 2; 3015 } 3016 take_exc = true; 3017 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3018 /* 3019 * Synchronous external aborts during a translation table walk 3020 * are taken as Data Abort exceptions. 3021 */ 3022 if (fi.stage2) { 3023 if (current_el == 3) { 3024 target_el = 3; 3025 } else { 3026 target_el = 2; 3027 } 3028 } else { 3029 target_el = exception_target_el(env); 3030 } 3031 take_exc = true; 3032 } 3033 3034 if (take_exc) { 3035 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3036 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3037 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3038 fsr = arm_fi_to_lfsc(&fi); 3039 fsc = extract32(fsr, 0, 6); 3040 } else { 3041 fsr = arm_fi_to_sfsc(&fi); 3042 fsc = 0x3f; 3043 } 3044 /* 3045 * Report exception with ESR indicating a fault due to a 3046 * translation table walk for a cache maintenance instruction. 3047 */ 3048 syn = syn_data_abort_no_iss(current_el == target_el, 3049 fi.ea, 1, fi.s1ptw, 1, fsc); 3050 env->exception.vaddress = value; 3051 env->exception.fsr = fsr; 3052 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3053 } 3054 } 3055 3056 if (is_a64(env)) { 3057 format64 = true; 3058 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3059 /* 3060 * ATS1Cxx: 3061 * * TTBCR.EAE determines whether the result is returned using the 3062 * 32-bit or the 64-bit PAR format 3063 * * Instructions executed in Hyp mode always use the 64bit format 3064 * 3065 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3066 * * The Non-secure TTBCR.EAE bit is set to 1 3067 * * The implementation includes EL2, and the value of HCR.VM is 1 3068 * 3069 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3070 * 3071 * ATS1Hx always uses the 64bit format. 3072 */ 3073 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3074 3075 if (arm_feature(env, ARM_FEATURE_EL2)) { 3076 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 3077 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3078 } else { 3079 format64 |= arm_current_el(env) == 2; 3080 } 3081 } 3082 } 3083 3084 if (format64) { 3085 /* Create a 64-bit PAR */ 3086 par64 = (1 << 11); /* LPAE bit always set */ 3087 if (!ret) { 3088 par64 |= phys_addr & ~0xfffULL; 3089 if (!attrs.secure) { 3090 par64 |= (1 << 9); /* NS */ 3091 } 3092 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3093 par64 |= cacheattrs.shareability << 7; /* SH */ 3094 } else { 3095 uint32_t fsr = arm_fi_to_lfsc(&fi); 3096 3097 par64 |= 1; /* F */ 3098 par64 |= (fsr & 0x3f) << 1; /* FS */ 3099 if (fi.stage2) { 3100 par64 |= (1 << 9); /* S */ 3101 } 3102 if (fi.s1ptw) { 3103 par64 |= (1 << 8); /* PTW */ 3104 } 3105 } 3106 } else { 3107 /* fsr is a DFSR/IFSR value for the short descriptor 3108 * translation table format (with WnR always clear). 3109 * Convert it to a 32-bit PAR. 3110 */ 3111 if (!ret) { 3112 /* We do not set any attribute bits in the PAR */ 3113 if (page_size == (1 << 24) 3114 && arm_feature(env, ARM_FEATURE_V7)) { 3115 par64 = (phys_addr & 0xff000000) | (1 << 1); 3116 } else { 3117 par64 = phys_addr & 0xfffff000; 3118 } 3119 if (!attrs.secure) { 3120 par64 |= (1 << 9); /* NS */ 3121 } 3122 } else { 3123 uint32_t fsr = arm_fi_to_sfsc(&fi); 3124 3125 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3126 ((fsr & 0xf) << 1) | 1; 3127 } 3128 } 3129 return par64; 3130 } 3131 3132 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3133 { 3134 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3135 uint64_t par64; 3136 ARMMMUIdx mmu_idx; 3137 int el = arm_current_el(env); 3138 bool secure = arm_is_secure_below_el3(env); 3139 3140 switch (ri->opc2 & 6) { 3141 case 0: 3142 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3143 switch (el) { 3144 case 3: 3145 mmu_idx = ARMMMUIdx_S1E3; 3146 break; 3147 case 2: 3148 mmu_idx = ARMMMUIdx_S1NSE1; 3149 break; 3150 case 1: 3151 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3152 break; 3153 default: 3154 g_assert_not_reached(); 3155 } 3156 break; 3157 case 2: 3158 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3159 switch (el) { 3160 case 3: 3161 mmu_idx = ARMMMUIdx_S1SE0; 3162 break; 3163 case 2: 3164 mmu_idx = ARMMMUIdx_S1NSE0; 3165 break; 3166 case 1: 3167 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3168 break; 3169 default: 3170 g_assert_not_reached(); 3171 } 3172 break; 3173 case 4: 3174 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3175 mmu_idx = ARMMMUIdx_S12NSE1; 3176 break; 3177 case 6: 3178 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3179 mmu_idx = ARMMMUIdx_S12NSE0; 3180 break; 3181 default: 3182 g_assert_not_reached(); 3183 } 3184 3185 par64 = do_ats_write(env, value, access_type, mmu_idx); 3186 3187 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3188 } 3189 3190 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3191 uint64_t value) 3192 { 3193 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3194 uint64_t par64; 3195 3196 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3197 3198 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3199 } 3200 3201 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3202 bool isread) 3203 { 3204 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3205 return CP_ACCESS_TRAP; 3206 } 3207 return CP_ACCESS_OK; 3208 } 3209 3210 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3211 uint64_t value) 3212 { 3213 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3214 ARMMMUIdx mmu_idx; 3215 int secure = arm_is_secure_below_el3(env); 3216 3217 switch (ri->opc2 & 6) { 3218 case 0: 3219 switch (ri->opc1) { 3220 case 0: /* AT S1E1R, AT S1E1W */ 3221 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3222 break; 3223 case 4: /* AT S1E2R, AT S1E2W */ 3224 mmu_idx = ARMMMUIdx_S1E2; 3225 break; 3226 case 6: /* AT S1E3R, AT S1E3W */ 3227 mmu_idx = ARMMMUIdx_S1E3; 3228 break; 3229 default: 3230 g_assert_not_reached(); 3231 } 3232 break; 3233 case 2: /* AT S1E0R, AT S1E0W */ 3234 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3235 break; 3236 case 4: /* AT S12E1R, AT S12E1W */ 3237 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3238 break; 3239 case 6: /* AT S12E0R, AT S12E0W */ 3240 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3241 break; 3242 default: 3243 g_assert_not_reached(); 3244 } 3245 3246 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3247 } 3248 #endif 3249 3250 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3251 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3252 .access = PL1_RW, .resetvalue = 0, 3253 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3254 offsetoflow32(CPUARMState, cp15.par_ns) }, 3255 .writefn = par_write }, 3256 #ifndef CONFIG_USER_ONLY 3257 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3258 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3259 .access = PL1_W, .accessfn = ats_access, 3260 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3261 #endif 3262 REGINFO_SENTINEL 3263 }; 3264 3265 /* Return basic MPU access permission bits. */ 3266 static uint32_t simple_mpu_ap_bits(uint32_t val) 3267 { 3268 uint32_t ret; 3269 uint32_t mask; 3270 int i; 3271 ret = 0; 3272 mask = 3; 3273 for (i = 0; i < 16; i += 2) { 3274 ret |= (val >> i) & mask; 3275 mask <<= 2; 3276 } 3277 return ret; 3278 } 3279 3280 /* Pad basic MPU access permission bits to extended format. */ 3281 static uint32_t extended_mpu_ap_bits(uint32_t val) 3282 { 3283 uint32_t ret; 3284 uint32_t mask; 3285 int i; 3286 ret = 0; 3287 mask = 3; 3288 for (i = 0; i < 16; i += 2) { 3289 ret |= (val & mask) << i; 3290 mask <<= 2; 3291 } 3292 return ret; 3293 } 3294 3295 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3296 uint64_t value) 3297 { 3298 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3299 } 3300 3301 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3302 { 3303 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3304 } 3305 3306 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3307 uint64_t value) 3308 { 3309 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3310 } 3311 3312 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3313 { 3314 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3315 } 3316 3317 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3318 { 3319 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3320 3321 if (!u32p) { 3322 return 0; 3323 } 3324 3325 u32p += env->pmsav7.rnr[M_REG_NS]; 3326 return *u32p; 3327 } 3328 3329 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3330 uint64_t value) 3331 { 3332 ARMCPU *cpu = env_archcpu(env); 3333 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3334 3335 if (!u32p) { 3336 return; 3337 } 3338 3339 u32p += env->pmsav7.rnr[M_REG_NS]; 3340 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3341 *u32p = value; 3342 } 3343 3344 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3345 uint64_t value) 3346 { 3347 ARMCPU *cpu = env_archcpu(env); 3348 uint32_t nrgs = cpu->pmsav7_dregion; 3349 3350 if (value >= nrgs) { 3351 qemu_log_mask(LOG_GUEST_ERROR, 3352 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3353 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3354 return; 3355 } 3356 3357 raw_write(env, ri, value); 3358 } 3359 3360 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3361 /* Reset for all these registers is handled in arm_cpu_reset(), 3362 * because the PMSAv7 is also used by M-profile CPUs, which do 3363 * not register cpregs but still need the state to be reset. 3364 */ 3365 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3366 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3367 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3368 .readfn = pmsav7_read, .writefn = pmsav7_write, 3369 .resetfn = arm_cp_reset_ignore }, 3370 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3371 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3372 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3373 .readfn = pmsav7_read, .writefn = pmsav7_write, 3374 .resetfn = arm_cp_reset_ignore }, 3375 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3376 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3377 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3378 .readfn = pmsav7_read, .writefn = pmsav7_write, 3379 .resetfn = arm_cp_reset_ignore }, 3380 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3381 .access = PL1_RW, 3382 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3383 .writefn = pmsav7_rgnr_write, 3384 .resetfn = arm_cp_reset_ignore }, 3385 REGINFO_SENTINEL 3386 }; 3387 3388 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3389 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3390 .access = PL1_RW, .type = ARM_CP_ALIAS, 3391 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3392 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3393 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3394 .access = PL1_RW, .type = ARM_CP_ALIAS, 3395 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3396 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3397 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3398 .access = PL1_RW, 3399 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3400 .resetvalue = 0, }, 3401 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3402 .access = PL1_RW, 3403 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3404 .resetvalue = 0, }, 3405 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3406 .access = PL1_RW, 3407 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3408 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3409 .access = PL1_RW, 3410 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3411 /* Protection region base and size registers */ 3412 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3413 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3414 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3415 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3416 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3417 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3418 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3419 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3420 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3421 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3422 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3423 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3424 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3425 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3426 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3427 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3428 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3429 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3430 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3431 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3432 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3433 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3434 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3435 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3436 REGINFO_SENTINEL 3437 }; 3438 3439 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3440 uint64_t value) 3441 { 3442 TCR *tcr = raw_ptr(env, ri); 3443 int maskshift = extract32(value, 0, 3); 3444 3445 if (!arm_feature(env, ARM_FEATURE_V8)) { 3446 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3447 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3448 * using Long-desciptor translation table format */ 3449 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3450 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3451 /* In an implementation that includes the Security Extensions 3452 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3453 * Short-descriptor translation table format. 3454 */ 3455 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3456 } else { 3457 value &= TTBCR_N; 3458 } 3459 } 3460 3461 /* Update the masks corresponding to the TCR bank being written 3462 * Note that we always calculate mask and base_mask, but 3463 * they are only used for short-descriptor tables (ie if EAE is 0); 3464 * for long-descriptor tables the TCR fields are used differently 3465 * and the mask and base_mask values are meaningless. 3466 */ 3467 tcr->raw_tcr = value; 3468 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3469 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3470 } 3471 3472 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3473 uint64_t value) 3474 { 3475 ARMCPU *cpu = env_archcpu(env); 3476 TCR *tcr = raw_ptr(env, ri); 3477 3478 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3479 /* With LPAE the TTBCR could result in a change of ASID 3480 * via the TTBCR.A1 bit, so do a TLB flush. 3481 */ 3482 tlb_flush(CPU(cpu)); 3483 } 3484 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3485 value = deposit64(tcr->raw_tcr, 0, 32, value); 3486 vmsa_ttbcr_raw_write(env, ri, value); 3487 } 3488 3489 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3490 { 3491 TCR *tcr = raw_ptr(env, ri); 3492 3493 /* Reset both the TCR as well as the masks corresponding to the bank of 3494 * the TCR being reset. 3495 */ 3496 tcr->raw_tcr = 0; 3497 tcr->mask = 0; 3498 tcr->base_mask = 0xffffc000u; 3499 } 3500 3501 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3502 uint64_t value) 3503 { 3504 ARMCPU *cpu = env_archcpu(env); 3505 TCR *tcr = raw_ptr(env, ri); 3506 3507 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3508 tlb_flush(CPU(cpu)); 3509 tcr->raw_tcr = value; 3510 } 3511 3512 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3513 uint64_t value) 3514 { 3515 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3516 if (cpreg_field_is_64bit(ri) && 3517 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3518 ARMCPU *cpu = env_archcpu(env); 3519 tlb_flush(CPU(cpu)); 3520 } 3521 raw_write(env, ri, value); 3522 } 3523 3524 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3525 uint64_t value) 3526 { 3527 ARMCPU *cpu = env_archcpu(env); 3528 CPUState *cs = CPU(cpu); 3529 3530 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3531 if (raw_read(env, ri) != value) { 3532 tlb_flush_by_mmuidx(cs, 3533 ARMMMUIdxBit_S12NSE1 | 3534 ARMMMUIdxBit_S12NSE0 | 3535 ARMMMUIdxBit_S2NS); 3536 raw_write(env, ri, value); 3537 } 3538 } 3539 3540 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3541 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3542 .access = PL1_RW, .type = ARM_CP_ALIAS, 3543 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3544 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3545 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3546 .access = PL1_RW, .resetvalue = 0, 3547 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3548 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3549 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3550 .access = PL1_RW, .resetvalue = 0, 3551 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3552 offsetof(CPUARMState, cp15.dfar_ns) } }, 3553 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3554 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3555 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3556 .resetvalue = 0, }, 3557 REGINFO_SENTINEL 3558 }; 3559 3560 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3561 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3562 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3563 .access = PL1_RW, 3564 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3565 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3566 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3567 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3568 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3569 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3570 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3571 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3572 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3573 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3574 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3575 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3576 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3577 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3578 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3579 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3580 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3581 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3582 .raw_writefn = vmsa_ttbcr_raw_write, 3583 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3584 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3585 REGINFO_SENTINEL 3586 }; 3587 3588 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3589 * qemu tlbs nor adjusting cached masks. 3590 */ 3591 static const ARMCPRegInfo ttbcr2_reginfo = { 3592 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3593 .access = PL1_RW, .type = ARM_CP_ALIAS, 3594 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3595 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3596 }; 3597 3598 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3599 uint64_t value) 3600 { 3601 env->cp15.c15_ticonfig = value & 0xe7; 3602 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3603 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3604 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3605 } 3606 3607 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3608 uint64_t value) 3609 { 3610 env->cp15.c15_threadid = value & 0xffff; 3611 } 3612 3613 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3614 uint64_t value) 3615 { 3616 /* Wait-for-interrupt (deprecated) */ 3617 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3618 } 3619 3620 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3621 uint64_t value) 3622 { 3623 /* On OMAP there are registers indicating the max/min index of dcache lines 3624 * containing a dirty line; cache flush operations have to reset these. 3625 */ 3626 env->cp15.c15_i_max = 0x000; 3627 env->cp15.c15_i_min = 0xff0; 3628 } 3629 3630 static const ARMCPRegInfo omap_cp_reginfo[] = { 3631 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3632 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3633 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3634 .resetvalue = 0, }, 3635 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3636 .access = PL1_RW, .type = ARM_CP_NOP }, 3637 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3638 .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3640 .writefn = omap_ticonfig_write }, 3641 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3642 .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3644 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3645 .access = PL1_RW, .resetvalue = 0xff0, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3647 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3648 .access = PL1_RW, 3649 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3650 .writefn = omap_threadid_write }, 3651 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3652 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3653 .type = ARM_CP_NO_RAW, 3654 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3655 /* TODO: Peripheral port remap register: 3656 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3657 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3658 * when MMU is off. 3659 */ 3660 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3661 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3662 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3663 .writefn = omap_cachemaint_write }, 3664 { .name = "C9", .cp = 15, .crn = 9, 3665 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3666 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3667 REGINFO_SENTINEL 3668 }; 3669 3670 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3671 uint64_t value) 3672 { 3673 env->cp15.c15_cpar = value & 0x3fff; 3674 } 3675 3676 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3677 { .name = "XSCALE_CPAR", 3678 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3679 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3680 .writefn = xscale_cpar_write, }, 3681 { .name = "XSCALE_AUXCR", 3682 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3683 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3684 .resetvalue = 0, }, 3685 /* XScale specific cache-lockdown: since we have no cache we NOP these 3686 * and hope the guest does not really rely on cache behaviour. 3687 */ 3688 { .name = "XSCALE_LOCK_ICACHE_LINE", 3689 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3690 .access = PL1_W, .type = ARM_CP_NOP }, 3691 { .name = "XSCALE_UNLOCK_ICACHE", 3692 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3693 .access = PL1_W, .type = ARM_CP_NOP }, 3694 { .name = "XSCALE_DCACHE_LOCK", 3695 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3696 .access = PL1_RW, .type = ARM_CP_NOP }, 3697 { .name = "XSCALE_UNLOCK_DCACHE", 3698 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3699 .access = PL1_W, .type = ARM_CP_NOP }, 3700 REGINFO_SENTINEL 3701 }; 3702 3703 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3704 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3705 * implementation of this implementation-defined space. 3706 * Ideally this should eventually disappear in favour of actually 3707 * implementing the correct behaviour for all cores. 3708 */ 3709 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3710 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3711 .access = PL1_RW, 3712 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3713 .resetvalue = 0 }, 3714 REGINFO_SENTINEL 3715 }; 3716 3717 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3718 /* Cache status: RAZ because we have no cache so it's always clean */ 3719 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3720 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3721 .resetvalue = 0 }, 3722 REGINFO_SENTINEL 3723 }; 3724 3725 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3726 /* We never have a a block transfer operation in progress */ 3727 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3728 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3729 .resetvalue = 0 }, 3730 /* The cache ops themselves: these all NOP for QEMU */ 3731 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3732 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3733 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3734 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3735 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3736 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3737 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3738 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3739 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3740 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3741 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3742 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3743 REGINFO_SENTINEL 3744 }; 3745 3746 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3747 /* The cache test-and-clean instructions always return (1 << 30) 3748 * to indicate that there are no dirty cache lines. 3749 */ 3750 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3751 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3752 .resetvalue = (1 << 30) }, 3753 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3754 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3755 .resetvalue = (1 << 30) }, 3756 REGINFO_SENTINEL 3757 }; 3758 3759 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3760 /* Ignore ReadBuffer accesses */ 3761 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3762 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3763 .access = PL1_RW, .resetvalue = 0, 3764 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3765 REGINFO_SENTINEL 3766 }; 3767 3768 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3769 { 3770 ARMCPU *cpu = env_archcpu(env); 3771 unsigned int cur_el = arm_current_el(env); 3772 bool secure = arm_is_secure(env); 3773 3774 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3775 return env->cp15.vpidr_el2; 3776 } 3777 return raw_read(env, ri); 3778 } 3779 3780 static uint64_t mpidr_read_val(CPUARMState *env) 3781 { 3782 ARMCPU *cpu = env_archcpu(env); 3783 uint64_t mpidr = cpu->mp_affinity; 3784 3785 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3786 mpidr |= (1U << 31); 3787 /* Cores which are uniprocessor (non-coherent) 3788 * but still implement the MP extensions set 3789 * bit 30. (For instance, Cortex-R5). 3790 */ 3791 if (cpu->mp_is_up) { 3792 mpidr |= (1u << 30); 3793 } 3794 } 3795 return mpidr; 3796 } 3797 3798 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3799 { 3800 unsigned int cur_el = arm_current_el(env); 3801 bool secure = arm_is_secure(env); 3802 3803 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3804 return env->cp15.vmpidr_el2; 3805 } 3806 return mpidr_read_val(env); 3807 } 3808 3809 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3810 /* NOP AMAIR0/1 */ 3811 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3812 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3813 .access = PL1_RW, .type = ARM_CP_CONST, 3814 .resetvalue = 0 }, 3815 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3816 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3817 .access = PL1_RW, .type = ARM_CP_CONST, 3818 .resetvalue = 0 }, 3819 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3820 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3821 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3822 offsetof(CPUARMState, cp15.par_ns)} }, 3823 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3824 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3825 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3826 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3827 .writefn = vmsa_ttbr_write, }, 3828 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3829 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3830 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3831 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3832 .writefn = vmsa_ttbr_write, }, 3833 REGINFO_SENTINEL 3834 }; 3835 3836 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3837 { 3838 return vfp_get_fpcr(env); 3839 } 3840 3841 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3842 uint64_t value) 3843 { 3844 vfp_set_fpcr(env, value); 3845 } 3846 3847 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3848 { 3849 return vfp_get_fpsr(env); 3850 } 3851 3852 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3853 uint64_t value) 3854 { 3855 vfp_set_fpsr(env, value); 3856 } 3857 3858 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3859 bool isread) 3860 { 3861 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3862 return CP_ACCESS_TRAP; 3863 } 3864 return CP_ACCESS_OK; 3865 } 3866 3867 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 env->daif = value & PSTATE_DAIF; 3871 } 3872 3873 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3874 const ARMCPRegInfo *ri, 3875 bool isread) 3876 { 3877 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3878 * SCTLR_EL1.UCI is set. 3879 */ 3880 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3881 return CP_ACCESS_TRAP; 3882 } 3883 return CP_ACCESS_OK; 3884 } 3885 3886 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3887 * Page D4-1736 (DDI0487A.b) 3888 */ 3889 3890 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3891 uint64_t value) 3892 { 3893 CPUState *cs = env_cpu(env); 3894 bool sec = arm_is_secure_below_el3(env); 3895 3896 if (sec) { 3897 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3898 ARMMMUIdxBit_S1SE1 | 3899 ARMMMUIdxBit_S1SE0); 3900 } else { 3901 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3902 ARMMMUIdxBit_S12NSE1 | 3903 ARMMMUIdxBit_S12NSE0); 3904 } 3905 } 3906 3907 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3908 uint64_t value) 3909 { 3910 CPUState *cs = env_cpu(env); 3911 3912 if (tlb_force_broadcast(env)) { 3913 tlbi_aa64_vmalle1is_write(env, NULL, value); 3914 return; 3915 } 3916 3917 if (arm_is_secure_below_el3(env)) { 3918 tlb_flush_by_mmuidx(cs, 3919 ARMMMUIdxBit_S1SE1 | 3920 ARMMMUIdxBit_S1SE0); 3921 } else { 3922 tlb_flush_by_mmuidx(cs, 3923 ARMMMUIdxBit_S12NSE1 | 3924 ARMMMUIdxBit_S12NSE0); 3925 } 3926 } 3927 3928 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3929 uint64_t value) 3930 { 3931 /* Note that the 'ALL' scope must invalidate both stage 1 and 3932 * stage 2 translations, whereas most other scopes only invalidate 3933 * stage 1 translations. 3934 */ 3935 ARMCPU *cpu = env_archcpu(env); 3936 CPUState *cs = CPU(cpu); 3937 3938 if (arm_is_secure_below_el3(env)) { 3939 tlb_flush_by_mmuidx(cs, 3940 ARMMMUIdxBit_S1SE1 | 3941 ARMMMUIdxBit_S1SE0); 3942 } else { 3943 if (arm_feature(env, ARM_FEATURE_EL2)) { 3944 tlb_flush_by_mmuidx(cs, 3945 ARMMMUIdxBit_S12NSE1 | 3946 ARMMMUIdxBit_S12NSE0 | 3947 ARMMMUIdxBit_S2NS); 3948 } else { 3949 tlb_flush_by_mmuidx(cs, 3950 ARMMMUIdxBit_S12NSE1 | 3951 ARMMMUIdxBit_S12NSE0); 3952 } 3953 } 3954 } 3955 3956 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3957 uint64_t value) 3958 { 3959 ARMCPU *cpu = env_archcpu(env); 3960 CPUState *cs = CPU(cpu); 3961 3962 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3963 } 3964 3965 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3966 uint64_t value) 3967 { 3968 ARMCPU *cpu = env_archcpu(env); 3969 CPUState *cs = CPU(cpu); 3970 3971 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3972 } 3973 3974 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3975 uint64_t value) 3976 { 3977 /* Note that the 'ALL' scope must invalidate both stage 1 and 3978 * stage 2 translations, whereas most other scopes only invalidate 3979 * stage 1 translations. 3980 */ 3981 CPUState *cs = env_cpu(env); 3982 bool sec = arm_is_secure_below_el3(env); 3983 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3984 3985 if (sec) { 3986 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3987 ARMMMUIdxBit_S1SE1 | 3988 ARMMMUIdxBit_S1SE0); 3989 } else if (has_el2) { 3990 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3991 ARMMMUIdxBit_S12NSE1 | 3992 ARMMMUIdxBit_S12NSE0 | 3993 ARMMMUIdxBit_S2NS); 3994 } else { 3995 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3996 ARMMMUIdxBit_S12NSE1 | 3997 ARMMMUIdxBit_S12NSE0); 3998 } 3999 } 4000 4001 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4002 uint64_t value) 4003 { 4004 CPUState *cs = env_cpu(env); 4005 4006 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 4007 } 4008 4009 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4010 uint64_t value) 4011 { 4012 CPUState *cs = env_cpu(env); 4013 4014 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 4015 } 4016 4017 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4018 uint64_t value) 4019 { 4020 /* Invalidate by VA, EL2 4021 * Currently handles both VAE2 and VALE2, since we don't support 4022 * flush-last-level-only. 4023 */ 4024 ARMCPU *cpu = env_archcpu(env); 4025 CPUState *cs = CPU(cpu); 4026 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4027 4028 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 4029 } 4030 4031 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4032 uint64_t value) 4033 { 4034 /* Invalidate by VA, EL3 4035 * Currently handles both VAE3 and VALE3, since we don't support 4036 * flush-last-level-only. 4037 */ 4038 ARMCPU *cpu = env_archcpu(env); 4039 CPUState *cs = CPU(cpu); 4040 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4041 4042 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 4043 } 4044 4045 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4046 uint64_t value) 4047 { 4048 ARMCPU *cpu = env_archcpu(env); 4049 CPUState *cs = CPU(cpu); 4050 bool sec = arm_is_secure_below_el3(env); 4051 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4052 4053 if (sec) { 4054 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4055 ARMMMUIdxBit_S1SE1 | 4056 ARMMMUIdxBit_S1SE0); 4057 } else { 4058 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4059 ARMMMUIdxBit_S12NSE1 | 4060 ARMMMUIdxBit_S12NSE0); 4061 } 4062 } 4063 4064 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4065 uint64_t value) 4066 { 4067 /* Invalidate by VA, EL1&0 (AArch64 version). 4068 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4069 * since we don't support flush-for-specific-ASID-only or 4070 * flush-last-level-only. 4071 */ 4072 ARMCPU *cpu = env_archcpu(env); 4073 CPUState *cs = CPU(cpu); 4074 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4075 4076 if (tlb_force_broadcast(env)) { 4077 tlbi_aa64_vae1is_write(env, NULL, value); 4078 return; 4079 } 4080 4081 if (arm_is_secure_below_el3(env)) { 4082 tlb_flush_page_by_mmuidx(cs, pageaddr, 4083 ARMMMUIdxBit_S1SE1 | 4084 ARMMMUIdxBit_S1SE0); 4085 } else { 4086 tlb_flush_page_by_mmuidx(cs, pageaddr, 4087 ARMMMUIdxBit_S12NSE1 | 4088 ARMMMUIdxBit_S12NSE0); 4089 } 4090 } 4091 4092 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4093 uint64_t value) 4094 { 4095 CPUState *cs = env_cpu(env); 4096 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4097 4098 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4099 ARMMMUIdxBit_S1E2); 4100 } 4101 4102 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4103 uint64_t value) 4104 { 4105 CPUState *cs = env_cpu(env); 4106 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4107 4108 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4109 ARMMMUIdxBit_S1E3); 4110 } 4111 4112 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4113 uint64_t value) 4114 { 4115 /* Invalidate by IPA. This has to invalidate any structures that 4116 * contain only stage 2 translation information, but does not need 4117 * to apply to structures that contain combined stage 1 and stage 2 4118 * translation information. 