1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 /* 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 268 */ 269 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 270 const ARMCPRegInfo *ri, 271 bool isread) 272 { 273 if (!is_a64(env) && arm_current_el(env) == 3 && 274 arm_is_secure_below_el3(env)) { 275 return CP_ACCESS_TRAP_UNCATEGORIZED; 276 } 277 return CP_ACCESS_OK; 278 } 279 280 /* 281 * Some secure-only AArch32 registers trap to EL3 if used from 282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 284 * We assume that the .access field is set to PL1_RW. 285 */ 286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (arm_current_el(env) == 3) { 291 return CP_ACCESS_OK; 292 } 293 if (arm_is_secure_below_el3(env)) { 294 if (env->cp15.scr_el3 & SCR_EEL2) { 295 return CP_ACCESS_TRAP_EL2; 296 } 297 return CP_ACCESS_TRAP_EL3; 298 } 299 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 300 return CP_ACCESS_TRAP_UNCATEGORIZED; 301 } 302 303 /* 304 * Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* 403 * Unlike real hardware the qemu TLB uses virtual addresses, 404 * not modified virtual addresses, so this causes a TLB flush. 405 */ 406 tlb_flush(CPU(cpu)); 407 raw_write(env, ri, value); 408 } 409 } 410 411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 ARMCPU *cpu = env_archcpu(env); 415 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 417 && !extended_addresses_enabled(env)) { 418 /* 419 * For VMSA (when not using the LPAE long descriptor page table 420 * format) this register includes the ASID, so do a TLB flush. 421 * For PMSA it is purely a process ID and no action is needed. 422 */ 423 tlb_flush(CPU(cpu)); 424 } 425 raw_write(env, ri, value); 426 } 427 428 static int alle1_tlbmask(CPUARMState *env) 429 { 430 /* 431 * Note that the 'ALL' scope must invalidate both stage 1 and 432 * stage 2 translations, whereas most other scopes only invalidate 433 * stage 1 translations. 434 */ 435 return (ARMMMUIdxBit_E10_1 | 436 ARMMMUIdxBit_E10_1_PAN | 437 ARMMMUIdxBit_E10_0 | 438 ARMMMUIdxBit_Stage2 | 439 ARMMMUIdxBit_Stage2_S); 440 } 441 442 443 /* IS variants of TLB operations must affect all cores */ 444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 445 uint64_t value) 446 { 447 CPUState *cs = env_cpu(env); 448 449 tlb_flush_all_cpus_synced(cs); 450 } 451 452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 CPUState *cs = env_cpu(env); 456 457 tlb_flush_all_cpus_synced(cs); 458 } 459 460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 466 } 467 468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 474 } 475 476 /* 477 * Non-IS variants of TLB operations are upgraded to 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 479 * force broadcast of these operations. 480 */ 481 static bool tlb_force_broadcast(CPUARMState *env) 482 { 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 484 } 485 486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 /* Invalidate all (TLBIALL) */ 490 CPUState *cs = env_cpu(env); 491 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_all_cpus_synced(cs); 494 } else { 495 tlb_flush(cs); 496 } 497 } 498 499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 503 CPUState *cs = env_cpu(env); 504 505 value &= TARGET_PAGE_MASK; 506 if (tlb_force_broadcast(env)) { 507 tlb_flush_page_all_cpus_synced(cs, value); 508 } else { 509 tlb_flush_page(cs, value); 510 } 511 } 512 513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate by ASID (TLBIASID) */ 517 CPUState *cs = env_cpu(env); 518 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_all_cpus_synced(cs); 521 } else { 522 tlb_flush(cs); 523 } 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 CPUState *cs = env_cpu(env); 531 532 value &= TARGET_PAGE_MASK; 533 if (tlb_force_broadcast(env)) { 534 tlb_flush_page_all_cpus_synced(cs, value); 535 } else { 536 tlb_flush_page(cs, value); 537 } 538 } 539 540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 CPUState *cs = env_cpu(env); 544 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 546 } 547 548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 CPUState *cs = env_cpu(env); 552 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 554 } 555 556 557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 CPUState *cs = env_cpu(env); 561 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 563 } 564 565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 571 } 572 573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 578 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 580 } 581 582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 587 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 589 ARMMMUIdxBit_E2); 590 } 591 592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = env_cpu(env); 596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 597 598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 599 } 600 601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 606 607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 608 } 609 610 static const ARMCPRegInfo cp_reginfo[] = { 611 /* 612 * Define the secure and non-secure FCSE identifier CP registers 613 * separately because there is no secure bank in V8 (no _EL3). This allows 614 * the secure register to be properly reset and migrated. There is also no 615 * v8 EL1 version of the register so the non-secure instance stands alone. 616 */ 617 { .name = "FCSEIDR", 618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 622 { .name = "FCSEIDR_S", 623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 627 /* 628 * Define the secure and non-secure context identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. In the 631 * non-secure case, the 32-bit register will have reset and migration 632 * disabled during registration as it is handled by the 64-bit instance. 633 */ 634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 636 .access = PL1_RW, .accessfn = access_tvm_trvm, 637 .fgt = FGT_CONTEXTIDR_EL1, 638 .secure = ARM_CP_SECSTATE_NS, 639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 643 .access = PL1_RW, .accessfn = access_tvm_trvm, 644 .secure = ARM_CP_SECSTATE_S, 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 647 }; 648 649 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 650 /* 651 * NB: Some of these registers exist in v8 but with more precise 652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 653 */ 654 /* MMU Domain access control / MPU write buffer control */ 655 { .name = "DACR", 656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 658 .writefn = dacr_write, .raw_writefn = raw_write, 659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 660 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 661 /* 662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 663 * For v6 and v5, these mappings are overly broad. 664 */ 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 673 /* Cache maintenance ops; some of this space may be overridden later. */ 674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 677 }; 678 679 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 680 /* 681 * Not all pre-v6 cores implemented this WFI, so this is slightly 682 * over-broad. 683 */ 684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 }; 687 688 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 689 /* 690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 691 * is UNPREDICTABLE; we choose to NOP as most implementations do). 692 */ 693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 694 .access = PL1_W, .type = ARM_CP_WFI }, 695 /* 696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 698 * OMAPCP will override this space. 699 */ 700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 702 .resetvalue = 0 }, 703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 705 .resetvalue = 0 }, 706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 709 .resetvalue = 0 }, 710 /* 711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 712 * implementing it as RAZ means the "debug architecture version" bits 713 * will read as a reserved value, which should cause Linux to not try 714 * to use the debug hardware. 715 */ 716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 718 /* 719 * MMU TLB control. Note that the wildcarding means we cover not just 720 * the unified TLB ops but also the dside/iside/inner-shareable variants. 721 */ 722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 724 .type = ARM_CP_NO_RAW }, 725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 738 }; 739 740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 uint32_t mask = 0; 744 745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 746 if (!arm_feature(env, ARM_FEATURE_V8)) { 747 /* 748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 751 */ 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 753 /* VFP coprocessor: cp10 & cp11 [23:20] */ 754 mask |= R_CPACR_ASEDIS_MASK | 755 R_CPACR_D32DIS_MASK | 756 R_CPACR_CP11_MASK | 757 R_CPACR_CP10_MASK; 758 759 if (!arm_feature(env, ARM_FEATURE_NEON)) { 760 /* ASEDIS [31] bit is RAO/WI */ 761 value |= R_CPACR_ASEDIS_MASK; 762 } 763 764 /* 765 * VFPv3 and upwards with NEON implement 32 double precision 766 * registers (D0-D31). 767 */ 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 770 value |= R_CPACR_D32DIS_MASK; 771 } 772 } 773 value &= mask; 774 } 775 776 /* 777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 779 */ 780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 784 } 785 786 env->cp15.cpacr_el1 = value; 787 } 788 789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 790 { 791 /* 792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 794 */ 795 uint64_t value = env->cp15.cpacr_el1; 796 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 800 } 801 return value; 802 } 803 804 805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 806 { 807 /* 808 * Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* 850 * We need to break the TB after ISB to execute self-modifying code 851 * correctly and also to take any pending interrupts immediately. 852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 853 */ 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 861 .access = PL1_RW, .accessfn = access_tvm_trvm, 862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 863 offsetof(CPUARMState, cp15.ifar_ns) }, 864 .resetvalue = 0, }, 865 /* 866 * Watchpoint Fault Address Register : should actually only be present 867 * for 1136, 1176, 11MPCore. 868 */ 869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 873 .fgt = FGT_CPACR_EL1, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 876 }; 877 878 typedef struct pm_event { 879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 881 bool (*supported)(CPUARMState *); 882 /* 883 * Retrieve the current count of the underlying event. The programmed 884 * counters hold a difference from the return value from this function 885 */ 886 uint64_t (*get_count)(CPUARMState *); 887 /* 888 * Return how many nanoseconds it will take (at a minimum) for count events 889 * to occur. A negative value indicates the counter will never overflow, or 890 * that the counter has otherwise arranged for the overflow bit to be set 891 * and the PMU interrupt to be raised on overflow. 892 */ 893 int64_t (*ns_per_count)(uint64_t); 894 } pm_event; 895 896 static bool event_always_supported(CPUARMState *env) 897 { 898 return true; 899 } 900 901 static uint64_t swinc_get_count(CPUARMState *env) 902 { 903 /* 904 * SW_INCR events are written directly to the pmevcntr's by writes to 905 * PMSWINC, so there is no underlying count maintained by the PMU itself 906 */ 907 return 0; 908 } 909 910 static int64_t swinc_ns_per(uint64_t ignored) 911 { 912 return -1; 913 } 914 915 /* 916 * Return the underlying cycle count for the PMU cycle counters. If we're in 917 * usermode, simply return 0. 918 */ 919 static uint64_t cycles_get_count(CPUARMState *env) 920 { 921 #ifndef CONFIG_USER_ONLY 922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 924 #else 925 return cpu_get_host_ticks(); 926 #endif 927 } 928 929 #ifndef CONFIG_USER_ONLY 930 static int64_t cycles_ns_per(uint64_t cycles) 931 { 932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 933 } 934 935 static bool instructions_supported(CPUARMState *env) 936 { 937 return icount_enabled() == 1; /* Precise instruction counting */ 938 } 939 940 static uint64_t instructions_get_count(CPUARMState *env) 941 { 942 return (uint64_t)icount_get_raw(); 943 } 944 945 static int64_t instructions_ns_per(uint64_t icount) 946 { 947 return icount_to_ns((int64_t)icount); 948 } 949 #endif 950 951 static bool pmuv3p1_events_supported(CPUARMState *env) 952 { 953 /* For events which are supported in any v8.1 PMU */ 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 955 } 956 957 static bool pmuv3p4_events_supported(CPUARMState *env) 958 { 959 /* For events which are supported in any v8.1 PMU */ 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 961 } 962 963 static uint64_t zero_event_get_count(CPUARMState *env) 964 { 965 /* For events which on QEMU never fire, so their count is always zero */ 966 return 0; 967 } 968 969 static int64_t zero_event_ns_per(uint64_t cycles) 970 { 971 /* An event which never fires can never overflow */ 972 return -1; 973 } 974 975 static const pm_event pm_events[] = { 976 { .number = 0x000, /* SW_INCR */ 977 .supported = event_always_supported, 978 .get_count = swinc_get_count, 979 .ns_per_count = swinc_ns_per, 980 }, 981 #ifndef CONFIG_USER_ONLY 982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 983 .supported = instructions_supported, 984 .get_count = instructions_get_count, 985 .ns_per_count = instructions_ns_per, 986 }, 987 { .number = 0x011, /* CPU_CYCLES, Cycle */ 988 .supported = event_always_supported, 989 .get_count = cycles_get_count, 990 .ns_per_count = cycles_ns_per, 991 }, 992 #endif 993 { .number = 0x023, /* STALL_FRONTEND */ 994 .supported = pmuv3p1_events_supported, 995 .get_count = zero_event_get_count, 996 .ns_per_count = zero_event_ns_per, 997 }, 998 { .number = 0x024, /* STALL_BACKEND */ 999 .supported = pmuv3p1_events_supported, 1000 .get_count = zero_event_get_count, 1001 .ns_per_count = zero_event_ns_per, 1002 }, 1003 { .number = 0x03c, /* STALL */ 1004 .supported = pmuv3p4_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 }; 1009 1010 /* 1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1012 * events (i.e. the statistical profiling extension), this implementation 1013 * should first be updated to something sparse instead of the current 1014 * supported_event_map[] array. 1015 */ 1016 #define MAX_EVENT_ID 0x3c 1017 #define UNSUPPORTED_EVENT UINT16_MAX 1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1019 1020 /* 1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1022 * of ARM event numbers to indices in our pm_events array. 1023 * 1024 * Note: Events in the 0x40XX range are not currently supported. 1025 */ 1026 void pmu_init(ARMCPU *cpu) 1027 { 1028 unsigned int i; 1029 1030 /* 1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1032 * events to them 1033 */ 1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1035 supported_event_map[i] = UNSUPPORTED_EVENT; 1036 } 1037 cpu->pmceid0 = 0; 1038 cpu->pmceid1 = 0; 1039 1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1041 const pm_event *cnt = &pm_events[i]; 1042 assert(cnt->number <= MAX_EVENT_ID); 1043 /* We do not currently support events in the 0x40xx range */ 1044 assert(cnt->number <= 0x3f); 1045 1046 if (cnt->supported(&cpu->env)) { 1047 supported_event_map[cnt->number] = i; 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1049 if (cnt->number & 0x20) { 1050 cpu->pmceid1 |= event_mask; 1051 } else { 1052 cpu->pmceid0 |= event_mask; 1053 } 1054 } 1055 } 1056 } 1057 1058 /* 1059 * Check at runtime whether a PMU event is supported for the current machine 1060 */ 1061 static bool event_supported(uint16_t number) 1062 { 1063 if (number > MAX_EVENT_ID) { 1064 return false; 1065 } 1066 return supported_event_map[number] != UNSUPPORTED_EVENT; 1067 } 1068 1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1070 bool isread) 1071 { 1072 /* 1073 * Performance monitor registers user accessibility is controlled 1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1075 * trapping to EL2 or EL3 for other accesses. 1076 */ 1077 int el = arm_current_el(env); 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1079 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1081 return CP_ACCESS_TRAP; 1082 } 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL2; 1085 } 1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1087 return CP_ACCESS_TRAP_EL3; 1088 } 1089 1090 return CP_ACCESS_OK; 1091 } 1092 1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1094 const ARMCPRegInfo *ri, 1095 bool isread) 1096 { 1097 /* ER: event counter read trap control */ 1098 if (arm_feature(env, ARM_FEATURE_V8) 1099 && arm_current_el(env) == 0 1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1101 && isread) { 1102 return CP_ACCESS_OK; 1103 } 1104 1105 return pmreg_access(env, ri, isread); 1106 } 1107 1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* SW: software increment write trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1116 && !isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* ER: event counter read trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* CR: cycle counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1145 && isread) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 /* 1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1154 * We use these to decide whether we need to wrap a write to MDCR_EL2 1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1156 */ 1157 #define MDCR_EL2_PMU_ENABLE_BITS \ 1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1160 1161 /* 1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1163 * the current EL, security state, and register configuration. 1164 */ 1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1166 { 1167 uint64_t filter; 1168 bool e, p, u, nsk, nsu, nsh, m; 1169 bool enabled, prohibited = false, filtered; 1170 bool secure = arm_is_secure(env); 1171 int el = arm_current_el(env); 1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1174 1175 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1176 return false; 1177 } 1178 1179 if (!arm_feature(env, ARM_FEATURE_EL2) || 1180 (counter < hpmn || counter == 31)) { 1181 e = env->cp15.c9_pmcr & PMCRE; 1182 } else { 1183 e = mdcr_el2 & MDCR_HPME; 1184 } 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1186 1187 /* Is event counting prohibited? */ 1188 if (el == 2 && (counter < hpmn || counter == 31)) { 1189 prohibited = mdcr_el2 & MDCR_HPMD; 1190 } 1191 if (secure) { 1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1193 } 1194 1195 if (counter == 31) { 1196 /* 1197 * The cycle counter defaults to running. PMCR.DP says "disable 1198 * the cycle counter when event counting is prohibited". 1199 * Some MDCR bits disable the cycle counter specifically. 1200 */ 1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1203 if (secure) { 1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1205 } 1206 if (el == 2) { 1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1208 } 1209 } 1210 } 1211 1212 if (counter == 31) { 1213 filter = env->cp15.pmccfiltr_el0; 1214 } else { 1215 filter = env->cp15.c14_pmevtyper[counter]; 1216 } 1217 1218 p = filter & PMXEVTYPER_P; 1219 u = filter & PMXEVTYPER_U; 1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1223 m = arm_el_is_aa64(env, 1) && 1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1225 1226 if (el == 0) { 1227 filtered = secure ? u : u != nsu; 1228 } else if (el == 1) { 1229 filtered = secure ? p : p != nsk; 1230 } else if (el == 2) { 1231 filtered = !nsh; 1232 } else { /* EL3 */ 1233 filtered = m != p; 1234 } 1235 1236 if (counter != 31) { 1237 /* 1238 * If not checking PMCCNTR, ensure the counter is setup to an event we 1239 * support 1240 */ 1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1242 if (!event_supported(event)) { 1243 return false; 1244 } 1245 } 1246 1247 return enabled && !prohibited && !filtered; 1248 } 1249 1250 static void pmu_update_irq(CPUARMState *env) 1251 { 1252 ARMCPU *cpu = env_archcpu(env); 1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1255 } 1256 1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1258 { 1259 /* 1260 * Return true if the clock divider is enabled and the cycle counter 1261 * is supposed to tick only once every 64 clock cycles. This is 1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1263 * (64-bit) cycle counter PMCR.D has no effect. 1264 */ 1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1266 } 1267 1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1269 { 1270 /* Return true if the specified event counter is configured to be 64 bit */ 1271 1272 /* This isn't intended to be used with the cycle counter */ 1273 assert(counter < 31); 1274 1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1276 return false; 1277 } 1278 1279 if (arm_feature(env, ARM_FEATURE_EL2)) { 1280 /* 1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1282 * current security state, so we don't use arm_mdcr_el2_eff() here. 1283 */ 1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1286 1287 if (counter >= hpmn) { 1288 return hlp; 1289 } 1290 } 1291 return env->cp15.c9_pmcr & PMCRLP; 1292 } 1293 1294 /* 1295 * Ensure c15_ccnt is the guest-visible count so that operations such as 1296 * enabling/disabling the counter or filtering, modifying the count itself, 1297 * etc. can be done logically. This is essentially a no-op if the counter is 1298 * not enabled at the time of the call. 1299 */ 1300 static void pmccntr_op_start(CPUARMState *env) 1301 { 1302 uint64_t cycles = cycles_get_count(env); 1303 1304 if (pmu_counter_enabled(env, 31)) { 1305 uint64_t eff_cycles = cycles; 1306 if (pmccntr_clockdiv_enabled(env)) { 1307 eff_cycles /= 64; 1308 } 1309 1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1311 1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1313 1ull << 63 : 1ull << 31; 1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1315 env->cp15.c9_pmovsr |= (1ULL << 31); 1316 pmu_update_irq(env); 1317 } 1318 1319 env->cp15.c15_ccnt = new_pmccntr; 1320 } 1321 env->cp15.c15_ccnt_delta = cycles; 1322 } 1323 1324 /* 1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1327 * pmccntr_op_start. 1328 */ 1329 static void pmccntr_op_finish(CPUARMState *env) 1330 { 1331 if (pmu_counter_enabled(env, 31)) { 1332 #ifndef CONFIG_USER_ONLY 1333 /* Calculate when the counter will next overflow */ 1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1335 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1336 remaining_cycles = (uint32_t)remaining_cycles; 1337 } 1338 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1339 1340 if (overflow_in > 0) { 1341 int64_t overflow_at; 1342 1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1344 overflow_in, &overflow_at)) { 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 } 1349 #endif 1350 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1352 if (pmccntr_clockdiv_enabled(env)) { 1353 prev_cycles /= 64; 1354 } 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1356 } 1357 } 1358 1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1360 { 1361 1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1363 uint64_t count = 0; 1364 if (event_supported(event)) { 1365 uint16_t event_idx = supported_event_map[event]; 1366 count = pm_events[event_idx].get_count(env); 1367 } 1368 1369 if (pmu_counter_enabled(env, counter)) { 1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1372 1ULL << 63 : 1ULL << 31; 1373 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1375 env->cp15.c9_pmovsr |= (1 << counter); 1376 pmu_update_irq(env); 1377 } 1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1379 } 1380 env->cp15.c14_pmevcntr_delta[counter] = count; 1381 } 1382 1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1384 { 1385 if (pmu_counter_enabled(env, counter)) { 1386 #ifndef CONFIG_USER_ONLY 1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1388 uint16_t event_idx = supported_event_map[event]; 1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1390 int64_t overflow_in; 1391 1392 if (!pmevcntr_is_64_bit(env, counter)) { 1393 delta = (uint32_t)delta; 1394 } 1395 overflow_in = pm_events[event_idx].ns_per_count(delta); 1396 1397 if (overflow_in > 0) { 1398 int64_t overflow_at; 1399 1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1401 overflow_in, &overflow_at)) { 1402 ARMCPU *cpu = env_archcpu(env); 1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1404 } 1405 } 1406 #endif 1407 1408 env->cp15.c14_pmevcntr_delta[counter] -= 1409 env->cp15.c14_pmevcntr[counter]; 1410 } 1411 } 1412 1413 void pmu_op_start(CPUARMState *env) 1414 { 1415 unsigned int i; 1416 pmccntr_op_start(env); 1417 for (i = 0; i < pmu_num_counters(env); i++) { 1418 pmevcntr_op_start(env, i); 1419 } 1420 } 1421 1422 void pmu_op_finish(CPUARMState *env) 1423 { 1424 unsigned int i; 1425 pmccntr_op_finish(env); 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1432 { 1433 pmu_op_start(&cpu->env); 1434 } 1435 1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1437 { 1438 pmu_op_finish(&cpu->env); 1439 } 1440 1441 void arm_pmu_timer_cb(void *opaque) 1442 { 1443 ARMCPU *cpu = opaque; 1444 1445 /* 1446 * Update all the counter values based on the current underlying counts, 1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1449 * counter may expire. 1450 */ 1451 pmu_op_start(&cpu->env); 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1456 uint64_t value) 1457 { 1458 pmu_op_start(env); 1459 1460 if (value & PMCRC) { 1461 /* The counter has been reset */ 1462 env->cp15.c15_ccnt = 0; 1463 } 1464 1465 if (value & PMCRP) { 1466 unsigned int i; 1467 for (i = 0; i < pmu_num_counters(env); i++) { 1468 env->cp15.c14_pmevcntr[i] = 0; 1469 } 1470 } 1471 1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1474 1475 pmu_op_finish(env); 1476 } 1477 1478 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1479 { 1480 uint64_t pmcr = env->cp15.c9_pmcr; 1481 1482 /* 1483 * If EL2 is implemented and enabled for the current security state, reads 1484 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1485 */ 1486 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1487 pmcr &= ~PMCRN_MASK; 1488 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1489 } 1490 1491 return pmcr; 1492 } 1493 1494 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1495 uint64_t value) 1496 { 1497 unsigned int i; 1498 uint64_t overflow_mask, new_pmswinc; 1499 1500 for (i = 0; i < pmu_num_counters(env); i++) { 1501 /* Increment a counter's count iff: */ 1502 if ((value & (1 << i)) && /* counter's bit is set */ 1503 /* counter is enabled and not filtered */ 1504 pmu_counter_enabled(env, i) && 1505 /* counter is SW_INCR */ 1506 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1507 pmevcntr_op_start(env, i); 1508 1509 /* 1510 * Detect if this write causes an overflow since we can't predict 1511 * PMSWINC overflows like we can for other events 1512 */ 1513 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1514 1515 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1516 1ULL << 63 : 1ULL << 31; 1517 1518 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1519 env->cp15.c9_pmovsr |= (1 << i); 1520 pmu_update_irq(env); 1521 } 1522 1523 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1524 1525 pmevcntr_op_finish(env, i); 1526 } 1527 } 1528 } 1529 1530 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1531 { 1532 uint64_t ret; 1533 pmccntr_op_start(env); 1534 ret = env->cp15.c15_ccnt; 1535 pmccntr_op_finish(env); 1536 return ret; 1537 } 1538 1539 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 /* 1543 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1544 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1545 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1546 * accessed. 1547 */ 1548 env->cp15.c9_pmselr = value & 0x1f; 1549 } 1550 1551 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1552 uint64_t value) 1553 { 1554 pmccntr_op_start(env); 1555 env->cp15.c15_ccnt = value; 1556 pmccntr_op_finish(env); 1557 } 1558 1559 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1560 uint64_t value) 1561 { 1562 uint64_t cur_val = pmccntr_read(env, NULL); 1563 1564 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1565 } 1566 1567 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1568 uint64_t value) 1569 { 1570 pmccntr_op_start(env); 1571 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1572 pmccntr_op_finish(env); 1573 } 1574 1575 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 pmccntr_op_start(env); 1579 /* M is not accessible from AArch32 */ 1580 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1581 (value & PMCCFILTR); 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1586 { 1587 /* M is not visible in AArch32 */ 1588 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1589 } 1590 1591 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1592 uint64_t value) 1593 { 1594 pmu_op_start(env); 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmcnten |= value; 1597 pmu_op_finish(env); 1598 } 1599 1600 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 pmu_op_start(env); 1604 value &= pmu_counter_mask(env); 1605 env->cp15.c9_pmcnten &= ~value; 1606 pmu_op_finish(env); 1607 } 1608 1609 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 uint64_t value) 1611 { 1612 value &= pmu_counter_mask(env); 1613 env->cp15.c9_pmovsr &= ~value; 1614 pmu_update_irq(env); 1615 } 1616 1617 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 value &= pmu_counter_mask(env); 1621 env->cp15.c9_pmovsr |= value; 1622 pmu_update_irq(env); 1623 } 1624 1625 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value, const uint8_t counter) 1627 { 1628 if (counter == 31) { 1629 pmccfiltr_write(env, ri, value); 1630 } else if (counter < pmu_num_counters(env)) { 1631 pmevcntr_op_start(env, counter); 1632 1633 /* 1634 * If this counter's event type is changing, store the current 1635 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1636 * pmevcntr_op_finish has the correct baseline when it converts back to 1637 * a delta. 1638 */ 1639 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1640 PMXEVTYPER_EVTCOUNT; 1641 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1642 if (old_event != new_event) { 1643 uint64_t count = 0; 1644 if (event_supported(new_event)) { 1645 uint16_t event_idx = supported_event_map[new_event]; 1646 count = pm_events[event_idx].get_count(env); 1647 } 1648 env->cp15.c14_pmevcntr_delta[counter] = count; 1649 } 1650 1651 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1652 pmevcntr_op_finish(env, counter); 1653 } 1654 /* 1655 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1656 * PMSELR value is equal to or greater than the number of implemented 1657 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1658 */ 1659 } 1660 1661 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1662 const uint8_t counter) 1663 { 1664 if (counter == 31) { 1665 return env->cp15.pmccfiltr_el0; 1666 } else if (counter < pmu_num_counters(env)) { 1667 return env->cp15.c14_pmevtyper[counter]; 1668 } else { 1669 /* 1670 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1671 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1672 */ 1673 return 0; 1674 } 1675 } 1676 1677 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1678 uint64_t value) 1679 { 1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1681 pmevtyper_write(env, ri, value, counter); 1682 } 1683 1684 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1685 uint64_t value) 1686 { 1687 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1688 env->cp15.c14_pmevtyper[counter] = value; 1689 1690 /* 1691 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1692 * pmu_op_finish calls when loading saved state for a migration. Because 1693 * we're potentially updating the type of event here, the value written to 1694 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1695 * different counter type. Therefore, we need to set this value to the 1696 * current count for the counter type we're writing so that pmu_op_finish 1697 * has the correct count for its calculation. 1698 */ 1699 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1700 if (event_supported(event)) { 1701 uint16_t event_idx = supported_event_map[event]; 1702 env->cp15.c14_pmevcntr_delta[counter] = 1703 pm_events[event_idx].get_count(env); 1704 } 1705 } 1706 1707 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1708 { 1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1710 return pmevtyper_read(env, ri, counter); 1711 } 1712 1713 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1717 } 1718 1719 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1720 { 1721 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1722 } 1723 1724 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value, uint8_t counter) 1726 { 1727 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1728 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1729 value &= MAKE_64BIT_MASK(0, 32); 1730 } 1731 if (counter < pmu_num_counters(env)) { 1732 pmevcntr_op_start(env, counter); 1733 env->cp15.c14_pmevcntr[counter] = value; 1734 pmevcntr_op_finish(env, counter); 1735 } 1736 /* 1737 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1738 * are CONSTRAINED UNPREDICTABLE. 1739 */ 1740 } 1741 1742 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint8_t counter) 1744 { 1745 if (counter < pmu_num_counters(env)) { 1746 uint64_t ret; 1747 pmevcntr_op_start(env, counter); 1748 ret = env->cp15.c14_pmevcntr[counter]; 1749 pmevcntr_op_finish(env, counter); 1750 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1751 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1752 ret &= MAKE_64BIT_MASK(0, 32); 1753 } 1754 return ret; 1755 } else { 1756 /* 1757 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1758 * are CONSTRAINED UNPREDICTABLE. 1759 */ 1760 return 0; 1761 } 1762 } 1763 1764 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1765 uint64_t value) 1766 { 1767 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1768 pmevcntr_write(env, ri, value, counter); 1769 } 1770 1771 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1772 { 1773 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1774 return pmevcntr_read(env, ri, counter); 1775 } 1776 1777 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1781 assert(counter < pmu_num_counters(env)); 1782 env->cp15.c14_pmevcntr[counter] = value; 1783 pmevcntr_write(env, ri, value, counter); 1784 } 1785 1786 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1787 { 1788 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1789 assert(counter < pmu_num_counters(env)); 1790 return env->cp15.c14_pmevcntr[counter]; 1791 } 1792 1793 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1797 } 1798 1799 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1800 { 1801 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1802 } 1803 1804 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1805 uint64_t value) 1806 { 1807 if (arm_feature(env, ARM_FEATURE_V8)) { 1808 env->cp15.c9_pmuserenr = value & 0xf; 1809 } else { 1810 env->cp15.c9_pmuserenr = value & 1; 1811 } 1812 } 1813 1814 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* We have no event counters so only the C bit can be changed */ 1818 value &= pmu_counter_mask(env); 1819 env->cp15.c9_pminten |= value; 1820 pmu_update_irq(env); 1821 } 1822 1823 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1824 uint64_t value) 1825 { 1826 value &= pmu_counter_mask(env); 1827 env->cp15.c9_pminten &= ~value; 1828 pmu_update_irq(env); 1829 } 1830 1831 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1832 uint64_t value) 1833 { 1834 /* 1835 * Note that even though the AArch64 view of this register has bits 1836 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1837 * architectural requirements for bits which are RES0 only in some 1838 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1839 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1840 */ 1841 raw_write(env, ri, value & ~0x1FULL); 1842 } 1843 1844 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1845 { 1846 /* Begin with base v8.0 state. */ 1847 uint64_t valid_mask = 0x3fff; 1848 ARMCPU *cpu = env_archcpu(env); 1849 uint64_t changed; 1850 1851 /* 1852 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1853 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1854 * Instead, choose the format based on the mode of EL3. 1855 */ 1856 if (arm_el_is_aa64(env, 3)) { 1857 value |= SCR_FW | SCR_AW; /* RES1 */ 1858 valid_mask &= ~SCR_NET; /* RES0 */ 1859 1860 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1861 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1862 value |= SCR_RW; /* RAO/WI */ 1863 } 1864 if (cpu_isar_feature(aa64_ras, cpu)) { 1865 valid_mask |= SCR_TERR; 1866 } 1867 if (cpu_isar_feature(aa64_lor, cpu)) { 1868 valid_mask |= SCR_TLOR; 1869 } 1870 if (cpu_isar_feature(aa64_pauth, cpu)) { 1871 valid_mask |= SCR_API | SCR_APK; 1872 } 1873 if (cpu_isar_feature(aa64_sel2, cpu)) { 1874 valid_mask |= SCR_EEL2; 1875 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1876 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1877 value |= SCR_NS; 1878 } 1879 if (cpu_isar_feature(aa64_mte, cpu)) { 1880 valid_mask |= SCR_ATA; 1881 } 1882 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1883 valid_mask |= SCR_ENSCXT; 1884 } 1885 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1886 valid_mask |= SCR_EASE | SCR_NMEA; 1887 } 1888 if (cpu_isar_feature(aa64_sme, cpu)) { 1889 valid_mask |= SCR_ENTP2; 1890 } 1891 if (cpu_isar_feature(aa64_hcx, cpu)) { 1892 valid_mask |= SCR_HXEN; 1893 } 1894 if (cpu_isar_feature(aa64_fgt, cpu)) { 1895 valid_mask |= SCR_FGTEN; 1896 } 1897 if (cpu_isar_feature(aa64_rme, cpu)) { 1898 valid_mask |= SCR_NSE | SCR_GPF; 1899 } 1900 } else { 1901 valid_mask &= ~(SCR_RW | SCR_ST); 1902 if (cpu_isar_feature(aa32_ras, cpu)) { 1903 valid_mask |= SCR_TERR; 1904 } 1905 } 1906 1907 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1908 valid_mask &= ~SCR_HCE; 1909 1910 /* 1911 * On ARMv7, SMD (or SCD as it is called in v7) is only 1912 * supported if EL2 exists. The bit is UNK/SBZP when 1913 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1914 * when EL2 is unavailable. 1915 * On ARMv8, this bit is always available. 1916 */ 1917 if (arm_feature(env, ARM_FEATURE_V7) && 1918 !arm_feature(env, ARM_FEATURE_V8)) { 1919 valid_mask &= ~SCR_SMD; 1920 } 1921 } 1922 1923 /* Clear all-context RES0 bits. */ 1924 value &= valid_mask; 1925 changed = env->cp15.scr_el3 ^ value; 1926 env->cp15.scr_el3 = value; 1927 1928 /* 1929 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1930 * we must invalidate all TLBs below EL3. 1931 */ 1932 if (changed & (SCR_NS | SCR_NSE)) { 1933 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1934 ARMMMUIdxBit_E20_0 | 1935 ARMMMUIdxBit_E10_1 | 1936 ARMMMUIdxBit_E20_2 | 1937 ARMMMUIdxBit_E10_1_PAN | 1938 ARMMMUIdxBit_E20_2_PAN | 1939 ARMMMUIdxBit_E2)); 1940 } 1941 } 1942 1943 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1944 { 1945 /* 1946 * scr_write will set the RES1 bits on an AArch64-only CPU. 1947 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1948 */ 1949 scr_write(env, ri, 0); 1950 } 1951 1952 static CPAccessResult access_tid4(CPUARMState *env, 1953 const ARMCPRegInfo *ri, 1954 bool isread) 1955 { 1956 if (arm_current_el(env) == 1 && 1957 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1958 return CP_ACCESS_TRAP_EL2; 1959 } 1960 1961 return CP_ACCESS_OK; 1962 } 1963 1964 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1965 { 1966 ARMCPU *cpu = env_archcpu(env); 1967 1968 /* 1969 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1970 * bank 1971 */ 1972 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1973 ri->secure & ARM_CP_SECSTATE_S); 1974 1975 return cpu->ccsidr[index]; 1976 } 1977 1978 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1979 uint64_t value) 1980 { 1981 raw_write(env, ri, value & 0xf); 1982 } 1983 1984 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1985 { 1986 CPUState *cs = env_cpu(env); 1987 bool el1 = arm_current_el(env) == 1; 1988 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1989 uint64_t ret = 0; 1990 1991 if (hcr_el2 & HCR_IMO) { 1992 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1993 ret |= CPSR_I; 1994 } 1995 } else { 1996 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1997 ret |= CPSR_I; 1998 } 1999 } 2000 2001 if (hcr_el2 & HCR_FMO) { 2002 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2003 ret |= CPSR_F; 2004 } 2005 } else { 2006 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2007 ret |= CPSR_F; 2008 } 2009 } 2010 2011 if (hcr_el2 & HCR_AMO) { 2012 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2013 ret |= CPSR_A; 2014 } 2015 } 2016 2017 return ret; 2018 } 2019 2020 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2021 bool isread) 2022 { 2023 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2024 return CP_ACCESS_TRAP_EL2; 2025 } 2026 2027 return CP_ACCESS_OK; 2028 } 2029 2030 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2031 bool isread) 2032 { 2033 if (arm_feature(env, ARM_FEATURE_V8)) { 2034 return access_aa64_tid1(env, ri, isread); 2035 } 2036 2037 return CP_ACCESS_OK; 2038 } 2039 2040 static const ARMCPRegInfo v7_cp_reginfo[] = { 2041 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2042 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2043 .access = PL1_W, .type = ARM_CP_NOP }, 2044 /* 2045 * Performance monitors are implementation defined in v7, 2046 * but with an ARM recommended set of registers, which we 2047 * follow. 2048 * 2049 * Performance registers fall into three categories: 2050 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2051 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2052 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2053 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2054 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2055 */ 2056 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2057 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2059 .writefn = pmcntenset_write, 2060 .accessfn = pmreg_access, 2061 .fgt = FGT_PMCNTEN, 2062 .raw_writefn = raw_write }, 2063 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2064 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2065 .access = PL0_RW, .accessfn = pmreg_access, 2066 .fgt = FGT_PMCNTEN, 2067 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2068 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2069 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2070 .access = PL0_RW, 2071 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2072 .accessfn = pmreg_access, 2073 .fgt = FGT_PMCNTEN, 2074 .writefn = pmcntenclr_write, 2075 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2076 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2078 .access = PL0_RW, .accessfn = pmreg_access, 2079 .fgt = FGT_PMCNTEN, 2080 .type = ARM_CP_ALIAS | ARM_CP_IO, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2082 .writefn = pmcntenclr_write }, 2083 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2084 .access = PL0_RW, .type = ARM_CP_IO, 2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2086 .accessfn = pmreg_access, 2087 .fgt = FGT_PMOVS, 2088 .writefn = pmovsr_write, 2089 .raw_writefn = raw_write }, 2090 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2091 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2092 .access = PL0_RW, .accessfn = pmreg_access, 2093 .fgt = FGT_PMOVS, 2094 .type = ARM_CP_ALIAS | ARM_CP_IO, 2095 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2096 .writefn = pmovsr_write, 2097 .raw_writefn = raw_write }, 2098 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2099 .access = PL0_W, .accessfn = pmreg_access_swinc, 2100 .fgt = FGT_PMSWINC_EL0, 2101 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2102 .writefn = pmswinc_write }, 2103 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2105 .access = PL0_W, .accessfn = pmreg_access_swinc, 2106 .fgt = FGT_PMSWINC_EL0, 2107 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2108 .writefn = pmswinc_write }, 2109 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2110 .access = PL0_RW, .type = ARM_CP_ALIAS, 2111 .fgt = FGT_PMSELR_EL0, 2112 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2113 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2114 .raw_writefn = raw_write}, 2115 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2116 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2117 .access = PL0_RW, .accessfn = pmreg_access_selr, 2118 .fgt = FGT_PMSELR_EL0, 2119 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2120 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2121 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2122 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .fgt = FGT_PMCCNTR_EL0, 2124 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2125 .accessfn = pmreg_access_ccntr }, 2126 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2127 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2128 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2129 .fgt = FGT_PMCCNTR_EL0, 2130 .type = ARM_CP_IO, 2131 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2132 .readfn = pmccntr_read, .writefn = pmccntr_write, 2133 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2134 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2135 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2136 .access = PL0_RW, .accessfn = pmreg_access, 2137 .fgt = FGT_PMCCFILTR_EL0, 2138 .type = ARM_CP_ALIAS | ARM_CP_IO, 2139 .resetvalue = 0, }, 2140 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2142 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2143 .access = PL0_RW, .accessfn = pmreg_access, 2144 .fgt = FGT_PMCCFILTR_EL0, 2145 .type = ARM_CP_IO, 2146 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2147 .resetvalue = 0, }, 2148 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .accessfn = pmreg_access, 2151 .fgt = FGT_PMEVTYPERN_EL0, 2152 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2153 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2154 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2155 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2156 .accessfn = pmreg_access, 2157 .fgt = FGT_PMEVTYPERN_EL0, 2158 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2159 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2160 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2161 .accessfn = pmreg_access_xevcntr, 2162 .fgt = FGT_PMEVCNTRN_EL0, 2163 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2164 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2165 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2166 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2167 .accessfn = pmreg_access_xevcntr, 2168 .fgt = FGT_PMEVCNTRN_EL0, 2169 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2170 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2171 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2173 .resetvalue = 0, 2174 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2175 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2176 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2177 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2179 .resetvalue = 0, 2180 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2181 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2182 .access = PL1_RW, .accessfn = access_tpm, 2183 .fgt = FGT_PMINTEN, 2184 .type = ARM_CP_ALIAS | ARM_CP_IO, 2185 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2186 .resetvalue = 0, 2187 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2188 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2189 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2190 .access = PL1_RW, .accessfn = access_tpm, 2191 .fgt = FGT_PMINTEN, 2192 .type = ARM_CP_IO, 2193 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2194 .writefn = pmintenset_write, .raw_writefn = raw_write, 2195 .resetvalue = 0x0 }, 2196 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2197 .access = PL1_RW, .accessfn = access_tpm, 2198 .fgt = FGT_PMINTEN, 2199 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2200 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2201 .writefn = pmintenclr_write, }, 2202 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2204 .access = PL1_RW, .accessfn = access_tpm, 2205 .fgt = FGT_PMINTEN, 2206 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2208 .writefn = pmintenclr_write }, 2209 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2210 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2211 .access = PL1_R, 2212 .accessfn = access_tid4, 2213 .fgt = FGT_CCSIDR_EL1, 2214 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2215 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2216 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2217 .access = PL1_RW, 2218 .accessfn = access_tid4, 2219 .fgt = FGT_CSSELR_EL1, 2220 .writefn = csselr_write, .resetvalue = 0, 2221 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2222 offsetof(CPUARMState, cp15.csselr_ns) } }, 2223 /* 2224 * Auxiliary ID register: this actually has an IMPDEF value but for now 2225 * just RAZ for all cores: 2226 */ 2227 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2228 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2229 .access = PL1_R, .type = ARM_CP_CONST, 2230 .accessfn = access_aa64_tid1, 2231 .fgt = FGT_AIDR_EL1, 2232 .resetvalue = 0 }, 2233 /* 2234 * Auxiliary fault status registers: these also are IMPDEF, and we 2235 * choose to RAZ/WI for all cores. 