1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 */ 448 return (ARMMMUIdxBit_E10_1 | 449 ARMMMUIdxBit_E10_1_PAN | 450 ARMMMUIdxBit_E10_0 | 451 ARMMMUIdxBit_Stage2 | 452 ARMMMUIdxBit_Stage2_S); 453 } 454 455 456 /* IS variants of TLB operations must affect all cores */ 457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 458 uint64_t value) 459 { 460 CPUState *cs = env_cpu(env); 461 462 tlb_flush_all_cpus_synced(cs); 463 } 464 465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 CPUState *cs = env_cpu(env); 469 470 tlb_flush_all_cpus_synced(cs); 471 } 472 473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 CPUState *cs = env_cpu(env); 477 478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 479 } 480 481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 CPUState *cs = env_cpu(env); 485 486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 487 } 488 489 /* 490 * Non-IS variants of TLB operations are upgraded to 491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 492 * force broadcast of these operations. 493 */ 494 static bool tlb_force_broadcast(CPUARMState *env) 495 { 496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 CPUState *cs = env_cpu(env); 504 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_all_cpus_synced(cs); 507 } else { 508 tlb_flush(cs); 509 } 510 } 511 512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 516 CPUState *cs = env_cpu(env); 517 518 value &= TARGET_PAGE_MASK; 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_page_all_cpus_synced(cs, value); 521 } else { 522 tlb_flush_page(cs, value); 523 } 524 } 525 526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate by ASID (TLBIASID) */ 530 CPUState *cs = env_cpu(env); 531 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_all_cpus_synced(cs); 534 } else { 535 tlb_flush(cs); 536 } 537 } 538 539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 543 CPUState *cs = env_cpu(env); 544 545 value &= TARGET_PAGE_MASK; 546 if (tlb_force_broadcast(env)) { 547 tlb_flush_page_all_cpus_synced(cs, value); 548 } else { 549 tlb_flush_page(cs, value); 550 } 551 } 552 553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 CPUState *cs = env_cpu(env); 557 558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 559 } 560 561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = env_cpu(env); 565 566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 567 } 568 569 570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 576 } 577 578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 584 } 585 586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 591 592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 593 } 594 595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 600 601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 602 ARMMMUIdxBit_E2); 603 } 604 605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 610 611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 612 } 613 614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 619 620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* 625 * Define the secure and non-secure FCSE identifier CP registers 626 * separately because there is no secure bank in V8 (no _EL3). This allows 627 * the secure register to be properly reset and migrated. There is also no 628 * v8 EL1 version of the register so the non-secure instance stands alone. 629 */ 630 { .name = "FCSEIDR", 631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 635 { .name = "FCSEIDR_S", 636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 640 /* 641 * Define the secure and non-secure context identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. In the 644 * non-secure case, the 32-bit register will have reset and migration 645 * disabled during registration as it is handled by the 64-bit instance. 646 */ 647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 649 .access = PL1_RW, .accessfn = access_tvm_trvm, 650 .fgt = FGT_CONTEXTIDR_EL1, 651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 652 .secure = ARM_CP_SECSTATE_NS, 653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, 658 .secure = ARM_CP_SECSTATE_S, 659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 661 }; 662 663 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 664 /* 665 * NB: Some of these registers exist in v8 but with more precise 666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 667 */ 668 /* MMU Domain access control / MPU write buffer control */ 669 { .name = "DACR", 670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 672 .writefn = dacr_write, .raw_writefn = raw_write, 673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 674 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 675 /* 676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 677 * For v6 and v5, these mappings are overly broad. 678 */ 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 687 /* Cache maintenance ops; some of this space may be overridden later. */ 688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 691 }; 692 693 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 694 /* 695 * Not all pre-v6 cores implemented this WFI, so this is slightly 696 * over-broad. 697 */ 698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 699 .access = PL1_W, .type = ARM_CP_WFI }, 700 }; 701 702 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 703 /* 704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 705 * is UNPREDICTABLE; we choose to NOP as most implementations do). 706 */ 707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 708 .access = PL1_W, .type = ARM_CP_WFI }, 709 /* 710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 712 * OMAPCP will override this space. 713 */ 714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 716 .resetvalue = 0 }, 717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 719 .resetvalue = 0 }, 720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 723 .resetvalue = 0 }, 724 /* 725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 726 * implementing it as RAZ means the "debug architecture version" bits 727 * will read as a reserved value, which should cause Linux to not try 728 * to use the debug hardware. 729 */ 730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 732 /* 733 * MMU TLB control. Note that the wildcarding means we cover not just 734 * the unified TLB ops but also the dside/iside/inner-shareable variants. 735 */ 736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 738 .type = ARM_CP_NO_RAW }, 739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 752 }; 753 754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 uint32_t mask = 0; 758 759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 760 if (!arm_feature(env, ARM_FEATURE_V8)) { 761 /* 762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 765 */ 766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 767 /* VFP coprocessor: cp10 & cp11 [23:20] */ 768 mask |= R_CPACR_ASEDIS_MASK | 769 R_CPACR_D32DIS_MASK | 770 R_CPACR_CP11_MASK | 771 R_CPACR_CP10_MASK; 772 773 if (!arm_feature(env, ARM_FEATURE_NEON)) { 774 /* ASEDIS [31] bit is RAO/WI */ 775 value |= R_CPACR_ASEDIS_MASK; 776 } 777 778 /* 779 * VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* 822 * Call cpacr_write() so that we reset with the correct RAO bits set 823 * for our CPU features. 824 */ 825 cpacr_write(env, ri, 0); 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && 851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 852 return CP_ACCESS_TRAP_EL3; 853 } 854 855 return CP_ACCESS_OK; 856 } 857 858 static const ARMCPRegInfo v6_cp_reginfo[] = { 859 /* prefetch by MVA in v6, NOP in v7 */ 860 { .name = "MVA_prefetch", 861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 862 .access = PL1_W, .type = ARM_CP_NOP }, 863 /* 864 * We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* 880 * Watchpoint Fault Address Register : should actually only be present 881 * for 1136, 1176, 11MPCore. 882 */ 883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 887 .fgt = FGT_CPACR_EL1, 888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 /* Precise instruction counting */ 953 return icount_enabled() == ICOUNT_PRECISE; 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 assert(icount_enabled() == ICOUNT_PRECISE); 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 assert(icount_enabled() == ICOUNT_PRECISE); 965 return icount_to_ns((int64_t)icount); 966 } 967 #endif 968 969 static bool pmuv3p1_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 973 } 974 975 static bool pmuv3p4_events_supported(CPUARMState *env) 976 { 977 /* For events which are supported in any v8.1 PMU */ 978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 979 } 980 981 static uint64_t zero_event_get_count(CPUARMState *env) 982 { 983 /* For events which on QEMU never fire, so their count is always zero */ 984 return 0; 985 } 986 987 static int64_t zero_event_ns_per(uint64_t cycles) 988 { 989 /* An event which never fires can never overflow */ 990 return -1; 991 } 992 993 static const pm_event pm_events[] = { 994 { .number = 0x000, /* SW_INCR */ 995 .supported = event_always_supported, 996 .get_count = swinc_get_count, 997 .ns_per_count = swinc_ns_per, 998 }, 999 #ifndef CONFIG_USER_ONLY 1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1001 .supported = instructions_supported, 1002 .get_count = instructions_get_count, 1003 .ns_per_count = instructions_ns_per, 1004 }, 1005 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1006 .supported = event_always_supported, 1007 .get_count = cycles_get_count, 1008 .ns_per_count = cycles_ns_per, 1009 }, 1010 #endif 1011 { .number = 0x023, /* STALL_FRONTEND */ 1012 .supported = pmuv3p1_events_supported, 1013 .get_count = zero_event_get_count, 1014 .ns_per_count = zero_event_ns_per, 1015 }, 1016 { .number = 0x024, /* STALL_BACKEND */ 1017 .supported = pmuv3p1_events_supported, 1018 .get_count = zero_event_get_count, 1019 .ns_per_count = zero_event_ns_per, 1020 }, 1021 { .number = 0x03c, /* STALL */ 1022 .supported = pmuv3p4_events_supported, 1023 .get_count = zero_event_get_count, 1024 .ns_per_count = zero_event_ns_per, 1025 }, 1026 }; 1027 1028 /* 1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1030 * events (i.e. the statistical profiling extension), this implementation 1031 * should first be updated to something sparse instead of the current 1032 * supported_event_map[] array. 1033 */ 1034 #define MAX_EVENT_ID 0x3c 1035 #define UNSUPPORTED_EVENT UINT16_MAX 1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1037 1038 /* 1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1040 * of ARM event numbers to indices in our pm_events array. 1041 * 1042 * Note: Events in the 0x40XX range are not currently supported. 1043 */ 1044 void pmu_init(ARMCPU *cpu) 1045 { 1046 unsigned int i; 1047 1048 /* 1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1050 * events to them 1051 */ 1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1053 supported_event_map[i] = UNSUPPORTED_EVENT; 1054 } 1055 cpu->pmceid0 = 0; 1056 cpu->pmceid1 = 0; 1057 1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1059 const pm_event *cnt = &pm_events[i]; 1060 assert(cnt->number <= MAX_EVENT_ID); 1061 /* We do not currently support events in the 0x40xx range */ 1062 assert(cnt->number <= 0x3f); 1063 1064 if (cnt->supported(&cpu->env)) { 1065 supported_event_map[cnt->number] = i; 1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1067 if (cnt->number & 0x20) { 1068 cpu->pmceid1 |= event_mask; 1069 } else { 1070 cpu->pmceid0 |= event_mask; 1071 } 1072 } 1073 } 1074 } 1075 1076 /* 1077 * Check at runtime whether a PMU event is supported for the current machine 1078 */ 1079 static bool event_supported(uint16_t number) 1080 { 1081 if (number > MAX_EVENT_ID) { 1082 return false; 1083 } 1084 return supported_event_map[number] != UNSUPPORTED_EVENT; 1085 } 1086 1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1088 bool isread) 1089 { 1090 /* 1091 * Performance monitor registers user accessibility is controlled 1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1093 * trapping to EL2 or EL3 for other accesses. 1094 */ 1095 int el = arm_current_el(env); 1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1097 1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1099 return CP_ACCESS_TRAP; 1100 } 1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL2; 1103 } 1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL3; 1106 } 1107 1108 return CP_ACCESS_OK; 1109 } 1110 1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1112 const ARMCPRegInfo *ri, 1113 bool isread) 1114 { 1115 /* ER: event counter read trap control */ 1116 if (arm_feature(env, ARM_FEATURE_V8) 1117 && arm_current_el(env) == 0 1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1119 && isread) { 1120 return CP_ACCESS_OK; 1121 } 1122 1123 return pmreg_access(env, ri, isread); 1124 } 1125 1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1127 const ARMCPRegInfo *ri, 1128 bool isread) 1129 { 1130 /* SW: software increment write trap control */ 1131 if (arm_feature(env, ARM_FEATURE_V8) 1132 && arm_current_el(env) == 0 1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1134 && !isread) { 1135 return CP_ACCESS_OK; 1136 } 1137 1138 return pmreg_access(env, ri, isread); 1139 } 1140 1141 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1142 const ARMCPRegInfo *ri, 1143 bool isread) 1144 { 1145 /* ER: event counter read trap control */ 1146 if (arm_feature(env, ARM_FEATURE_V8) 1147 && arm_current_el(env) == 0 1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1149 return CP_ACCESS_OK; 1150 } 1151 1152 return pmreg_access(env, ri, isread); 1153 } 1154 1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1156 const ARMCPRegInfo *ri, 1157 bool isread) 1158 { 1159 /* CR: cycle counter read trap control */ 1160 if (arm_feature(env, ARM_FEATURE_V8) 1161 && arm_current_el(env) == 0 1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1163 && isread) { 1164 return CP_ACCESS_OK; 1165 } 1166 1167 return pmreg_access(env, ri, isread); 1168 } 1169 1170 /* 1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1172 * We use these to decide whether we need to wrap a write to MDCR_EL2 1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1174 */ 1175 #define MDCR_EL2_PMU_ENABLE_BITS \ 1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1178 1179 /* 1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1181 * the current EL, security state, and register configuration. 1182 */ 1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1184 { 1185 uint64_t filter; 1186 bool e, p, u, nsk, nsu, nsh, m; 1187 bool enabled, prohibited = false, filtered; 1188 bool secure = arm_is_secure(env); 1189 int el = arm_current_el(env); 1190 uint64_t mdcr_el2; 1191 uint8_t hpmn; 1192 1193 /* 1194 * We might be called for M-profile cores where MDCR_EL2 doesn't 1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1196 * must be before we read that value. 1197 */ 1198 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1199 return false; 1200 } 1201 1202 mdcr_el2 = arm_mdcr_el2_eff(env); 1203 hpmn = mdcr_el2 & MDCR_HPMN; 1204 1205 if (!arm_feature(env, ARM_FEATURE_EL2) || 1206 (counter < hpmn || counter == 31)) { 1207 e = env->cp15.c9_pmcr & PMCRE; 1208 } else { 1209 e = mdcr_el2 & MDCR_HPME; 1210 } 1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1212 1213 /* Is event counting prohibited? */ 1214 if (el == 2 && (counter < hpmn || counter == 31)) { 1215 prohibited = mdcr_el2 & MDCR_HPMD; 1216 } 1217 if (secure) { 1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1219 } 1220 1221 if (counter == 31) { 1222 /* 1223 * The cycle counter defaults to running. PMCR.DP says "disable 1224 * the cycle counter when event counting is prohibited". 1225 * Some MDCR bits disable the cycle counter specifically. 1226 */ 1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1229 if (secure) { 1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1231 } 1232 if (el == 2) { 1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1234 } 1235 } 1236 } 1237 1238 if (counter == 31) { 1239 filter = env->cp15.pmccfiltr_el0; 1240 } else { 1241 filter = env->cp15.c14_pmevtyper[counter]; 1242 } 1243 1244 p = filter & PMXEVTYPER_P; 1245 u = filter & PMXEVTYPER_U; 1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1249 m = arm_el_is_aa64(env, 1) && 1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1251 1252 if (el == 0) { 1253 filtered = secure ? u : u != nsu; 1254 } else if (el == 1) { 1255 filtered = secure ? p : p != nsk; 1256 } else if (el == 2) { 1257 filtered = !nsh; 1258 } else { /* EL3 */ 1259 filtered = m != p; 1260 } 1261 1262 if (counter != 31) { 1263 /* 1264 * If not checking PMCCNTR, ensure the counter is setup to an event we 1265 * support 1266 */ 1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1268 if (!event_supported(event)) { 1269 return false; 1270 } 1271 } 1272 1273 return enabled && !prohibited && !filtered; 1274 } 1275 1276 static void pmu_update_irq(CPUARMState *env) 1277 { 1278 ARMCPU *cpu = env_archcpu(env); 1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1281 } 1282 1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1284 { 1285 /* 1286 * Return true if the clock divider is enabled and the cycle counter 1287 * is supposed to tick only once every 64 clock cycles. This is 1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1289 * (64-bit) cycle counter PMCR.D has no effect. 1290 */ 1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1292 } 1293 1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1295 { 1296 /* Return true if the specified event counter is configured to be 64 bit */ 1297 1298 /* This isn't intended to be used with the cycle counter */ 1299 assert(counter < 31); 1300 1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1302 return false; 1303 } 1304 1305 if (arm_feature(env, ARM_FEATURE_EL2)) { 1306 /* 1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1308 * current security state, so we don't use arm_mdcr_el2_eff() here. 1309 */ 1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1312 1313 if (counter >= hpmn) { 1314 return hlp; 1315 } 1316 } 1317 return env->cp15.c9_pmcr & PMCRLP; 1318 } 1319 1320 /* 1321 * Ensure c15_ccnt is the guest-visible count so that operations such as 1322 * enabling/disabling the counter or filtering, modifying the count itself, 1323 * etc. can be done logically. This is essentially a no-op if the counter is 1324 * not enabled at the time of the call. 1325 */ 1326 static void pmccntr_op_start(CPUARMState *env) 1327 { 1328 uint64_t cycles = cycles_get_count(env); 1329 1330 if (pmu_counter_enabled(env, 31)) { 1331 uint64_t eff_cycles = cycles; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 eff_cycles /= 64; 1334 } 1335 1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1337 1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1339 1ull << 63 : 1ull << 31; 1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1341 env->cp15.c9_pmovsr |= (1ULL << 31); 1342 pmu_update_irq(env); 1343 } 1344 1345 env->cp15.c15_ccnt = new_pmccntr; 1346 } 1347 env->cp15.c15_ccnt_delta = cycles; 1348 } 1349 1350 /* 1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1353 * pmccntr_op_start. 1354 */ 1355 static void pmccntr_op_finish(CPUARMState *env) 1356 { 1357 if (pmu_counter_enabled(env, 31)) { 1358 #ifndef CONFIG_USER_ONLY 1359 /* Calculate when the counter will next overflow */ 1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1361 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1362 remaining_cycles = (uint32_t)remaining_cycles; 1363 } 1364 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1365 1366 if (overflow_in > 0) { 1367 int64_t overflow_at; 1368 1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1370 overflow_in, &overflow_at)) { 1371 ARMCPU *cpu = env_archcpu(env); 1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1373 } 1374 } 1375 #endif 1376 1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1378 if (pmccntr_clockdiv_enabled(env)) { 1379 prev_cycles /= 64; 1380 } 1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1382 } 1383 } 1384 1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1386 { 1387 1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1389 uint64_t count = 0; 1390 if (event_supported(event)) { 1391 uint16_t event_idx = supported_event_map[event]; 1392 count = pm_events[event_idx].get_count(env); 1393 } 1394 1395 if (pmu_counter_enabled(env, counter)) { 1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1398 1ULL << 63 : 1ULL << 31; 1399 1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1401 env->cp15.c9_pmovsr |= (1 << counter); 1402 pmu_update_irq(env); 1403 } 1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1405 } 1406 env->cp15.c14_pmevcntr_delta[counter] = count; 1407 } 1408 1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1410 { 1411 if (pmu_counter_enabled(env, counter)) { 1412 #ifndef CONFIG_USER_ONLY 1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1414 uint16_t event_idx = supported_event_map[event]; 1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1416 int64_t overflow_in; 1417 1418 if (!pmevcntr_is_64_bit(env, counter)) { 1419 delta = (uint32_t)delta; 1420 } 1421 overflow_in = pm_events[event_idx].ns_per_count(delta); 1422 1423 if (overflow_in > 0) { 1424 int64_t overflow_at; 1425 1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1427 overflow_in, &overflow_at)) { 1428 ARMCPU *cpu = env_archcpu(env); 1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1430 } 1431 } 1432 #endif 1433 1434 env->cp15.c14_pmevcntr_delta[counter] -= 1435 env->cp15.c14_pmevcntr[counter]; 1436 } 1437 } 1438 1439 void pmu_op_start(CPUARMState *env) 1440 { 1441 unsigned int i; 1442 pmccntr_op_start(env); 1443 for (i = 0; i < pmu_num_counters(env); i++) { 1444 pmevcntr_op_start(env, i); 1445 } 1446 } 1447 1448 void pmu_op_finish(CPUARMState *env) 1449 { 1450 unsigned int i; 1451 pmccntr_op_finish(env); 1452 for (i = 0; i < pmu_num_counters(env); i++) { 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1458 { 1459 pmu_op_start(&cpu->env); 1460 } 1461 1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1463 { 1464 pmu_op_finish(&cpu->env); 1465 } 1466 1467 void arm_pmu_timer_cb(void *opaque) 1468 { 1469 ARMCPU *cpu = opaque; 1470 1471 /* 1472 * Update all the counter values based on the current underlying counts, 1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1475 * counter may expire. 1476 */ 1477 pmu_op_start(&cpu->env); 1478 pmu_op_finish(&cpu->env); 1479 } 1480 1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 pmu_op_start(env); 1485 1486 if (value & PMCRC) { 1487 /* The counter has been reset */ 1488 env->cp15.c15_ccnt = 0; 1489 } 1490 1491 if (value & PMCRP) { 1492 unsigned int i; 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 env->cp15.c14_pmevcntr[i] = 0; 1495 } 1496 } 1497 1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1500 1501 pmu_op_finish(env); 1502 } 1503 1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1505 { 1506 uint64_t pmcr = env->cp15.c9_pmcr; 1507 1508 /* 1509 * If EL2 is implemented and enabled for the current security state, reads 1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1511 */ 1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1513 pmcr &= ~PMCRN_MASK; 1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1515 } 1516 1517 return pmcr; 1518 } 1519 1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 unsigned int i; 1524 uint64_t overflow_mask, new_pmswinc; 1525 1526 for (i = 0; i < pmu_num_counters(env); i++) { 1527 /* Increment a counter's count iff: */ 1528 if ((value & (1 << i)) && /* counter's bit is set */ 1529 /* counter is enabled and not filtered */ 1530 pmu_counter_enabled(env, i) && 1531 /* counter is SW_INCR */ 1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1533 pmevcntr_op_start(env, i); 1534 1535 /* 1536 * Detect if this write causes an overflow since we can't predict 1537 * PMSWINC overflows like we can for other events 1538 */ 1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1540 1541 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1542 1ULL << 63 : 1ULL << 31; 1543 1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1545 env->cp15.c9_pmovsr |= (1 << i); 1546 pmu_update_irq(env); 1547 } 1548 1549 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1550 1551 pmevcntr_op_finish(env, i); 1552 } 1553 } 1554 } 1555 1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1557 { 1558 uint64_t ret; 1559 pmccntr_op_start(env); 1560 ret = env->cp15.c15_ccnt; 1561 pmccntr_op_finish(env); 1562 return ret; 1563 } 1564 1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 /* 1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1572 * accessed. 1573 */ 1574 env->cp15.c9_pmselr = value & 0x1f; 1575 } 1576 1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 pmccntr_op_start(env); 1581 env->cp15.c15_ccnt = value; 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 uint64_t cur_val = pmccntr_read(env, NULL); 1589 1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1591 } 1592 1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 pmccntr_op_start(env); 1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1598 pmccntr_op_finish(env); 1599 } 1600 1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 pmccntr_op_start(env); 1605 /* M is not accessible from AArch32 */ 1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1607 (value & PMCCFILTR); 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 /* M is not visible in AArch32 */ 1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1615 } 1616 1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 pmu_op_start(env); 1621 value &= pmu_counter_mask(env); 1622 env->cp15.c9_pmcnten |= value; 1623 pmu_op_finish(env); 1624 } 1625 1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten &= ~value; 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pmovsr &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmovsr |= value; 1648 pmu_update_irq(env); 1649 } 1650 1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value, const uint8_t counter) 1653 { 1654 if (counter == 31) { 1655 pmccfiltr_write(env, ri, value); 1656 } else if (counter < pmu_num_counters(env)) { 1657 pmevcntr_op_start(env, counter); 1658 1659 /* 1660 * If this counter's event type is changing, store the current 1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1662 * pmevcntr_op_finish has the correct baseline when it converts back to 1663 * a delta. 1664 */ 1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1666 PMXEVTYPER_EVTCOUNT; 1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1668 if (old_event != new_event) { 1669 uint64_t count = 0; 1670 if (event_supported(new_event)) { 1671 uint16_t event_idx = supported_event_map[new_event]; 1672 count = pm_events[event_idx].get_count(env); 1673 } 1674 env->cp15.c14_pmevcntr_delta[counter] = count; 1675 } 1676 1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1678 pmevcntr_op_finish(env, counter); 1679 } 1680 /* 1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1682 * PMSELR value is equal to or greater than the number of implemented 1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1684 */ 1685 } 1686 1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1688 const uint8_t counter) 1689 { 1690 if (counter == 31) { 1691 return env->cp15.pmccfiltr_el0; 1692 } else if (counter < pmu_num_counters(env)) { 1693 return env->cp15.c14_pmevtyper[counter]; 1694 } else { 1695 /* 1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1698 */ 1699 return 0; 1700 } 1701 } 1702 1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1707 pmevtyper_write(env, ri, value, counter); 1708 } 1709 1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 env->cp15.c14_pmevtyper[counter] = value; 1715 1716 /* 1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1718 * pmu_op_finish calls when loading saved state for a migration. Because 1719 * we're potentially updating the type of event here, the value written to 1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1721 * different counter type. Therefore, we need to set this value to the 1722 * current count for the counter type we're writing so that pmu_op_finish 1723 * has the correct count for its calculation. 