4119 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4120 */ 4121 ARMCPU *cpu = env_archcpu(env); 4122 CPUState *cs = CPU(cpu); 4123 uint64_t pageaddr; 4124 4125 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4126 return; 4127 } 4128 4129 pageaddr = sextract64(value << 12, 0, 48); 4130 4131 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4132 } 4133 4134 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 CPUState *cs = env_cpu(env); 4138 uint64_t pageaddr; 4139 4140 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4141 return; 4142 } 4143 4144 pageaddr = sextract64(value << 12, 0, 48); 4145 4146 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4147 ARMMMUIdxBit_S2NS); 4148 } 4149 4150 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4151 bool isread) 4152 { 4153 /* We don't implement EL2, so the only control on DC ZVA is the 4154 * bit in the SCTLR which can prohibit access for EL0. 4155 */ 4156 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4157 return CP_ACCESS_TRAP; 4158 } 4159 return CP_ACCESS_OK; 4160 } 4161 4162 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4163 { 4164 ARMCPU *cpu = env_archcpu(env); 4165 int dzp_bit = 1 << 4; 4166 4167 /* DZP indicates whether DC ZVA access is allowed */ 4168 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4169 dzp_bit = 0; 4170 } 4171 return cpu->dcz_blocksize | dzp_bit; 4172 } 4173 4174 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4175 bool isread) 4176 { 4177 if (!(env->pstate & PSTATE_SP)) { 4178 /* Access to SP_EL0 is undefined if it's being used as 4179 * the stack pointer. 4180 */ 4181 return CP_ACCESS_TRAP_UNCATEGORIZED; 4182 } 4183 return CP_ACCESS_OK; 4184 } 4185 4186 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4187 { 4188 return env->pstate & PSTATE_SP; 4189 } 4190 4191 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4192 { 4193 update_spsel(env, val); 4194 } 4195 4196 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4197 uint64_t value) 4198 { 4199 ARMCPU *cpu = env_archcpu(env); 4200 4201 if (raw_read(env, ri) == value) { 4202 /* Skip the TLB flush if nothing actually changed; Linux likes 4203 * to do a lot of pointless SCTLR writes. 4204 */ 4205 return; 4206 } 4207 4208 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4209 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4210 value &= ~SCTLR_M; 4211 } 4212 4213 raw_write(env, ri, value); 4214 /* ??? Lots of these bits are not implemented. */ 4215 /* This may enable/disable the MMU, so do a TLB flush. */ 4216 tlb_flush(CPU(cpu)); 4217 4218 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4219 /* 4220 * Normally we would always end the TB on an SCTLR write; see the 4221 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4222 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4223 * of hflags from the translator, so do it here. 4224 */ 4225 arm_rebuild_hflags(env); 4226 } 4227 } 4228 4229 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4230 bool isread) 4231 { 4232 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4233 return CP_ACCESS_TRAP_FP_EL2; 4234 } 4235 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4236 return CP_ACCESS_TRAP_FP_EL3; 4237 } 4238 return CP_ACCESS_OK; 4239 } 4240 4241 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4242 uint64_t value) 4243 { 4244 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4245 } 4246 4247 static const ARMCPRegInfo v8_cp_reginfo[] = { 4248 /* Minimal set of EL0-visible registers. This will need to be expanded 4249 * significantly for system emulation of AArch64 CPUs. 4250 */ 4251 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4252 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4253 .access = PL0_RW, .type = ARM_CP_NZCV }, 4254 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4255 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4256 .type = ARM_CP_NO_RAW, 4257 .access = PL0_RW, .accessfn = aa64_daif_access, 4258 .fieldoffset = offsetof(CPUARMState, daif), 4259 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4260 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4262 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4263 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4264 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4265 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4266 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4267 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4268 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4269 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4270 .access = PL0_R, .type = ARM_CP_NO_RAW, 4271 .readfn = aa64_dczid_read }, 4272 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4274 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4275 #ifndef CONFIG_USER_ONLY 4276 /* Avoid overhead of an access check that always passes in user-mode */ 4277 .accessfn = aa64_zva_access, 4278 #endif 4279 }, 4280 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4281 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4282 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4283 /* Cache ops: all NOPs since we don't emulate caches */ 4284 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4285 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4286 .access = PL1_W, .type = ARM_CP_NOP }, 4287 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4289 .access = PL1_W, .type = ARM_CP_NOP }, 4290 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4291 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4292 .access = PL0_W, .type = ARM_CP_NOP, 4293 .accessfn = aa64_cacheop_access }, 4294 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4295 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4296 .access = PL1_W, .type = ARM_CP_NOP }, 4297 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4298 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4299 .access = PL1_W, .type = ARM_CP_NOP }, 4300 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4302 .access = PL0_W, .type = ARM_CP_NOP, 4303 .accessfn = aa64_cacheop_access }, 4304 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4305 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4306 .access = PL1_W, .type = ARM_CP_NOP }, 4307 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4308 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4309 .access = PL0_W, .type = ARM_CP_NOP, 4310 .accessfn = aa64_cacheop_access }, 4311 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4312 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4313 .access = PL0_W, .type = ARM_CP_NOP, 4314 .accessfn = aa64_cacheop_access }, 4315 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4316 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4317 .access = PL1_W, .type = ARM_CP_NOP }, 4318 /* TLBI operations */ 4319 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4321 .access = PL1_W, .type = ARM_CP_NO_RAW, 4322 .writefn = tlbi_aa64_vmalle1is_write }, 4323 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4325 .access = PL1_W, .type = ARM_CP_NO_RAW, 4326 .writefn = tlbi_aa64_vae1is_write }, 4327 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4328 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4329 .access = PL1_W, .type = ARM_CP_NO_RAW, 4330 .writefn = tlbi_aa64_vmalle1is_write }, 4331 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4333 .access = PL1_W, .type = ARM_CP_NO_RAW, 4334 .writefn = tlbi_aa64_vae1is_write }, 4335 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4337 .access = PL1_W, .type = ARM_CP_NO_RAW, 4338 .writefn = tlbi_aa64_vae1is_write }, 4339 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4341 .access = PL1_W, .type = ARM_CP_NO_RAW, 4342 .writefn = tlbi_aa64_vae1is_write }, 4343 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4344 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4345 .access = PL1_W, .type = ARM_CP_NO_RAW, 4346 .writefn = tlbi_aa64_vmalle1_write }, 4347 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4348 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4349 .access = PL1_W, .type = ARM_CP_NO_RAW, 4350 .writefn = tlbi_aa64_vae1_write }, 4351 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4352 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4353 .access = PL1_W, .type = ARM_CP_NO_RAW, 4354 .writefn = tlbi_aa64_vmalle1_write }, 4355 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4357 .access = PL1_W, .type = ARM_CP_NO_RAW, 4358 .writefn = tlbi_aa64_vae1_write }, 4359 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4361 .access = PL1_W, .type = ARM_CP_NO_RAW, 4362 .writefn = tlbi_aa64_vae1_write }, 4363 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4365 .access = PL1_W, .type = ARM_CP_NO_RAW, 4366 .writefn = tlbi_aa64_vae1_write }, 4367 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4368 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4369 .access = PL2_W, .type = ARM_CP_NO_RAW, 4370 .writefn = tlbi_aa64_ipas2e1is_write }, 4371 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4372 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4373 .access = PL2_W, .type = ARM_CP_NO_RAW, 4374 .writefn = tlbi_aa64_ipas2e1is_write }, 4375 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4376 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4377 .access = PL2_W, .type = ARM_CP_NO_RAW, 4378 .writefn = tlbi_aa64_alle1is_write }, 4379 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4381 .access = PL2_W, .type = ARM_CP_NO_RAW, 4382 .writefn = tlbi_aa64_alle1is_write }, 4383 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4385 .access = PL2_W, .type = ARM_CP_NO_RAW, 4386 .writefn = tlbi_aa64_ipas2e1_write }, 4387 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4389 .access = PL2_W, .type = ARM_CP_NO_RAW, 4390 .writefn = tlbi_aa64_ipas2e1_write }, 4391 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4393 .access = PL2_W, .type = ARM_CP_NO_RAW, 4394 .writefn = tlbi_aa64_alle1_write }, 4395 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4397 .access = PL2_W, .type = ARM_CP_NO_RAW, 4398 .writefn = tlbi_aa64_alle1is_write }, 4399 #ifndef CONFIG_USER_ONLY 4400 /* 64 bit address translation operations */ 4401 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4403 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4404 .writefn = ats_write64 }, 4405 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4406 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4407 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4408 .writefn = ats_write64 }, 4409 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4410 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4411 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4412 .writefn = ats_write64 }, 4413 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4416 .writefn = ats_write64 }, 4417 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4418 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4419 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4420 .writefn = ats_write64 }, 4421 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4422 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4423 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4424 .writefn = ats_write64 }, 4425 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4426 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4427 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4428 .writefn = ats_write64 }, 4429 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4430 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4431 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4432 .writefn = ats_write64 }, 4433 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4434 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4435 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4436 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4437 .writefn = ats_write64 }, 4438 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4439 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4440 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4441 .writefn = ats_write64 }, 4442 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4443 .type = ARM_CP_ALIAS, 4444 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4445 .access = PL1_RW, .resetvalue = 0, 4446 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4447 .writefn = par_write }, 4448 #endif 4449 /* TLB invalidate last level of translation table walk */ 4450 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4451 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4452 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4453 .type = ARM_CP_NO_RAW, .access = PL1_W, 4454 .writefn = tlbimvaa_is_write }, 4455 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4457 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4458 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4459 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4460 .type = ARM_CP_NO_RAW, .access = PL2_W, 4461 .writefn = tlbimva_hyp_write }, 4462 { .name = "TLBIMVALHIS", 4463 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4464 .type = ARM_CP_NO_RAW, .access = PL2_W, 4465 .writefn = tlbimva_hyp_is_write }, 4466 { .name = "TLBIIPAS2", 4467 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4468 .type = ARM_CP_NO_RAW, .access = PL2_W, 4469 .writefn = tlbiipas2_write }, 4470 { .name = "TLBIIPAS2IS", 4471 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4472 .type = ARM_CP_NO_RAW, .access = PL2_W, 4473 .writefn = tlbiipas2_is_write }, 4474 { .name = "TLBIIPAS2L", 4475 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4476 .type = ARM_CP_NO_RAW, .access = PL2_W, 4477 .writefn = tlbiipas2_write }, 4478 { .name = "TLBIIPAS2LIS", 4479 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4480 .type = ARM_CP_NO_RAW, .access = PL2_W, 4481 .writefn = tlbiipas2_is_write }, 4482 /* 32 bit cache operations */ 4483 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4484 .type = ARM_CP_NOP, .access = PL1_W }, 4485 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4486 .type = ARM_CP_NOP, .access = PL1_W }, 4487 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4488 .type = ARM_CP_NOP, .access = PL1_W }, 4489 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4490 .type = ARM_CP_NOP, .access = PL1_W }, 4491 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4492 .type = ARM_CP_NOP, .access = PL1_W }, 4493 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4494 .type = ARM_CP_NOP, .access = PL1_W }, 4495 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4496 .type = ARM_CP_NOP, .access = PL1_W }, 4497 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4498 .type = ARM_CP_NOP, .access = PL1_W }, 4499 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4500 .type = ARM_CP_NOP, .access = PL1_W }, 4501 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4502 .type = ARM_CP_NOP, .access = PL1_W }, 4503 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4504 .type = ARM_CP_NOP, .access = PL1_W }, 4505 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4506 .type = ARM_CP_NOP, .access = PL1_W }, 4507 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4508 .type = ARM_CP_NOP, .access = PL1_W }, 4509 /* MMU Domain access control / MPU write buffer control */ 4510 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4511 .access = PL1_RW, .resetvalue = 0, 4512 .writefn = dacr_write, .raw_writefn = raw_write, 4513 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4514 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4515 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4516 .type = ARM_CP_ALIAS, 4517 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4518 .access = PL1_RW, 4519 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4520 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4521 .type = ARM_CP_ALIAS, 4522 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4523 .access = PL1_RW, 4524 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4525 /* We rely on the access checks not allowing the guest to write to the 4526 * state field when SPSel indicates that it's being used as the stack 4527 * pointer. 4528 */ 4529 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4530 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4531 .access = PL1_RW, .accessfn = sp_el0_access, 4532 .type = ARM_CP_ALIAS, 4533 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4534 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4535 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4536 .access = PL2_RW, .type = ARM_CP_ALIAS, 4537 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4538 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4539 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4540 .type = ARM_CP_NO_RAW, 4541 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4542 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4543 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4544 .type = ARM_CP_ALIAS, 4545 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4546 .access = PL2_RW, .accessfn = fpexc32_access }, 4547 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4548 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4549 .access = PL2_RW, .resetvalue = 0, 4550 .writefn = dacr_write, .raw_writefn = raw_write, 4551 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4552 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4553 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4554 .access = PL2_RW, .resetvalue = 0, 4555 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4556 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4557 .type = ARM_CP_ALIAS, 4558 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4559 .access = PL2_RW, 4560 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4561 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4562 .type = ARM_CP_ALIAS, 4563 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4564 .access = PL2_RW, 4565 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4566 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4567 .type = ARM_CP_ALIAS, 4568 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4569 .access = PL2_RW, 4570 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4571 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4572 .type = ARM_CP_ALIAS, 4573 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4574 .access = PL2_RW, 4575 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4576 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4577 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4578 .resetvalue = 0, 4579 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4580 { .name = "SDCR", .type = ARM_CP_ALIAS, 4581 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4582 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4583 .writefn = sdcr_write, 4584 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4585 REGINFO_SENTINEL 4586 }; 4587 4588 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4589 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4590 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4591 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4592 .access = PL2_RW, 4593 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4594 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4595 .type = ARM_CP_NO_RAW, 4596 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4597 .access = PL2_RW, 4598 .type = ARM_CP_CONST, .resetvalue = 0 }, 4599 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4600 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4601 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4602 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4603 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4604 .access = PL2_RW, 4605 .type = ARM_CP_CONST, .resetvalue = 0 }, 4606 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4607 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4608 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4609 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4610 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4611 .access = PL2_RW, .type = ARM_CP_CONST, 4612 .resetvalue = 0 }, 4613 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4614 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4615 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4616 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4617 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4618 .access = PL2_RW, .type = ARM_CP_CONST, 4619 .resetvalue = 0 }, 4620 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4621 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4622 .access = PL2_RW, .type = ARM_CP_CONST, 4623 .resetvalue = 0 }, 4624 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4625 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4626 .access = PL2_RW, .type = ARM_CP_CONST, 4627 .resetvalue = 0 }, 4628 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4629 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4630 .access = PL2_RW, .type = ARM_CP_CONST, 4631 .resetvalue = 0 }, 4632 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4633 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4634 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4635 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4636 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4637 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4638 .type = ARM_CP_CONST, .resetvalue = 0 }, 4639 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4640 .cp = 15, .opc1 = 6, .crm = 2, 4641 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4642 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4643 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4644 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4645 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4646 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4647 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4648 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4649 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4650 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4651 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4652 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4653 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4654 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4655 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4656 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4657 .resetvalue = 0 }, 4658 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4660 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4661 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4662 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4663 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4664 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4665 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4666 .resetvalue = 0 }, 4667 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4668 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4669 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4670 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4671 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4672 .resetvalue = 0 }, 4673 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4676 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4677 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4679 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4680 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4681 .access = PL2_RW, .accessfn = access_tda, 4682 .type = ARM_CP_CONST, .resetvalue = 0 }, 4683 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4684 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4685 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4686 .type = ARM_CP_CONST, .resetvalue = 0 }, 4687 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4688 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4689 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4690 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4691 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4692 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4693 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4694 .type = ARM_CP_CONST, 4695 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4696 .access = PL2_RW, .resetvalue = 0 }, 4697 REGINFO_SENTINEL 4698 }; 4699 4700 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4701 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4702 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4703 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4704 .access = PL2_RW, 4705 .type = ARM_CP_CONST, .resetvalue = 0 }, 4706 REGINFO_SENTINEL 4707 }; 4708 4709 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4710 { 4711 ARMCPU *cpu = env_archcpu(env); 4712 uint64_t valid_mask = HCR_MASK; 4713 4714 if (arm_feature(env, ARM_FEATURE_EL3)) { 4715 valid_mask &= ~HCR_HCD; 4716 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4717 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4718 * However, if we're using the SMC PSCI conduit then QEMU is 4719 * effectively acting like EL3 firmware and so the guest at 4720 * EL2 should retain the ability to prevent EL1 from being 4721 * able to make SMC calls into the ersatz firmware, so in 4722 * that case HCR.TSC should be read/write. 4723 */ 4724 valid_mask &= ~HCR_TSC; 4725 } 4726 if (cpu_isar_feature(aa64_lor, cpu)) { 4727 valid_mask |= HCR_TLOR; 4728 } 4729 if (cpu_isar_feature(aa64_pauth, cpu)) { 4730 valid_mask |= HCR_API | HCR_APK; 4731 } 4732 4733 /* Clear RES0 bits. */ 4734 value &= valid_mask; 4735 4736 /* These bits change the MMU setup: 4737 * HCR_VM enables stage 2 translation 4738 * HCR_PTW forbids certain page-table setups 4739 * HCR_DC Disables stage1 and enables stage2 translation 4740 */ 4741 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4742 tlb_flush(CPU(cpu)); 4743 } 4744 env->cp15.hcr_el2 = value; 4745 4746 /* 4747 * Updates to VI and VF require us to update the status of 4748 * virtual interrupts, which are the logical OR of these bits 4749 * and the state of the input lines from the GIC. (This requires 4750 * that we have the iothread lock, which is done by marking the 4751 * reginfo structs as ARM_CP_IO.) 4752 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4753 * possible for it to be taken immediately, because VIRQ and 4754 * VFIQ are masked unless running at EL0 or EL1, and HCR 4755 * can only be written at EL2. 4756 */ 4757 g_assert(qemu_mutex_iothread_locked()); 4758 arm_cpu_update_virq(cpu); 4759 arm_cpu_update_vfiq(cpu); 4760 } 4761 4762 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4763 uint64_t value) 4764 { 4765 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4766 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4767 hcr_write(env, NULL, value); 4768 } 4769 4770 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4771 uint64_t value) 4772 { 4773 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4774 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4775 hcr_write(env, NULL, value); 4776 } 4777 4778 /* 4779 * Return the effective value of HCR_EL2. 4780 * Bits that are not included here: 4781 * RW (read from SCR_EL3.RW as needed) 4782 */ 4783 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4784 { 4785 uint64_t ret = env->cp15.hcr_el2; 4786 4787 if (arm_is_secure_below_el3(env)) { 4788 /* 4789 * "This register has no effect if EL2 is not enabled in the 4790 * current Security state". This is ARMv8.4-SecEL2 speak for 4791 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4792 * 4793 * Prior to that, the language was "In an implementation that 4794 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4795 * as if this field is 0 for all purposes other than a direct 4796 * read or write access of HCR_EL2". With lots of enumeration 4797 * on a per-field basis. In current QEMU, this is condition 4798 * is arm_is_secure_below_el3. 4799 * 4800 * Since the v8.4 language applies to the entire register, and 4801 * appears to be backward compatible, use that. 4802 */ 4803 ret = 0; 4804 } else if (ret & HCR_TGE) { 4805 /* These bits are up-to-date as of ARMv8.4. */ 4806 if (ret & HCR_E2H) { 4807 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4808 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4809 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4810 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4811 } else { 4812 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4813 } 4814 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4815 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4816 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4817 HCR_TLOR); 4818 } 4819 4820 return ret; 4821 } 4822 4823 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4824 uint64_t value) 4825 { 4826 /* 4827 * For A-profile AArch32 EL3, if NSACR.CP10 4828 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4829 */ 4830 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4831 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4832 value &= ~(0x3 << 10); 4833 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4834 } 4835 env->cp15.cptr_el[2] = value; 4836 } 4837 4838 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4839 { 4840 /* 4841 * For A-profile AArch32 EL3, if NSACR.CP10 4842 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4843 */ 4844 uint64_t value = env->cp15.cptr_el[2]; 4845 4846 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4847 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4848 value |= 0x3 << 10; 4849 } 4850 return value; 4851 } 4852 4853 static const ARMCPRegInfo el2_cp_reginfo[] = { 4854 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4855 .type = ARM_CP_IO, 4856 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4857 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4858 .writefn = hcr_write }, 4859 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4860 .type = ARM_CP_ALIAS | ARM_CP_IO, 4861 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4862 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4863 .writefn = hcr_writelow }, 4864 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4865 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4866 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4867 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4868 .type = ARM_CP_ALIAS, 4869 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4870 .access = PL2_RW, 4871 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4872 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4873 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4874 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4875 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4876 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4877 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4878 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4879 .type = ARM_CP_ALIAS, 4880 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4881 .access = PL2_RW, 4882 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4883 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4884 .type = ARM_CP_ALIAS, 4885 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4886 .access = PL2_RW, 4887 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4888 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4889 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4890 .access = PL2_RW, .writefn = vbar_write, 4891 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4892 .resetvalue = 0 }, 4893 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4895 .access = PL3_RW, .type = ARM_CP_ALIAS, 4896 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4897 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4898 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4899 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4900 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4901 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4902 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4903 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4904 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4905 .resetvalue = 0 }, 4906 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4907 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4908 .access = PL2_RW, .type = ARM_CP_ALIAS, 4909 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4910 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4911 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4912 .access = PL2_RW, .type = ARM_CP_CONST, 4913 .resetvalue = 0 }, 4914 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4915 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4916 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4917 .access = PL2_RW, .type = ARM_CP_CONST, 4918 .resetvalue = 0 }, 4919 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4920 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4921 .access = PL2_RW, .type = ARM_CP_CONST, 4922 .resetvalue = 0 }, 4923 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4924 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4925 .access = PL2_RW, .type = ARM_CP_CONST, 4926 .resetvalue = 0 }, 4927 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4928 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4929 .access = PL2_RW, 4930 /* no .writefn needed as this can't cause an ASID change; 4931 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4932 */ 4933 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4934 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4935 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4936 .type = ARM_CP_ALIAS, 4937 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4938 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4939 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4941 .access = PL2_RW, 4942 /* no .writefn needed as this can't cause an ASID change; 4943 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4944 */ 4945 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4946 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4947 .cp = 15, .opc1 = 6, .crm = 2, 4948 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4949 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4950 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4951 .writefn = vttbr_write }, 4952 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4954 .access = PL2_RW, .writefn = vttbr_write, 4955 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4956 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4957 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4958 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4959 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4960 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4961 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4962 .access = PL2_RW, .resetvalue = 0, 4963 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4964 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4966 .access = PL2_RW, .resetvalue = 0, 4967 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4968 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4969 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4970 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4971 { .name = "TLBIALLNSNH", 4972 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4973 .type = ARM_CP_NO_RAW, .access = PL2_W, 4974 .writefn = tlbiall_nsnh_write }, 4975 { .name = "TLBIALLNSNHIS", 4976 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4977 .type = ARM_CP_NO_RAW, .access = PL2_W, 4978 .writefn = tlbiall_nsnh_is_write }, 4979 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4980 .type = ARM_CP_NO_RAW, .access = PL2_W, 4981 .writefn = tlbiall_hyp_write }, 4982 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4983 .type = ARM_CP_NO_RAW, .access = PL2_W, 4984 .writefn = tlbiall_hyp_is_write }, 4985 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4986 .type = ARM_CP_NO_RAW, .access = PL2_W, 4987 .writefn = tlbimva_hyp_write }, 4988 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4989 .type = ARM_CP_NO_RAW, .access = PL2_W, 4990 .writefn = tlbimva_hyp_is_write }, 4991 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4993 .type = ARM_CP_NO_RAW, .access = PL2_W, 4994 .writefn = tlbi_aa64_alle2_write }, 4995 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4996 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4997 .type = ARM_CP_NO_RAW, .access = PL2_W, 4998 .writefn = tlbi_aa64_vae2_write }, 4999 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5000 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5001 .access = PL2_W, .type = ARM_CP_NO_RAW, 5002 .writefn = tlbi_aa64_vae2_write }, 5003 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5004 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5005 .access = PL2_W, .type = ARM_CP_NO_RAW, 5006 .writefn = tlbi_aa64_alle2is_write }, 5007 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5009 .type = ARM_CP_NO_RAW, .access = PL2_W, 5010 .writefn = tlbi_aa64_vae2is_write }, 5011 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5013 .access = PL2_W, .type = ARM_CP_NO_RAW, 5014 .writefn = tlbi_aa64_vae2is_write }, 5015 #ifndef CONFIG_USER_ONLY 5016 /* Unlike the other EL2-related AT operations, these must 5017 * UNDEF from EL3 if EL2 is not implemented, which is why we 5018 * define them here rather than with the rest of the AT ops. 5019 */ 5020 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5022 .access = PL2_W, .accessfn = at_s1e2_access, 5023 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5024 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5026 .access = PL2_W, .accessfn = at_s1e2_access, 5027 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5028 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5029 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5030 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5031 * to behave as if SCR.NS was 1. 