2236 */ 2237 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2238 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2239 .access = PL1_RW, .accessfn = access_tvm_trvm, 2240 .fgt = FGT_AFSR0_EL1, 2241 .type = ARM_CP_CONST, .resetvalue = 0 }, 2242 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2243 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2244 .access = PL1_RW, .accessfn = access_tvm_trvm, 2245 .fgt = FGT_AFSR1_EL1, 2246 .type = ARM_CP_CONST, .resetvalue = 0 }, 2247 /* 2248 * MAIR can just read-as-written because we don't implement caches 2249 * and so don't need to care about memory attributes. 2250 */ 2251 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2252 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2253 .access = PL1_RW, .accessfn = access_tvm_trvm, 2254 .fgt = FGT_MAIR_EL1, 2255 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2256 .resetvalue = 0 }, 2257 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2259 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2260 .resetvalue = 0 }, 2261 /* 2262 * For non-long-descriptor page tables these are PRRR and NMRR; 2263 * regardless they still act as reads-as-written for QEMU. 2264 */ 2265 /* 2266 * MAIR0/1 are defined separately from their 64-bit counterpart which 2267 * allows them to assign the correct fieldoffset based on the endianness 2268 * handled in the field definitions. 2269 */ 2270 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2271 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2272 .access = PL1_RW, .accessfn = access_tvm_trvm, 2273 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2274 offsetof(CPUARMState, cp15.mair0_ns) }, 2275 .resetfn = arm_cp_reset_ignore }, 2276 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2277 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2278 .access = PL1_RW, .accessfn = access_tvm_trvm, 2279 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2280 offsetof(CPUARMState, cp15.mair1_ns) }, 2281 .resetfn = arm_cp_reset_ignore }, 2282 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2284 .fgt = FGT_ISR_EL1, 2285 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2286 /* 32 bit ITLB invalidates */ 2287 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2289 .writefn = tlbiall_write }, 2290 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbimva_write }, 2293 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbiasid_write }, 2296 /* 32 bit DTLB invalidates */ 2297 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2299 .writefn = tlbiall_write }, 2300 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2302 .writefn = tlbimva_write }, 2303 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2305 .writefn = tlbiasid_write }, 2306 /* 32 bit TLB invalidates */ 2307 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2309 .writefn = tlbiall_write }, 2310 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2312 .writefn = tlbimva_write }, 2313 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2315 .writefn = tlbiasid_write }, 2316 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2318 .writefn = tlbimvaa_write }, 2319 }; 2320 2321 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2322 /* 32 bit TLB invalidates, Inner Shareable */ 2323 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2324 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2325 .writefn = tlbiall_is_write }, 2326 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2328 .writefn = tlbimva_is_write }, 2329 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2331 .writefn = tlbiasid_is_write }, 2332 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2334 .writefn = tlbimvaa_is_write }, 2335 }; 2336 2337 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2338 /* PMOVSSET is not implemented in v7 before v7ve */ 2339 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2340 .access = PL0_RW, .accessfn = pmreg_access, 2341 .fgt = FGT_PMOVS, 2342 .type = ARM_CP_ALIAS | ARM_CP_IO, 2343 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2344 .writefn = pmovsset_write, 2345 .raw_writefn = raw_write }, 2346 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2347 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2348 .access = PL0_RW, .accessfn = pmreg_access, 2349 .fgt = FGT_PMOVS, 2350 .type = ARM_CP_ALIAS | ARM_CP_IO, 2351 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2352 .writefn = pmovsset_write, 2353 .raw_writefn = raw_write }, 2354 }; 2355 2356 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2357 uint64_t value) 2358 { 2359 value &= 1; 2360 env->teecr = value; 2361 } 2362 2363 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2364 bool isread) 2365 { 2366 /* 2367 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2368 * at all, so we don't need to check whether we're v8A. 2369 */ 2370 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2371 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2372 return CP_ACCESS_TRAP_EL2; 2373 } 2374 return CP_ACCESS_OK; 2375 } 2376 2377 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2378 bool isread) 2379 { 2380 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2381 return CP_ACCESS_TRAP; 2382 } 2383 return teecr_access(env, ri, isread); 2384 } 2385 2386 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2387 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2388 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2389 .resetvalue = 0, 2390 .writefn = teecr_write, .accessfn = teecr_access }, 2391 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2392 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2393 .accessfn = teehbr_access, .resetvalue = 0 }, 2394 }; 2395 2396 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2397 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2398 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2399 .access = PL0_RW, 2400 .fgt = FGT_TPIDR_EL0, 2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2402 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2403 .access = PL0_RW, 2404 .fgt = FGT_TPIDR_EL0, 2405 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2406 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2407 .resetfn = arm_cp_reset_ignore }, 2408 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2409 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2410 .access = PL0_R | PL1_W, 2411 .fgt = FGT_TPIDRRO_EL0, 2412 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2413 .resetvalue = 0}, 2414 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2415 .access = PL0_R | PL1_W, 2416 .fgt = FGT_TPIDRRO_EL0, 2417 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2418 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2419 .resetfn = arm_cp_reset_ignore }, 2420 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2421 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2422 .access = PL1_RW, 2423 .fgt = FGT_TPIDR_EL1, 2424 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2425 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2426 .access = PL1_RW, 2427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2428 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2429 .resetvalue = 0 }, 2430 }; 2431 2432 #ifndef CONFIG_USER_ONLY 2433 2434 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2435 bool isread) 2436 { 2437 /* 2438 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2439 * Writable only at the highest implemented exception level. 2440 */ 2441 int el = arm_current_el(env); 2442 uint64_t hcr; 2443 uint32_t cntkctl; 2444 2445 switch (el) { 2446 case 0: 2447 hcr = arm_hcr_el2_eff(env); 2448 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2449 cntkctl = env->cp15.cnthctl_el2; 2450 } else { 2451 cntkctl = env->cp15.c14_cntkctl; 2452 } 2453 if (!extract32(cntkctl, 0, 2)) { 2454 return CP_ACCESS_TRAP; 2455 } 2456 break; 2457 case 1: 2458 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2459 arm_is_secure_below_el3(env)) { 2460 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2461 return CP_ACCESS_TRAP_UNCATEGORIZED; 2462 } 2463 break; 2464 case 2: 2465 case 3: 2466 break; 2467 } 2468 2469 if (!isread && el < arm_highest_el(env)) { 2470 return CP_ACCESS_TRAP_UNCATEGORIZED; 2471 } 2472 2473 return CP_ACCESS_OK; 2474 } 2475 2476 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2477 bool isread) 2478 { 2479 unsigned int cur_el = arm_current_el(env); 2480 bool has_el2 = arm_is_el2_enabled(env); 2481 uint64_t hcr = arm_hcr_el2_eff(env); 2482 2483 switch (cur_el) { 2484 case 0: 2485 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2487 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2488 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2489 } 2490 2491 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2492 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2493 return CP_ACCESS_TRAP; 2494 } 2495 /* fall through */ 2496 case 1: 2497 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2498 if (has_el2 && timeridx == GTIMER_PHYS && 2499 (hcr & HCR_E2H 2500 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2501 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2502 return CP_ACCESS_TRAP_EL2; 2503 } 2504 break; 2505 } 2506 return CP_ACCESS_OK; 2507 } 2508 2509 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2510 bool isread) 2511 { 2512 unsigned int cur_el = arm_current_el(env); 2513 bool has_el2 = arm_is_el2_enabled(env); 2514 uint64_t hcr = arm_hcr_el2_eff(env); 2515 2516 switch (cur_el) { 2517 case 0: 2518 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2519 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2520 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2521 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2522 } 2523 2524 /* 2525 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2526 * EL0 if EL0[PV]TEN is zero. 2527 */ 2528 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2529 return CP_ACCESS_TRAP; 2530 } 2531 /* fall through */ 2532 2533 case 1: 2534 if (has_el2 && timeridx == GTIMER_PHYS) { 2535 if (hcr & HCR_E2H) { 2536 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2537 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2538 return CP_ACCESS_TRAP_EL2; 2539 } 2540 } else { 2541 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2542 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2543 return CP_ACCESS_TRAP_EL2; 2544 } 2545 } 2546 } 2547 break; 2548 } 2549 return CP_ACCESS_OK; 2550 } 2551 2552 static CPAccessResult gt_pct_access(CPUARMState *env, 2553 const ARMCPRegInfo *ri, 2554 bool isread) 2555 { 2556 return gt_counter_access(env, GTIMER_PHYS, isread); 2557 } 2558 2559 static CPAccessResult gt_vct_access(CPUARMState *env, 2560 const ARMCPRegInfo *ri, 2561 bool isread) 2562 { 2563 return gt_counter_access(env, GTIMER_VIRT, isread); 2564 } 2565 2566 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2567 bool isread) 2568 { 2569 return gt_timer_access(env, GTIMER_PHYS, isread); 2570 } 2571 2572 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2573 bool isread) 2574 { 2575 return gt_timer_access(env, GTIMER_VIRT, isread); 2576 } 2577 2578 static CPAccessResult gt_stimer_access(CPUARMState *env, 2579 const ARMCPRegInfo *ri, 2580 bool isread) 2581 { 2582 /* 2583 * The AArch64 register view of the secure physical timer is 2584 * always accessible from EL3, and configurably accessible from 2585 * Secure EL1. 2586 */ 2587 switch (arm_current_el(env)) { 2588 case 1: 2589 if (!arm_is_secure(env)) { 2590 return CP_ACCESS_TRAP; 2591 } 2592 if (!(env->cp15.scr_el3 & SCR_ST)) { 2593 return CP_ACCESS_TRAP_EL3; 2594 } 2595 return CP_ACCESS_OK; 2596 case 0: 2597 case 2: 2598 return CP_ACCESS_TRAP; 2599 case 3: 2600 return CP_ACCESS_OK; 2601 default: 2602 g_assert_not_reached(); 2603 } 2604 } 2605 2606 static uint64_t gt_get_countervalue(CPUARMState *env) 2607 { 2608 ARMCPU *cpu = env_archcpu(env); 2609 2610 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2611 } 2612 2613 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2614 { 2615 CPUARMState *env = &cpu->env; 2616 uint64_t cnthctl = env->cp15.cnthctl_el2; 2617 ARMSecuritySpace ss = arm_security_space(env); 2618 /* ISTATUS && !IMASK */ 2619 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2620 2621 /* 2622 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2623 * It is RES0 in Secure and NonSecure state. 2624 */ 2625 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2626 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2627 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2628 irqstate = 0; 2629 } 2630 2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2632 trace_arm_gt_update_irq(timeridx, irqstate); 2633 } 2634 2635 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2636 { 2637 /* 2638 * Changing security state between Root and Secure/NonSecure, which may 2639 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2640 * mask bits. Update the IRQ state accordingly. 2641 */ 2642 gt_update_irq(cpu, GTIMER_VIRT); 2643 gt_update_irq(cpu, GTIMER_PHYS); 2644 } 2645 2646 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2647 { 2648 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2649 2650 if (gt->ctl & 1) { 2651 /* 2652 * Timer enabled: calculate and set current ISTATUS, irq, and 2653 * reset timer to when ISTATUS next has to change 2654 */ 2655 uint64_t offset = timeridx == GTIMER_VIRT ? 2656 cpu->env.cp15.cntvoff_el2 : 0; 2657 uint64_t count = gt_get_countervalue(&cpu->env); 2658 /* Note that this must be unsigned 64 bit arithmetic: */ 2659 int istatus = count - offset >= gt->cval; 2660 uint64_t nexttick; 2661 2662 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2663 2664 if (istatus) { 2665 /* 2666 * Next transition is when (count - offset) rolls back over to 0. 2667 * If offset > count then this is when count == offset; 2668 * if offset <= count then this is when count == offset + 2^64 2669 * For the latter case we set nexttick to an "as far in future 2670 * as possible" value and let the code below handle it. 2671 */ 2672 if (offset > count) { 2673 nexttick = offset; 2674 } else { 2675 nexttick = UINT64_MAX; 2676 } 2677 } else { 2678 /* 2679 * Next transition is when (count - offset) == cval, i.e. 2680 * when count == (cval + offset). 2681 * If that would overflow, then again we set up the next interrupt 2682 * for "as far in the future as possible" for the code below. 2683 */ 2684 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2685 nexttick = UINT64_MAX; 2686 } 2687 } 2688 /* 2689 * Note that the desired next expiry time might be beyond the 2690 * signed-64-bit range of a QEMUTimer -- in this case we just 2691 * set the timer for as far in the future as possible. When the 2692 * timer expires we will reset the timer for any remaining period. 2693 */ 2694 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2695 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2696 } else { 2697 timer_mod(cpu->gt_timer[timeridx], nexttick); 2698 } 2699 trace_arm_gt_recalc(timeridx, nexttick); 2700 } else { 2701 /* Timer disabled: ISTATUS and timer output always clear */ 2702 gt->ctl &= ~4; 2703 timer_del(cpu->gt_timer[timeridx]); 2704 trace_arm_gt_recalc_disabled(timeridx); 2705 } 2706 gt_update_irq(cpu, timeridx); 2707 } 2708 2709 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2710 int timeridx) 2711 { 2712 ARMCPU *cpu = env_archcpu(env); 2713 2714 timer_del(cpu->gt_timer[timeridx]); 2715 } 2716 2717 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2718 { 2719 return gt_get_countervalue(env); 2720 } 2721 2722 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2723 { 2724 uint64_t hcr; 2725 2726 switch (arm_current_el(env)) { 2727 case 2: 2728 hcr = arm_hcr_el2_eff(env); 2729 if (hcr & HCR_E2H) { 2730 return 0; 2731 } 2732 break; 2733 case 0: 2734 hcr = arm_hcr_el2_eff(env); 2735 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2736 return 0; 2737 } 2738 break; 2739 } 2740 2741 return env->cp15.cntvoff_el2; 2742 } 2743 2744 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2745 { 2746 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2747 } 2748 2749 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2750 int timeridx, 2751 uint64_t value) 2752 { 2753 trace_arm_gt_cval_write(timeridx, value); 2754 env->cp15.c14_timer[timeridx].cval = value; 2755 gt_recalc_timer(env_archcpu(env), timeridx); 2756 } 2757 2758 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2759 int timeridx) 2760 { 2761 uint64_t offset = 0; 2762 2763 switch (timeridx) { 2764 case GTIMER_VIRT: 2765 case GTIMER_HYPVIRT: 2766 offset = gt_virt_cnt_offset(env); 2767 break; 2768 } 2769 2770 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2771 (gt_get_countervalue(env) - offset)); 2772 } 2773 2774 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2775 int timeridx, 2776 uint64_t value) 2777 { 2778 uint64_t offset = 0; 2779 2780 switch (timeridx) { 2781 case GTIMER_VIRT: 2782 case GTIMER_HYPVIRT: 2783 offset = gt_virt_cnt_offset(env); 2784 break; 2785 } 2786 2787 trace_arm_gt_tval_write(timeridx, value); 2788 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2789 sextract64(value, 0, 32); 2790 gt_recalc_timer(env_archcpu(env), timeridx); 2791 } 2792 2793 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 int timeridx, 2795 uint64_t value) 2796 { 2797 ARMCPU *cpu = env_archcpu(env); 2798 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2799 2800 trace_arm_gt_ctl_write(timeridx, value); 2801 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2802 if ((oldval ^ value) & 1) { 2803 /* Enable toggled */ 2804 gt_recalc_timer(cpu, timeridx); 2805 } else if ((oldval ^ value) & 2) { 2806 /* 2807 * IMASK toggled: don't need to recalculate, 2808 * just set the interrupt line based on ISTATUS 2809 */ 2810 trace_arm_gt_imask_toggle(timeridx); 2811 gt_update_irq(cpu, timeridx); 2812 } 2813 } 2814 2815 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2816 { 2817 gt_timer_reset(env, ri, GTIMER_PHYS); 2818 } 2819 2820 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 gt_cval_write(env, ri, GTIMER_PHYS, value); 2824 } 2825 2826 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2827 { 2828 return gt_tval_read(env, ri, GTIMER_PHYS); 2829 } 2830 2831 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2832 uint64_t value) 2833 { 2834 gt_tval_write(env, ri, GTIMER_PHYS, value); 2835 } 2836 2837 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2841 } 2842 2843 static int gt_phys_redir_timeridx(CPUARMState *env) 2844 { 2845 switch (arm_mmu_idx(env)) { 2846 case ARMMMUIdx_E20_0: 2847 case ARMMMUIdx_E20_2: 2848 case ARMMMUIdx_E20_2_PAN: 2849 return GTIMER_HYP; 2850 default: 2851 return GTIMER_PHYS; 2852 } 2853 } 2854 2855 static int gt_virt_redir_timeridx(CPUARMState *env) 2856 { 2857 switch (arm_mmu_idx(env)) { 2858 case ARMMMUIdx_E20_0: 2859 case ARMMMUIdx_E20_2: 2860 case ARMMMUIdx_E20_2_PAN: 2861 return GTIMER_HYPVIRT; 2862 default: 2863 return GTIMER_VIRT; 2864 } 2865 } 2866 2867 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2868 const ARMCPRegInfo *ri) 2869 { 2870 int timeridx = gt_phys_redir_timeridx(env); 2871 return env->cp15.c14_timer[timeridx].cval; 2872 } 2873 2874 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2875 uint64_t value) 2876 { 2877 int timeridx = gt_phys_redir_timeridx(env); 2878 gt_cval_write(env, ri, timeridx, value); 2879 } 2880 2881 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2882 const ARMCPRegInfo *ri) 2883 { 2884 int timeridx = gt_phys_redir_timeridx(env); 2885 return gt_tval_read(env, ri, timeridx); 2886 } 2887 2888 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2889 uint64_t value) 2890 { 2891 int timeridx = gt_phys_redir_timeridx(env); 2892 gt_tval_write(env, ri, timeridx, value); 2893 } 2894 2895 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2896 const ARMCPRegInfo *ri) 2897 { 2898 int timeridx = gt_phys_redir_timeridx(env); 2899 return env->cp15.c14_timer[timeridx].ctl; 2900 } 2901 2902 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 int timeridx = gt_phys_redir_timeridx(env); 2906 gt_ctl_write(env, ri, timeridx, value); 2907 } 2908 2909 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2910 { 2911 gt_timer_reset(env, ri, GTIMER_VIRT); 2912 } 2913 2914 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2915 uint64_t value) 2916 { 2917 gt_cval_write(env, ri, GTIMER_VIRT, value); 2918 } 2919 2920 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2921 { 2922 return gt_tval_read(env, ri, GTIMER_VIRT); 2923 } 2924 2925 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2926 uint64_t value) 2927 { 2928 gt_tval_write(env, ri, GTIMER_VIRT, value); 2929 } 2930 2931 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2932 uint64_t value) 2933 { 2934 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2935 } 2936 2937 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2938 uint64_t value) 2939 { 2940 ARMCPU *cpu = env_archcpu(env); 2941 uint32_t oldval = env->cp15.cnthctl_el2; 2942 2943 raw_write(env, ri, value); 2944 2945 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2946 gt_update_irq(cpu, GTIMER_VIRT); 2947 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2948 gt_update_irq(cpu, GTIMER_PHYS); 2949 } 2950 } 2951 2952 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2953 uint64_t value) 2954 { 2955 ARMCPU *cpu = env_archcpu(env); 2956 2957 trace_arm_gt_cntvoff_write(value); 2958 raw_write(env, ri, value); 2959 gt_recalc_timer(cpu, GTIMER_VIRT); 2960 } 2961 2962 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2963 const ARMCPRegInfo *ri) 2964 { 2965 int timeridx = gt_virt_redir_timeridx(env); 2966 return env->cp15.c14_timer[timeridx].cval; 2967 } 2968 2969 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 int timeridx = gt_virt_redir_timeridx(env); 2973 gt_cval_write(env, ri, timeridx, value); 2974 } 2975 2976 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2977 const ARMCPRegInfo *ri) 2978 { 2979 int timeridx = gt_virt_redir_timeridx(env); 2980 return gt_tval_read(env, ri, timeridx); 2981 } 2982 2983 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2984 uint64_t value) 2985 { 2986 int timeridx = gt_virt_redir_timeridx(env); 2987 gt_tval_write(env, ri, timeridx, value); 2988 } 2989 2990 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2991 const ARMCPRegInfo *ri) 2992 { 2993 int timeridx = gt_virt_redir_timeridx(env); 2994 return env->cp15.c14_timer[timeridx].ctl; 2995 } 2996 2997 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2998 uint64_t value) 2999 { 3000 int timeridx = gt_virt_redir_timeridx(env); 3001 gt_ctl_write(env, ri, timeridx, value); 3002 } 3003 3004 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3005 { 3006 gt_timer_reset(env, ri, GTIMER_HYP); 3007 } 3008 3009 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3010 uint64_t value) 3011 { 3012 gt_cval_write(env, ri, GTIMER_HYP, value); 3013 } 3014 3015 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3016 { 3017 return gt_tval_read(env, ri, GTIMER_HYP); 3018 } 3019 3020 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3021 uint64_t value) 3022 { 3023 gt_tval_write(env, ri, GTIMER_HYP, value); 3024 } 3025 3026 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3027 uint64_t value) 3028 { 3029 gt_ctl_write(env, ri, GTIMER_HYP, value); 3030 } 3031 3032 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3033 { 3034 gt_timer_reset(env, ri, GTIMER_SEC); 3035 } 3036 3037 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3038 uint64_t value) 3039 { 3040 gt_cval_write(env, ri, GTIMER_SEC, value); 3041 } 3042 3043 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3044 { 3045 return gt_tval_read(env, ri, GTIMER_SEC); 3046 } 3047 3048 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3049 uint64_t value) 3050 { 3051 gt_tval_write(env, ri, GTIMER_SEC, value); 3052 } 3053 3054 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3055 uint64_t value) 3056 { 3057 gt_ctl_write(env, ri, GTIMER_SEC, value); 3058 } 3059 3060 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3061 { 3062 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3063 } 3064 3065 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3066 uint64_t value) 3067 { 3068 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3069 } 3070 3071 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3072 { 3073 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3074 } 3075 3076 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3077 uint64_t value) 3078 { 3079 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3080 } 3081 3082 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3083 uint64_t value) 3084 { 3085 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3086 } 3087 3088 void arm_gt_ptimer_cb(void *opaque) 3089 { 3090 ARMCPU *cpu = opaque; 3091 3092 gt_recalc_timer(cpu, GTIMER_PHYS); 3093 } 3094 3095 void arm_gt_vtimer_cb(void *opaque) 3096 { 3097 ARMCPU *cpu = opaque; 3098 3099 gt_recalc_timer(cpu, GTIMER_VIRT); 3100 } 3101 3102 void arm_gt_htimer_cb(void *opaque) 3103 { 3104 ARMCPU *cpu = opaque; 3105 3106 gt_recalc_timer(cpu, GTIMER_HYP); 3107 } 3108 3109 void arm_gt_stimer_cb(void *opaque) 3110 { 3111 ARMCPU *cpu = opaque; 3112 3113 gt_recalc_timer(cpu, GTIMER_SEC); 3114 } 3115 3116 void arm_gt_hvtimer_cb(void *opaque) 3117 { 3118 ARMCPU *cpu = opaque; 3119 3120 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3121 } 3122 3123 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3124 { 3125 ARMCPU *cpu = env_archcpu(env); 3126 3127 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3128 } 3129 3130 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3131 /* 3132 * Note that CNTFRQ is purely reads-as-written for the benefit 3133 * of software; writing it doesn't actually change the timer frequency. 3134 * Our reset value matches the fixed frequency we implement the timer at. 3135 */ 3136 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3137 .type = ARM_CP_ALIAS, 3138 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3139 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3140 }, 3141 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3142 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3143 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3145 .resetfn = arm_gt_cntfrq_reset, 3146 }, 3147 /* overall control: mostly access permissions */ 3148 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3149 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3150 .access = PL1_RW, 3151 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3152 .resetvalue = 0, 3153 }, 3154 /* per-timer control */ 3155 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3156 .secure = ARM_CP_SECSTATE_NS, 3157 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3158 .accessfn = gt_ptimer_access, 3159 .fieldoffset = offsetoflow32(CPUARMState, 3160 cp15.c14_timer[GTIMER_PHYS].ctl), 3161 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3162 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3163 }, 3164 { .name = "CNTP_CTL_S", 3165 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3166 .secure = ARM_CP_SECSTATE_S, 3167 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3168 .accessfn = gt_ptimer_access, 3169 .fieldoffset = offsetoflow32(CPUARMState, 3170 cp15.c14_timer[GTIMER_SEC].ctl), 3171 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3172 }, 3173 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3174 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3175 .type = ARM_CP_IO, .access = PL0_RW, 3176 .accessfn = gt_ptimer_access, 3177 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3178 .resetvalue = 0, 3179 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3180 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3181 }, 3182 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3183 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3184 .accessfn = gt_vtimer_access, 3185 .fieldoffset = offsetoflow32(CPUARMState, 3186 cp15.c14_timer[GTIMER_VIRT].ctl), 3187 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3188 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3189 }, 3190 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3192 .type = ARM_CP_IO, .access = PL0_RW, 3193 .accessfn = gt_vtimer_access, 3194 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3195 .resetvalue = 0, 3196 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3197 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3198 }, 3199 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3200 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3201 .secure = ARM_CP_SECSTATE_NS, 3202 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3203 .accessfn = gt_ptimer_access, 3204 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3205 }, 3206 { .name = "CNTP_TVAL_S", 3207 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3208 .secure = ARM_CP_SECSTATE_S, 3209 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3210 .accessfn = gt_ptimer_access, 3211 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3212 }, 3213 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3215 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3216 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3217 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3218 }, 3219 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3220 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3221 .accessfn = gt_vtimer_access, 3222 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3223 }, 3224 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3225 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3226 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3227 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3228 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3229 }, 3230 /* The counter itself */ 3231 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3232 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3233 .accessfn = gt_pct_access, 3234 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3235 }, 3236 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3238 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3239 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3240 }, 3241 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3242 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3243 .accessfn = gt_vct_access, 3244 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3245 }, 3246 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3248 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3249 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3250 }, 3251 /* Comparison value, indicating when the timer goes off */ 3252 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3253 .secure = ARM_CP_SECSTATE_NS, 3254 .access = PL0_RW, 3255 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3256 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3257 .accessfn = gt_ptimer_access, 3258 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3259 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3260 }, 3261 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3262 .secure = ARM_CP_SECSTATE_S, 3263 .access = PL0_RW, 3264 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3266 .accessfn = gt_ptimer_access, 3267 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3268 }, 3269 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3271 .access = PL0_RW, 3272 .type = ARM_CP_IO, 3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3274 .resetvalue = 0, .accessfn = gt_ptimer_access, 3275 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3276 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3277 }, 3278 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3279 .access = PL0_RW, 3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3282 .accessfn = gt_vtimer_access, 3283 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3284 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3288 .access = PL0_RW, 3289 .type = ARM_CP_IO, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3291 .resetvalue = 0, .accessfn = gt_vtimer_access, 3292 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3293 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3294 }, 3295 /* 3296 * Secure timer -- this is actually restricted to only EL3 3297 * and configurably Secure-EL1 via the accessfn. 3298 */ 3299 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3300 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3301 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3302 .accessfn = gt_stimer_access, 3303 .readfn = gt_sec_tval_read, 3304 .writefn = gt_sec_tval_write, 3305 .resetfn = gt_sec_timer_reset, 3306 }, 3307 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3308 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3309 .type = ARM_CP_IO, .access = PL1_RW, 3310 .accessfn = gt_stimer_access, 3311 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3312 .resetvalue = 0, 3313 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3314 }, 3315 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3316 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3317 .type = ARM_CP_IO, .access = PL1_RW, 3318 .accessfn = gt_stimer_access, 3319 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3320 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3321 }, 3322 }; 3323 3324 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3325 bool isread) 3326 { 3327 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3328 return CP_ACCESS_TRAP; 3329 } 3330 return CP_ACCESS_OK; 3331 } 3332 3333 #else 3334 3335 /* 3336 * In user-mode most of the generic timer registers are inaccessible 3337 * however modern kernels (4.12+) allow access to cntvct_el0 3338 */ 3339 3340 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3341 { 3342 ARMCPU *cpu = env_archcpu(env); 3343 3344 /* 3345 * Currently we have no support for QEMUTimer in linux-user so we 3346 * can't call gt_get_countervalue(env), instead we directly 3347 * call the lower level functions. 3348 */ 3349 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3350 } 3351 3352 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3353 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3355 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3356 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3357 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3358 }, 3359 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3361 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3362 .readfn = gt_virt_cnt_read, 3363 }, 3364 }; 3365 3366 #endif 3367 3368 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3369 { 3370 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3371 raw_write(env, ri, value); 3372 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3373 raw_write(env, ri, value & 0xfffff6ff); 3374 } else { 3375 raw_write(env, ri, value & 0xfffff1ff); 3376 } 3377 } 3378 3379 #ifndef CONFIG_USER_ONLY 3380 /* get_phys_addr() isn't present for user-mode-only targets */ 3381 3382 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3383 bool isread) 3384 { 3385 if (ri->opc2 & 4) { 3386 /* 3387 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3388 * Secure EL1 (which can only happen if EL3 is AArch64). 3389 * They are simply UNDEF if executed from NS EL1. 3390 * They function normally from EL2 or EL3. 3391 */ 3392 if (arm_current_el(env) == 1) { 3393 if (arm_is_secure_below_el3(env)) { 3394 if (env->cp15.scr_el3 & SCR_EEL2) { 3395 return CP_ACCESS_TRAP_EL2; 3396 } 3397 return CP_ACCESS_TRAP_EL3; 3398 } 3399 return CP_ACCESS_TRAP_UNCATEGORIZED; 3400 } 3401 } 3402 return CP_ACCESS_OK; 3403 } 3404 3405 #ifdef CONFIG_TCG 3406 static int par_el1_shareability(GetPhysAddrResult *res) 3407 { 3408 /* 3409 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3410 * memory -- see pseudocode PAREncodeShareability(). 3411 */ 3412 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3413 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3414 return 2; 3415 } 3416 return res->cacheattrs.shareability; 3417 } 3418 3419 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3420 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3421 ARMSecuritySpace ss) 3422 { 3423 bool ret; 3424 uint64_t par64; 3425 bool format64 = false; 3426 ARMMMUFaultInfo fi = {}; 3427 GetPhysAddrResult res = {}; 3428 3429 /* 3430 * I_MXTJT: Granule protection checks are not performed on the final address 3431 * of a successful translation. 3432 */ 3433 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3434 &res, &fi); 3435 3436 /* 3437 * ATS operations only do S1 or S1+S2 translations, so we never 3438 * have to deal with the ARMCacheAttrs format for S2 only. 3439 */ 3440 assert(!res.cacheattrs.is_s2_format); 3441 3442 if (ret) { 3443 /* 3444 * Some kinds of translation fault must cause exceptions rather 3445 * than being reported in the PAR. 3446 */ 3447 int current_el = arm_current_el(env); 3448 int target_el; 3449 uint32_t syn, fsr, fsc; 3450 bool take_exc = false; 3451 3452 if (fi.s1ptw && current_el == 1 3453 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3454 /* 3455 * Synchronous stage 2 fault on an access made as part of the 3456 * translation table walk for AT S1E0* or AT S1E1* insn 3457 * executed from NS EL1. If this is a synchronous external abort 3458 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3459 * to EL3. Otherwise the fault is taken as an exception to EL2, 3460 * and HPFAR_EL2 holds the faulting IPA. 3461 */ 3462 if (fi.type == ARMFault_SyncExternalOnWalk && 3463 (env->cp15.scr_el3 & SCR_EA)) { 3464 target_el = 3; 3465 } else { 3466 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3467 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3468 env->cp15.hpfar_el2 |= HPFAR_NS; 3469 } 3470 target_el = 2; 3471 } 3472 take_exc = true; 3473 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3474 /* 3475 * Synchronous external aborts during a translation table walk 3476 * are taken as Data Abort exceptions. 3477 */ 3478 if (fi.stage2) { 3479 if (current_el == 3) { 3480 target_el = 3; 3481 } else { 3482 target_el = 2; 3483 } 3484 } else { 3485 target_el = exception_target_el(env); 3486 } 3487 take_exc = true; 3488 } 3489 3490 if (take_exc) { 3491 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3492 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3493 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3494 fsr = arm_fi_to_lfsc(&fi); 3495 fsc = extract32(fsr, 0, 6); 3496 } else { 3497 fsr = arm_fi_to_sfsc(&fi); 3498 fsc = 0x3f; 3499 } 3500 /* 3501 * Report exception with ESR indicating a fault due to a 3502 * translation table walk for a cache maintenance instruction. 3503 */ 3504 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3505 fi.ea, 1, fi.s1ptw, 1, fsc); 3506 env->exception.vaddress = value; 3507 env->exception.fsr = fsr; 3508 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3509 } 3510 } 3511 3512 if (is_a64(env)) { 3513 format64 = true; 3514 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3515 /* 3516 * ATS1Cxx: 3517 * * TTBCR.EAE determines whether the result is returned using the 3518 * 32-bit or the 64-bit PAR format 3519 * * Instructions executed in Hyp mode always use the 64bit format 3520 * 3521 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3522 * * The Non-secure TTBCR.EAE bit is set to 1 3523 * * The implementation includes EL2, and the value of HCR.VM is 1 3524 * 3525 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3526 * 3527 * ATS1Hx always uses the 64bit format. 3528 */ 3529 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3530 3531 if (arm_feature(env, ARM_FEATURE_EL2)) { 3532 if (mmu_idx == ARMMMUIdx_E10_0 || 3533 mmu_idx == ARMMMUIdx_E10_1 || 3534 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3535 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3536 } else { 3537 format64 |= arm_current_el(env) == 2; 3538 } 3539 } 3540 } 3541 3542 if (format64) { 3543 /* Create a 64-bit PAR */ 3544 par64 = (1 << 11); /* LPAE bit always set */ 3545 if (!ret) { 3546 par64 |= res.f.phys_addr & ~0xfffULL; 3547 if (!res.f.attrs.secure) { 3548 par64 |= (1 << 9); /* NS */ 3549 } 3550 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3551 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3552 } else { 3553 uint32_t fsr = arm_fi_to_lfsc(&fi); 3554 3555 par64 |= 1; /* F */ 3556 par64 |= (fsr & 0x3f) << 1; /* FS */ 3557 if (fi.stage2) { 3558 par64 |= (1 << 9); /* S */ 3559 } 3560 if (fi.s1ptw) { 3561 par64 |= (1 << 8); /* PTW */ 3562 } 3563 } 3564 } else { 3565 /* 3566 * fsr is a DFSR/IFSR value for the short descriptor 3567 * translation table format (with WnR always clear). 3568 * Convert it to a 32-bit PAR. 3569 */ 3570 if (!ret) { 3571 /* We do not set any attribute bits in the PAR */ 3572 if (res.f.lg_page_size == 24 3573 && arm_feature(env, ARM_FEATURE_V7)) { 3574 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3575 } else { 3576 par64 = res.f.phys_addr & 0xfffff000; 3577 } 3578 if (!res.f.attrs.secure) { 3579 par64 |= (1 << 9); /* NS */ 3580 } 3581 } else { 3582 uint32_t fsr = arm_fi_to_sfsc(&fi); 3583 3584 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3585 ((fsr & 0xf) << 1) | 1; 3586 } 3587 } 3588 return par64; 3589 } 3590 #endif /* CONFIG_TCG */ 3591 3592 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3593 { 3594 #ifdef CONFIG_TCG 3595 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3596 uint64_t par64; 3597 ARMMMUIdx mmu_idx; 3598 int el = arm_current_el(env); 3599 ARMSecuritySpace ss = arm_security_space(env); 3600 3601 switch (ri->opc2 & 6) { 3602 case 0: 3603 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3604 switch (el) { 3605 case 3: 3606 mmu_idx = ARMMMUIdx_E3; 3607 break; 3608 case 2: 3609 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3610 /* fall through */ 3611 case 1: 3612 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3613 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3614 } else { 3615 mmu_idx = ARMMMUIdx_Stage1_E1; 3616 } 3617 break; 3618 default: 3619 g_assert_not_reached(); 3620 } 3621 break; 3622 case 2: 3623 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3624 switch (el) { 3625 case 3: 3626 mmu_idx = ARMMMUIdx_E10_0; 3627 break; 3628 case 2: 3629 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3630 mmu_idx = ARMMMUIdx_Stage1_E0; 3631 break; 3632 case 1: 3633 mmu_idx = ARMMMUIdx_Stage1_E0; 3634 break; 3635 default: 3636 g_assert_not_reached(); 3637 } 3638 break; 3639 case 4: 3640 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3641 mmu_idx = ARMMMUIdx_E10_1; 3642 ss = ARMSS_NonSecure; 3643 break; 3644 case 6: 3645 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3646 mmu_idx = ARMMMUIdx_E10_0; 3647 ss = ARMSS_NonSecure; 3648 break; 3649 default: 3650 g_assert_not_reached(); 3651 } 3652 3653 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3654 3655 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3656 #else 3657 /* Handled by hardware accelerator. */ 3658 g_assert_not_reached(); 3659 #endif /* CONFIG_TCG */ 3660 } 3661 3662 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3663 uint64_t value) 3664 { 3665 #ifdef CONFIG_TCG 3666 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3667 uint64_t par64; 3668 3669 /* There is no SecureEL2 for AArch32. */ 3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3671 ARMSS_NonSecure); 3672 3673 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3674 #else 3675 /* Handled by hardware accelerator. */ 3676 g_assert_not_reached(); 3677 #endif /* CONFIG_TCG */ 3678 } 3679 3680 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3681 bool isread) 3682 { 3683 /* 3684 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3685 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3686 * only happen when executing at EL3 because that combination also causes an 3687 * illegal exception return. We don't need to check FEAT_RME either, because 3688 * scr_write() ensures that the NSE bit is not set otherwise. 3689 */ 3690 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3691 return CP_ACCESS_TRAP; 3692 } 3693 return CP_ACCESS_OK; 3694 } 3695 3696 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3697 bool isread) 3698 { 3699 if (arm_current_el(env) == 3 && 3700 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3701 return CP_ACCESS_TRAP; 3702 } 3703 return at_e012_access(env, ri, isread); 3704 } 3705 3706 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3707 uint64_t value) 3708 { 3709 #ifdef CONFIG_TCG 3710 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3711 ARMMMUIdx mmu_idx; 3712 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3713 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3714 3715 switch (ri->opc2 & 6) { 3716 case 0: 3717 switch (ri->opc1) { 3718 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3719 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3720 mmu_idx = regime_e20 ? 