1724 */ 1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1726 if (event_supported(event)) { 1727 uint16_t event_idx = supported_event_map[event]; 1728 env->cp15.c14_pmevcntr_delta[counter] = 1729 pm_events[event_idx].get_count(env); 1730 } 1731 } 1732 1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1736 return pmevtyper_read(env, ri, counter); 1737 } 1738 1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1743 } 1744 1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value, uint8_t counter) 1752 { 1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1755 value &= MAKE_64BIT_MASK(0, 32); 1756 } 1757 if (counter < pmu_num_counters(env)) { 1758 pmevcntr_op_start(env, counter); 1759 env->cp15.c14_pmevcntr[counter] = value; 1760 pmevcntr_op_finish(env, counter); 1761 } 1762 /* 1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1764 * are CONSTRAINED UNPREDICTABLE. 1765 */ 1766 } 1767 1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint8_t counter) 1770 { 1771 if (counter < pmu_num_counters(env)) { 1772 uint64_t ret; 1773 pmevcntr_op_start(env, counter); 1774 ret = env->cp15.c14_pmevcntr[counter]; 1775 pmevcntr_op_finish(env, counter); 1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1778 ret &= MAKE_64BIT_MASK(0, 32); 1779 } 1780 return ret; 1781 } else { 1782 /* 1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1784 * are CONSTRAINED UNPREDICTABLE. 1785 */ 1786 return 0; 1787 } 1788 } 1789 1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1794 pmevcntr_write(env, ri, value, counter); 1795 } 1796 1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1800 return pmevcntr_read(env, ri, counter); 1801 } 1802 1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1807 assert(counter < pmu_num_counters(env)); 1808 env->cp15.c14_pmevcntr[counter] = value; 1809 pmevcntr_write(env, ri, value, counter); 1810 } 1811 1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1815 assert(counter < pmu_num_counters(env)); 1816 return env->cp15.c14_pmevcntr[counter]; 1817 } 1818 1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 if (arm_feature(env, ARM_FEATURE_V8)) { 1834 env->cp15.c9_pmuserenr = value & 0xf; 1835 } else { 1836 env->cp15.c9_pmuserenr = value & 1; 1837 } 1838 } 1839 1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 /* We have no event counters so only the C bit can be changed */ 1844 value &= pmu_counter_mask(env); 1845 env->cp15.c9_pminten |= value; 1846 pmu_update_irq(env); 1847 } 1848 1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 value &= pmu_counter_mask(env); 1853 env->cp15.c9_pminten &= ~value; 1854 pmu_update_irq(env); 1855 } 1856 1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 /* 1861 * Note that even though the AArch64 view of this register has bits 1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1863 * architectural requirements for bits which are RES0 only in some 1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1866 */ 1867 raw_write(env, ri, value & ~0x1FULL); 1868 } 1869 1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1871 { 1872 /* Begin with base v8.0 state. */ 1873 uint64_t valid_mask = 0x3fff; 1874 ARMCPU *cpu = env_archcpu(env); 1875 uint64_t changed; 1876 1877 /* 1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1880 * Instead, choose the format based on the mode of EL3. 1881 */ 1882 if (arm_el_is_aa64(env, 3)) { 1883 value |= SCR_FW | SCR_AW; /* RES1 */ 1884 valid_mask &= ~SCR_NET; /* RES0 */ 1885 1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1888 value |= SCR_RW; /* RAO/WI */ 1889 } 1890 if (cpu_isar_feature(aa64_ras, cpu)) { 1891 valid_mask |= SCR_TERR; 1892 } 1893 if (cpu_isar_feature(aa64_lor, cpu)) { 1894 valid_mask |= SCR_TLOR; 1895 } 1896 if (cpu_isar_feature(aa64_pauth, cpu)) { 1897 valid_mask |= SCR_API | SCR_APK; 1898 } 1899 if (cpu_isar_feature(aa64_sel2, cpu)) { 1900 valid_mask |= SCR_EEL2; 1901 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1903 value |= SCR_NS; 1904 } 1905 if (cpu_isar_feature(aa64_mte, cpu)) { 1906 valid_mask |= SCR_ATA; 1907 } 1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1909 valid_mask |= SCR_ENSCXT; 1910 } 1911 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1912 valid_mask |= SCR_EASE | SCR_NMEA; 1913 } 1914 if (cpu_isar_feature(aa64_sme, cpu)) { 1915 valid_mask |= SCR_ENTP2; 1916 } 1917 if (cpu_isar_feature(aa64_hcx, cpu)) { 1918 valid_mask |= SCR_HXEN; 1919 } 1920 if (cpu_isar_feature(aa64_fgt, cpu)) { 1921 valid_mask |= SCR_FGTEN; 1922 } 1923 if (cpu_isar_feature(aa64_rme, cpu)) { 1924 valid_mask |= SCR_NSE | SCR_GPF; 1925 } 1926 } else { 1927 valid_mask &= ~(SCR_RW | SCR_ST); 1928 if (cpu_isar_feature(aa32_ras, cpu)) { 1929 valid_mask |= SCR_TERR; 1930 } 1931 } 1932 1933 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1934 valid_mask &= ~SCR_HCE; 1935 1936 /* 1937 * On ARMv7, SMD (or SCD as it is called in v7) is only 1938 * supported if EL2 exists. The bit is UNK/SBZP when 1939 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1940 * when EL2 is unavailable. 1941 * On ARMv8, this bit is always available. 1942 */ 1943 if (arm_feature(env, ARM_FEATURE_V7) && 1944 !arm_feature(env, ARM_FEATURE_V8)) { 1945 valid_mask &= ~SCR_SMD; 1946 } 1947 } 1948 1949 /* Clear all-context RES0 bits. */ 1950 value &= valid_mask; 1951 changed = env->cp15.scr_el3 ^ value; 1952 env->cp15.scr_el3 = value; 1953 1954 /* 1955 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1956 * we must invalidate all TLBs below EL3. 1957 */ 1958 if (changed & (SCR_NS | SCR_NSE)) { 1959 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1960 ARMMMUIdxBit_E20_0 | 1961 ARMMMUIdxBit_E10_1 | 1962 ARMMMUIdxBit_E20_2 | 1963 ARMMMUIdxBit_E10_1_PAN | 1964 ARMMMUIdxBit_E20_2_PAN | 1965 ARMMMUIdxBit_E2)); 1966 } 1967 } 1968 1969 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1970 { 1971 /* 1972 * scr_write will set the RES1 bits on an AArch64-only CPU. 1973 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1974 */ 1975 scr_write(env, ri, 0); 1976 } 1977 1978 static CPAccessResult access_tid4(CPUARMState *env, 1979 const ARMCPRegInfo *ri, 1980 bool isread) 1981 { 1982 if (arm_current_el(env) == 1 && 1983 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1984 return CP_ACCESS_TRAP_EL2; 1985 } 1986 1987 return CP_ACCESS_OK; 1988 } 1989 1990 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1991 { 1992 ARMCPU *cpu = env_archcpu(env); 1993 1994 /* 1995 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1996 * bank 1997 */ 1998 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1999 ri->secure & ARM_CP_SECSTATE_S); 2000 2001 return cpu->ccsidr[index]; 2002 } 2003 2004 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2005 uint64_t value) 2006 { 2007 raw_write(env, ri, value & 0xf); 2008 } 2009 2010 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2011 { 2012 CPUState *cs = env_cpu(env); 2013 bool el1 = arm_current_el(env) == 1; 2014 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2015 uint64_t ret = 0; 2016 2017 if (hcr_el2 & HCR_IMO) { 2018 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2019 ret |= CPSR_I; 2020 } 2021 } else { 2022 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2023 ret |= CPSR_I; 2024 } 2025 } 2026 2027 if (hcr_el2 & HCR_FMO) { 2028 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2029 ret |= CPSR_F; 2030 } 2031 } else { 2032 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2033 ret |= CPSR_F; 2034 } 2035 } 2036 2037 if (hcr_el2 & HCR_AMO) { 2038 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2039 ret |= CPSR_A; 2040 } 2041 } 2042 2043 return ret; 2044 } 2045 2046 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2047 bool isread) 2048 { 2049 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2050 return CP_ACCESS_TRAP_EL2; 2051 } 2052 2053 return CP_ACCESS_OK; 2054 } 2055 2056 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2057 bool isread) 2058 { 2059 if (arm_feature(env, ARM_FEATURE_V8)) { 2060 return access_aa64_tid1(env, ri, isread); 2061 } 2062 2063 return CP_ACCESS_OK; 2064 } 2065 2066 static const ARMCPRegInfo v7_cp_reginfo[] = { 2067 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2068 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2069 .access = PL1_W, .type = ARM_CP_NOP }, 2070 /* 2071 * Performance monitors are implementation defined in v7, 2072 * but with an ARM recommended set of registers, which we 2073 * follow. 2074 * 2075 * Performance registers fall into three categories: 2076 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2077 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2078 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2079 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2080 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2081 */ 2082 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2083 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2084 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2085 .writefn = pmcntenset_write, 2086 .accessfn = pmreg_access, 2087 .fgt = FGT_PMCNTEN, 2088 .raw_writefn = raw_write }, 2089 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2090 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2091 .access = PL0_RW, .accessfn = pmreg_access, 2092 .fgt = FGT_PMCNTEN, 2093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2094 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2095 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2096 .access = PL0_RW, 2097 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2098 .accessfn = pmreg_access, 2099 .fgt = FGT_PMCNTEN, 2100 .writefn = pmcntenclr_write, 2101 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2102 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2104 .access = PL0_RW, .accessfn = pmreg_access, 2105 .fgt = FGT_PMCNTEN, 2106 .type = ARM_CP_ALIAS | ARM_CP_IO, 2107 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2108 .writefn = pmcntenclr_write }, 2109 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2110 .access = PL0_RW, .type = ARM_CP_IO, 2111 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2112 .accessfn = pmreg_access, 2113 .fgt = FGT_PMOVS, 2114 .writefn = pmovsr_write, 2115 .raw_writefn = raw_write }, 2116 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2117 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2118 .access = PL0_RW, .accessfn = pmreg_access, 2119 .fgt = FGT_PMOVS, 2120 .type = ARM_CP_ALIAS | ARM_CP_IO, 2121 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2122 .writefn = pmovsr_write, 2123 .raw_writefn = raw_write }, 2124 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2125 .access = PL0_W, .accessfn = pmreg_access_swinc, 2126 .fgt = FGT_PMSWINC_EL0, 2127 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2128 .writefn = pmswinc_write }, 2129 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2131 .access = PL0_W, .accessfn = pmreg_access_swinc, 2132 .fgt = FGT_PMSWINC_EL0, 2133 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2134 .writefn = pmswinc_write }, 2135 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2136 .access = PL0_RW, .type = ARM_CP_ALIAS, 2137 .fgt = FGT_PMSELR_EL0, 2138 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2139 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2140 .raw_writefn = raw_write}, 2141 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2143 .access = PL0_RW, .accessfn = pmreg_access_selr, 2144 .fgt = FGT_PMSELR_EL0, 2145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2146 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2147 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2148 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2149 .fgt = FGT_PMCCNTR_EL0, 2150 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2151 .accessfn = pmreg_access_ccntr }, 2152 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2154 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2155 .fgt = FGT_PMCCNTR_EL0, 2156 .type = ARM_CP_IO, 2157 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2158 .readfn = pmccntr_read, .writefn = pmccntr_write, 2159 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2160 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2161 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2162 .access = PL0_RW, .accessfn = pmreg_access, 2163 .fgt = FGT_PMCCFILTR_EL0, 2164 .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .resetvalue = 0, }, 2166 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2168 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2169 .access = PL0_RW, .accessfn = pmreg_access, 2170 .fgt = FGT_PMCCFILTR_EL0, 2171 .type = ARM_CP_IO, 2172 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2173 .resetvalue = 0, }, 2174 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2175 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2176 .accessfn = pmreg_access, 2177 .fgt = FGT_PMEVTYPERN_EL0, 2178 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2179 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2181 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2182 .accessfn = pmreg_access, 2183 .fgt = FGT_PMEVTYPERN_EL0, 2184 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2185 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2186 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2187 .accessfn = pmreg_access_xevcntr, 2188 .fgt = FGT_PMEVCNTRN_EL0, 2189 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2190 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2192 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2193 .accessfn = pmreg_access_xevcntr, 2194 .fgt = FGT_PMEVCNTRN_EL0, 2195 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2196 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2197 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2199 .resetvalue = 0, 2200 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2201 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2203 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2205 .resetvalue = 0, 2206 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2207 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2208 .access = PL1_RW, .accessfn = access_tpm, 2209 .fgt = FGT_PMINTEN, 2210 .type = ARM_CP_ALIAS | ARM_CP_IO, 2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2212 .resetvalue = 0, 2213 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2214 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2215 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2216 .access = PL1_RW, .accessfn = access_tpm, 2217 .fgt = FGT_PMINTEN, 2218 .type = ARM_CP_IO, 2219 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2220 .writefn = pmintenset_write, .raw_writefn = raw_write, 2221 .resetvalue = 0x0 }, 2222 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2223 .access = PL1_RW, .accessfn = access_tpm, 2224 .fgt = FGT_PMINTEN, 2225 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2226 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2227 .writefn = pmintenclr_write, }, 2228 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2229 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2230 .access = PL1_RW, .accessfn = access_tpm, 2231 .fgt = FGT_PMINTEN, 2232 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2233 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2234 .writefn = pmintenclr_write }, 2235 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2236 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2237 .access = PL1_R, 2238 .accessfn = access_tid4, 2239 .fgt = FGT_CCSIDR_EL1, 2240 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2241 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2242 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2243 .access = PL1_RW, 2244 .accessfn = access_tid4, 2245 .fgt = FGT_CSSELR_EL1, 2246 .writefn = csselr_write, .resetvalue = 0, 2247 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2248 offsetof(CPUARMState, cp15.csselr_ns) } }, 2249 /* 2250 * Auxiliary ID register: this actually has an IMPDEF value but for now 2251 * just RAZ for all cores: 2252 */ 2253 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2254 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2255 .access = PL1_R, .type = ARM_CP_CONST, 2256 .accessfn = access_aa64_tid1, 2257 .fgt = FGT_AIDR_EL1, 2258 .resetvalue = 0 }, 2259 /* 2260 * Auxiliary fault status registers: these also are IMPDEF, and we 2261 * choose to RAZ/WI for all cores. 2262 */ 2263 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2264 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2265 .access = PL1_RW, .accessfn = access_tvm_trvm, 2266 .fgt = FGT_AFSR0_EL1, 2267 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2268 .type = ARM_CP_CONST, .resetvalue = 0 }, 2269 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2270 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2271 .access = PL1_RW, .accessfn = access_tvm_trvm, 2272 .fgt = FGT_AFSR1_EL1, 2273 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2274 .type = ARM_CP_CONST, .resetvalue = 0 }, 2275 /* 2276 * MAIR can just read-as-written because we don't implement caches 2277 * and so don't need to care about memory attributes. 2278 */ 2279 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2280 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2281 .access = PL1_RW, .accessfn = access_tvm_trvm, 2282 .fgt = FGT_MAIR_EL1, 2283 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2284 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2285 .resetvalue = 0 }, 2286 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2287 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2288 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2289 .resetvalue = 0 }, 2290 /* 2291 * For non-long-descriptor page tables these are PRRR and NMRR; 2292 * regardless they still act as reads-as-written for QEMU. 2293 */ 2294 /* 2295 * MAIR0/1 are defined separately from their 64-bit counterpart which 2296 * allows them to assign the correct fieldoffset based on the endianness 2297 * handled in the field definitions. 2298 */ 2299 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2300 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2301 .access = PL1_RW, .accessfn = access_tvm_trvm, 2302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2303 offsetof(CPUARMState, cp15.mair0_ns) }, 2304 .resetfn = arm_cp_reset_ignore }, 2305 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2306 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2307 .access = PL1_RW, .accessfn = access_tvm_trvm, 2308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2309 offsetof(CPUARMState, cp15.mair1_ns) }, 2310 .resetfn = arm_cp_reset_ignore }, 2311 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2312 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2313 .fgt = FGT_ISR_EL1, 2314 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2315 /* 32 bit ITLB invalidates */ 2316 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2318 .writefn = tlbiall_write }, 2319 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2320 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2321 .writefn = tlbimva_write }, 2322 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2323 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2324 .writefn = tlbiasid_write }, 2325 /* 32 bit DTLB invalidates */ 2326 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2328 .writefn = tlbiall_write }, 2329 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2331 .writefn = tlbimva_write }, 2332 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2334 .writefn = tlbiasid_write }, 2335 /* 32 bit TLB invalidates */ 2336 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2337 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2338 .writefn = tlbiall_write }, 2339 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2340 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2341 .writefn = tlbimva_write }, 2342 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbiasid_write }, 2345 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbimvaa_write }, 2348 }; 2349 2350 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2351 /* 32 bit TLB invalidates, Inner Shareable */ 2352 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2354 .writefn = tlbiall_is_write }, 2355 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2357 .writefn = tlbimva_is_write }, 2358 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2360 .writefn = tlbiasid_is_write }, 2361 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2363 .writefn = tlbimvaa_is_write }, 2364 }; 2365 2366 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2367 /* PMOVSSET is not implemented in v7 before v7ve */ 2368 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2369 .access = PL0_RW, .accessfn = pmreg_access, 2370 .fgt = FGT_PMOVS, 2371 .type = ARM_CP_ALIAS | ARM_CP_IO, 2372 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2373 .writefn = pmovsset_write, 2374 .raw_writefn = raw_write }, 2375 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2376 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2377 .access = PL0_RW, .accessfn = pmreg_access, 2378 .fgt = FGT_PMOVS, 2379 .type = ARM_CP_ALIAS | ARM_CP_IO, 2380 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2381 .writefn = pmovsset_write, 2382 .raw_writefn = raw_write }, 2383 }; 2384 2385 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2386 uint64_t value) 2387 { 2388 value &= 1; 2389 env->teecr = value; 2390 } 2391 2392 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2393 bool isread) 2394 { 2395 /* 2396 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2397 * at all, so we don't need to check whether we're v8A. 2398 */ 2399 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2400 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2401 return CP_ACCESS_TRAP_EL2; 2402 } 2403 return CP_ACCESS_OK; 2404 } 2405 2406 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2407 bool isread) 2408 { 2409 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2410 return CP_ACCESS_TRAP; 2411 } 2412 return teecr_access(env, ri, isread); 2413 } 2414 2415 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2416 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2418 .resetvalue = 0, 2419 .writefn = teecr_write, .accessfn = teecr_access }, 2420 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2421 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2422 .accessfn = teehbr_access, .resetvalue = 0 }, 2423 }; 2424 2425 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2426 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2427 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2428 .access = PL0_RW, 2429 .fgt = FGT_TPIDR_EL0, 2430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2431 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2432 .access = PL0_RW, 2433 .fgt = FGT_TPIDR_EL0, 2434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2435 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2436 .resetfn = arm_cp_reset_ignore }, 2437 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2438 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2439 .access = PL0_R | PL1_W, 2440 .fgt = FGT_TPIDRRO_EL0, 2441 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2442 .resetvalue = 0}, 2443 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2444 .access = PL0_R | PL1_W, 2445 .fgt = FGT_TPIDRRO_EL0, 2446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2447 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2448 .resetfn = arm_cp_reset_ignore }, 2449 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2450 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2451 .access = PL1_RW, 2452 .fgt = FGT_TPIDR_EL1, 2453 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2454 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2455 .access = PL1_RW, 2456 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2457 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2458 .resetvalue = 0 }, 2459 }; 2460 2461 #ifndef CONFIG_USER_ONLY 2462 2463 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2464 bool isread) 2465 { 2466 /* 2467 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2468 * Writable only at the highest implemented exception level. 2469 */ 2470 int el = arm_current_el(env); 2471 uint64_t hcr; 2472 uint32_t cntkctl; 2473 2474 switch (el) { 2475 case 0: 2476 hcr = arm_hcr_el2_eff(env); 2477 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2478 cntkctl = env->cp15.cnthctl_el2; 2479 } else { 2480 cntkctl = env->cp15.c14_cntkctl; 2481 } 2482 if (!extract32(cntkctl, 0, 2)) { 2483 return CP_ACCESS_TRAP; 2484 } 2485 break; 2486 case 1: 2487 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2488 arm_is_secure_below_el3(env)) { 2489 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2490 return CP_ACCESS_TRAP_UNCATEGORIZED; 2491 } 2492 break; 2493 case 2: 2494 case 3: 2495 break; 2496 } 2497 2498 if (!isread && el < arm_highest_el(env)) { 2499 return CP_ACCESS_TRAP_UNCATEGORIZED; 2500 } 2501 2502 return CP_ACCESS_OK; 2503 } 2504 2505 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2506 bool isread) 2507 { 2508 unsigned int cur_el = arm_current_el(env); 2509 bool has_el2 = arm_is_el2_enabled(env); 2510 uint64_t hcr = arm_hcr_el2_eff(env); 2511 2512 switch (cur_el) { 2513 case 0: 2514 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2516 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2517 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2518 } 2519 2520 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2521 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 /* fall through */ 2525 case 1: 2526 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2527 if (has_el2 && timeridx == GTIMER_PHYS && 2528 (hcr & HCR_E2H 2529 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2530 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2531 return CP_ACCESS_TRAP_EL2; 2532 } 2533 break; 2534 } 2535 return CP_ACCESS_OK; 2536 } 2537 2538 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2539 bool isread) 2540 { 2541 unsigned int cur_el = arm_current_el(env); 2542 bool has_el2 = arm_is_el2_enabled(env); 2543 uint64_t hcr = arm_hcr_el2_eff(env); 2544 2545 switch (cur_el) { 2546 case 0: 2547 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2548 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2549 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2550 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2551 } 2552 2553 /* 2554 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2555 * EL0 if EL0[PV]TEN is zero. 2556 */ 2557 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2558 return CP_ACCESS_TRAP; 2559 } 2560 /* fall through */ 2561 2562 case 1: 2563 if (has_el2 && timeridx == GTIMER_PHYS) { 2564 if (hcr & HCR_E2H) { 2565 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2566 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2567 return CP_ACCESS_TRAP_EL2; 2568 } 2569 } else { 2570 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2571 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2572 return CP_ACCESS_TRAP_EL2; 2573 } 2574 } 2575 } 2576 break; 2577 } 2578 return CP_ACCESS_OK; 2579 } 2580 2581 static CPAccessResult gt_pct_access(CPUARMState *env, 2582 const ARMCPRegInfo *ri, 2583 bool isread) 2584 { 2585 return gt_counter_access(env, GTIMER_PHYS, isread); 2586 } 2587 2588 static CPAccessResult gt_vct_access(CPUARMState *env, 2589 const ARMCPRegInfo *ri, 2590 bool isread) 2591 { 2592 return gt_counter_access(env, GTIMER_VIRT, isread); 2593 } 2594 2595 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2596 bool isread) 2597 { 2598 return gt_timer_access(env, GTIMER_PHYS, isread); 2599 } 2600 2601 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2602 bool isread) 2603 { 2604 return gt_timer_access(env, GTIMER_VIRT, isread); 2605 } 2606 2607 static CPAccessResult gt_stimer_access(CPUARMState *env, 2608 const ARMCPRegInfo *ri, 2609 bool isread) 2610 { 2611 /* 2612 * The AArch64 register view of the secure physical timer is 2613 * always accessible from EL3, and configurably accessible from 2614 * Secure EL1. 