5032 */ 5033 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5034 .access = PL2_W, 5035 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5036 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5037 .access = PL2_W, 5038 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5039 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5040 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5041 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5042 * reset values as IMPDEF. We choose to reset to 3 to comply with 5043 * both ARMv7 and ARMv8. 5044 */ 5045 .access = PL2_RW, .resetvalue = 3, 5046 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5047 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5049 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5050 .writefn = gt_cntvoff_write, 5051 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5052 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5053 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5054 .writefn = gt_cntvoff_write, 5055 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5056 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5058 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5059 .type = ARM_CP_IO, .access = PL2_RW, 5060 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5061 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5063 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5064 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5065 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5066 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5067 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5068 .resetfn = gt_hyp_timer_reset, 5069 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5070 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5071 .type = ARM_CP_IO, 5072 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5073 .access = PL2_RW, 5074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5075 .resetvalue = 0, 5076 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5077 #endif 5078 /* The only field of MDCR_EL2 that has a defined architectural reset value 5079 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5080 * don't implement any PMU event counters, so using zero as a reset 5081 * value for MDCR_EL2 is okay 5082 */ 5083 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5084 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5085 .access = PL2_RW, .resetvalue = 0, 5086 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5087 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5089 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5090 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5091 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5093 .access = PL2_RW, 5094 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5095 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5096 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5097 .access = PL2_RW, 5098 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5099 REGINFO_SENTINEL 5100 }; 5101 5102 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5103 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5104 .type = ARM_CP_ALIAS | ARM_CP_IO, 5105 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5106 .access = PL2_RW, 5107 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5108 .writefn = hcr_writehigh }, 5109 REGINFO_SENTINEL 5110 }; 5111 5112 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5113 bool isread) 5114 { 5115 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5116 * At Secure EL1 it traps to EL3. 5117 */ 5118 if (arm_current_el(env) == 3) { 5119 return CP_ACCESS_OK; 5120 } 5121 if (arm_is_secure_below_el3(env)) { 5122 return CP_ACCESS_TRAP_EL3; 5123 } 5124 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5125 if (isread) { 5126 return CP_ACCESS_OK; 5127 } 5128 return CP_ACCESS_TRAP_UNCATEGORIZED; 5129 } 5130 5131 static const ARMCPRegInfo el3_cp_reginfo[] = { 5132 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5134 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5135 .resetvalue = 0, .writefn = scr_write }, 5136 { .name = "SCR", .type = ARM_CP_ALIAS, 5137 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5138 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5139 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5140 .writefn = scr_write }, 5141 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5142 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5143 .access = PL3_RW, .resetvalue = 0, 5144 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5145 { .name = "SDER", 5146 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5147 .access = PL3_RW, .resetvalue = 0, 5148 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5149 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5150 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5151 .writefn = vbar_write, .resetvalue = 0, 5152 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5153 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5154 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5155 .access = PL3_RW, .resetvalue = 0, 5156 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5157 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5158 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5159 .access = PL3_RW, 5160 /* no .writefn needed as this can't cause an ASID change; 5161 * we must provide a .raw_writefn and .resetfn because we handle 5162 * reset and migration for the AArch32 TTBCR(S), which might be 5163 * using mask and base_mask. 5164 */ 5165 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5166 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5167 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5168 .type = ARM_CP_ALIAS, 5169 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5170 .access = PL3_RW, 5171 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5172 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5173 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5174 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5175 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5176 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5177 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5178 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5179 .type = ARM_CP_ALIAS, 5180 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5181 .access = PL3_RW, 5182 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5183 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5184 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5185 .access = PL3_RW, .writefn = vbar_write, 5186 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5187 .resetvalue = 0 }, 5188 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5189 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5190 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5191 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5192 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5193 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5194 .access = PL3_RW, .resetvalue = 0, 5195 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5196 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5197 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5198 .access = PL3_RW, .type = ARM_CP_CONST, 5199 .resetvalue = 0 }, 5200 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5201 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5202 .access = PL3_RW, .type = ARM_CP_CONST, 5203 .resetvalue = 0 }, 5204 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5205 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5206 .access = PL3_RW, .type = ARM_CP_CONST, 5207 .resetvalue = 0 }, 5208 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5210 .access = PL3_W, .type = ARM_CP_NO_RAW, 5211 .writefn = tlbi_aa64_alle3is_write }, 5212 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5214 .access = PL3_W, .type = ARM_CP_NO_RAW, 5215 .writefn = tlbi_aa64_vae3is_write }, 5216 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5217 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5218 .access = PL3_W, .type = ARM_CP_NO_RAW, 5219 .writefn = tlbi_aa64_vae3is_write }, 5220 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5222 .access = PL3_W, .type = ARM_CP_NO_RAW, 5223 .writefn = tlbi_aa64_alle3_write }, 5224 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5225 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5226 .access = PL3_W, .type = ARM_CP_NO_RAW, 5227 .writefn = tlbi_aa64_vae3_write }, 5228 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5229 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5230 .access = PL3_W, .type = ARM_CP_NO_RAW, 5231 .writefn = tlbi_aa64_vae3_write }, 5232 REGINFO_SENTINEL 5233 }; 5234 5235 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5236 bool isread) 5237 { 5238 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5239 * but the AArch32 CTR has its own reginfo struct) 5240 */ 5241 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5242 return CP_ACCESS_TRAP; 5243 } 5244 5245 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5246 return CP_ACCESS_TRAP_EL2; 5247 } 5248 5249 return CP_ACCESS_OK; 5250 } 5251 5252 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5253 uint64_t value) 5254 { 5255 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5256 * read via a bit in OSLSR_EL1. 5257 */ 5258 int oslock; 5259 5260 if (ri->state == ARM_CP_STATE_AA32) { 5261 oslock = (value == 0xC5ACCE55); 5262 } else { 5263 oslock = value & 1; 5264 } 5265 5266 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5267 } 5268 5269 static const ARMCPRegInfo debug_cp_reginfo[] = { 5270 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5271 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5272 * unlike DBGDRAR it is never accessible from EL0. 5273 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5274 * accessor. 5275 */ 5276 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5277 .access = PL0_R, .accessfn = access_tdra, 5278 .type = ARM_CP_CONST, .resetvalue = 0 }, 5279 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5280 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5281 .access = PL1_R, .accessfn = access_tdra, 5282 .type = ARM_CP_CONST, .resetvalue = 0 }, 5283 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5284 .access = PL0_R, .accessfn = access_tdra, 5285 .type = ARM_CP_CONST, .resetvalue = 0 }, 5286 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5287 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5288 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5289 .access = PL1_RW, .accessfn = access_tda, 5290 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5291 .resetvalue = 0 }, 5292 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5293 * We don't implement the configurable EL0 access. 5294 */ 5295 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5296 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5297 .type = ARM_CP_ALIAS, 5298 .access = PL1_R, .accessfn = access_tda, 5299 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5300 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5301 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5302 .access = PL1_W, .type = ARM_CP_NO_RAW, 5303 .accessfn = access_tdosa, 5304 .writefn = oslar_write }, 5305 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5306 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5307 .access = PL1_R, .resetvalue = 10, 5308 .accessfn = access_tdosa, 5309 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5310 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5311 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5312 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5313 .access = PL1_RW, .accessfn = access_tdosa, 5314 .type = ARM_CP_NOP }, 5315 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5316 * implement vector catch debug events yet. 5317 */ 5318 { .name = "DBGVCR", 5319 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5320 .access = PL1_RW, .accessfn = access_tda, 5321 .type = ARM_CP_NOP }, 5322 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5323 * to save and restore a 32-bit guest's DBGVCR) 5324 */ 5325 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5326 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5327 .access = PL2_RW, .accessfn = access_tda, 5328 .type = ARM_CP_NOP }, 5329 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5330 * Channel but Linux may try to access this register. The 32-bit 5331 * alias is DBGDCCINT. 5332 */ 5333 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5334 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5335 .access = PL1_RW, .accessfn = access_tda, 5336 .type = ARM_CP_NOP }, 5337 REGINFO_SENTINEL 5338 }; 5339 5340 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5341 /* 64 bit access versions of the (dummy) debug registers */ 5342 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5343 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5344 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5345 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5346 REGINFO_SENTINEL 5347 }; 5348 5349 /* Return the exception level to which exceptions should be taken 5350 * via SVEAccessTrap. If an exception should be routed through 5351 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5352 * take care of raising that exception. 5353 * C.f. the ARM pseudocode function CheckSVEEnabled. 5354 */ 5355 int sve_exception_el(CPUARMState *env, int el) 5356 { 5357 #ifndef CONFIG_USER_ONLY 5358 if (el <= 1) { 5359 bool disabled = false; 5360 5361 /* The CPACR.ZEN controls traps to EL1: 5362 * 0, 2 : trap EL0 and EL1 accesses 5363 * 1 : trap only EL0 accesses 5364 * 3 : trap no accesses 5365 */ 5366 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5367 disabled = true; 5368 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5369 disabled = el == 0; 5370 } 5371 if (disabled) { 5372 /* route_to_el2 */ 5373 return (arm_feature(env, ARM_FEATURE_EL2) 5374 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5375 } 5376 5377 /* Check CPACR.FPEN. */ 5378 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5379 disabled = true; 5380 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5381 disabled = el == 0; 5382 } 5383 if (disabled) { 5384 return 0; 5385 } 5386 } 5387 5388 /* CPTR_EL2. Since TZ and TFP are positive, 5389 * they will be zero when EL2 is not present. 5390 */ 5391 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5392 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5393 return 2; 5394 } 5395 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5396 return 0; 5397 } 5398 } 5399 5400 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5401 if (arm_feature(env, ARM_FEATURE_EL3) 5402 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5403 return 3; 5404 } 5405 #endif 5406 return 0; 5407 } 5408 5409 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 5410 { 5411 uint32_t end_len; 5412 5413 end_len = start_len &= 0xf; 5414 if (!test_bit(start_len, cpu->sve_vq_map)) { 5415 end_len = find_last_bit(cpu->sve_vq_map, start_len); 5416 assert(end_len < start_len); 5417 } 5418 return end_len; 5419 } 5420 5421 /* 5422 * Given that SVE is enabled, return the vector length for EL. 5423 */ 5424 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5425 { 5426 ARMCPU *cpu = env_archcpu(env); 5427 uint32_t zcr_len = cpu->sve_max_vq - 1; 5428 5429 if (el <= 1) { 5430 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5431 } 5432 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5433 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5434 } 5435 if (arm_feature(env, ARM_FEATURE_EL3)) { 5436 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5437 } 5438 5439 return sve_zcr_get_valid_len(cpu, zcr_len); 5440 } 5441 5442 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5443 uint64_t value) 5444 { 5445 int cur_el = arm_current_el(env); 5446 int old_len = sve_zcr_len_for_el(env, cur_el); 5447 int new_len; 5448 5449 /* Bits other than [3:0] are RAZ/WI. */ 5450 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 5451 raw_write(env, ri, value & 0xf); 5452 5453 /* 5454 * Because we arrived here, we know both FP and SVE are enabled; 5455 * otherwise we would have trapped access to the ZCR_ELn register. 5456 */ 5457 new_len = sve_zcr_len_for_el(env, cur_el); 5458 if (new_len < old_len) { 5459 aarch64_sve_narrow_vq(env, new_len + 1); 5460 } 5461 } 5462 5463 static const ARMCPRegInfo zcr_el1_reginfo = { 5464 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5465 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5466 .access = PL1_RW, .type = ARM_CP_SVE, 5467 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5468 .writefn = zcr_write, .raw_writefn = raw_write 5469 }; 5470 5471 static const ARMCPRegInfo zcr_el2_reginfo = { 5472 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5473 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5474 .access = PL2_RW, .type = ARM_CP_SVE, 5475 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5476 .writefn = zcr_write, .raw_writefn = raw_write 5477 }; 5478 5479 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5480 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5481 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5482 .access = PL2_RW, .type = ARM_CP_SVE, 5483 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5484 }; 5485 5486 static const ARMCPRegInfo zcr_el3_reginfo = { 5487 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5488 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5489 .access = PL3_RW, .type = ARM_CP_SVE, 5490 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5491 .writefn = zcr_write, .raw_writefn = raw_write 5492 }; 5493 5494 void hw_watchpoint_update(ARMCPU *cpu, int n) 5495 { 5496 CPUARMState *env = &cpu->env; 5497 vaddr len = 0; 5498 vaddr wvr = env->cp15.dbgwvr[n]; 5499 uint64_t wcr = env->cp15.dbgwcr[n]; 5500 int mask; 5501 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5502 5503 if (env->cpu_watchpoint[n]) { 5504 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5505 env->cpu_watchpoint[n] = NULL; 5506 } 5507 5508 if (!extract64(wcr, 0, 1)) { 5509 /* E bit clear : watchpoint disabled */ 5510 return; 5511 } 5512 5513 switch (extract64(wcr, 3, 2)) { 5514 case 0: 5515 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5516 return; 5517 case 1: 5518 flags |= BP_MEM_READ; 5519 break; 5520 case 2: 5521 flags |= BP_MEM_WRITE; 5522 break; 5523 case 3: 5524 flags |= BP_MEM_ACCESS; 5525 break; 5526 } 5527 5528 /* Attempts to use both MASK and BAS fields simultaneously are 5529 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5530 * thus generating a watchpoint for every byte in the masked region. 5531 */ 5532 mask = extract64(wcr, 24, 4); 5533 if (mask == 1 || mask == 2) { 5534 /* Reserved values of MASK; we must act as if the mask value was 5535 * some non-reserved value, or as if the watchpoint were disabled. 5536 * We choose the latter. 5537 */ 5538 return; 5539 } else if (mask) { 5540 /* Watchpoint covers an aligned area up to 2GB in size */ 5541 len = 1ULL << mask; 5542 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5543 * whether the watchpoint fires when the unmasked bits match; we opt 5544 * to generate the exceptions. 5545 */ 5546 wvr &= ~(len - 1); 5547 } else { 5548 /* Watchpoint covers bytes defined by the byte address select bits */ 5549 int bas = extract64(wcr, 5, 8); 5550 int basstart; 5551 5552 if (bas == 0) { 5553 /* This must act as if the watchpoint is disabled */ 5554 return; 5555 } 5556 5557 if (extract64(wvr, 2, 1)) { 5558 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5559 * ignored, and BAS[3:0] define which bytes to watch. 5560 */ 5561 bas &= 0xf; 5562 } 5563 /* The BAS bits are supposed to be programmed to indicate a contiguous 5564 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5565 * we fire for each byte in the word/doubleword addressed by the WVR. 5566 * We choose to ignore any non-zero bits after the first range of 1s. 5567 */ 5568 basstart = ctz32(bas); 5569 len = cto32(bas >> basstart); 5570 wvr += basstart; 5571 } 5572 5573 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5574 &env->cpu_watchpoint[n]); 5575 } 5576 5577 void hw_watchpoint_update_all(ARMCPU *cpu) 5578 { 5579 int i; 5580 CPUARMState *env = &cpu->env; 5581 5582 /* Completely clear out existing QEMU watchpoints and our array, to 5583 * avoid possible stale entries following migration load. 5584 */ 5585 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5586 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5587 5588 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5589 hw_watchpoint_update(cpu, i); 5590 } 5591 } 5592 5593 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5594 uint64_t value) 5595 { 5596 ARMCPU *cpu = env_archcpu(env); 5597 int i = ri->crm; 5598 5599 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5600 * register reads and behaves as if values written are sign extended. 5601 * Bits [1:0] are RES0. 5602 */ 5603 value = sextract64(value, 0, 49) & ~3ULL; 5604 5605 raw_write(env, ri, value); 5606 hw_watchpoint_update(cpu, i); 5607 } 5608 5609 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5610 uint64_t value) 5611 { 5612 ARMCPU *cpu = env_archcpu(env); 5613 int i = ri->crm; 5614 5615 raw_write(env, ri, value); 5616 hw_watchpoint_update(cpu, i); 5617 } 5618 5619 void hw_breakpoint_update(ARMCPU *cpu, int n) 5620 { 5621 CPUARMState *env = &cpu->env; 5622 uint64_t bvr = env->cp15.dbgbvr[n]; 5623 uint64_t bcr = env->cp15.dbgbcr[n]; 5624 vaddr addr; 5625 int bt; 5626 int flags = BP_CPU; 5627 5628 if (env->cpu_breakpoint[n]) { 5629 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5630 env->cpu_breakpoint[n] = NULL; 5631 } 5632 5633 if (!extract64(bcr, 0, 1)) { 5634 /* E bit clear : watchpoint disabled */ 5635 return; 5636 } 5637 5638 bt = extract64(bcr, 20, 4); 5639 5640 switch (bt) { 5641 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5642 case 5: /* linked address mismatch (reserved if AArch64) */ 5643 qemu_log_mask(LOG_UNIMP, 5644 "arm: address mismatch breakpoint types not implemented\n"); 5645 return; 5646 case 0: /* unlinked address match */ 5647 case 1: /* linked address match */ 5648 { 5649 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5650 * we behave as if the register was sign extended. Bits [1:0] are 5651 * RES0. The BAS field is used to allow setting breakpoints on 16 5652 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5653 * a bp will fire if the addresses covered by the bp and the addresses 5654 * covered by the insn overlap but the insn doesn't start at the 5655 * start of the bp address range. We choose to require the insn and 5656 * the bp to have the same address. The constraints on writing to 5657 * BAS enforced in dbgbcr_write mean we have only four cases: 5658 * 0b0000 => no breakpoint 5659 * 0b0011 => breakpoint on addr 5660 * 0b1100 => breakpoint on addr + 2 5661 * 0b1111 => breakpoint on addr 5662 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5663 */ 5664 int bas = extract64(bcr, 5, 4); 5665 addr = sextract64(bvr, 0, 49) & ~3ULL; 5666 if (bas == 0) { 5667 return; 5668 } 5669 if (bas == 0xc) { 5670 addr += 2; 5671 } 5672 break; 5673 } 5674 case 2: /* unlinked context ID match */ 5675 case 8: /* unlinked VMID match (reserved if no EL2) */ 5676 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5677 qemu_log_mask(LOG_UNIMP, 5678 "arm: unlinked context breakpoint types not implemented\n"); 5679 return; 5680 case 9: /* linked VMID match (reserved if no EL2) */ 5681 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5682 case 3: /* linked context ID match */ 5683 default: 5684 /* We must generate no events for Linked context matches (unless 5685 * they are linked to by some other bp/wp, which is handled in 5686 * updates for the linking bp/wp). We choose to also generate no events 5687 * for reserved values. 5688 */ 5689 return; 5690 } 5691 5692 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5693 } 5694 5695 void hw_breakpoint_update_all(ARMCPU *cpu) 5696 { 5697 int i; 5698 CPUARMState *env = &cpu->env; 5699 5700 /* Completely clear out existing QEMU breakpoints and our array, to 5701 * avoid possible stale entries following migration load. 5702 */ 5703 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5704 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5705 5706 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5707 hw_breakpoint_update(cpu, i); 5708 } 5709 } 5710 5711 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5712 uint64_t value) 5713 { 5714 ARMCPU *cpu = env_archcpu(env); 5715 int i = ri->crm; 5716 5717 raw_write(env, ri, value); 5718 hw_breakpoint_update(cpu, i); 5719 } 5720 5721 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5722 uint64_t value) 5723 { 5724 ARMCPU *cpu = env_archcpu(env); 5725 int i = ri->crm; 5726 5727 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5728 * copy of BAS[0]. 5729 */ 5730 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5731 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5732 5733 raw_write(env, ri, value); 5734 hw_breakpoint_update(cpu, i); 5735 } 5736 5737 static void define_debug_regs(ARMCPU *cpu) 5738 { 5739 /* Define v7 and v8 architectural debug registers. 5740 * These are just dummy implementations for now. 5741 */ 5742 int i; 5743 int wrps, brps, ctx_cmps; 5744 ARMCPRegInfo dbgdidr = { 5745 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5746 .access = PL0_R, .accessfn = access_tda, 5747 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5748 }; 5749 5750 /* Note that all these register fields hold "number of Xs minus 1". */ 5751 brps = extract32(cpu->dbgdidr, 24, 4); 5752 wrps = extract32(cpu->dbgdidr, 28, 4); 5753 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5754 5755 assert(ctx_cmps <= brps); 5756 5757 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5758 * of the debug registers such as number of breakpoints; 5759 * check that if they both exist then they agree. 5760 */ 5761 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5762 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5763 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5764 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5765 } 5766 5767 define_one_arm_cp_reg(cpu, &dbgdidr); 5768 define_arm_cp_regs(cpu, debug_cp_reginfo); 5769 5770 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5771 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5772 } 5773 5774 for (i = 0; i < brps + 1; i++) { 5775 ARMCPRegInfo dbgregs[] = { 5776 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5777 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5778 .access = PL1_RW, .accessfn = access_tda, 5779 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5780 .writefn = dbgbvr_write, .raw_writefn = raw_write 5781 }, 5782 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5783 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5784 .access = PL1_RW, .accessfn = access_tda, 5785 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5786 .writefn = dbgbcr_write, .raw_writefn = raw_write 5787 }, 5788 REGINFO_SENTINEL 5789 }; 5790 define_arm_cp_regs(cpu, dbgregs); 5791 } 5792 5793 for (i = 0; i < wrps + 1; i++) { 5794 ARMCPRegInfo dbgregs[] = { 5795 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5796 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5797 .access = PL1_RW, .accessfn = access_tda, 5798 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5799 .writefn = dbgwvr_write, .raw_writefn = raw_write 5800 }, 5801 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5802 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5803 .access = PL1_RW, .accessfn = access_tda, 5804 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5805 .writefn = dbgwcr_write, .raw_writefn = raw_write 5806 }, 5807 REGINFO_SENTINEL 5808 }; 5809 define_arm_cp_regs(cpu, dbgregs); 5810 } 5811 } 5812 5813 /* We don't know until after realize whether there's a GICv3 5814 * attached, and that is what registers the gicv3 sysregs. 5815 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5816 * at runtime. 5817 */ 5818 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5819 { 5820 ARMCPU *cpu = env_archcpu(env); 5821 uint64_t pfr1 = cpu->id_pfr1; 5822 5823 if (env->gicv3state) { 5824 pfr1 |= 1 << 28; 5825 } 5826 return pfr1; 5827 } 5828 5829 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5830 { 5831 ARMCPU *cpu = env_archcpu(env); 5832 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5833 5834 if (env->gicv3state) { 5835 pfr0 |= 1 << 24; 5836 } 5837 return pfr0; 5838 } 5839 5840 /* Shared logic between LORID and the rest of the LOR* registers. 5841 * Secure state has already been delt with. 5842 */ 5843 static CPAccessResult access_lor_ns(CPUARMState *env) 5844 { 5845 int el = arm_current_el(env); 5846 5847 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5848 return CP_ACCESS_TRAP_EL2; 5849 } 5850 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5851 return CP_ACCESS_TRAP_EL3; 5852 } 5853 return CP_ACCESS_OK; 5854 } 5855 5856 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5857 bool isread) 5858 { 5859 if (arm_is_secure_below_el3(env)) { 5860 /* Access ok in secure mode. */ 5861 return CP_ACCESS_OK; 5862 } 5863 return access_lor_ns(env); 5864 } 5865 5866 static CPAccessResult access_lor_other(CPUARMState *env, 5867 const ARMCPRegInfo *ri, bool isread) 5868 { 5869 if (arm_is_secure_below_el3(env)) { 5870 /* Access denied in secure mode. */ 5871 return CP_ACCESS_TRAP; 5872 } 5873 return access_lor_ns(env); 5874 } 5875 5876 #ifdef TARGET_AARCH64 5877 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5878 bool isread) 5879 { 5880 int el = arm_current_el(env); 5881 5882 if (el < 2 && 5883 arm_feature(env, ARM_FEATURE_EL2) && 5884 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5885 return CP_ACCESS_TRAP_EL2; 5886 } 5887 if (el < 3 && 5888 arm_feature(env, ARM_FEATURE_EL3) && 5889 !(env->cp15.scr_el3 & SCR_APK)) { 5890 return CP_ACCESS_TRAP_EL3; 5891 } 5892 return CP_ACCESS_OK; 5893 } 5894 5895 static const ARMCPRegInfo pauth_reginfo[] = { 5896 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5897 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5898 .access = PL1_RW, .accessfn = access_pauth, 5899 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5900 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5901 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5902 .access = PL1_RW, .accessfn = access_pauth, 5903 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5904 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5905 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5906 .access = PL1_RW, .accessfn = access_pauth, 5907 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5908 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5909 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5910 .access = PL1_RW, .accessfn = access_pauth, 5911 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5912 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5913 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5914 .access = PL1_RW, .accessfn = access_pauth, 5915 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5916 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5917 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5918 .access = PL1_RW, .accessfn = access_pauth, 5919 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5920 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5921 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5922 .access = PL1_RW, .accessfn = access_pauth, 5923 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5924 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5925 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5926 .access = PL1_RW, .accessfn = access_pauth, 5927 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5928 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5929 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5930 .access = PL1_RW, .accessfn = access_pauth, 5931 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5932 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5933 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5934 .access = PL1_RW, .accessfn = access_pauth, 5935 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5936 REGINFO_SENTINEL 5937 }; 5938 5939 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5940 { 5941 Error *err = NULL; 5942 uint64_t ret; 5943 5944 /* Success sets NZCV = 0000. */ 5945 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5946 5947 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5948 /* 5949 * ??? Failed, for unknown reasons in the crypto subsystem. 5950 * The best we can do is log the reason and return the 5951 * timed-out indication to the guest. There is no reason 5952 * we know to expect this failure to be transitory, so the 5953 * guest may well hang retrying the operation. 5954 */ 5955 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5956 ri->name, error_get_pretty(err)); 5957 error_free(err); 5958 5959 env->ZF = 0; /* NZCF = 0100 */ 5960 return 0; 5961 } 5962 return ret; 5963 } 5964 5965 /* We do not support re-seeding, so the two registers operate the same. */ 5966 static const ARMCPRegInfo rndr_reginfo[] = { 5967 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5968 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5969 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5970 .access = PL0_R, .readfn = rndr_readfn }, 5971 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5972 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5973 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5974 .access = PL0_R, .readfn = rndr_readfn }, 5975 REGINFO_SENTINEL 5976 }; 5977 5978 #ifndef CONFIG_USER_ONLY 5979 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 5980 uint64_t value) 5981 { 5982 ARMCPU *cpu = env_archcpu(env); 5983 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 5984 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 5985 uint64_t vaddr_in = (uint64_t) value; 5986 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 5987 void *haddr; 5988 int mem_idx = cpu_mmu_index(env, false); 5989 5990 /* This won't be crossing page boundaries */ 5991 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 5992 if (haddr) { 5993 5994 ram_addr_t offset; 5995 MemoryRegion *mr; 5996 5997 /* RCU lock is already being held */ 5998 mr = memory_region_from_host(haddr, &offset); 5999 6000 if (mr) { 6001 memory_region_do_writeback(mr, offset, dline_size); 6002 } 6003 } 6004 } 6005 6006 static const ARMCPRegInfo dcpop_reg[] = { 6007 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6008 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6009 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6010 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, 6011 REGINFO_SENTINEL 6012 }; 6013 6014 static const ARMCPRegInfo dcpodp_reg[] = { 6015 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6016 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6017 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6018 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, 6019 REGINFO_SENTINEL 6020 }; 6021 #endif /*CONFIG_USER_ONLY*/ 6022 6023 #endif 6024 6025 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6026 bool isread) 6027 { 6028 int el = arm_current_el(env); 6029 6030 if (el == 0) { 6031 uint64_t sctlr = arm_sctlr(env, el); 6032 if (!