3721 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3722 } else { 3723 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3724 } 3725 break; 3726 case 4: /* AT S1E2R, AT S1E2W */ 3727 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3728 break; 3729 case 6: /* AT S1E3R, AT S1E3W */ 3730 mmu_idx = ARMMMUIdx_E3; 3731 break; 3732 default: 3733 g_assert_not_reached(); 3734 } 3735 break; 3736 case 2: /* AT S1E0R, AT S1E0W */ 3737 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3738 break; 3739 case 4: /* AT S12E1R, AT S12E1W */ 3740 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3741 break; 3742 case 6: /* AT S12E0R, AT S12E0W */ 3743 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3744 break; 3745 default: 3746 g_assert_not_reached(); 3747 } 3748 3749 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3750 mmu_idx, arm_security_space(env)); 3751 #else 3752 /* Handled by hardware accelerator. */ 3753 g_assert_not_reached(); 3754 #endif /* CONFIG_TCG */ 3755 } 3756 #endif 3757 3758 /* Return basic MPU access permission bits. */ 3759 static uint32_t simple_mpu_ap_bits(uint32_t val) 3760 { 3761 uint32_t ret; 3762 uint32_t mask; 3763 int i; 3764 ret = 0; 3765 mask = 3; 3766 for (i = 0; i < 16; i += 2) { 3767 ret |= (val >> i) & mask; 3768 mask <<= 2; 3769 } 3770 return ret; 3771 } 3772 3773 /* Pad basic MPU access permission bits to extended format. */ 3774 static uint32_t extended_mpu_ap_bits(uint32_t val) 3775 { 3776 uint32_t ret; 3777 uint32_t mask; 3778 int i; 3779 ret = 0; 3780 mask = 3; 3781 for (i = 0; i < 16; i += 2) { 3782 ret |= (val & mask) << i; 3783 mask <<= 2; 3784 } 3785 return ret; 3786 } 3787 3788 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3789 uint64_t value) 3790 { 3791 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3792 } 3793 3794 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3795 { 3796 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3797 } 3798 3799 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3800 uint64_t value) 3801 { 3802 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3803 } 3804 3805 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3806 { 3807 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3808 } 3809 3810 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3811 { 3812 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3813 3814 if (!u32p) { 3815 return 0; 3816 } 3817 3818 u32p += env->pmsav7.rnr[M_REG_NS]; 3819 return *u32p; 3820 } 3821 3822 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3823 uint64_t value) 3824 { 3825 ARMCPU *cpu = env_archcpu(env); 3826 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3827 3828 if (!u32p) { 3829 return; 3830 } 3831 3832 u32p += env->pmsav7.rnr[M_REG_NS]; 3833 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3834 *u32p = value; 3835 } 3836 3837 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3838 uint64_t value) 3839 { 3840 ARMCPU *cpu = env_archcpu(env); 3841 uint32_t nrgs = cpu->pmsav7_dregion; 3842 3843 if (value >= nrgs) { 3844 qemu_log_mask(LOG_GUEST_ERROR, 3845 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3846 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3847 return; 3848 } 3849 3850 raw_write(env, ri, value); 3851 } 3852 3853 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3854 uint64_t value) 3855 { 3856 ARMCPU *cpu = env_archcpu(env); 3857 3858 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3859 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3860 } 3861 3862 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3863 { 3864 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3865 } 3866 3867 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 ARMCPU *cpu = env_archcpu(env); 3871 3872 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3873 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3874 } 3875 3876 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3877 { 3878 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3879 } 3880 3881 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3882 uint64_t value) 3883 { 3884 ARMCPU *cpu = env_archcpu(env); 3885 3886 /* 3887 * Ignore writes that would select not implemented region. 3888 * This is architecturally UNPREDICTABLE. 3889 */ 3890 if (value >= cpu->pmsav7_dregion) { 3891 return; 3892 } 3893 3894 env->pmsav7.rnr[M_REG_NS] = value; 3895 } 3896 3897 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3898 uint64_t value) 3899 { 3900 ARMCPU *cpu = env_archcpu(env); 3901 3902 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3903 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3904 } 3905 3906 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3907 { 3908 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3909 } 3910 3911 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3912 uint64_t value) 3913 { 3914 ARMCPU *cpu = env_archcpu(env); 3915 3916 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3917 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3918 } 3919 3920 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3921 { 3922 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3923 } 3924 3925 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 uint32_t n; 3929 uint32_t bit; 3930 ARMCPU *cpu = env_archcpu(env); 3931 3932 /* Ignore writes to unimplemented regions */ 3933 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3934 value &= MAKE_64BIT_MASK(0, rmax); 3935 3936 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3937 3938 /* Register alias is only valid for first 32 indexes */ 3939 for (n = 0; n < rmax; ++n) { 3940 bit = extract32(value, n, 1); 3941 env->pmsav8.hprlar[n] = deposit32( 3942 env->pmsav8.hprlar[n], 0, 1, bit); 3943 } 3944 } 3945 3946 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3947 { 3948 uint32_t n; 3949 uint32_t result = 0x0; 3950 ARMCPU *cpu = env_archcpu(env); 3951 3952 /* Register alias is only valid for first 32 indexes */ 3953 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3954 if (env->pmsav8.hprlar[n] & 0x1) { 3955 result |= (0x1 << n); 3956 } 3957 } 3958 return result; 3959 } 3960 3961 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 ARMCPU *cpu = env_archcpu(env); 3965 3966 /* 3967 * Ignore writes that would select not implemented region. 3968 * This is architecturally UNPREDICTABLE. 3969 */ 3970 if (value >= cpu->pmsav8r_hdregion) { 3971 return; 3972 } 3973 3974 env->pmsav8.hprselr = value; 3975 } 3976 3977 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 ARMCPU *cpu = env_archcpu(env); 3981 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3982 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3983 3984 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3985 3986 if (ri->opc1 & 4) { 3987 if (index >= cpu->pmsav8r_hdregion) { 3988 return; 3989 } 3990 if (ri->opc2 & 0x1) { 3991 env->pmsav8.hprlar[index] = value; 3992 } else { 3993 env->pmsav8.hprbar[index] = value; 3994 } 3995 } else { 3996 if (index >= cpu->pmsav7_dregion) { 3997 return; 3998 } 3999 if (ri->opc2 & 0x1) { 4000 env->pmsav8.rlar[M_REG_NS][index] = value; 4001 } else { 4002 env->pmsav8.rbar[M_REG_NS][index] = value; 4003 } 4004 } 4005 } 4006 4007 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4008 { 4009 ARMCPU *cpu = env_archcpu(env); 4010 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4011 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4012 4013 if (ri->opc1 & 4) { 4014 if (index >= cpu->pmsav8r_hdregion) { 4015 return 0x0; 4016 } 4017 if (ri->opc2 & 0x1) { 4018 return env->pmsav8.hprlar[index]; 4019 } else { 4020 return env->pmsav8.hprbar[index]; 4021 } 4022 } else { 4023 if (index >= cpu->pmsav7_dregion) { 4024 return 0x0; 4025 } 4026 if (ri->opc2 & 0x1) { 4027 return env->pmsav8.rlar[M_REG_NS][index]; 4028 } else { 4029 return env->pmsav8.rbar[M_REG_NS][index]; 4030 } 4031 } 4032 } 4033 4034 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4035 { .name = "PRBAR", 4036 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4037 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4038 .accessfn = access_tvm_trvm, 4039 .readfn = prbar_read, .writefn = prbar_write }, 4040 { .name = "PRLAR", 4041 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4042 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4043 .accessfn = access_tvm_trvm, 4044 .readfn = prlar_read, .writefn = prlar_write }, 4045 { .name = "PRSELR", .resetvalue = 0, 4046 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4047 .access = PL1_RW, .accessfn = access_tvm_trvm, 4048 .writefn = prselr_write, 4049 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4050 { .name = "HPRBAR", .resetvalue = 0, 4051 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4052 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4053 .readfn = hprbar_read, .writefn = hprbar_write }, 4054 { .name = "HPRLAR", 4055 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4056 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4057 .readfn = hprlar_read, .writefn = hprlar_write }, 4058 { .name = "HPRSELR", .resetvalue = 0, 4059 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4060 .access = PL2_RW, 4061 .writefn = hprselr_write, 4062 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4063 { .name = "HPRENR", 4064 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4065 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4066 .readfn = hprenr_read, .writefn = hprenr_write }, 4067 }; 4068 4069 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4070 /* 4071 * Reset for all these registers is handled in arm_cpu_reset(), 4072 * because the PMSAv7 is also used by M-profile CPUs, which do 4073 * not register cpregs but still need the state to be reset. 4074 */ 4075 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4076 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4077 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4078 .readfn = pmsav7_read, .writefn = pmsav7_write, 4079 .resetfn = arm_cp_reset_ignore }, 4080 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4081 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4082 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4083 .readfn = pmsav7_read, .writefn = pmsav7_write, 4084 .resetfn = arm_cp_reset_ignore }, 4085 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4086 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4087 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4088 .readfn = pmsav7_read, .writefn = pmsav7_write, 4089 .resetfn = arm_cp_reset_ignore }, 4090 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4091 .access = PL1_RW, 4092 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4093 .writefn = pmsav7_rgnr_write, 4094 .resetfn = arm_cp_reset_ignore }, 4095 }; 4096 4097 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4098 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4099 .access = PL1_RW, .type = ARM_CP_ALIAS, 4100 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4101 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4102 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4103 .access = PL1_RW, .type = ARM_CP_ALIAS, 4104 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4105 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4106 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4107 .access = PL1_RW, 4108 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4109 .resetvalue = 0, }, 4110 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4111 .access = PL1_RW, 4112 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4113 .resetvalue = 0, }, 4114 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4115 .access = PL1_RW, 4116 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4117 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4118 .access = PL1_RW, 4119 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4120 /* Protection region base and size registers */ 4121 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4122 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4123 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4124 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4125 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4126 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4127 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4128 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4129 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4130 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4131 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4132 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4133 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4134 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4135 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4136 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4137 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4138 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4139 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4140 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4141 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4142 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4143 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4144 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4145 }; 4146 4147 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4148 uint64_t value) 4149 { 4150 ARMCPU *cpu = env_archcpu(env); 4151 4152 if (!arm_feature(env, ARM_FEATURE_V8)) { 4153 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4154 /* 4155 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4156 * using Long-descriptor translation table format 4157 */ 4158 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4159 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4160 /* 4161 * In an implementation that includes the Security Extensions 4162 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4163 * Short-descriptor translation table format. 4164 */ 4165 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4166 } else { 4167 value &= TTBCR_N; 4168 } 4169 } 4170 4171 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4172 /* 4173 * With LPAE the TTBCR could result in a change of ASID 4174 * via the TTBCR.A1 bit, so do a TLB flush. 4175 */ 4176 tlb_flush(CPU(cpu)); 4177 } 4178 raw_write(env, ri, value); 4179 } 4180 4181 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4182 uint64_t value) 4183 { 4184 ARMCPU *cpu = env_archcpu(env); 4185 4186 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4187 tlb_flush(CPU(cpu)); 4188 raw_write(env, ri, value); 4189 } 4190 4191 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4195 if (cpreg_field_is_64bit(ri) && 4196 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4197 ARMCPU *cpu = env_archcpu(env); 4198 tlb_flush(CPU(cpu)); 4199 } 4200 raw_write(env, ri, value); 4201 } 4202 4203 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4204 uint64_t value) 4205 { 4206 /* 4207 * If we are running with E2&0 regime, then an ASID is active. 4208 * Flush if that might be changing. Note we're not checking 4209 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4210 * holds the active ASID, only checking the field that might. 4211 */ 4212 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4213 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4214 uint16_t mask = ARMMMUIdxBit_E20_2 | 4215 ARMMMUIdxBit_E20_2_PAN | 4216 ARMMMUIdxBit_E20_0; 4217 tlb_flush_by_mmuidx(env_cpu(env), mask); 4218 } 4219 raw_write(env, ri, value); 4220 } 4221 4222 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4223 uint64_t value) 4224 { 4225 ARMCPU *cpu = env_archcpu(env); 4226 CPUState *cs = CPU(cpu); 4227 4228 /* 4229 * A change in VMID to the stage2 page table (Stage2) invalidates 4230 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4231 */ 4232 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4233 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4234 } 4235 raw_write(env, ri, value); 4236 } 4237 4238 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4239 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4240 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4241 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4242 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4243 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4244 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4245 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4246 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4247 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4248 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4249 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4250 offsetof(CPUARMState, cp15.dfar_ns) } }, 4251 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4252 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4253 .access = PL1_RW, .accessfn = access_tvm_trvm, 4254 .fgt = FGT_FAR_EL1, 4255 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4256 .resetvalue = 0, }, 4257 }; 4258 4259 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4260 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4262 .access = PL1_RW, .accessfn = access_tvm_trvm, 4263 .fgt = FGT_ESR_EL1, 4264 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4265 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4266 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4267 .access = PL1_RW, .accessfn = access_tvm_trvm, 4268 .fgt = FGT_TTBR0_EL1, 4269 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4270 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4271 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4272 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4273 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4274 .access = PL1_RW, .accessfn = access_tvm_trvm, 4275 .fgt = FGT_TTBR1_EL1, 4276 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4277 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4278 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4279 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4280 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4281 .access = PL1_RW, .accessfn = access_tvm_trvm, 4282 .fgt = FGT_TCR_EL1, 4283 .writefn = vmsa_tcr_el12_write, 4284 .raw_writefn = raw_write, 4285 .resetvalue = 0, 4286 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4287 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4288 .access = PL1_RW, .accessfn = access_tvm_trvm, 4289 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4290 .raw_writefn = raw_write, 4291 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4292 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4293 }; 4294 4295 /* 4296 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4297 * qemu tlbs nor adjusting cached masks. 4298 */ 4299 static const ARMCPRegInfo ttbcr2_reginfo = { 4300 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4301 .access = PL1_RW, .accessfn = access_tvm_trvm, 4302 .type = ARM_CP_ALIAS, 4303 .bank_fieldoffsets = { 4304 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4305 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4306 }, 4307 }; 4308 4309 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4310 uint64_t value) 4311 { 4312 env->cp15.c15_ticonfig = value & 0xe7; 4313 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4314 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4315 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4316 } 4317 4318 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4319 uint64_t value) 4320 { 4321 env->cp15.c15_threadid = value & 0xffff; 4322 } 4323 4324 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4325 uint64_t value) 4326 { 4327 /* Wait-for-interrupt (deprecated) */ 4328 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4329 } 4330 4331 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 /* 4335 * On OMAP there are registers indicating the max/min index of dcache lines 4336 * containing a dirty line; cache flush operations have to reset these. 4337 */ 4338 env->cp15.c15_i_max = 0x000; 4339 env->cp15.c15_i_min = 0xff0; 4340 } 4341 4342 static const ARMCPRegInfo omap_cp_reginfo[] = { 4343 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4344 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4345 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4346 .resetvalue = 0, }, 4347 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4348 .access = PL1_RW, .type = ARM_CP_NOP }, 4349 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4350 .access = PL1_RW, 4351 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4352 .writefn = omap_ticonfig_write }, 4353 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4354 .access = PL1_RW, 4355 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4356 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4357 .access = PL1_RW, .resetvalue = 0xff0, 4358 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4359 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4360 .access = PL1_RW, 4361 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4362 .writefn = omap_threadid_write }, 4363 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4364 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4365 .type = ARM_CP_NO_RAW, 4366 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4367 /* 4368 * TODO: Peripheral port remap register: 4369 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4370 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4371 * when MMU is off. 4372 */ 4373 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4374 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4375 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4376 .writefn = omap_cachemaint_write }, 4377 { .name = "C9", .cp = 15, .crn = 9, 4378 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4379 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4380 }; 4381 4382 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4383 uint64_t value) 4384 { 4385 env->cp15.c15_cpar = value & 0x3fff; 4386 } 4387 4388 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4389 { .name = "XSCALE_CPAR", 4390 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4391 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4392 .writefn = xscale_cpar_write, }, 4393 { .name = "XSCALE_AUXCR", 4394 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4395 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4396 .resetvalue = 0, }, 4397 /* 4398 * XScale specific cache-lockdown: since we have no cache we NOP these 4399 * and hope the guest does not really rely on cache behaviour. 4400 */ 4401 { .name = "XSCALE_LOCK_ICACHE_LINE", 4402 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4403 .access = PL1_W, .type = ARM_CP_NOP }, 4404 { .name = "XSCALE_UNLOCK_ICACHE", 4405 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4406 .access = PL1_W, .type = ARM_CP_NOP }, 4407 { .name = "XSCALE_DCACHE_LOCK", 4408 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4409 .access = PL1_RW, .type = ARM_CP_NOP }, 4410 { .name = "XSCALE_UNLOCK_DCACHE", 4411 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4412 .access = PL1_W, .type = ARM_CP_NOP }, 4413 }; 4414 4415 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4416 /* 4417 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4418 * implementation of this implementation-defined space. 4419 * Ideally this should eventually disappear in favour of actually 4420 * implementing the correct behaviour for all cores. 4421 */ 4422 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4423 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4424 .access = PL1_RW, 4425 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4426 .resetvalue = 0 }, 4427 }; 4428 4429 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4430 /* Cache status: RAZ because we have no cache so it's always clean */ 4431 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4432 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4433 .resetvalue = 0 }, 4434 }; 4435 4436 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4437 /* We never have a block transfer operation in progress */ 4438 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4439 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4440 .resetvalue = 0 }, 4441 /* The cache ops themselves: these all NOP for QEMU */ 4442 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4443 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4444 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4445 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4446 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4447 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4448 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4449 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4450 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4451 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4452 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4453 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4454 }; 4455 4456 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4457 /* 4458 * The cache test-and-clean instructions always return (1 << 30) 4459 * to indicate that there are no dirty cache lines. 4460 */ 4461 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4462 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4463 .resetvalue = (1 << 30) }, 4464 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4465 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4466 .resetvalue = (1 << 30) }, 4467 }; 4468 4469 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4470 /* Ignore ReadBuffer accesses */ 4471 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4472 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4473 .access = PL1_RW, .resetvalue = 0, 4474 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4475 }; 4476 4477 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4478 { 4479 unsigned int cur_el = arm_current_el(env); 4480 4481 if (arm_is_el2_enabled(env) && cur_el == 1) { 4482 return env->cp15.vpidr_el2; 4483 } 4484 return raw_read(env, ri); 4485 } 4486 4487 static uint64_t mpidr_read_val(CPUARMState *env) 4488 { 4489 ARMCPU *cpu = env_archcpu(env); 4490 uint64_t mpidr = cpu->mp_affinity; 4491 4492 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4493 mpidr |= (1U << 31); 4494 /* 4495 * Cores which are uniprocessor (non-coherent) 4496 * but still implement the MP extensions set 4497 * bit 30. (For instance, Cortex-R5). 4498 */ 4499 if (cpu->mp_is_up) { 4500 mpidr |= (1u << 30); 4501 } 4502 } 4503 return mpidr; 4504 } 4505 4506 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4507 { 4508 unsigned int cur_el = arm_current_el(env); 4509 4510 if (arm_is_el2_enabled(env) && cur_el == 1) { 4511 return env->cp15.vmpidr_el2; 4512 } 4513 return mpidr_read_val(env); 4514 } 4515 4516 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4517 /* NOP AMAIR0/1 */ 4518 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4519 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4520 .access = PL1_RW, .accessfn = access_tvm_trvm, 4521 .fgt = FGT_AMAIR_EL1, 4522 .type = ARM_CP_CONST, .resetvalue = 0 }, 4523 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4524 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4525 .access = PL1_RW, .accessfn = access_tvm_trvm, 4526 .type = ARM_CP_CONST, .resetvalue = 0 }, 4527 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4528 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4529 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4530 offsetof(CPUARMState, cp15.par_ns)} }, 4531 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4532 .access = PL1_RW, .accessfn = access_tvm_trvm, 4533 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4534 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4535 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4536 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4537 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4538 .access = PL1_RW, .accessfn = access_tvm_trvm, 4539 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4540 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4541 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4542 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4543 }; 4544 4545 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4546 { 4547 return vfp_get_fpcr(env); 4548 } 4549 4550 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4551 uint64_t value) 4552 { 4553 vfp_set_fpcr(env, value); 4554 } 4555 4556 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4557 { 4558 return vfp_get_fpsr(env); 4559 } 4560 4561 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4562 uint64_t value) 4563 { 4564 vfp_set_fpsr(env, value); 4565 } 4566 4567 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4568 bool isread) 4569 { 4570 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4571 return CP_ACCESS_TRAP; 4572 } 4573 return CP_ACCESS_OK; 4574 } 4575 4576 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4577 uint64_t value) 4578 { 4579 env->daif = value & PSTATE_DAIF; 4580 } 4581 4582 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4583 { 4584 return env->pstate & PSTATE_PAN; 4585 } 4586 4587 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4588 uint64_t value) 4589 { 4590 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4591 } 4592 4593 static const ARMCPRegInfo pan_reginfo = { 4594 .name = "PAN", .state = ARM_CP_STATE_AA64, 4595 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4596 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4597 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4598 }; 4599 4600 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4601 { 4602 return env->pstate & PSTATE_UAO; 4603 } 4604 4605 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4606 uint64_t value) 4607 { 4608 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4609 } 4610 4611 static const ARMCPRegInfo uao_reginfo = { 4612 .name = "UAO", .state = ARM_CP_STATE_AA64, 4613 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4614 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4615 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4616 }; 4617 4618 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4619 { 4620 return env->pstate & PSTATE_DIT; 4621 } 4622 4623 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4624 uint64_t value) 4625 { 4626 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4627 } 4628 4629 static const ARMCPRegInfo dit_reginfo = { 4630 .name = "DIT", .state = ARM_CP_STATE_AA64, 4631 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4632 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4633 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4634 }; 4635 4636 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4637 { 4638 return env->pstate & PSTATE_SSBS; 4639 } 4640 4641 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4642 uint64_t value) 4643 { 4644 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4645 } 4646 4647 static const ARMCPRegInfo ssbs_reginfo = { 4648 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4649 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4650 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4651 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4652 }; 4653 4654 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4655 const ARMCPRegInfo *ri, 4656 bool isread) 4657 { 4658 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4659 switch (arm_current_el(env)) { 4660 case 0: 4661 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4662 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4663 return CP_ACCESS_TRAP; 4664 } 4665 /* fall through */ 4666 case 1: 4667 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4668 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4669 return CP_ACCESS_TRAP_EL2; 4670 } 4671 break; 4672 } 4673 return CP_ACCESS_OK; 4674 } 4675 4676 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4677 { 4678 /* Cache invalidate/clean to Point of Unification... */ 4679 switch (arm_current_el(env)) { 4680 case 0: 4681 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4682 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4683 return CP_ACCESS_TRAP; 4684 } 4685 /* fall through */ 4686 case 1: 4687 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4688 if (arm_hcr_el2_eff(env) & hcrflags) { 4689 return CP_ACCESS_TRAP_EL2; 4690 } 4691 break; 4692 } 4693 return CP_ACCESS_OK; 4694 } 4695 4696 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4697 bool isread) 4698 { 4699 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4700 } 4701 4702 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4703 bool isread) 4704 { 4705 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4706 } 4707 4708 /* 4709 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4710 * Page D4-1736 (DDI0487A.b) 4711 */ 4712 4713 static int vae1_tlbmask(CPUARMState *env) 4714 { 4715 uint64_t hcr = arm_hcr_el2_eff(env); 4716 uint16_t mask; 4717 4718 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4719 mask = ARMMMUIdxBit_E20_2 | 4720 ARMMMUIdxBit_E20_2_PAN | 4721 ARMMMUIdxBit_E20_0; 4722 } else { 4723 mask = ARMMMUIdxBit_E10_1 | 4724 ARMMMUIdxBit_E10_1_PAN | 4725 ARMMMUIdxBit_E10_0; 4726 } 4727 return mask; 4728 } 4729 4730 static int vae2_tlbmask(CPUARMState *env) 4731 { 4732 uint64_t hcr = arm_hcr_el2_eff(env); 4733 uint16_t mask; 4734 4735 if (hcr & HCR_E2H) { 4736 mask = ARMMMUIdxBit_E20_2 | 4737 ARMMMUIdxBit_E20_2_PAN | 4738 ARMMMUIdxBit_E20_0; 4739 } else { 4740 mask = ARMMMUIdxBit_E2; 4741 } 4742 return mask; 4743 } 4744 4745 /* Return 56 if TBI is enabled, 64 otherwise. */ 4746 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4747 uint64_t addr) 4748 { 4749 uint64_t tcr = regime_tcr(env, mmu_idx); 4750 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4751 int select = extract64(addr, 55, 1); 4752 4753 return (tbi >> select) & 1 ? 56 : 64; 4754 } 4755 4756 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4757 { 4758 uint64_t hcr = arm_hcr_el2_eff(env); 4759 ARMMMUIdx mmu_idx; 4760 4761 /* Only the regime of the mmu_idx below is significant. */ 4762 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4763 mmu_idx = ARMMMUIdx_E20_0; 4764 } else { 4765 mmu_idx = ARMMMUIdx_E10_0; 4766 } 4767 4768 return tlbbits_for_regime(env, mmu_idx, addr); 4769 } 4770 4771 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4772 { 4773 uint64_t hcr = arm_hcr_el2_eff(env); 4774 ARMMMUIdx mmu_idx; 4775 4776 /* 4777 * Only the regime of the mmu_idx below is significant. 4778 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4779 * only has one. 4780 */ 4781 if (hcr & HCR_E2H) { 4782 mmu_idx = ARMMMUIdx_E20_2; 4783 } else { 4784 mmu_idx = ARMMMUIdx_E2; 4785 } 4786 4787 return tlbbits_for_regime(env, mmu_idx, addr); 4788 } 4789 4790 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4791 uint64_t value) 4792 { 4793 CPUState *cs = env_cpu(env); 4794 int mask = vae1_tlbmask(env); 4795 4796 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4797 } 4798 4799 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4800 uint64_t value) 4801 { 4802 CPUState *cs = env_cpu(env); 4803 int mask = vae1_tlbmask(env); 4804 4805 if (tlb_force_broadcast(env)) { 4806 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4807 } else { 4808 tlb_flush_by_mmuidx(cs, mask); 4809 } 4810 } 4811 4812 static int e2_tlbmask(CPUARMState *env) 4813 { 4814 return (ARMMMUIdxBit_E20_0 | 4815 ARMMMUIdxBit_E20_2 | 4816 ARMMMUIdxBit_E20_2_PAN | 4817 ARMMMUIdxBit_E2); 4818 } 4819 4820 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4821 uint64_t value) 4822 { 4823 CPUState *cs = env_cpu(env); 4824 int mask = alle1_tlbmask(env); 4825 4826 tlb_flush_by_mmuidx(cs, mask); 4827 } 4828 4829 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 CPUState *cs = env_cpu(env); 4833 int mask = e2_tlbmask(env); 4834 4835 tlb_flush_by_mmuidx(cs, mask); 4836 } 4837 4838 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4839 uint64_t value) 4840 { 4841 ARMCPU *cpu = env_archcpu(env); 4842 CPUState *cs = CPU(cpu); 4843 4844 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4845 } 4846 4847 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4848 uint64_t value) 4849 { 4850 CPUState *cs = env_cpu(env); 4851 int mask = alle1_tlbmask(env); 4852 4853 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4854 } 4855 4856 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4857 uint64_t value) 4858 { 4859 CPUState *cs = env_cpu(env); 4860 int mask = e2_tlbmask(env); 4861 4862 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4863 } 4864 4865 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4866 uint64_t value) 4867 { 4868 CPUState *cs = env_cpu(env); 4869 4870 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4871 } 4872 4873 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4874 uint64_t value) 4875 { 4876 /* 4877 * Invalidate by VA, EL2 4878 * Currently handles both VAE2 and VALE2, since we don't support 4879 * flush-last-level-only. 4880 */ 4881 CPUState *cs = env_cpu(env); 4882 int mask = vae2_tlbmask(env); 4883 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4884 int bits = vae2_tlbbits(env, pageaddr); 4885 4886 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4887 } 4888 4889 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4890 uint64_t value) 4891 { 4892 /* 4893 * Invalidate by VA, EL3 4894 * Currently handles both VAE3 and VALE3, since we don't support 4895 * flush-last-level-only. 4896 */ 4897 ARMCPU *cpu = env_archcpu(env); 4898 CPUState *cs = CPU(cpu); 4899 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4900 4901 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4902 } 4903 4904 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4905 uint64_t value) 4906 { 4907 CPUState *cs = env_cpu(env); 4908 int mask = vae1_tlbmask(env); 4909 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4910 int bits = vae1_tlbbits(env, pageaddr); 4911 4912 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4913 } 4914 4915 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4916 uint64_t value) 4917 { 4918 /* 4919 * Invalidate by VA, EL1&0 (AArch64 version). 4920 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4921 * since we don't support flush-for-specific-ASID-only or 4922 * flush-last-level-only. 4923 */ 4924 CPUState *cs = env_cpu(env); 4925 int mask = vae1_tlbmask(env); 4926 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4927 int bits = vae1_tlbbits(env, pageaddr); 4928 4929 if (tlb_force_broadcast(env)) { 4930 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4931 } else { 4932 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4933 } 4934 } 4935 4936 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4937 uint64_t value) 4938 { 4939 CPUState *cs = env_cpu(env); 4940 int mask = vae2_tlbmask(env); 4941 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4942 int bits = vae2_tlbbits(env, pageaddr); 4943 4944 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4945 } 4946 4947 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4948 uint64_t value) 4949 { 4950 CPUState *cs = env_cpu(env); 4951 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4952 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4953 4954 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4955 ARMMMUIdxBit_E3, bits); 4956 } 4957 4958 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4959 { 4960 /* 4961 * The MSB of value is the NS field, which only applies if SEL2 4962 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4963 */ 4964 return (value >= 0 4965 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4966 && arm_is_secure_below_el3(env) 4967 ? ARMMMUIdxBit_Stage2_S 4968 : ARMMMUIdxBit_Stage2); 4969 } 4970 4971 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4972 uint64_t value) 4973 { 4974 CPUState *cs = env_cpu(env); 4975 int mask = ipas2e1_tlbmask(env, value); 4976 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4977 4978 if (tlb_force_broadcast(env)) { 4979 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4980 } else { 4981 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4982 } 4983 } 4984 4985 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4986 uint64_t value) 4987 { 4988 CPUState *cs = env_cpu(env); 4989 int mask = ipas2e1_tlbmask(env, value); 4990 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4991 4992 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4993 } 4994 4995 #ifdef TARGET_AARCH64 4996 typedef struct { 4997 uint64_t base; 4998 uint64_t length; 4999 } TLBIRange; 5000 5001 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5002 { 5003 /* 5004 * Note that the TLBI range TG field encoding differs from both 5005 * TG0 and TG1 encodings. 5006 */ 5007 switch (tg) { 5008 case 1: 5009 return Gran4K; 5010 case 2: 5011 return Gran16K; 5012 case 3: 5013 return Gran64K; 5014 default: 5015 return GranInvalid; 5016 } 5017 } 5018 5019 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5020 uint64_t value) 5021 { 5022 unsigned int page_size_granule, page_shift, num, scale, exponent; 5023 /* Extract one bit to represent the va selector in use. */ 5024 uint64_t select = sextract64(value, 36, 1); 5025 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5026 TLBIRange ret = { }; 5027 ARMGranuleSize gran; 5028 5029 page_size_granule = extract64(value, 46, 2); 5030 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5031 5032 /* The granule encoded in value must match the granule in use. */ 5033 if (gran != param.gran) { 5034 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5035 page_size_granule); 5036 return ret; 5037 } 5038 5039 page_shift = arm_granule_bits(gran); 5040 num = extract64(value, 39, 5); 5041 scale = extract64(value, 44, 2); 5042 exponent = (5 * scale) + 1; 5043 5044 ret.length = (num + 1) << (exponent + page_shift); 5045 5046 if (param.select) { 5047 ret.base = sextract64(value, 0, 37); 5048 } else { 5049 ret.base = extract64(value, 0, 37); 5050 } 5051 if (param.ds) { 5052 /* 5053 * With DS=1, BaseADDR is always shifted 16 so that it is able 5054 * to address all 52 va bits. The input address is perforce 5055 * aligned on a 64k boundary regardless of translation granule. 5056 */ 5057 page_shift = 16; 5058 } 5059 ret.base <<= page_shift; 5060 5061 return ret; 5062 } 5063 5064 static void do_rvae_write(CPUARMState *env, uint64_t value, 5065 int idxmap, bool synced) 5066 { 5067 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5068 TLBIRange range; 5069 int bits; 5070 5071 range = tlbi_aa64_get_range(env, one_idx, value); 5072 bits = tlbbits_for_regime(env, one_idx, range.base); 5073 5074 if (synced) { 5075 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5076 range.base, 5077 range.length, 5078 idxmap, 5079 bits); 5080 } else { 5081 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5082 range.length, idxmap, bits); 5083 } 5084 } 5085 5086 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5087 const ARMCPRegInfo *ri, 5088 uint64_t value) 5089 { 5090 /* 5091 * Invalidate by VA range, EL1&0. 5092 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5093 * since we don't support flush-for-specific-ASID-only or 5094 * flush-last-level-only. 5095 */ 5096 5097 do_rvae_write(env, value, vae1_tlbmask(env), 5098 tlb_force_broadcast(env)); 5099 } 5100 5101 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5102 const ARMCPRegInfo *ri, 5103 uint64_t value) 5104 { 5105 /* 5106 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5107 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5108 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5109 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5110 * shareable specific flushes. 5111 */ 5112 5113 do_rvae_write(env, value, vae1_tlbmask(env), true); 5114 } 5115 5116 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5117 const ARMCPRegInfo *ri, 5118 uint64_t value) 5119 { 5120 /* 5121 * Invalidate by VA range, EL2. 5122 * Currently handles all of RVAE2 and RVALE2, 5123 * since we don't support flush-for-specific-ASID-only or 5124 * flush-last-level-only. 5125 */ 5126 5127 do_rvae_write(env, value, vae2_tlbmask(env), 5128 tlb_force_broadcast(env)); 5129 5130 5131 } 5132 5133 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5134 const ARMCPRegInfo *ri, 5135 uint64_t value) 5136 { 5137 /* 5138 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5139 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5140 * since we don't support flush-for-specific-ASID-only, 5141 * flush-last-level-only or inner/outer shareable specific flushes. 5142 */ 5143 5144 do_rvae_write(env, value, vae2_tlbmask(env), true); 5145 5146 } 5147 5148 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5149 const ARMCPRegInfo *ri, 5150 uint64_t value) 5151 { 5152 /* 5153 * Invalidate by VA range, EL3. 5154 * Currently handles all of RVAE3 and RVALE3, 5155 * since we don't support flush-for-specific-ASID-only or 5156 * flush-last-level-only. 5157 */ 5158 5159 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5160 } 5161 5162 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5163 const ARMCPRegInfo *ri, 5164 uint64_t value) 5165 { 5166 /* 5167 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5168 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5169 * since we don't support flush-for-specific-ASID-only, 5170 * flush-last-level-only or inner/outer specific flushes. 5171 */ 5172 5173 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5174 } 5175 5176 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5177 uint64_t value) 5178 { 5179 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5180 tlb_force_broadcast(env)); 5181 } 5182 5183 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5184 const ARMCPRegInfo *ri, 5185 uint64_t value) 5186 { 5187 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5188 } 5189 #endif 5190 5191 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5192 bool isread) 5193 { 5194 int cur_el = arm_current_el(env); 5195 5196 if (cur_el < 2) { 5197 uint64_t hcr = arm_hcr_el2_eff(env); 5198 5199 if (cur_el == 0) { 5200 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5201 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5202 return CP_ACCESS_TRAP_EL2; 5203 } 5204 } else { 5205 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5206 return CP_ACCESS_TRAP; 5207 } 5208 if (hcr & HCR_TDZ) { 5209 return CP_ACCESS_TRAP_EL2; 5210 } 5211 } 5212 } else if (hcr & HCR_TDZ) { 5213 return CP_ACCESS_TRAP_EL2; 5214 } 5215 } 5216 return CP_ACCESS_OK; 5217 } 5218 5219 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5220 { 5221 ARMCPU *cpu = env_archcpu(env); 5222 int dzp_bit = 1 << 4; 5223 5224 /* DZP indicates whether DC ZVA access is allowed */ 5225 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5226 dzp_bit = 0; 5227 } 5228 return cpu->dcz_blocksize | dzp_bit; 5229 } 5230 5231 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5232 bool isread) 5233 { 5234 if (!(env->pstate & PSTATE_SP)) { 5235 /* 5236 * Access to SP_EL0 is undefined if it's being used as 5237 * the stack pointer. 5238 */ 5239 return CP_ACCESS_TRAP_UNCATEGORIZED; 5240 } 5241 return CP_ACCESS_OK; 5242 } 5243 5244 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5245 { 5246 return env->pstate & PSTATE_SP; 5247 } 5248 5249 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5250 { 5251 update_spsel(env, val); 5252 } 5253 5254 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5255 uint64_t value) 5256 { 5257 ARMCPU *cpu = env_archcpu(env); 5258 5259 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5260 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5261 value &= ~SCTLR_M; 5262 } 5263 5264 /* ??? Lots of these bits are not implemented. */ 5265 5266 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5267 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5268 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5269 } else { 5270 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5271 SCTLR_ATA0 | SCTLR_ATA); 5272 } 5273 } 5274 5275 if (raw_read(env, ri) == value) { 5276 /* 5277 * Skip the TLB flush if nothing actually changed; Linux likes 5278 * to do a lot of pointless SCTLR writes. 5279 */ 5280 return; 5281 } 5282 5283 raw_write(env, ri, value); 5284 5285 /* This may enable/disable the MMU, so do a TLB flush. */ 5286 tlb_flush(CPU(cpu)); 5287 5288 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5289 /* 5290 * Normally we would always end the TB on an SCTLR write; see the 5291 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5292 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5293 * of hflags from the translator, so do it here. 5294 */ 5295 arm_rebuild_hflags(env); 5296 } 5297 } 5298 5299 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5300 uint64_t value) 5301 { 5302 /* 5303 * Some MDCR_EL3 bits affect whether PMU counters are running: 5304 * if we are trying to change any of those then we must 5305 * bracket this update with PMU start/finish calls. 5306 */ 5307 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5308 5309 if (pmu_op) { 5310 pmu_op_start(env); 5311 } 5312 env->cp15.mdcr_el3 = value; 5313 if (pmu_op) { 5314 pmu_op_finish(env); 5315 } 5316 } 5317 5318 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5319 uint64_t value) 5320 { 5321 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5322 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5323 } 5324 5325 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5326 uint64_t value) 5327 { 5328 /* 5329 * Some MDCR_EL2 bits affect whether PMU counters are running: 5330 * if we are trying to change any of those then we must 5331 * bracket this update with PMU start/finish calls. 5332 */ 5333 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5334 5335 if (pmu_op) { 5336 pmu_op_start(env); 5337 } 5338 env->cp15.mdcr_el2 = value; 5339 if (pmu_op) { 5340 pmu_op_finish(env); 5341 } 5342 } 5343 5344 #ifdef CONFIG_USER_ONLY 5345 /* 5346 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5347 * code to get around W^X restrictions, where one region is writable and the 5348 * other is executable. 