2615 */ 2616 switch (arm_current_el(env)) { 2617 case 1: 2618 if (!arm_is_secure(env)) { 2619 return CP_ACCESS_TRAP; 2620 } 2621 if (!(env->cp15.scr_el3 & SCR_ST)) { 2622 return CP_ACCESS_TRAP_EL3; 2623 } 2624 return CP_ACCESS_OK; 2625 case 0: 2626 case 2: 2627 return CP_ACCESS_TRAP; 2628 case 3: 2629 return CP_ACCESS_OK; 2630 default: 2631 g_assert_not_reached(); 2632 } 2633 } 2634 2635 static uint64_t gt_get_countervalue(CPUARMState *env) 2636 { 2637 ARMCPU *cpu = env_archcpu(env); 2638 2639 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2640 } 2641 2642 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2643 { 2644 CPUARMState *env = &cpu->env; 2645 uint64_t cnthctl = env->cp15.cnthctl_el2; 2646 ARMSecuritySpace ss = arm_security_space(env); 2647 /* ISTATUS && !IMASK */ 2648 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2649 2650 /* 2651 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2652 * It is RES0 in Secure and NonSecure state. 2653 */ 2654 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2655 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2656 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2657 irqstate = 0; 2658 } 2659 2660 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2661 trace_arm_gt_update_irq(timeridx, irqstate); 2662 } 2663 2664 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2665 { 2666 /* 2667 * Changing security state between Root and Secure/NonSecure, which may 2668 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2669 * mask bits. Update the IRQ state accordingly. 2670 */ 2671 gt_update_irq(cpu, GTIMER_VIRT); 2672 gt_update_irq(cpu, GTIMER_PHYS); 2673 } 2674 2675 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2676 { 2677 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2678 2679 if (gt->ctl & 1) { 2680 /* 2681 * Timer enabled: calculate and set current ISTATUS, irq, and 2682 * reset timer to when ISTATUS next has to change 2683 */ 2684 uint64_t offset = timeridx == GTIMER_VIRT ? 2685 cpu->env.cp15.cntvoff_el2 : 0; 2686 uint64_t count = gt_get_countervalue(&cpu->env); 2687 /* Note that this must be unsigned 64 bit arithmetic: */ 2688 int istatus = count - offset >= gt->cval; 2689 uint64_t nexttick; 2690 2691 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2692 2693 if (istatus) { 2694 /* 2695 * Next transition is when (count - offset) rolls back over to 0. 2696 * If offset > count then this is when count == offset; 2697 * if offset <= count then this is when count == offset + 2^64 2698 * For the latter case we set nexttick to an "as far in future 2699 * as possible" value and let the code below handle it. 2700 */ 2701 if (offset > count) { 2702 nexttick = offset; 2703 } else { 2704 nexttick = UINT64_MAX; 2705 } 2706 } else { 2707 /* 2708 * Next transition is when (count - offset) == cval, i.e. 2709 * when count == (cval + offset). 2710 * If that would overflow, then again we set up the next interrupt 2711 * for "as far in the future as possible" for the code below. 2712 */ 2713 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2714 nexttick = UINT64_MAX; 2715 } 2716 } 2717 /* 2718 * Note that the desired next expiry time might be beyond the 2719 * signed-64-bit range of a QEMUTimer -- in this case we just 2720 * set the timer for as far in the future as possible. When the 2721 * timer expires we will reset the timer for any remaining period. 2722 */ 2723 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2724 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2725 } else { 2726 timer_mod(cpu->gt_timer[timeridx], nexttick); 2727 } 2728 trace_arm_gt_recalc(timeridx, nexttick); 2729 } else { 2730 /* Timer disabled: ISTATUS and timer output always clear */ 2731 gt->ctl &= ~4; 2732 timer_del(cpu->gt_timer[timeridx]); 2733 trace_arm_gt_recalc_disabled(timeridx); 2734 } 2735 gt_update_irq(cpu, timeridx); 2736 } 2737 2738 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2739 int timeridx) 2740 { 2741 ARMCPU *cpu = env_archcpu(env); 2742 2743 timer_del(cpu->gt_timer[timeridx]); 2744 } 2745 2746 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2747 { 2748 return gt_get_countervalue(env); 2749 } 2750 2751 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2752 { 2753 uint64_t hcr; 2754 2755 switch (arm_current_el(env)) { 2756 case 2: 2757 hcr = arm_hcr_el2_eff(env); 2758 if (hcr & HCR_E2H) { 2759 return 0; 2760 } 2761 break; 2762 case 0: 2763 hcr = arm_hcr_el2_eff(env); 2764 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2765 return 0; 2766 } 2767 break; 2768 } 2769 2770 return env->cp15.cntvoff_el2; 2771 } 2772 2773 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2774 { 2775 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2776 } 2777 2778 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2779 int timeridx, 2780 uint64_t value) 2781 { 2782 trace_arm_gt_cval_write(timeridx, value); 2783 env->cp15.c14_timer[timeridx].cval = value; 2784 gt_recalc_timer(env_archcpu(env), timeridx); 2785 } 2786 2787 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2788 int timeridx) 2789 { 2790 uint64_t offset = 0; 2791 2792 switch (timeridx) { 2793 case GTIMER_VIRT: 2794 case GTIMER_HYPVIRT: 2795 offset = gt_virt_cnt_offset(env); 2796 break; 2797 } 2798 2799 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2800 (gt_get_countervalue(env) - offset)); 2801 } 2802 2803 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2804 int timeridx, 2805 uint64_t value) 2806 { 2807 uint64_t offset = 0; 2808 2809 switch (timeridx) { 2810 case GTIMER_VIRT: 2811 case GTIMER_HYPVIRT: 2812 offset = gt_virt_cnt_offset(env); 2813 break; 2814 } 2815 2816 trace_arm_gt_tval_write(timeridx, value); 2817 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2818 sextract64(value, 0, 32); 2819 gt_recalc_timer(env_archcpu(env), timeridx); 2820 } 2821 2822 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 int timeridx, 2824 uint64_t value) 2825 { 2826 ARMCPU *cpu = env_archcpu(env); 2827 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2828 2829 trace_arm_gt_ctl_write(timeridx, value); 2830 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2831 if ((oldval ^ value) & 1) { 2832 /* Enable toggled */ 2833 gt_recalc_timer(cpu, timeridx); 2834 } else if ((oldval ^ value) & 2) { 2835 /* 2836 * IMASK toggled: don't need to recalculate, 2837 * just set the interrupt line based on ISTATUS 2838 */ 2839 trace_arm_gt_imask_toggle(timeridx); 2840 gt_update_irq(cpu, timeridx); 2841 } 2842 } 2843 2844 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 gt_timer_reset(env, ri, GTIMER_PHYS); 2847 } 2848 2849 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_cval_write(env, ri, GTIMER_PHYS, value); 2853 } 2854 2855 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2856 { 2857 return gt_tval_read(env, ri, GTIMER_PHYS); 2858 } 2859 2860 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2861 uint64_t value) 2862 { 2863 gt_tval_write(env, ri, GTIMER_PHYS, value); 2864 } 2865 2866 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2870 } 2871 2872 static int gt_phys_redir_timeridx(CPUARMState *env) 2873 { 2874 switch (arm_mmu_idx(env)) { 2875 case ARMMMUIdx_E20_0: 2876 case ARMMMUIdx_E20_2: 2877 case ARMMMUIdx_E20_2_PAN: 2878 return GTIMER_HYP; 2879 default: 2880 return GTIMER_PHYS; 2881 } 2882 } 2883 2884 static int gt_virt_redir_timeridx(CPUARMState *env) 2885 { 2886 switch (arm_mmu_idx(env)) { 2887 case ARMMMUIdx_E20_0: 2888 case ARMMMUIdx_E20_2: 2889 case ARMMMUIdx_E20_2_PAN: 2890 return GTIMER_HYPVIRT; 2891 default: 2892 return GTIMER_VIRT; 2893 } 2894 } 2895 2896 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2897 const ARMCPRegInfo *ri) 2898 { 2899 int timeridx = gt_phys_redir_timeridx(env); 2900 return env->cp15.c14_timer[timeridx].cval; 2901 } 2902 2903 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2904 uint64_t value) 2905 { 2906 int timeridx = gt_phys_redir_timeridx(env); 2907 gt_cval_write(env, ri, timeridx, value); 2908 } 2909 2910 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2911 const ARMCPRegInfo *ri) 2912 { 2913 int timeridx = gt_phys_redir_timeridx(env); 2914 return gt_tval_read(env, ri, timeridx); 2915 } 2916 2917 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2918 uint64_t value) 2919 { 2920 int timeridx = gt_phys_redir_timeridx(env); 2921 gt_tval_write(env, ri, timeridx, value); 2922 } 2923 2924 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2925 const ARMCPRegInfo *ri) 2926 { 2927 int timeridx = gt_phys_redir_timeridx(env); 2928 return env->cp15.c14_timer[timeridx].ctl; 2929 } 2930 2931 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2932 uint64_t value) 2933 { 2934 int timeridx = gt_phys_redir_timeridx(env); 2935 gt_ctl_write(env, ri, timeridx, value); 2936 } 2937 2938 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2939 { 2940 gt_timer_reset(env, ri, GTIMER_VIRT); 2941 } 2942 2943 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 gt_cval_write(env, ri, GTIMER_VIRT, value); 2947 } 2948 2949 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2950 { 2951 return gt_tval_read(env, ri, GTIMER_VIRT); 2952 } 2953 2954 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 gt_tval_write(env, ri, GTIMER_VIRT, value); 2958 } 2959 2960 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2961 uint64_t value) 2962 { 2963 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2964 } 2965 2966 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 ARMCPU *cpu = env_archcpu(env); 2970 uint32_t oldval = env->cp15.cnthctl_el2; 2971 2972 raw_write(env, ri, value); 2973 2974 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2975 gt_update_irq(cpu, GTIMER_VIRT); 2976 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2977 gt_update_irq(cpu, GTIMER_PHYS); 2978 } 2979 } 2980 2981 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 ARMCPU *cpu = env_archcpu(env); 2985 2986 trace_arm_gt_cntvoff_write(value); 2987 raw_write(env, ri, value); 2988 gt_recalc_timer(cpu, GTIMER_VIRT); 2989 } 2990 2991 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2992 const ARMCPRegInfo *ri) 2993 { 2994 int timeridx = gt_virt_redir_timeridx(env); 2995 return env->cp15.c14_timer[timeridx].cval; 2996 } 2997 2998 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 int timeridx = gt_virt_redir_timeridx(env); 3002 gt_cval_write(env, ri, timeridx, value); 3003 } 3004 3005 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3006 const ARMCPRegInfo *ri) 3007 { 3008 int timeridx = gt_virt_redir_timeridx(env); 3009 return gt_tval_read(env, ri, timeridx); 3010 } 3011 3012 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3013 uint64_t value) 3014 { 3015 int timeridx = gt_virt_redir_timeridx(env); 3016 gt_tval_write(env, ri, timeridx, value); 3017 } 3018 3019 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3020 const ARMCPRegInfo *ri) 3021 { 3022 int timeridx = gt_virt_redir_timeridx(env); 3023 return env->cp15.c14_timer[timeridx].ctl; 3024 } 3025 3026 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3027 uint64_t value) 3028 { 3029 int timeridx = gt_virt_redir_timeridx(env); 3030 gt_ctl_write(env, ri, timeridx, value); 3031 } 3032 3033 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3034 { 3035 gt_timer_reset(env, ri, GTIMER_HYP); 3036 } 3037 3038 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3039 uint64_t value) 3040 { 3041 gt_cval_write(env, ri, GTIMER_HYP, value); 3042 } 3043 3044 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3045 { 3046 return gt_tval_read(env, ri, GTIMER_HYP); 3047 } 3048 3049 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3050 uint64_t value) 3051 { 3052 gt_tval_write(env, ri, GTIMER_HYP, value); 3053 } 3054 3055 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3056 uint64_t value) 3057 { 3058 gt_ctl_write(env, ri, GTIMER_HYP, value); 3059 } 3060 3061 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3062 { 3063 gt_timer_reset(env, ri, GTIMER_SEC); 3064 } 3065 3066 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3067 uint64_t value) 3068 { 3069 gt_cval_write(env, ri, GTIMER_SEC, value); 3070 } 3071 3072 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3073 { 3074 return gt_tval_read(env, ri, GTIMER_SEC); 3075 } 3076 3077 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3078 uint64_t value) 3079 { 3080 gt_tval_write(env, ri, GTIMER_SEC, value); 3081 } 3082 3083 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 gt_ctl_write(env, ri, GTIMER_SEC, value); 3087 } 3088 3089 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3090 { 3091 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3092 } 3093 3094 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3095 uint64_t value) 3096 { 3097 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3098 } 3099 3100 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3101 { 3102 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3103 } 3104 3105 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3106 uint64_t value) 3107 { 3108 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3109 } 3110 3111 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3112 uint64_t value) 3113 { 3114 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3115 } 3116 3117 void arm_gt_ptimer_cb(void *opaque) 3118 { 3119 ARMCPU *cpu = opaque; 3120 3121 gt_recalc_timer(cpu, GTIMER_PHYS); 3122 } 3123 3124 void arm_gt_vtimer_cb(void *opaque) 3125 { 3126 ARMCPU *cpu = opaque; 3127 3128 gt_recalc_timer(cpu, GTIMER_VIRT); 3129 } 3130 3131 void arm_gt_htimer_cb(void *opaque) 3132 { 3133 ARMCPU *cpu = opaque; 3134 3135 gt_recalc_timer(cpu, GTIMER_HYP); 3136 } 3137 3138 void arm_gt_stimer_cb(void *opaque) 3139 { 3140 ARMCPU *cpu = opaque; 3141 3142 gt_recalc_timer(cpu, GTIMER_SEC); 3143 } 3144 3145 void arm_gt_hvtimer_cb(void *opaque) 3146 { 3147 ARMCPU *cpu = opaque; 3148 3149 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3150 } 3151 3152 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3153 { 3154 ARMCPU *cpu = env_archcpu(env); 3155 3156 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3157 } 3158 3159 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3160 /* 3161 * Note that CNTFRQ is purely reads-as-written for the benefit 3162 * of software; writing it doesn't actually change the timer frequency. 3163 * Our reset value matches the fixed frequency we implement the timer at. 3164 */ 3165 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3166 .type = ARM_CP_ALIAS, 3167 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3169 }, 3170 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3172 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3173 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3174 .resetfn = arm_gt_cntfrq_reset, 3175 }, 3176 /* overall control: mostly access permissions */ 3177 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3178 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3179 .access = PL1_RW, 3180 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3181 .resetvalue = 0, 3182 }, 3183 /* per-timer control */ 3184 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3185 .secure = ARM_CP_SECSTATE_NS, 3186 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3187 .accessfn = gt_ptimer_access, 3188 .fieldoffset = offsetoflow32(CPUARMState, 3189 cp15.c14_timer[GTIMER_PHYS].ctl), 3190 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3191 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3192 }, 3193 { .name = "CNTP_CTL_S", 3194 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3195 .secure = ARM_CP_SECSTATE_S, 3196 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3197 .accessfn = gt_ptimer_access, 3198 .fieldoffset = offsetoflow32(CPUARMState, 3199 cp15.c14_timer[GTIMER_SEC].ctl), 3200 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3201 }, 3202 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3204 .type = ARM_CP_IO, .access = PL0_RW, 3205 .accessfn = gt_ptimer_access, 3206 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3207 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3208 .resetvalue = 0, 3209 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3210 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3211 }, 3212 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3213 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3214 .accessfn = gt_vtimer_access, 3215 .fieldoffset = offsetoflow32(CPUARMState, 3216 cp15.c14_timer[GTIMER_VIRT].ctl), 3217 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3218 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3219 }, 3220 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3222 .type = ARM_CP_IO, .access = PL0_RW, 3223 .accessfn = gt_vtimer_access, 3224 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3225 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3226 .resetvalue = 0, 3227 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3228 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3229 }, 3230 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3231 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3232 .secure = ARM_CP_SECSTATE_NS, 3233 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3234 .accessfn = gt_ptimer_access, 3235 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3236 }, 3237 { .name = "CNTP_TVAL_S", 3238 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3239 .secure = ARM_CP_SECSTATE_S, 3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3241 .accessfn = gt_ptimer_access, 3242 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3243 }, 3244 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3245 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3246 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3247 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3248 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3249 }, 3250 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3252 .accessfn = gt_vtimer_access, 3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3254 }, 3255 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3257 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3258 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3259 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3260 }, 3261 /* The counter itself */ 3262 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3263 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3264 .accessfn = gt_pct_access, 3265 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3266 }, 3267 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3269 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3270 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3271 }, 3272 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3273 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3274 .accessfn = gt_vct_access, 3275 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3276 }, 3277 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3278 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3279 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3280 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3281 }, 3282 /* Comparison value, indicating when the timer goes off */ 3283 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3284 .secure = ARM_CP_SECSTATE_NS, 3285 .access = PL0_RW, 3286 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3288 .accessfn = gt_ptimer_access, 3289 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3290 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3291 }, 3292 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3293 .secure = ARM_CP_SECSTATE_S, 3294 .access = PL0_RW, 3295 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3296 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3297 .accessfn = gt_ptimer_access, 3298 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3299 }, 3300 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3302 .access = PL0_RW, 3303 .type = ARM_CP_IO, 3304 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3305 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3306 .resetvalue = 0, .accessfn = gt_ptimer_access, 3307 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3308 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3309 }, 3310 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3311 .access = PL0_RW, 3312 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3313 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3314 .accessfn = gt_vtimer_access, 3315 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3316 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3317 }, 3318 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3319 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3320 .access = PL0_RW, 3321 .type = ARM_CP_IO, 3322 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3324 .resetvalue = 0, .accessfn = gt_vtimer_access, 3325 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3326 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3327 }, 3328 /* 3329 * Secure timer -- this is actually restricted to only EL3 3330 * and configurably Secure-EL1 via the accessfn. 3331 */ 3332 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3333 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3334 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3335 .accessfn = gt_stimer_access, 3336 .readfn = gt_sec_tval_read, 3337 .writefn = gt_sec_tval_write, 3338 .resetfn = gt_sec_timer_reset, 3339 }, 3340 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3341 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3342 .type = ARM_CP_IO, .access = PL1_RW, 3343 .accessfn = gt_stimer_access, 3344 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3345 .resetvalue = 0, 3346 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3347 }, 3348 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3350 .type = ARM_CP_IO, .access = PL1_RW, 3351 .accessfn = gt_stimer_access, 3352 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3353 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3354 }, 3355 }; 3356 3357 #else 3358 3359 /* 3360 * In user-mode most of the generic timer registers are inaccessible 3361 * however modern kernels (4.12+) allow access to cntvct_el0 3362 */ 3363 3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3365 { 3366 ARMCPU *cpu = env_archcpu(env); 3367 3368 /* 3369 * Currently we have no support for QEMUTimer in linux-user so we 3370 * can't call gt_get_countervalue(env), instead we directly 3371 * call the lower level functions. 3372 */ 3373 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3374 } 3375 3376 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3377 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3378 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3379 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3380 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3381 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3382 }, 3383 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3385 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3386 .readfn = gt_virt_cnt_read, 3387 }, 3388 }; 3389 3390 #endif 3391 3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3393 { 3394 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3395 raw_write(env, ri, value); 3396 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3397 raw_write(env, ri, value & 0xfffff6ff); 3398 } else { 3399 raw_write(env, ri, value & 0xfffff1ff); 3400 } 3401 } 3402 3403 #ifndef CONFIG_USER_ONLY 3404 /* get_phys_addr() isn't present for user-mode-only targets */ 3405 3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3407 bool isread) 3408 { 3409 if (ri->opc2 & 4) { 3410 /* 3411 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3412 * Secure EL1 (which can only happen if EL3 is AArch64). 3413 * They are simply UNDEF if executed from NS EL1. 3414 * They function normally from EL2 or EL3. 3415 */ 3416 if (arm_current_el(env) == 1) { 3417 if (arm_is_secure_below_el3(env)) { 3418 if (env->cp15.scr_el3 & SCR_EEL2) { 3419 return CP_ACCESS_TRAP_EL2; 3420 } 3421 return CP_ACCESS_TRAP_EL3; 3422 } 3423 return CP_ACCESS_TRAP_UNCATEGORIZED; 3424 } 3425 } 3426 return CP_ACCESS_OK; 3427 } 3428 3429 #ifdef CONFIG_TCG 3430 static int par_el1_shareability(GetPhysAddrResult *res) 3431 { 3432 /* 3433 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3434 * memory -- see pseudocode PAREncodeShareability(). 3435 */ 3436 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3437 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3438 return 2; 3439 } 3440 return res->cacheattrs.shareability; 3441 } 3442 3443 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3444 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3445 ARMSecuritySpace ss) 3446 { 3447 bool ret; 3448 uint64_t par64; 3449 bool format64 = false; 3450 ARMMMUFaultInfo fi = {}; 3451 GetPhysAddrResult res = {}; 3452 3453 /* 3454 * I_MXTJT: Granule protection checks are not performed on the final address 3455 * of a successful translation. 3456 */ 3457 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3458 &res, &fi); 3459 3460 /* 3461 * ATS operations only do S1 or S1+S2 translations, so we never 3462 * have to deal with the ARMCacheAttrs format for S2 only. 3463 */ 3464 assert(!res.cacheattrs.is_s2_format); 3465 3466 if (ret) { 3467 /* 3468 * Some kinds of translation fault must cause exceptions rather 3469 * than being reported in the PAR. 3470 */ 3471 int current_el = arm_current_el(env); 3472 int target_el; 3473 uint32_t syn, fsr, fsc; 3474 bool take_exc = false; 3475 3476 if (fi.s1ptw && current_el == 1 3477 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3478 /* 3479 * Synchronous stage 2 fault on an access made as part of the 3480 * translation table walk for AT S1E0* or AT S1E1* insn 3481 * executed from NS EL1. If this is a synchronous external abort 3482 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3483 * to EL3. Otherwise the fault is taken as an exception to EL2, 3484 * and HPFAR_EL2 holds the faulting IPA. 3485 */ 3486 if (fi.type == ARMFault_SyncExternalOnWalk && 3487 (env->cp15.scr_el3 & SCR_EA)) { 3488 target_el = 3; 3489 } else { 3490 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3491 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3492 env->cp15.hpfar_el2 |= HPFAR_NS; 3493 } 3494 target_el = 2; 3495 } 3496 take_exc = true; 3497 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3498 /* 3499 * Synchronous external aborts during a translation table walk 3500 * are taken as Data Abort exceptions. 3501 */ 3502 if (fi.stage2) { 3503 if (current_el == 3) { 3504 target_el = 3; 3505 } else { 3506 target_el = 2; 3507 } 3508 } else { 3509 target_el = exception_target_el(env); 3510 } 3511 take_exc = true; 3512 } 3513 3514 if (take_exc) { 3515 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3516 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3517 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3518 fsr = arm_fi_to_lfsc(&fi); 3519 fsc = extract32(fsr, 0, 6); 3520 } else { 3521 fsr = arm_fi_to_sfsc(&fi); 3522 fsc = 0x3f; 3523 } 3524 /* 3525 * Report exception with ESR indicating a fault due to a 3526 * translation table walk for a cache maintenance instruction. 3527 */ 3528 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3529 fi.ea, 1, fi.s1ptw, 1, fsc); 3530 env->exception.vaddress = value; 3531 env->exception.fsr = fsr; 3532 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3533 } 3534 } 3535 3536 if (is_a64(env)) { 3537 format64 = true; 3538 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3539 /* 3540 * ATS1Cxx: 3541 * * TTBCR.EAE determines whether the result is returned using the 3542 * 32-bit or the 64-bit PAR format 3543 * * Instructions executed in Hyp mode always use the 64bit format 3544 * 3545 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3546 * * The Non-secure TTBCR.EAE bit is set to 1 3547 * * The implementation includes EL2, and the value of HCR.VM is 1 3548 * 3549 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3550 * 3551 * ATS1Hx always uses the 64bit format. 