(sctlr & SCTLR_EnRCTX)) { 6033 return CP_ACCESS_TRAP; 6034 } 6035 } else if (el == 1) { 6036 uint64_t hcr = arm_hcr_el2_eff(env); 6037 if (hcr & HCR_NV) { 6038 return CP_ACCESS_TRAP_EL2; 6039 } 6040 } 6041 return CP_ACCESS_OK; 6042 } 6043 6044 static const ARMCPRegInfo predinv_reginfo[] = { 6045 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6046 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6047 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6048 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6049 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6050 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6051 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6052 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6053 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6054 /* 6055 * Note the AArch32 opcodes have a different OPC1. 6056 */ 6057 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6058 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6059 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6060 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6061 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6062 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6063 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6064 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6065 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6066 REGINFO_SENTINEL 6067 }; 6068 6069 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6070 bool isread) 6071 { 6072 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 6073 return CP_ACCESS_TRAP_EL2; 6074 } 6075 6076 return CP_ACCESS_OK; 6077 } 6078 6079 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6080 bool isread) 6081 { 6082 if (arm_feature(env, ARM_FEATURE_V8)) { 6083 return access_aa64_tid3(env, ri, isread); 6084 } 6085 6086 return CP_ACCESS_OK; 6087 } 6088 6089 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 6090 bool isread) 6091 { 6092 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 6093 return CP_ACCESS_TRAP_EL2; 6094 } 6095 6096 return CP_ACCESS_OK; 6097 } 6098 6099 static const ARMCPRegInfo jazelle_regs[] = { 6100 { .name = "JIDR", 6101 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 6102 .access = PL1_R, .accessfn = access_jazelle, 6103 .type = ARM_CP_CONST, .resetvalue = 0 }, 6104 { .name = "JOSCR", 6105 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 6106 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6107 { .name = "JMCR", 6108 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 6109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6110 REGINFO_SENTINEL 6111 }; 6112 6113 void register_cp_regs_for_features(ARMCPU *cpu) 6114 { 6115 /* Register all the coprocessor registers based on feature bits */ 6116 CPUARMState *env = &cpu->env; 6117 if (arm_feature(env, ARM_FEATURE_M)) { 6118 /* M profile has no coprocessor registers */ 6119 return; 6120 } 6121 6122 define_arm_cp_regs(cpu, cp_reginfo); 6123 if (!arm_feature(env, ARM_FEATURE_V8)) { 6124 /* Must go early as it is full of wildcards that may be 6125 * overridden by later definitions. 6126 */ 6127 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 6128 } 6129 6130 if (arm_feature(env, ARM_FEATURE_V6)) { 6131 /* The ID registers all have impdef reset values */ 6132 ARMCPRegInfo v6_idregs[] = { 6133 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 6134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6135 .access = PL1_R, .type = ARM_CP_CONST, 6136 .accessfn = access_aa32_tid3, 6137 .resetvalue = cpu->id_pfr0 }, 6138 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 6139 * the value of the GIC field until after we define these regs. 6140 */ 6141 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 6142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 6143 .access = PL1_R, .type = ARM_CP_NO_RAW, 6144 .accessfn = access_aa32_tid3, 6145 .readfn = id_pfr1_read, 6146 .writefn = arm_cp_write_ignore }, 6147 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 6148 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 6149 .access = PL1_R, .type = ARM_CP_CONST, 6150 .accessfn = access_aa32_tid3, 6151 .resetvalue = cpu->id_dfr0 }, 6152 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 6153 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 6154 .access = PL1_R, .type = ARM_CP_CONST, 6155 .accessfn = access_aa32_tid3, 6156 .resetvalue = cpu->id_afr0 }, 6157 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 6158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 6159 .access = PL1_R, .type = ARM_CP_CONST, 6160 .accessfn = access_aa32_tid3, 6161 .resetvalue = cpu->id_mmfr0 }, 6162 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6164 .access = PL1_R, .type = ARM_CP_CONST, 6165 .accessfn = access_aa32_tid3, 6166 .resetvalue = cpu->id_mmfr1 }, 6167 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6168 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6169 .access = PL1_R, .type = ARM_CP_CONST, 6170 .accessfn = access_aa32_tid3, 6171 .resetvalue = cpu->id_mmfr2 }, 6172 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6174 .access = PL1_R, .type = ARM_CP_CONST, 6175 .accessfn = access_aa32_tid3, 6176 .resetvalue = cpu->id_mmfr3 }, 6177 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6179 .access = PL1_R, .type = ARM_CP_CONST, 6180 .accessfn = access_aa32_tid3, 6181 .resetvalue = cpu->isar.id_isar0 }, 6182 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6184 .access = PL1_R, .type = ARM_CP_CONST, 6185 .accessfn = access_aa32_tid3, 6186 .resetvalue = cpu->isar.id_isar1 }, 6187 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6189 .access = PL1_R, .type = ARM_CP_CONST, 6190 .accessfn = access_aa32_tid3, 6191 .resetvalue = cpu->isar.id_isar2 }, 6192 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6194 .access = PL1_R, .type = ARM_CP_CONST, 6195 .accessfn = access_aa32_tid3, 6196 .resetvalue = cpu->isar.id_isar3 }, 6197 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6199 .access = PL1_R, .type = ARM_CP_CONST, 6200 .accessfn = access_aa32_tid3, 6201 .resetvalue = cpu->isar.id_isar4 }, 6202 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6204 .access = PL1_R, .type = ARM_CP_CONST, 6205 .accessfn = access_aa32_tid3, 6206 .resetvalue = cpu->isar.id_isar5 }, 6207 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6209 .access = PL1_R, .type = ARM_CP_CONST, 6210 .accessfn = access_aa32_tid3, 6211 .resetvalue = cpu->id_mmfr4 }, 6212 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6214 .access = PL1_R, .type = ARM_CP_CONST, 6215 .accessfn = access_aa32_tid3, 6216 .resetvalue = cpu->isar.id_isar6 }, 6217 REGINFO_SENTINEL 6218 }; 6219 define_arm_cp_regs(cpu, v6_idregs); 6220 define_arm_cp_regs(cpu, v6_cp_reginfo); 6221 } else { 6222 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6223 } 6224 if (arm_feature(env, ARM_FEATURE_V6K)) { 6225 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6226 } 6227 if (arm_feature(env, ARM_FEATURE_V7MP) && 6228 !arm_feature(env, ARM_FEATURE_PMSA)) { 6229 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 6230 } 6231 if (arm_feature(env, ARM_FEATURE_V7VE)) { 6232 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 6233 } 6234 if (arm_feature(env, ARM_FEATURE_V7)) { 6235 /* v7 performance monitor control register: same implementor 6236 * field as main ID register, and we implement four counters in 6237 * addition to the cycle count register. 6238 */ 6239 unsigned int i, pmcrn = 4; 6240 ARMCPRegInfo pmcr = { 6241 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6242 .access = PL0_RW, 6243 .type = ARM_CP_IO | ARM_CP_ALIAS, 6244 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6245 .accessfn = pmreg_access, .writefn = pmcr_write, 6246 .raw_writefn = raw_write, 6247 }; 6248 ARMCPRegInfo pmcr64 = { 6249 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6250 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6251 .access = PL0_RW, .accessfn = pmreg_access, 6252 .type = ARM_CP_IO, 6253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6254 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6255 .writefn = pmcr_write, .raw_writefn = raw_write, 6256 }; 6257 define_one_arm_cp_reg(cpu, &pmcr); 6258 define_one_arm_cp_reg(cpu, &pmcr64); 6259 for (i = 0; i < pmcrn; i++) { 6260 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6261 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6262 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6263 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6264 ARMCPRegInfo pmev_regs[] = { 6265 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6266 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6267 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6268 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6269 .accessfn = pmreg_access }, 6270 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6271 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6272 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6273 .type = ARM_CP_IO, 6274 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6275 .raw_readfn = pmevcntr_rawread, 6276 .raw_writefn = pmevcntr_rawwrite }, 6277 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6278 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6279 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6280 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6281 .accessfn = pmreg_access }, 6282 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6283 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6284 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6285 .type = ARM_CP_IO, 6286 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6287 .raw_writefn = pmevtyper_rawwrite }, 6288 REGINFO_SENTINEL 6289 }; 6290 define_arm_cp_regs(cpu, pmev_regs); 6291 g_free(pmevcntr_name); 6292 g_free(pmevcntr_el0_name); 6293 g_free(pmevtyper_name); 6294 g_free(pmevtyper_el0_name); 6295 } 6296 ARMCPRegInfo clidr = { 6297 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6298 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6299 .access = PL1_R, .type = ARM_CP_CONST, 6300 .accessfn = access_aa64_tid2, 6301 .resetvalue = cpu->clidr 6302 }; 6303 define_one_arm_cp_reg(cpu, &clidr); 6304 define_arm_cp_regs(cpu, v7_cp_reginfo); 6305 define_debug_regs(cpu); 6306 } else { 6307 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6308 } 6309 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6310 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6311 ARMCPRegInfo v81_pmu_regs[] = { 6312 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6313 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6314 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6315 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6316 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6317 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6318 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6319 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6320 REGINFO_SENTINEL 6321 }; 6322 define_arm_cp_regs(cpu, v81_pmu_regs); 6323 } 6324 if (arm_feature(env, ARM_FEATURE_V8)) { 6325 /* AArch64 ID registers, which all have impdef reset values. 6326 * Note that within the ID register ranges the unused slots 6327 * must all RAZ, not UNDEF; future architecture versions may 6328 * define new registers here. 6329 */ 6330 ARMCPRegInfo v8_idregs[] = { 6331 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6332 * know the right value for the GIC field until after we 6333 * define these regs. 6334 */ 6335 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6337 .access = PL1_R, .type = ARM_CP_NO_RAW, 6338 .accessfn = access_aa64_tid3, 6339 .readfn = id_aa64pfr0_read, 6340 .writefn = arm_cp_write_ignore }, 6341 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6342 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6343 .access = PL1_R, .type = ARM_CP_CONST, 6344 .accessfn = access_aa64_tid3, 6345 .resetvalue = cpu->isar.id_aa64pfr1}, 6346 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6347 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6348 .access = PL1_R, .type = ARM_CP_CONST, 6349 .accessfn = access_aa64_tid3, 6350 .resetvalue = 0 }, 6351 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6352 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6353 .access = PL1_R, .type = ARM_CP_CONST, 6354 .accessfn = access_aa64_tid3, 6355 .resetvalue = 0 }, 6356 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6358 .access = PL1_R, .type = ARM_CP_CONST, 6359 .accessfn = access_aa64_tid3, 6360 /* At present, only SVEver == 0 is defined anyway. */ 6361 .resetvalue = 0 }, 6362 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6364 .access = PL1_R, .type = ARM_CP_CONST, 6365 .accessfn = access_aa64_tid3, 6366 .resetvalue = 0 }, 6367 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6369 .access = PL1_R, .type = ARM_CP_CONST, 6370 .accessfn = access_aa64_tid3, 6371 .resetvalue = 0 }, 6372 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6374 .access = PL1_R, .type = ARM_CP_CONST, 6375 .accessfn = access_aa64_tid3, 6376 .resetvalue = 0 }, 6377 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6379 .access = PL1_R, .type = ARM_CP_CONST, 6380 .accessfn = access_aa64_tid3, 6381 .resetvalue = cpu->id_aa64dfr0 }, 6382 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6384 .access = PL1_R, .type = ARM_CP_CONST, 6385 .accessfn = access_aa64_tid3, 6386 .resetvalue = cpu->id_aa64dfr1 }, 6387 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6389 .access = PL1_R, .type = ARM_CP_CONST, 6390 .accessfn = access_aa64_tid3, 6391 .resetvalue = 0 }, 6392 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6394 .access = PL1_R, .type = ARM_CP_CONST, 6395 .accessfn = access_aa64_tid3, 6396 .resetvalue = 0 }, 6397 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6399 .access = PL1_R, .type = ARM_CP_CONST, 6400 .accessfn = access_aa64_tid3, 6401 .resetvalue = cpu->id_aa64afr0 }, 6402 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6404 .access = PL1_R, .type = ARM_CP_CONST, 6405 .accessfn = access_aa64_tid3, 6406 .resetvalue = cpu->id_aa64afr1 }, 6407 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6409 .access = PL1_R, .type = ARM_CP_CONST, 6410 .accessfn = access_aa64_tid3, 6411 .resetvalue = 0 }, 6412 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6414 .access = PL1_R, .type = ARM_CP_CONST, 6415 .accessfn = access_aa64_tid3, 6416 .resetvalue = 0 }, 6417 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6419 .access = PL1_R, .type = ARM_CP_CONST, 6420 .accessfn = access_aa64_tid3, 6421 .resetvalue = cpu->isar.id_aa64isar0 }, 6422 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6424 .access = PL1_R, .type = ARM_CP_CONST, 6425 .accessfn = access_aa64_tid3, 6426 .resetvalue = cpu->isar.id_aa64isar1 }, 6427 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6429 .access = PL1_R, .type = ARM_CP_CONST, 6430 .accessfn = access_aa64_tid3, 6431 .resetvalue = 0 }, 6432 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6434 .access = PL1_R, .type = ARM_CP_CONST, 6435 .accessfn = access_aa64_tid3, 6436 .resetvalue = 0 }, 6437 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6439 .access = PL1_R, .type = ARM_CP_CONST, 6440 .accessfn = access_aa64_tid3, 6441 .resetvalue = 0 }, 6442 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6444 .access = PL1_R, .type = ARM_CP_CONST, 6445 .accessfn = access_aa64_tid3, 6446 .resetvalue = 0 }, 6447 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6449 .access = PL1_R, .type = ARM_CP_CONST, 6450 .accessfn = access_aa64_tid3, 6451 .resetvalue = 0 }, 6452 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6454 .access = PL1_R, .type = ARM_CP_CONST, 6455 .accessfn = access_aa64_tid3, 6456 .resetvalue = 0 }, 6457 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6459 .access = PL1_R, .type = ARM_CP_CONST, 6460 .accessfn = access_aa64_tid3, 6461 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6462 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6464 .access = PL1_R, .type = ARM_CP_CONST, 6465 .accessfn = access_aa64_tid3, 6466 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6467 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6469 .access = PL1_R, .type = ARM_CP_CONST, 6470 .accessfn = access_aa64_tid3, 6471 .resetvalue = 0 }, 6472 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6474 .access = PL1_R, .type = ARM_CP_CONST, 6475 .accessfn = access_aa64_tid3, 6476 .resetvalue = 0 }, 6477 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6479 .access = PL1_R, .type = ARM_CP_CONST, 6480 .accessfn = access_aa64_tid3, 6481 .resetvalue = 0 }, 6482 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6484 .access = PL1_R, .type = ARM_CP_CONST, 6485 .accessfn = access_aa64_tid3, 6486 .resetvalue = 0 }, 6487 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6489 .access = PL1_R, .type = ARM_CP_CONST, 6490 .accessfn = access_aa64_tid3, 6491 .resetvalue = 0 }, 6492 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6494 .access = PL1_R, .type = ARM_CP_CONST, 6495 .accessfn = access_aa64_tid3, 6496 .resetvalue = 0 }, 6497 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6499 .access = PL1_R, .type = ARM_CP_CONST, 6500 .accessfn = access_aa64_tid3, 6501 .resetvalue = cpu->isar.mvfr0 }, 6502 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6504 .access = PL1_R, .type = ARM_CP_CONST, 6505 .accessfn = access_aa64_tid3, 6506 .resetvalue = cpu->isar.mvfr1 }, 6507 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6509 .access = PL1_R, .type = ARM_CP_CONST, 6510 .accessfn = access_aa64_tid3, 6511 .resetvalue = cpu->isar.mvfr2 }, 6512 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6514 .access = PL1_R, .type = ARM_CP_CONST, 6515 .accessfn = access_aa64_tid3, 6516 .resetvalue = 0 }, 6517 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6519 .access = PL1_R, .type = ARM_CP_CONST, 6520 .accessfn = access_aa64_tid3, 6521 .resetvalue = 0 }, 6522 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6524 .access = PL1_R, .type = ARM_CP_CONST, 6525 .accessfn = access_aa64_tid3, 6526 .resetvalue = 0 }, 6527 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6529 .access = PL1_R, .type = ARM_CP_CONST, 6530 .accessfn = access_aa64_tid3, 6531 .resetvalue = 0 }, 6532 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6534 .access = PL1_R, .type = ARM_CP_CONST, 6535 .accessfn = access_aa64_tid3, 6536 .resetvalue = 0 }, 6537 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6538 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6539 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6540 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6541 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6542 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6543 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6544 .resetvalue = cpu->pmceid0 }, 6545 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6546 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6547 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6548 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6549 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6550 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6551 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6552 .resetvalue = cpu->pmceid1 }, 6553 REGINFO_SENTINEL 6554 }; 6555 #ifdef CONFIG_USER_ONLY 6556 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6557 { .name = "ID_AA64PFR0_EL1", 6558 .exported_bits = 0x000f000f00ff0000, 6559 .fixed_bits = 0x0000000000000011 }, 6560 { .name = "ID_AA64PFR1_EL1", 6561 .exported_bits = 0x00000000000000f0 }, 6562 { .name = "ID_AA64PFR*_EL1_RESERVED", 6563 .is_glob = true }, 6564 { .name = "ID_AA64ZFR0_EL1" }, 6565 { .name = "ID_AA64MMFR0_EL1", 6566 .fixed_bits = 0x00000000ff000000 }, 6567 { .name = "ID_AA64MMFR1_EL1" }, 6568 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6569 .is_glob = true }, 6570 { .name = "ID_AA64DFR0_EL1", 6571 .fixed_bits = 0x0000000000000006 }, 6572 { .name = "ID_AA64DFR1_EL1" }, 6573 { .name = "ID_AA64DFR*_EL1_RESERVED", 6574 .is_glob = true }, 6575 { .name = "ID_AA64AFR*", 6576 .is_glob = true }, 6577 { .name = "ID_AA64ISAR0_EL1", 6578 .exported_bits = 0x00fffffff0fffff0 }, 6579 { .name = "ID_AA64ISAR1_EL1", 6580 .exported_bits = 0x000000f0ffffffff }, 6581 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6582 .is_glob = true }, 6583 REGUSERINFO_SENTINEL 6584 }; 6585 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6586 #endif 6587 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6588 if (!arm_feature(env, ARM_FEATURE_EL3) && 6589 !arm_feature(env, ARM_FEATURE_EL2)) { 6590 ARMCPRegInfo rvbar = { 6591 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6592 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6593 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6594 }; 6595 define_one_arm_cp_reg(cpu, &rvbar); 6596 } 6597 define_arm_cp_regs(cpu, v8_idregs); 6598 define_arm_cp_regs(cpu, v8_cp_reginfo); 6599 } 6600 if (arm_feature(env, ARM_FEATURE_EL2)) { 6601 uint64_t vmpidr_def = mpidr_read_val(env); 6602 ARMCPRegInfo vpidr_regs[] = { 6603 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6604 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6605 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6606 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6607 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6608 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6609 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6610 .access = PL2_RW, .resetvalue = cpu->midr, 6611 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6612 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6613 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6614 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6615 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6616 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6617 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6618 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6619 .access = PL2_RW, 6620 .resetvalue = vmpidr_def, 6621 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6622 REGINFO_SENTINEL 6623 }; 6624 define_arm_cp_regs(cpu, vpidr_regs); 6625 define_arm_cp_regs(cpu, el2_cp_reginfo); 6626 if (arm_feature(env, ARM_FEATURE_V8)) { 6627 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6628 } 6629 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6630 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6631 ARMCPRegInfo rvbar = { 6632 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6633 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6634 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6635 }; 6636 define_one_arm_cp_reg(cpu, &rvbar); 6637 } 6638 } else { 6639 /* If EL2 is missing but higher ELs are enabled, we need to 6640 * register the no_el2 reginfos. 6641 */ 6642 if (arm_feature(env, ARM_FEATURE_EL3)) { 6643 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6644 * of MIDR_EL1 and MPIDR_EL1. 6645 */ 6646 ARMCPRegInfo vpidr_regs[] = { 6647 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6648 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6649 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6650 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6651 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6652 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6653 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6654 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6655 .type = ARM_CP_NO_RAW, 6656 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6657 REGINFO_SENTINEL 6658 }; 6659 define_arm_cp_regs(cpu, vpidr_regs); 6660 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6661 if (arm_feature(env, ARM_FEATURE_V8)) { 6662 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6663 } 6664 } 6665 } 6666 if (arm_feature(env, ARM_FEATURE_EL3)) { 6667 define_arm_cp_regs(cpu, el3_cp_reginfo); 6668 ARMCPRegInfo el3_regs[] = { 6669 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6670 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6671 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6672 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6673 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6674 .access = PL3_RW, 6675 .raw_writefn = raw_write, .writefn = sctlr_write, 6676 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6677 .resetvalue = cpu->reset_sctlr }, 6678 REGINFO_SENTINEL 6679 }; 6680 6681 define_arm_cp_regs(cpu, el3_regs); 6682 } 6683 /* The behaviour of NSACR is sufficiently various that we don't 6684 * try to describe it in a single reginfo: 6685 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6686 * reads as constant 0xc00 from NS EL1 and NS EL2 6687 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6688 * if v7 without EL3, register doesn't exist 6689 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6690 */ 6691 if (arm_feature(env, ARM_FEATURE_EL3)) { 6692 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6693 ARMCPRegInfo nsacr = { 6694 .name = "NSACR", .type = ARM_CP_CONST, 6695 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6696 .access = PL1_RW, .accessfn = nsacr_access, 6697 .resetvalue = 0xc00 6698 }; 6699 define_one_arm_cp_reg(cpu, &nsacr); 6700 } else { 6701 ARMCPRegInfo nsacr = { 6702 .name = "NSACR", 6703 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6704 .access = PL3_RW | PL1_R, 6705 .resetvalue = 0, 6706 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6707 }; 6708 define_one_arm_cp_reg(cpu, &nsacr); 6709 } 6710 } else { 6711 if (arm_feature(env, ARM_FEATURE_V8)) { 6712 ARMCPRegInfo nsacr = { 6713 .name = "NSACR", .type = ARM_CP_CONST, 6714 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6715 .access = PL1_R, 6716 .resetvalue = 0xc00 6717 }; 6718 define_one_arm_cp_reg(cpu, &nsacr); 6719 } 6720 } 6721 6722 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6723 if (arm_feature(env, ARM_FEATURE_V6)) { 6724 /* PMSAv6 not implemented */ 6725 assert(arm_feature(env, ARM_FEATURE_V7)); 6726 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6727 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6728 } else { 6729 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6730 } 6731 } else { 6732 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6733 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6734 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6735 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6736 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6737 } 6738 } 6739 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6740 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6741 } 6742 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6743 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6744 } 6745 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6746 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6747 } 6748 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6749 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6750 } 6751 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6752 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6753 } 6754 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6755 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6756 } 6757 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6758 define_arm_cp_regs(cpu, omap_cp_reginfo); 6759 } 6760 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6761 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6762 } 6763 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6764 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6765 } 6766 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6767 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6768 } 6769 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6770 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6771 } 6772 if (cpu_isar_feature(jazelle, cpu)) { 6773 define_arm_cp_regs(cpu, jazelle_regs); 6774 } 6775 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6776 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6777 * be read-only (ie write causes UNDEF exception). 6778 */ 6779 { 6780 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6781 /* Pre-v8 MIDR space. 6782 * Note that the MIDR isn't a simple constant register because 6783 * of the TI925 behaviour where writes to another register can 6784 * cause the MIDR value to change. 6785 * 6786 * Unimplemented registers in the c15 0 0 0 space default to 6787 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6788 * and friends override accordingly. 6789 */ 6790 { .name = "MIDR", 6791 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6792 .access = PL1_R, .resetvalue = cpu->midr, 6793 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6794 .readfn = midr_read, 6795 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6796 .type = ARM_CP_OVERRIDE }, 6797 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6798 { .name = "DUMMY", 6799 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6800 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6801 { .name = "DUMMY", 6802 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6803 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6804 { .name = "DUMMY", 6805 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6806 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6807 { .name = "DUMMY", 6808 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6809 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6810 { .name = "DUMMY", 6811 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6812 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6813 REGINFO_SENTINEL 6814 }; 6815 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6816 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6818 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6819 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6820 .readfn = midr_read }, 6821 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6822 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6823 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6824 .access = PL1_R, .resetvalue = cpu->midr }, 6825 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6826 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6827 .access = PL1_R, .resetvalue = cpu->midr }, 6828 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6830 .access = PL1_R, 6831 .accessfn = access_aa64_tid1, 6832 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6833 REGINFO_SENTINEL 6834 }; 6835 ARMCPRegInfo id_cp_reginfo[] = { 6836 /* These are common to v8 and pre-v8 */ 6837 { .name = "CTR", 6838 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6839 .access = PL1_R, .accessfn = ctr_el0_access, 6840 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6841 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6842 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6843 .access = PL0_R, .accessfn = ctr_el0_access, 6844 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6845 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6846 { .name = "TCMTR", 6847 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6848 .access = PL1_R, 6849 .accessfn = access_aa32_tid1, 6850 .type = ARM_CP_CONST, .resetvalue = 0 }, 6851 REGINFO_SENTINEL 6852 }; 6853 /* TLBTR is specific to VMSA */ 6854 ARMCPRegInfo id_tlbtr_reginfo = { 6855 .name = "TLBTR", 6856 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6857 .access = PL1_R, 6858 .accessfn = access_aa32_tid1, 6859 .type = ARM_CP_CONST, .resetvalue = 0, 6860 }; 6861 /* MPUIR is specific to PMSA V6+ */ 6862 ARMCPRegInfo id_mpuir_reginfo = { 6863 .name = "MPUIR", 6864 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6865 .access = PL1_R, .type = ARM_CP_CONST, 6866 .resetvalue = cpu->pmsav7_dregion << 8 6867 }; 6868 ARMCPRegInfo crn0_wi_reginfo = { 6869 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6870 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6871 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6872 }; 6873 #ifdef CONFIG_USER_ONLY 6874 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6875 { .name = "MIDR_EL1", 6876 .exported_bits = 0x00000000ffffffff }, 6877 { .name = "REVIDR_EL1" }, 6878 REGUSERINFO_SENTINEL 6879 }; 6880 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6881 #endif 6882 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6883 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6884 ARMCPRegInfo *r; 6885 /* Register the blanket "writes ignored" value first to cover the 6886 * whole space. Then update the specific ID registers to allow write 6887 * access, so that they ignore writes rather than causing them to 6888 * UNDEF. 