5349 * 5350 * Since the executable region is never written to we cannot detect code 5351 * changes when running in user mode, and rely on the emulated JIT telling us 5352 * that the code has changed by executing this instruction. 5353 */ 5354 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5355 uint64_t value) 5356 { 5357 uint64_t icache_line_mask, start_address, end_address; 5358 const ARMCPU *cpu; 5359 5360 cpu = env_archcpu(env); 5361 5362 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5363 start_address = value & ~icache_line_mask; 5364 end_address = value | icache_line_mask; 5365 5366 mmap_lock(); 5367 5368 tb_invalidate_phys_range(start_address, end_address); 5369 5370 mmap_unlock(); 5371 } 5372 #endif 5373 5374 static const ARMCPRegInfo v8_cp_reginfo[] = { 5375 /* 5376 * Minimal set of EL0-visible registers. This will need to be expanded 5377 * significantly for system emulation of AArch64 CPUs. 5378 */ 5379 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5380 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5381 .access = PL0_RW, .type = ARM_CP_NZCV }, 5382 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5383 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5384 .type = ARM_CP_NO_RAW, 5385 .access = PL0_RW, .accessfn = aa64_daif_access, 5386 .fieldoffset = offsetof(CPUARMState, daif), 5387 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5388 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5389 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5390 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5391 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5392 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5393 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5394 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5395 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5396 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5398 .access = PL0_R, .type = ARM_CP_NO_RAW, 5399 .fgt = FGT_DCZID_EL0, 5400 .readfn = aa64_dczid_read }, 5401 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5402 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5403 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5404 #ifndef CONFIG_USER_ONLY 5405 /* Avoid overhead of an access check that always passes in user-mode */ 5406 .accessfn = aa64_zva_access, 5407 .fgt = FGT_DCZVA, 5408 #endif 5409 }, 5410 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5411 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5412 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5413 /* 5414 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5415 * don't emulate caches. 5416 */ 5417 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5419 .access = PL1_W, .type = ARM_CP_NOP, 5420 .fgt = FGT_ICIALLUIS, 5421 .accessfn = access_ticab }, 5422 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5423 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5424 .access = PL1_W, .type = ARM_CP_NOP, 5425 .fgt = FGT_ICIALLU, 5426 .accessfn = access_tocu }, 5427 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5428 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5429 .access = PL0_W, 5430 .fgt = FGT_ICIVAU, 5431 .accessfn = access_tocu, 5432 #ifdef CONFIG_USER_ONLY 5433 .type = ARM_CP_NO_RAW, 5434 .writefn = ic_ivau_write 5435 #else 5436 .type = ARM_CP_NOP 5437 #endif 5438 }, 5439 /* Cache ops: all NOPs since we don't emulate caches */ 5440 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5442 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5443 .fgt = FGT_DCIVAC, 5444 .type = ARM_CP_NOP }, 5445 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5447 .fgt = FGT_DCISW, 5448 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5449 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5451 .access = PL0_W, .type = ARM_CP_NOP, 5452 .fgt = FGT_DCCVAC, 5453 .accessfn = aa64_cacheop_poc_access }, 5454 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5455 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5456 .fgt = FGT_DCCSW, 5457 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5458 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5460 .access = PL0_W, .type = ARM_CP_NOP, 5461 .fgt = FGT_DCCVAU, 5462 .accessfn = access_tocu }, 5463 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5465 .access = PL0_W, .type = ARM_CP_NOP, 5466 .fgt = FGT_DCCIVAC, 5467 .accessfn = aa64_cacheop_poc_access }, 5468 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5469 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5470 .fgt = FGT_DCCISW, 5471 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5472 /* TLBI operations */ 5473 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5475 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5476 .fgt = FGT_TLBIVMALLE1IS, 5477 .writefn = tlbi_aa64_vmalle1is_write }, 5478 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5479 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5480 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5481 .fgt = FGT_TLBIVAE1IS, 5482 .writefn = tlbi_aa64_vae1is_write }, 5483 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5485 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5486 .fgt = FGT_TLBIASIDE1IS, 5487 .writefn = tlbi_aa64_vmalle1is_write }, 5488 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5490 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5491 .fgt = FGT_TLBIVAAE1IS, 5492 .writefn = tlbi_aa64_vae1is_write }, 5493 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5495 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5496 .fgt = FGT_TLBIVALE1IS, 5497 .writefn = tlbi_aa64_vae1is_write }, 5498 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5499 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5500 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5501 .fgt = FGT_TLBIVAALE1IS, 5502 .writefn = tlbi_aa64_vae1is_write }, 5503 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5504 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5505 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5506 .fgt = FGT_TLBIVMALLE1, 5507 .writefn = tlbi_aa64_vmalle1_write }, 5508 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5510 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5511 .fgt = FGT_TLBIVAE1, 5512 .writefn = tlbi_aa64_vae1_write }, 5513 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5514 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5515 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5516 .fgt = FGT_TLBIASIDE1, 5517 .writefn = tlbi_aa64_vmalle1_write }, 5518 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5519 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5520 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5521 .fgt = FGT_TLBIVAAE1, 5522 .writefn = tlbi_aa64_vae1_write }, 5523 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5525 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5526 .fgt = FGT_TLBIVALE1, 5527 .writefn = tlbi_aa64_vae1_write }, 5528 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5530 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5531 .fgt = FGT_TLBIVAALE1, 5532 .writefn = tlbi_aa64_vae1_write }, 5533 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5535 .access = PL2_W, .type = ARM_CP_NO_RAW, 5536 .writefn = tlbi_aa64_ipas2e1is_write }, 5537 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5539 .access = PL2_W, .type = ARM_CP_NO_RAW, 5540 .writefn = tlbi_aa64_ipas2e1is_write }, 5541 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5543 .access = PL2_W, .type = ARM_CP_NO_RAW, 5544 .writefn = tlbi_aa64_alle1is_write }, 5545 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5547 .access = PL2_W, .type = ARM_CP_NO_RAW, 5548 .writefn = tlbi_aa64_alle1is_write }, 5549 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5550 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5551 .access = PL2_W, .type = ARM_CP_NO_RAW, 5552 .writefn = tlbi_aa64_ipas2e1_write }, 5553 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5554 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5555 .access = PL2_W, .type = ARM_CP_NO_RAW, 5556 .writefn = tlbi_aa64_ipas2e1_write }, 5557 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5559 .access = PL2_W, .type = ARM_CP_NO_RAW, 5560 .writefn = tlbi_aa64_alle1_write }, 5561 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5563 .access = PL2_W, .type = ARM_CP_NO_RAW, 5564 .writefn = tlbi_aa64_alle1is_write }, 5565 #ifndef CONFIG_USER_ONLY 5566 /* 64 bit address translation operations */ 5567 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5569 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5570 .fgt = FGT_ATS1E1R, 5571 .accessfn = at_e012_access, .writefn = ats_write64 }, 5572 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5574 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5575 .fgt = FGT_ATS1E1W, 5576 .accessfn = at_e012_access, .writefn = ats_write64 }, 5577 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5579 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5580 .fgt = FGT_ATS1E0R, 5581 .accessfn = at_e012_access, .writefn = ats_write64 }, 5582 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5584 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5585 .fgt = FGT_ATS1E0W, 5586 .accessfn = at_e012_access, .writefn = ats_write64 }, 5587 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5589 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5590 .accessfn = at_e012_access, .writefn = ats_write64 }, 5591 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5593 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5594 .accessfn = at_e012_access, .writefn = ats_write64 }, 5595 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5597 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5598 .accessfn = at_e012_access, .writefn = ats_write64 }, 5599 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5601 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5602 .accessfn = at_e012_access, .writefn = ats_write64 }, 5603 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5604 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5605 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5606 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5607 .writefn = ats_write64 }, 5608 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5609 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5610 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5611 .writefn = ats_write64 }, 5612 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5613 .type = ARM_CP_ALIAS, 5614 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5615 .access = PL1_RW, .resetvalue = 0, 5616 .fgt = FGT_PAR_EL1, 5617 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5618 .writefn = par_write }, 5619 #endif 5620 /* TLB invalidate last level of translation table walk */ 5621 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5622 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5623 .writefn = tlbimva_is_write }, 5624 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5625 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5626 .writefn = tlbimvaa_is_write }, 5627 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5628 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5629 .writefn = tlbimva_write }, 5630 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5631 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5632 .writefn = tlbimvaa_write }, 5633 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5634 .type = ARM_CP_NO_RAW, .access = PL2_W, 5635 .writefn = tlbimva_hyp_write }, 5636 { .name = "TLBIMVALHIS", 5637 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5638 .type = ARM_CP_NO_RAW, .access = PL2_W, 5639 .writefn = tlbimva_hyp_is_write }, 5640 { .name = "TLBIIPAS2", 5641 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5642 .type = ARM_CP_NO_RAW, .access = PL2_W, 5643 .writefn = tlbiipas2_hyp_write }, 5644 { .name = "TLBIIPAS2IS", 5645 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5646 .type = ARM_CP_NO_RAW, .access = PL2_W, 5647 .writefn = tlbiipas2is_hyp_write }, 5648 { .name = "TLBIIPAS2L", 5649 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5650 .type = ARM_CP_NO_RAW, .access = PL2_W, 5651 .writefn = tlbiipas2_hyp_write }, 5652 { .name = "TLBIIPAS2LIS", 5653 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5654 .type = ARM_CP_NO_RAW, .access = PL2_W, 5655 .writefn = tlbiipas2is_hyp_write }, 5656 /* 32 bit cache operations */ 5657 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5658 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5659 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5660 .type = ARM_CP_NOP, .access = PL1_W }, 5661 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5663 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5664 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5665 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5666 .type = ARM_CP_NOP, .access = PL1_W }, 5667 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5668 .type = ARM_CP_NOP, .access = PL1_W }, 5669 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5670 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5671 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5672 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5673 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5674 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5675 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5676 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5677 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5678 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5679 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5680 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5681 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5682 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5683 /* MMU Domain access control / MPU write buffer control */ 5684 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5685 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5686 .writefn = dacr_write, .raw_writefn = raw_write, 5687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5688 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5689 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5690 .type = ARM_CP_ALIAS, 5691 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5692 .access = PL1_RW, 5693 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5694 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5695 .type = ARM_CP_ALIAS, 5696 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5697 .access = PL1_RW, 5698 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5699 /* 5700 * We rely on the access checks not allowing the guest to write to the 5701 * state field when SPSel indicates that it's being used as the stack 5702 * pointer. 5703 */ 5704 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5706 .access = PL1_RW, .accessfn = sp_el0_access, 5707 .type = ARM_CP_ALIAS, 5708 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5709 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5710 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5711 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5712 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5713 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5715 .type = ARM_CP_NO_RAW, 5716 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5717 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5718 .type = ARM_CP_ALIAS, 5719 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5720 .access = PL2_RW, 5721 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5722 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5723 .type = ARM_CP_ALIAS, 5724 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5725 .access = PL2_RW, 5726 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5727 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5728 .type = ARM_CP_ALIAS, 5729 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5730 .access = PL2_RW, 5731 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5732 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5733 .type = ARM_CP_ALIAS, 5734 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5735 .access = PL2_RW, 5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5737 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5738 .type = ARM_CP_IO, 5739 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5740 .resetvalue = 0, 5741 .access = PL3_RW, 5742 .writefn = mdcr_el3_write, 5743 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5744 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5745 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5746 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5747 .writefn = sdcr_write, 5748 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5749 }; 5750 5751 /* These are present only when EL1 supports AArch32 */ 5752 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5753 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5754 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5755 .access = PL2_RW, 5756 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5757 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5758 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5760 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5761 .writefn = dacr_write, .raw_writefn = raw_write, 5762 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5763 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5765 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5766 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5767 }; 5768 5769 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5770 { 5771 ARMCPU *cpu = env_archcpu(env); 5772 5773 if (arm_feature(env, ARM_FEATURE_V8)) { 5774 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5775 } else { 5776 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5777 } 5778 5779 if (arm_feature(env, ARM_FEATURE_EL3)) { 5780 valid_mask &= ~HCR_HCD; 5781 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5782 /* 5783 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5784 * However, if we're using the SMC PSCI conduit then QEMU is 5785 * effectively acting like EL3 firmware and so the guest at 5786 * EL2 should retain the ability to prevent EL1 from being 5787 * able to make SMC calls into the ersatz firmware, so in 5788 * that case HCR.TSC should be read/write. 5789 */ 5790 valid_mask &= ~HCR_TSC; 5791 } 5792 5793 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5794 if (cpu_isar_feature(aa64_vh, cpu)) { 5795 valid_mask |= HCR_E2H; 5796 } 5797 if (cpu_isar_feature(aa64_ras, cpu)) { 5798 valid_mask |= HCR_TERR | HCR_TEA; 5799 } 5800 if (cpu_isar_feature(aa64_lor, cpu)) { 5801 valid_mask |= HCR_TLOR; 5802 } 5803 if (cpu_isar_feature(aa64_pauth, cpu)) { 5804 valid_mask |= HCR_API | HCR_APK; 5805 } 5806 if (cpu_isar_feature(aa64_mte, cpu)) { 5807 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5808 } 5809 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5810 valid_mask |= HCR_ENSCXT; 5811 } 5812 if (cpu_isar_feature(aa64_fwb, cpu)) { 5813 valid_mask |= HCR_FWB; 5814 } 5815 if (cpu_isar_feature(aa64_rme, cpu)) { 5816 valid_mask |= HCR_GPF; 5817 } 5818 } 5819 5820 if (cpu_isar_feature(any_evt, cpu)) { 5821 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5822 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5823 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5824 } 5825 5826 /* Clear RES0 bits. */ 5827 value &= valid_mask; 5828 5829 /* 5830 * These bits change the MMU setup: 5831 * HCR_VM enables stage 2 translation 5832 * HCR_PTW forbids certain page-table setups 5833 * HCR_DC disables stage1 and enables stage2 translation 5834 * HCR_DCT enables tagging on (disabled) stage1 translation 5835 * HCR_FWB changes the interpretation of stage2 descriptor bits 5836 */ 5837 if ((env->cp15.hcr_el2 ^ value) & 5838 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5839 tlb_flush(CPU(cpu)); 5840 } 5841 env->cp15.hcr_el2 = value; 5842 5843 /* 5844 * Updates to VI and VF require us to update the status of 5845 * virtual interrupts, which are the logical OR of these bits 5846 * and the state of the input lines from the GIC. (This requires 5847 * that we have the iothread lock, which is done by marking the 5848 * reginfo structs as ARM_CP_IO.) 5849 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5850 * possible for it to be taken immediately, because VIRQ and 5851 * VFIQ are masked unless running at EL0 or EL1, and HCR 5852 * can only be written at EL2. 5853 */ 5854 g_assert(qemu_mutex_iothread_locked()); 5855 arm_cpu_update_virq(cpu); 5856 arm_cpu_update_vfiq(cpu); 5857 arm_cpu_update_vserr(cpu); 5858 } 5859 5860 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5861 { 5862 do_hcr_write(env, value, 0); 5863 } 5864 5865 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5866 uint64_t value) 5867 { 5868 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5869 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5870 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5871 } 5872 5873 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5874 uint64_t value) 5875 { 5876 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5877 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5878 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5879 } 5880 5881 /* 5882 * Return the effective value of HCR_EL2, at the given security state. 5883 * Bits that are not included here: 5884 * RW (read from SCR_EL3.RW as needed) 5885 */ 5886 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5887 { 5888 uint64_t ret = env->cp15.hcr_el2; 5889 5890 assert(space != ARMSS_Root); 5891 5892 if (!arm_is_el2_enabled_secstate(env, space)) { 5893 /* 5894 * "This register has no effect if EL2 is not enabled in the 5895 * current Security state". This is ARMv8.4-SecEL2 speak for 5896 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5897 * 5898 * Prior to that, the language was "In an implementation that 5899 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5900 * as if this field is 0 for all purposes other than a direct 5901 * read or write access of HCR_EL2". With lots of enumeration 5902 * on a per-field basis. In current QEMU, this is condition 5903 * is arm_is_secure_below_el3. 5904 * 5905 * Since the v8.4 language applies to the entire register, and 5906 * appears to be backward compatible, use that. 5907 */ 5908 return 0; 5909 } 5910 5911 /* 5912 * For a cpu that supports both aarch64 and aarch32, we can set bits 5913 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5914 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5915 */ 5916 if (!arm_el_is_aa64(env, 2)) { 5917 uint64_t aa32_valid; 5918 5919 /* 5920 * These bits are up-to-date as of ARMv8.6. 5921 * For HCR, it's easiest to list just the 2 bits that are invalid. 5922 * For HCR2, list those that are valid. 5923 */ 5924 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5925 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5926 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5927 ret &= aa32_valid; 5928 } 5929 5930 if (ret & HCR_TGE) { 5931 /* These bits are up-to-date as of ARMv8.6. */ 5932 if (ret & HCR_E2H) { 5933 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5934 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5935 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5936 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5937 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5938 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5939 } else { 5940 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5941 } 5942 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5943 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5944 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5945 HCR_TLOR); 5946 } 5947 5948 return ret; 5949 } 5950 5951 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5952 { 5953 if (arm_feature(env, ARM_FEATURE_M)) { 5954 return 0; 5955 } 5956 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5957 } 5958 5959 /* 5960 * Corresponds to ARM pseudocode function ELIsInHost(). 5961 */ 5962 bool el_is_in_host(CPUARMState *env, int el) 5963 { 5964 uint64_t mask; 5965 5966 /* 5967 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5968 * Perform the simplest bit tests first, and validate EL2 afterward. 5969 */ 5970 if (el & 1) { 5971 return false; /* EL1 or EL3 */ 5972 } 5973 5974 /* 5975 * Note that hcr_write() checks isar_feature_aa64_vh(), 5976 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5977 */ 5978 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5979 if ((env->cp15.hcr_el2 & mask) != mask) { 5980 return false; 5981 } 5982 5983 /* TGE and/or E2H set: double check those bits are currently legal. */ 5984 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5985 } 5986 5987 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5988 uint64_t value) 5989 { 5990 uint64_t valid_mask = 0; 5991 5992 /* FEAT_MOPS adds MSCEn and MCE2 */ 5993 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5994 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5995 } 5996 5997 /* Clear RES0 bits. */ 5998 env->cp15.hcrx_el2 = value & valid_mask; 5999 } 6000 6001 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6002 bool isread) 6003 { 6004 if (arm_current_el(env) < 3 6005 && arm_feature(env, ARM_FEATURE_EL3) 6006 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6007 return CP_ACCESS_TRAP_EL3; 6008 } 6009 return CP_ACCESS_OK; 6010 } 6011 6012 static const ARMCPRegInfo hcrx_el2_reginfo = { 6013 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6014 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6015 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6016 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6017 }; 6018 6019 /* Return the effective value of HCRX_EL2. */ 6020 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6021 { 6022 /* 6023 * The bits in this register behave as 0 for all purposes other than 6024 * direct reads of the register if SCR_EL3.HXEn is 0. 6025 * If EL2 is not enabled in the current security state, then the 6026 * bit may behave as if 0, or as if 1, depending on the bit. 6027 * For the moment, we treat the EL2-disabled case as taking 6028 * priority over the HXEn-disabled case. This is true for the only 6029 * bit for a feature which we implement where the answer is different 6030 * for the two cases (MSCEn for FEAT_MOPS). 6031 * This may need to be revisited for future bits. 6032 */ 6033 if (!arm_is_el2_enabled(env)) { 6034 uint64_t hcrx = 0; 6035 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6036 /* MSCEn behaves as 1 if EL2 is not enabled */ 6037 hcrx |= HCRX_MSCEN; 6038 } 6039 return hcrx; 6040 } 6041 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6042 return 0; 6043 } 6044 return env->cp15.hcrx_el2; 6045 } 6046 6047 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6048 uint64_t value) 6049 { 6050 /* 6051 * For A-profile AArch32 EL3, if NSACR.CP10 6052 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6053 */ 6054 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6055 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6056 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6057 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6058 } 6059 env->cp15.cptr_el[2] = value; 6060 } 6061 6062 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6063 { 6064 /* 6065 * For A-profile AArch32 EL3, if NSACR.CP10 6066 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6067 */ 6068 uint64_t value = env->cp15.cptr_el[2]; 6069 6070 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6071 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6072 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6073 } 6074 return value; 6075 } 6076 6077 static const ARMCPRegInfo el2_cp_reginfo[] = { 6078 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6079 .type = ARM_CP_IO, 6080 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6081 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6082 .writefn = hcr_write, .raw_writefn = raw_write }, 6083 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6084 .type = ARM_CP_ALIAS | ARM_CP_IO, 6085 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6086 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6087 .writefn = hcr_writelow }, 6088 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6089 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6090 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6091 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6092 .type = ARM_CP_ALIAS, 6093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6094 .access = PL2_RW, 6095 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6096 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6097 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6098 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6099 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6100 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6101 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6102 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6103 .type = ARM_CP_ALIAS, 6104 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6105 .access = PL2_RW, 6106 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6107 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6108 .type = ARM_CP_ALIAS, 6109 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6110 .access = PL2_RW, 6111 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6112 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6113 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6114 .access = PL2_RW, .writefn = vbar_write, 6115 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6116 .resetvalue = 0 }, 6117 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6118 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6119 .access = PL3_RW, .type = ARM_CP_ALIAS, 6120 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6121 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6122 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6123 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6124 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6125 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6126 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6127 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6128 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6129 .resetvalue = 0 }, 6130 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6131 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6132 .access = PL2_RW, .type = ARM_CP_ALIAS, 6133 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6134 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6135 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6136 .access = PL2_RW, .type = ARM_CP_CONST, 6137 .resetvalue = 0 }, 6138 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6139 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6140 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6141 .access = PL2_RW, .type = ARM_CP_CONST, 6142 .resetvalue = 0 }, 6143 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6144 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6145 .access = PL2_RW, .type = ARM_CP_CONST, 6146 .resetvalue = 0 }, 6147 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6148 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6149 .access = PL2_RW, .type = ARM_CP_CONST, 6150 .resetvalue = 0 }, 6151 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6152 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6153 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6154 .raw_writefn = raw_write, 6155 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6156 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6157 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6158 .type = ARM_CP_ALIAS, 6159 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6160 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6161 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6162 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6163 .access = PL2_RW, 6164 /* no .writefn needed as this can't cause an ASID change */ 6165 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6166 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6167 .cp = 15, .opc1 = 6, .crm = 2, 6168 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6169 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6170 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6171 .writefn = vttbr_write, .raw_writefn = raw_write }, 6172 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6173 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6174 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6175 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6176 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6177 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6178 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6179 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6180 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6181 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6182 .access = PL2_RW, .resetvalue = 0, 6183 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6184 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6185 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6186 .access = PL2_RW, .resetvalue = 0, 6187 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6188 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6189 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6190 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6191 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6192 { .name = "TLBIALLNSNH", 6193 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6194 .type = ARM_CP_NO_RAW, .access = PL2_W, 6195 .writefn = tlbiall_nsnh_write }, 6196 { .name = "TLBIALLNSNHIS", 6197 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6198 .type = ARM_CP_NO_RAW, .access = PL2_W, 6199 .writefn = tlbiall_nsnh_is_write }, 6200 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6201 .type = ARM_CP_NO_RAW, .access = PL2_W, 6202 .writefn = tlbiall_hyp_write }, 6203 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6204 .type = ARM_CP_NO_RAW, .access = PL2_W, 6205 .writefn = tlbiall_hyp_is_write }, 6206 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6207 .type = ARM_CP_NO_RAW, .access = PL2_W, 6208 .writefn = tlbimva_hyp_write }, 6209 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6210 .type = ARM_CP_NO_RAW, .access = PL2_W, 6211 .writefn = tlbimva_hyp_is_write }, 6212 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6213 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6214 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6215 .writefn = tlbi_aa64_alle2_write }, 6216 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6217 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6218 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6219 .writefn = tlbi_aa64_vae2_write }, 6220 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6221 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6222 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6223 .writefn = tlbi_aa64_vae2_write }, 6224 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6225 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6226 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6227 .writefn = tlbi_aa64_alle2is_write }, 6228 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6229 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6230 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6231 .writefn = tlbi_aa64_vae2is_write }, 6232 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6233 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6234 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6235 .writefn = tlbi_aa64_vae2is_write }, 6236 #ifndef CONFIG_USER_ONLY 6237 /* 6238 * Unlike the other EL2-related AT operations, these must 6239 * UNDEF from EL3 if EL2 is not implemented, which is why we 6240 * define them here rather than with the rest of the AT ops. 6241 */ 6242 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6243 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6244 .access = PL2_W, .accessfn = at_s1e2_access, 6245 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6246 .writefn = ats_write64 }, 6247 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6248 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6249 .access = PL2_W, .accessfn = at_s1e2_access, 6250 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6251 .writefn = ats_write64 }, 6252 /* 6253 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6254 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6255 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6256 * to behave as if SCR.NS was 1. 6257 */ 6258 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6259 .access = PL2_W, 6260 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6261 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6262 .access = PL2_W, 6263 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6264 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6265 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6266 /* 6267 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6268 * reset values as IMPDEF. We choose to reset to 3 to comply with 6269 * both ARMv7 and ARMv8. 6270 */ 6271 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6272 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6273 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6274 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6275 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6276 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6277 .writefn = gt_cntvoff_write, 6278 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6279 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6280 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6281 .writefn = gt_cntvoff_write, 6282 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6283 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6284 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6286 .type = ARM_CP_IO, .access = PL2_RW, 6287 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6288 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6290 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6291 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6292 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6293 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6294 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6295 .resetfn = gt_hyp_timer_reset, 6296 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6297 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6298 .type = ARM_CP_IO, 6299 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6300 .access = PL2_RW, 6301 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6302 .resetvalue = 0, 6303 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6304 #endif 6305 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6306 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6307 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6308 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6309 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6310 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6311 .access = PL2_RW, 6312 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6313 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6314 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6315 .access = PL2_RW, 6316 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6317 }; 6318 6319 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6320 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6321 .type = ARM_CP_ALIAS | ARM_CP_IO, 6322 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6323 .access = PL2_RW, 6324 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6325 .writefn = hcr_writehigh }, 6326 }; 6327 6328 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6329 bool isread) 6330 { 6331 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6332 return CP_ACCESS_OK; 6333 } 6334 return CP_ACCESS_TRAP_UNCATEGORIZED; 6335 } 6336 6337 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6338 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6339 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6340 .access = PL2_RW, .accessfn = sel2_access, 6341 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6342 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6343 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6344 .access = PL2_RW, .accessfn = sel2_access, 6345 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6346 }; 6347 6348 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6349 bool isread) 6350 { 6351 /* 6352 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6353 * At Secure EL1 it traps to EL3 or EL2. 6354 */ 6355 if (arm_current_el(env) == 3) { 6356 return CP_ACCESS_OK; 6357 } 6358 if (arm_is_secure_below_el3(env)) { 6359 if (env->cp15.scr_el3 & SCR_EEL2) { 6360 return CP_ACCESS_TRAP_EL2; 6361 } 6362 return CP_ACCESS_TRAP_EL3; 6363 } 6364 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6365 if (isread) { 6366 return CP_ACCESS_OK; 6367 } 6368 return CP_ACCESS_TRAP_UNCATEGORIZED; 6369 } 6370 6371 static const ARMCPRegInfo el3_cp_reginfo[] = { 6372 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6373 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6374 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6375 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6376 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6377 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6378 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6379 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6380 .writefn = scr_write, .raw_writefn = raw_write }, 6381 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6382 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6383 .access = PL3_RW, .resetvalue = 0, 6384 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6385 { .name = "SDER", 6386 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6387 .access = PL3_RW, .resetvalue = 0, 6388 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6389 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6390 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6391 .writefn = vbar_write, .resetvalue = 0, 6392 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6393 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6394 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6395 .access = PL3_RW, .resetvalue = 0, 6396 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6397 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6398 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6399 .access = PL3_RW, 6400 /* no .writefn needed as this can't cause an ASID change */ 6401 .resetvalue = 0, 6402 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6403 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6404 .type = ARM_CP_ALIAS, 6405 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6406 .access = PL3_RW, 6407 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6408 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6409 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6410 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6411 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6412 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6413 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6414 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6415 .type = ARM_CP_ALIAS, 6416 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6417 .access = PL3_RW, 6418 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6419 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6421 .access = PL3_RW, .writefn = vbar_write, 6422 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6423 .resetvalue = 0 }, 6424 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6425 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6426 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6427 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6428 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6429 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6430 .access = PL3_RW, .resetvalue = 0, 6431 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6432 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6433 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6434 .access = PL3_RW, .type = ARM_CP_CONST, 6435 .resetvalue = 0 }, 6436 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6437 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6438 .access = PL3_RW, .type = ARM_CP_CONST, 6439 .resetvalue = 0 }, 6440 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6441 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6442 .access = PL3_RW, .type = ARM_CP_CONST, 6443 .resetvalue = 0 }, 6444 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6445 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6446 .access = PL3_W, .type = ARM_CP_NO_RAW, 6447 .writefn = tlbi_aa64_alle3is_write }, 6448 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6449 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6450 .access = PL3_W, .type = ARM_CP_NO_RAW, 6451 .writefn = tlbi_aa64_vae3is_write }, 6452 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6453 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6454 .access = PL3_W, .type = ARM_CP_NO_RAW, 6455 .writefn = tlbi_aa64_vae3is_write }, 6456 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6457 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6458 .access = PL3_W, .type = ARM_CP_NO_RAW, 6459 .writefn = tlbi_aa64_alle3_write }, 6460 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6461 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6462 .access = PL3_W, .type = ARM_CP_NO_RAW, 6463 .writefn = tlbi_aa64_vae3_write }, 6464 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6465 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6466 .access = PL3_W, .type = ARM_CP_NO_RAW, 6467 .writefn = tlbi_aa64_vae3_write }, 6468 }; 6469 6470 #ifndef CONFIG_USER_ONLY 6471 /* Test if system register redirection is to occur in the current state. */ 6472 static bool redirect_for_e2h(CPUARMState *env) 6473 { 6474 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6475 } 6476 6477 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6478 { 6479 CPReadFn *readfn; 6480 6481 if (redirect_for_e2h(env)) { 6482 /* Switch to the saved EL2 version of the register. */ 6483 ri = ri->opaque; 6484 readfn = ri->readfn; 6485 } else { 6486 readfn = ri->orig_readfn; 6487 } 6488 if (readfn == NULL) { 6489 readfn = raw_read; 6490 } 6491 return readfn(env, ri); 6492 } 6493 6494 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6495 uint64_t value) 6496 { 6497 CPWriteFn *writefn; 6498 6499 if (redirect_for_e2h(env)) { 6500 /* Switch to the saved EL2 version of the register. */ 6501 ri = ri->opaque; 6502 writefn = ri->writefn; 6503 } else { 6504 writefn = ri->orig_writefn; 6505 } 6506 if (writefn == NULL) { 6507 writefn = raw_write; 6508 } 6509 writefn(env, ri, value); 6510 } 6511 6512 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6513 { 6514 struct E2HAlias { 6515 uint32_t src_key, dst_key, new_key; 6516 const char *src_name, *dst_name, *new_name; 6517 bool (*feature)(const ARMISARegisters *id); 6518 }; 6519 6520 #define K(op0, op1, crn, crm, op2) \ 6521 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6522 6523 static const struct E2HAlias aliases[] = { 6524 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6525 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6526 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6527 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6528 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6529 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6530 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6531 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6532 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6533 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6534 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6535 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6536 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6537 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6538 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6539 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6540 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6541 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6542 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6543 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6544 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6545 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6546 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6547 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6548 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6549 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6550 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6551 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6552 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6553 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6554 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6555 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6556 6557 /* 6558 * Note that redirection of ZCR is mentioned in the description 6559 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6560 * not in the summary table. 