3552 */ 3553 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3554 3555 if (arm_feature(env, ARM_FEATURE_EL2)) { 3556 if (mmu_idx == ARMMMUIdx_E10_0 || 3557 mmu_idx == ARMMMUIdx_E10_1 || 3558 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3559 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3560 } else { 3561 format64 |= arm_current_el(env) == 2; 3562 } 3563 } 3564 } 3565 3566 if (format64) { 3567 /* Create a 64-bit PAR */ 3568 par64 = (1 << 11); /* LPAE bit always set */ 3569 if (!ret) { 3570 par64 |= res.f.phys_addr & ~0xfffULL; 3571 if (!res.f.attrs.secure) { 3572 par64 |= (1 << 9); /* NS */ 3573 } 3574 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3575 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3576 } else { 3577 uint32_t fsr = arm_fi_to_lfsc(&fi); 3578 3579 par64 |= 1; /* F */ 3580 par64 |= (fsr & 0x3f) << 1; /* FS */ 3581 if (fi.stage2) { 3582 par64 |= (1 << 9); /* S */ 3583 } 3584 if (fi.s1ptw) { 3585 par64 |= (1 << 8); /* PTW */ 3586 } 3587 } 3588 } else { 3589 /* 3590 * fsr is a DFSR/IFSR value for the short descriptor 3591 * translation table format (with WnR always clear). 3592 * Convert it to a 32-bit PAR. 3593 */ 3594 if (!ret) { 3595 /* We do not set any attribute bits in the PAR */ 3596 if (res.f.lg_page_size == 24 3597 && arm_feature(env, ARM_FEATURE_V7)) { 3598 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3599 } else { 3600 par64 = res.f.phys_addr & 0xfffff000; 3601 } 3602 if (!res.f.attrs.secure) { 3603 par64 |= (1 << 9); /* NS */ 3604 } 3605 } else { 3606 uint32_t fsr = arm_fi_to_sfsc(&fi); 3607 3608 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3609 ((fsr & 0xf) << 1) | 1; 3610 } 3611 } 3612 return par64; 3613 } 3614 #endif /* CONFIG_TCG */ 3615 3616 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3617 { 3618 #ifdef CONFIG_TCG 3619 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3620 uint64_t par64; 3621 ARMMMUIdx mmu_idx; 3622 int el = arm_current_el(env); 3623 ARMSecuritySpace ss = arm_security_space(env); 3624 3625 switch (ri->opc2 & 6) { 3626 case 0: 3627 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3628 switch (el) { 3629 case 3: 3630 mmu_idx = ARMMMUIdx_E3; 3631 break; 3632 case 2: 3633 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3634 /* fall through */ 3635 case 1: 3636 if (ri->crm == 9 && arm_pan_enabled(env)) { 3637 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3638 } else { 3639 mmu_idx = ARMMMUIdx_Stage1_E1; 3640 } 3641 break; 3642 default: 3643 g_assert_not_reached(); 3644 } 3645 break; 3646 case 2: 3647 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3648 switch (el) { 3649 case 3: 3650 mmu_idx = ARMMMUIdx_E10_0; 3651 break; 3652 case 2: 3653 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3654 mmu_idx = ARMMMUIdx_Stage1_E0; 3655 break; 3656 case 1: 3657 mmu_idx = ARMMMUIdx_Stage1_E0; 3658 break; 3659 default: 3660 g_assert_not_reached(); 3661 } 3662 break; 3663 case 4: 3664 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3665 mmu_idx = ARMMMUIdx_E10_1; 3666 ss = ARMSS_NonSecure; 3667 break; 3668 case 6: 3669 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3670 mmu_idx = ARMMMUIdx_E10_0; 3671 ss = ARMSS_NonSecure; 3672 break; 3673 default: 3674 g_assert_not_reached(); 3675 } 3676 3677 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3678 3679 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3680 #else 3681 /* Handled by hardware accelerator. */ 3682 g_assert_not_reached(); 3683 #endif /* CONFIG_TCG */ 3684 } 3685 3686 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3687 uint64_t value) 3688 { 3689 #ifdef CONFIG_TCG 3690 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3691 uint64_t par64; 3692 3693 /* There is no SecureEL2 for AArch32. */ 3694 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3695 ARMSS_NonSecure); 3696 3697 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3698 #else 3699 /* Handled by hardware accelerator. */ 3700 g_assert_not_reached(); 3701 #endif /* CONFIG_TCG */ 3702 } 3703 3704 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3705 bool isread) 3706 { 3707 /* 3708 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3709 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3710 * only happen when executing at EL3 because that combination also causes an 3711 * illegal exception return. We don't need to check FEAT_RME either, because 3712 * scr_write() ensures that the NSE bit is not set otherwise. 3713 */ 3714 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3715 return CP_ACCESS_TRAP; 3716 } 3717 return CP_ACCESS_OK; 3718 } 3719 3720 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3721 bool isread) 3722 { 3723 if (arm_current_el(env) == 3 && 3724 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3725 return CP_ACCESS_TRAP; 3726 } 3727 return at_e012_access(env, ri, isread); 3728 } 3729 3730 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3731 bool isread) 3732 { 3733 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3734 return CP_ACCESS_TRAP_EL2; 3735 } 3736 return at_e012_access(env, ri, isread); 3737 } 3738 3739 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3740 uint64_t value) 3741 { 3742 #ifdef CONFIG_TCG 3743 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3744 ARMMMUIdx mmu_idx; 3745 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3746 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3747 3748 switch (ri->opc2 & 6) { 3749 case 0: 3750 switch (ri->opc1) { 3751 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3752 if (ri->crm == 9 && arm_pan_enabled(env)) { 3753 mmu_idx = regime_e20 ? 3754 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3755 } else { 3756 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3757 } 3758 break; 3759 case 4: /* AT S1E2R, AT S1E2W */ 3760 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3761 break; 3762 case 6: /* AT S1E3R, AT S1E3W */ 3763 mmu_idx = ARMMMUIdx_E3; 3764 break; 3765 default: 3766 g_assert_not_reached(); 3767 } 3768 break; 3769 case 2: /* AT S1E0R, AT S1E0W */ 3770 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3771 break; 3772 case 4: /* AT S12E1R, AT S12E1W */ 3773 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3774 break; 3775 case 6: /* AT S12E0R, AT S12E0W */ 3776 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3777 break; 3778 default: 3779 g_assert_not_reached(); 3780 } 3781 3782 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3783 mmu_idx, arm_security_space(env)); 3784 #else 3785 /* Handled by hardware accelerator. */ 3786 g_assert_not_reached(); 3787 #endif /* CONFIG_TCG */ 3788 } 3789 #endif 3790 3791 /* Return basic MPU access permission bits. */ 3792 static uint32_t simple_mpu_ap_bits(uint32_t val) 3793 { 3794 uint32_t ret; 3795 uint32_t mask; 3796 int i; 3797 ret = 0; 3798 mask = 3; 3799 for (i = 0; i < 16; i += 2) { 3800 ret |= (val >> i) & mask; 3801 mask <<= 2; 3802 } 3803 return ret; 3804 } 3805 3806 /* Pad basic MPU access permission bits to extended format. */ 3807 static uint32_t extended_mpu_ap_bits(uint32_t val) 3808 { 3809 uint32_t ret; 3810 uint32_t mask; 3811 int i; 3812 ret = 0; 3813 mask = 3; 3814 for (i = 0; i < 16; i += 2) { 3815 ret |= (val & mask) << i; 3816 mask <<= 2; 3817 } 3818 return ret; 3819 } 3820 3821 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3822 uint64_t value) 3823 { 3824 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3825 } 3826 3827 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3828 { 3829 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3830 } 3831 3832 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3833 uint64_t value) 3834 { 3835 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3836 } 3837 3838 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3839 { 3840 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3841 } 3842 3843 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3844 { 3845 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3846 3847 if (!u32p) { 3848 return 0; 3849 } 3850 3851 u32p += env->pmsav7.rnr[M_REG_NS]; 3852 return *u32p; 3853 } 3854 3855 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3856 uint64_t value) 3857 { 3858 ARMCPU *cpu = env_archcpu(env); 3859 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3860 3861 if (!u32p) { 3862 return; 3863 } 3864 3865 u32p += env->pmsav7.rnr[M_REG_NS]; 3866 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3867 *u32p = value; 3868 } 3869 3870 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3871 uint64_t value) 3872 { 3873 ARMCPU *cpu = env_archcpu(env); 3874 uint32_t nrgs = cpu->pmsav7_dregion; 3875 3876 if (value >= nrgs) { 3877 qemu_log_mask(LOG_GUEST_ERROR, 3878 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3879 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3880 return; 3881 } 3882 3883 raw_write(env, ri, value); 3884 } 3885 3886 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3887 uint64_t value) 3888 { 3889 ARMCPU *cpu = env_archcpu(env); 3890 3891 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3892 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3893 } 3894 3895 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3896 { 3897 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3898 } 3899 3900 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3901 uint64_t value) 3902 { 3903 ARMCPU *cpu = env_archcpu(env); 3904 3905 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3906 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3907 } 3908 3909 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3910 { 3911 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3912 } 3913 3914 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3915 uint64_t value) 3916 { 3917 ARMCPU *cpu = env_archcpu(env); 3918 3919 /* 3920 * Ignore writes that would select not implemented region. 3921 * This is architecturally UNPREDICTABLE. 3922 */ 3923 if (value >= cpu->pmsav7_dregion) { 3924 return; 3925 } 3926 3927 env->pmsav7.rnr[M_REG_NS] = value; 3928 } 3929 3930 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3931 uint64_t value) 3932 { 3933 ARMCPU *cpu = env_archcpu(env); 3934 3935 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3936 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3937 } 3938 3939 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3940 { 3941 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3942 } 3943 3944 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3945 uint64_t value) 3946 { 3947 ARMCPU *cpu = env_archcpu(env); 3948 3949 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3950 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3951 } 3952 3953 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3954 { 3955 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3956 } 3957 3958 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3959 uint64_t value) 3960 { 3961 uint32_t n; 3962 uint32_t bit; 3963 ARMCPU *cpu = env_archcpu(env); 3964 3965 /* Ignore writes to unimplemented regions */ 3966 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3967 value &= MAKE_64BIT_MASK(0, rmax); 3968 3969 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3970 3971 /* Register alias is only valid for first 32 indexes */ 3972 for (n = 0; n < rmax; ++n) { 3973 bit = extract32(value, n, 1); 3974 env->pmsav8.hprlar[n] = deposit32( 3975 env->pmsav8.hprlar[n], 0, 1, bit); 3976 } 3977 } 3978 3979 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3980 { 3981 uint32_t n; 3982 uint32_t result = 0x0; 3983 ARMCPU *cpu = env_archcpu(env); 3984 3985 /* Register alias is only valid for first 32 indexes */ 3986 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3987 if (env->pmsav8.hprlar[n] & 0x1) { 3988 result |= (0x1 << n); 3989 } 3990 } 3991 return result; 3992 } 3993 3994 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3995 uint64_t value) 3996 { 3997 ARMCPU *cpu = env_archcpu(env); 3998 3999 /* 4000 * Ignore writes that would select not implemented region. 4001 * This is architecturally UNPREDICTABLE. 4002 */ 4003 if (value >= cpu->pmsav8r_hdregion) { 4004 return; 4005 } 4006 4007 env->pmsav8.hprselr = value; 4008 } 4009 4010 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4011 uint64_t value) 4012 { 4013 ARMCPU *cpu = env_archcpu(env); 4014 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4015 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4016 4017 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4018 4019 if (ri->opc1 & 4) { 4020 if (index >= cpu->pmsav8r_hdregion) { 4021 return; 4022 } 4023 if (ri->opc2 & 0x1) { 4024 env->pmsav8.hprlar[index] = value; 4025 } else { 4026 env->pmsav8.hprbar[index] = value; 4027 } 4028 } else { 4029 if (index >= cpu->pmsav7_dregion) { 4030 return; 4031 } 4032 if (ri->opc2 & 0x1) { 4033 env->pmsav8.rlar[M_REG_NS][index] = value; 4034 } else { 4035 env->pmsav8.rbar[M_REG_NS][index] = value; 4036 } 4037 } 4038 } 4039 4040 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4041 { 4042 ARMCPU *cpu = env_archcpu(env); 4043 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4044 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4045 4046 if (ri->opc1 & 4) { 4047 if (index >= cpu->pmsav8r_hdregion) { 4048 return 0x0; 4049 } 4050 if (ri->opc2 & 0x1) { 4051 return env->pmsav8.hprlar[index]; 4052 } else { 4053 return env->pmsav8.hprbar[index]; 4054 } 4055 } else { 4056 if (index >= cpu->pmsav7_dregion) { 4057 return 0x0; 4058 } 4059 if (ri->opc2 & 0x1) { 4060 return env->pmsav8.rlar[M_REG_NS][index]; 4061 } else { 4062 return env->pmsav8.rbar[M_REG_NS][index]; 4063 } 4064 } 4065 } 4066 4067 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4068 { .name = "PRBAR", 4069 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4070 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4071 .accessfn = access_tvm_trvm, 4072 .readfn = prbar_read, .writefn = prbar_write }, 4073 { .name = "PRLAR", 4074 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4075 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4076 .accessfn = access_tvm_trvm, 4077 .readfn = prlar_read, .writefn = prlar_write }, 4078 { .name = "PRSELR", .resetvalue = 0, 4079 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4080 .access = PL1_RW, .accessfn = access_tvm_trvm, 4081 .writefn = prselr_write, 4082 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4083 { .name = "HPRBAR", .resetvalue = 0, 4084 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4085 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4086 .readfn = hprbar_read, .writefn = hprbar_write }, 4087 { .name = "HPRLAR", 4088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4089 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4090 .readfn = hprlar_read, .writefn = hprlar_write }, 4091 { .name = "HPRSELR", .resetvalue = 0, 4092 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4093 .access = PL2_RW, 4094 .writefn = hprselr_write, 4095 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4096 { .name = "HPRENR", 4097 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4098 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4099 .readfn = hprenr_read, .writefn = hprenr_write }, 4100 }; 4101 4102 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4103 /* 4104 * Reset for all these registers is handled in arm_cpu_reset(), 4105 * because the PMSAv7 is also used by M-profile CPUs, which do 4106 * not register cpregs but still need the state to be reset. 4107 */ 4108 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4109 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4110 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4111 .readfn = pmsav7_read, .writefn = pmsav7_write, 4112 .resetfn = arm_cp_reset_ignore }, 4113 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4114 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4115 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4116 .readfn = pmsav7_read, .writefn = pmsav7_write, 4117 .resetfn = arm_cp_reset_ignore }, 4118 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4119 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4120 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4121 .readfn = pmsav7_read, .writefn = pmsav7_write, 4122 .resetfn = arm_cp_reset_ignore }, 4123 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4124 .access = PL1_RW, 4125 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4126 .writefn = pmsav7_rgnr_write, 4127 .resetfn = arm_cp_reset_ignore }, 4128 }; 4129 4130 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4131 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4132 .access = PL1_RW, .type = ARM_CP_ALIAS, 4133 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4134 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4135 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4136 .access = PL1_RW, .type = ARM_CP_ALIAS, 4137 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4138 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4139 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4140 .access = PL1_RW, 4141 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4142 .resetvalue = 0, }, 4143 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4144 .access = PL1_RW, 4145 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4146 .resetvalue = 0, }, 4147 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4148 .access = PL1_RW, 4149 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4150 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4151 .access = PL1_RW, 4152 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4153 /* Protection region base and size registers */ 4154 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4155 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4156 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4157 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4158 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4159 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4160 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4161 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4162 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4163 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4164 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4165 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4166 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4167 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4168 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4169 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4170 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4171 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4172 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4173 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4174 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4175 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4176 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4177 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4178 }; 4179 4180 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4181 uint64_t value) 4182 { 4183 ARMCPU *cpu = env_archcpu(env); 4184 4185 if (!arm_feature(env, ARM_FEATURE_V8)) { 4186 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4187 /* 4188 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4189 * using Long-descriptor translation table format 4190 */ 4191 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4192 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4193 /* 4194 * In an implementation that includes the Security Extensions 4195 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4196 * Short-descriptor translation table format. 4197 */ 4198 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4199 } else { 4200 value &= TTBCR_N; 4201 } 4202 } 4203 4204 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4205 /* 4206 * With LPAE the TTBCR could result in a change of ASID 4207 * via the TTBCR.A1 bit, so do a TLB flush. 4208 */ 4209 tlb_flush(CPU(cpu)); 4210 } 4211 raw_write(env, ri, value); 4212 } 4213 4214 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4215 uint64_t value) 4216 { 4217 ARMCPU *cpu = env_archcpu(env); 4218 4219 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4220 tlb_flush(CPU(cpu)); 4221 raw_write(env, ri, value); 4222 } 4223 4224 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4225 uint64_t value) 4226 { 4227 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4228 if (cpreg_field_is_64bit(ri) && 4229 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4230 ARMCPU *cpu = env_archcpu(env); 4231 tlb_flush(CPU(cpu)); 4232 } 4233 raw_write(env, ri, value); 4234 } 4235 4236 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4237 uint64_t value) 4238 { 4239 /* 4240 * If we are running with E2&0 regime, then an ASID is active. 4241 * Flush if that might be changing. Note we're not checking 4242 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4243 * holds the active ASID, only checking the field that might. 4244 */ 4245 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4246 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4247 uint16_t mask = ARMMMUIdxBit_E20_2 | 4248 ARMMMUIdxBit_E20_2_PAN | 4249 ARMMMUIdxBit_E20_0; 4250 tlb_flush_by_mmuidx(env_cpu(env), mask); 4251 } 4252 raw_write(env, ri, value); 4253 } 4254 4255 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4256 uint64_t value) 4257 { 4258 ARMCPU *cpu = env_archcpu(env); 4259 CPUState *cs = CPU(cpu); 4260 4261 /* 4262 * A change in VMID to the stage2 page table (Stage2) invalidates 4263 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4264 */ 4265 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4266 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4267 } 4268 raw_write(env, ri, value); 4269 } 4270 4271 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4272 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4273 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4275 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4276 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4277 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4278 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4279 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4280 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4281 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4282 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4283 offsetof(CPUARMState, cp15.dfar_ns) } }, 4284 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4285 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4286 .access = PL1_RW, .accessfn = access_tvm_trvm, 4287 .fgt = FGT_FAR_EL1, 4288 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4289 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4290 .resetvalue = 0, }, 4291 }; 4292 4293 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4294 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4295 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4296 .access = PL1_RW, .accessfn = access_tvm_trvm, 4297 .fgt = FGT_ESR_EL1, 4298 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4299 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4300 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4301 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4302 .access = PL1_RW, .accessfn = access_tvm_trvm, 4303 .fgt = FGT_TTBR0_EL1, 4304 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4305 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4306 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4307 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4308 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4309 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4310 .access = PL1_RW, .accessfn = access_tvm_trvm, 4311 .fgt = FGT_TTBR1_EL1, 4312 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4313 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4314 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4315 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4316 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4317 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4318 .access = PL1_RW, .accessfn = access_tvm_trvm, 4319 .fgt = FGT_TCR_EL1, 4320 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4321 .writefn = vmsa_tcr_el12_write, 4322 .raw_writefn = raw_write, 4323 .resetvalue = 0, 4324 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4325 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4326 .access = PL1_RW, .accessfn = access_tvm_trvm, 4327 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4328 .raw_writefn = raw_write, 4329 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4330 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4331 }; 4332 4333 /* 4334 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4335 * qemu tlbs nor adjusting cached masks. 4336 */ 4337 static const ARMCPRegInfo ttbcr2_reginfo = { 4338 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4339 .access = PL1_RW, .accessfn = access_tvm_trvm, 4340 .type = ARM_CP_ALIAS, 4341 .bank_fieldoffsets = { 4342 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4343 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4344 }, 4345 }; 4346 4347 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4348 uint64_t value) 4349 { 4350 env->cp15.c15_ticonfig = value & 0xe7; 4351 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4352 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4353 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4354 } 4355 4356 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4357 uint64_t value) 4358 { 4359 env->cp15.c15_threadid = value & 0xffff; 4360 } 4361 4362 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4363 uint64_t value) 4364 { 4365 /* Wait-for-interrupt (deprecated) */ 4366 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4367 } 4368 4369 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4370 uint64_t value) 4371 { 4372 /* 4373 * On OMAP there are registers indicating the max/min index of dcache lines 4374 * containing a dirty line; cache flush operations have to reset these. 4375 */ 4376 env->cp15.c15_i_max = 0x000; 4377 env->cp15.c15_i_min = 0xff0; 4378 } 4379 4380 static const ARMCPRegInfo omap_cp_reginfo[] = { 4381 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4382 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4383 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4384 .resetvalue = 0, }, 4385 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4386 .access = PL1_RW, .type = ARM_CP_NOP }, 4387 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4388 .access = PL1_RW, 4389 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4390 .writefn = omap_ticonfig_write }, 4391 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4392 .access = PL1_RW, 4393 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4394 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4395 .access = PL1_RW, .resetvalue = 0xff0, 4396 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4397 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4398 .access = PL1_RW, 4399 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4400 .writefn = omap_threadid_write }, 4401 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4402 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4403 .type = ARM_CP_NO_RAW, 4404 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4405 /* 4406 * TODO: Peripheral port remap register: 4407 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4408 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4409 * when MMU is off. 4410 */ 4411 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4412 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4413 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4414 .writefn = omap_cachemaint_write }, 4415 { .name = "C9", .cp = 15, .crn = 9, 4416 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4417 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4418 }; 4419 4420 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 env->cp15.c15_cpar = value & 0x3fff; 4424 } 4425 4426 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4427 { .name = "XSCALE_CPAR", 4428 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4429 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4430 .writefn = xscale_cpar_write, }, 4431 { .name = "XSCALE_AUXCR", 4432 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4433 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4434 .resetvalue = 0, }, 4435 /* 4436 * XScale specific cache-lockdown: since we have no cache we NOP these 4437 * and hope the guest does not really rely on cache behaviour. 