6889 */ 6890 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6891 for (r = id_pre_v8_midr_cp_reginfo; 6892 r->type != ARM_CP_SENTINEL; r++) { 6893 r->access = PL1_RW; 6894 } 6895 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6896 r->access = PL1_RW; 6897 } 6898 id_mpuir_reginfo.access = PL1_RW; 6899 id_tlbtr_reginfo.access = PL1_RW; 6900 } 6901 if (arm_feature(env, ARM_FEATURE_V8)) { 6902 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6903 } else { 6904 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6905 } 6906 define_arm_cp_regs(cpu, id_cp_reginfo); 6907 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6908 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6909 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6910 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6911 } 6912 } 6913 6914 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6915 ARMCPRegInfo mpidr_cp_reginfo[] = { 6916 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6917 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6918 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6919 REGINFO_SENTINEL 6920 }; 6921 #ifdef CONFIG_USER_ONLY 6922 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6923 { .name = "MPIDR_EL1", 6924 .fixed_bits = 0x0000000080000000 }, 6925 REGUSERINFO_SENTINEL 6926 }; 6927 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6928 #endif 6929 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6930 } 6931 6932 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6933 ARMCPRegInfo auxcr_reginfo[] = { 6934 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6935 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6936 .access = PL1_RW, .type = ARM_CP_CONST, 6937 .resetvalue = cpu->reset_auxcr }, 6938 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6939 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6940 .access = PL2_RW, .type = ARM_CP_CONST, 6941 .resetvalue = 0 }, 6942 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6944 .access = PL3_RW, .type = ARM_CP_CONST, 6945 .resetvalue = 0 }, 6946 REGINFO_SENTINEL 6947 }; 6948 define_arm_cp_regs(cpu, auxcr_reginfo); 6949 if (arm_feature(env, ARM_FEATURE_V8)) { 6950 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6951 ARMCPRegInfo hactlr2_reginfo = { 6952 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6953 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6954 .access = PL2_RW, .type = ARM_CP_CONST, 6955 .resetvalue = 0 6956 }; 6957 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6958 } 6959 } 6960 6961 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6962 /* 6963 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 6964 * There are two flavours: 6965 * (1) older 32-bit only cores have a simple 32-bit CBAR 6966 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 6967 * 32-bit register visible to AArch32 at a different encoding 6968 * to the "flavour 1" register and with the bits rearranged to 6969 * be able to squash a 64-bit address into the 32-bit view. 6970 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 6971 * in future if we support AArch32-only configs of some of the 6972 * AArch64 cores we might need to add a specific feature flag 6973 * to indicate cores with "flavour 2" CBAR. 6974 */ 6975 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6976 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6977 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6978 | extract64(cpu->reset_cbar, 32, 12); 6979 ARMCPRegInfo cbar_reginfo[] = { 6980 { .name = "CBAR", 6981 .type = ARM_CP_CONST, 6982 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 6983 .access = PL1_R, .resetvalue = cbar32 }, 6984 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6985 .type = ARM_CP_CONST, 6986 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6987 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6988 REGINFO_SENTINEL 6989 }; 6990 /* We don't implement a r/w 64 bit CBAR currently */ 6991 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6992 define_arm_cp_regs(cpu, cbar_reginfo); 6993 } else { 6994 ARMCPRegInfo cbar = { 6995 .name = "CBAR", 6996 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6997 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6998 .fieldoffset = offsetof(CPUARMState, 6999 cp15.c15_config_base_address) 7000 }; 7001 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7002 cbar.access = PL1_R; 7003 cbar.fieldoffset = 0; 7004 cbar.type = ARM_CP_CONST; 7005 } 7006 define_one_arm_cp_reg(cpu, &cbar); 7007 } 7008 } 7009 7010 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7011 ARMCPRegInfo vbar_cp_reginfo[] = { 7012 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7013 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7014 .access = PL1_RW, .writefn = vbar_write, 7015 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7016 offsetof(CPUARMState, cp15.vbar_ns) }, 7017 .resetvalue = 0 }, 7018 REGINFO_SENTINEL 7019 }; 7020 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7021 } 7022 7023 /* Generic registers whose values depend on the implementation */ 7024 { 7025 ARMCPRegInfo sctlr = { 7026 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 7027 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 7028 .access = PL1_RW, 7029 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 7030 offsetof(CPUARMState, cp15.sctlr_ns) }, 7031 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 7032 .raw_writefn = raw_write, 7033 }; 7034 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7035 /* Normally we would always end the TB on an SCTLR write, but Linux 7036 * arch/arm/mach-pxa/sleep.S expects two instructions following 7037 * an MMU enable to execute from cache. Imitate this behaviour. 7038 */ 7039 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 7040 } 7041 define_one_arm_cp_reg(cpu, &sctlr); 7042 } 7043 7044 if (cpu_isar_feature(aa64_lor, cpu)) { 7045 /* 7046 * A trivial implementation of ARMv8.1-LOR leaves all of these 7047 * registers fixed at 0, which indicates that there are zero 7048 * supported Limited Ordering regions. 7049 */ 7050 static const ARMCPRegInfo lor_reginfo[] = { 7051 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7053 .access = PL1_RW, .accessfn = access_lor_other, 7054 .type = ARM_CP_CONST, .resetvalue = 0 }, 7055 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7057 .access = PL1_RW, .accessfn = access_lor_other, 7058 .type = ARM_CP_CONST, .resetvalue = 0 }, 7059 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7061 .access = PL1_RW, .accessfn = access_lor_other, 7062 .type = ARM_CP_CONST, .resetvalue = 0 }, 7063 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7065 .access = PL1_RW, .accessfn = access_lor_other, 7066 .type = ARM_CP_CONST, .resetvalue = 0 }, 7067 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7069 .access = PL1_R, .accessfn = access_lorid, 7070 .type = ARM_CP_CONST, .resetvalue = 0 }, 7071 REGINFO_SENTINEL 7072 }; 7073 define_arm_cp_regs(cpu, lor_reginfo); 7074 } 7075 7076 if (cpu_isar_feature(aa64_sve, cpu)) { 7077 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 7078 if (arm_feature(env, ARM_FEATURE_EL2)) { 7079 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 7080 } else { 7081 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 7082 } 7083 if (arm_feature(env, ARM_FEATURE_EL3)) { 7084 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 7085 } 7086 } 7087 7088 #ifdef TARGET_AARCH64 7089 if (cpu_isar_feature(aa64_pauth, cpu)) { 7090 define_arm_cp_regs(cpu, pauth_reginfo); 7091 } 7092 if (cpu_isar_feature(aa64_rndr, cpu)) { 7093 define_arm_cp_regs(cpu, rndr_reginfo); 7094 } 7095 #ifndef CONFIG_USER_ONLY 7096 /* Data Cache clean instructions up to PoP */ 7097 if (cpu_isar_feature(aa64_dcpop, cpu)) { 7098 define_one_arm_cp_reg(cpu, dcpop_reg); 7099 7100 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 7101 define_one_arm_cp_reg(cpu, dcpodp_reg); 7102 } 7103 } 7104 #endif /*CONFIG_USER_ONLY*/ 7105 #endif 7106 7107 /* 7108 * While all v8.0 cpus support aarch64, QEMU does have configurations 7109 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 7110 * which will set ID_ISAR6. 7111 */ 7112 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 7113 ? cpu_isar_feature(aa64_predinv, cpu) 7114 : cpu_isar_feature(aa32_predinv, cpu)) { 7115 define_arm_cp_regs(cpu, predinv_reginfo); 7116 } 7117 } 7118 7119 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 7120 { 7121 CPUState *cs = CPU(cpu); 7122 CPUARMState *env = &cpu->env; 7123 7124 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7125 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 7126 aarch64_fpu_gdb_set_reg, 7127 34, "aarch64-fpu.xml", 0); 7128 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 7129 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7130 51, "arm-neon.xml", 0); 7131 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 7132 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7133 35, "arm-vfp3.xml", 0); 7134 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 7135 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7136 19, "arm-vfp.xml", 0); 7137 } 7138 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 7139 arm_gen_dynamic_xml(cs), 7140 "system-registers.xml", 0); 7141 } 7142 7143 /* Sort alphabetically by type name, except for "any". */ 7144 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 7145 { 7146 ObjectClass *class_a = (ObjectClass *)a; 7147 ObjectClass *class_b = (ObjectClass *)b; 7148 const char *name_a, *name_b; 7149 7150 name_a = object_class_get_name(class_a); 7151 name_b = object_class_get_name(class_b); 7152 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 7153 return 1; 7154 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 7155 return -1; 7156 } else { 7157 return strcmp(name_a, name_b); 7158 } 7159 } 7160 7161 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 7162 { 7163 ObjectClass *oc = data; 7164 const char *typename; 7165 char *name; 7166 7167 typename = object_class_get_name(oc); 7168 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7169 qemu_printf(" %s\n", name); 7170 g_free(name); 7171 } 7172 7173 void arm_cpu_list(void) 7174 { 7175 GSList *list; 7176 7177 list = object_class_get_list(TYPE_ARM_CPU, false); 7178 list = g_slist_sort(list, arm_cpu_list_compare); 7179 qemu_printf("Available CPUs:\n"); 7180 g_slist_foreach(list, arm_cpu_list_entry, NULL); 7181 g_slist_free(list); 7182 } 7183 7184 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 7185 { 7186 ObjectClass *oc = data; 7187 CpuDefinitionInfoList **cpu_list = user_data; 7188 CpuDefinitionInfoList *entry; 7189 CpuDefinitionInfo *info; 7190 const char *typename; 7191 7192 typename = object_class_get_name(oc); 7193 info = g_malloc0(sizeof(*info)); 7194 info->name = g_strndup(typename, 7195 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7196 info->q_typename = g_strdup(typename); 7197 7198 entry = g_malloc0(sizeof(*entry)); 7199 entry->value = info; 7200 entry->next = *cpu_list; 7201 *cpu_list = entry; 7202 } 7203 7204 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 7205 { 7206 CpuDefinitionInfoList *cpu_list = NULL; 7207 GSList *list; 7208 7209 list = object_class_get_list(TYPE_ARM_CPU, false); 7210 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 7211 g_slist_free(list); 7212 7213 return cpu_list; 7214 } 7215 7216 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 7217 void *opaque, int state, int secstate, 7218 int crm, int opc1, int opc2, 7219 const char *name) 7220 { 7221 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 7222 * add a single reginfo struct to the hash table. 7223 */ 7224 uint32_t *key = g_new(uint32_t, 1); 7225 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 7226 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 7227 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 7228 7229 r2->name = g_strdup(name); 7230 /* Reset the secure state to the specific incoming state. This is 7231 * necessary as the register may have been defined with both states. 7232 */ 7233 r2->secure = secstate; 7234 7235 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7236 /* Register is banked (using both entries in array). 7237 * Overwriting fieldoffset as the array is only used to define 7238 * banked registers but later only fieldoffset is used. 7239 */ 7240 r2->fieldoffset = r->bank_fieldoffsets[ns]; 7241 } 7242 7243 if (state == ARM_CP_STATE_AA32) { 7244 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7245 /* If the register is banked then we don't need to migrate or 7246 * reset the 32-bit instance in certain cases: 7247 * 7248 * 1) If the register has both 32-bit and 64-bit instances then we 7249 * can count on the 64-bit instance taking care of the 7250 * non-secure bank. 7251 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7252 * taking care of the secure bank. This requires that separate 7253 * 32 and 64-bit definitions are provided. 7254 */ 7255 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7256 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7257 r2->type |= ARM_CP_ALIAS; 7258 } 7259 } else if ((secstate != r->secure) && !ns) { 7260 /* The register is not banked so we only want to allow migration of 7261 * the non-secure instance. 7262 */ 7263 r2->type |= ARM_CP_ALIAS; 7264 } 7265 7266 if (r->state == ARM_CP_STATE_BOTH) { 7267 /* We assume it is a cp15 register if the .cp field is left unset. 7268 */ 7269 if (r2->cp == 0) { 7270 r2->cp = 15; 7271 } 7272 7273 #ifdef HOST_WORDS_BIGENDIAN 7274 if (r2->fieldoffset) { 7275 r2->fieldoffset += sizeof(uint32_t); 7276 } 7277 #endif 7278 } 7279 } 7280 if (state == ARM_CP_STATE_AA64) { 7281 /* To allow abbreviation of ARMCPRegInfo 7282 * definitions, we treat cp == 0 as equivalent to 7283 * the value for "standard guest-visible sysreg". 7284 * STATE_BOTH definitions are also always "standard 7285 * sysreg" in their AArch64 view (the .cp value may 7286 * be non-zero for the benefit of the AArch32 view). 7287 */ 7288 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7289 r2->cp = CP_REG_ARM64_SYSREG_CP; 7290 } 7291 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7292 r2->opc0, opc1, opc2); 7293 } else { 7294 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7295 } 7296 if (opaque) { 7297 r2->opaque = opaque; 7298 } 7299 /* reginfo passed to helpers is correct for the actual access, 7300 * and is never ARM_CP_STATE_BOTH: 7301 */ 7302 r2->state = state; 7303 /* Make sure reginfo passed to helpers for wildcarded regs 7304 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7305 */ 7306 r2->crm = crm; 7307 r2->opc1 = opc1; 7308 r2->opc2 = opc2; 7309 /* By convention, for wildcarded registers only the first 7310 * entry is used for migration; the others are marked as 7311 * ALIAS so we don't try to transfer the register 7312 * multiple times. Special registers (ie NOP/WFI) are 7313 * never migratable and not even raw-accessible. 7314 */ 7315 if ((r->type & ARM_CP_SPECIAL)) { 7316 r2->type |= ARM_CP_NO_RAW; 7317 } 7318 if (((r->crm == CP_ANY) && crm != 0) || 7319 ((r->opc1 == CP_ANY) && opc1 != 0) || 7320 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7321 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7322 } 7323 7324 /* Check that raw accesses are either forbidden or handled. Note that 7325 * we can't assert this earlier because the setup of fieldoffset for 7326 * banked registers has to be done first. 7327 */ 7328 if (!(r2->type & ARM_CP_NO_RAW)) { 7329 assert(!raw_accessors_invalid(r2)); 7330 } 7331 7332 /* Overriding of an existing definition must be explicitly 7333 * requested. 7334 */ 7335 if (!(r->type & ARM_CP_OVERRIDE)) { 7336 ARMCPRegInfo *oldreg; 7337 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7338 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7339 fprintf(stderr, "Register redefined: cp=%d %d bit " 7340 "crn=%d crm=%d opc1=%d opc2=%d, " 7341 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7342 r2->crn, r2->crm, r2->opc1, r2->opc2, 7343 oldreg->name, r2->name); 7344 g_assert_not_reached(); 7345 } 7346 } 7347 g_hash_table_insert(cpu->cp_regs, key, r2); 7348 } 7349 7350 7351 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7352 const ARMCPRegInfo *r, void *opaque) 7353 { 7354 /* Define implementations of coprocessor registers. 7355 * We store these in a hashtable because typically 7356 * there are less than 150 registers in a space which 7357 * is 16*16*16*8*8 = 262144 in size. 7358 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7359 * If a register is defined twice then the second definition is 7360 * used, so this can be used to define some generic registers and 7361 * then override them with implementation specific variations. 7362 * At least one of the original and the second definition should 7363 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7364 * against accidental use. 7365 * 7366 * The state field defines whether the register is to be 7367 * visible in the AArch32 or AArch64 execution state. If the 7368 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7369 * reginfo structure for the AArch32 view, which sees the lower 7370 * 32 bits of the 64 bit register. 7371 * 7372 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7373 * be wildcarded. AArch64 registers are always considered to be 64 7374 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7375 * the register, if any. 7376 */ 7377 int crm, opc1, opc2, state; 7378 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7379 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7380 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7381 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7382 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7383 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7384 /* 64 bit registers have only CRm and Opc1 fields */ 7385 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7386 /* op0 only exists in the AArch64 encodings */ 7387 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7388 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7389 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7390 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7391 * encodes a minimum access level for the register. We roll this 7392 * runtime check into our general permission check code, so check 7393 * here that the reginfo's specified permissions are strict enough 7394 * to encompass the generic architectural permission check. 7395 */ 7396 if (r->state != ARM_CP_STATE_AA32) { 7397 int mask = 0; 7398 switch (r->opc1) { 7399 case 0: 7400 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7401 mask = PL0U_R | PL1_RW; 7402 break; 7403 case 1: case 2: 7404 /* min_EL EL1 */ 7405 mask = PL1_RW; 7406 break; 7407 case 3: 7408 /* min_EL EL0 */ 7409 mask = PL0_RW; 7410 break; 7411 case 4: 7412 /* min_EL EL2 */ 7413 mask = PL2_RW; 7414 break; 7415 case 5: 7416 /* unallocated encoding, so not possible */ 7417 assert(false); 7418 break; 7419 case 6: 7420 /* min_EL EL3 */ 7421 mask = PL3_RW; 7422 break; 7423 case 7: 7424 /* min_EL EL1, secure mode only (we don't check the latter) */ 7425 mask = PL1_RW; 7426 break; 7427 default: 7428 /* broken reginfo with out-of-range opc1 */ 7429 assert(false); 7430 break; 7431 } 7432 /* assert our permissions are not too lax (stricter is fine) */ 7433 assert((r->access & ~mask) == 0); 7434 } 7435 7436 /* Check that the register definition has enough info to handle 7437 * reads and writes if they are permitted. 7438 */ 7439 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7440 if (r->access & PL3_R) { 7441 assert((r->fieldoffset || 7442 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7443 r->readfn); 7444 } 7445 if (r->access & PL3_W) { 7446 assert((r->fieldoffset || 7447 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7448 r->writefn); 7449 } 7450 } 7451 /* Bad type field probably means missing sentinel at end of reg list */ 7452 assert(cptype_valid(r->type)); 7453 for (crm = crmmin; crm <= crmmax; crm++) { 7454 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7455 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7456 for (state = ARM_CP_STATE_AA32; 7457 state <= ARM_CP_STATE_AA64; state++) { 7458 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7459 continue; 7460 } 7461 if (state == ARM_CP_STATE_AA32) { 7462 /* Under AArch32 CP registers can be common 7463 * (same for secure and non-secure world) or banked. 7464 */ 7465 char *name; 7466 7467 switch (r->secure) { 7468 case ARM_CP_SECSTATE_S: 7469 case ARM_CP_SECSTATE_NS: 7470 add_cpreg_to_hashtable(cpu, r, opaque, state, 7471 r->secure, crm, opc1, opc2, 7472 r->name); 7473 break; 7474 default: 7475 name = g_strdup_printf("%s_S", r->name); 7476 add_cpreg_to_hashtable(cpu, r, opaque, state, 7477 ARM_CP_SECSTATE_S, 7478 crm, opc1, opc2, name); 7479 g_free(name); 7480 add_cpreg_to_hashtable(cpu, r, opaque, state, 7481 ARM_CP_SECSTATE_NS, 7482 crm, opc1, opc2, r->name); 7483 break; 7484 } 7485 } else { 7486 /* AArch64 registers get mapped to non-secure instance 7487 * of AArch32 */ 7488 add_cpreg_to_hashtable(cpu, r, opaque, state, 7489 ARM_CP_SECSTATE_NS, 7490 crm, opc1, opc2, r->name); 7491 } 7492 } 7493 } 7494 } 7495 } 7496 } 7497 7498 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7499 const ARMCPRegInfo *regs, void *opaque) 7500 { 7501 /* Define a whole list of registers */ 7502 const ARMCPRegInfo *r; 7503 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7504 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7505 } 7506 } 7507 7508 /* 7509 * Modify ARMCPRegInfo for access from userspace. 7510 * 7511 * This is a data driven modification directed by 7512 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7513 * user-space cannot alter any values and dynamic values pertaining to 7514 * execution state are hidden from user space view anyway. 7515 */ 7516 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7517 { 7518 const ARMCPRegUserSpaceInfo *m; 7519 ARMCPRegInfo *r; 7520 7521 for (m = mods; m->name; m++) { 7522 GPatternSpec *pat = NULL; 7523 if (m->is_glob) { 7524 pat = g_pattern_spec_new(m->name); 7525 } 7526 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7527 if (pat && g_pattern_match_string(pat, r->name)) { 7528 r->type = ARM_CP_CONST; 7529 r->access = PL0U_R; 7530 r->resetvalue = 0; 7531 /* continue */ 7532 } else if (strcmp(r->name, m->name) == 0) { 7533 r->type = ARM_CP_CONST; 7534 r->access = PL0U_R; 7535 r->resetvalue &= m->exported_bits; 7536 r->resetvalue |= m->fixed_bits; 7537 break; 7538 } 7539 } 7540 if (pat) { 7541 g_pattern_spec_free(pat); 7542 } 7543 } 7544 } 7545 7546 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7547 { 7548 return g_hash_table_lookup(cpregs, &encoded_cp); 7549 } 7550 7551 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7552 uint64_t value) 7553 { 7554 /* Helper coprocessor write function for write-ignore registers */ 7555 } 7556 7557 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7558 { 7559 /* Helper coprocessor write function for read-as-zero registers */ 7560 return 0; 7561 } 7562 7563 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7564 { 7565 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7566 } 7567 7568 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7569 { 7570 /* Return true if it is not valid for us to switch to 7571 * this CPU mode (ie all the UNPREDICTABLE cases in 7572 * the ARM ARM CPSRWriteByInstr pseudocode). 7573 */ 7574 7575 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7576 if (write_type == CPSRWriteByInstr && 7577 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7578 mode == ARM_CPU_MODE_HYP)) { 7579 return 1; 7580 } 7581 7582 switch (mode) { 7583 case ARM_CPU_MODE_USR: 7584 return 0; 7585 case ARM_CPU_MODE_SYS: 7586 case ARM_CPU_MODE_SVC: 7587 case ARM_CPU_MODE_ABT: 7588 case ARM_CPU_MODE_UND: 7589 case ARM_CPU_MODE_IRQ: 7590 case ARM_CPU_MODE_FIQ: 7591 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7592 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7593 */ 7594 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7595 * and CPS are treated as illegal mode changes. 7596 */ 7597 if (write_type == CPSRWriteByInstr && 7598 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7599 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7600 return 1; 7601 } 7602 return 0; 7603 case ARM_CPU_MODE_HYP: 7604 return !arm_feature(env, ARM_FEATURE_EL2) 7605 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7606 case ARM_CPU_MODE_MON: 7607 return arm_current_el(env) < 3; 7608 default: 7609 return 1; 7610 } 7611 } 7612 7613 uint32_t cpsr_read(CPUARMState *env) 7614 { 7615 int ZF; 7616 ZF = (env->ZF == 0); 7617 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7618 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7619 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7620 | ((env->condexec_bits & 0xfc) << 8) 7621 | (env->GE << 16) | (env->daif & CPSR_AIF); 7622 } 7623 7624 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7625 CPSRWriteType write_type) 7626 { 7627 uint32_t changed_daif; 7628 7629 if (mask & CPSR_NZCV) { 7630 env->ZF = (~val) & CPSR_Z; 7631 env->NF = val; 7632 env->CF = (val >> 29) & 1; 7633 env->VF = (val << 3) & 0x80000000; 7634 } 7635 if (mask & CPSR_Q) 7636 env->QF = ((val & CPSR_Q) != 0); 7637 if (mask & CPSR_T) 7638 env->thumb = ((val & CPSR_T) != 0); 7639 if (mask & CPSR_IT_0_1) { 7640 env->condexec_bits &= ~3; 7641 env->condexec_bits |= (val >> 25) & 3; 7642 } 7643 if (mask & CPSR_IT_2_7) { 7644 env->condexec_bits &= 3; 7645 env->condexec_bits |= (val >> 8) & 0xfc; 7646 } 7647 if (mask & CPSR_GE) { 7648 env->GE = (val >> 16) & 0xf; 7649 } 7650 7651 /* In a V7 implementation that includes the security extensions but does 7652 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7653 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7654 * bits respectively. 7655 * 7656 * In a V8 implementation, it is permitted for privileged software to 7657 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7658 */ 7659 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7660 arm_feature(env, ARM_FEATURE_EL3) && 7661 !arm_feature(env, ARM_FEATURE_EL2) && 7662 !arm_is_secure(env)) { 7663 7664 changed_daif = (env->daif ^ val) & mask; 7665 7666 if (changed_daif & CPSR_A) { 7667 /* Check to see if we are allowed to change the masking of async 7668 * abort exceptions from a non-secure state. 7669 */ 7670 if (!(env->cp15.scr_el3 & SCR_AW)) { 7671 qemu_log_mask(LOG_GUEST_ERROR, 7672 "Ignoring attempt to switch CPSR_A flag from " 7673 "non-secure world with SCR.AW bit clear\n"); 7674 mask &= ~CPSR_A; 7675 } 7676 } 7677 7678 if (changed_daif & CPSR_F) { 7679 /* Check to see if we are allowed to change the masking of FIQ 7680 * exceptions from a non-secure state. 7681 */ 7682 if (!(env->cp15.scr_el3 & SCR_FW)) { 7683 qemu_log_mask(LOG_GUEST_ERROR, 7684 "Ignoring attempt to switch CPSR_F flag from " 7685 "non-secure world with SCR.FW bit clear\n"); 7686 mask &= ~CPSR_F; 7687 } 7688 7689 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7690 * If this bit is set software is not allowed to mask 7691 * FIQs, but is allowed to set CPSR_F to 0. 7692 */ 7693 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7694 (val & CPSR_F)) { 7695 qemu_log_mask(LOG_GUEST_ERROR, 7696 "Ignoring attempt to enable CPSR_F flag " 7697 "(non-maskable FIQ [NMFI] support enabled)\n"); 7698 mask &= ~CPSR_F; 7699 } 7700 } 7701 } 7702 7703 env->daif &= ~(CPSR_AIF & mask); 7704 env->daif |= val & CPSR_AIF & mask; 7705 7706 if (write_type != CPSRWriteRaw && 7707 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7708 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7709 /* Note that we can only get here in USR mode if this is a 7710 * gdb stub write; for this case we follow the architectural 7711 * behaviour for guest writes in USR mode of ignoring an attempt 7712 * to switch mode. (Those are caught by translate.c for writes 7713 * triggered by guest instructions.) 7714 */ 7715 mask &= ~CPSR_M; 7716 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7717 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7718 * v7, and has defined behaviour in v8: 7719 * + leave CPSR.M untouched 7720 * + allow changes to the other CPSR fields 7721 * + set PSTATE.IL 7722 * For user changes via the GDB stub, we don't set PSTATE.IL, 7723 * as this would be unnecessarily harsh for a user error. 7724 */ 7725 mask &= ~CPSR_M; 7726 if (write_type != CPSRWriteByGDBStub && 7727 arm_feature(env, ARM_FEATURE_V8)) { 7728 mask |= CPSR_IL; 7729 val |= CPSR_IL; 7730 } 7731 qemu_log_mask(LOG_GUEST_ERROR, 7732 "Illegal AArch32 mode switch attempt from %s to %s\n", 7733 aarch32_mode_name(env->uncached_cpsr), 7734 aarch32_mode_name(val)); 7735 } else { 7736 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7737 write_type == CPSRWriteExceptionReturn ? 7738 "Exception return from AArch32" : 7739 "AArch32 mode switch from", 7740 aarch32_mode_name(env->uncached_cpsr), 7741 aarch32_mode_name(val), env->regs[15]); 7742 switch_mode(env, val & CPSR_M); 7743 } 7744 } 7745 mask &= ~CACHED_CPSR_BITS; 7746 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7747 } 7748 7749 /* Sign/zero extend */ 7750 uint32_t HELPER(sxtb16)(uint32_t x) 7751 { 7752 uint32_t res; 7753 res = (uint16_t)(int8_t)x; 7754 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7755 return res; 7756 } 7757 7758 uint32_t HELPER(uxtb16)(uint32_t x) 7759 { 7760 uint32_t res; 7761 res = (uint16_t)(uint8_t)x; 7762 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7763 return res; 7764 } 7765 7766 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7767 { 7768 if (den == 0) 7769 return 0; 7770 if (num == INT_MIN && den == -1) 7771 return INT_MIN; 7772 return num / den; 7773 } 7774 7775 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7776 { 7777 if (den == 0) 7778 return 0; 7779 return num / den; 7780 } 7781 7782 uint32_t HELPER(rbit)(uint32_t x) 7783 { 7784 return revbit32(x); 7785 } 7786 7787 #ifdef CONFIG_USER_ONLY 7788 7789 static void switch_mode(CPUARMState *env, int mode) 7790 { 7791 ARMCPU *cpu = env_archcpu(env); 7792 7793 if (mode != ARM_CPU_MODE_USR) { 7794 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7795 } 7796 } 7797 7798 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7799 uint32_t cur_el, bool secure) 7800 { 7801 return 1; 7802 } 7803 7804 void aarch64_sync_64_to_32(CPUARMState *env) 7805 { 7806 g_assert_not_reached(); 7807 } 7808 7809 #else 7810 7811 static void switch_mode(CPUARMState *env, int mode) 7812 { 7813 int old_mode; 7814 int i; 7815 7816 old_mode = env->uncached_cpsr & CPSR_M; 7817 if (mode == old_mode) 7818 return; 7819 7820 if (old_mode == ARM_CPU_MODE_FIQ) { 7821 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7822 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7823 } else if (mode == ARM_CPU_MODE_FIQ) { 7824 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7825 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7826 } 7827 7828 i = bank_number(old_mode); 7829 env->banked_r13[i] = env->regs[13]; 7830 env->banked_spsr[i] = env->spsr; 7831 7832 i = bank_number(mode); 7833 env->regs[13] = env->banked_r13[i]; 7834 env->spsr = env->banked_spsr[i]; 7835 7836 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7837 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7838 } 7839 7840 /* Physical Interrupt Target EL Lookup Table 7841 * 7842 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7843 * 7844 * The below multi-dimensional table is used for looking up the target 7845 * exception level given numerous condition criteria. Specifically, the 7846 * target EL is based on SCR and HCR routing controls as well as the 7847 * currently executing EL and secure state. 7848 * 7849 * Dimensions: 7850 * target_el_table[2][2][2][2][2][4] 7851 * | | | | | +--- Current EL 7852 * | | | | +------ Non-secure(0)/Secure(1) 7853 * | | | +--------- HCR mask override 7854 * | | +------------ SCR exec state control 7855 * | +--------------- SCR mask override 7856 * +------------------ 32-bit(0)/64-bit(1) EL3 7857 * 7858 * The table values are as such: 7859 * 0-3 = EL0-EL3 7860 * -1 = Cannot occur 7861 * 7862 * The ARM ARM target EL table includes entries indicating that an "exception 7863 * is not taken". The two cases where this is applicable are: 7864 * 1) An exception is taken from EL3 but the SCR does not have the exception 7865 * routed to EL3. 7866 * 2) An exception is taken from EL2 but the HCR does not have the exception 7867 * routed to EL2. 7868 * In these two cases, the below table contain a target of EL1. This value is 7869 * returned as it is expected that the consumer of the table data will check 7870 * for "target EL >= current EL" to ensure the exception is not taken. 7871 * 7872 * SCR HCR 7873 * 64 EA AMO From 7874 * BIT IRQ IMO Non-secure Secure 7875 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7876 */ 7877 static const int8_t target_el_table[2][2][2][2][2][4] = { 7878 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7879 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7880 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7881 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7882 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7883 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7884 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7885 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7886 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7887 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7888 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7889 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7890 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7891 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7892 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7893 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7894 }; 7895 7896 /* 7897 * Determine the target EL for physical exceptions 7898 */ 7899 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7900 uint32_t cur_el, bool secure) 7901 { 7902 CPUARMState *env = cs->env_ptr; 7903 bool rw; 7904 bool scr; 7905 bool hcr; 7906 int target_el; 7907 /* Is the highest EL AArch64? */ 7908 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7909 uint64_t hcr_el2; 7910 7911 if (arm_feature(env, ARM_FEATURE_EL3)) { 7912 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7913 } else { 7914 /* Either EL2 is the highest EL (and so the EL2 register width 7915 * is given by is64); or there is no EL2 or EL3, in which case 7916 * the value of 'rw' does not affect the table lookup anyway. 7917 */ 7918 rw = is64; 7919 } 7920 7921 hcr_el2 = arm_hcr_el2_eff(env); 7922 switch (excp_idx) { 7923 case EXCP_IRQ: 7924 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7925 hcr = hcr_el2 & HCR_IMO; 7926 break; 7927 case EXCP_FIQ: 7928 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7929 hcr = hcr_el2 & HCR_FMO; 7930 break; 7931 default: 7932 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7933 hcr = hcr_el2 & HCR_AMO; 7934 break; 7935 }; 7936 7937 /* Perform a table-lookup for the target EL given the current state */ 7938 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7939 7940 assert(target_el > 0); 7941 7942 return target_el; 7943 } 7944 7945 void arm_log_exception(int idx) 7946 { 7947 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7948 const char *exc = NULL; 7949 static const char * const excnames[] = { 7950 [EXCP_UDEF] = "Undefined Instruction", 7951 [EXCP_SWI] = "SVC", 7952 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7953 [EXCP_DATA_ABORT] = "Data Abort", 7954 [EXCP_IRQ] = "IRQ", 7955 [EXCP_FIQ] = "FIQ", 7956 [EXCP_BKPT] = "Breakpoint", 7957 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7958 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7959 [EXCP_HVC] = "Hypervisor Call", 7960 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7961 [EXCP_SMC] = "Secure Monitor Call", 7962 [EXCP_VIRQ] = "Virtual IRQ", 7963 [EXCP_VFIQ] = "Virtual FIQ", 7964 [EXCP_SEMIHOST] = "Semihosting call", 7965 [EXCP_NOCP] = "v7M NOCP UsageFault", 7966 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7967 [EXCP_STKOF] = "v8M STKOF UsageFault", 7968 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7969 [EXCP_LSERR] = "v8M LSERR UsageFault", 7970 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7971 }; 7972 7973 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7974 exc = excnames[idx]; 7975 } 7976 if (!exc) { 7977 exc = "unknown"; 7978 } 7979 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7980 } 7981 } 7982 7983 /* 7984 * Function used to synchronize QEMU's AArch64 register set with AArch32 7985 * register set. This is necessary when switching between AArch32 and AArch64 7986 * execution state. 7987 */ 7988 void aarch64_sync_32_to_64(CPUARMState *env) 7989 { 7990 int i; 7991 uint32_t mode = env->uncached_cpsr & CPSR_M; 7992 7993 /* We can blanket copy R[0:7] to X[0:7] */ 7994 for (i = 0; i < 8; i++) { 7995 env->xregs[i] = env->regs[i]; 7996 } 7997 7998 /* 7999 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8000 * Otherwise, they come from the banked user regs. 8001 */ 8002 if (mode == ARM_CPU_MODE_FIQ) { 8003 for (i = 8; i < 13; i++) { 8004 env->xregs[i] = env->usr_regs[i - 8]; 8005 } 8006 } else { 8007 for (i = 8; i < 13; i++) { 8008 env->xregs[i] = env->regs[i]; 8009 } 8010 } 8011 8012 /* 8013 * Registers x13-x23 are the various mode SP and FP registers. Registers 8014 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8015 * from the mode banked register. 8016 */ 8017 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8018 env->xregs[13] = env->regs[13]; 8019 env->xregs[14] = env->regs[14]; 8020 } else { 8021 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8022 /* HYP is an exception in that it is copied from r14 */ 8023 if (mode == ARM_CPU_MODE_HYP) { 8024 env->xregs[14] = env->regs[14]; 8025 } else { 8026 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8027 } 8028 } 8029 8030 if (mode == ARM_CPU_MODE_HYP) { 8031 env->xregs[15] = env->regs[13]; 8032 } else { 8033 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8034 } 8035 8036 if (mode == ARM_CPU_MODE_IRQ) { 8037 env->xregs[16] = env->regs[14]; 8038 env->xregs[17] = env->regs[13]; 8039 } else { 8040 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8041 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8042 } 8043 8044 if (mode == ARM_CPU_MODE_SVC) { 8045 env->xregs[18] = env->regs[14]; 8046 env->xregs[19] = env->regs[13]; 8047 } else { 8048 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8049 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8050 } 8051 8052 if (mode == ARM_CPU_MODE_ABT) { 8053 env->xregs[20] = env->regs[14]; 8054 env->xregs[21] = env->regs[13]; 8055 } else { 8056 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8057 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8058 } 8059 8060 if (mode == ARM_CPU_MODE_UND) { 8061 env->xregs[22] = env->regs[14]; 8062 env->xregs[23] = env->regs[13]; 8063 } else { 8064 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8065 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8066 } 8067 8068 /* 8069 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8070 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8071 * FIQ bank for r8-r14. 