6561 */ 6562 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6563 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6564 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6565 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6566 6567 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6568 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6569 6570 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6571 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6572 isar_feature_aa64_scxtnum }, 6573 6574 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6575 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6576 }; 6577 #undef K 6578 6579 size_t i; 6580 6581 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6582 const struct E2HAlias *a = &aliases[i]; 6583 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6584 bool ok; 6585 6586 if (a->feature && !a->feature(&cpu->isar)) { 6587 continue; 6588 } 6589 6590 src_reg = g_hash_table_lookup(cpu->cp_regs, 6591 (gpointer)(uintptr_t)a->src_key); 6592 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6593 (gpointer)(uintptr_t)a->dst_key); 6594 g_assert(src_reg != NULL); 6595 g_assert(dst_reg != NULL); 6596 6597 /* Cross-compare names to detect typos in the keys. */ 6598 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6599 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6600 6601 /* None of the core system registers use opaque; we will. */ 6602 g_assert(src_reg->opaque == NULL); 6603 6604 /* Create alias before redirection so we dup the right data. */ 6605 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6606 6607 new_reg->name = a->new_name; 6608 new_reg->type |= ARM_CP_ALIAS; 6609 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6610 new_reg->access &= PL2_RW | PL3_RW; 6611 6612 ok = g_hash_table_insert(cpu->cp_regs, 6613 (gpointer)(uintptr_t)a->new_key, new_reg); 6614 g_assert(ok); 6615 6616 src_reg->opaque = dst_reg; 6617 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6618 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6619 if (!src_reg->raw_readfn) { 6620 src_reg->raw_readfn = raw_read; 6621 } 6622 if (!src_reg->raw_writefn) { 6623 src_reg->raw_writefn = raw_write; 6624 } 6625 src_reg->readfn = el2_e2h_read; 6626 src_reg->writefn = el2_e2h_write; 6627 } 6628 } 6629 #endif 6630 6631 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6632 bool isread) 6633 { 6634 int cur_el = arm_current_el(env); 6635 6636 if (cur_el < 2) { 6637 uint64_t hcr = arm_hcr_el2_eff(env); 6638 6639 if (cur_el == 0) { 6640 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6641 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6642 return CP_ACCESS_TRAP_EL2; 6643 } 6644 } else { 6645 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6646 return CP_ACCESS_TRAP; 6647 } 6648 if (hcr & HCR_TID2) { 6649 return CP_ACCESS_TRAP_EL2; 6650 } 6651 } 6652 } else if (hcr & HCR_TID2) { 6653 return CP_ACCESS_TRAP_EL2; 6654 } 6655 } 6656 6657 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6658 return CP_ACCESS_TRAP_EL2; 6659 } 6660 6661 return CP_ACCESS_OK; 6662 } 6663 6664 /* 6665 * Check for traps to RAS registers, which are controlled 6666 * by HCR_EL2.TERR and SCR_EL3.TERR. 6667 */ 6668 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6669 bool isread) 6670 { 6671 int el = arm_current_el(env); 6672 6673 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6674 return CP_ACCESS_TRAP_EL2; 6675 } 6676 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6677 return CP_ACCESS_TRAP_EL3; 6678 } 6679 return CP_ACCESS_OK; 6680 } 6681 6682 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6683 { 6684 int el = arm_current_el(env); 6685 6686 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6687 return env->cp15.vdisr_el2; 6688 } 6689 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6690 return 0; /* RAZ/WI */ 6691 } 6692 return env->cp15.disr_el1; 6693 } 6694 6695 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6696 { 6697 int el = arm_current_el(env); 6698 6699 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6700 env->cp15.vdisr_el2 = val; 6701 return; 6702 } 6703 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6704 return; /* RAZ/WI */ 6705 } 6706 env->cp15.disr_el1 = val; 6707 } 6708 6709 /* 6710 * Minimal RAS implementation with no Error Records. 6711 * Which means that all of the Error Record registers: 6712 * ERXADDR_EL1 6713 * ERXCTLR_EL1 6714 * ERXFR_EL1 6715 * ERXMISC0_EL1 6716 * ERXMISC1_EL1 6717 * ERXMISC2_EL1 6718 * ERXMISC3_EL1 6719 * ERXPFGCDN_EL1 (RASv1p1) 6720 * ERXPFGCTL_EL1 (RASv1p1) 6721 * ERXPFGF_EL1 (RASv1p1) 6722 * ERXSTATUS_EL1 6723 * and 6724 * ERRSELR_EL1 6725 * may generate UNDEFINED, which is the effect we get by not 6726 * listing them at all. 6727 * 6728 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6729 * is higher priority than FGT-to-EL2 so we do not need to list them 6730 * in order to check for an FGT. 6731 */ 6732 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6733 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6734 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6735 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6736 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6737 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6738 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6739 .access = PL1_R, .accessfn = access_terr, 6740 .fgt = FGT_ERRIDR_EL1, 6741 .type = ARM_CP_CONST, .resetvalue = 0 }, 6742 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6743 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6744 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6745 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6746 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6747 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6748 }; 6749 6750 /* 6751 * Return the exception level to which exceptions should be taken 6752 * via SVEAccessTrap. This excludes the check for whether the exception 6753 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6754 * be found by testing 0 < fp_exception_el < sve_exception_el. 6755 * 6756 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6757 * pseudocode does *not* separate out the FP trap checks, but has them 6758 * all in one function. 6759 */ 6760 int sve_exception_el(CPUARMState *env, int el) 6761 { 6762 #ifndef CONFIG_USER_ONLY 6763 if (el <= 1 && !el_is_in_host(env, el)) { 6764 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6765 case 1: 6766 if (el != 0) { 6767 break; 6768 } 6769 /* fall through */ 6770 case 0: 6771 case 2: 6772 return 1; 6773 } 6774 } 6775 6776 if (el <= 2 && arm_is_el2_enabled(env)) { 6777 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6778 if (env->cp15.hcr_el2 & HCR_E2H) { 6779 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6780 case 1: 6781 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6782 break; 6783 } 6784 /* fall through */ 6785 case 0: 6786 case 2: 6787 return 2; 6788 } 6789 } else { 6790 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6791 return 2; 6792 } 6793 } 6794 } 6795 6796 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6797 if (arm_feature(env, ARM_FEATURE_EL3) 6798 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6799 return 3; 6800 } 6801 #endif 6802 return 0; 6803 } 6804 6805 /* 6806 * Return the exception level to which exceptions should be taken for SME. 6807 * C.f. the ARM pseudocode function CheckSMEAccess. 6808 */ 6809 int sme_exception_el(CPUARMState *env, int el) 6810 { 6811 #ifndef CONFIG_USER_ONLY 6812 if (el <= 1 && !el_is_in_host(env, el)) { 6813 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6814 case 1: 6815 if (el != 0) { 6816 break; 6817 } 6818 /* fall through */ 6819 case 0: 6820 case 2: 6821 return 1; 6822 } 6823 } 6824 6825 if (el <= 2 && arm_is_el2_enabled(env)) { 6826 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6827 if (env->cp15.hcr_el2 & HCR_E2H) { 6828 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6829 case 1: 6830 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6831 break; 6832 } 6833 /* fall through */ 6834 case 0: 6835 case 2: 6836 return 2; 6837 } 6838 } else { 6839 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6840 return 2; 6841 } 6842 } 6843 } 6844 6845 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6846 if (arm_feature(env, ARM_FEATURE_EL3) 6847 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6848 return 3; 6849 } 6850 #endif 6851 return 0; 6852 } 6853 6854 /* 6855 * Given that SVE is enabled, return the vector length for EL. 6856 */ 6857 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6858 { 6859 ARMCPU *cpu = env_archcpu(env); 6860 uint64_t *cr = env->vfp.zcr_el; 6861 uint32_t map = cpu->sve_vq.map; 6862 uint32_t len = ARM_MAX_VQ - 1; 6863 6864 if (sm) { 6865 cr = env->vfp.smcr_el; 6866 map = cpu->sme_vq.map; 6867 } 6868 6869 if (el <= 1 && !el_is_in_host(env, el)) { 6870 len = MIN(len, 0xf & (uint32_t)cr[1]); 6871 } 6872 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6873 len = MIN(len, 0xf & (uint32_t)cr[2]); 6874 } 6875 if (arm_feature(env, ARM_FEATURE_EL3)) { 6876 len = MIN(len, 0xf & (uint32_t)cr[3]); 6877 } 6878 6879 map &= MAKE_64BIT_MASK(0, len + 1); 6880 if (map != 0) { 6881 return 31 - clz32(map); 6882 } 6883 6884 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6885 assert(sm); 6886 return ctz32(cpu->sme_vq.map); 6887 } 6888 6889 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6890 { 6891 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6892 } 6893 6894 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6895 uint64_t value) 6896 { 6897 int cur_el = arm_current_el(env); 6898 int old_len = sve_vqm1_for_el(env, cur_el); 6899 int new_len; 6900 6901 /* Bits other than [3:0] are RAZ/WI. */ 6902 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6903 raw_write(env, ri, value & 0xf); 6904 6905 /* 6906 * Because we arrived here, we know both FP and SVE are enabled; 6907 * otherwise we would have trapped access to the ZCR_ELn register. 6908 */ 6909 new_len = sve_vqm1_for_el(env, cur_el); 6910 if (new_len < old_len) { 6911 aarch64_sve_narrow_vq(env, new_len + 1); 6912 } 6913 } 6914 6915 static const ARMCPRegInfo zcr_reginfo[] = { 6916 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6918 .access = PL1_RW, .type = ARM_CP_SVE, 6919 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6920 .writefn = zcr_write, .raw_writefn = raw_write }, 6921 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6923 .access = PL2_RW, .type = ARM_CP_SVE, 6924 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6925 .writefn = zcr_write, .raw_writefn = raw_write }, 6926 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6927 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6928 .access = PL3_RW, .type = ARM_CP_SVE, 6929 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6930 .writefn = zcr_write, .raw_writefn = raw_write }, 6931 }; 6932 6933 #ifdef TARGET_AARCH64 6934 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6935 bool isread) 6936 { 6937 int el = arm_current_el(env); 6938 6939 if (el == 0) { 6940 uint64_t sctlr = arm_sctlr(env, el); 6941 if (!(sctlr & SCTLR_EnTP2)) { 6942 return CP_ACCESS_TRAP; 6943 } 6944 } 6945 /* TODO: FEAT_FGT */ 6946 if (el < 3 6947 && arm_feature(env, ARM_FEATURE_EL3) 6948 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6949 return CP_ACCESS_TRAP_EL3; 6950 } 6951 return CP_ACCESS_OK; 6952 } 6953 6954 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6955 bool isread) 6956 { 6957 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6958 if (arm_current_el(env) < 3 6959 && arm_feature(env, ARM_FEATURE_EL3) 6960 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6961 return CP_ACCESS_TRAP_EL3; 6962 } 6963 return CP_ACCESS_OK; 6964 } 6965 6966 /* ResetSVEState */ 6967 static void arm_reset_sve_state(CPUARMState *env) 6968 { 6969 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6970 /* Recall that FFR is stored as pregs[16]. */ 6971 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6972 vfp_set_fpcr(env, 0x0800009f); 6973 } 6974 6975 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6976 { 6977 uint64_t change = (env->svcr ^ new) & mask; 6978 6979 if (change == 0) { 6980 return; 6981 } 6982 env->svcr ^= change; 6983 6984 if (change & R_SVCR_SM_MASK) { 6985 arm_reset_sve_state(env); 6986 } 6987 6988 /* 6989 * ResetSMEState. 6990 * 6991 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6992 * on enable: while disabled, the storage is inaccessible and the 6993 * value does not matter. We're not saving the storage in vmstate 6994 * when disabled either. 6995 */ 6996 if (change & new & R_SVCR_ZA_MASK) { 6997 memset(env->zarray, 0, sizeof(env->zarray)); 6998 } 6999 7000 if (tcg_enabled()) { 7001 arm_rebuild_hflags(env); 7002 } 7003 } 7004 7005 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7006 uint64_t value) 7007 { 7008 aarch64_set_svcr(env, value, -1); 7009 } 7010 7011 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7012 uint64_t value) 7013 { 7014 int cur_el = arm_current_el(env); 7015 int old_len = sve_vqm1_for_el(env, cur_el); 7016 int new_len; 7017 7018 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7019 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7020 raw_write(env, ri, value); 7021 7022 /* 7023 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7024 * when SVL is widened (old values kept, or zeros). Choose to keep the 7025 * current values for simplicity. But for QEMU internals, we must still 7026 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7027 * above aarch64_sve_narrow_vq. 7028 */ 7029 new_len = sve_vqm1_for_el(env, cur_el); 7030 if (new_len < old_len) { 7031 aarch64_sve_narrow_vq(env, new_len + 1); 7032 } 7033 } 7034 7035 static const ARMCPRegInfo sme_reginfo[] = { 7036 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7038 .access = PL0_RW, .accessfn = access_tpidr2, 7039 .fgt = FGT_NTPIDR2_EL0, 7040 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7041 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7043 .access = PL0_RW, .type = ARM_CP_SME, 7044 .fieldoffset = offsetof(CPUARMState, svcr), 7045 .writefn = svcr_write, .raw_writefn = raw_write }, 7046 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7048 .access = PL1_RW, .type = ARM_CP_SME, 7049 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7050 .writefn = smcr_write, .raw_writefn = raw_write }, 7051 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7053 .access = PL2_RW, .type = ARM_CP_SME, 7054 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7055 .writefn = smcr_write, .raw_writefn = raw_write }, 7056 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7058 .access = PL3_RW, .type = ARM_CP_SME, 7059 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7060 .writefn = smcr_write, .raw_writefn = raw_write }, 7061 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7063 .access = PL1_R, .accessfn = access_aa64_tid1, 7064 /* 7065 * IMPLEMENTOR = 0 (software) 7066 * REVISION = 0 (implementation defined) 7067 * SMPS = 0 (no streaming execution priority in QEMU) 7068 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7069 */ 7070 .type = ARM_CP_CONST, .resetvalue = 0, }, 7071 /* 7072 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7073 */ 7074 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7075 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7076 .access = PL1_RW, .accessfn = access_esm, 7077 .fgt = FGT_NSMPRI_EL1, 7078 .type = ARM_CP_CONST, .resetvalue = 0 }, 7079 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7081 .access = PL2_RW, .accessfn = access_esm, 7082 .type = ARM_CP_CONST, .resetvalue = 0 }, 7083 }; 7084 7085 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7086 uint64_t value) 7087 { 7088 CPUState *cs = env_cpu(env); 7089 7090 tlb_flush(cs); 7091 } 7092 7093 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7094 uint64_t value) 7095 { 7096 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7097 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7098 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7099 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7100 7101 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7102 } 7103 7104 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7105 { 7106 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7107 env_archcpu(env)->reset_l0gptsz); 7108 } 7109 7110 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7111 uint64_t value) 7112 { 7113 CPUState *cs = env_cpu(env); 7114 7115 tlb_flush_all_cpus_synced(cs); 7116 } 7117 7118 static const ARMCPRegInfo rme_reginfo[] = { 7119 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7121 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7122 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7123 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7125 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7126 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7128 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7129 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7131 .access = PL3_W, .type = ARM_CP_NO_RAW, 7132 .writefn = tlbi_aa64_paall_write }, 7133 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7135 .access = PL3_W, .type = ARM_CP_NO_RAW, 7136 .writefn = tlbi_aa64_paallos_write }, 7137 /* 7138 * QEMU does not have a way to invalidate by physical address, thus 7139 * invalidating a range of physical addresses is accomplished by 7140 * flushing all tlb entries in the outer shareable domain, 7141 * just like PAALLOS. 7142 */ 7143 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7145 .access = PL3_W, .type = ARM_CP_NO_RAW, 7146 .writefn = tlbi_aa64_paallos_write }, 7147 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7148 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7149 .access = PL3_W, .type = ARM_CP_NO_RAW, 7150 .writefn = tlbi_aa64_paallos_write }, 7151 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7152 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7153 .access = PL3_W, .type = ARM_CP_NOP }, 7154 }; 7155 7156 static const ARMCPRegInfo rme_mte_reginfo[] = { 7157 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7158 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7159 .access = PL3_W, .type = ARM_CP_NOP }, 7160 }; 7161 #endif /* TARGET_AARCH64 */ 7162 7163 static void define_pmu_regs(ARMCPU *cpu) 7164 { 7165 /* 7166 * v7 performance monitor control register: same implementor 7167 * field as main ID register, and we implement four counters in 7168 * addition to the cycle count register. 7169 */ 7170 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7171 ARMCPRegInfo pmcr = { 7172 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7173 .access = PL0_RW, 7174 .fgt = FGT_PMCR_EL0, 7175 .type = ARM_CP_IO | ARM_CP_ALIAS, 7176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7177 .accessfn = pmreg_access, 7178 .readfn = pmcr_read, .raw_readfn = raw_read, 7179 .writefn = pmcr_write, .raw_writefn = raw_write, 7180 }; 7181 ARMCPRegInfo pmcr64 = { 7182 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7184 .access = PL0_RW, .accessfn = pmreg_access, 7185 .fgt = FGT_PMCR_EL0, 7186 .type = ARM_CP_IO, 7187 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7188 .resetvalue = cpu->isar.reset_pmcr_el0, 7189 .readfn = pmcr_read, .raw_readfn = raw_read, 7190 .writefn = pmcr_write, .raw_writefn = raw_write, 7191 }; 7192 7193 define_one_arm_cp_reg(cpu, &pmcr); 7194 define_one_arm_cp_reg(cpu, &pmcr64); 7195 for (i = 0; i < pmcrn; i++) { 7196 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7197 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7198 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7199 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7200 ARMCPRegInfo pmev_regs[] = { 7201 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7202 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7203 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7204 .fgt = FGT_PMEVCNTRN_EL0, 7205 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7206 .accessfn = pmreg_access_xevcntr }, 7207 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7208 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7209 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7210 .type = ARM_CP_IO, 7211 .fgt = FGT_PMEVCNTRN_EL0, 7212 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7213 .raw_readfn = pmevcntr_rawread, 7214 .raw_writefn = pmevcntr_rawwrite }, 7215 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7216 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7217 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7218 .fgt = FGT_PMEVTYPERN_EL0, 7219 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7220 .accessfn = pmreg_access }, 7221 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7223 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7224 .fgt = FGT_PMEVTYPERN_EL0, 7225 .type = ARM_CP_IO, 7226 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7227 .raw_writefn = pmevtyper_rawwrite }, 7228 }; 7229 define_arm_cp_regs(cpu, pmev_regs); 7230 g_free(pmevcntr_name); 7231 g_free(pmevcntr_el0_name); 7232 g_free(pmevtyper_name); 7233 g_free(pmevtyper_el0_name); 7234 } 7235 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7236 ARMCPRegInfo v81_pmu_regs[] = { 7237 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7238 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7239 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7240 .fgt = FGT_PMCEIDN_EL0, 7241 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7242 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7243 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7244 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7245 .fgt = FGT_PMCEIDN_EL0, 7246 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7247 }; 7248 define_arm_cp_regs(cpu, v81_pmu_regs); 7249 } 7250 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7251 static const ARMCPRegInfo v84_pmmir = { 7252 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7253 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7254 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7255 .fgt = FGT_PMMIR_EL1, 7256 .resetvalue = 0 7257 }; 7258 define_one_arm_cp_reg(cpu, &v84_pmmir); 7259 } 7260 } 7261 7262 #ifndef CONFIG_USER_ONLY 7263 /* 7264 * We don't know until after realize whether there's a GICv3 7265 * attached, and that is what registers the gicv3 sysregs. 7266 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7267 * at runtime. 7268 */ 7269 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7270 { 7271 ARMCPU *cpu = env_archcpu(env); 7272 uint64_t pfr1 = cpu->isar.id_pfr1; 7273 7274 if (env->gicv3state) { 7275 pfr1 |= 1 << 28; 7276 } 7277 return pfr1; 7278 } 7279 7280 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7281 { 7282 ARMCPU *cpu = env_archcpu(env); 7283 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7284 7285 if (env->gicv3state) { 7286 pfr0 |= 1 << 24; 7287 } 7288 return pfr0; 7289 } 7290 #endif 7291 7292 /* 7293 * Shared logic between LORID and the rest of the LOR* registers. 7294 * Secure state exclusion has already been dealt with. 7295 */ 7296 static CPAccessResult access_lor_ns(CPUARMState *env, 7297 const ARMCPRegInfo *ri, bool isread) 7298 { 7299 int el = arm_current_el(env); 7300 7301 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7302 return CP_ACCESS_TRAP_EL2; 7303 } 7304 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7305 return CP_ACCESS_TRAP_EL3; 7306 } 7307 return CP_ACCESS_OK; 7308 } 7309 7310 static CPAccessResult access_lor_other(CPUARMState *env, 7311 const ARMCPRegInfo *ri, bool isread) 7312 { 7313 if (arm_is_secure_below_el3(env)) { 7314 /* Access denied in secure mode. */ 7315 return CP_ACCESS_TRAP; 7316 } 7317 return access_lor_ns(env, ri, isread); 7318 } 7319 7320 /* 7321 * A trivial implementation of ARMv8.1-LOR leaves all of these 7322 * registers fixed at 0, which indicates that there are zero 7323 * supported Limited Ordering regions. 7324 */ 7325 static const ARMCPRegInfo lor_reginfo[] = { 7326 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7328 .access = PL1_RW, .accessfn = access_lor_other, 7329 .fgt = FGT_LORSA_EL1, 7330 .type = ARM_CP_CONST, .resetvalue = 0 }, 7331 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7332 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7333 .access = PL1_RW, .accessfn = access_lor_other, 7334 .fgt = FGT_LOREA_EL1, 7335 .type = ARM_CP_CONST, .resetvalue = 0 }, 7336 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7338 .access = PL1_RW, .accessfn = access_lor_other, 7339 .fgt = FGT_LORN_EL1, 7340 .type = ARM_CP_CONST, .resetvalue = 0 }, 7341 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7342 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7343 .access = PL1_RW, .accessfn = access_lor_other, 7344 .fgt = FGT_LORC_EL1, 7345 .type = ARM_CP_CONST, .resetvalue = 0 }, 7346 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7348 .access = PL1_R, .accessfn = access_lor_ns, 7349 .fgt = FGT_LORID_EL1, 7350 .type = ARM_CP_CONST, .resetvalue = 0 }, 7351 }; 7352 7353 #ifdef TARGET_AARCH64 7354 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7355 bool isread) 7356 { 7357 int el = arm_current_el(env); 7358 7359 if (el < 2 && 7360 arm_is_el2_enabled(env) && 7361 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7362 return CP_ACCESS_TRAP_EL2; 7363 } 7364 if (el < 3 && 7365 arm_feature(env, ARM_FEATURE_EL3) && 7366 !(env->cp15.scr_el3 & SCR_APK)) { 7367 return CP_ACCESS_TRAP_EL3; 7368 } 7369 return CP_ACCESS_OK; 7370 } 7371 7372 static const ARMCPRegInfo pauth_reginfo[] = { 7373 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7374 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7375 .access = PL1_RW, .accessfn = access_pauth, 7376 .fgt = FGT_APDAKEY, 7377 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7378 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7380 .access = PL1_RW, .accessfn = access_pauth, 7381 .fgt = FGT_APDAKEY, 7382 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7383 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7384 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7385 .access = PL1_RW, .accessfn = access_pauth, 7386 .fgt = FGT_APDBKEY, 7387 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7388 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7389 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7390 .access = PL1_RW, .accessfn = access_pauth, 7391 .fgt = FGT_APDBKEY, 7392 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7393 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7394 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7395 .access = PL1_RW, .accessfn = access_pauth, 7396 .fgt = FGT_APGAKEY, 7397 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7398 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7399 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7400 .access = PL1_RW, .accessfn = access_pauth, 7401 .fgt = FGT_APGAKEY, 7402 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7403 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7404 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7405 .access = PL1_RW, .accessfn = access_pauth, 7406 .fgt = FGT_APIAKEY, 7407 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7408 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7410 .access = PL1_RW, .accessfn = access_pauth, 7411 .fgt = FGT_APIAKEY, 7412 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7413 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7414 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7415 .access = PL1_RW, .accessfn = access_pauth, 7416 .fgt = FGT_APIBKEY, 7417 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7418 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7419 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7420 .access = PL1_RW, .accessfn = access_pauth, 7421 .fgt = FGT_APIBKEY, 7422 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7423 }; 7424 7425 static const ARMCPRegInfo tlbirange_reginfo[] = { 7426 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7428 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7429 .fgt = FGT_TLBIRVAE1IS, 7430 .writefn = tlbi_aa64_rvae1is_write }, 7431 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7433 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7434 .fgt = FGT_TLBIRVAAE1IS, 7435 .writefn = tlbi_aa64_rvae1is_write }, 7436 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7438 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7439 .fgt = FGT_TLBIRVALE1IS, 7440 .writefn = tlbi_aa64_rvae1is_write }, 7441 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7443 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7444 .fgt = FGT_TLBIRVAALE1IS, 7445 .writefn = tlbi_aa64_rvae1is_write }, 7446 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7448 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7449 .fgt = FGT_TLBIRVAE1OS, 7450 .writefn = tlbi_aa64_rvae1is_write }, 7451 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7453 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7454 .fgt = FGT_TLBIRVAAE1OS, 7455 .writefn = tlbi_aa64_rvae1is_write }, 7456 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7457 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7458 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7459 .fgt = FGT_TLBIRVALE1OS, 7460 .writefn = tlbi_aa64_rvae1is_write }, 7461 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7463 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7464 .fgt = FGT_TLBIRVAALE1OS, 7465 .writefn = tlbi_aa64_rvae1is_write }, 7466 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7468 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7469 .fgt = FGT_TLBIRVAE1, 7470 .writefn = tlbi_aa64_rvae1_write }, 7471 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7473 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7474 .fgt = FGT_TLBIRVAAE1, 7475 .writefn = tlbi_aa64_rvae1_write }, 7476 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7478 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7479 .fgt = FGT_TLBIRVALE1, 7480 .writefn = tlbi_aa64_rvae1_write }, 7481 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7483 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7484 .fgt = FGT_TLBIRVAALE1, 7485 .writefn = tlbi_aa64_rvae1_write }, 7486 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7487 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7488 .access = PL2_W, .type = ARM_CP_NO_RAW, 7489 .writefn = tlbi_aa64_ripas2e1is_write }, 7490 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7491 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7492 .access = PL2_W, .type = ARM_CP_NO_RAW, 7493 .writefn = tlbi_aa64_ripas2e1is_write }, 7494 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7495 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7496 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7497 .writefn = tlbi_aa64_rvae2is_write }, 7498 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7500 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7501 .writefn = tlbi_aa64_rvae2is_write }, 7502 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7503 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7504 .access = PL2_W, .type = ARM_CP_NO_RAW, 7505 .writefn = tlbi_aa64_ripas2e1_write }, 7506 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7507 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7508 .access = PL2_W, .type = ARM_CP_NO_RAW, 7509 .writefn = tlbi_aa64_ripas2e1_write }, 7510 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7511 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7512 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7513 .writefn = tlbi_aa64_rvae2is_write }, 7514 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7516 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7517 .writefn = tlbi_aa64_rvae2is_write }, 7518 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7520 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7521 .writefn = tlbi_aa64_rvae2_write }, 7522 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7524 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7525 .writefn = tlbi_aa64_rvae2_write }, 7526 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7528 .access = PL3_W, .type = ARM_CP_NO_RAW, 7529 .writefn = tlbi_aa64_rvae3is_write }, 7530 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7531 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7532 .access = PL3_W, .type = ARM_CP_NO_RAW, 7533 .writefn = tlbi_aa64_rvae3is_write }, 7534 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7535 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7536 .access = PL3_W, .type = ARM_CP_NO_RAW, 7537 .writefn = tlbi_aa64_rvae3is_write }, 7538 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7540 .access = PL3_W, .type = ARM_CP_NO_RAW, 7541 .writefn = tlbi_aa64_rvae3is_write }, 7542 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7544 .access = PL3_W, .type = ARM_CP_NO_RAW, 7545 .writefn = tlbi_aa64_rvae3_write }, 7546 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7547 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7548 .access = PL3_W, .type = ARM_CP_NO_RAW, 7549 .writefn = tlbi_aa64_rvae3_write }, 7550 }; 7551 7552 static const ARMCPRegInfo tlbios_reginfo[] = { 7553 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7555 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7556 .fgt = FGT_TLBIVMALLE1OS, 7557 .writefn = tlbi_aa64_vmalle1is_write }, 7558 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7560 .fgt = FGT_TLBIVAE1OS, 7561 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7562 .writefn = tlbi_aa64_vae1is_write }, 7563 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7565 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7566 .fgt = FGT_TLBIASIDE1OS, 7567 .writefn = tlbi_aa64_vmalle1is_write }, 7568 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7570 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7571 .fgt = FGT_TLBIVAAE1OS, 7572 .writefn = tlbi_aa64_vae1is_write }, 7573 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7575 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7576 .fgt = FGT_TLBIVALE1OS, 7577 .writefn = tlbi_aa64_vae1is_write }, 7578 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7580 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7581 .fgt = FGT_TLBIVAALE1OS, 7582 .writefn = tlbi_aa64_vae1is_write }, 7583 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7585 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7586 .writefn = tlbi_aa64_alle2is_write }, 7587 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7589 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7590 .writefn = tlbi_aa64_vae2is_write }, 7591 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7593 .access = PL2_W, .type = ARM_CP_NO_RAW, 7594 .writefn = tlbi_aa64_alle1is_write }, 7595 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7597 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7598 .writefn = tlbi_aa64_vae2is_write }, 7599 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7601 .access = PL2_W, .type = ARM_CP_NO_RAW, 7602 .writefn = tlbi_aa64_alle1is_write }, 7603 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7605 .access = PL2_W, .type = ARM_CP_NOP }, 7606 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7608 .access = PL2_W, .type = ARM_CP_NOP }, 7609 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7610 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7611 .access = PL2_W, .type = ARM_CP_NOP }, 7612 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7614 .access = PL2_W, .type = ARM_CP_NOP }, 7615 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7616 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7617 .access = PL3_W, .type = ARM_CP_NO_RAW, 7618 .writefn = tlbi_aa64_alle3is_write }, 7619 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7620 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7621 .access = PL3_W, .type = ARM_CP_NO_RAW, 7622 .writefn = tlbi_aa64_vae3is_write }, 7623 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7624 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7625 .access = PL3_W, .type = ARM_CP_NO_RAW, 7626 .writefn = tlbi_aa64_vae3is_write }, 7627 }; 7628 7629 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7630 { 7631 Error *err = NULL; 7632 uint64_t ret; 7633 7634 /* Success sets NZCV = 0000. */ 7635 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7636 7637 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7638 /* 7639 * ??? Failed, for unknown reasons in the crypto subsystem. 7640 * The best we can do is log the reason and return the 7641 * timed-out indication to the guest. There is no reason 7642 * we know to expect this failure to be transitory, so the 7643 * guest may well hang retrying the operation. 7644 */ 7645 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7646 ri->name, error_get_pretty(err)); 7647 error_free(err); 7648 7649 env->ZF = 0; /* NZCF = 0100 */ 7650 return 0; 7651 } 7652 return ret; 7653 } 7654 7655 /* We do not support re-seeding, so the two registers operate the same. */ 7656 static const ARMCPRegInfo rndr_reginfo[] = { 7657 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7658 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7659 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7660 .access = PL0_R, .readfn = rndr_readfn }, 7661 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7662 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7663 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7664 .access = PL0_R, .readfn = rndr_readfn }, 7665 }; 7666 7667 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7668 uint64_t value) 7669 { 7670 #ifdef CONFIG_TCG 7671 ARMCPU *cpu = env_archcpu(env); 7672 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7673 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7674 uint64_t vaddr_in = (uint64_t) value; 7675 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7676 void *haddr; 7677 int mem_idx = cpu_mmu_index(env, false); 7678 7679 /* This won't be crossing page boundaries */ 7680 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7681 if (haddr) { 7682 #ifndef CONFIG_USER_ONLY 7683 7684 ram_addr_t offset; 7685 MemoryRegion *mr; 7686 7687 /* RCU lock is already being held */ 7688 mr = memory_region_from_host(haddr, &offset); 7689 7690 if (mr) { 7691 memory_region_writeback(mr, offset, dline_size); 7692 } 7693 #endif /*CONFIG_USER_ONLY*/ 7694 } 7695 #else 7696 /* Handled by hardware accelerator. */ 7697 g_assert_not_reached(); 7698 #endif /* CONFIG_TCG */ 7699 } 7700 7701 static const ARMCPRegInfo dcpop_reg[] = { 7702 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7703 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7704 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7705 .fgt = FGT_DCCVAP, 7706 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7707 }; 7708 7709 static const ARMCPRegInfo dcpodp_reg[] = { 7710 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7712 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7713 .fgt = FGT_DCCVADP, 7714 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7715 }; 7716 7717 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7718 bool isread) 7719 { 7720 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7721 return CP_ACCESS_TRAP_EL2; 7722 } 7723 7724 return CP_ACCESS_OK; 7725 } 7726 7727 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7728 bool isread) 7729 { 7730 int el = arm_current_el(env); 7731 7732 if (el < 2 && arm_is_el2_enabled(env)) { 7733 uint64_t hcr = arm_hcr_el2_eff(env); 7734 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7735 return CP_ACCESS_TRAP_EL2; 7736 } 7737 } 7738 if (el < 3 && 7739 arm_feature(env, ARM_FEATURE_EL3) && 7740 !(env->cp15.scr_el3 & SCR_ATA)) { 7741 return CP_ACCESS_TRAP_EL3; 7742 } 7743 return CP_ACCESS_OK; 7744 } 7745 7746 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7747 { 7748 return env->pstate & PSTATE_TCO; 7749 } 7750 7751 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7752 { 7753 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7754 } 7755 7756 static const ARMCPRegInfo mte_reginfo[] = { 7757 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7758 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7759 .access = PL1_RW, .accessfn = access_mte, 7760 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7761 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7763 .access = PL1_RW, .accessfn = access_mte, 7764 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7765 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7767 .access = PL2_RW, .accessfn = access_mte, 7768 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7769 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7771 .access = PL3_RW, 7772 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7773 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7775 .access = PL1_RW, .accessfn = access_mte, 7776 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7777 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7779 .access = PL1_RW, .accessfn = access_mte, 7780 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7781 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7783 .type = ARM_CP_NO_RAW, 7784 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7785 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7787 .type = ARM_CP_NOP, .access = PL1_W, 7788 .fgt = FGT_DCIVAC, 7789 .accessfn = aa64_cacheop_poc_access }, 7790 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7792 .fgt = FGT_DCISW, 7793 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7794 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7796 .type = ARM_CP_NOP, .access = PL1_W, 7797 .fgt = FGT_DCIVAC, 7798 .accessfn = aa64_cacheop_poc_access }, 7799 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7801 .fgt = FGT_DCISW, 7802 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7803 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7805 .fgt = FGT_DCCSW, 7806 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7807 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7809 .fgt = FGT_DCCSW, 7810 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7811 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7813 .fgt = FGT_DCCISW, 7814 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7815 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7817 .fgt = FGT_DCCISW, 7818 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7819 }; 7820 7821 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7822 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7824 .type = ARM_CP_CONST, .access = PL0_RW, }, 7825 }; 7826 7827 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7828 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7830 .type = ARM_CP_NOP, .access = PL0_W, 7831 .fgt = FGT_DCCVAC, 7832 .accessfn = aa64_cacheop_poc_access }, 7833 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7835 .type = ARM_CP_NOP, .access = PL0_W, 7836 .fgt = FGT_DCCVAC, 7837 .accessfn = aa64_cacheop_poc_access }, 7838 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7840 .type = ARM_CP_NOP, .access = PL0_W, 7841 .fgt = FGT_DCCVAP, 7842 .accessfn = aa64_cacheop_poc_access }, 7843 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7844 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7845 .type = ARM_CP_NOP, .access = PL0_W, 7846 .fgt = FGT_DCCVAP, 7847 .accessfn = aa64_cacheop_poc_access }, 7848 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7849 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7850 .type = ARM_CP_NOP, .access = PL0_W, 7851 .fgt = FGT_DCCVADP, 7852 .accessfn = aa64_cacheop_poc_access }, 7853 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7855 .type = ARM_CP_NOP, .access = PL0_W, 7856 .fgt = FGT_DCCVADP, 7857 .accessfn = aa64_cacheop_poc_access }, 7858 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7860 .type = ARM_CP_NOP, .access = PL0_W, 7861 .fgt = FGT_DCCIVAC, 7862 .accessfn = aa64_cacheop_poc_access }, 7863 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7865 .type = ARM_CP_NOP, .access = PL0_W, 7866 .fgt = FGT_DCCIVAC, 7867 .accessfn = aa64_cacheop_poc_access }, 7868 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7870 .access = PL0_W, .type = ARM_CP_DC_GVA, 7871 #ifndef CONFIG_USER_ONLY 7872 /* Avoid overhead of an access check that always passes in user-mode */ 7873 .accessfn = aa64_zva_access, 7874 .fgt = FGT_DCZVA, 7875 #endif 7876 }, 7877 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7878 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7879 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7880 #ifndef CONFIG_USER_ONLY 7881 /* Avoid overhead of an access check that always passes in user-mode */ 7882 .accessfn = aa64_zva_access, 7883 .fgt = FGT_DCZVA, 7884 #endif 7885 }, 7886 }; 7887 7888 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7889 bool isread) 7890 { 7891 uint64_t hcr = arm_hcr_el2_eff(env); 7892 int el = arm_current_el(env); 7893 7894 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7895 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7896 if (hcr & HCR_TGE) { 7897 return CP_ACCESS_TRAP_EL2; 7898 } 7899 return CP_ACCESS_TRAP; 7900 } 7901 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7902 return CP_ACCESS_TRAP_EL2; 7903 } 7904 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7905 return CP_ACCESS_TRAP_EL2; 7906 } 7907 if (el < 3 7908 && arm_feature(env, ARM_FEATURE_EL3) 7909 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7910 return CP_ACCESS_TRAP_EL3; 7911 } 7912 return CP_ACCESS_OK; 7913 } 7914 7915 static const ARMCPRegInfo scxtnum_reginfo[] = { 7916 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7917 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7918 .access = PL0_RW, .accessfn = access_scxtnum, 7919 .fgt = FGT_SCXTNUM_EL0, 7920 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7921 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7923 .access = PL1_RW, .accessfn = access_scxtnum, 7924 .fgt = FGT_SCXTNUM_EL1, 7925 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7926 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7928 .access = PL2_RW, .accessfn = access_scxtnum, 7929 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7930 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7931 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7932 .access = PL3_RW, 7933 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7934 }; 7935 7936 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7937 bool isread) 7938 { 7939 if (arm_current_el(env) == 2 && 7940 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7941 return CP_ACCESS_TRAP_EL3; 7942 } 7943 return CP_ACCESS_OK; 7944 } 7945 7946 static const ARMCPRegInfo fgt_reginfo[] = { 7947 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7949 .access = PL2_RW, .accessfn = access_fgt, 7950 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7951 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7952 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7953 .access = PL2_RW, .accessfn = access_fgt, 7954 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7955 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7956 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7957 .access = PL2_RW, .accessfn = access_fgt, 7958 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7959 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7960 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7961 .access = PL2_RW, .accessfn = access_fgt, 7962 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7963 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7965 .access = PL2_RW, .accessfn = access_fgt, 7966 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7967 }; 7968 #endif /* TARGET_AARCH64 */ 7969 7970 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7971 bool isread) 7972 { 7973 int el = arm_current_el(env); 7974 7975 if (el == 0) { 7976 uint64_t sctlr = arm_sctlr(env, el); 7977 if (!