4438 */ 4439 { .name = "XSCALE_LOCK_ICACHE_LINE", 4440 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4441 .access = PL1_W, .type = ARM_CP_NOP }, 4442 { .name = "XSCALE_UNLOCK_ICACHE", 4443 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4444 .access = PL1_W, .type = ARM_CP_NOP }, 4445 { .name = "XSCALE_DCACHE_LOCK", 4446 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4447 .access = PL1_RW, .type = ARM_CP_NOP }, 4448 { .name = "XSCALE_UNLOCK_DCACHE", 4449 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4450 .access = PL1_W, .type = ARM_CP_NOP }, 4451 }; 4452 4453 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4454 /* 4455 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4456 * implementation of this implementation-defined space. 4457 * Ideally this should eventually disappear in favour of actually 4458 * implementing the correct behaviour for all cores. 4459 */ 4460 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4461 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4462 .access = PL1_RW, 4463 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4464 .resetvalue = 0 }, 4465 }; 4466 4467 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4468 /* Cache status: RAZ because we have no cache so it's always clean */ 4469 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4470 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4471 .resetvalue = 0 }, 4472 }; 4473 4474 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4475 /* We never have a block transfer operation in progress */ 4476 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4477 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4478 .resetvalue = 0 }, 4479 /* The cache ops themselves: these all NOP for QEMU */ 4480 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4481 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4482 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4483 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4484 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4485 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4486 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4487 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4488 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4489 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4490 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4491 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4492 }; 4493 4494 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4495 /* 4496 * The cache test-and-clean instructions always return (1 << 30) 4497 * to indicate that there are no dirty cache lines. 4498 */ 4499 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4500 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4501 .resetvalue = (1 << 30) }, 4502 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4503 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4504 .resetvalue = (1 << 30) }, 4505 }; 4506 4507 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4508 /* Ignore ReadBuffer accesses */ 4509 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4510 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4511 .access = PL1_RW, .resetvalue = 0, 4512 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4513 }; 4514 4515 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4516 { 4517 unsigned int cur_el = arm_current_el(env); 4518 4519 if (arm_is_el2_enabled(env) && cur_el == 1) { 4520 return env->cp15.vpidr_el2; 4521 } 4522 return raw_read(env, ri); 4523 } 4524 4525 static uint64_t mpidr_read_val(CPUARMState *env) 4526 { 4527 ARMCPU *cpu = env_archcpu(env); 4528 uint64_t mpidr = cpu->mp_affinity; 4529 4530 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4531 mpidr |= (1U << 31); 4532 /* 4533 * Cores which are uniprocessor (non-coherent) 4534 * but still implement the MP extensions set 4535 * bit 30. (For instance, Cortex-R5). 4536 */ 4537 if (cpu->mp_is_up) { 4538 mpidr |= (1u << 30); 4539 } 4540 } 4541 return mpidr; 4542 } 4543 4544 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4545 { 4546 unsigned int cur_el = arm_current_el(env); 4547 4548 if (arm_is_el2_enabled(env) && cur_el == 1) { 4549 return env->cp15.vmpidr_el2; 4550 } 4551 return mpidr_read_val(env); 4552 } 4553 4554 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4555 /* NOP AMAIR0/1 */ 4556 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4557 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4558 .access = PL1_RW, .accessfn = access_tvm_trvm, 4559 .fgt = FGT_AMAIR_EL1, 4560 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4561 .type = ARM_CP_CONST, .resetvalue = 0 }, 4562 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4563 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4564 .access = PL1_RW, .accessfn = access_tvm_trvm, 4565 .type = ARM_CP_CONST, .resetvalue = 0 }, 4566 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4567 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4568 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4569 offsetof(CPUARMState, cp15.par_ns)} }, 4570 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4571 .access = PL1_RW, .accessfn = access_tvm_trvm, 4572 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4573 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4574 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4575 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4576 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4577 .access = PL1_RW, .accessfn = access_tvm_trvm, 4578 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4579 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4580 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4581 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4582 }; 4583 4584 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4585 { 4586 return vfp_get_fpcr(env); 4587 } 4588 4589 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 vfp_set_fpcr(env, value); 4593 } 4594 4595 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4596 { 4597 return vfp_get_fpsr(env); 4598 } 4599 4600 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 vfp_set_fpsr(env, value); 4604 } 4605 4606 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4607 bool isread) 4608 { 4609 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4610 return CP_ACCESS_TRAP; 4611 } 4612 return CP_ACCESS_OK; 4613 } 4614 4615 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4616 uint64_t value) 4617 { 4618 env->daif = value & PSTATE_DAIF; 4619 } 4620 4621 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4622 { 4623 return env->pstate & PSTATE_PAN; 4624 } 4625 4626 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4630 } 4631 4632 static const ARMCPRegInfo pan_reginfo = { 4633 .name = "PAN", .state = ARM_CP_STATE_AA64, 4634 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4635 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4636 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4637 }; 4638 4639 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4640 { 4641 return env->pstate & PSTATE_UAO; 4642 } 4643 4644 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4645 uint64_t value) 4646 { 4647 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4648 } 4649 4650 static const ARMCPRegInfo uao_reginfo = { 4651 .name = "UAO", .state = ARM_CP_STATE_AA64, 4652 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4653 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4654 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4655 }; 4656 4657 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4658 { 4659 return env->pstate & PSTATE_DIT; 4660 } 4661 4662 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4663 uint64_t value) 4664 { 4665 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4666 } 4667 4668 static const ARMCPRegInfo dit_reginfo = { 4669 .name = "DIT", .state = ARM_CP_STATE_AA64, 4670 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4671 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4672 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4673 }; 4674 4675 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4676 { 4677 return env->pstate & PSTATE_SSBS; 4678 } 4679 4680 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4681 uint64_t value) 4682 { 4683 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4684 } 4685 4686 static const ARMCPRegInfo ssbs_reginfo = { 4687 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4688 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4689 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4690 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4691 }; 4692 4693 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4694 const ARMCPRegInfo *ri, 4695 bool isread) 4696 { 4697 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4698 switch (arm_current_el(env)) { 4699 case 0: 4700 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4701 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4702 return CP_ACCESS_TRAP; 4703 } 4704 /* fall through */ 4705 case 1: 4706 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4707 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4708 return CP_ACCESS_TRAP_EL2; 4709 } 4710 break; 4711 } 4712 return CP_ACCESS_OK; 4713 } 4714 4715 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4716 { 4717 /* Cache invalidate/clean to Point of Unification... */ 4718 switch (arm_current_el(env)) { 4719 case 0: 4720 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4721 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4722 return CP_ACCESS_TRAP; 4723 } 4724 /* fall through */ 4725 case 1: 4726 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4727 if (arm_hcr_el2_eff(env) & hcrflags) { 4728 return CP_ACCESS_TRAP_EL2; 4729 } 4730 break; 4731 } 4732 return CP_ACCESS_OK; 4733 } 4734 4735 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4736 bool isread) 4737 { 4738 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4739 } 4740 4741 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4742 bool isread) 4743 { 4744 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4745 } 4746 4747 /* 4748 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4749 * Page D4-1736 (DDI0487A.b) 4750 */ 4751 4752 static int vae1_tlbmask(CPUARMState *env) 4753 { 4754 uint64_t hcr = arm_hcr_el2_eff(env); 4755 uint16_t mask; 4756 4757 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4758 mask = ARMMMUIdxBit_E20_2 | 4759 ARMMMUIdxBit_E20_2_PAN | 4760 ARMMMUIdxBit_E20_0; 4761 } else { 4762 mask = ARMMMUIdxBit_E10_1 | 4763 ARMMMUIdxBit_E10_1_PAN | 4764 ARMMMUIdxBit_E10_0; 4765 } 4766 return mask; 4767 } 4768 4769 static int vae2_tlbmask(CPUARMState *env) 4770 { 4771 uint64_t hcr = arm_hcr_el2_eff(env); 4772 uint16_t mask; 4773 4774 if (hcr & HCR_E2H) { 4775 mask = ARMMMUIdxBit_E20_2 | 4776 ARMMMUIdxBit_E20_2_PAN | 4777 ARMMMUIdxBit_E20_0; 4778 } else { 4779 mask = ARMMMUIdxBit_E2; 4780 } 4781 return mask; 4782 } 4783 4784 /* Return 56 if TBI is enabled, 64 otherwise. */ 4785 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4786 uint64_t addr) 4787 { 4788 uint64_t tcr = regime_tcr(env, mmu_idx); 4789 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4790 int select = extract64(addr, 55, 1); 4791 4792 return (tbi >> select) & 1 ? 56 : 64; 4793 } 4794 4795 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4796 { 4797 uint64_t hcr = arm_hcr_el2_eff(env); 4798 ARMMMUIdx mmu_idx; 4799 4800 /* Only the regime of the mmu_idx below is significant. */ 4801 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4802 mmu_idx = ARMMMUIdx_E20_0; 4803 } else { 4804 mmu_idx = ARMMMUIdx_E10_0; 4805 } 4806 4807 return tlbbits_for_regime(env, mmu_idx, addr); 4808 } 4809 4810 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4811 { 4812 uint64_t hcr = arm_hcr_el2_eff(env); 4813 ARMMMUIdx mmu_idx; 4814 4815 /* 4816 * Only the regime of the mmu_idx below is significant. 4817 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4818 * only has one. 4819 */ 4820 if (hcr & HCR_E2H) { 4821 mmu_idx = ARMMMUIdx_E20_2; 4822 } else { 4823 mmu_idx = ARMMMUIdx_E2; 4824 } 4825 4826 return tlbbits_for_regime(env, mmu_idx, addr); 4827 } 4828 4829 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 CPUState *cs = env_cpu(env); 4833 int mask = vae1_tlbmask(env); 4834 4835 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4836 } 4837 4838 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4839 uint64_t value) 4840 { 4841 CPUState *cs = env_cpu(env); 4842 int mask = vae1_tlbmask(env); 4843 4844 if (tlb_force_broadcast(env)) { 4845 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4846 } else { 4847 tlb_flush_by_mmuidx(cs, mask); 4848 } 4849 } 4850 4851 static int e2_tlbmask(CPUARMState *env) 4852 { 4853 return (ARMMMUIdxBit_E20_0 | 4854 ARMMMUIdxBit_E20_2 | 4855 ARMMMUIdxBit_E20_2_PAN | 4856 ARMMMUIdxBit_E2); 4857 } 4858 4859 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4860 uint64_t value) 4861 { 4862 CPUState *cs = env_cpu(env); 4863 int mask = alle1_tlbmask(env); 4864 4865 tlb_flush_by_mmuidx(cs, mask); 4866 } 4867 4868 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4869 uint64_t value) 4870 { 4871 CPUState *cs = env_cpu(env); 4872 int mask = e2_tlbmask(env); 4873 4874 tlb_flush_by_mmuidx(cs, mask); 4875 } 4876 4877 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4878 uint64_t value) 4879 { 4880 ARMCPU *cpu = env_archcpu(env); 4881 CPUState *cs = CPU(cpu); 4882 4883 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4884 } 4885 4886 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4887 uint64_t value) 4888 { 4889 CPUState *cs = env_cpu(env); 4890 int mask = alle1_tlbmask(env); 4891 4892 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4893 } 4894 4895 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4896 uint64_t value) 4897 { 4898 CPUState *cs = env_cpu(env); 4899 int mask = e2_tlbmask(env); 4900 4901 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4902 } 4903 4904 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4905 uint64_t value) 4906 { 4907 CPUState *cs = env_cpu(env); 4908 4909 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4910 } 4911 4912 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4913 uint64_t value) 4914 { 4915 /* 4916 * Invalidate by VA, EL2 4917 * Currently handles both VAE2 and VALE2, since we don't support 4918 * flush-last-level-only. 4919 */ 4920 CPUState *cs = env_cpu(env); 4921 int mask = vae2_tlbmask(env); 4922 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4923 int bits = vae2_tlbbits(env, pageaddr); 4924 4925 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4926 } 4927 4928 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4929 uint64_t value) 4930 { 4931 /* 4932 * Invalidate by VA, EL3 4933 * Currently handles both VAE3 and VALE3, since we don't support 4934 * flush-last-level-only. 4935 */ 4936 ARMCPU *cpu = env_archcpu(env); 4937 CPUState *cs = CPU(cpu); 4938 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4939 4940 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4941 } 4942 4943 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4944 uint64_t value) 4945 { 4946 CPUState *cs = env_cpu(env); 4947 int mask = vae1_tlbmask(env); 4948 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4949 int bits = vae1_tlbbits(env, pageaddr); 4950 4951 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4952 } 4953 4954 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4955 uint64_t value) 4956 { 4957 /* 4958 * Invalidate by VA, EL1&0 (AArch64 version). 4959 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4960 * since we don't support flush-for-specific-ASID-only or 4961 * flush-last-level-only. 4962 */ 4963 CPUState *cs = env_cpu(env); 4964 int mask = vae1_tlbmask(env); 4965 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4966 int bits = vae1_tlbbits(env, pageaddr); 4967 4968 if (tlb_force_broadcast(env)) { 4969 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4970 } else { 4971 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4972 } 4973 } 4974 4975 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4976 uint64_t value) 4977 { 4978 CPUState *cs = env_cpu(env); 4979 int mask = vae2_tlbmask(env); 4980 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4981 int bits = vae2_tlbbits(env, pageaddr); 4982 4983 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4984 } 4985 4986 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4987 uint64_t value) 4988 { 4989 CPUState *cs = env_cpu(env); 4990 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4991 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4992 4993 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4994 ARMMMUIdxBit_E3, bits); 4995 } 4996 4997 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4998 { 4999 /* 5000 * The MSB of value is the NS field, which only applies if SEL2 5001 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5002 */ 5003 return (value >= 0 5004 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5005 && arm_is_secure_below_el3(env) 5006 ? ARMMMUIdxBit_Stage2_S 5007 : ARMMMUIdxBit_Stage2); 5008 } 5009 5010 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5011 uint64_t value) 5012 { 5013 CPUState *cs = env_cpu(env); 5014 int mask = ipas2e1_tlbmask(env, value); 5015 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5016 5017 if (tlb_force_broadcast(env)) { 5018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5019 } else { 5020 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5021 } 5022 } 5023 5024 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5025 uint64_t value) 5026 { 5027 CPUState *cs = env_cpu(env); 5028 int mask = ipas2e1_tlbmask(env, value); 5029 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5030 5031 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5032 } 5033 5034 #ifdef TARGET_AARCH64 5035 typedef struct { 5036 uint64_t base; 5037 uint64_t length; 5038 } TLBIRange; 5039 5040 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5041 { 5042 /* 5043 * Note that the TLBI range TG field encoding differs from both 5044 * TG0 and TG1 encodings. 5045 */ 5046 switch (tg) { 5047 case 1: 5048 return Gran4K; 5049 case 2: 5050 return Gran16K; 5051 case 3: 5052 return Gran64K; 5053 default: 5054 return GranInvalid; 5055 } 5056 } 5057 5058 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5059 uint64_t value) 5060 { 5061 unsigned int page_size_granule, page_shift, num, scale, exponent; 5062 /* Extract one bit to represent the va selector in use. */ 5063 uint64_t select = sextract64(value, 36, 1); 5064 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5065 TLBIRange ret = { }; 5066 ARMGranuleSize gran; 5067 5068 page_size_granule = extract64(value, 46, 2); 5069 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5070 5071 /* The granule encoded in value must match the granule in use. */ 5072 if (gran != param.gran) { 5073 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5074 page_size_granule); 5075 return ret; 5076 } 5077 5078 page_shift = arm_granule_bits(gran); 5079 num = extract64(value, 39, 5); 5080 scale = extract64(value, 44, 2); 5081 exponent = (5 * scale) + 1; 5082 5083 ret.length = (num + 1) << (exponent + page_shift); 5084 5085 if (param.select) { 5086 ret.base = sextract64(value, 0, 37); 5087 } else { 5088 ret.base = extract64(value, 0, 37); 5089 } 5090 if (param.ds) { 5091 /* 5092 * With DS=1, BaseADDR is always shifted 16 so that it is able 5093 * to address all 52 va bits. The input address is perforce 5094 * aligned on a 64k boundary regardless of translation granule. 5095 */ 5096 page_shift = 16; 5097 } 5098 ret.base <<= page_shift; 5099 5100 return ret; 5101 } 5102 5103 static void do_rvae_write(CPUARMState *env, uint64_t value, 5104 int idxmap, bool synced) 5105 { 5106 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5107 TLBIRange range; 5108 int bits; 5109 5110 range = tlbi_aa64_get_range(env, one_idx, value); 5111 bits = tlbbits_for_regime(env, one_idx, range.base); 5112 5113 if (synced) { 5114 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5115 range.base, 5116 range.length, 5117 idxmap, 5118 bits); 5119 } else { 5120 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5121 range.length, idxmap, bits); 5122 } 5123 } 5124 5125 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5126 const ARMCPRegInfo *ri, 5127 uint64_t value) 5128 { 5129 /* 5130 * Invalidate by VA range, EL1&0. 5131 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5132 * since we don't support flush-for-specific-ASID-only or 5133 * flush-last-level-only. 5134 */ 5135 5136 do_rvae_write(env, value, vae1_tlbmask(env), 5137 tlb_force_broadcast(env)); 5138 } 5139 5140 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5141 const ARMCPRegInfo *ri, 5142 uint64_t value) 5143 { 5144 /* 5145 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5146 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5147 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5148 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5149 * shareable specific flushes. 5150 */ 5151 5152 do_rvae_write(env, value, vae1_tlbmask(env), true); 5153 } 5154 5155 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5156 const ARMCPRegInfo *ri, 5157 uint64_t value) 5158 { 5159 /* 5160 * Invalidate by VA range, EL2. 5161 * Currently handles all of RVAE2 and RVALE2, 5162 * since we don't support flush-for-specific-ASID-only or 5163 * flush-last-level-only. 5164 */ 5165 5166 do_rvae_write(env, value, vae2_tlbmask(env), 5167 tlb_force_broadcast(env)); 5168 5169 5170 } 5171 5172 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5173 const ARMCPRegInfo *ri, 5174 uint64_t value) 5175 { 5176 /* 5177 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5178 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5179 * since we don't support flush-for-specific-ASID-only, 5180 * flush-last-level-only or inner/outer shareable specific flushes. 5181 */ 5182 5183 do_rvae_write(env, value, vae2_tlbmask(env), true); 5184 5185 } 5186 5187 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5188 const ARMCPRegInfo *ri, 5189 uint64_t value) 5190 { 5191 /* 5192 * Invalidate by VA range, EL3. 5193 * Currently handles all of RVAE3 and RVALE3, 5194 * since we don't support flush-for-specific-ASID-only or 5195 * flush-last-level-only. 5196 */ 5197 5198 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5199 } 5200 5201 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5202 const ARMCPRegInfo *ri, 5203 uint64_t value) 5204 { 5205 /* 5206 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5207 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5208 * since we don't support flush-for-specific-ASID-only, 5209 * flush-last-level-only or inner/outer specific flushes. 5210 */ 5211 5212 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5213 } 5214 5215 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5216 uint64_t value) 5217 { 5218 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5219 tlb_force_broadcast(env)); 5220 } 5221 5222 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5223 const ARMCPRegInfo *ri, 5224 uint64_t value) 5225 { 5226 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5227 } 5228 #endif 5229 5230 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5231 bool isread) 5232 { 5233 int cur_el = arm_current_el(env); 5234 5235 if (cur_el < 2) { 5236 uint64_t hcr = arm_hcr_el2_eff(env); 5237 5238 if (cur_el == 0) { 5239 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5240 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5241 return CP_ACCESS_TRAP_EL2; 5242 } 5243 } else { 5244 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5245 return CP_ACCESS_TRAP; 5246 } 5247 if (hcr & HCR_TDZ) { 5248 return CP_ACCESS_TRAP_EL2; 5249 } 5250 } 5251 } else if (hcr & HCR_TDZ) { 5252 return CP_ACCESS_TRAP_EL2; 5253 } 5254 } 5255 return CP_ACCESS_OK; 5256 } 5257 5258 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5259 { 5260 ARMCPU *cpu = env_archcpu(env); 5261 int dzp_bit = 1 << 4; 5262 5263 /* DZP indicates whether DC ZVA access is allowed */ 5264 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5265 dzp_bit = 0; 5266 } 5267 return cpu->dcz_blocksize | dzp_bit; 5268 } 5269 5270 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5271 bool isread) 5272 { 5273 if (!(env->pstate & PSTATE_SP)) { 5274 /* 5275 * Access to SP_EL0 is undefined if it's being used as 5276 * the stack pointer. 5277 */ 5278 return CP_ACCESS_TRAP_UNCATEGORIZED; 5279 } 5280 return CP_ACCESS_OK; 5281 } 5282 5283 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5284 { 5285 return env->pstate & PSTATE_SP; 5286 } 5287 5288 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5289 { 5290 update_spsel(env, val); 5291 } 5292 5293 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5294 uint64_t value) 5295 { 5296 ARMCPU *cpu = env_archcpu(env); 5297 5298 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5299 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5300 value &= ~SCTLR_M; 5301 } 5302 5303 /* ??? Lots of these bits are not implemented. */ 5304 5305 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5306 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5307 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5308 } else { 5309 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5310 SCTLR_ATA0 | SCTLR_ATA); 5311 } 5312 } 5313 5314 if (raw_read(env, ri) == value) { 5315 /* 5316 * Skip the TLB flush if nothing actually changed; Linux likes 5317 * to do a lot of pointless SCTLR writes. 5318 */ 5319 return; 5320 } 5321 5322 raw_write(env, ri, value); 5323 5324 /* This may enable/disable the MMU, so do a TLB flush. */ 5325 tlb_flush(CPU(cpu)); 5326 5327 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5328 /* 5329 * Normally we would always end the TB on an SCTLR write; see the 5330 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5331 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5332 * of hflags from the translator, so do it here. 5333 */ 5334 arm_rebuild_hflags(env); 5335 } 5336 } 5337 5338 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5339 uint64_t value) 5340 { 5341 /* 5342 * Some MDCR_EL3 bits affect whether PMU counters are running: 5343 * if we are trying to change any of those then we must 5344 * bracket this update with PMU start/finish calls. 5345 */ 5346 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5347 5348 if (pmu_op) { 5349 pmu_op_start(env); 5350 } 5351 env->cp15.mdcr_el3 = value; 5352 if (pmu_op) { 5353 pmu_op_finish(env); 5354 } 5355 } 5356 5357 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5358 uint64_t value) 5359 { 5360 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5361 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5362 } 5363 5364 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5365 uint64_t value) 5366 { 5367 /* 5368 * Some MDCR_EL2 bits affect whether PMU counters are running: 5369 * if we are trying to change any of those then we must 5370 * bracket this update with PMU start/finish calls. 