8072 */ 8073 if (mode == ARM_CPU_MODE_FIQ) { 8074 for (i = 24; i < 31; i++) { 8075 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8076 } 8077 } else { 8078 for (i = 24; i < 29; i++) { 8079 env->xregs[i] = env->fiq_regs[i - 24]; 8080 } 8081 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8082 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8083 } 8084 8085 env->pc = env->regs[15]; 8086 } 8087 8088 /* 8089 * Function used to synchronize QEMU's AArch32 register set with AArch64 8090 * register set. This is necessary when switching between AArch32 and AArch64 8091 * execution state. 8092 */ 8093 void aarch64_sync_64_to_32(CPUARMState *env) 8094 { 8095 int i; 8096 uint32_t mode = env->uncached_cpsr & CPSR_M; 8097 8098 /* We can blanket copy X[0:7] to R[0:7] */ 8099 for (i = 0; i < 8; i++) { 8100 env->regs[i] = env->xregs[i]; 8101 } 8102 8103 /* 8104 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8105 * Otherwise, we copy x8-x12 into the banked user regs. 8106 */ 8107 if (mode == ARM_CPU_MODE_FIQ) { 8108 for (i = 8; i < 13; i++) { 8109 env->usr_regs[i - 8] = env->xregs[i]; 8110 } 8111 } else { 8112 for (i = 8; i < 13; i++) { 8113 env->regs[i] = env->xregs[i]; 8114 } 8115 } 8116 8117 /* 8118 * Registers r13 & r14 depend on the current mode. 8119 * If we are in a given mode, we copy the corresponding x registers to r13 8120 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8121 * for the mode. 8122 */ 8123 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8124 env->regs[13] = env->xregs[13]; 8125 env->regs[14] = env->xregs[14]; 8126 } else { 8127 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8128 8129 /* 8130 * HYP is an exception in that it does not have its own banked r14 but 8131 * shares the USR r14 8132 */ 8133 if (mode == ARM_CPU_MODE_HYP) { 8134 env->regs[14] = env->xregs[14]; 8135 } else { 8136 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8137 } 8138 } 8139 8140 if (mode == ARM_CPU_MODE_HYP) { 8141 env->regs[13] = env->xregs[15]; 8142 } else { 8143 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8144 } 8145 8146 if (mode == ARM_CPU_MODE_IRQ) { 8147 env->regs[14] = env->xregs[16]; 8148 env->regs[13] = env->xregs[17]; 8149 } else { 8150 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8151 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8152 } 8153 8154 if (mode == ARM_CPU_MODE_SVC) { 8155 env->regs[14] = env->xregs[18]; 8156 env->regs[13] = env->xregs[19]; 8157 } else { 8158 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8159 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8160 } 8161 8162 if (mode == ARM_CPU_MODE_ABT) { 8163 env->regs[14] = env->xregs[20]; 8164 env->regs[13] = env->xregs[21]; 8165 } else { 8166 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8167 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8168 } 8169 8170 if (mode == ARM_CPU_MODE_UND) { 8171 env->regs[14] = env->xregs[22]; 8172 env->regs[13] = env->xregs[23]; 8173 } else { 8174 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8175 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8176 } 8177 8178 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8179 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8180 * FIQ bank for r8-r14. 8181 */ 8182 if (mode == ARM_CPU_MODE_FIQ) { 8183 for (i = 24; i < 31; i++) { 8184 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8185 } 8186 } else { 8187 for (i = 24; i < 29; i++) { 8188 env->fiq_regs[i - 24] = env->xregs[i]; 8189 } 8190 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8191 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8192 } 8193 8194 env->regs[15] = env->pc; 8195 } 8196 8197 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8198 uint32_t mask, uint32_t offset, 8199 uint32_t newpc) 8200 { 8201 /* Change the CPU state so as to actually take the exception. */ 8202 switch_mode(env, new_mode); 8203 /* 8204 * For exceptions taken to AArch32 we must clear the SS bit in both 8205 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8206 */ 8207 env->uncached_cpsr &= ~PSTATE_SS; 8208 env->spsr = cpsr_read(env); 8209 /* Clear IT bits. */ 8210 env->condexec_bits = 0; 8211 /* Switch to the new mode, and to the correct instruction set. */ 8212 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8213 /* Set new mode endianness */ 8214 env->uncached_cpsr &= ~CPSR_E; 8215 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8216 env->uncached_cpsr |= CPSR_E; 8217 } 8218 /* J and IL must always be cleared for exception entry */ 8219 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8220 env->daif |= mask; 8221 8222 if (new_mode == ARM_CPU_MODE_HYP) { 8223 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8224 env->elr_el[2] = env->regs[15]; 8225 } else { 8226 /* 8227 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8228 * and we should just guard the thumb mode on V4 8229 */ 8230 if (arm_feature(env, ARM_FEATURE_V4T)) { 8231 env->thumb = 8232 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8233 } 8234 env->regs[14] = env->regs[15] + offset; 8235 } 8236 env->regs[15] = newpc; 8237 arm_rebuild_hflags(env); 8238 } 8239 8240 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8241 { 8242 /* 8243 * Handle exception entry to Hyp mode; this is sufficiently 8244 * different to entry to other AArch32 modes that we handle it 8245 * separately here. 8246 * 8247 * The vector table entry used is always the 0x14 Hyp mode entry point, 8248 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8249 * The offset applied to the preferred return address is always zero 8250 * (see DDI0487C.a section G1.12.3). 8251 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8252 */ 8253 uint32_t addr, mask; 8254 ARMCPU *cpu = ARM_CPU(cs); 8255 CPUARMState *env = &cpu->env; 8256 8257 switch (cs->exception_index) { 8258 case EXCP_UDEF: 8259 addr = 0x04; 8260 break; 8261 case EXCP_SWI: 8262 addr = 0x14; 8263 break; 8264 case EXCP_BKPT: 8265 /* Fall through to prefetch abort. */ 8266 case EXCP_PREFETCH_ABORT: 8267 env->cp15.ifar_s = env->exception.vaddress; 8268 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8269 (uint32_t)env->exception.vaddress); 8270 addr = 0x0c; 8271 break; 8272 case EXCP_DATA_ABORT: 8273 env->cp15.dfar_s = env->exception.vaddress; 8274 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8275 (uint32_t)env->exception.vaddress); 8276 addr = 0x10; 8277 break; 8278 case EXCP_IRQ: 8279 addr = 0x18; 8280 break; 8281 case EXCP_FIQ: 8282 addr = 0x1c; 8283 break; 8284 case EXCP_HVC: 8285 addr = 0x08; 8286 break; 8287 case EXCP_HYP_TRAP: 8288 addr = 0x14; 8289 break; 8290 default: 8291 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8292 } 8293 8294 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8295 if (!arm_feature(env, ARM_FEATURE_V8)) { 8296 /* 8297 * QEMU syndrome values are v8-style. v7 has the IL bit 8298 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8299 * If this is a v7 CPU, squash the IL bit in those cases. 8300 */ 8301 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8302 (cs->exception_index == EXCP_DATA_ABORT && 8303 !(env->exception.syndrome & ARM_EL_ISV)) || 8304 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8305 env->exception.syndrome &= ~ARM_EL_IL; 8306 } 8307 } 8308 env->cp15.esr_el[2] = env->exception.syndrome; 8309 } 8310 8311 if (arm_current_el(env) != 2 && addr < 0x14) { 8312 addr = 0x14; 8313 } 8314 8315 mask = 0; 8316 if (!(env->cp15.scr_el3 & SCR_EA)) { 8317 mask |= CPSR_A; 8318 } 8319 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8320 mask |= CPSR_I; 8321 } 8322 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8323 mask |= CPSR_F; 8324 } 8325 8326 addr += env->cp15.hvbar; 8327 8328 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8329 } 8330 8331 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8332 { 8333 ARMCPU *cpu = ARM_CPU(cs); 8334 CPUARMState *env = &cpu->env; 8335 uint32_t addr; 8336 uint32_t mask; 8337 int new_mode; 8338 uint32_t offset; 8339 uint32_t moe; 8340 8341 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8342 switch (syn_get_ec(env->exception.syndrome)) { 8343 case EC_BREAKPOINT: 8344 case EC_BREAKPOINT_SAME_EL: 8345 moe = 1; 8346 break; 8347 case EC_WATCHPOINT: 8348 case EC_WATCHPOINT_SAME_EL: 8349 moe = 10; 8350 break; 8351 case EC_AA32_BKPT: 8352 moe = 3; 8353 break; 8354 case EC_VECTORCATCH: 8355 moe = 5; 8356 break; 8357 default: 8358 moe = 0; 8359 break; 8360 } 8361 8362 if (moe) { 8363 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8364 } 8365 8366 if (env->exception.target_el == 2) { 8367 arm_cpu_do_interrupt_aarch32_hyp(cs); 8368 return; 8369 } 8370 8371 switch (cs->exception_index) { 8372 case EXCP_UDEF: 8373 new_mode = ARM_CPU_MODE_UND; 8374 addr = 0x04; 8375 mask = CPSR_I; 8376 if (env->thumb) 8377 offset = 2; 8378 else 8379 offset = 4; 8380 break; 8381 case EXCP_SWI: 8382 new_mode = ARM_CPU_MODE_SVC; 8383 addr = 0x08; 8384 mask = CPSR_I; 8385 /* The PC already points to the next instruction. */ 8386 offset = 0; 8387 break; 8388 case EXCP_BKPT: 8389 /* Fall through to prefetch abort. */ 8390 case EXCP_PREFETCH_ABORT: 8391 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8392 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8393 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8394 env->exception.fsr, (uint32_t)env->exception.vaddress); 8395 new_mode = ARM_CPU_MODE_ABT; 8396 addr = 0x0c; 8397 mask = CPSR_A | CPSR_I; 8398 offset = 4; 8399 break; 8400 case EXCP_DATA_ABORT: 8401 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8402 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8403 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8404 env->exception.fsr, 8405 (uint32_t)env->exception.vaddress); 8406 new_mode = ARM_CPU_MODE_ABT; 8407 addr = 0x10; 8408 mask = CPSR_A | CPSR_I; 8409 offset = 8; 8410 break; 8411 case EXCP_IRQ: 8412 new_mode = ARM_CPU_MODE_IRQ; 8413 addr = 0x18; 8414 /* Disable IRQ and imprecise data aborts. */ 8415 mask = CPSR_A | CPSR_I; 8416 offset = 4; 8417 if (env->cp15.scr_el3 & SCR_IRQ) { 8418 /* IRQ routed to monitor mode */ 8419 new_mode = ARM_CPU_MODE_MON; 8420 mask |= CPSR_F; 8421 } 8422 break; 8423 case EXCP_FIQ: 8424 new_mode = ARM_CPU_MODE_FIQ; 8425 addr = 0x1c; 8426 /* Disable FIQ, IRQ and imprecise data aborts. */ 8427 mask = CPSR_A | CPSR_I | CPSR_F; 8428 if (env->cp15.scr_el3 & SCR_FIQ) { 8429 /* FIQ routed to monitor mode */ 8430 new_mode = ARM_CPU_MODE_MON; 8431 } 8432 offset = 4; 8433 break; 8434 case EXCP_VIRQ: 8435 new_mode = ARM_CPU_MODE_IRQ; 8436 addr = 0x18; 8437 /* Disable IRQ and imprecise data aborts. */ 8438 mask = CPSR_A | CPSR_I; 8439 offset = 4; 8440 break; 8441 case EXCP_VFIQ: 8442 new_mode = ARM_CPU_MODE_FIQ; 8443 addr = 0x1c; 8444 /* Disable FIQ, IRQ and imprecise data aborts. */ 8445 mask = CPSR_A | CPSR_I | CPSR_F; 8446 offset = 4; 8447 break; 8448 case EXCP_SMC: 8449 new_mode = ARM_CPU_MODE_MON; 8450 addr = 0x08; 8451 mask = CPSR_A | CPSR_I | CPSR_F; 8452 offset = 0; 8453 break; 8454 default: 8455 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8456 return; /* Never happens. Keep compiler happy. */ 8457 } 8458 8459 if (new_mode == ARM_CPU_MODE_MON) { 8460 addr += env->cp15.mvbar; 8461 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8462 /* High vectors. When enabled, base address cannot be remapped. */ 8463 addr += 0xffff0000; 8464 } else { 8465 /* ARM v7 architectures provide a vector base address register to remap 8466 * the interrupt vector table. 8467 * This register is only followed in non-monitor mode, and is banked. 8468 * Note: only bits 31:5 are valid. 8469 */ 8470 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8471 } 8472 8473 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8474 env->cp15.scr_el3 &= ~SCR_NS; 8475 } 8476 8477 take_aarch32_exception(env, new_mode, mask, offset, addr); 8478 } 8479 8480 /* Handle exception entry to a target EL which is using AArch64 */ 8481 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8482 { 8483 ARMCPU *cpu = ARM_CPU(cs); 8484 CPUARMState *env = &cpu->env; 8485 unsigned int new_el = env->exception.target_el; 8486 target_ulong addr = env->cp15.vbar_el[new_el]; 8487 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8488 unsigned int cur_el = arm_current_el(env); 8489 8490 /* 8491 * Note that new_el can never be 0. If cur_el is 0, then 8492 * el0_a64 is is_a64(), else el0_a64 is ignored. 8493 */ 8494 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8495 8496 if (cur_el < new_el) { 8497 /* Entry vector offset depends on whether the implemented EL 8498 * immediately lower than the target level is using AArch32 or AArch64 8499 */ 8500 bool is_aa64; 8501 8502 switch (new_el) { 8503 case 3: 8504 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8505 break; 8506 case 2: 8507 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8508 break; 8509 case 1: 8510 is_aa64 = is_a64(env); 8511 break; 8512 default: 8513 g_assert_not_reached(); 8514 } 8515 8516 if (is_aa64) { 8517 addr += 0x400; 8518 } else { 8519 addr += 0x600; 8520 } 8521 } else if (pstate_read(env) & PSTATE_SP) { 8522 addr += 0x200; 8523 } 8524 8525 switch (cs->exception_index) { 8526 case EXCP_PREFETCH_ABORT: 8527 case EXCP_DATA_ABORT: 8528 env->cp15.far_el[new_el] = env->exception.vaddress; 8529 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8530 env->cp15.far_el[new_el]); 8531 /* fall through */ 8532 case EXCP_BKPT: 8533 case EXCP_UDEF: 8534 case EXCP_SWI: 8535 case EXCP_HVC: 8536 case EXCP_HYP_TRAP: 8537 case EXCP_SMC: 8538 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8539 /* 8540 * QEMU internal FP/SIMD syndromes from AArch32 include the 8541 * TA and coproc fields which are only exposed if the exception 8542 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8543 * AArch64 format syndrome. 8544 */ 8545 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8546 } 8547 env->cp15.esr_el[new_el] = env->exception.syndrome; 8548 break; 8549 case EXCP_IRQ: 8550 case EXCP_VIRQ: 8551 addr += 0x80; 8552 break; 8553 case EXCP_FIQ: 8554 case EXCP_VFIQ: 8555 addr += 0x100; 8556 break; 8557 case EXCP_SEMIHOST: 8558 qemu_log_mask(CPU_LOG_INT, 8559 "...handling as semihosting call 0x%" PRIx64 "\n", 8560 env->xregs[0]); 8561 env->xregs[0] = do_arm_semihosting(env); 8562 return; 8563 default: 8564 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8565 } 8566 8567 if (is_a64(env)) { 8568 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8569 aarch64_save_sp(env, arm_current_el(env)); 8570 env->elr_el[new_el] = env->pc; 8571 } else { 8572 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8573 env->elr_el[new_el] = env->regs[15]; 8574 8575 aarch64_sync_32_to_64(env); 8576 8577 env->condexec_bits = 0; 8578 } 8579 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8580 env->elr_el[new_el]); 8581 8582 pstate_write(env, PSTATE_DAIF | new_mode); 8583 env->aarch64 = 1; 8584 aarch64_restore_sp(env, new_el); 8585 helper_rebuild_hflags_a64(env, new_el); 8586 8587 env->pc = addr; 8588 8589 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8590 new_el, env->pc, pstate_read(env)); 8591 } 8592 8593 /* 8594 * Do semihosting call and set the appropriate return value. All the 8595 * permission and validity checks have been done at translate time. 8596 * 8597 * We only see semihosting exceptions in TCG only as they are not 8598 * trapped to the hypervisor in KVM. 8599 */ 8600 #ifdef CONFIG_TCG 8601 static void handle_semihosting(CPUState *cs) 8602 { 8603 ARMCPU *cpu = ARM_CPU(cs); 8604 CPUARMState *env = &cpu->env; 8605 8606 if (is_a64(env)) { 8607 qemu_log_mask(CPU_LOG_INT, 8608 "...handling as semihosting call 0x%" PRIx64 "\n", 8609 env->xregs[0]); 8610 env->xregs[0] = do_arm_semihosting(env); 8611 } else { 8612 qemu_log_mask(CPU_LOG_INT, 8613 "...handling as semihosting call 0x%x\n", 8614 env->regs[0]); 8615 env->regs[0] = do_arm_semihosting(env); 8616 } 8617 } 8618 #endif 8619 8620 /* Handle a CPU exception for A and R profile CPUs. 8621 * Do any appropriate logging, handle PSCI calls, and then hand off 8622 * to the AArch64-entry or AArch32-entry function depending on the 8623 * target exception level's register width. 8624 */ 8625 void arm_cpu_do_interrupt(CPUState *cs) 8626 { 8627 ARMCPU *cpu = ARM_CPU(cs); 8628 CPUARMState *env = &cpu->env; 8629 unsigned int new_el = env->exception.target_el; 8630 8631 assert(!arm_feature(env, ARM_FEATURE_M)); 8632 8633 arm_log_exception(cs->exception_index); 8634 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8635 new_el); 8636 if (qemu_loglevel_mask(CPU_LOG_INT) 8637 && !excp_is_internal(cs->exception_index)) { 8638 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8639 syn_get_ec(env->exception.syndrome), 8640 env->exception.syndrome); 8641 } 8642 8643 if (arm_is_psci_call(cpu, cs->exception_index)) { 8644 arm_handle_psci_call(cpu); 8645 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8646 return; 8647 } 8648 8649 /* 8650 * Semihosting semantics depend on the register width of the code 8651 * that caused the exception, not the target exception level, so 8652 * must be handled here. 8653 */ 8654 #ifdef CONFIG_TCG 8655 if (cs->exception_index == EXCP_SEMIHOST) { 8656 handle_semihosting(cs); 8657 return; 8658 } 8659 #endif 8660 8661 /* Hooks may change global state so BQL should be held, also the 8662 * BQL needs to be held for any modification of 8663 * cs->interrupt_request. 8664 */ 8665 g_assert(qemu_mutex_iothread_locked()); 8666 8667 arm_call_pre_el_change_hook(cpu); 8668 8669 assert(!excp_is_internal(cs->exception_index)); 8670 if (arm_el_is_aa64(env, new_el)) { 8671 arm_cpu_do_interrupt_aarch64(cs); 8672 } else { 8673 arm_cpu_do_interrupt_aarch32(cs); 8674 } 8675 8676 arm_call_el_change_hook(cpu); 8677 8678 if (!kvm_enabled()) { 8679 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8680 } 8681 } 8682 #endif /* !CONFIG_USER_ONLY */ 8683 8684 /* Return the exception level which controls this address translation regime */ 8685 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8686 { 8687 switch (mmu_idx) { 8688 case ARMMMUIdx_S2NS: 8689 case ARMMMUIdx_S1E2: 8690 return 2; 8691 case ARMMMUIdx_S1E3: 8692 return 3; 8693 case ARMMMUIdx_S1SE0: 8694 return arm_el_is_aa64(env, 3) ? 1 : 3; 8695 case ARMMMUIdx_S1SE1: 8696 case ARMMMUIdx_S1NSE0: 8697 case ARMMMUIdx_S1NSE1: 8698 case ARMMMUIdx_MPrivNegPri: 8699 case ARMMMUIdx_MUserNegPri: 8700 case ARMMMUIdx_MPriv: 8701 case ARMMMUIdx_MUser: 8702 case ARMMMUIdx_MSPrivNegPri: 8703 case ARMMMUIdx_MSUserNegPri: 8704 case ARMMMUIdx_MSPriv: 8705 case ARMMMUIdx_MSUser: 8706 return 1; 8707 default: 8708 g_assert_not_reached(); 8709 } 8710 } 8711 8712 #ifndef CONFIG_USER_ONLY 8713 8714 /* Return the SCTLR value which controls this address translation regime */ 8715 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8716 { 8717 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8718 } 8719 8720 /* Return true if the specified stage of address translation is disabled */ 8721 static inline bool regime_translation_disabled(CPUARMState *env, 8722 ARMMMUIdx mmu_idx) 8723 { 8724 if (arm_feature(env, ARM_FEATURE_M)) { 8725 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8726 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8727 case R_V7M_MPU_CTRL_ENABLE_MASK: 8728 /* Enabled, but not for HardFault and NMI */ 8729 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8730 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8731 /* Enabled for all cases */ 8732 return false; 8733 case 0: 8734 default: 8735 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8736 * we warned about that in armv7m_nvic.c when the guest set it. 8737 */ 8738 return true; 8739 } 8740 } 8741 8742 if (mmu_idx == ARMMMUIdx_S2NS) { 8743 /* HCR.DC means HCR.VM behaves as 1 */ 8744 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8745 } 8746 8747 if (env->cp15.hcr_el2 & HCR_TGE) { 8748 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8749 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8750 return true; 8751 } 8752 } 8753 8754 if ((env->cp15.hcr_el2 & HCR_DC) && 8755 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8756 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8757 return true; 8758 } 8759 8760 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8761 } 8762 8763 static inline bool regime_translation_big_endian(CPUARMState *env, 8764 ARMMMUIdx mmu_idx) 8765 { 8766 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8767 } 8768 8769 /* Return the TTBR associated with this translation regime */ 8770 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8771 int ttbrn) 8772 { 8773 if (mmu_idx == ARMMMUIdx_S2NS) { 8774 return env->cp15.vttbr_el2; 8775 } 8776 if (ttbrn == 0) { 8777 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8778 } else { 8779 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8780 } 8781 } 8782 8783 #endif /* !CONFIG_USER_ONLY */ 8784 8785 /* Return the TCR controlling this translation regime */ 8786 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8787 { 8788 if (mmu_idx == ARMMMUIdx_S2NS) { 8789 return &env->cp15.vtcr_el2; 8790 } 8791 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8792 } 8793 8794 /* Convert a possible stage1+2 MMU index into the appropriate 8795 * stage 1 MMU index 8796 */ 8797 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8798 { 8799 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8800 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8801 } 8802 return mmu_idx; 8803 } 8804 8805 /* Return true if the translation regime is using LPAE format page tables */ 8806 static inline bool regime_using_lpae_format(CPUARMState *env, 8807 ARMMMUIdx mmu_idx) 8808 { 8809 int el = regime_el(env, mmu_idx); 8810 if (el == 2 || arm_el_is_aa64(env, el)) { 8811 return true; 8812 } 8813 if (arm_feature(env, ARM_FEATURE_LPAE) 8814 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8815 return true; 8816 } 8817 return false; 8818 } 8819 8820 /* Returns true if the stage 1 translation regime is using LPAE format page 8821 * tables. Used when raising alignment exceptions, whose FSR changes depending 8822 * on whether the long or short descriptor format is in use. */ 8823 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8824 { 8825 mmu_idx = stage_1_mmu_idx(mmu_idx); 8826 8827 return regime_using_lpae_format(env, mmu_idx); 8828 } 8829 8830 #ifndef CONFIG_USER_ONLY 8831 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8832 { 8833 switch (mmu_idx) { 8834 case ARMMMUIdx_S1SE0: 8835 case ARMMMUIdx_S1NSE0: 8836 case ARMMMUIdx_MUser: 8837 case ARMMMUIdx_MSUser: 8838 case ARMMMUIdx_MUserNegPri: 8839 case ARMMMUIdx_MSUserNegPri: 8840 return true; 8841 default: 8842 return false; 8843 case ARMMMUIdx_S12NSE0: 8844 case ARMMMUIdx_S12NSE1: 8845 g_assert_not_reached(); 8846 } 8847 } 8848 8849 /* Translate section/page access permissions to page 8850 * R/W protection flags 8851 * 8852 * @env: CPUARMState 8853 * @mmu_idx: MMU index indicating required translation regime 8854 * @ap: The 3-bit access permissions (AP[2:0]) 8855 * @domain_prot: The 2-bit domain access permissions 8856 */ 8857 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8858 int ap, int domain_prot) 8859 { 8860 bool is_user = regime_is_user(env, mmu_idx); 8861 8862 if (domain_prot == 3) { 8863 return PAGE_READ | PAGE_WRITE; 8864 } 8865 8866 switch (ap) { 8867 case 0: 8868 if (arm_feature(env, ARM_FEATURE_V7)) { 8869 return 0; 8870 } 8871 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8872 case SCTLR_S: 8873 return is_user ? 0 : PAGE_READ; 8874 case SCTLR_R: 8875 return PAGE_READ; 8876 default: 8877 return 0; 8878 } 8879 case 1: 8880 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8881 case 2: 8882 if (is_user) { 8883 return PAGE_READ; 8884 } else { 8885 return PAGE_READ | PAGE_WRITE; 8886 } 8887 case 3: 8888 return PAGE_READ | PAGE_WRITE; 8889 case 4: /* Reserved. */ 8890 return 0; 8891 case 5: 8892 return is_user ? 0 : PAGE_READ; 8893 case 6: 8894 return PAGE_READ; 8895 case 7: 8896 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8897 return 0; 8898 } 8899 return PAGE_READ; 8900 default: 8901 g_assert_not_reached(); 8902 } 8903 } 8904 8905 /* Translate section/page access permissions to page 8906 * R/W protection flags. 8907 * 8908 * @ap: The 2-bit simple AP (AP[2:1]) 8909 * @is_user: TRUE if accessing from PL0 8910 */ 8911 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8912 { 8913 switch (ap) { 8914 case 0: 8915 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8916 case 1: 8917 return PAGE_READ | PAGE_WRITE; 8918 case 2: 8919 return is_user ? 0 : PAGE_READ; 8920 case 3: 8921 return PAGE_READ; 8922 default: 8923 g_assert_not_reached(); 8924 } 8925 } 8926 8927 static inline int 8928 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8929 { 8930 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8931 } 8932 8933 /* Translate S2 section/page access permissions to protection flags 8934 * 8935 * @env: CPUARMState 8936 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8937 * @xn: XN (execute-never) bit 8938 */ 8939 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8940 { 8941 int prot = 0; 8942 8943 if (s2ap & 1) { 8944 prot |= PAGE_READ; 8945 } 8946 if (s2ap & 2) { 8947 prot |= PAGE_WRITE; 8948 } 8949 if (!xn) { 8950 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8951 prot |= PAGE_EXEC; 8952 } 8953 } 8954 return prot; 8955 } 8956 8957 /* Translate section/page access permissions to protection flags 8958 * 8959 * @env: CPUARMState 8960 * @mmu_idx: MMU index indicating required translation regime 8961 * @is_aa64: TRUE if AArch64 8962 * @ap: The 2-bit simple AP (AP[2:1]) 8963 * @ns: NS (non-secure) bit 8964 * @xn: XN (execute-never) bit 8965 * @pxn: PXN (privileged execute-never) bit 8966 */ 8967 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8968 int ap, int ns, int xn, int pxn) 8969 { 8970 bool is_user = regime_is_user(env, mmu_idx); 8971 int prot_rw, user_rw; 8972 bool have_wxn; 8973 int wxn = 0; 8974 8975 assert(mmu_idx != ARMMMUIdx_S2NS); 8976 8977 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8978 if (is_user) { 8979 prot_rw = user_rw; 8980 } else { 8981 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8982 } 8983 8984 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8985 return prot_rw; 8986 } 8987 8988 /* TODO have_wxn should be replaced with 8989 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8990 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8991 * compatible processors have EL2, which is required for [U]WXN. 8992 */ 8993 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8994 8995 if (have_wxn) { 8996 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8997 } 8998 8999 if (is_aa64) { 9000 switch (regime_el(env, mmu_idx)) { 9001 case 1: 9002 if (!is_user) { 9003 xn = pxn || (user_rw & PAGE_WRITE); 9004 } 9005 break; 9006 case 2: 9007 case 3: 9008 break; 9009 } 9010 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9011 switch (regime_el(env, mmu_idx)) { 9012 case 1: 9013 case 3: 9014 if (is_user) { 9015 xn = xn || !(user_rw & PAGE_READ); 9016 } else { 9017 int uwxn = 0; 9018 if (have_wxn) { 9019 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9020 } 9021 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9022 (uwxn && (user_rw & PAGE_WRITE)); 9023 } 9024 break; 9025 case 2: 9026 break; 9027 } 9028 } else { 9029 xn = wxn = 0; 9030 } 9031 9032 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9033 return prot_rw; 9034 } 9035 return prot_rw | PAGE_EXEC; 9036 } 9037 9038 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9039 uint32_t *table, uint32_t address) 9040 { 9041 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9042 TCR *tcr = regime_tcr(env, mmu_idx); 9043 9044 if (address & tcr->mask) { 9045 if (tcr->raw_tcr & TTBCR_PD1) { 9046 /* Translation table walk disabled for TTBR1 */ 9047 return false; 9048 } 9049 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9050 } else { 9051 if (tcr->raw_tcr & TTBCR_PD0) { 9052 /* Translation table walk disabled for TTBR0 */ 9053 return false; 9054 } 9055 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9056 } 9057 *table |= (address >> 18) & 0x3ffc; 9058 return true; 9059 } 9060 9061 /* Translate a S1 pagetable walk through S2 if needed. */ 9062 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9063 hwaddr addr, MemTxAttrs txattrs, 9064 ARMMMUFaultInfo *fi) 9065 { 9066 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 9067 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9068 target_ulong s2size; 9069 hwaddr s2pa; 9070 int s2prot; 9071 int ret; 9072 ARMCacheAttrs cacheattrs = {}; 9073 ARMCacheAttrs *pcacheattrs = NULL; 9074 9075 if (env->cp15.hcr_el2 & HCR_PTW) { 9076 /* 9077 * PTW means we must fault if this S1 walk touches S2 Device 9078 * memory; otherwise we don't care about the attributes and can 9079 * save the S2 translation the effort of computing them. 9080 */ 9081 pcacheattrs = &cacheattrs; 9082 } 9083 9084 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 9085 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 9086 if (ret) { 9087 assert(fi->type != ARMFault_None); 9088 fi->s2addr = addr; 9089 fi->stage2 = true; 9090 fi->s1ptw = true; 9091 return ~0; 9092 } 9093 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 9094 /* Access was to Device memory: generate Permission fault */ 9095 fi->type = ARMFault_Permission; 9096 fi->s2addr = addr; 9097 fi->stage2 = true; 9098 fi->s1ptw = true; 9099 return ~0; 9100 } 9101 addr = s2pa; 9102 } 9103 return addr; 9104 } 9105 9106 /* All loads done in the course of a page table walk go through here. */ 9107 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9108 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9109 { 9110 ARMCPU *cpu = ARM_CPU(cs); 9111 CPUARMState *env = &cpu->env; 9112 MemTxAttrs attrs = {}; 9113 MemTxResult result = MEMTX_OK; 9114 AddressSpace *as; 9115 uint32_t data; 9116 9117 attrs.secure = is_secure; 9118 as = arm_addressspace(cs, attrs); 9119 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9120 if (fi->s1ptw) { 9121 return 0; 9122 } 9123 if (regime_translation_big_endian(env, mmu_idx)) { 9124 data = address_space_ldl_be(as, addr, attrs, &result); 9125 } else { 9126 data = address_space_ldl_le(as, addr, attrs, &result); 9127 } 9128 if (result == MEMTX_OK) { 9129 return data; 9130 } 9131 fi->type = ARMFault_SyncExternalOnWalk; 9132 fi->ea = arm_extabort_type(result); 9133 return 0; 9134 } 9135 9136 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9137 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9138 { 9139 ARMCPU *cpu = ARM_CPU(cs); 9140 CPUARMState *env = &cpu->env; 9141 MemTxAttrs attrs = {}; 9142 MemTxResult result = MEMTX_OK; 9143 AddressSpace *as; 9144 uint64_t data; 9145 9146 attrs.secure = is_secure; 9147 as = arm_addressspace(cs, attrs); 9148 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9149 if (fi->s1ptw) { 9150 return 0; 9151 } 9152 if (regime_translation_big_endian(env, mmu_idx)) { 9153 data = address_space_ldq_be(as, addr, attrs, &result); 9154 } else { 9155 data = address_space_ldq_le(as, addr, attrs, &result); 9156 } 9157 if (result == MEMTX_OK) { 9158 return data; 9159 } 9160 fi->type = ARMFault_SyncExternalOnWalk; 9161 fi->ea = arm_extabort_type(result); 9162 return 0; 9163 } 9164 9165 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9166 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9167 hwaddr *phys_ptr, int *prot, 9168 target_ulong *page_size, 9169 ARMMMUFaultInfo *fi) 9170 { 9171 CPUState *cs = env_cpu(env); 9172 int level = 1; 9173 uint32_t table; 9174 uint32_t desc; 9175 int type; 9176 int ap; 9177 int domain = 0; 9178 int domain_prot; 9179 hwaddr phys_addr; 9180 uint32_t dacr; 9181 9182 /* Pagetable walk. */ 9183 /* Lookup l1 descriptor. */ 9184 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9185 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9186 fi->type = ARMFault_Translation; 9187 goto do_fault; 9188 } 9189 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9190 mmu_idx, fi); 9191 if (fi->type != ARMFault_None) { 9192 goto do_fault; 9193 } 9194 type = (desc & 3); 9195 domain = (desc >> 5) & 0x0f; 9196 if (regime_el(env, mmu_idx) == 1) { 9197 dacr = env->cp15.dacr_ns; 9198 } else { 9199 dacr = env->cp15.dacr_s; 9200 } 9201 domain_prot = (dacr >> (domain * 2)) & 3; 9202 if (type == 0) { 9203 /* Section translation fault. */ 9204 fi->type = ARMFault_Translation; 9205 goto do_fault; 9206 } 9207 if (type != 2) { 9208 level = 2; 9209 } 9210 if (domain_prot == 0 || domain_prot == 2) { 9211 fi->type = ARMFault_Domain; 9212 goto do_fault; 9213 } 9214 if (type == 2) { 9215 /* 1Mb section. */ 9216 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9217 ap = (desc >> 10) & 3; 9218 *page_size = 1024 * 1024; 9219 } else { 9220 /* Lookup l2 entry. */ 9221 if (type == 1) { 9222 /* Coarse pagetable. */ 9223 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9224 } else { 9225 /* Fine pagetable. */ 9226 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9227 } 9228 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9229 mmu_idx, fi); 9230 if (fi->type != ARMFault_None) { 9231 goto do_fault; 9232 } 9233 switch (desc & 3) { 9234 case 0: /* Page translation fault. */ 9235 fi->type = ARMFault_Translation; 9236 goto do_fault; 9237 case 1: /* 64k page. */ 9238 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9239 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9240 *page_size = 0x10000; 9241 break; 9242 case 2: /* 4k page. */ 9243 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9244 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9245 *page_size = 0x1000; 9246 break; 9247 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9248 if (type == 1) { 9249 /* ARMv6/XScale extended small page format */ 9250 if (arm_feature(env, ARM_FEATURE_XSCALE) 9251 || arm_feature(env, ARM_FEATURE_V6)) { 9252 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9253 *page_size = 0x1000; 9254 } else { 9255 /* UNPREDICTABLE in ARMv5; we choose to take a 9256 * page translation fault. 9257 */ 9258 fi->type = ARMFault_Translation; 9259 goto do_fault; 9260 } 9261 } else { 9262 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9263 *page_size = 0x400; 9264 } 9265 ap = (desc >> 4) & 3; 9266 break; 9267 default: 9268 /* Never happens, but compiler isn't smart enough to tell. */ 9269 abort(); 9270 } 9271 } 9272 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9273 *prot |= *prot ? PAGE_EXEC : 0; 9274 if (!(*prot & (1 << access_type))) { 9275 /* Access permission fault. */ 9276 fi->type = ARMFault_Permission; 9277 goto do_fault; 9278 } 9279 *phys_ptr = phys_addr; 9280 return false; 9281 do_fault: 9282 fi->domain = domain; 9283 fi->level = level; 9284 return true; 9285 } 9286 9287 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9288 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9289 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9290 target_ulong *page_size, ARMMMUFaultInfo *fi) 9291 { 9292 CPUState *cs = env_cpu(env); 9293 int level = 1; 9294 uint32_t table; 9295 uint32_t desc; 9296 uint32_t xn; 9297 uint32_t pxn = 0; 9298 int type; 9299 int ap; 9300 int domain = 0; 9301 int domain_prot; 9302 hwaddr phys_addr; 9303 uint32_t dacr; 9304 bool ns; 9305 9306 /* Pagetable walk. */ 9307 /* Lookup l1 descriptor. */ 9308 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9309 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9310 fi->type = ARMFault_Translation; 9311 goto do_fault; 9312 } 9313 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9314 mmu_idx, fi); 9315 if (fi->type != ARMFault_None) { 9316 goto do_fault; 9317 } 9318 type = (desc & 3); 9319 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9320 /* Section translation fault, or attempt to use the encoding 9321 * which is Reserved on implementations without PXN. 9322 */ 9323 fi->type = ARMFault_Translation; 9324 goto do_fault; 9325 } 9326 if ((type == 1) || !