(sctlr & SCTLR_EnRCTX)) { 7978 return CP_ACCESS_TRAP; 7979 } 7980 } else if (el == 1) { 7981 uint64_t hcr = arm_hcr_el2_eff(env); 7982 if (hcr & HCR_NV) { 7983 return CP_ACCESS_TRAP_EL2; 7984 } 7985 } 7986 return CP_ACCESS_OK; 7987 } 7988 7989 static const ARMCPRegInfo predinv_reginfo[] = { 7990 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7991 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7992 .fgt = FGT_CFPRCTX, 7993 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7994 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7995 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7996 .fgt = FGT_DVPRCTX, 7997 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7998 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8000 .fgt = FGT_CPPRCTX, 8001 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8002 /* 8003 * Note the AArch32 opcodes have a different OPC1. 8004 */ 8005 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8006 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8007 .fgt = FGT_CFPRCTX, 8008 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8009 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8010 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8011 .fgt = FGT_DVPRCTX, 8012 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8013 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8014 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8015 .fgt = FGT_CPPRCTX, 8016 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8017 }; 8018 8019 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8020 { 8021 /* Read the high 32 bits of the current CCSIDR */ 8022 return extract64(ccsidr_read(env, ri), 32, 32); 8023 } 8024 8025 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8026 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8027 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8028 .access = PL1_R, 8029 .accessfn = access_tid4, 8030 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8031 }; 8032 8033 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8034 bool isread) 8035 { 8036 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8037 return CP_ACCESS_TRAP_EL2; 8038 } 8039 8040 return CP_ACCESS_OK; 8041 } 8042 8043 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8044 bool isread) 8045 { 8046 if (arm_feature(env, ARM_FEATURE_V8)) { 8047 return access_aa64_tid3(env, ri, isread); 8048 } 8049 8050 return CP_ACCESS_OK; 8051 } 8052 8053 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8054 bool isread) 8055 { 8056 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8057 return CP_ACCESS_TRAP_EL2; 8058 } 8059 8060 return CP_ACCESS_OK; 8061 } 8062 8063 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8064 const ARMCPRegInfo *ri, bool isread) 8065 { 8066 /* 8067 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8068 * in v7A, not in v8A. 8069 */ 8070 if (!arm_feature(env, ARM_FEATURE_V8) && 8071 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8072 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8073 return CP_ACCESS_TRAP_EL2; 8074 } 8075 return CP_ACCESS_OK; 8076 } 8077 8078 static const ARMCPRegInfo jazelle_regs[] = { 8079 { .name = "JIDR", 8080 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8081 .access = PL1_R, .accessfn = access_jazelle, 8082 .type = ARM_CP_CONST, .resetvalue = 0 }, 8083 { .name = "JOSCR", 8084 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8085 .accessfn = access_joscr_jmcr, 8086 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8087 { .name = "JMCR", 8088 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8089 .accessfn = access_joscr_jmcr, 8090 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8091 }; 8092 8093 static const ARMCPRegInfo contextidr_el2 = { 8094 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8095 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8096 .access = PL2_RW, 8097 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8098 }; 8099 8100 static const ARMCPRegInfo vhe_reginfo[] = { 8101 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8102 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8103 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8104 .raw_writefn = raw_write, 8105 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8106 #ifndef CONFIG_USER_ONLY 8107 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8108 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8109 .fieldoffset = 8110 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8111 .type = ARM_CP_IO, .access = PL2_RW, 8112 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8113 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8114 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8115 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8116 .resetfn = gt_hv_timer_reset, 8117 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8118 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8119 .type = ARM_CP_IO, 8120 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8121 .access = PL2_RW, 8122 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8123 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8124 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8125 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8126 .type = ARM_CP_IO | ARM_CP_ALIAS, 8127 .access = PL2_RW, .accessfn = e2h_access, 8128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8129 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8130 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8131 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8132 .type = ARM_CP_IO | ARM_CP_ALIAS, 8133 .access = PL2_RW, .accessfn = e2h_access, 8134 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8135 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8136 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8137 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8138 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8139 .access = PL2_RW, .accessfn = e2h_access, 8140 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8141 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8142 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8143 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8144 .access = PL2_RW, .accessfn = e2h_access, 8145 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8146 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8147 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8148 .type = ARM_CP_IO | ARM_CP_ALIAS, 8149 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8150 .access = PL2_RW, .accessfn = e2h_access, 8151 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8152 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8153 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8154 .type = ARM_CP_IO | ARM_CP_ALIAS, 8155 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8156 .access = PL2_RW, .accessfn = e2h_access, 8157 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8158 #endif 8159 }; 8160 8161 #ifndef CONFIG_USER_ONLY 8162 static const ARMCPRegInfo ats1e1_reginfo[] = { 8163 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8164 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8165 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8166 .fgt = FGT_ATS1E1RP, 8167 .accessfn = at_e012_access, .writefn = ats_write64 }, 8168 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8169 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8170 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8171 .fgt = FGT_ATS1E1WP, 8172 .accessfn = at_e012_access, .writefn = ats_write64 }, 8173 }; 8174 8175 static const ARMCPRegInfo ats1cp_reginfo[] = { 8176 { .name = "ATS1CPRP", 8177 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8178 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8179 .writefn = ats_write }, 8180 { .name = "ATS1CPWP", 8181 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8182 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8183 .writefn = ats_write }, 8184 }; 8185 #endif 8186 8187 /* 8188 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8189 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8190 * is non-zero, which is never for ARMv7, optionally in ARMv8 8191 * and mandatorily for ARMv8.2 and up. 8192 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8193 * implementation is RAZ/WI we can ignore this detail, as we 8194 * do for ACTLR. 8195 */ 8196 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8197 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8198 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8199 .access = PL1_RW, .accessfn = access_tacr, 8200 .type = ARM_CP_CONST, .resetvalue = 0 }, 8201 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8202 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8203 .access = PL2_RW, .type = ARM_CP_CONST, 8204 .resetvalue = 0 }, 8205 }; 8206 8207 void register_cp_regs_for_features(ARMCPU *cpu) 8208 { 8209 /* Register all the coprocessor registers based on feature bits */ 8210 CPUARMState *env = &cpu->env; 8211 if (arm_feature(env, ARM_FEATURE_M)) { 8212 /* M profile has no coprocessor registers */ 8213 return; 8214 } 8215 8216 define_arm_cp_regs(cpu, cp_reginfo); 8217 if (!arm_feature(env, ARM_FEATURE_V8)) { 8218 /* 8219 * Must go early as it is full of wildcards that may be 8220 * overridden by later definitions. 8221 */ 8222 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8223 } 8224 8225 if (arm_feature(env, ARM_FEATURE_V6)) { 8226 /* The ID registers all have impdef reset values */ 8227 ARMCPRegInfo v6_idregs[] = { 8228 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8230 .access = PL1_R, .type = ARM_CP_CONST, 8231 .accessfn = access_aa32_tid3, 8232 .resetvalue = cpu->isar.id_pfr0 }, 8233 /* 8234 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8235 * the value of the GIC field until after we define these regs. 8236 */ 8237 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8239 .access = PL1_R, .type = ARM_CP_NO_RAW, 8240 .accessfn = access_aa32_tid3, 8241 #ifdef CONFIG_USER_ONLY 8242 .type = ARM_CP_CONST, 8243 .resetvalue = cpu->isar.id_pfr1, 8244 #else 8245 .type = ARM_CP_NO_RAW, 8246 .accessfn = access_aa32_tid3, 8247 .readfn = id_pfr1_read, 8248 .writefn = arm_cp_write_ignore 8249 #endif 8250 }, 8251 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8253 .access = PL1_R, .type = ARM_CP_CONST, 8254 .accessfn = access_aa32_tid3, 8255 .resetvalue = cpu->isar.id_dfr0 }, 8256 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8258 .access = PL1_R, .type = ARM_CP_CONST, 8259 .accessfn = access_aa32_tid3, 8260 .resetvalue = cpu->id_afr0 }, 8261 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8262 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8263 .access = PL1_R, .type = ARM_CP_CONST, 8264 .accessfn = access_aa32_tid3, 8265 .resetvalue = cpu->isar.id_mmfr0 }, 8266 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8268 .access = PL1_R, .type = ARM_CP_CONST, 8269 .accessfn = access_aa32_tid3, 8270 .resetvalue = cpu->isar.id_mmfr1 }, 8271 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8273 .access = PL1_R, .type = ARM_CP_CONST, 8274 .accessfn = access_aa32_tid3, 8275 .resetvalue = cpu->isar.id_mmfr2 }, 8276 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8278 .access = PL1_R, .type = ARM_CP_CONST, 8279 .accessfn = access_aa32_tid3, 8280 .resetvalue = cpu->isar.id_mmfr3 }, 8281 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8283 .access = PL1_R, .type = ARM_CP_CONST, 8284 .accessfn = access_aa32_tid3, 8285 .resetvalue = cpu->isar.id_isar0 }, 8286 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8288 .access = PL1_R, .type = ARM_CP_CONST, 8289 .accessfn = access_aa32_tid3, 8290 .resetvalue = cpu->isar.id_isar1 }, 8291 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8293 .access = PL1_R, .type = ARM_CP_CONST, 8294 .accessfn = access_aa32_tid3, 8295 .resetvalue = cpu->isar.id_isar2 }, 8296 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8298 .access = PL1_R, .type = ARM_CP_CONST, 8299 .accessfn = access_aa32_tid3, 8300 .resetvalue = cpu->isar.id_isar3 }, 8301 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8303 .access = PL1_R, .type = ARM_CP_CONST, 8304 .accessfn = access_aa32_tid3, 8305 .resetvalue = cpu->isar.id_isar4 }, 8306 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8308 .access = PL1_R, .type = ARM_CP_CONST, 8309 .accessfn = access_aa32_tid3, 8310 .resetvalue = cpu->isar.id_isar5 }, 8311 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8313 .access = PL1_R, .type = ARM_CP_CONST, 8314 .accessfn = access_aa32_tid3, 8315 .resetvalue = cpu->isar.id_mmfr4 }, 8316 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8318 .access = PL1_R, .type = ARM_CP_CONST, 8319 .accessfn = access_aa32_tid3, 8320 .resetvalue = cpu->isar.id_isar6 }, 8321 }; 8322 define_arm_cp_regs(cpu, v6_idregs); 8323 define_arm_cp_regs(cpu, v6_cp_reginfo); 8324 } else { 8325 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8326 } 8327 if (arm_feature(env, ARM_FEATURE_V6K)) { 8328 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8329 } 8330 if (arm_feature(env, ARM_FEATURE_V7MP) && 8331 !arm_feature(env, ARM_FEATURE_PMSA)) { 8332 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8333 } 8334 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8335 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8336 } 8337 if (arm_feature(env, ARM_FEATURE_V7)) { 8338 ARMCPRegInfo clidr = { 8339 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8340 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8341 .access = PL1_R, .type = ARM_CP_CONST, 8342 .accessfn = access_tid4, 8343 .fgt = FGT_CLIDR_EL1, 8344 .resetvalue = cpu->clidr 8345 }; 8346 define_one_arm_cp_reg(cpu, &clidr); 8347 define_arm_cp_regs(cpu, v7_cp_reginfo); 8348 define_debug_regs(cpu); 8349 define_pmu_regs(cpu); 8350 } else { 8351 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8352 } 8353 if (arm_feature(env, ARM_FEATURE_V8)) { 8354 /* 8355 * v8 ID registers, which all have impdef reset values. 8356 * Note that within the ID register ranges the unused slots 8357 * must all RAZ, not UNDEF; future architecture versions may 8358 * define new registers here. 8359 * ID registers which are AArch64 views of the AArch32 ID registers 8360 * which already existed in v6 and v7 are handled elsewhere, 8361 * in v6_idregs[]. 8362 */ 8363 int i; 8364 ARMCPRegInfo v8_idregs[] = { 8365 /* 8366 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8367 * emulation because we don't know the right value for the 8368 * GIC field until after we define these regs. 8369 */ 8370 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8372 .access = PL1_R, 8373 #ifdef CONFIG_USER_ONLY 8374 .type = ARM_CP_CONST, 8375 .resetvalue = cpu->isar.id_aa64pfr0 8376 #else 8377 .type = ARM_CP_NO_RAW, 8378 .accessfn = access_aa64_tid3, 8379 .readfn = id_aa64pfr0_read, 8380 .writefn = arm_cp_write_ignore 8381 #endif 8382 }, 8383 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8384 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8385 .access = PL1_R, .type = ARM_CP_CONST, 8386 .accessfn = access_aa64_tid3, 8387 .resetvalue = cpu->isar.id_aa64pfr1}, 8388 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8389 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8390 .access = PL1_R, .type = ARM_CP_CONST, 8391 .accessfn = access_aa64_tid3, 8392 .resetvalue = 0 }, 8393 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8395 .access = PL1_R, .type = ARM_CP_CONST, 8396 .accessfn = access_aa64_tid3, 8397 .resetvalue = 0 }, 8398 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8400 .access = PL1_R, .type = ARM_CP_CONST, 8401 .accessfn = access_aa64_tid3, 8402 .resetvalue = cpu->isar.id_aa64zfr0 }, 8403 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8405 .access = PL1_R, .type = ARM_CP_CONST, 8406 .accessfn = access_aa64_tid3, 8407 .resetvalue = cpu->isar.id_aa64smfr0 }, 8408 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8410 .access = PL1_R, .type = ARM_CP_CONST, 8411 .accessfn = access_aa64_tid3, 8412 .resetvalue = 0 }, 8413 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8415 .access = PL1_R, .type = ARM_CP_CONST, 8416 .accessfn = access_aa64_tid3, 8417 .resetvalue = 0 }, 8418 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8420 .access = PL1_R, .type = ARM_CP_CONST, 8421 .accessfn = access_aa64_tid3, 8422 .resetvalue = cpu->isar.id_aa64dfr0 }, 8423 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8424 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8425 .access = PL1_R, .type = ARM_CP_CONST, 8426 .accessfn = access_aa64_tid3, 8427 .resetvalue = cpu->isar.id_aa64dfr1 }, 8428 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8429 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8430 .access = PL1_R, .type = ARM_CP_CONST, 8431 .accessfn = access_aa64_tid3, 8432 .resetvalue = 0 }, 8433 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8435 .access = PL1_R, .type = ARM_CP_CONST, 8436 .accessfn = access_aa64_tid3, 8437 .resetvalue = 0 }, 8438 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8440 .access = PL1_R, .type = ARM_CP_CONST, 8441 .accessfn = access_aa64_tid3, 8442 .resetvalue = cpu->id_aa64afr0 }, 8443 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8445 .access = PL1_R, .type = ARM_CP_CONST, 8446 .accessfn = access_aa64_tid3, 8447 .resetvalue = cpu->id_aa64afr1 }, 8448 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8450 .access = PL1_R, .type = ARM_CP_CONST, 8451 .accessfn = access_aa64_tid3, 8452 .resetvalue = 0 }, 8453 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8455 .access = PL1_R, .type = ARM_CP_CONST, 8456 .accessfn = access_aa64_tid3, 8457 .resetvalue = 0 }, 8458 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8460 .access = PL1_R, .type = ARM_CP_CONST, 8461 .accessfn = access_aa64_tid3, 8462 .resetvalue = cpu->isar.id_aa64isar0 }, 8463 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8465 .access = PL1_R, .type = ARM_CP_CONST, 8466 .accessfn = access_aa64_tid3, 8467 .resetvalue = cpu->isar.id_aa64isar1 }, 8468 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8470 .access = PL1_R, .type = ARM_CP_CONST, 8471 .accessfn = access_aa64_tid3, 8472 .resetvalue = cpu->isar.id_aa64isar2 }, 8473 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8475 .access = PL1_R, .type = ARM_CP_CONST, 8476 .accessfn = access_aa64_tid3, 8477 .resetvalue = 0 }, 8478 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8480 .access = PL1_R, .type = ARM_CP_CONST, 8481 .accessfn = access_aa64_tid3, 8482 .resetvalue = 0 }, 8483 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8485 .access = PL1_R, .type = ARM_CP_CONST, 8486 .accessfn = access_aa64_tid3, 8487 .resetvalue = 0 }, 8488 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8490 .access = PL1_R, .type = ARM_CP_CONST, 8491 .accessfn = access_aa64_tid3, 8492 .resetvalue = 0 }, 8493 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8495 .access = PL1_R, .type = ARM_CP_CONST, 8496 .accessfn = access_aa64_tid3, 8497 .resetvalue = 0 }, 8498 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8500 .access = PL1_R, .type = ARM_CP_CONST, 8501 .accessfn = access_aa64_tid3, 8502 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8503 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8505 .access = PL1_R, .type = ARM_CP_CONST, 8506 .accessfn = access_aa64_tid3, 8507 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8508 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8510 .access = PL1_R, .type = ARM_CP_CONST, 8511 .accessfn = access_aa64_tid3, 8512 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8513 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8515 .access = PL1_R, .type = ARM_CP_CONST, 8516 .accessfn = access_aa64_tid3, 8517 .resetvalue = 0 }, 8518 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8520 .access = PL1_R, .type = ARM_CP_CONST, 8521 .accessfn = access_aa64_tid3, 8522 .resetvalue = 0 }, 8523 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8525 .access = PL1_R, .type = ARM_CP_CONST, 8526 .accessfn = access_aa64_tid3, 8527 .resetvalue = 0 }, 8528 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8529 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8530 .access = PL1_R, .type = ARM_CP_CONST, 8531 .accessfn = access_aa64_tid3, 8532 .resetvalue = 0 }, 8533 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8534 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8535 .access = PL1_R, .type = ARM_CP_CONST, 8536 .accessfn = access_aa64_tid3, 8537 .resetvalue = 0 }, 8538 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8540 .access = PL1_R, .type = ARM_CP_CONST, 8541 .accessfn = access_aa64_tid3, 8542 .resetvalue = cpu->isar.mvfr0 }, 8543 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8545 .access = PL1_R, .type = ARM_CP_CONST, 8546 .accessfn = access_aa64_tid3, 8547 .resetvalue = cpu->isar.mvfr1 }, 8548 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8550 .access = PL1_R, .type = ARM_CP_CONST, 8551 .accessfn = access_aa64_tid3, 8552 .resetvalue = cpu->isar.mvfr2 }, 8553 /* 8554 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8555 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8556 * as RAZ, since it is in the "reserved for future ID 8557 * registers, RAZ" part of the AArch32 encoding space. 8558 */ 8559 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8560 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8561 .access = PL1_R, .type = ARM_CP_CONST, 8562 .accessfn = access_aa64_tid3, 8563 .resetvalue = 0 }, 8564 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8565 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8566 .access = PL1_R, .type = ARM_CP_CONST, 8567 .accessfn = access_aa64_tid3, 8568 .resetvalue = 0 }, 8569 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8570 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8571 .access = PL1_R, .type = ARM_CP_CONST, 8572 .accessfn = access_aa64_tid3, 8573 .resetvalue = 0 }, 8574 /* 8575 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8576 * they're also RAZ for AArch64, and in v8 are gradually 8577 * being filled with AArch64-view-of-AArch32-ID-register 8578 * for new ID registers. 8579 */ 8580 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8582 .access = PL1_R, .type = ARM_CP_CONST, 8583 .accessfn = access_aa64_tid3, 8584 .resetvalue = 0 }, 8585 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8587 .access = PL1_R, .type = ARM_CP_CONST, 8588 .accessfn = access_aa64_tid3, 8589 .resetvalue = cpu->isar.id_pfr2 }, 8590 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8592 .access = PL1_R, .type = ARM_CP_CONST, 8593 .accessfn = access_aa64_tid3, 8594 .resetvalue = cpu->isar.id_dfr1 }, 8595 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8597 .access = PL1_R, .type = ARM_CP_CONST, 8598 .accessfn = access_aa64_tid3, 8599 .resetvalue = cpu->isar.id_mmfr5 }, 8600 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8602 .access = PL1_R, .type = ARM_CP_CONST, 8603 .accessfn = access_aa64_tid3, 8604 .resetvalue = 0 }, 8605 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8606 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8607 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8608 .fgt = FGT_PMCEIDN_EL0, 8609 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8610 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8611 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8612 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8613 .fgt = FGT_PMCEIDN_EL0, 8614 .resetvalue = cpu->pmceid0 }, 8615 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8616 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8617 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8618 .fgt = FGT_PMCEIDN_EL0, 8619 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8620 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8621 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8622 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8623 .fgt = FGT_PMCEIDN_EL0, 8624 .resetvalue = cpu->pmceid1 }, 8625 }; 8626 #ifdef CONFIG_USER_ONLY 8627 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8628 { .name = "ID_AA64PFR0_EL1", 8629 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8630 R_ID_AA64PFR0_ADVSIMD_MASK | 8631 R_ID_AA64PFR0_SVE_MASK | 8632 R_ID_AA64PFR0_DIT_MASK, 8633 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8634 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8635 { .name = "ID_AA64PFR1_EL1", 8636 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8637 R_ID_AA64PFR1_SSBS_MASK | 8638 R_ID_AA64PFR1_MTE_MASK | 8639 R_ID_AA64PFR1_SME_MASK }, 8640 { .name = "ID_AA64PFR*_EL1_RESERVED", 8641 .is_glob = true }, 8642 { .name = "ID_AA64ZFR0_EL1", 8643 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8644 R_ID_AA64ZFR0_AES_MASK | 8645 R_ID_AA64ZFR0_BITPERM_MASK | 8646 R_ID_AA64ZFR0_BFLOAT16_MASK | 8647 R_ID_AA64ZFR0_SHA3_MASK | 8648 R_ID_AA64ZFR0_SM4_MASK | 8649 R_ID_AA64ZFR0_I8MM_MASK | 8650 R_ID_AA64ZFR0_F32MM_MASK | 8651 R_ID_AA64ZFR0_F64MM_MASK }, 8652 { .name = "ID_AA64SMFR0_EL1", 8653 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8654 R_ID_AA64SMFR0_BI32I32_MASK | 8655 R_ID_AA64SMFR0_B16F32_MASK | 8656 R_ID_AA64SMFR0_F16F32_MASK | 8657 R_ID_AA64SMFR0_I8I32_MASK | 8658 R_ID_AA64SMFR0_F16F16_MASK | 8659 R_ID_AA64SMFR0_B16B16_MASK | 8660 R_ID_AA64SMFR0_I16I32_MASK | 8661 R_ID_AA64SMFR0_F64F64_MASK | 8662 R_ID_AA64SMFR0_I16I64_MASK | 8663 R_ID_AA64SMFR0_SMEVER_MASK | 8664 R_ID_AA64SMFR0_FA64_MASK }, 8665 { .name = "ID_AA64MMFR0_EL1", 8666 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8667 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8668 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8669 { .name = "ID_AA64MMFR1_EL1", 8670 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8671 { .name = "ID_AA64MMFR2_EL1", 8672 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8673 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8674 .is_glob = true }, 8675 { .name = "ID_AA64DFR0_EL1", 8676 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8677 { .name = "ID_AA64DFR1_EL1" }, 8678 { .name = "ID_AA64DFR*_EL1_RESERVED", 8679 .is_glob = true }, 8680 { .name = "ID_AA64AFR*", 8681 .is_glob = true }, 8682 { .name = "ID_AA64ISAR0_EL1", 8683 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8684 R_ID_AA64ISAR0_SHA1_MASK | 8685 R_ID_AA64ISAR0_SHA2_MASK | 8686 R_ID_AA64ISAR0_CRC32_MASK | 8687 R_ID_AA64ISAR0_ATOMIC_MASK | 8688 R_ID_AA64ISAR0_RDM_MASK | 8689 R_ID_AA64ISAR0_SHA3_MASK | 8690 R_ID_AA64ISAR0_SM3_MASK | 8691 R_ID_AA64ISAR0_SM4_MASK | 8692 R_ID_AA64ISAR0_DP_MASK | 8693 R_ID_AA64ISAR0_FHM_MASK | 8694 R_ID_AA64ISAR0_TS_MASK | 8695 R_ID_AA64ISAR0_RNDR_MASK }, 8696 { .name = "ID_AA64ISAR1_EL1", 8697 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8698 R_ID_AA64ISAR1_APA_MASK | 8699 R_ID_AA64ISAR1_API_MASK | 8700 R_ID_AA64ISAR1_JSCVT_MASK | 8701 R_ID_AA64ISAR1_FCMA_MASK | 8702 R_ID_AA64ISAR1_LRCPC_MASK | 8703 R_ID_AA64ISAR1_GPA_MASK | 8704 R_ID_AA64ISAR1_GPI_MASK | 8705 R_ID_AA64ISAR1_FRINTTS_MASK | 8706 R_ID_AA64ISAR1_SB_MASK | 8707 R_ID_AA64ISAR1_BF16_MASK | 8708 R_ID_AA64ISAR1_DGH_MASK | 8709 R_ID_AA64ISAR1_I8MM_MASK }, 8710 { .name = "ID_AA64ISAR2_EL1", 8711 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8712 R_ID_AA64ISAR2_RPRES_MASK | 8713 R_ID_AA64ISAR2_GPA3_MASK | 8714 R_ID_AA64ISAR2_APA3_MASK | 8715 R_ID_AA64ISAR2_MOPS_MASK | 8716 R_ID_AA64ISAR2_BC_MASK | 8717 R_ID_AA64ISAR2_RPRFM_MASK | 8718 R_ID_AA64ISAR2_CSSC_MASK }, 8719 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8720 .is_glob = true }, 8721 }; 8722 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8723 #endif 8724 /* 8725 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8726 * TODO: For RMR, a write with bit 1 set should do something with 8727 * cpu_reset(). In the meantime, "the bit is strictly a request", 8728 * so we are in spec just ignoring writes. 8729 */ 8730 if (!arm_feature(env, ARM_FEATURE_EL3) && 8731 !arm_feature(env, ARM_FEATURE_EL2)) { 8732 ARMCPRegInfo el1_reset_regs[] = { 8733 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8734 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8735 .access = PL1_R, 8736 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8737 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8738 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8739 .access = PL1_RW, .type = ARM_CP_CONST, 8740 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8741 }; 8742 define_arm_cp_regs(cpu, el1_reset_regs); 8743 } 8744 define_arm_cp_regs(cpu, v8_idregs); 8745 define_arm_cp_regs(cpu, v8_cp_reginfo); 8746 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8747 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8748 } 8749 8750 for (i = 4; i < 16; i++) { 8751 /* 8752 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8753 * For pre-v8 cores there are RAZ patterns for these in 8754 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8755 * v8 extends the "must RAZ" part of the ID register space 8756 * to also cover c0, 0, c{8-15}, {0-7}. 8757 * These are STATE_AA32 because in the AArch64 sysreg space 8758 * c4-c7 is where the AArch64 ID registers live (and we've 8759 * already defined those in v8_idregs[]), and c8-c15 are not 8760 * "must RAZ" for AArch64. 8761 */ 8762 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8763 ARMCPRegInfo v8_aa32_raz_idregs = { 8764 .name = name, 8765 .state = ARM_CP_STATE_AA32, 8766 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8767 .access = PL1_R, .type = ARM_CP_CONST, 8768 .accessfn = access_aa64_tid3, 8769 .resetvalue = 0 }; 8770 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8771 } 8772 } 8773 8774 /* 8775 * Register the base EL2 cpregs. 8776 * Pre v8, these registers are implemented only as part of the 8777 * Virtualization Extensions (EL2 present). Beginning with v8, 8778 * if EL2 is missing but EL3 is enabled, mostly these become 8779 * RES0 from EL3, with some specific exceptions. 8780 */ 8781 if (arm_feature(env, ARM_FEATURE_EL2) 8782 || (arm_feature(env, ARM_FEATURE_EL3) 8783 && arm_feature(env, ARM_FEATURE_V8))) { 8784 uint64_t vmpidr_def = mpidr_read_val(env); 8785 ARMCPRegInfo vpidr_regs[] = { 8786 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8787 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8788 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8789 .resetvalue = cpu->midr, 8790 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8791 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8792 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8793 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8794 .access = PL2_RW, .resetvalue = cpu->midr, 8795 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8796 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8797 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8798 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8799 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8800 .resetvalue = vmpidr_def, 8801 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8802 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8805 .access = PL2_RW, .resetvalue = vmpidr_def, 8806 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8807 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8808 }; 8809 /* 8810 * The only field of MDCR_EL2 that has a defined architectural reset 8811 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8812 */ 8813 ARMCPRegInfo mdcr_el2 = { 8814 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8815 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8816 .writefn = mdcr_el2_write, 8817 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8818 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8819 }; 8820 define_one_arm_cp_reg(cpu, &mdcr_el2); 8821 define_arm_cp_regs(cpu, vpidr_regs); 8822 define_arm_cp_regs(cpu, el2_cp_reginfo); 8823 if (arm_feature(env, ARM_FEATURE_V8)) { 8824 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8825 } 8826 if (cpu_isar_feature(aa64_sel2, cpu)) { 8827 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8828 } 8829 /* 8830 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8831 * See commentary near RMR_EL1. 8832 */ 8833 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8834 static const ARMCPRegInfo el2_reset_regs[] = { 8835 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8836 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8837 .access = PL2_R, 8838 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8839 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8840 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8841 .access = PL2_R, 8842 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8843 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8844 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8845 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8846 }; 8847 define_arm_cp_regs(cpu, el2_reset_regs); 8848 } 8849 } 8850 8851 /* Register the base EL3 cpregs. */ 8852 if (arm_feature(env, ARM_FEATURE_EL3)) { 8853 define_arm_cp_regs(cpu, el3_cp_reginfo); 8854 ARMCPRegInfo el3_regs[] = { 8855 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8856 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8857 .access = PL3_R, 8858 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8859 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8860 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8861 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8862 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8863 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8864 .access = PL3_RW, .type = ARM_CP_CONST, 8865 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8866 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8867 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8868 .access = PL3_RW, 8869 .raw_writefn = raw_write, .writefn = sctlr_write, 8870 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8871 .resetvalue = cpu->reset_sctlr }, 8872 }; 8873 8874 define_arm_cp_regs(cpu, el3_regs); 8875 } 8876 /* 8877 * The behaviour of NSACR is sufficiently various that we don't 8878 * try to describe it in a single reginfo: 8879 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8880 * reads as constant 0xc00 from NS EL1 and NS EL2 8881 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8882 * if v7 without EL3, register doesn't exist 8883 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8884 */ 8885 if (arm_feature(env, ARM_FEATURE_EL3)) { 8886 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8887 static const ARMCPRegInfo nsacr = { 8888 .name = "NSACR", .type = ARM_CP_CONST, 8889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8890 .access = PL1_RW, .accessfn = nsacr_access, 8891 .resetvalue = 0xc00 8892 }; 8893 define_one_arm_cp_reg(cpu, &nsacr); 8894 } else { 8895 static const ARMCPRegInfo nsacr = { 8896 .name = "NSACR", 8897 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8898 .access = PL3_RW | PL1_R, 8899 .resetvalue = 0, 8900 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8901 }; 8902 define_one_arm_cp_reg(cpu, &nsacr); 8903 } 8904 } else { 8905 if (arm_feature(env, ARM_FEATURE_V8)) { 8906 static const ARMCPRegInfo nsacr = { 8907 .name = "NSACR", .type = ARM_CP_CONST, 8908 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8909 .access = PL1_R, 8910 .resetvalue = 0xc00 8911 }; 8912 define_one_arm_cp_reg(cpu, &nsacr); 8913 } 8914 } 8915 8916 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8917 if (arm_feature(env, ARM_FEATURE_V6)) { 8918 /* PMSAv6 not implemented */ 8919 assert(arm_feature(env, ARM_FEATURE_V7)); 8920 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8921 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8922 } else { 8923 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8924 } 8925 } else { 8926 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8927 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8928 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8929 if (cpu_isar_feature(aa32_hpd, cpu)) { 8930 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8931 } 8932 } 8933 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8934 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8935 } 8936 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8937 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8938 } 8939 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8940 ARMCPRegInfo vapa_cp_reginfo[] = { 8941 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8942 .access = PL1_RW, .resetvalue = 0, 8943 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8944 offsetoflow32(CPUARMState, cp15.par_ns) }, 8945 .writefn = par_write}, 8946 #ifndef CONFIG_USER_ONLY 8947 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8948 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8949 .access = PL1_W, .accessfn = ats_access, 8950 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8951 #endif 8952 }; 8953 8954 /* 8955 * When LPAE exists this 32-bit PAR register is an alias of the 8956 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8957 */ 8958 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8959 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8960 } 8961 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8962 } 8963 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8964 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8965 } 8966 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8967 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8968 } 8969 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8970 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8971 } 8972 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8973 define_arm_cp_regs(cpu, omap_cp_reginfo); 8974 } 8975 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8976 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8977 } 8978 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8979 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8980 } 8981 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8982 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8983 } 8984 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8985 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8986 } 8987 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8988 define_arm_cp_regs(cpu, jazelle_regs); 8989 } 8990 /* 8991 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8992 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8993 * be read-only (ie write causes UNDEF exception). 8994 */ 8995 { 8996 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8997 /* 8998 * Pre-v8 MIDR space. 8999 * Note that the MIDR isn't a simple constant register because 9000 * of the TI925 behaviour where writes to another register can 9001 * cause the MIDR value to change. 9002 * 9003 * Unimplemented registers in the c15 0 0 0 space default to 9004 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9005 * and friends override accordingly. 9006 */ 9007 { .name = "MIDR", 9008 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9009 .access = PL1_R, .resetvalue = cpu->midr, 9010 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9011 .readfn = midr_read, 9012 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9013 .type = ARM_CP_OVERRIDE }, 9014 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9015 { .name = "DUMMY", 9016 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9017 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9018 { .name = "DUMMY", 9019 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9020 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9021 { .name = "DUMMY", 9022 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9023 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9024 { .name = "DUMMY", 9025 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9026 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9027 { .name = "DUMMY", 9028 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9029 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9030 }; 9031 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9032 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9034 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9035 .fgt = FGT_MIDR_EL1, 9036 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9037 .readfn = midr_read }, 9038 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9039 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9040 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9041 .access = PL1_R, .resetvalue = cpu->midr }, 9042 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9044 .access = PL1_R, 9045 .accessfn = access_aa64_tid1, 9046 .fgt = FGT_REVIDR_EL1, 9047 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9048 }; 9049 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9050 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9051 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9052 .access = PL1_R, .resetvalue = cpu->midr 9053 }; 9054 ARMCPRegInfo id_cp_reginfo[] = { 9055 /* These are common to v8 and pre-v8 */ 9056 { .name = "CTR", 9057 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9058 .access = PL1_R, .accessfn = ctr_el0_access, 9059 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9060 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9061 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9062 .access = PL0_R, .accessfn = ctr_el0_access, 9063 .fgt = FGT_CTR_EL0, 9064 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9065 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9066 { .name = "TCMTR", 9067 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9068 .access = PL1_R, 9069 .accessfn = access_aa32_tid1, 9070 .type = ARM_CP_CONST, .resetvalue = 0 }, 9071 }; 9072 /* TLBTR is specific to VMSA */ 9073 ARMCPRegInfo id_tlbtr_reginfo = { 9074 .name = "TLBTR", 9075 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9076 .access = PL1_R, 9077 .accessfn = access_aa32_tid1, 9078 .type = ARM_CP_CONST, .resetvalue = 0, 9079 }; 9080 /* MPUIR is specific to PMSA V6+ */ 9081 ARMCPRegInfo id_mpuir_reginfo = { 9082 .name = "MPUIR", 9083 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9084 .access = PL1_R, .type = ARM_CP_CONST, 9085 .resetvalue = cpu->pmsav7_dregion << 8 9086 }; 9087 /* HMPUIR is specific to PMSA V8 */ 9088 ARMCPRegInfo id_hmpuir_reginfo = { 9089 .name = "HMPUIR", 9090 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9091 .access = PL2_R, .type = ARM_CP_CONST, 9092 .resetvalue = cpu->pmsav8r_hdregion 9093 }; 9094 static const ARMCPRegInfo crn0_wi_reginfo = { 9095 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9096 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9097 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9098 }; 9099 #ifdef CONFIG_USER_ONLY 9100 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9101 { .name = "MIDR_EL1", 9102 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9103 R_MIDR_EL1_PARTNUM_MASK | 9104 R_MIDR_EL1_ARCHITECTURE_MASK | 9105 R_MIDR_EL1_VARIANT_MASK | 9106 R_MIDR_EL1_IMPLEMENTER_MASK }, 9107 { .name = "REVIDR_EL1" }, 9108 }; 9109 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9110 #endif 9111 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9112 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9113 size_t i; 9114 /* 9115 * Register the blanket "writes ignored" value first to cover the 9116 * whole space. Then update the specific ID registers to allow write 9117 * access, so that they ignore writes rather than causing them to 9118 * UNDEF. 