5371 */ 5372 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5373 5374 if (pmu_op) { 5375 pmu_op_start(env); 5376 } 5377 env->cp15.mdcr_el2 = value; 5378 if (pmu_op) { 5379 pmu_op_finish(env); 5380 } 5381 } 5382 5383 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5384 bool isread) 5385 { 5386 if (arm_current_el(env) == 1) { 5387 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5388 5389 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5390 return CP_ACCESS_TRAP_EL2; 5391 } 5392 } 5393 return CP_ACCESS_OK; 5394 } 5395 5396 #ifdef CONFIG_USER_ONLY 5397 /* 5398 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5399 * code to get around W^X restrictions, where one region is writable and the 5400 * other is executable. 5401 * 5402 * Since the executable region is never written to we cannot detect code 5403 * changes when running in user mode, and rely on the emulated JIT telling us 5404 * that the code has changed by executing this instruction. 5405 */ 5406 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5407 uint64_t value) 5408 { 5409 uint64_t icache_line_mask, start_address, end_address; 5410 const ARMCPU *cpu; 5411 5412 cpu = env_archcpu(env); 5413 5414 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5415 start_address = value & ~icache_line_mask; 5416 end_address = value | icache_line_mask; 5417 5418 mmap_lock(); 5419 5420 tb_invalidate_phys_range(start_address, end_address); 5421 5422 mmap_unlock(); 5423 } 5424 #endif 5425 5426 static const ARMCPRegInfo v8_cp_reginfo[] = { 5427 /* 5428 * Minimal set of EL0-visible registers. This will need to be expanded 5429 * significantly for system emulation of AArch64 CPUs. 5430 */ 5431 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5432 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5433 .access = PL0_RW, .type = ARM_CP_NZCV }, 5434 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5436 .type = ARM_CP_NO_RAW, 5437 .access = PL0_RW, .accessfn = aa64_daif_access, 5438 .fieldoffset = offsetof(CPUARMState, daif), 5439 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5440 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5441 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5442 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5443 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5444 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5445 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5446 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5447 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5448 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5449 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5450 .access = PL0_R, .type = ARM_CP_NO_RAW, 5451 .fgt = FGT_DCZID_EL0, 5452 .readfn = aa64_dczid_read }, 5453 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5454 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5455 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5456 #ifndef CONFIG_USER_ONLY 5457 /* Avoid overhead of an access check that always passes in user-mode */ 5458 .accessfn = aa64_zva_access, 5459 .fgt = FGT_DCZVA, 5460 #endif 5461 }, 5462 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5463 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5464 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5465 /* 5466 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5467 * don't emulate caches. 5468 */ 5469 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5471 .access = PL1_W, .type = ARM_CP_NOP, 5472 .fgt = FGT_ICIALLUIS, 5473 .accessfn = access_ticab }, 5474 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5475 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5476 .access = PL1_W, .type = ARM_CP_NOP, 5477 .fgt = FGT_ICIALLU, 5478 .accessfn = access_tocu }, 5479 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5481 .access = PL0_W, 5482 .fgt = FGT_ICIVAU, 5483 .accessfn = access_tocu, 5484 #ifdef CONFIG_USER_ONLY 5485 .type = ARM_CP_NO_RAW, 5486 .writefn = ic_ivau_write 5487 #else 5488 .type = ARM_CP_NOP 5489 #endif 5490 }, 5491 /* Cache ops: all NOPs since we don't emulate caches */ 5492 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5494 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5495 .fgt = FGT_DCIVAC, 5496 .type = ARM_CP_NOP }, 5497 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5499 .fgt = FGT_DCISW, 5500 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5501 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5502 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5503 .access = PL0_W, .type = ARM_CP_NOP, 5504 .fgt = FGT_DCCVAC, 5505 .accessfn = aa64_cacheop_poc_access }, 5506 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5507 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5508 .fgt = FGT_DCCSW, 5509 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5510 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5511 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5512 .access = PL0_W, .type = ARM_CP_NOP, 5513 .fgt = FGT_DCCVAU, 5514 .accessfn = access_tocu }, 5515 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5516 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5517 .access = PL0_W, .type = ARM_CP_NOP, 5518 .fgt = FGT_DCCIVAC, 5519 .accessfn = aa64_cacheop_poc_access }, 5520 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5521 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5522 .fgt = FGT_DCCISW, 5523 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5524 /* TLBI operations */ 5525 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5527 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5528 .fgt = FGT_TLBIVMALLE1IS, 5529 .writefn = tlbi_aa64_vmalle1is_write }, 5530 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5531 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5532 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5533 .fgt = FGT_TLBIVAE1IS, 5534 .writefn = tlbi_aa64_vae1is_write }, 5535 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5536 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5537 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5538 .fgt = FGT_TLBIASIDE1IS, 5539 .writefn = tlbi_aa64_vmalle1is_write }, 5540 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5541 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5542 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5543 .fgt = FGT_TLBIVAAE1IS, 5544 .writefn = tlbi_aa64_vae1is_write }, 5545 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5546 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5547 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5548 .fgt = FGT_TLBIVALE1IS, 5549 .writefn = tlbi_aa64_vae1is_write }, 5550 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5552 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5553 .fgt = FGT_TLBIVAALE1IS, 5554 .writefn = tlbi_aa64_vae1is_write }, 5555 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5557 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5558 .fgt = FGT_TLBIVMALLE1, 5559 .writefn = tlbi_aa64_vmalle1_write }, 5560 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5561 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5562 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5563 .fgt = FGT_TLBIVAE1, 5564 .writefn = tlbi_aa64_vae1_write }, 5565 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5567 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5568 .fgt = FGT_TLBIASIDE1, 5569 .writefn = tlbi_aa64_vmalle1_write }, 5570 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5571 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5572 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5573 .fgt = FGT_TLBIVAAE1, 5574 .writefn = tlbi_aa64_vae1_write }, 5575 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5577 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5578 .fgt = FGT_TLBIVALE1, 5579 .writefn = tlbi_aa64_vae1_write }, 5580 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5582 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5583 .fgt = FGT_TLBIVAALE1, 5584 .writefn = tlbi_aa64_vae1_write }, 5585 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5587 .access = PL2_W, .type = ARM_CP_NO_RAW, 5588 .writefn = tlbi_aa64_ipas2e1is_write }, 5589 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5591 .access = PL2_W, .type = ARM_CP_NO_RAW, 5592 .writefn = tlbi_aa64_ipas2e1is_write }, 5593 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5595 .access = PL2_W, .type = ARM_CP_NO_RAW, 5596 .writefn = tlbi_aa64_alle1is_write }, 5597 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5599 .access = PL2_W, .type = ARM_CP_NO_RAW, 5600 .writefn = tlbi_aa64_alle1is_write }, 5601 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5603 .access = PL2_W, .type = ARM_CP_NO_RAW, 5604 .writefn = tlbi_aa64_ipas2e1_write }, 5605 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5607 .access = PL2_W, .type = ARM_CP_NO_RAW, 5608 .writefn = tlbi_aa64_ipas2e1_write }, 5609 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5611 .access = PL2_W, .type = ARM_CP_NO_RAW, 5612 .writefn = tlbi_aa64_alle1_write }, 5613 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5615 .access = PL2_W, .type = ARM_CP_NO_RAW, 5616 .writefn = tlbi_aa64_alle1is_write }, 5617 #ifndef CONFIG_USER_ONLY 5618 /* 64 bit address translation operations */ 5619 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5620 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5621 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5622 .fgt = FGT_ATS1E1R, 5623 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5624 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5625 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5626 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5627 .fgt = FGT_ATS1E1W, 5628 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5629 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5630 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5631 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5632 .fgt = FGT_ATS1E0R, 5633 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5634 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5635 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5636 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5637 .fgt = FGT_ATS1E0W, 5638 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5639 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5640 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5641 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5642 .accessfn = at_e012_access, .writefn = ats_write64 }, 5643 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5644 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5645 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5646 .accessfn = at_e012_access, .writefn = ats_write64 }, 5647 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5648 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5649 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5650 .accessfn = at_e012_access, .writefn = ats_write64 }, 5651 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5653 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5654 .accessfn = at_e012_access, .writefn = ats_write64 }, 5655 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5656 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5657 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5658 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5659 .writefn = ats_write64 }, 5660 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5661 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5662 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5663 .writefn = ats_write64 }, 5664 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5665 .type = ARM_CP_ALIAS, 5666 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5667 .access = PL1_RW, .resetvalue = 0, 5668 .fgt = FGT_PAR_EL1, 5669 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5670 .writefn = par_write }, 5671 #endif 5672 /* TLB invalidate last level of translation table walk */ 5673 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5674 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5675 .writefn = tlbimva_is_write }, 5676 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5677 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5678 .writefn = tlbimvaa_is_write }, 5679 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5680 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5681 .writefn = tlbimva_write }, 5682 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5683 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5684 .writefn = tlbimvaa_write }, 5685 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5686 .type = ARM_CP_NO_RAW, .access = PL2_W, 5687 .writefn = tlbimva_hyp_write }, 5688 { .name = "TLBIMVALHIS", 5689 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5690 .type = ARM_CP_NO_RAW, .access = PL2_W, 5691 .writefn = tlbimva_hyp_is_write }, 5692 { .name = "TLBIIPAS2", 5693 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5694 .type = ARM_CP_NO_RAW, .access = PL2_W, 5695 .writefn = tlbiipas2_hyp_write }, 5696 { .name = "TLBIIPAS2IS", 5697 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5698 .type = ARM_CP_NO_RAW, .access = PL2_W, 5699 .writefn = tlbiipas2is_hyp_write }, 5700 { .name = "TLBIIPAS2L", 5701 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5702 .type = ARM_CP_NO_RAW, .access = PL2_W, 5703 .writefn = tlbiipas2_hyp_write }, 5704 { .name = "TLBIIPAS2LIS", 5705 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5706 .type = ARM_CP_NO_RAW, .access = PL2_W, 5707 .writefn = tlbiipas2is_hyp_write }, 5708 /* 32 bit cache operations */ 5709 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5710 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5711 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5712 .type = ARM_CP_NOP, .access = PL1_W }, 5713 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5714 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5715 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5716 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5717 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5718 .type = ARM_CP_NOP, .access = PL1_W }, 5719 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5720 .type = ARM_CP_NOP, .access = PL1_W }, 5721 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5722 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5723 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5724 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5725 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5726 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5727 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5728 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5729 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5730 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5731 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5732 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5733 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5734 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5735 /* MMU Domain access control / MPU write buffer control */ 5736 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5737 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5738 .writefn = dacr_write, .raw_writefn = raw_write, 5739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5740 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5741 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5742 .type = ARM_CP_ALIAS, 5743 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5744 .access = PL1_RW, .accessfn = access_nv1, 5745 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5746 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5747 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5748 .type = ARM_CP_ALIAS, 5749 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5750 .access = PL1_RW, .accessfn = access_nv1, 5751 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5752 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5753 /* 5754 * We rely on the access checks not allowing the guest to write to the 5755 * state field when SPSel indicates that it's being used as the stack 5756 * pointer. 5757 */ 5758 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5760 .access = PL1_RW, .accessfn = sp_el0_access, 5761 .type = ARM_CP_ALIAS, 5762 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5763 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5765 .nv2_redirect_offset = 0x240, 5766 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5767 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5768 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5770 .type = ARM_CP_NO_RAW, 5771 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5772 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5773 .type = ARM_CP_ALIAS, 5774 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5775 .access = PL2_RW, 5776 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5777 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5778 .type = ARM_CP_ALIAS, 5779 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5780 .access = PL2_RW, 5781 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5782 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5783 .type = ARM_CP_ALIAS, 5784 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5785 .access = PL2_RW, 5786 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5787 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5788 .type = ARM_CP_ALIAS, 5789 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5790 .access = PL2_RW, 5791 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5792 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5793 .type = ARM_CP_IO, 5794 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5795 .resetvalue = 0, 5796 .access = PL3_RW, 5797 .writefn = mdcr_el3_write, 5798 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5799 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5800 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5801 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5802 .writefn = sdcr_write, 5803 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5804 }; 5805 5806 /* These are present only when EL1 supports AArch32 */ 5807 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5808 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5810 .access = PL2_RW, 5811 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5812 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5813 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5814 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5815 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5816 .writefn = dacr_write, .raw_writefn = raw_write, 5817 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5818 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5819 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5820 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5821 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5822 }; 5823 5824 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5825 { 5826 ARMCPU *cpu = env_archcpu(env); 5827 5828 if (arm_feature(env, ARM_FEATURE_V8)) { 5829 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5830 } else { 5831 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5832 } 5833 5834 if (arm_feature(env, ARM_FEATURE_EL3)) { 5835 valid_mask &= ~HCR_HCD; 5836 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5837 /* 5838 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5839 * However, if we're using the SMC PSCI conduit then QEMU is 5840 * effectively acting like EL3 firmware and so the guest at 5841 * EL2 should retain the ability to prevent EL1 from being 5842 * able to make SMC calls into the ersatz firmware, so in 5843 * that case HCR.TSC should be read/write. 5844 */ 5845 valid_mask &= ~HCR_TSC; 5846 } 5847 5848 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5849 if (cpu_isar_feature(aa64_vh, cpu)) { 5850 valid_mask |= HCR_E2H; 5851 } 5852 if (cpu_isar_feature(aa64_ras, cpu)) { 5853 valid_mask |= HCR_TERR | HCR_TEA; 5854 } 5855 if (cpu_isar_feature(aa64_lor, cpu)) { 5856 valid_mask |= HCR_TLOR; 5857 } 5858 if (cpu_isar_feature(aa64_pauth, cpu)) { 5859 valid_mask |= HCR_API | HCR_APK; 5860 } 5861 if (cpu_isar_feature(aa64_mte, cpu)) { 5862 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5863 } 5864 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5865 valid_mask |= HCR_ENSCXT; 5866 } 5867 if (cpu_isar_feature(aa64_fwb, cpu)) { 5868 valid_mask |= HCR_FWB; 5869 } 5870 if (cpu_isar_feature(aa64_rme, cpu)) { 5871 valid_mask |= HCR_GPF; 5872 } 5873 if (cpu_isar_feature(aa64_nv, cpu)) { 5874 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5875 } 5876 if (cpu_isar_feature(aa64_nv2, cpu)) { 5877 valid_mask |= HCR_NV2; 5878 } 5879 } 5880 5881 if (cpu_isar_feature(any_evt, cpu)) { 5882 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5883 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5884 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5885 } 5886 5887 /* Clear RES0 bits. */ 5888 value &= valid_mask; 5889 5890 /* 5891 * These bits change the MMU setup: 5892 * HCR_VM enables stage 2 translation 5893 * HCR_PTW forbids certain page-table setups 5894 * HCR_DC disables stage1 and enables stage2 translation 5895 * HCR_DCT enables tagging on (disabled) stage1 translation 5896 * HCR_FWB changes the interpretation of stage2 descriptor bits 5897 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5898 */ 5899 if ((env->cp15.hcr_el2 ^ value) & 5900 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5901 tlb_flush(CPU(cpu)); 5902 } 5903 env->cp15.hcr_el2 = value; 5904 5905 /* 5906 * Updates to VI and VF require us to update the status of 5907 * virtual interrupts, which are the logical OR of these bits 5908 * and the state of the input lines from the GIC. (This requires 5909 * that we have the BQL, which is done by marking the 5910 * reginfo structs as ARM_CP_IO.) 5911 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5912 * possible for it to be taken immediately, because VIRQ and 5913 * VFIQ are masked unless running at EL0 or EL1, and HCR 5914 * can only be written at EL2. 5915 */ 5916 g_assert(bql_locked()); 5917 arm_cpu_update_virq(cpu); 5918 arm_cpu_update_vfiq(cpu); 5919 arm_cpu_update_vserr(cpu); 5920 } 5921 5922 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5923 { 5924 do_hcr_write(env, value, 0); 5925 } 5926 5927 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5928 uint64_t value) 5929 { 5930 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5931 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5932 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5933 } 5934 5935 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5936 uint64_t value) 5937 { 5938 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5939 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5940 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5941 } 5942 5943 /* 5944 * Return the effective value of HCR_EL2, at the given security state. 5945 * Bits that are not included here: 5946 * RW (read from SCR_EL3.RW as needed) 5947 */ 5948 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5949 { 5950 uint64_t ret = env->cp15.hcr_el2; 5951 5952 assert(space != ARMSS_Root); 5953 5954 if (!arm_is_el2_enabled_secstate(env, space)) { 5955 /* 5956 * "This register has no effect if EL2 is not enabled in the 5957 * current Security state". This is ARMv8.4-SecEL2 speak for 5958 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5959 * 5960 * Prior to that, the language was "In an implementation that 5961 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5962 * as if this field is 0 for all purposes other than a direct 5963 * read or write access of HCR_EL2". With lots of enumeration 5964 * on a per-field basis. In current QEMU, this is condition 5965 * is arm_is_secure_below_el3. 5966 * 5967 * Since the v8.4 language applies to the entire register, and 5968 * appears to be backward compatible, use that. 5969 */ 5970 return 0; 5971 } 5972 5973 /* 5974 * For a cpu that supports both aarch64 and aarch32, we can set bits 5975 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5976 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5977 */ 5978 if (!arm_el_is_aa64(env, 2)) { 5979 uint64_t aa32_valid; 5980 5981 /* 5982 * These bits are up-to-date as of ARMv8.6. 5983 * For HCR, it's easiest to list just the 2 bits that are invalid. 5984 * For HCR2, list those that are valid. 5985 */ 5986 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5987 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5988 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5989 ret &= aa32_valid; 5990 } 5991 5992 if (ret & HCR_TGE) { 5993 /* These bits are up-to-date as of ARMv8.6. */ 5994 if (ret & HCR_E2H) { 5995 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5996 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5997 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5998 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5999 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6000 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6001 } else { 6002 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6003 } 6004 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6005 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6006 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6007 HCR_TLOR); 6008 } 6009 6010 return ret; 6011 } 6012 6013 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6014 { 6015 if (arm_feature(env, ARM_FEATURE_M)) { 6016 return 0; 6017 } 6018 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6019 } 6020 6021 /* 6022 * Corresponds to ARM pseudocode function ELIsInHost(). 6023 */ 6024 bool el_is_in_host(CPUARMState *env, int el) 6025 { 6026 uint64_t mask; 6027 6028 /* 6029 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6030 * Perform the simplest bit tests first, and validate EL2 afterward. 6031 */ 6032 if (el & 1) { 6033 return false; /* EL1 or EL3 */ 6034 } 6035 6036 /* 6037 * Note that hcr_write() checks isar_feature_aa64_vh(), 6038 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6039 */ 6040 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6041 if ((env->cp15.hcr_el2 & mask) != mask) { 6042 return false; 6043 } 6044 6045 /* TGE and/or E2H set: double check those bits are currently legal. */ 6046 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6047 } 6048 6049 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6050 uint64_t value) 6051 { 6052 uint64_t valid_mask = 0; 6053 6054 /* FEAT_MOPS adds MSCEn and MCE2 */ 6055 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6056 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6057 } 6058 6059 /* Clear RES0 bits. */ 6060 env->cp15.hcrx_el2 = value & valid_mask; 6061 } 6062 6063 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6064 bool isread) 6065 { 6066 if (arm_current_el(env) == 2 6067 && arm_feature(env, ARM_FEATURE_EL3) 6068 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6069 return CP_ACCESS_TRAP_EL3; 6070 } 6071 return CP_ACCESS_OK; 6072 } 6073 6074 static const ARMCPRegInfo hcrx_el2_reginfo = { 6075 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6076 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6077 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6078 .nv2_redirect_offset = 0xa0, 6079 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6080 }; 6081 6082 /* Return the effective value of HCRX_EL2. */ 6083 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6084 { 6085 /* 6086 * The bits in this register behave as 0 for all purposes other than 6087 * direct reads of the register if SCR_EL3.HXEn is 0. 