(desc & (1 << 18))) { 9327 /* Page or Section. */ 9328 domain = (desc >> 5) & 0x0f; 9329 } 9330 if (regime_el(env, mmu_idx) == 1) { 9331 dacr = env->cp15.dacr_ns; 9332 } else { 9333 dacr = env->cp15.dacr_s; 9334 } 9335 if (type == 1) { 9336 level = 2; 9337 } 9338 domain_prot = (dacr >> (domain * 2)) & 3; 9339 if (domain_prot == 0 || domain_prot == 2) { 9340 /* Section or Page domain fault */ 9341 fi->type = ARMFault_Domain; 9342 goto do_fault; 9343 } 9344 if (type != 1) { 9345 if (desc & (1 << 18)) { 9346 /* Supersection. */ 9347 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9348 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9349 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9350 *page_size = 0x1000000; 9351 } else { 9352 /* Section. */ 9353 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9354 *page_size = 0x100000; 9355 } 9356 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9357 xn = desc & (1 << 4); 9358 pxn = desc & 1; 9359 ns = extract32(desc, 19, 1); 9360 } else { 9361 if (arm_feature(env, ARM_FEATURE_PXN)) { 9362 pxn = (desc >> 2) & 1; 9363 } 9364 ns = extract32(desc, 3, 1); 9365 /* Lookup l2 entry. */ 9366 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9367 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9368 mmu_idx, fi); 9369 if (fi->type != ARMFault_None) { 9370 goto do_fault; 9371 } 9372 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9373 switch (desc & 3) { 9374 case 0: /* Page translation fault. */ 9375 fi->type = ARMFault_Translation; 9376 goto do_fault; 9377 case 1: /* 64k page. */ 9378 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9379 xn = desc & (1 << 15); 9380 *page_size = 0x10000; 9381 break; 9382 case 2: case 3: /* 4k page. */ 9383 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9384 xn = desc & 1; 9385 *page_size = 0x1000; 9386 break; 9387 default: 9388 /* Never happens, but compiler isn't smart enough to tell. */ 9389 abort(); 9390 } 9391 } 9392 if (domain_prot == 3) { 9393 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9394 } else { 9395 if (pxn && !regime_is_user(env, mmu_idx)) { 9396 xn = 1; 9397 } 9398 if (xn && access_type == MMU_INST_FETCH) { 9399 fi->type = ARMFault_Permission; 9400 goto do_fault; 9401 } 9402 9403 if (arm_feature(env, ARM_FEATURE_V6K) && 9404 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9405 /* The simplified model uses AP[0] as an access control bit. */ 9406 if ((ap & 1) == 0) { 9407 /* Access flag fault. */ 9408 fi->type = ARMFault_AccessFlag; 9409 goto do_fault; 9410 } 9411 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9412 } else { 9413 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9414 } 9415 if (*prot && !xn) { 9416 *prot |= PAGE_EXEC; 9417 } 9418 if (!(*prot & (1 << access_type))) { 9419 /* Access permission fault. */ 9420 fi->type = ARMFault_Permission; 9421 goto do_fault; 9422 } 9423 } 9424 if (ns) { 9425 /* The NS bit will (as required by the architecture) have no effect if 9426 * the CPU doesn't support TZ or this is a non-secure translation 9427 * regime, because the attribute will already be non-secure. 9428 */ 9429 attrs->secure = false; 9430 } 9431 *phys_ptr = phys_addr; 9432 return false; 9433 do_fault: 9434 fi->domain = domain; 9435 fi->level = level; 9436 return true; 9437 } 9438 9439 /* 9440 * check_s2_mmu_setup 9441 * @cpu: ARMCPU 9442 * @is_aa64: True if the translation regime is in AArch64 state 9443 * @startlevel: Suggested starting level 9444 * @inputsize: Bitsize of IPAs 9445 * @stride: Page-table stride (See the ARM ARM) 9446 * 9447 * Returns true if the suggested S2 translation parameters are OK and 9448 * false otherwise. 9449 */ 9450 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9451 int inputsize, int stride) 9452 { 9453 const int grainsize = stride + 3; 9454 int startsizecheck; 9455 9456 /* Negative levels are never allowed. */ 9457 if (level < 0) { 9458 return false; 9459 } 9460 9461 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9462 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9463 return false; 9464 } 9465 9466 if (is_aa64) { 9467 CPUARMState *env = &cpu->env; 9468 unsigned int pamax = arm_pamax(cpu); 9469 9470 switch (stride) { 9471 case 13: /* 64KB Pages. */ 9472 if (level == 0 || (level == 1 && pamax <= 42)) { 9473 return false; 9474 } 9475 break; 9476 case 11: /* 16KB Pages. */ 9477 if (level == 0 || (level == 1 && pamax <= 40)) { 9478 return false; 9479 } 9480 break; 9481 case 9: /* 4KB Pages. */ 9482 if (level == 0 && pamax <= 42) { 9483 return false; 9484 } 9485 break; 9486 default: 9487 g_assert_not_reached(); 9488 } 9489 9490 /* Inputsize checks. */ 9491 if (inputsize > pamax && 9492 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9493 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9494 return false; 9495 } 9496 } else { 9497 /* AArch32 only supports 4KB pages. Assert on that. */ 9498 assert(stride == 9); 9499 9500 if (level == 0) { 9501 return false; 9502 } 9503 } 9504 return true; 9505 } 9506 9507 /* Translate from the 4-bit stage 2 representation of 9508 * memory attributes (without cache-allocation hints) to 9509 * the 8-bit representation of the stage 1 MAIR registers 9510 * (which includes allocation hints). 9511 * 9512 * ref: shared/translation/attrs/S2AttrDecode() 9513 * .../S2ConvertAttrsHints() 9514 */ 9515 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9516 { 9517 uint8_t hiattr = extract32(s2attrs, 2, 2); 9518 uint8_t loattr = extract32(s2attrs, 0, 2); 9519 uint8_t hihint = 0, lohint = 0; 9520 9521 if (hiattr != 0) { /* normal memory */ 9522 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9523 hiattr = loattr = 1; /* non-cacheable */ 9524 } else { 9525 if (hiattr != 1) { /* Write-through or write-back */ 9526 hihint = 3; /* RW allocate */ 9527 } 9528 if (loattr != 1) { /* Write-through or write-back */ 9529 lohint = 3; /* RW allocate */ 9530 } 9531 } 9532 } 9533 9534 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9535 } 9536 #endif /* !CONFIG_USER_ONLY */ 9537 9538 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9539 ARMMMUIdx mmu_idx) 9540 { 9541 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9542 uint32_t el = regime_el(env, mmu_idx); 9543 bool tbi, tbid, epd, hpd, using16k, using64k; 9544 int select, tsz; 9545 9546 /* 9547 * Bit 55 is always between the two regions, and is canonical for 9548 * determining if address tagging is enabled. 9549 */ 9550 select = extract64(va, 55, 1); 9551 9552 if (el > 1) { 9553 tsz = extract32(tcr, 0, 6); 9554 using64k = extract32(tcr, 14, 1); 9555 using16k = extract32(tcr, 15, 1); 9556 if (mmu_idx == ARMMMUIdx_S2NS) { 9557 /* VTCR_EL2 */ 9558 tbi = tbid = hpd = false; 9559 } else { 9560 tbi = extract32(tcr, 20, 1); 9561 hpd = extract32(tcr, 24, 1); 9562 tbid = extract32(tcr, 29, 1); 9563 } 9564 epd = false; 9565 } else if (!select) { 9566 tsz = extract32(tcr, 0, 6); 9567 epd = extract32(tcr, 7, 1); 9568 using64k = extract32(tcr, 14, 1); 9569 using16k = extract32(tcr, 15, 1); 9570 tbi = extract64(tcr, 37, 1); 9571 hpd = extract64(tcr, 41, 1); 9572 tbid = extract64(tcr, 51, 1); 9573 } else { 9574 int tg = extract32(tcr, 30, 2); 9575 using16k = tg == 1; 9576 using64k = tg == 3; 9577 tsz = extract32(tcr, 16, 6); 9578 epd = extract32(tcr, 23, 1); 9579 tbi = extract64(tcr, 38, 1); 9580 hpd = extract64(tcr, 42, 1); 9581 tbid = extract64(tcr, 52, 1); 9582 } 9583 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9584 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9585 9586 return (ARMVAParameters) { 9587 .tsz = tsz, 9588 .select = select, 9589 .tbi = tbi, 9590 .tbid = tbid, 9591 .epd = epd, 9592 .hpd = hpd, 9593 .using16k = using16k, 9594 .using64k = using64k, 9595 }; 9596 } 9597 9598 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9599 ARMMMUIdx mmu_idx, bool data) 9600 { 9601 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9602 9603 /* Present TBI as a composite with TBID. */ 9604 ret.tbi &= (data || !ret.tbid); 9605 return ret; 9606 } 9607 9608 #ifndef CONFIG_USER_ONLY 9609 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9610 ARMMMUIdx mmu_idx) 9611 { 9612 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9613 uint32_t el = regime_el(env, mmu_idx); 9614 int select, tsz; 9615 bool epd, hpd; 9616 9617 if (mmu_idx == ARMMMUIdx_S2NS) { 9618 /* VTCR */ 9619 bool sext = extract32(tcr, 4, 1); 9620 bool sign = extract32(tcr, 3, 1); 9621 9622 /* 9623 * If the sign-extend bit is not the same as t0sz[3], the result 9624 * is unpredictable. Flag this as a guest error. 9625 */ 9626 if (sign != sext) { 9627 qemu_log_mask(LOG_GUEST_ERROR, 9628 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9629 } 9630 tsz = sextract32(tcr, 0, 4) + 8; 9631 select = 0; 9632 hpd = false; 9633 epd = false; 9634 } else if (el == 2) { 9635 /* HTCR */ 9636 tsz = extract32(tcr, 0, 3); 9637 select = 0; 9638 hpd = extract64(tcr, 24, 1); 9639 epd = false; 9640 } else { 9641 int t0sz = extract32(tcr, 0, 3); 9642 int t1sz = extract32(tcr, 16, 3); 9643 9644 if (t1sz == 0) { 9645 select = va > (0xffffffffu >> t0sz); 9646 } else { 9647 /* Note that we will detect errors later. */ 9648 select = va >= ~(0xffffffffu >> t1sz); 9649 } 9650 if (!select) { 9651 tsz = t0sz; 9652 epd = extract32(tcr, 7, 1); 9653 hpd = extract64(tcr, 41, 1); 9654 } else { 9655 tsz = t1sz; 9656 epd = extract32(tcr, 23, 1); 9657 hpd = extract64(tcr, 42, 1); 9658 } 9659 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9660 hpd &= extract32(tcr, 6, 1); 9661 } 9662 9663 return (ARMVAParameters) { 9664 .tsz = tsz, 9665 .select = select, 9666 .epd = epd, 9667 .hpd = hpd, 9668 }; 9669 } 9670 9671 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9672 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9673 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9674 target_ulong *page_size_ptr, 9675 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9676 { 9677 ARMCPU *cpu = env_archcpu(env); 9678 CPUState *cs = CPU(cpu); 9679 /* Read an LPAE long-descriptor translation table. */ 9680 ARMFaultType fault_type = ARMFault_Translation; 9681 uint32_t level; 9682 ARMVAParameters param; 9683 uint64_t ttbr; 9684 hwaddr descaddr, indexmask, indexmask_grainsize; 9685 uint32_t tableattrs; 9686 target_ulong page_size; 9687 uint32_t attrs; 9688 int32_t stride; 9689 int addrsize, inputsize; 9690 TCR *tcr = regime_tcr(env, mmu_idx); 9691 int ap, ns, xn, pxn; 9692 uint32_t el = regime_el(env, mmu_idx); 9693 bool ttbr1_valid; 9694 uint64_t descaddrmask; 9695 bool aarch64 = arm_el_is_aa64(env, el); 9696 bool guarded = false; 9697 9698 /* TODO: 9699 * This code does not handle the different format TCR for VTCR_EL2. 9700 * This code also does not support shareability levels. 9701 * Attribute and permission bit handling should also be checked when adding 9702 * support for those page table walks. 9703 */ 9704 if (aarch64) { 9705 param = aa64_va_parameters(env, address, mmu_idx, 9706 access_type != MMU_INST_FETCH); 9707 level = 0; 9708 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9709 * invalid. 9710 */ 9711 ttbr1_valid = (el < 2); 9712 addrsize = 64 - 8 * param.tbi; 9713 inputsize = 64 - param.tsz; 9714 } else { 9715 param = aa32_va_parameters(env, address, mmu_idx); 9716 level = 1; 9717 /* There is no TTBR1 for EL2 */ 9718 ttbr1_valid = (el != 2); 9719 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9720 inputsize = addrsize - param.tsz; 9721 } 9722 9723 /* 9724 * We determined the region when collecting the parameters, but we 9725 * have not yet validated that the address is valid for the region. 9726 * Extract the top bits and verify that they all match select. 9727 * 9728 * For aa32, if inputsize == addrsize, then we have selected the 9729 * region by exclusion in aa32_va_parameters and there is no more 9730 * validation to do here. 9731 */ 9732 if (inputsize < addrsize) { 9733 target_ulong top_bits = sextract64(address, inputsize, 9734 addrsize - inputsize); 9735 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9736 /* The gap between the two regions is a Translation fault */ 9737 fault_type = ARMFault_Translation; 9738 goto do_fault; 9739 } 9740 } 9741 9742 if (param.using64k) { 9743 stride = 13; 9744 } else if (param.using16k) { 9745 stride = 11; 9746 } else { 9747 stride = 9; 9748 } 9749 9750 /* Note that QEMU ignores shareability and cacheability attributes, 9751 * so we don't need to do anything with the SH, ORGN, IRGN fields 9752 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9753 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9754 * implement any ASID-like capability so we can ignore it (instead 9755 * we will always flush the TLB any time the ASID is changed). 9756 */ 9757 ttbr = regime_ttbr(env, mmu_idx, param.select); 9758 9759 /* Here we should have set up all the parameters for the translation: 9760 * inputsize, ttbr, epd, stride, tbi 9761 */ 9762 9763 if (param.epd) { 9764 /* Translation table walk disabled => Translation fault on TLB miss 9765 * Note: This is always 0 on 64-bit EL2 and EL3. 9766 */ 9767 goto do_fault; 9768 } 9769 9770 if (mmu_idx != ARMMMUIdx_S2NS) { 9771 /* The starting level depends on the virtual address size (which can 9772 * be up to 48 bits) and the translation granule size. It indicates 9773 * the number of strides (stride bits at a time) needed to 9774 * consume the bits of the input address. In the pseudocode this is: 9775 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9776 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9777 * our 'stride + 3' and 'stride' is our 'stride'. 9778 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9779 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9780 * = 4 - (inputsize - 4) / stride; 9781 */ 9782 level = 4 - (inputsize - 4) / stride; 9783 } else { 9784 /* For stage 2 translations the starting level is specified by the 9785 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9786 */ 9787 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9788 uint32_t startlevel; 9789 bool ok; 9790 9791 if (!aarch64 || stride == 9) { 9792 /* AArch32 or 4KB pages */ 9793 startlevel = 2 - sl0; 9794 } else { 9795 /* 16KB or 64KB pages */ 9796 startlevel = 3 - sl0; 9797 } 9798 9799 /* Check that the starting level is valid. */ 9800 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9801 inputsize, stride); 9802 if (!ok) { 9803 fault_type = ARMFault_Translation; 9804 goto do_fault; 9805 } 9806 level = startlevel; 9807 } 9808 9809 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9810 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9811 9812 /* Now we can extract the actual base address from the TTBR */ 9813 descaddr = extract64(ttbr, 0, 48); 9814 descaddr &= ~indexmask; 9815 9816 /* The address field in the descriptor goes up to bit 39 for ARMv7 9817 * but up to bit 47 for ARMv8, but we use the descaddrmask 9818 * up to bit 39 for AArch32, because we don't need other bits in that case 9819 * to construct next descriptor address (anyway they should be all zeroes). 9820 */ 9821 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9822 ~indexmask_grainsize; 9823 9824 /* Secure accesses start with the page table in secure memory and 9825 * can be downgraded to non-secure at any step. Non-secure accesses 9826 * remain non-secure. We implement this by just ORing in the NSTable/NS 9827 * bits at each step. 9828 */ 9829 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9830 for (;;) { 9831 uint64_t descriptor; 9832 bool nstable; 9833 9834 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9835 descaddr &= ~7ULL; 9836 nstable = extract32(tableattrs, 4, 1); 9837 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9838 if (fi->type != ARMFault_None) { 9839 goto do_fault; 9840 } 9841 9842 if (!(descriptor & 1) || 9843 (!(descriptor & 2) && (level == 3))) { 9844 /* Invalid, or the Reserved level 3 encoding */ 9845 goto do_fault; 9846 } 9847 descaddr = descriptor & descaddrmask; 9848 9849 if ((descriptor & 2) && (level < 3)) { 9850 /* Table entry. The top five bits are attributes which may 9851 * propagate down through lower levels of the table (and 9852 * which are all arranged so that 0 means "no effect", so 9853 * we can gather them up by ORing in the bits at each level). 9854 */ 9855 tableattrs |= extract64(descriptor, 59, 5); 9856 level++; 9857 indexmask = indexmask_grainsize; 9858 continue; 9859 } 9860 /* Block entry at level 1 or 2, or page entry at level 3. 9861 * These are basically the same thing, although the number 9862 * of bits we pull in from the vaddr varies. 9863 */ 9864 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9865 descaddr |= (address & (page_size - 1)); 9866 /* Extract attributes from the descriptor */ 9867 attrs = extract64(descriptor, 2, 10) 9868 | (extract64(descriptor, 52, 12) << 10); 9869 9870 if (mmu_idx == ARMMMUIdx_S2NS) { 9871 /* Stage 2 table descriptors do not include any attribute fields */ 9872 break; 9873 } 9874 /* Merge in attributes from table descriptors */ 9875 attrs |= nstable << 3; /* NS */ 9876 guarded = extract64(descriptor, 50, 1); /* GP */ 9877 if (param.hpd) { 9878 /* HPD disables all the table attributes except NSTable. */ 9879 break; 9880 } 9881 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9882 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9883 * means "force PL1 access only", which means forcing AP[1] to 0. 9884 */ 9885 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9886 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9887 break; 9888 } 9889 /* Here descaddr is the final physical address, and attributes 9890 * are all in attrs. 9891 */ 9892 fault_type = ARMFault_AccessFlag; 9893 if ((attrs & (1 << 8)) == 0) { 9894 /* Access flag */ 9895 goto do_fault; 9896 } 9897 9898 ap = extract32(attrs, 4, 2); 9899 xn = extract32(attrs, 12, 1); 9900 9901 if (mmu_idx == ARMMMUIdx_S2NS) { 9902 ns = true; 9903 *prot = get_S2prot(env, ap, xn); 9904 } else { 9905 ns = extract32(attrs, 3, 1); 9906 pxn = extract32(attrs, 11, 1); 9907 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9908 } 9909 9910 fault_type = ARMFault_Permission; 9911 if (!(*prot & (1 << access_type))) { 9912 goto do_fault; 9913 } 9914 9915 if (ns) { 9916 /* The NS bit will (as required by the architecture) have no effect if 9917 * the CPU doesn't support TZ or this is a non-secure translation 9918 * regime, because the attribute will already be non-secure. 9919 */ 9920 txattrs->secure = false; 9921 } 9922 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9923 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9924 txattrs->target_tlb_bit0 = true; 9925 } 9926 9927 if (cacheattrs != NULL) { 9928 if (mmu_idx == ARMMMUIdx_S2NS) { 9929 cacheattrs->attrs = convert_stage2_attrs(env, 9930 extract32(attrs, 0, 4)); 9931 } else { 9932 /* Index into MAIR registers for cache attributes */ 9933 uint8_t attrindx = extract32(attrs, 0, 3); 9934 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9935 assert(attrindx <= 7); 9936 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9937 } 9938 cacheattrs->shareability = extract32(attrs, 6, 2); 9939 } 9940 9941 *phys_ptr = descaddr; 9942 *page_size_ptr = page_size; 9943 return false; 9944 9945 do_fault: 9946 fi->type = fault_type; 9947 fi->level = level; 9948 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9949 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9950 return true; 9951 } 9952 9953 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9954 ARMMMUIdx mmu_idx, 9955 int32_t address, int *prot) 9956 { 9957 if (!arm_feature(env, ARM_FEATURE_M)) { 9958 *prot = PAGE_READ | PAGE_WRITE; 9959 switch (address) { 9960 case 0xF0000000 ... 0xFFFFFFFF: 9961 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9962 /* hivecs execing is ok */ 9963 *prot |= PAGE_EXEC; 9964 } 9965 break; 9966 case 0x00000000 ... 0x7FFFFFFF: 9967 *prot |= PAGE_EXEC; 9968 break; 9969 } 9970 } else { 9971 /* Default system address map for M profile cores. 9972 * The architecture specifies which regions are execute-never; 9973 * at the MPU level no other checks are defined. 9974 */ 9975 switch (address) { 9976 case 0x00000000 ... 0x1fffffff: /* ROM */ 9977 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9978 case 0x60000000 ... 0x7fffffff: /* RAM */ 9979 case 0x80000000 ... 0x9fffffff: /* RAM */ 9980 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9981 break; 9982 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9983 case 0xa0000000 ... 0xbfffffff: /* Device */ 9984 case 0xc0000000 ... 0xdfffffff: /* Device */ 9985 case 0xe0000000 ... 0xffffffff: /* System */ 9986 *prot = PAGE_READ | PAGE_WRITE; 9987 break; 9988 default: 9989 g_assert_not_reached(); 9990 } 9991 } 9992 } 9993 9994 static bool pmsav7_use_background_region(ARMCPU *cpu, 9995 ARMMMUIdx mmu_idx, bool is_user) 9996 { 9997 /* Return true if we should use the default memory map as a 9998 * "background" region if there are no hits against any MPU regions. 9999 */ 10000 CPUARMState *env = &cpu->env; 10001 10002 if (is_user) { 10003 return false; 10004 } 10005 10006 if (arm_feature(env, ARM_FEATURE_M)) { 10007 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10008 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10009 } else { 10010 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10011 } 10012 } 10013 10014 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10015 { 10016 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10017 return arm_feature(env, ARM_FEATURE_M) && 10018 extract32(address, 20, 12) == 0xe00; 10019 } 10020 10021 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10022 { 10023 /* True if address is in the M profile system region 10024 * 0xe0000000 - 0xffffffff 10025 */ 10026 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10027 } 10028 10029 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10030 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10031 hwaddr *phys_ptr, int *prot, 10032 target_ulong *page_size, 10033 ARMMMUFaultInfo *fi) 10034 { 10035 ARMCPU *cpu = env_archcpu(env); 10036 int n; 10037 bool is_user = regime_is_user(env, mmu_idx); 10038 10039 *phys_ptr = address; 10040 *page_size = TARGET_PAGE_SIZE; 10041 *prot = 0; 10042 10043 if (regime_translation_disabled(env, mmu_idx) || 10044 m_is_ppb_region(env, address)) { 10045 /* MPU disabled or M profile PPB access: use default memory map. 10046 * The other case which uses the default memory map in the 10047 * v7M ARM ARM pseudocode is exception vector reads from the vector 10048 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10049 * which always does a direct read using address_space_ldl(), rather 10050 * than going via this function, so we don't need to check that here. 10051 */ 10052 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10053 } else { /* MPU enabled */ 10054 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10055 /* region search */ 10056 uint32_t base = env->pmsav7.drbar[n]; 10057 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10058 uint32_t rmask; 10059 bool srdis = false; 10060 10061 if (!(env->pmsav7.drsr[n] & 0x1)) { 10062 continue; 10063 } 10064 10065 if (!rsize) { 10066 qemu_log_mask(LOG_GUEST_ERROR, 10067 "DRSR[%d]: Rsize field cannot be 0\n", n); 10068 continue; 10069 } 10070 rsize++; 10071 rmask = (1ull << rsize) - 1; 10072 10073 if (base & rmask) { 10074 qemu_log_mask(LOG_GUEST_ERROR, 10075 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 10076 "to DRSR region size, mask = 0x%" PRIx32 "\n", 10077 n, base, rmask); 10078 continue; 10079 } 10080 10081 if (address < base || address > base + rmask) { 10082 /* 10083 * Address not in this region. We must check whether the 10084 * region covers addresses in the same page as our address. 10085 * In that case we must not report a size that covers the 10086 * whole page for a subsequent hit against a different MPU 10087 * region or the background region, because it would result in 10088 * incorrect TLB hits for subsequent accesses to addresses that 10089 * are in this MPU region. 10090 */ 10091 if (ranges_overlap(base, rmask, 10092 address & TARGET_PAGE_MASK, 10093 TARGET_PAGE_SIZE)) { 10094 *page_size = 1; 10095 } 10096 continue; 10097 } 10098 10099 /* Region matched */ 10100 10101 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 10102 int i, snd; 10103 uint32_t srdis_mask; 10104 10105 rsize -= 3; /* sub region size (power of 2) */ 10106 snd = ((address - base) >> rsize) & 0x7; 10107 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 10108 10109 srdis_mask = srdis ? 0x3 : 0x0; 10110 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 10111 /* This will check in groups of 2, 4 and then 8, whether 10112 * the subregion bits are consistent. rsize is incremented 10113 * back up to give the region size, considering consistent 10114 * adjacent subregions as one region. Stop testing if rsize 10115 * is already big enough for an entire QEMU page. 10116 */ 10117 int snd_rounded = snd & ~(i - 1); 10118 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 10119 snd_rounded + 8, i); 10120 if (srdis_mask ^ srdis_multi) { 10121 break; 10122 } 10123 srdis_mask = (srdis_mask << i) | srdis_mask; 10124 rsize++; 10125 } 10126 } 10127 if (srdis) { 10128 continue; 10129 } 10130 if (rsize < TARGET_PAGE_BITS) { 10131 *page_size = 1 << rsize; 10132 } 10133 break; 10134 } 10135 10136 if (n == -1) { /* no hits */ 10137 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10138 /* background fault */ 10139 fi->type = ARMFault_Background; 10140 return true; 10141 } 10142 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10143 } else { /* a MPU hit! */ 10144 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10145 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10146 10147 if (m_is_system_region(env, address)) { 10148 /* System space is always execute never */ 10149 xn = 1; 10150 } 10151 10152 if (is_user) { /* User mode AP bit decoding */ 10153 switch (ap) { 10154 case 0: 10155 case 1: 10156 case 5: 10157 break; /* no access */ 10158 case 3: 10159 *prot |= PAGE_WRITE; 10160 /* fall through */ 10161 case 2: 10162 case 6: 10163 *prot |= PAGE_READ | PAGE_EXEC; 10164 break; 10165 case 7: 10166 /* for v7M, same as 6; for R profile a reserved value */ 10167 if (arm_feature(env, ARM_FEATURE_M)) { 10168 *prot |= PAGE_READ | PAGE_EXEC; 10169 break; 10170 } 10171 /* fall through */ 10172 default: 10173 qemu_log_mask(LOG_GUEST_ERROR, 10174 "DRACR[%d]: Bad value for AP bits: 0x%" 10175 PRIx32 "\n", n, ap); 10176 } 10177 } else { /* Priv. mode AP bits decoding */ 10178 switch (ap) { 10179 case 0: 10180 break; /* no access */ 10181 case 1: 10182 case 2: 10183 case 3: 10184 *prot |= PAGE_WRITE; 10185 /* fall through */ 10186 case 5: 10187 case 6: 10188 *prot |= PAGE_READ | PAGE_EXEC; 10189 break; 10190 case 7: 10191 /* for v7M, same as 6; for R profile a reserved value */ 10192 if (arm_feature(env, ARM_FEATURE_M)) { 10193 *prot |= PAGE_READ | PAGE_EXEC; 10194 break; 10195 } 10196 /* fall through */ 10197 default: 10198 qemu_log_mask(LOG_GUEST_ERROR, 10199 "DRACR[%d]: Bad value for AP bits: 0x%" 10200 PRIx32 "\n", n, ap); 10201 } 10202 } 10203 10204 /* execute never */ 10205 if (xn) { 10206 *prot &= ~PAGE_EXEC; 10207 } 10208 } 10209 } 10210 10211 fi->type = ARMFault_Permission; 10212 fi->level = 1; 10213 return !(*prot & (1 << access_type)); 10214 } 10215 10216 static bool v8m_is_sau_exempt(CPUARMState *env, 10217 uint32_t address, MMUAccessType access_type) 10218 { 10219 /* The architecture specifies that certain address ranges are 10220 * exempt from v8M SAU/IDAU checks. 10221 */ 10222 return 10223 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10224 (address >= 0xe0000000 && address <= 0xe0002fff) || 10225 (address >= 0xe000e000 && address <= 0xe000efff) || 10226 (address >= 0xe002e000 && address <= 0xe002efff) || 10227 (address >= 0xe0040000 && address <= 0xe0041fff) || 10228 (address >= 0xe00ff000 && address <= 0xe00fffff); 10229 } 10230 10231 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10232 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10233 V8M_SAttributes *sattrs) 10234 { 10235 /* Look up the security attributes for this address. Compare the 10236 * pseudocode SecurityCheck() function. 10237 * We assume the caller has zero-initialized *sattrs. 10238 */ 10239 ARMCPU *cpu = env_archcpu(env); 10240 int r; 10241 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10242 int idau_region = IREGION_NOTVALID; 10243 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10244 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10245 10246 if (cpu->idau) { 10247 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10248 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10249 10250 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10251 &idau_nsc); 10252 } 10253 10254 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10255 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10256 return; 10257 } 10258 10259 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10260 sattrs->ns = !regime_is_secure(env, mmu_idx); 10261 return; 10262 } 10263 10264 if (idau_region != IREGION_NOTVALID) { 10265 sattrs->irvalid = true; 10266 sattrs->iregion = idau_region; 10267 } 10268 10269 switch (env->sau.ctrl & 3) { 10270 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10271 break; 10272 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10273 sattrs->ns = true; 10274 break; 10275 default: /* SAU.ENABLE == 1 */ 10276 for (r = 0; r < cpu->sau_sregion; r++) { 10277 if (env->sau.rlar[r] & 1) { 10278 uint32_t base = env->sau.rbar[r] & ~0x1f; 10279 uint32_t limit = env->sau.rlar[r] | 0x1f; 10280 10281 if (base <= address && limit >= address) { 10282 if (base > addr_page_base || limit < addr_page_limit) { 10283 sattrs->subpage = true; 10284 } 10285 if (sattrs->srvalid) { 10286 /* If we hit in more than one region then we must report 10287 * as Secure, not NS-Callable, with no valid region 10288 * number info. 10289 */ 10290 sattrs->ns = false; 10291 sattrs->nsc = false; 10292 sattrs->sregion = 0; 10293 sattrs->srvalid = false; 10294 break; 10295 } else { 10296 if (env->sau.rlar[r] & 2) { 10297 sattrs->nsc = true; 10298 } else { 10299 sattrs->ns = true; 10300 } 10301 sattrs->srvalid = true; 10302 sattrs->sregion = r; 10303 } 10304 } else { 10305 /* 10306 * Address not in this region. We must check whether the 10307 * region covers addresses in the same page as our address. 10308 * In that case we must not report a size that covers the 10309 * whole page for a subsequent hit against a different MPU 10310 * region or the background region, because it would result 10311 * in incorrect TLB hits for subsequent accesses to 10312 * addresses that are in this MPU region. 10313 */ 10314 if (limit >= base && 10315 ranges_overlap(base, limit - base + 1, 10316 addr_page_base, 10317 TARGET_PAGE_SIZE)) { 10318 sattrs->subpage = true; 10319 } 10320 } 10321 } 10322 } 10323 break; 10324 } 10325 10326 /* 10327 * The IDAU will override the SAU lookup results if it specifies 10328 * higher security than the SAU does. 10329 */ 10330 if (!idau_ns) { 10331 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10332 sattrs->ns = false; 10333 sattrs->nsc = idau_nsc; 10334 } 10335 } 10336 } 10337 10338 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10339 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10340 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10341 int *prot, bool *is_subpage, 10342 ARMMMUFaultInfo *fi, uint32_t *mregion) 10343 { 10344 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10345 * that a full phys-to-virt translation does). 10346 * mregion is (if not NULL) set to the region number which matched, 10347 * or -1 if no region number is returned (MPU off, address did not 10348 * hit a region, address hit in multiple regions). 10349 * We set is_subpage to true if the region hit doesn't cover the 10350 * entire TARGET_PAGE the address is within. 10351 */ 10352 ARMCPU *cpu = env_archcpu(env); 10353 bool is_user = regime_is_user(env, mmu_idx); 10354 uint32_t secure = regime_is_secure(env, mmu_idx); 10355 int n; 10356 int matchregion = -1; 10357 bool hit = false; 10358 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10359 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10360 10361 *is_subpage = false; 10362 *phys_ptr = address; 10363 *prot = 0; 10364 if (mregion) { 10365 *mregion = -1; 10366 } 10367 10368 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10369 * was an exception vector read from the vector table (which is always 10370 * done using the default system address map), because those accesses 10371 * are done in arm_v7m_load_vector(), which always does a direct 10372 * read using address_space_ldl(), rather than going via this function. 10373 */ 10374 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10375 hit = true; 10376 } else if (m_is_ppb_region(env, address)) { 10377 hit = true; 10378 } else { 10379 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10380 hit = true; 10381 } 10382 10383 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10384 /* region search */ 10385 /* Note that the base address is bits [31:5] from the register 10386 * with bits [4:0] all zeroes, but the limit address is bits 10387 * [31:5] from the register with bits [4:0] all ones. 10388 */ 10389 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10390 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10391 10392 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10393 /* Region disabled */ 10394 continue; 10395 } 10396 10397 if (address < base || address > limit) { 10398 /* 10399 * Address not in this region. We must check whether the 10400 * region covers addresses in the same page as our address. 10401 * In that case we must not report a size that covers the 10402 * whole page for a subsequent hit against a different MPU 10403 * region or the background region, because it would result in 10404 * incorrect TLB hits for subsequent accesses to addresses that 10405 * are in this MPU region. 10406 */ 10407 if (limit >= base && 10408 ranges_overlap(base, limit - base + 1, 10409 addr_page_base, 10410 TARGET_PAGE_SIZE)) { 10411 *is_subpage = true; 10412 } 10413 continue; 10414 } 10415 10416 if (base > addr_page_base || limit < addr_page_limit) { 10417 *is_subpage = true; 10418 } 10419 10420 if (matchregion != -1) { 10421 /* Multiple regions match -- always a failure (unlike 10422 * PMSAv7 where highest-numbered-region wins) 10423 */ 10424 fi->type = ARMFault_Permission; 10425 fi->level = 1; 10426 return true; 10427 } 10428 10429 matchregion = n; 10430 hit = true; 10431 } 10432 } 10433 10434 if (!hit) { 10435 /* background fault */ 10436 fi->type = ARMFault_Background; 10437 return true; 10438 } 10439 10440 if (matchregion == -1) { 10441 /* hit using the background region */ 10442 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10443 } else { 10444 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10445 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10446 10447 if (m_is_system_region(env, address)) { 10448 /* System space is always execute never */ 10449 xn = 1; 10450 } 10451 10452 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10453 if (*prot && !xn) { 10454 *prot |= PAGE_EXEC; 10455 } 10456 /* We don't need to look the attribute up in the MAIR0/MAIR1 10457 * registers because that only tells us about cacheability. 10458 */ 10459 if (mregion) { 10460 *mregion = matchregion; 10461 } 10462 } 10463 10464 fi->type = ARMFault_Permission; 10465 fi->level = 1; 10466 return !(*prot & (1 << access_type)); 10467 } 10468 10469 10470 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10471 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10472 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10473 int *prot, target_ulong *page_size, 10474 ARMMMUFaultInfo *fi) 10475 { 10476 uint32_t secure = regime_is_secure(env, mmu_idx); 10477 V8M_SAttributes sattrs = {}; 10478 bool ret; 10479 bool mpu_is_subpage; 10480 10481 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10482 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10483 if (access_type == MMU_INST_FETCH) { 10484 /* Instruction fetches always use the MMU bank and the 10485 * transaction attribute determined by the fetch address, 10486 * regardless of CPU state. This is painful for QEMU 10487 * to handle, because it would mean we need to encode 10488 * into the mmu_idx not just the (user, negpri) information 10489 * for the current security state but also that for the 10490 * other security state, which would balloon the number 10491 * of mmu_idx values needed alarmingly. 