9119 */ 9120 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9121 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9122 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9123 } 9124 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9125 id_cp_reginfo[i].access = PL1_RW; 9126 } 9127 id_mpuir_reginfo.access = PL1_RW; 9128 id_tlbtr_reginfo.access = PL1_RW; 9129 } 9130 if (arm_feature(env, ARM_FEATURE_V8)) { 9131 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9132 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9133 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9134 } 9135 } else { 9136 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9137 } 9138 define_arm_cp_regs(cpu, id_cp_reginfo); 9139 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9140 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9141 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9142 arm_feature(env, ARM_FEATURE_V8)) { 9143 uint32_t i = 0; 9144 char *tmp_string; 9145 9146 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9147 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9148 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9149 9150 /* Register alias is only valid for first 32 indexes */ 9151 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9152 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9153 uint8_t opc1 = extract32(i, 4, 1); 9154 uint8_t opc2 = extract32(i, 0, 1) << 2; 9155 9156 tmp_string = g_strdup_printf("PRBAR%u", i); 9157 ARMCPRegInfo tmp_prbarn_reginfo = { 9158 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9159 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9160 .access = PL1_RW, .resetvalue = 0, 9161 .accessfn = access_tvm_trvm, 9162 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9163 }; 9164 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9165 g_free(tmp_string); 9166 9167 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9168 tmp_string = g_strdup_printf("PRLAR%u", i); 9169 ARMCPRegInfo tmp_prlarn_reginfo = { 9170 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9171 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9172 .access = PL1_RW, .resetvalue = 0, 9173 .accessfn = access_tvm_trvm, 9174 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9175 }; 9176 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9177 g_free(tmp_string); 9178 } 9179 9180 /* Register alias is only valid for first 32 indexes */ 9181 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9182 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9183 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9184 uint8_t opc2 = extract32(i, 0, 1) << 2; 9185 9186 tmp_string = g_strdup_printf("HPRBAR%u", i); 9187 ARMCPRegInfo tmp_hprbarn_reginfo = { 9188 .name = tmp_string, 9189 .type = ARM_CP_NO_RAW, 9190 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9191 .access = PL2_RW, .resetvalue = 0, 9192 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9193 }; 9194 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9195 g_free(tmp_string); 9196 9197 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9198 tmp_string = g_strdup_printf("HPRLAR%u", i); 9199 ARMCPRegInfo tmp_hprlarn_reginfo = { 9200 .name = tmp_string, 9201 .type = ARM_CP_NO_RAW, 9202 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9203 .access = PL2_RW, .resetvalue = 0, 9204 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9205 }; 9206 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9207 g_free(tmp_string); 9208 } 9209 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9210 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9211 } 9212 } 9213 9214 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9215 ARMCPRegInfo mpidr_cp_reginfo[] = { 9216 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9217 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9218 .fgt = FGT_MPIDR_EL1, 9219 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9220 }; 9221 #ifdef CONFIG_USER_ONLY 9222 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9223 { .name = "MPIDR_EL1", 9224 .fixed_bits = 0x0000000080000000 }, 9225 }; 9226 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9227 #endif 9228 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9229 } 9230 9231 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9232 ARMCPRegInfo auxcr_reginfo[] = { 9233 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9234 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9235 .access = PL1_RW, .accessfn = access_tacr, 9236 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9237 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9238 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9239 .access = PL2_RW, .type = ARM_CP_CONST, 9240 .resetvalue = 0 }, 9241 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9242 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9243 .access = PL3_RW, .type = ARM_CP_CONST, 9244 .resetvalue = 0 }, 9245 }; 9246 define_arm_cp_regs(cpu, auxcr_reginfo); 9247 if (cpu_isar_feature(aa32_ac2, cpu)) { 9248 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9249 } 9250 } 9251 9252 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9253 /* 9254 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9255 * There are two flavours: 9256 * (1) older 32-bit only cores have a simple 32-bit CBAR 9257 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9258 * 32-bit register visible to AArch32 at a different encoding 9259 * to the "flavour 1" register and with the bits rearranged to 9260 * be able to squash a 64-bit address into the 32-bit view. 9261 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9262 * in future if we support AArch32-only configs of some of the 9263 * AArch64 cores we might need to add a specific feature flag 9264 * to indicate cores with "flavour 2" CBAR. 9265 */ 9266 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9267 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9268 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9269 | extract64(cpu->reset_cbar, 32, 12); 9270 ARMCPRegInfo cbar_reginfo[] = { 9271 { .name = "CBAR", 9272 .type = ARM_CP_CONST, 9273 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9274 .access = PL1_R, .resetvalue = cbar32 }, 9275 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9276 .type = ARM_CP_CONST, 9277 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9278 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9279 }; 9280 /* We don't implement a r/w 64 bit CBAR currently */ 9281 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9282 define_arm_cp_regs(cpu, cbar_reginfo); 9283 } else { 9284 ARMCPRegInfo cbar = { 9285 .name = "CBAR", 9286 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9287 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9288 .fieldoffset = offsetof(CPUARMState, 9289 cp15.c15_config_base_address) 9290 }; 9291 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9292 cbar.access = PL1_R; 9293 cbar.fieldoffset = 0; 9294 cbar.type = ARM_CP_CONST; 9295 } 9296 define_one_arm_cp_reg(cpu, &cbar); 9297 } 9298 } 9299 9300 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9301 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9302 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9303 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9304 .access = PL1_RW, .writefn = vbar_write, 9305 .fgt = FGT_VBAR_EL1, 9306 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9307 offsetof(CPUARMState, cp15.vbar_ns) }, 9308 .resetvalue = 0 }, 9309 }; 9310 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9311 } 9312 9313 /* Generic registers whose values depend on the implementation */ 9314 { 9315 ARMCPRegInfo sctlr = { 9316 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9317 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9318 .access = PL1_RW, .accessfn = access_tvm_trvm, 9319 .fgt = FGT_SCTLR_EL1, 9320 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9321 offsetof(CPUARMState, cp15.sctlr_ns) }, 9322 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9323 .raw_writefn = raw_write, 9324 }; 9325 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9326 /* 9327 * Normally we would always end the TB on an SCTLR write, but Linux 9328 * arch/arm/mach-pxa/sleep.S expects two instructions following 9329 * an MMU enable to execute from cache. Imitate this behaviour. 9330 */ 9331 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9332 } 9333 define_one_arm_cp_reg(cpu, &sctlr); 9334 9335 if (arm_feature(env, ARM_FEATURE_PMSA) && 9336 arm_feature(env, ARM_FEATURE_V8)) { 9337 ARMCPRegInfo vsctlr = { 9338 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9339 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9340 .access = PL2_RW, .resetvalue = 0x0, 9341 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9342 }; 9343 define_one_arm_cp_reg(cpu, &vsctlr); 9344 } 9345 } 9346 9347 if (cpu_isar_feature(aa64_lor, cpu)) { 9348 define_arm_cp_regs(cpu, lor_reginfo); 9349 } 9350 if (cpu_isar_feature(aa64_pan, cpu)) { 9351 define_one_arm_cp_reg(cpu, &pan_reginfo); 9352 } 9353 #ifndef CONFIG_USER_ONLY 9354 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9355 define_arm_cp_regs(cpu, ats1e1_reginfo); 9356 } 9357 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9358 define_arm_cp_regs(cpu, ats1cp_reginfo); 9359 } 9360 #endif 9361 if (cpu_isar_feature(aa64_uao, cpu)) { 9362 define_one_arm_cp_reg(cpu, &uao_reginfo); 9363 } 9364 9365 if (cpu_isar_feature(aa64_dit, cpu)) { 9366 define_one_arm_cp_reg(cpu, &dit_reginfo); 9367 } 9368 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9369 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9370 } 9371 if (cpu_isar_feature(any_ras, cpu)) { 9372 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9373 } 9374 9375 if (cpu_isar_feature(aa64_vh, cpu) || 9376 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9377 define_one_arm_cp_reg(cpu, &contextidr_el2); 9378 } 9379 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9380 define_arm_cp_regs(cpu, vhe_reginfo); 9381 } 9382 9383 if (cpu_isar_feature(aa64_sve, cpu)) { 9384 define_arm_cp_regs(cpu, zcr_reginfo); 9385 } 9386 9387 if (cpu_isar_feature(aa64_hcx, cpu)) { 9388 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9389 } 9390 9391 #ifdef TARGET_AARCH64 9392 if (cpu_isar_feature(aa64_sme, cpu)) { 9393 define_arm_cp_regs(cpu, sme_reginfo); 9394 } 9395 if (cpu_isar_feature(aa64_pauth, cpu)) { 9396 define_arm_cp_regs(cpu, pauth_reginfo); 9397 } 9398 if (cpu_isar_feature(aa64_rndr, cpu)) { 9399 define_arm_cp_regs(cpu, rndr_reginfo); 9400 } 9401 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9402 define_arm_cp_regs(cpu, tlbirange_reginfo); 9403 } 9404 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9405 define_arm_cp_regs(cpu, tlbios_reginfo); 9406 } 9407 /* Data Cache clean instructions up to PoP */ 9408 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9409 define_one_arm_cp_reg(cpu, dcpop_reg); 9410 9411 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9412 define_one_arm_cp_reg(cpu, dcpodp_reg); 9413 } 9414 } 9415 9416 /* 9417 * If full MTE is enabled, add all of the system registers. 9418 * If only "instructions available at EL0" are enabled, 9419 * then define only a RAZ/WI version of PSTATE.TCO. 9420 */ 9421 if (cpu_isar_feature(aa64_mte, cpu)) { 9422 ARMCPRegInfo gmid_reginfo = { 9423 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9424 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9425 .access = PL1_R, .accessfn = access_aa64_tid5, 9426 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9427 }; 9428 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9429 define_arm_cp_regs(cpu, mte_reginfo); 9430 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9431 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9432 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9433 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9434 } 9435 9436 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9437 define_arm_cp_regs(cpu, scxtnum_reginfo); 9438 } 9439 9440 if (cpu_isar_feature(aa64_fgt, cpu)) { 9441 define_arm_cp_regs(cpu, fgt_reginfo); 9442 } 9443 9444 if (cpu_isar_feature(aa64_rme, cpu)) { 9445 define_arm_cp_regs(cpu, rme_reginfo); 9446 if (cpu_isar_feature(aa64_mte, cpu)) { 9447 define_arm_cp_regs(cpu, rme_mte_reginfo); 9448 } 9449 } 9450 #endif 9451 9452 if (cpu_isar_feature(any_predinv, cpu)) { 9453 define_arm_cp_regs(cpu, predinv_reginfo); 9454 } 9455 9456 if (cpu_isar_feature(any_ccidx, cpu)) { 9457 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9458 } 9459 9460 #ifndef CONFIG_USER_ONLY 9461 /* 9462 * Register redirections and aliases must be done last, 9463 * after the registers from the other extensions have been defined. 9464 */ 9465 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9466 define_arm_vh_e2h_redirects_aliases(cpu); 9467 } 9468 #endif 9469 } 9470 9471 /* Sort alphabetically by type name, except for "any". */ 9472 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9473 { 9474 ObjectClass *class_a = (ObjectClass *)a; 9475 ObjectClass *class_b = (ObjectClass *)b; 9476 const char *name_a, *name_b; 9477 9478 name_a = object_class_get_name(class_a); 9479 name_b = object_class_get_name(class_b); 9480 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9481 return 1; 9482 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9483 return -1; 9484 } else { 9485 return strcmp(name_a, name_b); 9486 } 9487 } 9488 9489 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9490 { 9491 ObjectClass *oc = data; 9492 CPUClass *cc = CPU_CLASS(oc); 9493 const char *typename; 9494 char *name; 9495 9496 typename = object_class_get_name(oc); 9497 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9498 if (cc->deprecation_note) { 9499 qemu_printf(" %s (deprecated)\n", name); 9500 } else { 9501 qemu_printf(" %s\n", name); 9502 } 9503 g_free(name); 9504 } 9505 9506 void arm_cpu_list(void) 9507 { 9508 GSList *list; 9509 9510 list = object_class_get_list(TYPE_ARM_CPU, false); 9511 list = g_slist_sort(list, arm_cpu_list_compare); 9512 qemu_printf("Available CPUs:\n"); 9513 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9514 g_slist_free(list); 9515 } 9516 9517 /* 9518 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9519 * add a single reginfo struct to the hash table. 9520 */ 9521 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9522 void *opaque, CPState state, 9523 CPSecureState secstate, 9524 int crm, int opc1, int opc2, 9525 const char *name) 9526 { 9527 CPUARMState *env = &cpu->env; 9528 uint32_t key; 9529 ARMCPRegInfo *r2; 9530 bool is64 = r->type & ARM_CP_64BIT; 9531 bool ns = secstate & ARM_CP_SECSTATE_NS; 9532 int cp = r->cp; 9533 size_t name_len; 9534 bool make_const; 9535 9536 switch (state) { 9537 case ARM_CP_STATE_AA32: 9538 /* We assume it is a cp15 register if the .cp field is left unset. */ 9539 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9540 cp = 15; 9541 } 9542 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9543 break; 9544 case ARM_CP_STATE_AA64: 9545 /* 9546 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9547 * cp == 0 as equivalent to the value for "standard guest-visible 9548 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9549 * in their AArch64 view (the .cp value may be non-zero for the 9550 * benefit of the AArch32 view). 9551 */ 9552 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9553 cp = CP_REG_ARM64_SYSREG_CP; 9554 } 9555 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9556 break; 9557 default: 9558 g_assert_not_reached(); 9559 } 9560 9561 /* Overriding of an existing definition must be explicitly requested. */ 9562 if (!(r->type & ARM_CP_OVERRIDE)) { 9563 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9564 if (oldreg) { 9565 assert(oldreg->type & ARM_CP_OVERRIDE); 9566 } 9567 } 9568 9569 /* 9570 * Eliminate registers that are not present because the EL is missing. 9571 * Doing this here makes it easier to put all registers for a given 9572 * feature into the same ARMCPRegInfo array and define them all at once. 9573 */ 9574 make_const = false; 9575 if (arm_feature(env, ARM_FEATURE_EL3)) { 9576 /* 9577 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9578 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9579 */ 9580 int min_el = ctz32(r->access) / 2; 9581 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9582 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9583 return; 9584 } 9585 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9586 } 9587 } else { 9588 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9589 ? PL2_RW : PL1_RW); 9590 if ((r->access & max_el) == 0) { 9591 return; 9592 } 9593 } 9594 9595 /* Combine cpreg and name into one allocation. */ 9596 name_len = strlen(name) + 1; 9597 r2 = g_malloc(sizeof(*r2) + name_len); 9598 *r2 = *r; 9599 r2->name = memcpy(r2 + 1, name, name_len); 9600 9601 /* 9602 * Update fields to match the instantiation, overwiting wildcards 9603 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9604 */ 9605 r2->cp = cp; 9606 r2->crm = crm; 9607 r2->opc1 = opc1; 9608 r2->opc2 = opc2; 9609 r2->state = state; 9610 r2->secure = secstate; 9611 if (opaque) { 9612 r2->opaque = opaque; 9613 } 9614 9615 if (make_const) { 9616 /* This should not have been a very special register to begin. */ 9617 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9618 assert(old_special == 0 || old_special == ARM_CP_NOP); 9619 /* 9620 * Set the special function to CONST, retaining the other flags. 9621 * This is important for e.g. ARM_CP_SVE so that we still 9622 * take the SVE trap if CPTR_EL3.EZ == 0. 9623 */ 9624 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9625 /* 9626 * Usually, these registers become RES0, but there are a few 9627 * special cases like VPIDR_EL2 which have a constant non-zero 9628 * value with writes ignored. 9629 */ 9630 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9631 r2->resetvalue = 0; 9632 } 9633 /* 9634 * ARM_CP_CONST has precedence, so removing the callbacks and 9635 * offsets are not strictly necessary, but it is potentially 9636 * less confusing to debug later. 9637 */ 9638 r2->readfn = NULL; 9639 r2->writefn = NULL; 9640 r2->raw_readfn = NULL; 9641 r2->raw_writefn = NULL; 9642 r2->resetfn = NULL; 9643 r2->fieldoffset = 0; 9644 r2->bank_fieldoffsets[0] = 0; 9645 r2->bank_fieldoffsets[1] = 0; 9646 } else { 9647 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9648 9649 if (isbanked) { 9650 /* 9651 * Register is banked (using both entries in array). 9652 * Overwriting fieldoffset as the array is only used to define 9653 * banked registers but later only fieldoffset is used. 9654 */ 9655 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9656 } 9657 if (state == ARM_CP_STATE_AA32) { 9658 if (isbanked) { 9659 /* 9660 * If the register is banked then we don't need to migrate or 9661 * reset the 32-bit instance in certain cases: 9662 * 9663 * 1) If the register has both 32-bit and 64-bit instances 9664 * then we can count on the 64-bit instance taking care 9665 * of the non-secure bank. 9666 * 2) If ARMv8 is enabled then we can count on a 64-bit 9667 * version taking care of the secure bank. This requires 9668 * that separate 32 and 64-bit definitions are provided. 9669 */ 9670 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9671 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9672 r2->type |= ARM_CP_ALIAS; 9673 } 9674 } else if ((secstate != r->secure) && !ns) { 9675 /* 9676 * The register is not banked so we only want to allow 9677 * migration of the non-secure instance. 9678 */ 9679 r2->type |= ARM_CP_ALIAS; 9680 } 9681 9682 if (HOST_BIG_ENDIAN && 9683 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9684 r2->fieldoffset += sizeof(uint32_t); 9685 } 9686 } 9687 } 9688 9689 /* 9690 * By convention, for wildcarded registers only the first 9691 * entry is used for migration; the others are marked as 9692 * ALIAS so we don't try to transfer the register 9693 * multiple times. Special registers (ie NOP/WFI) are 9694 * never migratable and not even raw-accessible. 9695 */ 9696 if (r2->type & ARM_CP_SPECIAL_MASK) { 9697 r2->type |= ARM_CP_NO_RAW; 9698 } 9699 if (((r->crm == CP_ANY) && crm != 0) || 9700 ((r->opc1 == CP_ANY) && opc1 != 0) || 9701 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9702 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9703 } 9704 9705 /* 9706 * Check that raw accesses are either forbidden or handled. Note that 9707 * we can't assert this earlier because the setup of fieldoffset for 9708 * banked registers has to be done first. 9709 */ 9710 if (!(r2->type & ARM_CP_NO_RAW)) { 9711 assert(!raw_accessors_invalid(r2)); 9712 } 9713 9714 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9715 } 9716 9717 9718 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9719 const ARMCPRegInfo *r, void *opaque) 9720 { 9721 /* 9722 * Define implementations of coprocessor registers. 9723 * We store these in a hashtable because typically 9724 * there are less than 150 registers in a space which 9725 * is 16*16*16*8*8 = 262144 in size. 9726 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9727 * If a register is defined twice then the second definition is 9728 * used, so this can be used to define some generic registers and 9729 * then override them with implementation specific variations. 9730 * At least one of the original and the second definition should 9731 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9732 * against accidental use. 9733 * 9734 * The state field defines whether the register is to be 9735 * visible in the AArch32 or AArch64 execution state. If the 9736 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9737 * reginfo structure for the AArch32 view, which sees the lower 9738 * 32 bits of the 64 bit register. 9739 * 9740 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9741 * be wildcarded. AArch64 registers are always considered to be 64 9742 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9743 * the register, if any. 9744 */ 9745 int crm, opc1, opc2; 9746 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9747 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9748 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9749 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9750 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9751 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9752 CPState state; 9753 9754 /* 64 bit registers have only CRm and Opc1 fields */ 9755 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9756 /* op0 only exists in the AArch64 encodings */ 9757 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9758 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9759 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9760 /* 9761 * This API is only for Arm's system coprocessors (14 and 15) or 9762 * (M-profile or v7A-and-earlier only) for implementation defined 9763 * coprocessors in the range 0..7. Our decode assumes this, since 9764 * 8..13 can be used for other insns including VFP and Neon. See 9765 * valid_cp() in translate.c. Assert here that we haven't tried 9766 * to use an invalid coprocessor number. 9767 */ 9768 switch (r->state) { 9769 case ARM_CP_STATE_BOTH: 9770 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9771 if (r->cp == 0) { 9772 break; 9773 } 9774 /* fall through */ 9775 case ARM_CP_STATE_AA32: 9776 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9777 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9778 assert(r->cp >= 14 && r->cp <= 15); 9779 } else { 9780 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9781 } 9782 break; 9783 case ARM_CP_STATE_AA64: 9784 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9785 break; 9786 default: 9787 g_assert_not_reached(); 9788 } 9789 /* 9790 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9791 * encodes a minimum access level for the register. We roll this 9792 * runtime check into our general permission check code, so check 9793 * here that the reginfo's specified permissions are strict enough 9794 * to encompass the generic architectural permission check. 9795 */ 9796 if (r->state != ARM_CP_STATE_AA32) { 9797 CPAccessRights mask; 9798 switch (r->opc1) { 9799 case 0: 9800 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9801 mask = PL0U_R | PL1_RW; 9802 break; 9803 case 1: case 2: 9804 /* min_EL EL1 */ 9805 mask = PL1_RW; 9806 break; 9807 case 3: 9808 /* min_EL EL0 */ 9809 mask = PL0_RW; 9810 break; 9811 case 4: 9812 case 5: 9813 /* min_EL EL2 */ 9814 mask = PL2_RW; 9815 break; 9816 case 6: 9817 /* min_EL EL3 */ 9818 mask = PL3_RW; 9819 break; 9820 case 7: 9821 /* min_EL EL1, secure mode only (we don't check the latter) */ 9822 mask = PL1_RW; 9823 break; 9824 default: 9825 /* broken reginfo with out-of-range opc1 */ 9826 g_assert_not_reached(); 9827 } 9828 /* assert our permissions are not too lax (stricter is fine) */ 9829 assert((r->access & ~mask) == 0); 9830 } 9831 9832 /* 9833 * Check that the register definition has enough info to handle 9834 * reads and writes if they are permitted. 9835 */ 9836 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9837 if (r->access & PL3_R) { 9838 assert((r->fieldoffset || 9839 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9840 r->readfn); 9841 } 9842 if (r->access & PL3_W) { 9843 assert((r->fieldoffset || 9844 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9845 r->writefn); 9846 } 9847 } 9848 9849 for (crm = crmmin; crm <= crmmax; crm++) { 9850 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9851 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9852 for (state = ARM_CP_STATE_AA32; 9853 state <= ARM_CP_STATE_AA64; state++) { 9854 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9855 continue; 9856 } 9857 if (state == ARM_CP_STATE_AA32) { 9858 /* 9859 * Under AArch32 CP registers can be common 9860 * (same for secure and non-secure world) or banked. 9861 */ 9862 char *name; 9863 9864 switch (r->secure) { 9865 case ARM_CP_SECSTATE_S: 9866 case ARM_CP_SECSTATE_NS: 9867 add_cpreg_to_hashtable(cpu, r, opaque, state, 9868 r->secure, crm, opc1, opc2, 9869 r->name); 9870 break; 9871 case ARM_CP_SECSTATE_BOTH: 9872 name = g_strdup_printf("%s_S", r->name); 9873 add_cpreg_to_hashtable(cpu, r, opaque, state, 9874 ARM_CP_SECSTATE_S, 9875 crm, opc1, opc2, name); 9876 g_free(name); 9877 add_cpreg_to_hashtable(cpu, r, opaque, state, 9878 ARM_CP_SECSTATE_NS, 9879 crm, opc1, opc2, r->name); 9880 break; 9881 default: 9882 g_assert_not_reached(); 9883 } 9884 } else { 9885 /* 9886 * AArch64 registers get mapped to non-secure instance 9887 * of AArch32 9888 */ 9889 add_cpreg_to_hashtable(cpu, r, opaque, state, 9890 ARM_CP_SECSTATE_NS, 9891 crm, opc1, opc2, r->name); 9892 } 9893 } 9894 } 9895 } 9896 } 9897 } 9898 9899 /* Define a whole list of registers */ 9900 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9901 void *opaque, size_t len) 9902 { 9903 size_t i; 9904 for (i = 0; i < len; ++i) { 9905 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9906 } 9907 } 9908 9909 /* 9910 * Modify ARMCPRegInfo for access from userspace. 9911 * 9912 * This is a data driven modification directed by 9913 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9914 * user-space cannot alter any values and dynamic values pertaining to 9915 * execution state are hidden from user space view anyway. 9916 */ 9917 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9918 const ARMCPRegUserSpaceInfo *mods, 9919 size_t mods_len) 9920 { 9921 for (size_t mi = 0; mi < mods_len; ++mi) { 9922 const ARMCPRegUserSpaceInfo *m = mods + mi; 9923 GPatternSpec *pat = NULL; 9924 9925 if (m->is_glob) { 9926 pat = g_pattern_spec_new(m->name); 9927 } 9928 for (size_t ri = 0; ri < regs_len; ++ri) { 9929 ARMCPRegInfo *r = regs + ri; 9930 9931 if (pat && g_pattern_match_string(pat, r->name)) { 9932 r->type = ARM_CP_CONST; 9933 r->access = PL0U_R; 9934 r->resetvalue = 0; 9935 /* continue */ 9936 } else if (strcmp(r->name, m->name) == 0) { 9937 r->type = ARM_CP_CONST; 9938 r->access = PL0U_R; 9939 r->resetvalue &= m->exported_bits; 9940 r->resetvalue |= m->fixed_bits; 9941 break; 9942 } 9943 } 9944 if (pat) { 9945 g_pattern_spec_free(pat); 9946 } 9947 } 9948 } 9949 9950 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9951 { 9952 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9953 } 9954 9955 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9956 uint64_t value) 9957 { 9958 /* Helper coprocessor write function for write-ignore registers */ 9959 } 9960 9961 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9962 { 9963 /* Helper coprocessor write function for read-as-zero registers */ 9964 return 0; 9965 } 9966 9967 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9968 { 9969 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9970 } 9971 9972 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9973 { 9974 /* 9975 * Return true if it is not valid for us to switch to 9976 * this CPU mode (ie all the UNPREDICTABLE cases in 9977 * the ARM ARM CPSRWriteByInstr pseudocode). 9978 */ 9979 9980 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9981 if (write_type == CPSRWriteByInstr && 9982 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9983 mode == ARM_CPU_MODE_HYP)) { 9984 return 1; 9985 } 9986 9987 switch (mode) { 9988 case ARM_CPU_MODE_USR: 9989 return 0; 9990 case ARM_CPU_MODE_SYS: 9991 case ARM_CPU_MODE_SVC: 9992 case ARM_CPU_MODE_ABT: 9993 case ARM_CPU_MODE_UND: 9994 case ARM_CPU_MODE_IRQ: 9995 case ARM_CPU_MODE_FIQ: 9996 /* 9997 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9998 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9999 */ 10000 /* 10001 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10002 * and CPS are treated as illegal mode changes. 10003 */ 10004 if (write_type == CPSRWriteByInstr && 10005 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10006 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10007 return 1; 10008 } 10009 return 0; 10010 case ARM_CPU_MODE_HYP: 10011 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10012 case ARM_CPU_MODE_MON: 10013 return arm_current_el(env) < 3; 10014 default: 10015 return 1; 10016 } 10017 } 10018 10019 uint32_t cpsr_read(CPUARMState *env) 10020 { 10021 int ZF; 10022 ZF = (env->ZF == 0); 10023 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10024 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10025 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10026 | ((env->condexec_bits & 0xfc) << 8) 10027 | (env->GE << 16) | (env->daif & CPSR_AIF); 10028 } 10029 10030 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10031 CPSRWriteType write_type) 10032 { 10033 uint32_t changed_daif; 10034 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10035 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10036 10037 if (mask & CPSR_NZCV) { 10038 env->ZF = (~val) & CPSR_Z; 10039 env->NF = val; 10040 env->CF = (val >> 29) & 1; 10041 env->VF = (val << 3) & 0x80000000; 10042 } 10043 if (mask & CPSR_Q) { 10044 env->QF = ((val & CPSR_Q) != 0); 10045 } 10046 if (mask & CPSR_T) { 10047 env->thumb = ((val & CPSR_T) != 0); 10048 } 10049 if (mask & CPSR_IT_0_1) { 10050 env->condexec_bits &= ~3; 10051 env->condexec_bits |= (val >> 25) & 3; 10052 } 10053 if (mask & CPSR_IT_2_7) { 10054 env->condexec_bits &= 3; 10055 env->condexec_bits |= (val >> 8) & 0xfc; 10056 } 10057 if (mask & CPSR_GE) { 10058 env->GE = (val >> 16) & 0xf; 10059 } 10060 10061 /* 10062 * In a V7 implementation that includes the security extensions but does 10063 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10064 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10065 * bits respectively. 10066 * 10067 * In a V8 implementation, it is permitted for privileged software to 10068 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10069 */ 10070 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10071 arm_feature(env, ARM_FEATURE_EL3) && 10072 !arm_feature(env, ARM_FEATURE_EL2) && 10073 !arm_is_secure(env)) { 10074 10075 changed_daif = (env->daif ^ val) & mask; 10076 10077 if (changed_daif & CPSR_A) { 10078 /* 10079 * Check to see if we are allowed to change the masking of async 10080 * abort exceptions from a non-secure state. 10081 */ 10082 if (!(env->cp15.scr_el3 & SCR_AW)) { 10083 qemu_log_mask(LOG_GUEST_ERROR, 10084 "Ignoring attempt to switch CPSR_A flag from " 10085 "non-secure world with SCR.AW bit clear\n"); 10086 mask &= ~CPSR_A; 10087 } 10088 } 10089 10090 if (changed_daif & CPSR_F) { 10091 /* 10092 * Check to see if we are allowed to change the masking of FIQ 10093 * exceptions from a non-secure state. 10094 */ 10095 if (!(env->cp15.scr_el3 & SCR_FW)) { 10096 qemu_log_mask(LOG_GUEST_ERROR, 10097 "Ignoring attempt to switch CPSR_F flag from " 10098 "non-secure world with SCR.FW bit clear\n"); 10099 mask &= ~CPSR_F; 10100 } 10101 10102 /* 10103 * Check whether non-maskable FIQ (NMFI) support is enabled. 10104 * If this bit is set software is not allowed to mask 10105 * FIQs, but is allowed to set CPSR_F to 0. 10106 */ 10107 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10108 (val & CPSR_F)) { 10109 qemu_log_mask(LOG_GUEST_ERROR, 10110 "Ignoring attempt to enable CPSR_F flag " 10111 "(non-maskable FIQ [NMFI] support enabled)\n"); 10112 mask &= ~CPSR_F; 10113 } 10114 } 10115 } 10116 10117 env->daif &= ~(CPSR_AIF & mask); 10118 env->daif |= val & CPSR_AIF & mask; 10119 10120 if (write_type != CPSRWriteRaw && 10121 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10122 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10123 /* 10124 * Note that we can only get here in USR mode if this is a 10125 * gdb stub write; for this case we follow the architectural 10126 * behaviour for guest writes in USR mode of ignoring an attempt 10127 * to switch mode. (Those are caught by translate.c for writes 10128 * triggered by guest instructions.) 10129 */ 10130 mask &= ~CPSR_M; 10131 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10132 /* 10133 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10134 * v7, and has defined behaviour in v8: 10135 * + leave CPSR.M untouched 10136 * + allow changes to the other CPSR fields 10137 * + set PSTATE.IL 10138 * For user changes via the GDB stub, we don't set PSTATE.IL, 10139 * as this would be unnecessarily harsh for a user error. 10140 */ 10141 mask &= ~CPSR_M; 10142 if (write_type != CPSRWriteByGDBStub && 10143 arm_feature(env, ARM_FEATURE_V8)) { 10144 mask |= CPSR_IL; 10145 val |= CPSR_IL; 10146 } 10147 qemu_log_mask(LOG_GUEST_ERROR, 10148 "Illegal AArch32 mode switch attempt from %s to %s\n", 10149 aarch32_mode_name(env->uncached_cpsr), 10150 aarch32_mode_name(val)); 10151 } else { 10152 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10153 write_type == CPSRWriteExceptionReturn ? 10154 "Exception return from AArch32" : 10155 "AArch32 mode switch from", 10156 aarch32_mode_name(env->uncached_cpsr), 10157 aarch32_mode_name(val), env->regs[15]); 10158 switch_mode(env, val & CPSR_M); 10159 } 10160 } 10161 mask &= ~CACHED_CPSR_BITS; 10162 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10163 if (tcg_enabled() && rebuild_hflags) { 10164 arm_rebuild_hflags(env); 10165 } 10166 } 10167 10168 #ifdef CONFIG_USER_ONLY 10169 10170 static void switch_mode(CPUARMState *env, int mode) 10171 { 10172 ARMCPU *cpu = env_archcpu(env); 10173 10174 if (mode != ARM_CPU_MODE_USR) { 10175 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10176 } 10177 } 10178 10179 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10180 uint32_t cur_el, bool secure) 10181 { 10182 return 1; 10183 } 10184 10185 void aarch64_sync_64_to_32(CPUARMState *env) 10186 { 10187 g_assert_not_reached(); 10188 } 10189 10190 #else 10191 10192 static void switch_mode(CPUARMState *env, int mode) 10193 { 10194 int old_mode; 10195 int i; 10196 10197 old_mode = env->uncached_cpsr & CPSR_M; 10198 if (mode == old_mode) { 10199 return; 10200 } 10201 10202 if (old_mode == ARM_CPU_MODE_FIQ) { 10203 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10204 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10205 } else if (mode == ARM_CPU_MODE_FIQ) { 10206 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10207 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10208 } 10209 10210 i = bank_number(old_mode); 10211 env->banked_r13[i] = env->regs[13]; 10212 env->banked_spsr[i] = env->spsr; 10213 10214 i = bank_number(mode); 10215 env->regs[13] = env->banked_r13[i]; 10216 env->spsr = env->banked_spsr[i]; 10217 10218 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10219 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10220 } 10221 10222 /* 10223 * Physical Interrupt Target EL Lookup Table 10224 * 10225 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10226 * 10227 * The below multi-dimensional table is used for looking up the target 10228 * exception level given numerous condition criteria. Specifically, the 10229 * target EL is based on SCR and HCR routing controls as well as the 10230 * currently executing EL and secure state. 10231 * 10232 * Dimensions: 10233 * target_el_table[2][2][2][2][2][4] 10234 * | | | | | +--- Current EL 10235 * | | | | +------ Non-secure(0)/Secure(1) 10236 * | | | +--------- HCR mask override 10237 * | | +------------ SCR exec state control 10238 * | +--------------- SCR mask override 10239 * +------------------ 32-bit(0)/64-bit(1) EL3 10240 * 10241 * The table values are as such: 10242 * 0-3 = EL0-EL3 10243 * -1 = Cannot occur 10244 * 10245 * The ARM ARM target EL table includes entries indicating that an "exception 10246 * is not taken". The two cases where this is applicable are: 10247 * 1) An exception is taken from EL3 but the SCR does not have the exception 10248 * routed to EL3. 10249 * 2) An exception is taken from EL2 but the HCR does not have the exception 10250 * routed to EL2. 10251 * In these two cases, the below table contain a target of EL1. This value is 10252 * returned as it is expected that the consumer of the table data will check 10253 * for "target EL >= current EL" to ensure the exception is not taken. 10254 * 10255 * SCR HCR 10256 * 64 EA AMO From 10257 * BIT IRQ IMO Non-secure Secure 10258 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10259 */ 10260 static const int8_t target_el_table[2][2][2][2][2][4] = { 10261 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10262 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10263 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10264 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10265 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10266 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10267 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10268 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10269 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10270 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10271 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10272 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10273 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10274 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10275 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10276 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10277 }; 10278 10279 /* 10280 * Determine the target EL for physical exceptions 10281 */ 10282 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10283 uint32_t cur_el, bool secure) 10284 { 10285 CPUARMState *env = cpu_env(cs); 10286 bool rw; 10287 bool scr; 10288 bool hcr; 10289 int target_el; 10290 /* Is the highest EL AArch64? */ 10291 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10292 uint64_t hcr_el2; 10293 10294 if (arm_feature(env, ARM_FEATURE_EL3)) { 10295 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10296 } else { 10297 /* 10298 * Either EL2 is the highest EL (and so the EL2 register width 10299 * is given by is64); or there is no EL2 or EL3, in which case 10300 * the value of 'rw' does not affect the table lookup anyway. 10301 */ 10302 rw = is64; 10303 } 10304 10305 hcr_el2 = arm_hcr_el2_eff(env); 10306 switch (excp_idx) { 10307 case EXCP_IRQ: 10308 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10309 hcr = hcr_el2 & HCR_IMO; 10310 break; 10311 case EXCP_FIQ: 10312 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10313 hcr = hcr_el2 & HCR_FMO; 10314 break; 10315 default: 10316 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10317 hcr = hcr_el2 & HCR_AMO; 10318 break; 10319 }; 10320 10321 /* 10322 * For these purposes, TGE and AMO/IMO/FMO both force the 10323 * interrupt to EL2. Fold TGE into the bit extracted above. 10324 */ 10325 hcr |= (hcr_el2 & HCR_TGE) != 0; 10326 10327 /* Perform a table-lookup for the target EL given the current state */ 10328 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10329 10330 assert(target_el > 0); 10331 10332 return target_el; 10333 } 10334 10335 void arm_log_exception(CPUState *cs) 10336 { 10337 int idx = cs->exception_index; 10338 10339 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10340 const char *exc = NULL; 10341 static const char * const excnames[] = { 10342 [EXCP_UDEF] = "Undefined Instruction", 10343 [EXCP_SWI] = "SVC", 10344 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10345 [EXCP_DATA_ABORT] = "Data Abort", 10346 [EXCP_IRQ] = "IRQ", 10347 [EXCP_FIQ] = "FIQ", 10348 [EXCP_BKPT] = "Breakpoint", 10349 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10350 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10351 [EXCP_HVC] = "Hypervisor Call", 10352 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10353 [EXCP_SMC] = "Secure Monitor Call", 10354 [EXCP_VIRQ] = "Virtual IRQ", 10355 [EXCP_VFIQ] = "Virtual FIQ", 10356 [EXCP_SEMIHOST] = "Semihosting call", 10357 [EXCP_NOCP] = "v7M NOCP UsageFault", 10358 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10359 [EXCP_STKOF] = "v8M STKOF UsageFault", 10360 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10361 [EXCP_LSERR] = "v8M LSERR UsageFault", 10362 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10363 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10364 [EXCP_VSERR] = "Virtual SERR", 10365 [EXCP_GPC] = "Granule Protection Check", 10366 }; 10367 10368 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10369 exc = excnames[idx]; 10370 } 10371 if (!exc) { 10372 exc = "unknown"; 10373 } 10374 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10375 idx, exc, cs->cpu_index); 10376 } 10377 } 10378 10379 /* 10380 * Function used to synchronize QEMU's AArch64 register set with AArch32 10381 * register set. This is necessary when switching between AArch32 and AArch64 10382 * execution state. 10383 */ 10384 void aarch64_sync_32_to_64(CPUARMState *env) 10385 { 10386 int i; 10387 uint32_t mode = env->uncached_cpsr & CPSR_M; 10388 10389 /* We can blanket copy R[0:7] to X[0:7] */ 10390 for (i = 0; i < 8; i++) { 10391 env->xregs[i] = env->regs[i]; 10392 } 10393 10394 /* 10395 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10396 * Otherwise, they come from the banked user regs. 10397 */ 10398 if (mode == ARM_CPU_MODE_FIQ) { 10399 for (i = 8; i < 13; i++) { 10400 env->xregs[i] = env->usr_regs[i - 8]; 10401 } 10402 } else { 10403 for (i = 8; i < 13; i++) { 10404 env->xregs[i] = env->regs[i]; 10405 } 10406 } 10407 10408 /* 10409 * Registers x13-x23 are the various mode SP and FP registers. Registers 10410 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10411 * from the mode banked register. 10412 */ 10413 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10414 env->xregs[13] = env->regs[13]; 10415 env->xregs[14] = env->regs[14]; 10416 } else { 10417 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10418 /* HYP is an exception in that it is copied from r14 */ 10419 if (mode == ARM_CPU_MODE_HYP) { 10420 env->xregs[14] = env->regs[14]; 10421 } else { 10422 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10423 } 10424 } 10425 10426 if (mode == ARM_CPU_MODE_HYP) { 10427 env->xregs[15] = env->regs[13]; 10428 } else { 10429 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10430 } 10431 10432 if (mode == ARM_CPU_MODE_IRQ) { 10433 env->xregs[16] = env->regs[14]; 10434 env->xregs[17] = env->regs[13]; 10435 } else { 10436 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10437 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10438 } 10439 10440 if (mode == ARM_CPU_MODE_SVC) { 10441 env->xregs[18] = env->regs[14]; 10442 env->xregs[19] = env->regs[13]; 10443 } else { 10444 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10445 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10446 } 10447 10448 if (mode == ARM_CPU_MODE_ABT) { 10449 env->xregs[20] = env->regs[14]; 10450 env->xregs[21] = env->regs[13]; 10451 } else { 10452 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10453 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10454 } 10455 10456 if (mode == ARM_CPU_MODE_UND) { 10457 env->xregs[22] = env->regs[14]; 10458 env->xregs[23] = env->regs[13]; 10459 } else { 10460 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10461 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10462 } 10463 10464 /* 10465 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10466 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10467 * FIQ bank for r8-r14. 10468 */ 10469 if (mode == ARM_CPU_MODE_FIQ) { 10470 for (i = 24; i < 31; i++) { 10471 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10472 } 10473 } else { 10474 for (i = 24; i < 29; i++) { 10475 env->xregs[i] = env->fiq_regs[i - 24]; 10476 } 10477 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10478 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10479 } 10480 10481 env->pc = env->regs[15]; 10482 } 10483 10484 /* 10485 * Function used to synchronize QEMU's AArch32 register set with AArch64 10486 * register set. This is necessary when switching between AArch32 and AArch64 10487 * execution state. 10488 */ 10489 void aarch64_sync_64_to_32(CPUARMState *env) 10490 { 10491 int i; 10492 uint32_t mode = env->uncached_cpsr & CPSR_M; 10493 10494 /* We can blanket copy X[0:7] to R[0:7] */ 10495 for (i = 0; i < 8; i++) { 10496 env->regs[i] = env->xregs[i]; 10497 } 10498 10499 /* 10500 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10501 * Otherwise, we copy x8-x12 into the banked user regs. 10502 */ 10503 if (mode == ARM_CPU_MODE_FIQ) { 10504 for (i = 8; i < 13; i++) { 10505 env->usr_regs[i - 8] = env->xregs[i]; 10506 } 10507 } else { 10508 for (i = 8; i < 13; i++) { 10509 env->regs[i] = env->xregs[i]; 10510 } 10511 } 10512 10513 /* 10514 * Registers r13 & r14 depend on the current mode. 10515 * If we are in a given mode, we copy the corresponding x registers to r13 10516 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10517 * for the mode. 10518 */ 10519 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10520 env->regs[13] = env->xregs[13]; 10521 env->regs[14] = env->xregs[14]; 10522 } else { 10523 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10524 10525 /* 10526 * HYP is an exception in that it does not have its own banked r14 but 10527 * shares the USR r14 10528 */ 10529 if (mode == ARM_CPU_MODE_HYP) { 10530 env->regs[14] = env->xregs[14]; 10531 } else { 10532 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10533 } 10534 } 10535 10536 if (mode == ARM_CPU_MODE_HYP) { 10537 env->regs[13] = env->xregs[15]; 10538 } else { 10539 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10540 } 10541 10542 if (mode == ARM_CPU_MODE_IRQ) { 10543 env->regs[14] = env->xregs[16]; 10544 env->regs[13] = env->xregs[17]; 10545 } else { 10546 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10547 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10548 } 10549 10550 if (mode == ARM_CPU_MODE_SVC) { 10551 env->regs[14] = env->xregs[18]; 10552 env->regs[13] = env->xregs[19]; 10553 } else { 10554 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10555 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10556 } 10557 10558 if (mode == ARM_CPU_MODE_ABT) { 10559 env->regs[14] = env->xregs[20]; 10560 env->regs[13] = env->xregs[21]; 10561 } else { 10562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10563 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10564 } 10565 10566 if (mode == ARM_CPU_MODE_UND) { 10567 env->regs[14] = env->xregs[22]; 10568 env->regs[13] = env->xregs[23]; 10569 } else { 10570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10571 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10572 } 10573 10574 /* 10575 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10576 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10577 * FIQ bank for r8-r14. 10578 */ 10579 if (mode == ARM_CPU_MODE_FIQ) { 10580 for (i = 24; i < 31; i++) { 10581 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10582 } 10583 } else { 10584 for (i = 24; i < 29; i++) { 10585 env->fiq_regs[i - 24] = env->xregs[i]; 10586 } 10587 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10589 } 10590 10591 env->regs[15] = env->pc; 10592 } 10593 10594 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10595 uint32_t mask, uint32_t offset, 10596 uint32_t newpc) 10597 { 10598 int new_el; 10599 10600 /* Change the CPU state so as to actually take the exception. */ 10601 switch_mode(env, new_mode); 10602 10603 /* 10604 * For exceptions taken to AArch32 we must clear the SS bit in both 10605 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10606 */ 10607 env->pstate &= ~PSTATE_SS; 10608 env->spsr = cpsr_read(env); 10609 /* Clear IT bits. */ 10610 env->condexec_bits = 0; 10611 /* Switch to the new mode, and to the correct instruction set. */ 10612 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10613 10614 /* This must be after mode switching. */ 10615 new_el = arm_current_el(env); 10616 10617 /* Set new mode endianness */ 10618 env->uncached_cpsr &= ~CPSR_E; 10619 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10620 env->uncached_cpsr |= CPSR_E; 10621 } 10622 /* J and IL must always be cleared for exception entry */ 10623 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10624 env->daif |= mask; 10625 10626 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10627 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10628 env->uncached_cpsr |= CPSR_SSBS; 10629 } else { 10630 env->uncached_cpsr &= ~CPSR_SSBS; 10631 } 10632 } 10633 10634 if (new_mode == ARM_CPU_MODE_HYP) { 10635 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10636 env->elr_el[2] = env->regs[15]; 10637 } else { 10638 /* CPSR.PAN is normally preserved preserved unless... */ 10639 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10640 switch (new_el) { 10641 case 3: 10642 if (!arm_is_secure_below_el3(env)) { 10643 /* ... the target is EL3, from non-secure state. */ 10644 env->uncached_cpsr &= ~CPSR_PAN; 10645 break; 10646 } 10647 /* ... the target is EL3, from secure state ... */ 10648 /* fall through */ 10649 case 1: 10650 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10651 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10652 env->uncached_cpsr |= CPSR_PAN; 10653 } 10654 break; 10655 } 10656 } 10657 /* 10658 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10659 * and we should just guard the thumb mode on V4 10660 */ 10661 if (arm_feature(env, ARM_FEATURE_V4T)) { 10662 env->thumb = 10663 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10664 } 10665 env->regs[14] = env->regs[15] + offset; 10666 } 10667 env->regs[15] = newpc; 10668 10669 if (tcg_enabled()) { 10670 arm_rebuild_hflags(env); 10671 } 10672 } 10673 10674 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10675 { 10676 /* 10677 * Handle exception entry to Hyp mode; this is sufficiently 10678 * different to entry to other AArch32 modes that we handle it 10679 * separately here. 10680 * 10681 * The vector table entry used is always the 0x14 Hyp mode entry point, 10682 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10683 * The offset applied to the preferred return address is always zero 10684 * (see DDI0487C.a section G1.12.3). 