6088 * If EL2 is not enabled in the current security state, then the 6089 * bit may behave as if 0, or as if 1, depending on the bit. 6090 * For the moment, we treat the EL2-disabled case as taking 6091 * priority over the HXEn-disabled case. This is true for the only 6092 * bit for a feature which we implement where the answer is different 6093 * for the two cases (MSCEn for FEAT_MOPS). 6094 * This may need to be revisited for future bits. 6095 */ 6096 if (!arm_is_el2_enabled(env)) { 6097 uint64_t hcrx = 0; 6098 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6099 /* MSCEn behaves as 1 if EL2 is not enabled */ 6100 hcrx |= HCRX_MSCEN; 6101 } 6102 return hcrx; 6103 } 6104 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6105 return 0; 6106 } 6107 return env->cp15.hcrx_el2; 6108 } 6109 6110 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6111 uint64_t value) 6112 { 6113 /* 6114 * For A-profile AArch32 EL3, if NSACR.CP10 6115 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6116 */ 6117 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6118 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6119 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6120 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6121 } 6122 env->cp15.cptr_el[2] = value; 6123 } 6124 6125 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6126 { 6127 /* 6128 * For A-profile AArch32 EL3, if NSACR.CP10 6129 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6130 */ 6131 uint64_t value = env->cp15.cptr_el[2]; 6132 6133 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6134 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6135 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6136 } 6137 return value; 6138 } 6139 6140 static const ARMCPRegInfo el2_cp_reginfo[] = { 6141 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6142 .type = ARM_CP_IO, 6143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6144 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6145 .nv2_redirect_offset = 0x78, 6146 .writefn = hcr_write, .raw_writefn = raw_write }, 6147 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6148 .type = ARM_CP_ALIAS | ARM_CP_IO, 6149 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6150 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6151 .writefn = hcr_writelow }, 6152 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6154 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6155 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6156 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6157 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6158 .access = PL2_RW, 6159 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6160 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6161 .type = ARM_CP_NV2_REDIRECT, 6162 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6163 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6164 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6165 .type = ARM_CP_NV2_REDIRECT, 6166 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6167 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6168 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6169 .type = ARM_CP_ALIAS, 6170 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6171 .access = PL2_RW, 6172 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6173 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6174 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6175 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6176 .access = PL2_RW, 6177 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6178 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6179 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6180 .access = PL2_RW, .writefn = vbar_write, 6181 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6182 .resetvalue = 0 }, 6183 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6184 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6185 .access = PL3_RW, .type = ARM_CP_ALIAS, 6186 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6187 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6188 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6189 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6190 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6191 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6192 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6193 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6194 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6195 .resetvalue = 0 }, 6196 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6197 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6198 .access = PL2_RW, .type = ARM_CP_ALIAS, 6199 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6200 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6201 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6202 .access = PL2_RW, .type = ARM_CP_CONST, 6203 .resetvalue = 0 }, 6204 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6205 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6206 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6207 .access = PL2_RW, .type = ARM_CP_CONST, 6208 .resetvalue = 0 }, 6209 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6210 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6211 .access = PL2_RW, .type = ARM_CP_CONST, 6212 .resetvalue = 0 }, 6213 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6214 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6215 .access = PL2_RW, .type = ARM_CP_CONST, 6216 .resetvalue = 0 }, 6217 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6218 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6219 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6220 .raw_writefn = raw_write, 6221 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6222 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6223 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6224 .type = ARM_CP_ALIAS, 6225 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6226 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6227 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6228 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6229 .access = PL2_RW, 6230 .nv2_redirect_offset = 0x40, 6231 /* no .writefn needed as this can't cause an ASID change */ 6232 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6233 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6234 .cp = 15, .opc1 = 6, .crm = 2, 6235 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6236 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6237 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6238 .writefn = vttbr_write, .raw_writefn = raw_write }, 6239 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6240 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6241 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6242 .nv2_redirect_offset = 0x20, 6243 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6244 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6245 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6246 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6247 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6248 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6249 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6250 .access = PL2_RW, .resetvalue = 0, 6251 .nv2_redirect_offset = 0x90, 6252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6253 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6255 .access = PL2_RW, .resetvalue = 0, 6256 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6257 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6258 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6259 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6260 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6261 { .name = "TLBIALLNSNH", 6262 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6263 .type = ARM_CP_NO_RAW, .access = PL2_W, 6264 .writefn = tlbiall_nsnh_write }, 6265 { .name = "TLBIALLNSNHIS", 6266 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6267 .type = ARM_CP_NO_RAW, .access = PL2_W, 6268 .writefn = tlbiall_nsnh_is_write }, 6269 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6270 .type = ARM_CP_NO_RAW, .access = PL2_W, 6271 .writefn = tlbiall_hyp_write }, 6272 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6273 .type = ARM_CP_NO_RAW, .access = PL2_W, 6274 .writefn = tlbiall_hyp_is_write }, 6275 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6276 .type = ARM_CP_NO_RAW, .access = PL2_W, 6277 .writefn = tlbimva_hyp_write }, 6278 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6279 .type = ARM_CP_NO_RAW, .access = PL2_W, 6280 .writefn = tlbimva_hyp_is_write }, 6281 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6282 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6283 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6284 .writefn = tlbi_aa64_alle2_write }, 6285 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6286 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6287 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6288 .writefn = tlbi_aa64_vae2_write }, 6289 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6291 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6292 .writefn = tlbi_aa64_vae2_write }, 6293 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6294 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6295 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6296 .writefn = tlbi_aa64_alle2is_write }, 6297 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6298 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6299 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6300 .writefn = tlbi_aa64_vae2is_write }, 6301 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6302 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6303 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6304 .writefn = tlbi_aa64_vae2is_write }, 6305 #ifndef CONFIG_USER_ONLY 6306 /* 6307 * Unlike the other EL2-related AT operations, these must 6308 * UNDEF from EL3 if EL2 is not implemented, which is why we 6309 * define them here rather than with the rest of the AT ops. 6310 */ 6311 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6312 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6313 .access = PL2_W, .accessfn = at_s1e2_access, 6314 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6315 .writefn = ats_write64 }, 6316 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6317 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6318 .access = PL2_W, .accessfn = at_s1e2_access, 6319 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6320 .writefn = ats_write64 }, 6321 /* 6322 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6323 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6324 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6325 * to behave as if SCR.NS was 1. 6326 */ 6327 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6328 .access = PL2_W, 6329 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6330 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6331 .access = PL2_W, 6332 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6333 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6334 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6335 /* 6336 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6337 * reset values as IMPDEF. We choose to reset to 3 to comply with 6338 * both ARMv7 and ARMv8. 6339 */ 6340 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6341 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6342 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6343 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6344 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6345 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6346 .writefn = gt_cntvoff_write, 6347 .nv2_redirect_offset = 0x60, 6348 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6349 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6350 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6351 .writefn = gt_cntvoff_write, 6352 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6353 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6354 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6355 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6356 .type = ARM_CP_IO, .access = PL2_RW, 6357 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6358 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6359 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6360 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6361 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6362 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6363 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6364 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6365 .resetfn = gt_hyp_timer_reset, 6366 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6367 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6368 .type = ARM_CP_IO, 6369 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6370 .access = PL2_RW, 6371 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6372 .resetvalue = 0, 6373 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6374 #endif 6375 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6376 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6377 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6378 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6379 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6380 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6381 .access = PL2_RW, 6382 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6383 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6384 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6385 .access = PL2_RW, 6386 .nv2_redirect_offset = 0x80, 6387 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6388 }; 6389 6390 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6391 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6392 .type = ARM_CP_ALIAS | ARM_CP_IO, 6393 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6394 .access = PL2_RW, 6395 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6396 .writefn = hcr_writehigh }, 6397 }; 6398 6399 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6400 bool isread) 6401 { 6402 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6403 return CP_ACCESS_OK; 6404 } 6405 return CP_ACCESS_TRAP_UNCATEGORIZED; 6406 } 6407 6408 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6409 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6410 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6411 .access = PL2_RW, .accessfn = sel2_access, 6412 .nv2_redirect_offset = 0x30, 6413 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6414 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6415 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6416 .access = PL2_RW, .accessfn = sel2_access, 6417 .nv2_redirect_offset = 0x48, 6418 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6419 }; 6420 6421 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6422 bool isread) 6423 { 6424 /* 6425 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6426 * At Secure EL1 it traps to EL3 or EL2. 6427 */ 6428 if (arm_current_el(env) == 3) { 6429 return CP_ACCESS_OK; 6430 } 6431 if (arm_is_secure_below_el3(env)) { 6432 if (env->cp15.scr_el3 & SCR_EEL2) { 6433 return CP_ACCESS_TRAP_EL2; 6434 } 6435 return CP_ACCESS_TRAP_EL3; 6436 } 6437 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6438 if (isread) { 6439 return CP_ACCESS_OK; 6440 } 6441 return CP_ACCESS_TRAP_UNCATEGORIZED; 6442 } 6443 6444 static const ARMCPRegInfo el3_cp_reginfo[] = { 6445 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6446 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6447 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6448 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6449 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6450 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6451 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6452 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6453 .writefn = scr_write, .raw_writefn = raw_write }, 6454 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6455 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6456 .access = PL3_RW, .resetvalue = 0, 6457 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6458 { .name = "SDER", 6459 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6460 .access = PL3_RW, .resetvalue = 0, 6461 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6462 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6463 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6464 .writefn = vbar_write, .resetvalue = 0, 6465 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6466 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6467 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6468 .access = PL3_RW, .resetvalue = 0, 6469 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6470 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6471 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6472 .access = PL3_RW, 6473 /* no .writefn needed as this can't cause an ASID change */ 6474 .resetvalue = 0, 6475 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6476 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6477 .type = ARM_CP_ALIAS, 6478 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6479 .access = PL3_RW, 6480 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6481 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6482 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6483 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6484 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6485 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6486 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6487 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6488 .type = ARM_CP_ALIAS, 6489 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6490 .access = PL3_RW, 6491 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6492 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6493 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6494 .access = PL3_RW, .writefn = vbar_write, 6495 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6496 .resetvalue = 0 }, 6497 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6498 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6499 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6500 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6501 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6502 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6503 .access = PL3_RW, .resetvalue = 0, 6504 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6505 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6506 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6507 .access = PL3_RW, .type = ARM_CP_CONST, 6508 .resetvalue = 0 }, 6509 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6510 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6511 .access = PL3_RW, .type = ARM_CP_CONST, 6512 .resetvalue = 0 }, 6513 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6514 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6515 .access = PL3_RW, .type = ARM_CP_CONST, 6516 .resetvalue = 0 }, 6517 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6518 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6519 .access = PL3_W, .type = ARM_CP_NO_RAW, 6520 .writefn = tlbi_aa64_alle3is_write }, 6521 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6523 .access = PL3_W, .type = ARM_CP_NO_RAW, 6524 .writefn = tlbi_aa64_vae3is_write }, 6525 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6526 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6527 .access = PL3_W, .type = ARM_CP_NO_RAW, 6528 .writefn = tlbi_aa64_vae3is_write }, 6529 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6530 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6531 .access = PL3_W, .type = ARM_CP_NO_RAW, 6532 .writefn = tlbi_aa64_alle3_write }, 6533 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6534 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6535 .access = PL3_W, .type = ARM_CP_NO_RAW, 6536 .writefn = tlbi_aa64_vae3_write }, 6537 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6538 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6539 .access = PL3_W, .type = ARM_CP_NO_RAW, 6540 .writefn = tlbi_aa64_vae3_write }, 6541 }; 6542 6543 #ifndef CONFIG_USER_ONLY 6544 6545 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6546 bool isread) 6547 { 6548 if (arm_current_el(env) == 1) { 6549 /* This must be a FEAT_NV access */ 6550 /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */ 6551 return CP_ACCESS_OK; 6552 } 6553 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6554 return CP_ACCESS_TRAP; 6555 } 6556 return CP_ACCESS_OK; 6557 } 6558 6559 /* Test if system register redirection is to occur in the current state. */ 6560 static bool redirect_for_e2h(CPUARMState *env) 6561 { 6562 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6563 } 6564 6565 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6566 { 6567 CPReadFn *readfn; 6568 6569 if (redirect_for_e2h(env)) { 6570 /* Switch to the saved EL2 version of the register. */ 6571 ri = ri->opaque; 6572 readfn = ri->readfn; 6573 } else { 6574 readfn = ri->orig_readfn; 6575 } 6576 if (readfn == NULL) { 6577 readfn = raw_read; 6578 } 6579 return readfn(env, ri); 6580 } 6581 6582 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6583 uint64_t value) 6584 { 6585 CPWriteFn *writefn; 6586 6587 if (redirect_for_e2h(env)) { 6588 /* Switch to the saved EL2 version of the register. */ 6589 ri = ri->opaque; 6590 writefn = ri->writefn; 6591 } else { 6592 writefn = ri->orig_writefn; 6593 } 6594 if (writefn == NULL) { 6595 writefn = raw_write; 6596 } 6597 writefn(env, ri, value); 6598 } 6599 6600 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6601 { 6602 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6603 return ri->orig_readfn(env, ri->opaque); 6604 } 6605 6606 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6607 uint64_t value) 6608 { 6609 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6610 return ri->orig_writefn(env, ri->opaque, value); 6611 } 6612 6613 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6614 const ARMCPRegInfo *ri, 6615 bool isread) 6616 { 6617 if (arm_current_el(env) == 1) { 6618 /* 6619 * This must be a FEAT_NV access (will either trap or redirect 6620 * to memory). None of the registers with _EL12 aliases want to 6621 * apply their trap controls for this kind of access, so don't 6622 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6623 */ 6624 return CP_ACCESS_OK; 6625 } 6626 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6627 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6628 return CP_ACCESS_TRAP_UNCATEGORIZED; 6629 } 6630 if (ri->orig_accessfn) { 6631 return ri->orig_accessfn(env, ri->opaque, isread); 6632 } 6633 return CP_ACCESS_OK; 6634 } 6635 6636 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6637 { 6638 struct E2HAlias { 6639 uint32_t src_key, dst_key, new_key; 6640 const char *src_name, *dst_name, *new_name; 6641 bool (*feature)(const ARMISARegisters *id); 6642 }; 6643 6644 #define K(op0, op1, crn, crm, op2) \ 6645 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6646 6647 static const struct E2HAlias aliases[] = { 6648 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6649 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6650 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6651 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6652 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6653 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6654 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6655 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6656 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6657 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6658 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6659 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6660 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6661 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6662 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6663 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6664 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6665 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6666 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6667 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6668 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6669 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6670 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6671 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6672 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6673 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6674 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6675 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6676 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6677 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6678 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6679 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6680 6681 /* 6682 * Note that redirection of ZCR is mentioned in the description 6683 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6684 * not in the summary table. 6685 */ 6686 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6687 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6688 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6689 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6690 6691 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6692 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6693 6694 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6695 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6696 isar_feature_aa64_scxtnum }, 6697 6698 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6699 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6700 }; 6701 #undef K 6702 6703 size_t i; 6704 6705 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6706 const struct E2HAlias *a = &aliases[i]; 6707 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6708 bool ok; 6709 6710 if (a->feature && !a->feature(&cpu->isar)) { 6711 continue; 6712 } 6713 6714 src_reg = g_hash_table_lookup(cpu->cp_regs, 6715 (gpointer)(uintptr_t)a->src_key); 6716 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6717 (gpointer)(uintptr_t)a->dst_key); 6718 g_assert(src_reg != NULL); 6719 g_assert(dst_reg != NULL); 6720 6721 /* Cross-compare names to detect typos in the keys. */ 6722 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6723 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6724 6725 /* None of the core system registers use opaque; we will. */ 6726 g_assert(src_reg->opaque == NULL); 6727 6728 /* Create alias before redirection so we dup the right data. */ 6729 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6730 6731 new_reg->name = a->new_name; 6732 new_reg->type |= ARM_CP_ALIAS; 6733 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6734 new_reg->access &= PL2_RW | PL3_RW; 6735 /* The new_reg op fields are as per new_key, not the target reg */ 6736 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6737 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6738 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6739 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6740 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6741 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6742 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6743 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6744 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6745 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6746 new_reg->opaque = src_reg; 6747 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6748 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6749 new_reg->orig_accessfn = src_reg->accessfn; 6750 if (!new_reg->raw_readfn) { 6751 new_reg->raw_readfn = raw_read; 6752 } 6753 if (!new_reg->raw_writefn) { 6754 new_reg->raw_writefn = raw_write; 6755 } 6756 new_reg->readfn = el2_e2h_e12_read; 6757 new_reg->writefn = el2_e2h_e12_write; 6758 new_reg->accessfn = el2_e2h_e12_access; 6759 6760 /* 6761 * If the _EL1 register is redirected to memory by FEAT_NV2, 6762 * then it shares the offset with the _EL12 register, 6763 * and which one is redirected depends on HCR_EL2.NV1. 