10492 * Fortunately we can avoid this because it's not actually 10493 * possible to arbitrarily execute code from memory with 10494 * the wrong security attribute: it will always generate 10495 * an exception of some kind or another, apart from the 10496 * special case of an NS CPU executing an SG instruction 10497 * in S&NSC memory. So we always just fail the translation 10498 * here and sort things out in the exception handler 10499 * (including possibly emulating an SG instruction). 10500 */ 10501 if (sattrs.ns != !secure) { 10502 if (sattrs.nsc) { 10503 fi->type = ARMFault_QEMU_NSCExec; 10504 } else { 10505 fi->type = ARMFault_QEMU_SFault; 10506 } 10507 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10508 *phys_ptr = address; 10509 *prot = 0; 10510 return true; 10511 } 10512 } else { 10513 /* For data accesses we always use the MMU bank indicated 10514 * by the current CPU state, but the security attributes 10515 * might downgrade a secure access to nonsecure. 10516 */ 10517 if (sattrs.ns) { 10518 txattrs->secure = false; 10519 } else if (!secure) { 10520 /* NS access to S memory must fault. 10521 * Architecturally we should first check whether the 10522 * MPU information for this address indicates that we 10523 * are doing an unaligned access to Device memory, which 10524 * should generate a UsageFault instead. QEMU does not 10525 * currently check for that kind of unaligned access though. 10526 * If we added it we would need to do so as a special case 10527 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10528 */ 10529 fi->type = ARMFault_QEMU_SFault; 10530 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10531 *phys_ptr = address; 10532 *prot = 0; 10533 return true; 10534 } 10535 } 10536 } 10537 10538 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10539 txattrs, prot, &mpu_is_subpage, fi, NULL); 10540 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10541 return ret; 10542 } 10543 10544 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10545 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10546 hwaddr *phys_ptr, int *prot, 10547 ARMMMUFaultInfo *fi) 10548 { 10549 int n; 10550 uint32_t mask; 10551 uint32_t base; 10552 bool is_user = regime_is_user(env, mmu_idx); 10553 10554 if (regime_translation_disabled(env, mmu_idx)) { 10555 /* MPU disabled. */ 10556 *phys_ptr = address; 10557 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10558 return false; 10559 } 10560 10561 *phys_ptr = address; 10562 for (n = 7; n >= 0; n--) { 10563 base = env->cp15.c6_region[n]; 10564 if ((base & 1) == 0) { 10565 continue; 10566 } 10567 mask = 1 << ((base >> 1) & 0x1f); 10568 /* Keep this shift separate from the above to avoid an 10569 (undefined) << 32. */ 10570 mask = (mask << 1) - 1; 10571 if (((base ^ address) & ~mask) == 0) { 10572 break; 10573 } 10574 } 10575 if (n < 0) { 10576 fi->type = ARMFault_Background; 10577 return true; 10578 } 10579 10580 if (access_type == MMU_INST_FETCH) { 10581 mask = env->cp15.pmsav5_insn_ap; 10582 } else { 10583 mask = env->cp15.pmsav5_data_ap; 10584 } 10585 mask = (mask >> (n * 4)) & 0xf; 10586 switch (mask) { 10587 case 0: 10588 fi->type = ARMFault_Permission; 10589 fi->level = 1; 10590 return true; 10591 case 1: 10592 if (is_user) { 10593 fi->type = ARMFault_Permission; 10594 fi->level = 1; 10595 return true; 10596 } 10597 *prot = PAGE_READ | PAGE_WRITE; 10598 break; 10599 case 2: 10600 *prot = PAGE_READ; 10601 if (!is_user) { 10602 *prot |= PAGE_WRITE; 10603 } 10604 break; 10605 case 3: 10606 *prot = PAGE_READ | PAGE_WRITE; 10607 break; 10608 case 5: 10609 if (is_user) { 10610 fi->type = ARMFault_Permission; 10611 fi->level = 1; 10612 return true; 10613 } 10614 *prot = PAGE_READ; 10615 break; 10616 case 6: 10617 *prot = PAGE_READ; 10618 break; 10619 default: 10620 /* Bad permission. */ 10621 fi->type = ARMFault_Permission; 10622 fi->level = 1; 10623 return true; 10624 } 10625 *prot |= PAGE_EXEC; 10626 return false; 10627 } 10628 10629 /* Combine either inner or outer cacheability attributes for normal 10630 * memory, according to table D4-42 and pseudocode procedure 10631 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10632 * 10633 * NB: only stage 1 includes allocation hints (RW bits), leading to 10634 * some asymmetry. 10635 */ 10636 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10637 { 10638 if (s1 == 4 || s2 == 4) { 10639 /* non-cacheable has precedence */ 10640 return 4; 10641 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10642 /* stage 1 write-through takes precedence */ 10643 return s1; 10644 } else if (extract32(s2, 2, 2) == 2) { 10645 /* stage 2 write-through takes precedence, but the allocation hint 10646 * is still taken from stage 1 10647 */ 10648 return (2 << 2) | extract32(s1, 0, 2); 10649 } else { /* write-back */ 10650 return s1; 10651 } 10652 } 10653 10654 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10655 * and CombineS1S2Desc() 10656 * 10657 * @s1: Attributes from stage 1 walk 10658 * @s2: Attributes from stage 2 walk 10659 */ 10660 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10661 { 10662 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10663 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10664 ARMCacheAttrs ret; 10665 10666 /* Combine shareability attributes (table D4-43) */ 10667 if (s1.shareability == 2 || s2.shareability == 2) { 10668 /* if either are outer-shareable, the result is outer-shareable */ 10669 ret.shareability = 2; 10670 } else if (s1.shareability == 3 || s2.shareability == 3) { 10671 /* if either are inner-shareable, the result is inner-shareable */ 10672 ret.shareability = 3; 10673 } else { 10674 /* both non-shareable */ 10675 ret.shareability = 0; 10676 } 10677 10678 /* Combine memory type and cacheability attributes */ 10679 if (s1hi == 0 || s2hi == 0) { 10680 /* Device has precedence over normal */ 10681 if (s1lo == 0 || s2lo == 0) { 10682 /* nGnRnE has precedence over anything */ 10683 ret.attrs = 0; 10684 } else if (s1lo == 4 || s2lo == 4) { 10685 /* non-Reordering has precedence over Reordering */ 10686 ret.attrs = 4; /* nGnRE */ 10687 } else if (s1lo == 8 || s2lo == 8) { 10688 /* non-Gathering has precedence over Gathering */ 10689 ret.attrs = 8; /* nGRE */ 10690 } else { 10691 ret.attrs = 0xc; /* GRE */ 10692 } 10693 10694 /* Any location for which the resultant memory type is any 10695 * type of Device memory is always treated as Outer Shareable. 10696 */ 10697 ret.shareability = 2; 10698 } else { /* Normal memory */ 10699 /* Outer/inner cacheability combine independently */ 10700 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10701 | combine_cacheattr_nibble(s1lo, s2lo); 10702 10703 if (ret.attrs == 0x44) { 10704 /* Any location for which the resultant memory type is Normal 10705 * Inner Non-cacheable, Outer Non-cacheable is always treated 10706 * as Outer Shareable. 10707 */ 10708 ret.shareability = 2; 10709 } 10710 } 10711 10712 return ret; 10713 } 10714 10715 10716 /* get_phys_addr - get the physical address for this virtual address 10717 * 10718 * Find the physical address corresponding to the given virtual address, 10719 * by doing a translation table walk on MMU based systems or using the 10720 * MPU state on MPU based systems. 10721 * 10722 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10723 * prot and page_size may not be filled in, and the populated fsr value provides 10724 * information on why the translation aborted, in the format of a 10725 * DFSR/IFSR fault register, with the following caveats: 10726 * * we honour the short vs long DFSR format differences. 10727 * * the WnR bit is never set (the caller must do this). 10728 * * for PSMAv5 based systems we don't bother to return a full FSR format 10729 * value. 10730 * 10731 * @env: CPUARMState 10732 * @address: virtual address to get physical address for 10733 * @access_type: 0 for read, 1 for write, 2 for execute 10734 * @mmu_idx: MMU index indicating required translation regime 10735 * @phys_ptr: set to the physical address corresponding to the virtual address 10736 * @attrs: set to the memory transaction attributes to use 10737 * @prot: set to the permissions for the page containing phys_ptr 10738 * @page_size: set to the size of the page containing phys_ptr 10739 * @fi: set to fault info if the translation fails 10740 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10741 */ 10742 bool get_phys_addr(CPUARMState *env, target_ulong address, 10743 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10744 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10745 target_ulong *page_size, 10746 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10747 { 10748 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10749 /* Call ourselves recursively to do the stage 1 and then stage 2 10750 * translations. 10751 */ 10752 if (arm_feature(env, ARM_FEATURE_EL2)) { 10753 hwaddr ipa; 10754 int s2_prot; 10755 int ret; 10756 ARMCacheAttrs cacheattrs2 = {}; 10757 10758 ret = get_phys_addr(env, address, access_type, 10759 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10760 prot, page_size, fi, cacheattrs); 10761 10762 /* If S1 fails or S2 is disabled, return early. */ 10763 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10764 *phys_ptr = ipa; 10765 return ret; 10766 } 10767 10768 /* S1 is done. Now do S2 translation. */ 10769 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10770 phys_ptr, attrs, &s2_prot, 10771 page_size, fi, 10772 cacheattrs != NULL ? &cacheattrs2 : NULL); 10773 fi->s2addr = ipa; 10774 /* Combine the S1 and S2 perms. */ 10775 *prot &= s2_prot; 10776 10777 /* Combine the S1 and S2 cache attributes, if needed */ 10778 if (!ret && cacheattrs != NULL) { 10779 if (env->cp15.hcr_el2 & HCR_DC) { 10780 /* 10781 * HCR.DC forces the first stage attributes to 10782 * Normal Non-Shareable, 10783 * Inner Write-Back Read-Allocate Write-Allocate, 10784 * Outer Write-Back Read-Allocate Write-Allocate. 10785 */ 10786 cacheattrs->attrs = 0xff; 10787 cacheattrs->shareability = 0; 10788 } 10789 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10790 } 10791 10792 return ret; 10793 } else { 10794 /* 10795 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10796 */ 10797 mmu_idx = stage_1_mmu_idx(mmu_idx); 10798 } 10799 } 10800 10801 /* The page table entries may downgrade secure to non-secure, but 10802 * cannot upgrade an non-secure translation regime's attributes 10803 * to secure. 10804 */ 10805 attrs->secure = regime_is_secure(env, mmu_idx); 10806 attrs->user = regime_is_user(env, mmu_idx); 10807 10808 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10809 * In v7 and earlier it affects all stage 1 translations. 10810 */ 10811 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10812 && !arm_feature(env, ARM_FEATURE_V8)) { 10813 if (regime_el(env, mmu_idx) == 3) { 10814 address += env->cp15.fcseidr_s; 10815 } else { 10816 address += env->cp15.fcseidr_ns; 10817 } 10818 } 10819 10820 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10821 bool ret; 10822 *page_size = TARGET_PAGE_SIZE; 10823 10824 if (arm_feature(env, ARM_FEATURE_V8)) { 10825 /* PMSAv8 */ 10826 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10827 phys_ptr, attrs, prot, page_size, fi); 10828 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10829 /* PMSAv7 */ 10830 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10831 phys_ptr, prot, page_size, fi); 10832 } else { 10833 /* Pre-v7 MPU */ 10834 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10835 phys_ptr, prot, fi); 10836 } 10837 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10838 " mmu_idx %u -> %s (prot %c%c%c)\n", 10839 access_type == MMU_DATA_LOAD ? "reading" : 10840 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10841 (uint32_t)address, mmu_idx, 10842 ret ? "Miss" : "Hit", 10843 *prot & PAGE_READ ? 'r' : '-', 10844 *prot & PAGE_WRITE ? 'w' : '-', 10845 *prot & PAGE_EXEC ? 'x' : '-'); 10846 10847 return ret; 10848 } 10849 10850 /* Definitely a real MMU, not an MPU */ 10851 10852 if (regime_translation_disabled(env, mmu_idx)) { 10853 /* MMU disabled. */ 10854 *phys_ptr = address; 10855 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10856 *page_size = TARGET_PAGE_SIZE; 10857 return 0; 10858 } 10859 10860 if (regime_using_lpae_format(env, mmu_idx)) { 10861 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10862 phys_ptr, attrs, prot, page_size, 10863 fi, cacheattrs); 10864 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10865 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10866 phys_ptr, attrs, prot, page_size, fi); 10867 } else { 10868 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10869 phys_ptr, prot, page_size, fi); 10870 } 10871 } 10872 10873 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10874 MemTxAttrs *attrs) 10875 { 10876 ARMCPU *cpu = ARM_CPU(cs); 10877 CPUARMState *env = &cpu->env; 10878 hwaddr phys_addr; 10879 target_ulong page_size; 10880 int prot; 10881 bool ret; 10882 ARMMMUFaultInfo fi = {}; 10883 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10884 10885 *attrs = (MemTxAttrs) {}; 10886 10887 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10888 attrs, &prot, &page_size, &fi, NULL); 10889 10890 if (ret) { 10891 return -1; 10892 } 10893 return phys_addr; 10894 } 10895 10896 #endif 10897 10898 /* Note that signed overflow is undefined in C. The following routines are 10899 careful to use unsigned types where modulo arithmetic is required. 10900 Failure to do so _will_ break on newer gcc. */ 10901 10902 /* Signed saturating arithmetic. */ 10903 10904 /* Perform 16-bit signed saturating addition. */ 10905 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10906 { 10907 uint16_t res; 10908 10909 res = a + b; 10910 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10911 if (a & 0x8000) 10912 res = 0x8000; 10913 else 10914 res = 0x7fff; 10915 } 10916 return res; 10917 } 10918 10919 /* Perform 8-bit signed saturating addition. */ 10920 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10921 { 10922 uint8_t res; 10923 10924 res = a + b; 10925 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10926 if (a & 0x80) 10927 res = 0x80; 10928 else 10929 res = 0x7f; 10930 } 10931 return res; 10932 } 10933 10934 /* Perform 16-bit signed saturating subtraction. */ 10935 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10936 { 10937 uint16_t res; 10938 10939 res = a - b; 10940 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10941 if (a & 0x8000) 10942 res = 0x8000; 10943 else 10944 res = 0x7fff; 10945 } 10946 return res; 10947 } 10948 10949 /* Perform 8-bit signed saturating subtraction. */ 10950 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10951 { 10952 uint8_t res; 10953 10954 res = a - b; 10955 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10956 if (a & 0x80) 10957 res = 0x80; 10958 else 10959 res = 0x7f; 10960 } 10961 return res; 10962 } 10963 10964 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10965 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10966 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10967 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10968 #define PFX q 10969 10970 #include "op_addsub.h" 10971 10972 /* Unsigned saturating arithmetic. */ 10973 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10974 { 10975 uint16_t res; 10976 res = a + b; 10977 if (res < a) 10978 res = 0xffff; 10979 return res; 10980 } 10981 10982 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10983 { 10984 if (a > b) 10985 return a - b; 10986 else 10987 return 0; 10988 } 10989 10990 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10991 { 10992 uint8_t res; 10993 res = a + b; 10994 if (res < a) 10995 res = 0xff; 10996 return res; 10997 } 10998 10999 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11000 { 11001 if (a > b) 11002 return a - b; 11003 else 11004 return 0; 11005 } 11006 11007 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11008 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11009 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11010 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11011 #define PFX uq 11012 11013 #include "op_addsub.h" 11014 11015 /* Signed modulo arithmetic. */ 11016 #define SARITH16(a, b, n, op) do { \ 11017 int32_t sum; \ 11018 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11019 RESULT(sum, n, 16); \ 11020 if (sum >= 0) \ 11021 ge |= 3 << (n * 2); \ 11022 } while(0) 11023 11024 #define SARITH8(a, b, n, op) do { \ 11025 int32_t sum; \ 11026 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11027 RESULT(sum, n, 8); \ 11028 if (sum >= 0) \ 11029 ge |= 1 << n; \ 11030 } while(0) 11031 11032 11033 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11034 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11035 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11036 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11037 #define PFX s 11038 #define ARITH_GE 11039 11040 #include "op_addsub.h" 11041 11042 /* Unsigned modulo arithmetic. */ 11043 #define ADD16(a, b, n) do { \ 11044 uint32_t sum; \ 11045 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11046 RESULT(sum, n, 16); \ 11047 if ((sum >> 16) == 1) \ 11048 ge |= 3 << (n * 2); \ 11049 } while(0) 11050 11051 #define ADD8(a, b, n) do { \ 11052 uint32_t sum; \ 11053 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11054 RESULT(sum, n, 8); \ 11055 if ((sum >> 8) == 1) \ 11056 ge |= 1 << n; \ 11057 } while(0) 11058 11059 #define SUB16(a, b, n) do { \ 11060 uint32_t sum; \ 11061 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11062 RESULT(sum, n, 16); \ 11063 if ((sum >> 16) == 0) \ 11064 ge |= 3 << (n * 2); \ 11065 } while(0) 11066 11067 #define SUB8(a, b, n) do { \ 11068 uint32_t sum; \ 11069 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11070 RESULT(sum, n, 8); \ 11071 if ((sum >> 8) == 0) \ 11072 ge |= 1 << n; \ 11073 } while(0) 11074 11075 #define PFX u 11076 #define ARITH_GE 11077 11078 #include "op_addsub.h" 11079 11080 /* Halved signed arithmetic. */ 11081 #define ADD16(a, b, n) \ 11082 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11083 #define SUB16(a, b, n) \ 11084 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11085 #define ADD8(a, b, n) \ 11086 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11087 #define SUB8(a, b, n) \ 11088 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11089 #define PFX sh 11090 11091 #include "op_addsub.h" 11092 11093 /* Halved unsigned arithmetic. */ 11094 #define ADD16(a, b, n) \ 11095 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11096 #define SUB16(a, b, n) \ 11097 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11098 #define ADD8(a, b, n) \ 11099 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11100 #define SUB8(a, b, n) \ 11101 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11102 #define PFX uh 11103 11104 #include "op_addsub.h" 11105 11106 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11107 { 11108 if (a > b) 11109 return a - b; 11110 else 11111 return b - a; 11112 } 11113 11114 /* Unsigned sum of absolute byte differences. */ 11115 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11116 { 11117 uint32_t sum; 11118 sum = do_usad(a, b); 11119 sum += do_usad(a >> 8, b >> 8); 11120 sum += do_usad(a >> 16, b >>16); 11121 sum += do_usad(a >> 24, b >> 24); 11122 return sum; 11123 } 11124 11125 /* For ARMv6 SEL instruction. */ 11126 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11127 { 11128 uint32_t mask; 11129 11130 mask = 0; 11131 if (flags & 1) 11132 mask |= 0xff; 11133 if (flags & 2) 11134 mask |= 0xff00; 11135 if (flags & 4) 11136 mask |= 0xff0000; 11137 if (flags & 8) 11138 mask |= 0xff000000; 11139 return (a & mask) | (b & ~mask); 11140 } 11141 11142 /* CRC helpers. 11143 * The upper bytes of val (above the number specified by 'bytes') must have 11144 * been zeroed out by the caller. 11145 */ 11146 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11147 { 11148 uint8_t buf[4]; 11149 11150 stl_le_p(buf, val); 11151 11152 /* zlib crc32 converts the accumulator and output to one's complement. */ 11153 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11154 } 11155 11156 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11157 { 11158 uint8_t buf[4]; 11159 11160 stl_le_p(buf, val); 11161 11162 /* Linux crc32c converts the output to one's complement. */ 11163 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11164 } 11165 11166 /* Return the exception level to which FP-disabled exceptions should 11167 * be taken, or 0 if FP is enabled. 11168 */ 11169 int fp_exception_el(CPUARMState *env, int cur_el) 11170 { 11171 #ifndef CONFIG_USER_ONLY 11172 int fpen; 11173 11174 /* CPACR and the CPTR registers don't exist before v6, so FP is 11175 * always accessible 11176 */ 11177 if (!arm_feature(env, ARM_FEATURE_V6)) { 11178 return 0; 11179 } 11180 11181 if (arm_feature(env, ARM_FEATURE_M)) { 11182 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11183 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11184 return 1; 11185 } 11186 11187 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11188 if (!extract32(env->v7m.nsacr, 10, 1)) { 11189 /* FP insns cause a NOCP UsageFault taken to Secure */ 11190 return 3; 11191 } 11192 } 11193 11194 return 0; 11195 } 11196 11197 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11198 * 0, 2 : trap EL0 and EL1/PL1 accesses 11199 * 1 : trap only EL0 accesses 11200 * 3 : trap no accesses 11201 */ 11202 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 11203 switch (fpen) { 11204 case 0: 11205 case 2: 11206 if (cur_el == 0 || cur_el == 1) { 11207 /* Trap to PL1, which might be EL1 or EL3 */ 11208 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 11209 return 3; 11210 } 11211 return 1; 11212 } 11213 if (cur_el == 3 && !is_a64(env)) { 11214 /* Secure PL1 running at EL3 */ 11215 return 3; 11216 } 11217 break; 11218 case 1: 11219 if (cur_el == 0) { 11220 return 1; 11221 } 11222 break; 11223 case 3: 11224 break; 11225 } 11226 11227 /* 11228 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11229 * to control non-secure access to the FPU. It doesn't have any 11230 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11231 */ 11232 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11233 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11234 if (!extract32(env->cp15.nsacr, 10, 1)) { 11235 /* FP insns act as UNDEF */ 11236 return cur_el == 2 ? 2 : 1; 11237 } 11238 } 11239 11240 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11241 * check because zero bits in the registers mean "don't trap". 11242 */ 11243 11244 /* CPTR_EL2 : present in v7VE or v8 */ 11245 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11246 && !arm_is_secure_below_el3(env)) { 11247 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11248 return 2; 11249 } 11250 11251 /* CPTR_EL3 : present in v8 */ 11252 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11253 /* Trap all FP ops to EL3 */ 11254 return 3; 11255 } 11256 #endif 11257 return 0; 11258 } 11259 11260 #ifndef CONFIG_TCG 11261 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11262 { 11263 g_assert_not_reached(); 11264 } 11265 #endif 11266 11267 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11268 { 11269 if (arm_feature(env, ARM_FEATURE_M)) { 11270 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11271 } 11272 11273 if (el < 2 && arm_is_secure_below_el3(env)) { 11274 return ARMMMUIdx_S1SE0 + el; 11275 } else { 11276 return ARMMMUIdx_S12NSE0 + el; 11277 } 11278 } 11279 11280 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11281 { 11282 return arm_mmu_idx_el(env, arm_current_el(env)); 11283 } 11284 11285 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11286 { 11287 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11288 } 11289 11290 #ifndef CONFIG_USER_ONLY 11291 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11292 { 11293 return stage_1_mmu_idx(arm_mmu_idx(env)); 11294 } 11295 #endif 11296 11297 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 11298 ARMMMUIdx mmu_idx, uint32_t flags) 11299 { 11300 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11301 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 11302 arm_to_core_mmu_idx(mmu_idx)); 11303 11304 if (arm_singlestep_active(env)) { 11305 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11306 } 11307 return flags; 11308 } 11309 11310 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11311 ARMMMUIdx mmu_idx, uint32_t flags) 11312 { 11313 bool sctlr_b = arm_sctlr_b(env); 11314 11315 if (sctlr_b) { 11316 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 11317 } 11318 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11319 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11320 } 11321 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11322 11323 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11324 } 11325 11326 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 11327 ARMMMUIdx mmu_idx) 11328 { 11329 uint32_t flags = 0; 11330 11331 /* v8M always enables the fpu. */ 11332 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11333 11334 if (arm_v7m_is_handler_mode(env)) { 11335 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11336 } 11337 11338 /* 11339 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11340 * is suppressing them because the requested execution priority 11341 * is less than 0. 11342 */ 11343 if (arm_feature(env, ARM_FEATURE_V8) && 11344 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11345 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11346 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11347 } 11348 11349 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11350 } 11351 11352 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 11353 { 11354 int flags = 0; 11355 11356 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 11357 arm_debug_target_el(env)); 11358 return flags; 11359 } 11360 11361 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 11362 ARMMMUIdx mmu_idx) 11363 { 11364 uint32_t flags = rebuild_hflags_aprofile(env); 11365 11366 if (arm_el_is_aa64(env, 1)) { 11367 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11368 } 11369 11370 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 11371 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11372 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 11373 } 11374 11375 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11376 } 11377 11378 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11379 ARMMMUIdx mmu_idx) 11380 { 11381 uint32_t flags = rebuild_hflags_aprofile(env); 11382 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11383 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11384 uint64_t sctlr; 11385 int tbii, tbid; 11386 11387 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11388 11389 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11390 if (regime_el(env, stage1) < 2) { 11391 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11392 tbid = (p1.tbi << 1) | p0.tbi; 11393 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11394 } else { 11395 tbid = p0.tbi; 11396 tbii = tbid & !p0.tbid; 11397 } 11398 11399 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11400 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11401 11402 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11403 int sve_el = sve_exception_el(env, el); 11404 uint32_t zcr_len; 11405 11406 /* 11407 * If SVE is disabled, but FP is enabled, 11408 * then the effective len is 0. 11409 */ 11410 if (sve_el != 0 && fp_el == 0) { 11411 zcr_len = 0; 11412 } else { 11413 zcr_len = sve_zcr_len_for_el(env, el); 11414 } 11415 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11416 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11417 } 11418 11419 sctlr = arm_sctlr(env, el); 11420 11421 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11422 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11423 } 11424 11425 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11426 /* 11427 * In order to save space in flags, we record only whether 11428 * pauth is "inactive", meaning all insns are implemented as 11429 * a nop, or "active" when some action must be performed. 11430 * The decision of which action to take is left to a helper. 11431 */ 11432 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11433 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11434 } 11435 } 11436 11437 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11438 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11439 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11440 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11441 } 11442 } 11443 11444 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11445 } 11446 11447 static uint32_t rebuild_hflags_internal(CPUARMState *env) 11448 { 11449 int el = arm_current_el(env); 11450 int fp_el = fp_exception_el(env, el); 11451 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11452 11453 if (is_a64(env)) { 11454 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11455 } else if (arm_feature(env, ARM_FEATURE_M)) { 11456 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11457 } else { 11458 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11459 } 11460 } 11461 11462 void arm_rebuild_hflags(CPUARMState *env) 11463 { 11464 env->hflags = rebuild_hflags_internal(env); 11465 } 11466 11467 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11468 { 11469 int fp_el = fp_exception_el(env, el); 11470 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11471 11472 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11473 } 11474 11475 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11476 { 11477 int fp_el = fp_exception_el(env, el); 11478 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11479 11480 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11481 } 11482 11483 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11484 { 11485 int fp_el = fp_exception_el(env, el); 11486 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11487 11488 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11489 } 11490 11491 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11492 target_ulong *cs_base, uint32_t *pflags) 11493 { 11494 uint32_t flags = env->hflags; 11495 uint32_t pstate_for_ss; 11496 11497 *cs_base = 0; 11498 #ifdef CONFIG_DEBUG_TCG 11499 assert(flags == rebuild_hflags_internal(env)); 11500 #endif 11501 11502 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 11503 *pc = env->pc; 11504 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11505 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11506 } 11507 pstate_for_ss = env->pstate; 11508 } else { 11509 *pc = env->regs[15]; 11510 11511 if (arm_feature(env, ARM_FEATURE_M)) { 11512 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11513 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11514 != env->v7m.secure) { 11515 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11516 } 11517 11518 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11519 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11520 (env->v7m.secure && 11521 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11522 /* 11523 * ASPEN is set, but FPCA/SFPA indicate that there is no 11524 * active FP context; we must create a new FP context before 11525 * executing any FP insn. 11526 */ 11527 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11528 } 11529 11530 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11531 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11532 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11533 } 11534 } else { 11535 /* 11536 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11537 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11538 */ 11539 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11540 flags = FIELD_DP32(flags, TBFLAG_A32, 11541 XSCALE_CPAR, env->cp15.c15_cpar); 11542 } else { 11543 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 11544 env->vfp.vec_len); 11545 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 11546 env->vfp.vec_stride); 11547 } 11548 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11549 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11550 } 11551 } 11552 11553 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11554 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11555 pstate_for_ss = env->uncached_cpsr; 11556 } 11557 11558 /* 11559 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11560 * states defined in the ARM ARM for software singlestep: 11561 * SS_ACTIVE PSTATE.SS State 11562 * 0 x Inactive (the TB flag for SS is always 0) 11563 * 1 0 Active-pending 11564 * 1 1 Active-not-pending 11565 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 11566 */ 11567 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 11568 (pstate_for_ss & PSTATE_SS)) { 11569 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11570 } 11571 11572 *pflags = flags; 11573 } 11574 11575 #ifdef TARGET_AARCH64 11576 /* 11577 * The manual says that when SVE is enabled and VQ is widened the 11578 * implementation is allowed to zero the previously inaccessible 11579 * portion of the registers. The corollary to that is that when 11580 * SVE is enabled and VQ is narrowed we are also allowed to zero 11581 * the now inaccessible portion of the registers. 11582 * 11583 * The intent of this is that no predicate bit beyond VQ is ever set. 11584 * Which means that some operations on predicate registers themselves 11585 * may operate on full uint64_t or even unrolled across the maximum 11586 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11587 * may well be cheaper than conditionals to restrict the operation 11588 * to the relevant portion of a uint16_t[16]. 11589 */ 11590 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11591 { 11592 int i, j; 11593 uint64_t pmask; 11594 11595 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11596 assert(vq <= env_archcpu(env)->sve_max_vq); 11597 11598 /* Zap the high bits of the zregs. */ 11599 for (i = 0; i < 32; i++) { 11600 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11601 } 11602 11603 /* Zap the high bits of the pregs and ffr. */ 11604 pmask = 0; 11605 if (vq & 3) { 11606 pmask = ~(-1ULL << (16 * (vq & 3))); 11607 } 11608 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11609 for (i = 0; i < 17; ++i) { 11610 env->vfp.pregs[i].p[j] &= pmask; 11611 } 11612 pmask = 0; 11613 } 11614 } 11615 11616 /* 11617 * Notice a change in SVE vector size when changing EL. 11618 */ 11619 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11620 int new_el, bool el0_a64) 11621 { 11622 ARMCPU *cpu = env_archcpu(env); 11623 int old_len, new_len; 11624 bool old_a64, new_a64; 11625 11626 /* Nothing to do if no SVE. */ 11627 if (!cpu_isar_feature(aa64_sve, cpu)) { 11628 return; 11629 } 11630 11631 /* Nothing to do if FP is disabled in either EL. */ 11632 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11633 return; 11634 } 11635 11636 /* 11637 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11638 * at ELx, or not available because the EL is in AArch32 state, then 11639 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11640 * has an effective value of 0". 11641 * 11642 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11643 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11644 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11645 * we already have the correct register contents when encountering the 11646 * vq0->vq0 transition between EL0->EL1. 11647 */ 11648 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11649 old_len = (old_a64 && !sve_exception_el(env, old_el) 11650 ? sve_zcr_len_for_el(env, old_el) : 0); 11651 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11652 new_len = (new_a64 && !sve_exception_el(env, new_el) 11653 ? sve_zcr_len_for_el(env, new_el) : 0); 11654 11655 /* When changing vector length, clear inaccessible state. */ 11656 if (new_len < old_len) { 11657 aarch64_sve_narrow_vq(env, new_len + 1); 11658 } 11659 } 11660 #endif 11661