10685 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10686 */ 10687 uint32_t addr, mask; 10688 ARMCPU *cpu = ARM_CPU(cs); 10689 CPUARMState *env = &cpu->env; 10690 10691 switch (cs->exception_index) { 10692 case EXCP_UDEF: 10693 addr = 0x04; 10694 break; 10695 case EXCP_SWI: 10696 addr = 0x08; 10697 break; 10698 case EXCP_BKPT: 10699 /* Fall through to prefetch abort. */ 10700 case EXCP_PREFETCH_ABORT: 10701 env->cp15.ifar_s = env->exception.vaddress; 10702 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10703 (uint32_t)env->exception.vaddress); 10704 addr = 0x0c; 10705 break; 10706 case EXCP_DATA_ABORT: 10707 env->cp15.dfar_s = env->exception.vaddress; 10708 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10709 (uint32_t)env->exception.vaddress); 10710 addr = 0x10; 10711 break; 10712 case EXCP_IRQ: 10713 addr = 0x18; 10714 break; 10715 case EXCP_FIQ: 10716 addr = 0x1c; 10717 break; 10718 case EXCP_HVC: 10719 addr = 0x08; 10720 break; 10721 case EXCP_HYP_TRAP: 10722 addr = 0x14; 10723 break; 10724 default: 10725 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10726 } 10727 10728 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10729 if (!arm_feature(env, ARM_FEATURE_V8)) { 10730 /* 10731 * QEMU syndrome values are v8-style. v7 has the IL bit 10732 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10733 * If this is a v7 CPU, squash the IL bit in those cases. 10734 */ 10735 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10736 (cs->exception_index == EXCP_DATA_ABORT && 10737 !(env->exception.syndrome & ARM_EL_ISV)) || 10738 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10739 env->exception.syndrome &= ~ARM_EL_IL; 10740 } 10741 } 10742 env->cp15.esr_el[2] = env->exception.syndrome; 10743 } 10744 10745 if (arm_current_el(env) != 2 && addr < 0x14) { 10746 addr = 0x14; 10747 } 10748 10749 mask = 0; 10750 if (!(env->cp15.scr_el3 & SCR_EA)) { 10751 mask |= CPSR_A; 10752 } 10753 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10754 mask |= CPSR_I; 10755 } 10756 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10757 mask |= CPSR_F; 10758 } 10759 10760 addr += env->cp15.hvbar; 10761 10762 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10763 } 10764 10765 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10766 { 10767 ARMCPU *cpu = ARM_CPU(cs); 10768 CPUARMState *env = &cpu->env; 10769 uint32_t addr; 10770 uint32_t mask; 10771 int new_mode; 10772 uint32_t offset; 10773 uint32_t moe; 10774 10775 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10776 switch (syn_get_ec(env->exception.syndrome)) { 10777 case EC_BREAKPOINT: 10778 case EC_BREAKPOINT_SAME_EL: 10779 moe = 1; 10780 break; 10781 case EC_WATCHPOINT: 10782 case EC_WATCHPOINT_SAME_EL: 10783 moe = 10; 10784 break; 10785 case EC_AA32_BKPT: 10786 moe = 3; 10787 break; 10788 case EC_VECTORCATCH: 10789 moe = 5; 10790 break; 10791 default: 10792 moe = 0; 10793 break; 10794 } 10795 10796 if (moe) { 10797 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10798 } 10799 10800 if (env->exception.target_el == 2) { 10801 arm_cpu_do_interrupt_aarch32_hyp(cs); 10802 return; 10803 } 10804 10805 switch (cs->exception_index) { 10806 case EXCP_UDEF: 10807 new_mode = ARM_CPU_MODE_UND; 10808 addr = 0x04; 10809 mask = CPSR_I; 10810 if (env->thumb) { 10811 offset = 2; 10812 } else { 10813 offset = 4; 10814 } 10815 break; 10816 case EXCP_SWI: 10817 new_mode = ARM_CPU_MODE_SVC; 10818 addr = 0x08; 10819 mask = CPSR_I; 10820 /* The PC already points to the next instruction. */ 10821 offset = 0; 10822 break; 10823 case EXCP_BKPT: 10824 /* Fall through to prefetch abort. */ 10825 case EXCP_PREFETCH_ABORT: 10826 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10827 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10828 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10829 env->exception.fsr, (uint32_t)env->exception.vaddress); 10830 new_mode = ARM_CPU_MODE_ABT; 10831 addr = 0x0c; 10832 mask = CPSR_A | CPSR_I; 10833 offset = 4; 10834 break; 10835 case EXCP_DATA_ABORT: 10836 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10837 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10838 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10839 env->exception.fsr, 10840 (uint32_t)env->exception.vaddress); 10841 new_mode = ARM_CPU_MODE_ABT; 10842 addr = 0x10; 10843 mask = CPSR_A | CPSR_I; 10844 offset = 8; 10845 break; 10846 case EXCP_IRQ: 10847 new_mode = ARM_CPU_MODE_IRQ; 10848 addr = 0x18; 10849 /* Disable IRQ and imprecise data aborts. */ 10850 mask = CPSR_A | CPSR_I; 10851 offset = 4; 10852 if (env->cp15.scr_el3 & SCR_IRQ) { 10853 /* IRQ routed to monitor mode */ 10854 new_mode = ARM_CPU_MODE_MON; 10855 mask |= CPSR_F; 10856 } 10857 break; 10858 case EXCP_FIQ: 10859 new_mode = ARM_CPU_MODE_FIQ; 10860 addr = 0x1c; 10861 /* Disable FIQ, IRQ and imprecise data aborts. */ 10862 mask = CPSR_A | CPSR_I | CPSR_F; 10863 if (env->cp15.scr_el3 & SCR_FIQ) { 10864 /* FIQ routed to monitor mode */ 10865 new_mode = ARM_CPU_MODE_MON; 10866 } 10867 offset = 4; 10868 break; 10869 case EXCP_VIRQ: 10870 new_mode = ARM_CPU_MODE_IRQ; 10871 addr = 0x18; 10872 /* Disable IRQ and imprecise data aborts. */ 10873 mask = CPSR_A | CPSR_I; 10874 offset = 4; 10875 break; 10876 case EXCP_VFIQ: 10877 new_mode = ARM_CPU_MODE_FIQ; 10878 addr = 0x1c; 10879 /* Disable FIQ, IRQ and imprecise data aborts. */ 10880 mask = CPSR_A | CPSR_I | CPSR_F; 10881 offset = 4; 10882 break; 10883 case EXCP_VSERR: 10884 { 10885 /* 10886 * Note that this is reported as a data abort, but the DFAR 10887 * has an UNKNOWN value. Construct the SError syndrome from 10888 * AET and ExT fields. 10889 */ 10890 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10891 10892 if (extended_addresses_enabled(env)) { 10893 env->exception.fsr = arm_fi_to_lfsc(&fi); 10894 } else { 10895 env->exception.fsr = arm_fi_to_sfsc(&fi); 10896 } 10897 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10898 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10899 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10900 env->exception.fsr); 10901 10902 new_mode = ARM_CPU_MODE_ABT; 10903 addr = 0x10; 10904 mask = CPSR_A | CPSR_I; 10905 offset = 8; 10906 } 10907 break; 10908 case EXCP_SMC: 10909 new_mode = ARM_CPU_MODE_MON; 10910 addr = 0x08; 10911 mask = CPSR_A | CPSR_I | CPSR_F; 10912 offset = 0; 10913 break; 10914 default: 10915 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10916 return; /* Never happens. Keep compiler happy. */ 10917 } 10918 10919 if (new_mode == ARM_CPU_MODE_MON) { 10920 addr += env->cp15.mvbar; 10921 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10922 /* High vectors. When enabled, base address cannot be remapped. */ 10923 addr += 0xffff0000; 10924 } else { 10925 /* 10926 * ARM v7 architectures provide a vector base address register to remap 10927 * the interrupt vector table. 10928 * This register is only followed in non-monitor mode, and is banked. 10929 * Note: only bits 31:5 are valid. 10930 */ 10931 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10932 } 10933 10934 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10935 env->cp15.scr_el3 &= ~SCR_NS; 10936 } 10937 10938 take_aarch32_exception(env, new_mode, mask, offset, addr); 10939 } 10940 10941 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10942 { 10943 /* 10944 * Return the register number of the AArch64 view of the AArch32 10945 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10946 * be that of the AArch32 mode the exception came from. 10947 */ 10948 int mode = env->uncached_cpsr & CPSR_M; 10949 10950 switch (aarch32_reg) { 10951 case 0 ... 7: 10952 return aarch32_reg; 10953 case 8 ... 12: 10954 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10955 case 13: 10956 switch (mode) { 10957 case ARM_CPU_MODE_USR: 10958 case ARM_CPU_MODE_SYS: 10959 return 13; 10960 case ARM_CPU_MODE_HYP: 10961 return 15; 10962 case ARM_CPU_MODE_IRQ: 10963 return 17; 10964 case ARM_CPU_MODE_SVC: 10965 return 19; 10966 case ARM_CPU_MODE_ABT: 10967 return 21; 10968 case ARM_CPU_MODE_UND: 10969 return 23; 10970 case ARM_CPU_MODE_FIQ: 10971 return 29; 10972 default: 10973 g_assert_not_reached(); 10974 } 10975 case 14: 10976 switch (mode) { 10977 case ARM_CPU_MODE_USR: 10978 case ARM_CPU_MODE_SYS: 10979 case ARM_CPU_MODE_HYP: 10980 return 14; 10981 case ARM_CPU_MODE_IRQ: 10982 return 16; 10983 case ARM_CPU_MODE_SVC: 10984 return 18; 10985 case ARM_CPU_MODE_ABT: 10986 return 20; 10987 case ARM_CPU_MODE_UND: 10988 return 22; 10989 case ARM_CPU_MODE_FIQ: 10990 return 30; 10991 default: 10992 g_assert_not_reached(); 10993 } 10994 case 15: 10995 return 31; 10996 default: 10997 g_assert_not_reached(); 10998 } 10999 } 11000 11001 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11002 { 11003 uint32_t ret = cpsr_read(env); 11004 11005 /* Move DIT to the correct location for SPSR_ELx */ 11006 if (ret & CPSR_DIT) { 11007 ret &= ~CPSR_DIT; 11008 ret |= PSTATE_DIT; 11009 } 11010 /* Merge PSTATE.SS into SPSR_ELx */ 11011 ret |= env->pstate & PSTATE_SS; 11012 11013 return ret; 11014 } 11015 11016 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11017 { 11018 /* Return true if this syndrome value is a synchronous external abort */ 11019 switch (syn_get_ec(syndrome)) { 11020 case EC_INSNABORT: 11021 case EC_INSNABORT_SAME_EL: 11022 case EC_DATAABORT: 11023 case EC_DATAABORT_SAME_EL: 11024 /* Look at fault status code for all the synchronous ext abort cases */ 11025 switch (syndrome & 0x3f) { 11026 case 0x10: 11027 case 0x13: 11028 case 0x14: 11029 case 0x15: 11030 case 0x16: 11031 case 0x17: 11032 return true; 11033 default: 11034 return false; 11035 } 11036 default: 11037 return false; 11038 } 11039 } 11040 11041 /* Handle exception entry to a target EL which is using AArch64 */ 11042 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11043 { 11044 ARMCPU *cpu = ARM_CPU(cs); 11045 CPUARMState *env = &cpu->env; 11046 unsigned int new_el = env->exception.target_el; 11047 target_ulong addr = env->cp15.vbar_el[new_el]; 11048 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11049 unsigned int old_mode; 11050 unsigned int cur_el = arm_current_el(env); 11051 int rt; 11052 11053 if (tcg_enabled()) { 11054 /* 11055 * Note that new_el can never be 0. If cur_el is 0, then 11056 * el0_a64 is is_a64(), else el0_a64 is ignored. 11057 */ 11058 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11059 } 11060 11061 if (cur_el < new_el) { 11062 /* 11063 * Entry vector offset depends on whether the implemented EL 11064 * immediately lower than the target level is using AArch32 or AArch64 11065 */ 11066 bool is_aa64; 11067 uint64_t hcr; 11068 11069 switch (new_el) { 11070 case 3: 11071 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11072 break; 11073 case 2: 11074 hcr = arm_hcr_el2_eff(env); 11075 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11076 is_aa64 = (hcr & HCR_RW) != 0; 11077 break; 11078 } 11079 /* fall through */ 11080 case 1: 11081 is_aa64 = is_a64(env); 11082 break; 11083 default: 11084 g_assert_not_reached(); 11085 } 11086 11087 if (is_aa64) { 11088 addr += 0x400; 11089 } else { 11090 addr += 0x600; 11091 } 11092 } else if (pstate_read(env) & PSTATE_SP) { 11093 addr += 0x200; 11094 } 11095 11096 switch (cs->exception_index) { 11097 case EXCP_GPC: 11098 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11099 env->cp15.mfar_el3); 11100 /* fall through */ 11101 case EXCP_PREFETCH_ABORT: 11102 case EXCP_DATA_ABORT: 11103 /* 11104 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11105 * to be taken to the SError vector entrypoint. 11106 */ 11107 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11108 syndrome_is_sync_extabt(env->exception.syndrome)) { 11109 addr += 0x180; 11110 } 11111 env->cp15.far_el[new_el] = env->exception.vaddress; 11112 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11113 env->cp15.far_el[new_el]); 11114 /* fall through */ 11115 case EXCP_BKPT: 11116 case EXCP_UDEF: 11117 case EXCP_SWI: 11118 case EXCP_HVC: 11119 case EXCP_HYP_TRAP: 11120 case EXCP_SMC: 11121 switch (syn_get_ec(env->exception.syndrome)) { 11122 case EC_ADVSIMDFPACCESSTRAP: 11123 /* 11124 * QEMU internal FP/SIMD syndromes from AArch32 include the 11125 * TA and coproc fields which are only exposed if the exception 11126 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11127 * AArch64 format syndrome. 11128 */ 11129 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11130 break; 11131 case EC_CP14RTTRAP: 11132 case EC_CP15RTTRAP: 11133 case EC_CP14DTTRAP: 11134 /* 11135 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11136 * the raw register field from the insn; when taking this to 11137 * AArch64 we must convert it to the AArch64 view of the register 11138 * number. Notice that we read a 4-bit AArch32 register number and 11139 * write back a 5-bit AArch64 one. 11140 */ 11141 rt = extract32(env->exception.syndrome, 5, 4); 11142 rt = aarch64_regnum(env, rt); 11143 env->exception.syndrome = deposit32(env->exception.syndrome, 11144 5, 5, rt); 11145 break; 11146 case EC_CP15RRTTRAP: 11147 case EC_CP14RRTTRAP: 11148 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11149 rt = extract32(env->exception.syndrome, 5, 4); 11150 rt = aarch64_regnum(env, rt); 11151 env->exception.syndrome = deposit32(env->exception.syndrome, 11152 5, 5, rt); 11153 rt = extract32(env->exception.syndrome, 10, 4); 11154 rt = aarch64_regnum(env, rt); 11155 env->exception.syndrome = deposit32(env->exception.syndrome, 11156 10, 5, rt); 11157 break; 11158 } 11159 env->cp15.esr_el[new_el] = env->exception.syndrome; 11160 break; 11161 case EXCP_IRQ: 11162 case EXCP_VIRQ: 11163 addr += 0x80; 11164 break; 11165 case EXCP_FIQ: 11166 case EXCP_VFIQ: 11167 addr += 0x100; 11168 break; 11169 case EXCP_VSERR: 11170 addr += 0x180; 11171 /* Construct the SError syndrome from IDS and ISS fields. */ 11172 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11173 env->cp15.esr_el[new_el] = env->exception.syndrome; 11174 break; 11175 default: 11176 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11177 } 11178 11179 if (is_a64(env)) { 11180 old_mode = pstate_read(env); 11181 aarch64_save_sp(env, arm_current_el(env)); 11182 env->elr_el[new_el] = env->pc; 11183 } else { 11184 old_mode = cpsr_read_for_spsr_elx(env); 11185 env->elr_el[new_el] = env->regs[15]; 11186 11187 aarch64_sync_32_to_64(env); 11188 11189 env->condexec_bits = 0; 11190 } 11191 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11192 11193 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11194 env->elr_el[new_el]); 11195 11196 if (cpu_isar_feature(aa64_pan, cpu)) { 11197 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11198 new_mode |= old_mode & PSTATE_PAN; 11199 switch (new_el) { 11200 case 2: 11201 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11202 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11203 != (HCR_E2H | HCR_TGE)) { 11204 break; 11205 } 11206 /* fall through */ 11207 case 1: 11208 /* ... the target is EL1 ... */ 11209 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11210 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11211 new_mode |= PSTATE_PAN; 11212 } 11213 break; 11214 } 11215 } 11216 if (cpu_isar_feature(aa64_mte, cpu)) { 11217 new_mode |= PSTATE_TCO; 11218 } 11219 11220 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11221 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11222 new_mode |= PSTATE_SSBS; 11223 } else { 11224 new_mode &= ~PSTATE_SSBS; 11225 } 11226 } 11227 11228 pstate_write(env, PSTATE_DAIF | new_mode); 11229 env->aarch64 = true; 11230 aarch64_restore_sp(env, new_el); 11231 11232 if (tcg_enabled()) { 11233 helper_rebuild_hflags_a64(env, new_el); 11234 } 11235 11236 env->pc = addr; 11237 11238 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11239 new_el, env->pc, pstate_read(env)); 11240 } 11241 11242 /* 11243 * Do semihosting call and set the appropriate return value. All the 11244 * permission and validity checks have been done at translate time. 11245 * 11246 * We only see semihosting exceptions in TCG only as they are not 11247 * trapped to the hypervisor in KVM. 11248 */ 11249 #ifdef CONFIG_TCG 11250 static void tcg_handle_semihosting(CPUState *cs) 11251 { 11252 ARMCPU *cpu = ARM_CPU(cs); 11253 CPUARMState *env = &cpu->env; 11254 11255 if (is_a64(env)) { 11256 qemu_log_mask(CPU_LOG_INT, 11257 "...handling as semihosting call 0x%" PRIx64 "\n", 11258 env->xregs[0]); 11259 do_common_semihosting(cs); 11260 env->pc += 4; 11261 } else { 11262 qemu_log_mask(CPU_LOG_INT, 11263 "...handling as semihosting call 0x%x\n", 11264 env->regs[0]); 11265 do_common_semihosting(cs); 11266 env->regs[15] += env->thumb ? 2 : 4; 11267 } 11268 } 11269 #endif 11270 11271 /* 11272 * Handle a CPU exception for A and R profile CPUs. 11273 * Do any appropriate logging, handle PSCI calls, and then hand off 11274 * to the AArch64-entry or AArch32-entry function depending on the 11275 * target exception level's register width. 11276 * 11277 * Note: this is used for both TCG (as the do_interrupt tcg op), 11278 * and KVM to re-inject guest debug exceptions, and to 11279 * inject a Synchronous-External-Abort. 11280 */ 11281 void arm_cpu_do_interrupt(CPUState *cs) 11282 { 11283 ARMCPU *cpu = ARM_CPU(cs); 11284 CPUARMState *env = &cpu->env; 11285 unsigned int new_el = env->exception.target_el; 11286 11287 assert(!arm_feature(env, ARM_FEATURE_M)); 11288 11289 arm_log_exception(cs); 11290 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11291 new_el); 11292 if (qemu_loglevel_mask(CPU_LOG_INT) 11293 && !excp_is_internal(cs->exception_index)) { 11294 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11295 syn_get_ec(env->exception.syndrome), 11296 env->exception.syndrome); 11297 } 11298 11299 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11300 arm_handle_psci_call(cpu); 11301 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11302 return; 11303 } 11304 11305 /* 11306 * Semihosting semantics depend on the register width of the code 11307 * that caused the exception, not the target exception level, so 11308 * must be handled here. 11309 */ 11310 #ifdef CONFIG_TCG 11311 if (cs->exception_index == EXCP_SEMIHOST) { 11312 tcg_handle_semihosting(cs); 11313 return; 11314 } 11315 #endif 11316 11317 /* 11318 * Hooks may change global state so BQL should be held, also the 11319 * BQL needs to be held for any modification of 11320 * cs->interrupt_request. 11321 */ 11322 g_assert(qemu_mutex_iothread_locked()); 11323 11324 arm_call_pre_el_change_hook(cpu); 11325 11326 assert(!excp_is_internal(cs->exception_index)); 11327 if (arm_el_is_aa64(env, new_el)) { 11328 arm_cpu_do_interrupt_aarch64(cs); 11329 } else { 11330 arm_cpu_do_interrupt_aarch32(cs); 11331 } 11332 11333 arm_call_el_change_hook(cpu); 11334 11335 if (!kvm_enabled()) { 11336 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11337 } 11338 } 11339 #endif /* !CONFIG_USER_ONLY */ 11340 11341 uint64_t arm_sctlr(CPUARMState *env, int el) 11342 { 11343 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11344 if (el == 0) { 11345 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11346 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11347 } 11348 return env->cp15.sctlr_el[el]; 11349 } 11350 11351 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11352 { 11353 if (regime_has_2_ranges(mmu_idx)) { 11354 return extract64(tcr, 37, 2); 11355 } else if (regime_is_stage2(mmu_idx)) { 11356 return 0; /* VTCR_EL2 */ 11357 } else { 11358 /* Replicate the single TBI bit so we always have 2 bits. */ 11359 return extract32(tcr, 20, 1) * 3; 11360 } 11361 } 11362 11363 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11364 { 11365 if (regime_has_2_ranges(mmu_idx)) { 11366 return extract64(tcr, 51, 2); 11367 } else if (regime_is_stage2(mmu_idx)) { 11368 return 0; /* VTCR_EL2 */ 11369 } else { 11370 /* Replicate the single TBID bit so we always have 2 bits. */ 11371 return extract32(tcr, 29, 1) * 3; 11372 } 11373 } 11374 11375 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11376 { 11377 if (regime_has_2_ranges(mmu_idx)) { 11378 return extract64(tcr, 57, 2); 11379 } else { 11380 /* Replicate the single TCMA bit so we always have 2 bits. */ 11381 return extract32(tcr, 30, 1) * 3; 11382 } 11383 } 11384 11385 static ARMGranuleSize tg0_to_gran_size(int tg) 11386 { 11387 switch (tg) { 11388 case 0: 11389 return Gran4K; 11390 case 1: 11391 return Gran64K; 11392 case 2: 11393 return Gran16K; 11394 default: 11395 return GranInvalid; 11396 } 11397 } 11398 11399 static ARMGranuleSize tg1_to_gran_size(int tg) 11400 { 11401 switch (tg) { 11402 case 1: 11403 return Gran16K; 11404 case 2: 11405 return Gran4K; 11406 case 3: 11407 return Gran64K; 11408 default: 11409 return GranInvalid; 11410 } 11411 } 11412 11413 static inline bool have4k(ARMCPU *cpu, bool stage2) 11414 { 11415 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11416 : cpu_isar_feature(aa64_tgran4, cpu); 11417 } 11418 11419 static inline bool have16k(ARMCPU *cpu, bool stage2) 11420 { 11421 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11422 : cpu_isar_feature(aa64_tgran16, cpu); 11423 } 11424 11425 static inline bool have64k(ARMCPU *cpu, bool stage2) 11426 { 11427 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11428 : cpu_isar_feature(aa64_tgran64, cpu); 11429 } 11430 11431 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11432 bool stage2) 11433 { 11434 switch (gran) { 11435 case Gran4K: 11436 if (have4k(cpu, stage2)) { 11437 return gran; 11438 } 11439 break; 11440 case Gran16K: 11441 if (have16k(cpu, stage2)) { 11442 return gran; 11443 } 11444 break; 11445 case Gran64K: 11446 if (have64k(cpu, stage2)) { 11447 return gran; 11448 } 11449 break; 11450 case GranInvalid: 11451 break; 11452 } 11453 /* 11454 * If the guest selects a granule size that isn't implemented, 11455 * the architecture requires that we behave as if it selected one 11456 * that is (with an IMPDEF choice of which one to pick). We choose 11457 * to implement the smallest supported granule size. 11458 */ 11459 if (have4k(cpu, stage2)) { 11460 return Gran4K; 11461 } 11462 if (have16k(cpu, stage2)) { 11463 return Gran16K; 11464 } 11465 assert(have64k(cpu, stage2)); 11466 return Gran64K; 11467 } 11468 11469 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11470 ARMMMUIdx mmu_idx, bool data, 11471 bool el1_is_aa32) 11472 { 11473 uint64_t tcr = regime_tcr(env, mmu_idx); 11474 bool epd, hpd, tsz_oob, ds, ha, hd; 11475 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11476 ARMGranuleSize gran; 11477 ARMCPU *cpu = env_archcpu(env); 11478 bool stage2 = regime_is_stage2(mmu_idx); 11479 11480 if (!regime_has_2_ranges(mmu_idx)) { 11481 select = 0; 11482 tsz = extract32(tcr, 0, 6); 11483 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11484 if (stage2) { 11485 /* VTCR_EL2 */ 11486 hpd = false; 11487 } else { 11488 hpd = extract32(tcr, 24, 1); 11489 } 11490 epd = false; 11491 sh = extract32(tcr, 12, 2); 11492 ps = extract32(tcr, 16, 3); 11493 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11494 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11495 ds = extract64(tcr, 32, 1); 11496 } else { 11497 bool e0pd; 11498 11499 /* 11500 * Bit 55 is always between the two regions, and is canonical for 11501 * determining if address tagging is enabled. 11502 */ 11503 select = extract64(va, 55, 1); 11504 if (!select) { 11505 tsz = extract32(tcr, 0, 6); 11506 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11507 epd = extract32(tcr, 7, 1); 11508 sh = extract32(tcr, 12, 2); 11509 hpd = extract64(tcr, 41, 1); 11510 e0pd = extract64(tcr, 55, 1); 11511 } else { 11512 tsz = extract32(tcr, 16, 6); 11513 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11514 epd = extract32(tcr, 23, 1); 11515 sh = extract32(tcr, 28, 2); 11516 hpd = extract64(tcr, 42, 1); 11517 e0pd = extract64(tcr, 56, 1); 11518 } 11519 ps = extract64(tcr, 32, 3); 11520 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11521 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11522 ds = extract64(tcr, 59, 1); 11523 11524 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11525 regime_is_user(env, mmu_idx)) { 11526 epd = true; 11527 } 11528 } 11529 11530 gran = sanitize_gran_size(cpu, gran, stage2); 11531 11532 if (cpu_isar_feature(aa64_st, cpu)) { 11533 max_tsz = 48 - (gran == Gran64K); 11534 } else { 11535 max_tsz = 39; 11536 } 11537 11538 /* 11539 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11540 * adjust the effective value of DS, as documented. 11541 */ 11542 min_tsz = 16; 11543 if (gran == Gran64K) { 11544 if (cpu_isar_feature(aa64_lva, cpu)) { 11545 min_tsz = 12; 11546 } 11547 ds = false; 11548 } else if (ds) { 11549 if (regime_is_stage2(mmu_idx)) { 11550 if (gran == Gran16K) { 11551 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11552 } else { 11553 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11554 } 11555 } else { 11556 if (gran == Gran16K) { 11557 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11558 } else { 11559 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11560 } 11561 } 11562 if (ds) { 11563 min_tsz = 12; 11564 } 11565 } 11566 11567 if (stage2 && el1_is_aa32) { 11568 /* 11569 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11570 * are loosened: a configured IPA of 40 bits is permitted even if 11571 * the implemented PA is less than that (and so a 40 bit IPA would 11572 * fault for an AArch64 EL1). See R_DTLMN. 11573 */ 11574 min_tsz = MIN(min_tsz, 24); 11575 } 11576 11577 if (tsz > max_tsz) { 11578 tsz = max_tsz; 11579 tsz_oob = true; 11580 } else if (tsz < min_tsz) { 11581 tsz = min_tsz; 11582 tsz_oob = true; 11583 } else { 11584 tsz_oob = false; 11585 } 11586 11587 /* Present TBI as a composite with TBID. */ 11588 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11589 if (!data) { 11590 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11591 } 11592 tbi = (tbi >> select) & 1; 11593 11594 return (ARMVAParameters) { 11595 .tsz = tsz, 11596 .ps = ps, 11597 .sh = sh, 11598 .select = select, 11599 .tbi = tbi, 11600 .epd = epd, 11601 .hpd = hpd, 11602 .tsz_oob = tsz_oob, 11603 .ds = ds, 11604 .ha = ha, 11605 .hd = ha && hd, 11606 .gran = gran, 11607 }; 11608 } 11609 11610 /* 11611 * Note that signed overflow is undefined in C. The following routines are 11612 * careful to use unsigned types where modulo arithmetic is required. 11613 * Failure to do so _will_ break on newer gcc. 11614 */ 11615 11616 /* Signed saturating arithmetic. */ 11617 11618 /* Perform 16-bit signed saturating addition. */ 11619 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11620 { 11621 uint16_t res; 11622 11623 res = a + b; 11624 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11625 if (a & 0x8000) { 11626 res = 0x8000; 11627 } else { 11628 res = 0x7fff; 11629 } 11630 } 11631 return res; 11632 } 11633 11634 /* Perform 8-bit signed saturating addition. */ 11635 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11636 { 11637 uint8_t res; 11638 11639 res = a + b; 11640 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11641 if (a & 0x80) { 11642 res = 0x80; 11643 } else { 11644 res = 0x7f; 11645 } 11646 } 11647 return res; 11648 } 11649 11650 /* Perform 16-bit signed saturating subtraction. */ 11651 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11652 { 11653 uint16_t res; 11654 11655 res = a - b; 11656 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11657 if (a & 0x8000) { 11658 res = 0x8000; 11659 } else { 11660 res = 0x7fff; 11661 } 11662 } 11663 return res; 11664 } 11665 11666 /* Perform 8-bit signed saturating subtraction. */ 11667 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11668 { 11669 uint8_t res; 11670 11671 res = a - b; 11672 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11673 if (a & 0x80) { 11674 res = 0x80; 11675 } else { 11676 res = 0x7f; 11677 } 11678 } 11679 return res; 11680 } 11681 11682 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11683 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11684 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11685 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11686 #define PFX q 11687 11688 #include "op_addsub.h" 11689 11690 /* Unsigned saturating arithmetic. */ 11691 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11692 { 11693 uint16_t res; 11694 res = a + b; 11695 if (res < a) { 11696 res = 0xffff; 11697 } 11698 return res; 11699 } 11700 11701 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11702 { 11703 if (a > b) { 11704 return a - b; 11705 } else { 11706 return 0; 11707 } 11708 } 11709 11710 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11711 { 11712 uint8_t res; 11713 res = a + b; 11714 if (res < a) { 11715 res = 0xff; 11716 } 11717 return res; 11718 } 11719 11720 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11721 { 11722 if (a > b) { 11723 return a - b; 11724 } else { 11725 return 0; 11726 } 11727 } 11728 11729 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11730 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11731 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11732 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11733 #define PFX uq 11734 11735 #include "op_addsub.h" 11736 11737 /* Signed modulo arithmetic. */ 11738 #define SARITH16(a, b, n, op) do { \ 11739 int32_t sum; \ 11740 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11741 RESULT(sum, n, 16); \ 11742 if (sum >= 0) \ 11743 ge |= 3 << (n * 2); \ 11744 } while (0) 11745 11746 #define SARITH8(a, b, n, op) do { \ 11747 int32_t sum; \ 11748 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11749 RESULT(sum, n, 8); \ 11750 if (sum >= 0) \ 11751 ge |= 1 << n; \ 11752 } while (0) 11753 11754 11755 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11756 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11757 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11758 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11759 #define PFX s 11760 #define ARITH_GE 11761 11762 #include "op_addsub.h" 11763 11764 /* Unsigned modulo arithmetic. */ 11765 #define ADD16(a, b, n) do { \ 11766 uint32_t sum; \ 11767 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11768 RESULT(sum, n, 16); \ 11769 if ((sum >> 16) == 1) \ 11770 ge |= 3 << (n * 2); \ 11771 } while (0) 11772 11773 #define ADD8(a, b, n) do { \ 11774 uint32_t sum; \ 11775 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11776 RESULT(sum, n, 8); \ 11777 if ((sum >> 8) == 1) \ 11778 ge |= 1 << n; \ 11779 } while (0) 11780 11781 #define SUB16(a, b, n) do { \ 11782 uint32_t sum; \ 11783 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11784 RESULT(sum, n, 16); \ 11785 if ((sum >> 16) == 0) \ 11786 ge |= 3 << (n * 2); \ 11787 } while (0) 11788 11789 #define SUB8(a, b, n) do { \ 11790 uint32_t sum; \ 11791 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11792 RESULT(sum, n, 8); \ 11793 if ((sum >> 8) == 0) \ 11794 ge |= 1 << n; \ 11795 } while (0) 11796 11797 #define PFX u 11798 #define ARITH_GE 11799 11800 #include "op_addsub.h" 11801 11802 /* Halved signed arithmetic. */ 11803 #define ADD16(a, b, n) \ 11804 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11805 #define SUB16(a, b, n) \ 11806 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11807 #define ADD8(a, b, n) \ 11808 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11809 #define SUB8(a, b, n) \ 11810 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11811 #define PFX sh 11812 11813 #include "op_addsub.h" 11814 11815 /* Halved unsigned arithmetic. */ 11816 #define ADD16(a, b, n) \ 11817 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11818 #define SUB16(a, b, n) \ 11819 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11820 #define ADD8(a, b, n) \ 11821 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11822 #define SUB8(a, b, n) \ 11823 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11824 #define PFX uh 11825 11826 #include "op_addsub.h" 11827 11828 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11829 { 11830 if (a > b) { 11831 return a - b; 11832 } else { 11833 return b - a; 11834 } 11835 } 11836 11837 /* Unsigned sum of absolute byte differences. */ 11838 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11839 { 11840 uint32_t sum; 11841 sum = do_usad(a, b); 11842 sum += do_usad(a >> 8, b >> 8); 11843 sum += do_usad(a >> 16, b >> 16); 11844 sum += do_usad(a >> 24, b >> 24); 11845 return sum; 11846 } 11847 11848 /* For ARMv6 SEL instruction. */ 11849 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11850 { 11851 uint32_t mask; 11852 11853 mask = 0; 11854 if (flags & 1) { 11855 mask |= 0xff; 11856 } 11857 if (flags & 2) { 11858 mask |= 0xff00; 11859 } 11860 if (flags & 4) { 11861 mask |= 0xff0000; 11862 } 11863 if (flags & 8) { 11864 mask |= 0xff000000; 11865 } 11866 return (a & mask) | (b & ~mask); 11867 } 11868 11869 /* 11870 * CRC helpers. 11871 * The upper bytes of val (above the number specified by 'bytes') must have 11872 * been zeroed out by the caller. 11873 */ 11874 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11875 { 11876 uint8_t buf[4]; 11877 11878 stl_le_p(buf, val); 11879 11880 /* zlib crc32 converts the accumulator and output to one's complement. */ 11881 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11882 } 11883 11884 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11885 { 11886 uint8_t buf[4]; 11887 11888 stl_le_p(buf, val); 11889 11890 /* Linux crc32c converts the output to one's complement. */ 11891 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11892 } 11893 11894 /* 11895 * Return the exception level to which FP-disabled exceptions should 11896 * be taken, or 0 if FP is enabled. 11897 */ 11898 int fp_exception_el(CPUARMState *env, int cur_el) 11899 { 11900 #ifndef CONFIG_USER_ONLY 11901 uint64_t hcr_el2; 11902 11903 /* 11904 * CPACR and the CPTR registers don't exist before v6, so FP is 11905 * always accessible 11906 */ 11907 if (!arm_feature(env, ARM_FEATURE_V6)) { 11908 return 0; 11909 } 11910 11911 if (arm_feature(env, ARM_FEATURE_M)) { 11912 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11913 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11914 return 1; 11915 } 11916 11917 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11918 if (!extract32(env->v7m.nsacr, 10, 1)) { 11919 /* FP insns cause a NOCP UsageFault taken to Secure */ 11920 return 3; 11921 } 11922 } 11923 11924 return 0; 11925 } 11926 11927 hcr_el2 = arm_hcr_el2_eff(env); 11928 11929 /* 11930 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11931 * 0, 2 : trap EL0 and EL1/PL1 accesses 11932 * 1 : trap only EL0 accesses 11933 * 3 : trap no accesses 11934 * This register is ignored if E2H+TGE are both set. 11935 */ 11936 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11937 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11938 11939 switch (fpen) { 11940 case 1: 11941 if (cur_el != 0) { 11942 break; 11943 } 11944 /* fall through */ 11945 case 0: 11946 case 2: 11947 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11948 if (!arm_el_is_aa64(env, 3) 11949 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11950 return 3; 11951 } 11952 if (cur_el <= 1) { 11953 return 1; 11954 } 11955 break; 11956 } 11957 } 11958 11959 /* 11960 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11961 * to control non-secure access to the FPU. It doesn't have any 11962 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11963 */ 11964 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11965 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11966 if (!extract32(env->cp15.nsacr, 10, 1)) { 11967 /* FP insns act as UNDEF */ 11968 return cur_el == 2 ? 2 : 1; 11969 } 11970 } 11971 11972 /* 11973 * CPTR_EL2 is present in v7VE or v8, and changes format 11974 * with HCR_EL2.E2H (regardless of TGE). 11975 */ 11976 if (cur_el <= 2) { 11977 if (hcr_el2 & HCR_E2H) { 11978 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11979 case 1: 11980 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11981 break; 11982 } 11983 /* fall through */ 11984 case 0: 11985 case 2: 11986 return 2; 11987 } 11988 } else if (arm_is_el2_enabled(env)) { 11989 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11990 return 2; 11991 } 11992 } 11993 } 11994 11995 /* CPTR_EL3 : present in v8 */ 11996 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11997 /* Trap all FP ops to EL3 */ 11998 return 3; 11999 } 12000 #endif 12001 return 0; 12002 } 12003 12004 /* Return the exception level we're running at if this is our mmu_idx */ 12005 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12006 { 12007 if (mmu_idx & ARM_MMU_IDX_M) { 12008 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12009 } 12010 12011 switch (mmu_idx) { 12012 case ARMMMUIdx_E10_0: 12013 case ARMMMUIdx_E20_0: 12014 return 0; 12015 case ARMMMUIdx_E10_1: 12016 case ARMMMUIdx_E10_1_PAN: 12017 return 1; 12018 case ARMMMUIdx_E2: 12019 case ARMMMUIdx_E20_2: 12020 case ARMMMUIdx_E20_2_PAN: 12021 return 2; 12022 case ARMMMUIdx_E3: 12023 return 3; 12024 default: 12025 g_assert_not_reached(); 12026 } 12027 } 12028 12029 #ifndef CONFIG_TCG 12030 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12031 { 12032 g_assert_not_reached(); 12033 } 12034 #endif 12035 12036 static bool arm_pan_enabled(CPUARMState *env) 12037 { 12038 if (is_a64(env)) { 12039 return env->pstate & PSTATE_PAN; 12040 } else { 12041 return env->uncached_cpsr & CPSR_PAN; 12042 } 12043 } 12044 12045 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12046 { 12047 ARMMMUIdx idx; 12048 uint64_t hcr; 12049 12050 if (arm_feature(env, ARM_FEATURE_M)) { 12051 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12052 } 12053 12054 /* See ARM pseudo-function ELIsInHost. */ 12055 switch (el) { 12056 case 0: 12057 hcr = arm_hcr_el2_eff(env); 12058 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12059 idx = ARMMMUIdx_E20_0; 12060 } else { 12061 idx = ARMMMUIdx_E10_0; 12062 } 12063 break; 12064 case 1: 12065 if (arm_pan_enabled(env)) { 12066 idx = ARMMMUIdx_E10_1_PAN; 12067 } else { 12068 idx = ARMMMUIdx_E10_1; 12069 } 12070 break; 12071 case 2: 12072 /* Note that TGE does not apply at EL2. */ 12073 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12074 if (arm_pan_enabled(env)) { 12075 idx = ARMMMUIdx_E20_2_PAN; 12076 } else { 12077 idx = ARMMMUIdx_E20_2; 12078 } 12079 } else { 12080 idx = ARMMMUIdx_E2; 12081 } 12082 break; 12083 case 3: 12084 return ARMMMUIdx_E3; 12085 default: 12086 g_assert_not_reached(); 12087 } 12088 12089 return idx; 12090 } 12091 12092 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12093 { 12094 return arm_mmu_idx_el(env, arm_current_el(env)); 12095 } 12096 12097 static bool mve_no_pred(CPUARMState *env) 12098 { 12099 /* 12100 * Return true if there is definitely no predication of MVE 12101 * instructions by VPR or LTPSIZE. (Returning false even if there 12102 * isn't any predication is OK; generated code will just be 12103 * a little worse.) 12104 * If the CPU does not implement MVE then this TB flag is always 0. 12105 * 12106 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12107 * logic in gen_update_fp_context() needs to be updated to match. 12108 * 12109 * We do not include the effect of the ECI bits here -- they are 12110 * tracked in other TB flags. This simplifies the logic for 12111 * "when did we emit code that changes the MVE_NO_PRED TB flag 12112 * and thus need to end the TB?". 12113 */ 12114 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12115 return false; 12116 } 12117 if (env->v7m.vpr) { 12118 return false; 12119 } 12120 if (env->v7m.ltpsize < 4) { 12121 return false; 12122 } 12123 return true; 12124 } 12125 12126 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12127 uint64_t *cs_base, uint32_t *pflags) 12128 { 12129 CPUARMTBFlags flags; 12130 12131 assert_hflags_rebuild_correctly(env); 12132 flags = env->hflags; 12133 12134 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12135 *pc = env->pc; 12136 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12137 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12138 } 12139 } else { 12140 *pc = env->regs[15]; 12141 12142 if (arm_feature(env, ARM_FEATURE_M)) { 12143 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12144 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12145 != env->v7m.secure) { 12146 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12147 } 12148 12149 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12150 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12151 (env->v7m.secure && 12152 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12153 /* 12154 * ASPEN is set, but FPCA/SFPA indicate that there is no 12155 * active FP context; we must create a new FP context before 12156 * executing any FP insn. 12157 */ 12158 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12159 } 12160 12161 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12162 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12163 DP_TBFLAG_M32(flags, LSPACT, 1); 12164 } 12165 12166 if (mve_no_pred(env)) { 12167 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12168 } 12169 } else { 12170 /* 12171 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12172 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12173 */ 12174 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12175 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12176 } else { 12177 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12178 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12179 } 12180 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12181 DP_TBFLAG_A32(flags, VFPEN, 1); 12182 } 12183 } 12184 12185 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12186 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12187 } 12188 12189 /* 12190 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12191 * states defined in the ARM ARM for software singlestep: 12192 * SS_ACTIVE PSTATE.SS State 12193 * 0 x Inactive (the TB flag for SS is always 0) 12194 * 1 0 Active-pending 12195 * 1 1 Active-not-pending 12196 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12197 */ 12198 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12199 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12200 } 12201 12202 *pflags = flags.flags; 12203 *cs_base = flags.flags2; 12204 } 12205 12206 #ifdef TARGET_AARCH64 12207 /* 12208 * The manual says that when SVE is enabled and VQ is widened the 12209 * implementation is allowed to zero the previously inaccessible 12210 * portion of the registers. The corollary to that is that when 12211 * SVE is enabled and VQ is narrowed we are also allowed to zero 12212 * the now inaccessible portion of the registers. 12213 * 12214 * The intent of this is that no predicate bit beyond VQ is ever set. 12215 * Which means that some operations on predicate registers themselves 12216 * may operate on full uint64_t or even unrolled across the maximum 12217 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12218 * may well be cheaper than conditionals to restrict the operation 12219 * to the relevant portion of a uint16_t[16]. 12220 */ 12221 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12222 { 12223 int i, j; 12224 uint64_t pmask; 12225 12226 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12227 assert(vq <= env_archcpu(env)->sve_max_vq); 12228 12229 /* Zap the high bits of the zregs. */ 12230 for (i = 0; i < 32; i++) { 12231 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12232 } 12233 12234 /* Zap the high bits of the pregs and ffr. */ 12235 pmask = 0; 12236 if (vq & 3) { 12237 pmask = ~(-1ULL << (16 * (vq & 3))); 12238 } 12239 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12240 for (i = 0; i < 17; ++i) { 12241 env->vfp.pregs[i].p[j] &= pmask; 12242 } 12243 pmask = 0; 12244 } 12245 } 12246 12247 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12248 { 12249 int exc_el; 12250 12251 if (sm) { 12252 exc_el = sme_exception_el(env, el); 12253 } else { 12254 exc_el = sve_exception_el(env, el); 12255 } 12256 if (exc_el) { 12257 return 0; /* disabled */ 12258 } 12259 return sve_vqm1_for_el_sm(env, el, sm); 12260 } 12261 12262 /* 12263 * Notice a change in SVE vector size when changing EL. 12264 */ 12265 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12266 int new_el, bool el0_a64) 12267 { 12268 ARMCPU *cpu = env_archcpu(env); 12269 int old_len, new_len; 12270 bool old_a64, new_a64, sm; 12271 12272 /* Nothing to do if no SVE. */ 12273 if (!cpu_isar_feature(aa64_sve, cpu)) { 12274 return; 12275 } 12276 12277 /* Nothing to do if FP is disabled in either EL. */ 12278 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12279 return; 12280 } 12281 12282 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12283 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12284 12285 /* 12286 * Both AArch64.TakeException and AArch64.ExceptionReturn 12287 * invoke ResetSVEState when taking an exception from, or 12288 * returning to, AArch32 state when PSTATE.SM is enabled. 12289 */ 12290 sm = FIELD_EX64(env->svcr, SVCR, SM); 12291 if (old_a64 != new_a64 && sm) { 12292 arm_reset_sve_state(env); 12293 return; 12294 } 12295 12296 /* 12297 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12298 * at ELx, or not available because the EL is in AArch32 state, then 12299 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12300 * has an effective value of 0". 12301 * 12302 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12303 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12304 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12305 * we already have the correct register contents when encountering the 12306 * vq0->vq0 transition between EL0->EL1. 12307 */ 12308 old_len = new_len = 0; 12309 if (old_a64) { 12310 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12311 } 12312 if (new_a64) { 12313 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12314 } 12315 12316 /* When changing vector length, clear inaccessible state. */ 12317 if (new_len < old_len) { 12318 aarch64_sve_narrow_vq(env, new_len + 1); 12319 } 12320 } 12321 #endif 12322 12323 #ifndef CONFIG_USER_ONLY 12324 ARMSecuritySpace arm_security_space(CPUARMState *env) 12325 { 12326 if (arm_feature(env, ARM_FEATURE_M)) { 12327 return arm_secure_to_space(env->v7m.secure); 12328 } 12329 12330 /* 12331 * If EL3 is not supported then the secure state is implementation 12332 * defined, in which case QEMU defaults to non-secure. 12333 */ 12334 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12335 return ARMSS_NonSecure; 12336 } 12337 12338 /* Check for AArch64 EL3 or AArch32 Mon. */ 12339 if (is_a64(env)) { 12340 if (extract32(env->pstate, 2, 2) == 3) { 12341 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12342 return ARMSS_Root; 12343 } else { 12344 return ARMSS_Secure; 12345 } 12346 } 12347 } else { 12348 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12349 return ARMSS_Secure; 12350 } 12351 } 12352 12353 return arm_security_space_below_el3(env); 12354 } 12355 12356 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12357 { 12358 assert(!arm_feature(env, ARM_FEATURE_M)); 12359 12360 /* 12361 * If EL3 is not supported then the secure state is implementation 12362 * defined, in which case QEMU defaults to non-secure. 12363 */ 12364 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12365 return ARMSS_NonSecure; 12366 } 12367 12368 /* 12369 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12370 * Ignoring NSE when !NS retains consistency without having to 12371 * modify other predicates. 12372 */ 12373 if (!(env->cp15.scr_el3 & SCR_NS)) { 12374 return ARMSS_Secure; 12375 } else if (env->cp15.scr_el3 & SCR_NSE) { 12376 return ARMSS_Realm; 12377 } else { 12378 return ARMSS_NonSecure; 12379 } 12380 } 12381 #endif /* !CONFIG_USER_ONLY */ 12382