6764 */ 6765 if (new_reg->nv2_redirect_offset) { 6766 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6767 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6768 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6769 } 6770 6771 ok = g_hash_table_insert(cpu->cp_regs, 6772 (gpointer)(uintptr_t)a->new_key, new_reg); 6773 g_assert(ok); 6774 6775 src_reg->opaque = dst_reg; 6776 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6777 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6778 if (!src_reg->raw_readfn) { 6779 src_reg->raw_readfn = raw_read; 6780 } 6781 if (!src_reg->raw_writefn) { 6782 src_reg->raw_writefn = raw_write; 6783 } 6784 src_reg->readfn = el2_e2h_read; 6785 src_reg->writefn = el2_e2h_write; 6786 } 6787 } 6788 #endif 6789 6790 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6791 bool isread) 6792 { 6793 int cur_el = arm_current_el(env); 6794 6795 if (cur_el < 2) { 6796 uint64_t hcr = arm_hcr_el2_eff(env); 6797 6798 if (cur_el == 0) { 6799 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6800 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6801 return CP_ACCESS_TRAP_EL2; 6802 } 6803 } else { 6804 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6805 return CP_ACCESS_TRAP; 6806 } 6807 if (hcr & HCR_TID2) { 6808 return CP_ACCESS_TRAP_EL2; 6809 } 6810 } 6811 } else if (hcr & HCR_TID2) { 6812 return CP_ACCESS_TRAP_EL2; 6813 } 6814 } 6815 6816 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6817 return CP_ACCESS_TRAP_EL2; 6818 } 6819 6820 return CP_ACCESS_OK; 6821 } 6822 6823 /* 6824 * Check for traps to RAS registers, which are controlled 6825 * by HCR_EL2.TERR and SCR_EL3.TERR. 6826 */ 6827 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6828 bool isread) 6829 { 6830 int el = arm_current_el(env); 6831 6832 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6833 return CP_ACCESS_TRAP_EL2; 6834 } 6835 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6836 return CP_ACCESS_TRAP_EL3; 6837 } 6838 return CP_ACCESS_OK; 6839 } 6840 6841 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6842 { 6843 int el = arm_current_el(env); 6844 6845 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6846 return env->cp15.vdisr_el2; 6847 } 6848 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6849 return 0; /* RAZ/WI */ 6850 } 6851 return env->cp15.disr_el1; 6852 } 6853 6854 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6855 { 6856 int el = arm_current_el(env); 6857 6858 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6859 env->cp15.vdisr_el2 = val; 6860 return; 6861 } 6862 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6863 return; /* RAZ/WI */ 6864 } 6865 env->cp15.disr_el1 = val; 6866 } 6867 6868 /* 6869 * Minimal RAS implementation with no Error Records. 6870 * Which means that all of the Error Record registers: 6871 * ERXADDR_EL1 6872 * ERXCTLR_EL1 6873 * ERXFR_EL1 6874 * ERXMISC0_EL1 6875 * ERXMISC1_EL1 6876 * ERXMISC2_EL1 6877 * ERXMISC3_EL1 6878 * ERXPFGCDN_EL1 (RASv1p1) 6879 * ERXPFGCTL_EL1 (RASv1p1) 6880 * ERXPFGF_EL1 (RASv1p1) 6881 * ERXSTATUS_EL1 6882 * and 6883 * ERRSELR_EL1 6884 * may generate UNDEFINED, which is the effect we get by not 6885 * listing them at all. 6886 * 6887 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6888 * is higher priority than FGT-to-EL2 so we do not need to list them 6889 * in order to check for an FGT. 6890 */ 6891 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6892 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6893 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6895 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6896 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6897 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6898 .access = PL1_R, .accessfn = access_terr, 6899 .fgt = FGT_ERRIDR_EL1, 6900 .type = ARM_CP_CONST, .resetvalue = 0 }, 6901 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6902 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6903 .nv2_redirect_offset = 0x500, 6904 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6905 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6906 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6907 .nv2_redirect_offset = 0x508, 6908 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6909 }; 6910 6911 /* 6912 * Return the exception level to which exceptions should be taken 6913 * via SVEAccessTrap. This excludes the check for whether the exception 6914 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6915 * be found by testing 0 < fp_exception_el < sve_exception_el. 6916 * 6917 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6918 * pseudocode does *not* separate out the FP trap checks, but has them 6919 * all in one function. 6920 */ 6921 int sve_exception_el(CPUARMState *env, int el) 6922 { 6923 #ifndef CONFIG_USER_ONLY 6924 if (el <= 1 && !el_is_in_host(env, el)) { 6925 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6926 case 1: 6927 if (el != 0) { 6928 break; 6929 } 6930 /* fall through */ 6931 case 0: 6932 case 2: 6933 return 1; 6934 } 6935 } 6936 6937 if (el <= 2 && arm_is_el2_enabled(env)) { 6938 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6939 if (env->cp15.hcr_el2 & HCR_E2H) { 6940 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6941 case 1: 6942 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6943 break; 6944 } 6945 /* fall through */ 6946 case 0: 6947 case 2: 6948 return 2; 6949 } 6950 } else { 6951 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6952 return 2; 6953 } 6954 } 6955 } 6956 6957 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6958 if (arm_feature(env, ARM_FEATURE_EL3) 6959 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6960 return 3; 6961 } 6962 #endif 6963 return 0; 6964 } 6965 6966 /* 6967 * Return the exception level to which exceptions should be taken for SME. 6968 * C.f. the ARM pseudocode function CheckSMEAccess. 6969 */ 6970 int sme_exception_el(CPUARMState *env, int el) 6971 { 6972 #ifndef CONFIG_USER_ONLY 6973 if (el <= 1 && !el_is_in_host(env, el)) { 6974 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6975 case 1: 6976 if (el != 0) { 6977 break; 6978 } 6979 /* fall through */ 6980 case 0: 6981 case 2: 6982 return 1; 6983 } 6984 } 6985 6986 if (el <= 2 && arm_is_el2_enabled(env)) { 6987 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6988 if (env->cp15.hcr_el2 & HCR_E2H) { 6989 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6990 case 1: 6991 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6992 break; 6993 } 6994 /* fall through */ 6995 case 0: 6996 case 2: 6997 return 2; 6998 } 6999 } else { 7000 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7001 return 2; 7002 } 7003 } 7004 } 7005 7006 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7007 if (arm_feature(env, ARM_FEATURE_EL3) 7008 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7009 return 3; 7010 } 7011 #endif 7012 return 0; 7013 } 7014 7015 /* 7016 * Given that SVE is enabled, return the vector length for EL. 7017 */ 7018 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7019 { 7020 ARMCPU *cpu = env_archcpu(env); 7021 uint64_t *cr = env->vfp.zcr_el; 7022 uint32_t map = cpu->sve_vq.map; 7023 uint32_t len = ARM_MAX_VQ - 1; 7024 7025 if (sm) { 7026 cr = env->vfp.smcr_el; 7027 map = cpu->sme_vq.map; 7028 } 7029 7030 if (el <= 1 && !el_is_in_host(env, el)) { 7031 len = MIN(len, 0xf & (uint32_t)cr[1]); 7032 } 7033 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7034 len = MIN(len, 0xf & (uint32_t)cr[2]); 7035 } 7036 if (arm_feature(env, ARM_FEATURE_EL3)) { 7037 len = MIN(len, 0xf & (uint32_t)cr[3]); 7038 } 7039 7040 map &= MAKE_64BIT_MASK(0, len + 1); 7041 if (map != 0) { 7042 return 31 - clz32(map); 7043 } 7044 7045 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7046 assert(sm); 7047 return ctz32(cpu->sme_vq.map); 7048 } 7049 7050 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7051 { 7052 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7053 } 7054 7055 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7056 uint64_t value) 7057 { 7058 int cur_el = arm_current_el(env); 7059 int old_len = sve_vqm1_for_el(env, cur_el); 7060 int new_len; 7061 7062 /* Bits other than [3:0] are RAZ/WI. */ 7063 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7064 raw_write(env, ri, value & 0xf); 7065 7066 /* 7067 * Because we arrived here, we know both FP and SVE are enabled; 7068 * otherwise we would have trapped access to the ZCR_ELn register. 7069 */ 7070 new_len = sve_vqm1_for_el(env, cur_el); 7071 if (new_len < old_len) { 7072 aarch64_sve_narrow_vq(env, new_len + 1); 7073 } 7074 } 7075 7076 static const ARMCPRegInfo zcr_reginfo[] = { 7077 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7078 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7079 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7080 .access = PL1_RW, .type = ARM_CP_SVE, 7081 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7082 .writefn = zcr_write, .raw_writefn = raw_write }, 7083 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7085 .access = PL2_RW, .type = ARM_CP_SVE, 7086 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7087 .writefn = zcr_write, .raw_writefn = raw_write }, 7088 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7090 .access = PL3_RW, .type = ARM_CP_SVE, 7091 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7092 .writefn = zcr_write, .raw_writefn = raw_write }, 7093 }; 7094 7095 #ifdef TARGET_AARCH64 7096 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7097 bool isread) 7098 { 7099 int el = arm_current_el(env); 7100 7101 if (el == 0) { 7102 uint64_t sctlr = arm_sctlr(env, el); 7103 if (!(sctlr & SCTLR_EnTP2)) { 7104 return CP_ACCESS_TRAP; 7105 } 7106 } 7107 /* TODO: FEAT_FGT */ 7108 if (el < 3 7109 && arm_feature(env, ARM_FEATURE_EL3) 7110 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7111 return CP_ACCESS_TRAP_EL3; 7112 } 7113 return CP_ACCESS_OK; 7114 } 7115 7116 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7117 bool isread) 7118 { 7119 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7120 if (arm_current_el(env) == 2 7121 && arm_feature(env, ARM_FEATURE_EL3) 7122 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7123 return CP_ACCESS_TRAP_EL3; 7124 } 7125 return CP_ACCESS_OK; 7126 } 7127 7128 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7129 bool isread) 7130 { 7131 if (arm_current_el(env) < 3 7132 && arm_feature(env, ARM_FEATURE_EL3) 7133 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7134 return CP_ACCESS_TRAP_EL3; 7135 } 7136 return CP_ACCESS_OK; 7137 } 7138 7139 /* ResetSVEState */ 7140 static void arm_reset_sve_state(CPUARMState *env) 7141 { 7142 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7143 /* Recall that FFR is stored as pregs[16]. */ 7144 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7145 vfp_set_fpcr(env, 0x0800009f); 7146 } 7147 7148 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7149 { 7150 uint64_t change = (env->svcr ^ new) & mask; 7151 7152 if (change == 0) { 7153 return; 7154 } 7155 env->svcr ^= change; 7156 7157 if (change & R_SVCR_SM_MASK) { 7158 arm_reset_sve_state(env); 7159 } 7160 7161 /* 7162 * ResetSMEState. 7163 * 7164 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7165 * on enable: while disabled, the storage is inaccessible and the 7166 * value does not matter. We're not saving the storage in vmstate 7167 * when disabled either. 7168 */ 7169 if (change & new & R_SVCR_ZA_MASK) { 7170 memset(env->zarray, 0, sizeof(env->zarray)); 7171 } 7172 7173 if (tcg_enabled()) { 7174 arm_rebuild_hflags(env); 7175 } 7176 } 7177 7178 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7179 uint64_t value) 7180 { 7181 aarch64_set_svcr(env, value, -1); 7182 } 7183 7184 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7185 uint64_t value) 7186 { 7187 int cur_el = arm_current_el(env); 7188 int old_len = sve_vqm1_for_el(env, cur_el); 7189 int new_len; 7190 7191 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7192 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7193 raw_write(env, ri, value); 7194 7195 /* 7196 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7197 * when SVL is widened (old values kept, or zeros). Choose to keep the 7198 * current values for simplicity. But for QEMU internals, we must still 7199 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7200 * above aarch64_sve_narrow_vq. 7201 */ 7202 new_len = sve_vqm1_for_el(env, cur_el); 7203 if (new_len < old_len) { 7204 aarch64_sve_narrow_vq(env, new_len + 1); 7205 } 7206 } 7207 7208 static const ARMCPRegInfo sme_reginfo[] = { 7209 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7211 .access = PL0_RW, .accessfn = access_tpidr2, 7212 .fgt = FGT_NTPIDR2_EL0, 7213 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7214 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7216 .access = PL0_RW, .type = ARM_CP_SME, 7217 .fieldoffset = offsetof(CPUARMState, svcr), 7218 .writefn = svcr_write, .raw_writefn = raw_write }, 7219 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7221 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7222 .access = PL1_RW, .type = ARM_CP_SME, 7223 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7224 .writefn = smcr_write, .raw_writefn = raw_write }, 7225 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7227 .access = PL2_RW, .type = ARM_CP_SME, 7228 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7229 .writefn = smcr_write, .raw_writefn = raw_write }, 7230 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7231 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7232 .access = PL3_RW, .type = ARM_CP_SME, 7233 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7234 .writefn = smcr_write, .raw_writefn = raw_write }, 7235 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7236 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7237 .access = PL1_R, .accessfn = access_aa64_tid1, 7238 /* 7239 * IMPLEMENTOR = 0 (software) 7240 * REVISION = 0 (implementation defined) 7241 * SMPS = 0 (no streaming execution priority in QEMU) 7242 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7243 */ 7244 .type = ARM_CP_CONST, .resetvalue = 0, }, 7245 /* 7246 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7247 */ 7248 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7249 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7250 .access = PL1_RW, .accessfn = access_smpri, 7251 .fgt = FGT_NSMPRI_EL1, 7252 .type = ARM_CP_CONST, .resetvalue = 0 }, 7253 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7255 .nv2_redirect_offset = 0x1f8, 7256 .access = PL2_RW, .accessfn = access_smprimap, 7257 .type = ARM_CP_CONST, .resetvalue = 0 }, 7258 }; 7259 7260 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7261 uint64_t value) 7262 { 7263 CPUState *cs = env_cpu(env); 7264 7265 tlb_flush(cs); 7266 } 7267 7268 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7269 uint64_t value) 7270 { 7271 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7272 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7273 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7274 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7275 7276 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7277 } 7278 7279 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7280 { 7281 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7282 env_archcpu(env)->reset_l0gptsz); 7283 } 7284 7285 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7286 uint64_t value) 7287 { 7288 CPUState *cs = env_cpu(env); 7289 7290 tlb_flush_all_cpus_synced(cs); 7291 } 7292 7293 static const ARMCPRegInfo rme_reginfo[] = { 7294 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7295 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7296 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7297 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7298 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7299 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7300 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7301 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7303 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7304 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7306 .access = PL3_W, .type = ARM_CP_NO_RAW, 7307 .writefn = tlbi_aa64_paall_write }, 7308 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7310 .access = PL3_W, .type = ARM_CP_NO_RAW, 7311 .writefn = tlbi_aa64_paallos_write }, 7312 /* 7313 * QEMU does not have a way to invalidate by physical address, thus 7314 * invalidating a range of physical addresses is accomplished by 7315 * flushing all tlb entries in the outer shareable domain, 7316 * just like PAALLOS. 7317 */ 7318 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7319 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7320 .access = PL3_W, .type = ARM_CP_NO_RAW, 7321 .writefn = tlbi_aa64_paallos_write }, 7322 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7324 .access = PL3_W, .type = ARM_CP_NO_RAW, 7325 .writefn = tlbi_aa64_paallos_write }, 7326 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7328 .access = PL3_W, .type = ARM_CP_NOP }, 7329 }; 7330 7331 static const ARMCPRegInfo rme_mte_reginfo[] = { 7332 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7333 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7334 .access = PL3_W, .type = ARM_CP_NOP }, 7335 }; 7336 #endif /* TARGET_AARCH64 */ 7337 7338 static void define_pmu_regs(ARMCPU *cpu) 7339 { 7340 /* 7341 * v7 performance monitor control register: same implementor 7342 * field as main ID register, and we implement four counters in 7343 * addition to the cycle count register. 7344 */ 7345 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7346 ARMCPRegInfo pmcr = { 7347 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7348 .access = PL0_RW, 7349 .fgt = FGT_PMCR_EL0, 7350 .type = ARM_CP_IO | ARM_CP_ALIAS, 7351 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7352 .accessfn = pmreg_access, 7353 .readfn = pmcr_read, .raw_readfn = raw_read, 7354 .writefn = pmcr_write, .raw_writefn = raw_write, 7355 }; 7356 ARMCPRegInfo pmcr64 = { 7357 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7359 .access = PL0_RW, .accessfn = pmreg_access, 7360 .fgt = FGT_PMCR_EL0, 7361 .type = ARM_CP_IO, 7362 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7363 .resetvalue = cpu->isar.reset_pmcr_el0, 7364 .readfn = pmcr_read, .raw_readfn = raw_read, 7365 .writefn = pmcr_write, .raw_writefn = raw_write, 7366 }; 7367 7368 define_one_arm_cp_reg(cpu, &pmcr); 7369 define_one_arm_cp_reg(cpu, &pmcr64); 7370 for (i = 0; i < pmcrn; i++) { 7371 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7372 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7373 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7374 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7375 ARMCPRegInfo pmev_regs[] = { 7376 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7377 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7378 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7379 .fgt = FGT_PMEVCNTRN_EL0, 7380 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7381 .accessfn = pmreg_access_xevcntr }, 7382 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7384 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7385 .type = ARM_CP_IO, 7386 .fgt = FGT_PMEVCNTRN_EL0, 7387 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7388 .raw_readfn = pmevcntr_rawread, 7389 .raw_writefn = pmevcntr_rawwrite }, 7390 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7391 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7392 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7393 .fgt = FGT_PMEVTYPERN_EL0, 7394 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7395 .accessfn = pmreg_access }, 7396 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7397 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7398 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7399 .fgt = FGT_PMEVTYPERN_EL0, 7400 .type = ARM_CP_IO, 7401 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7402 .raw_writefn = pmevtyper_rawwrite }, 7403 }; 7404 define_arm_cp_regs(cpu, pmev_regs); 7405 g_free(pmevcntr_name); 7406 g_free(pmevcntr_el0_name); 7407 g_free(pmevtyper_name); 7408 g_free(pmevtyper_el0_name); 7409 } 7410 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7411 ARMCPRegInfo v81_pmu_regs[] = { 7412 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7413 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7414 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7415 .fgt = FGT_PMCEIDN_EL0, 7416 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7417 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7418 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7419 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7420 .fgt = FGT_PMCEIDN_EL0, 7421 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7422 }; 7423 define_arm_cp_regs(cpu, v81_pmu_regs); 7424 } 7425 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7426 static const ARMCPRegInfo v84_pmmir = { 7427 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7428 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7429 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7430 .fgt = FGT_PMMIR_EL1, 7431 .resetvalue = 0 7432 }; 7433 define_one_arm_cp_reg(cpu, &v84_pmmir); 7434 } 7435 } 7436 7437 #ifndef CONFIG_USER_ONLY 7438 /* 7439 * We don't know until after realize whether there's a GICv3 7440 * attached, and that is what registers the gicv3 sysregs. 7441 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7442 * at runtime. 7443 */ 7444 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7445 { 7446 ARMCPU *cpu = env_archcpu(env); 7447 uint64_t pfr1 = cpu->isar.id_pfr1; 7448 7449 if (env->gicv3state) { 7450 pfr1 |= 1 << 28; 7451 } 7452 return pfr1; 7453 } 7454 7455 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7456 { 7457 ARMCPU *cpu = env_archcpu(env); 7458 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7459 7460 if (env->gicv3state) { 7461 pfr0 |= 1 << 24; 7462 } 7463 return pfr0; 7464 } 7465 #endif 7466 7467 /* 7468 * Shared logic between LORID and the rest of the LOR* registers. 7469 * Secure state exclusion has already been dealt with. 7470 */ 7471 static CPAccessResult access_lor_ns(CPUARMState *env, 7472 const ARMCPRegInfo *ri, bool isread) 7473 { 7474 int el = arm_current_el(env); 7475 7476 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7477 return CP_ACCESS_TRAP_EL2; 7478 } 7479 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7480 return CP_ACCESS_TRAP_EL3; 7481 } 7482 return CP_ACCESS_OK; 7483 } 7484 7485 static CPAccessResult access_lor_other(CPUARMState *env, 7486 const ARMCPRegInfo *ri, bool isread) 7487 { 7488 if (arm_is_secure_below_el3(env)) { 7489 /* Access denied in secure mode. */ 7490 return CP_ACCESS_TRAP; 7491 } 7492 return access_lor_ns(env, ri, isread); 7493 } 7494 7495 /* 7496 * A trivial implementation of ARMv8.1-LOR leaves all of these 7497 * registers fixed at 0, which indicates that there are zero 7498 * supported Limited Ordering regions. 7499 */ 7500 static const ARMCPRegInfo lor_reginfo[] = { 7501 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7503 .access = PL1_RW, .accessfn = access_lor_other, 7504 .fgt = FGT_LORSA_EL1, 7505 .type = ARM_CP_CONST, .resetvalue = 0 }, 7506 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7507 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7508 .access = PL1_RW, .accessfn = access_lor_other, 7509 .fgt = FGT_LOREA_EL1, 7510 .type = ARM_CP_CONST, .resetvalue = 0 }, 7511 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7512 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7513 .access = PL1_RW, .accessfn = access_lor_other, 7514 .fgt = FGT_LORN_EL1, 7515 .type = ARM_CP_CONST, .resetvalue = 0 }, 7516 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7517 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7518 .access = PL1_RW, .accessfn = access_lor_other, 7519 .fgt = FGT_LORC_EL1, 7520 .type = ARM_CP_CONST, .resetvalue = 0 }, 7521 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7523 .access = PL1_R, .accessfn = access_lor_ns, 7524 .fgt = FGT_LORID_EL1, 7525 .type = ARM_CP_CONST, .resetvalue = 0 }, 7526 }; 7527 7528 #ifdef TARGET_AARCH64 7529 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7530 bool isread) 7531 { 7532 int el = arm_current_el(env); 7533 7534 if (el < 2 && 7535 arm_is_el2_enabled(env) && 7536 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7537 return CP_ACCESS_TRAP_EL2; 7538 } 7539 if (el < 3 && 7540 arm_feature(env, ARM_FEATURE_EL3) && 7541 !(env->cp15.scr_el3 & SCR_APK)) { 7542 return CP_ACCESS_TRAP_EL3; 7543 } 7544 return CP_ACCESS_OK; 7545 } 7546 7547 static const ARMCPRegInfo pauth_reginfo[] = { 7548 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7550 .access = PL1_RW, .accessfn = access_pauth, 7551 .fgt = FGT_APDAKEY, 7552 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7553 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7555 .access = PL1_RW, .accessfn = access_pauth, 7556 .fgt = FGT_APDAKEY, 7557 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7558 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7560 .access = PL1_RW, .accessfn = access_pauth, 7561 .fgt = FGT_APDBKEY, 7562 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7563 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7565 .access = PL1_RW, .accessfn = access_pauth, 7566 .fgt = FGT_APDBKEY, 7567 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7568 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7570 .access = PL1_RW, .accessfn = access_pauth, 7571 .fgt = FGT_APGAKEY, 7572 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7573 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7575 .access = PL1_RW, .accessfn = access_pauth, 7576 .fgt = FGT_APGAKEY, 7577 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7578 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7580 .access = PL1_RW, .accessfn = access_pauth, 7581 .fgt = FGT_APIAKEY, 7582 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7583 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7585 .access = PL1_RW, .accessfn = access_pauth, 7586 .fgt = FGT_APIAKEY, 7587 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7588 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7590 .access = PL1_RW, .accessfn = access_pauth, 7591 .fgt = FGT_APIBKEY, 7592 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7593 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7595 .access = PL1_RW, .accessfn = access_pauth, 7596 .fgt = FGT_APIBKEY, 7597 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7598 }; 7599 7600 static const ARMCPRegInfo tlbirange_reginfo[] = { 7601 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7603 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7604 .fgt = FGT_TLBIRVAE1IS, 7605 .writefn = tlbi_aa64_rvae1is_write }, 7606 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7608 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7609 .fgt = FGT_TLBIRVAAE1IS, 7610 .writefn = tlbi_aa64_rvae1is_write }, 7611 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7612 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7613 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7614 .fgt = FGT_TLBIRVALE1IS, 7615 .writefn = tlbi_aa64_rvae1is_write }, 7616 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7617 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7618 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7619 .fgt = FGT_TLBIRVAALE1IS, 7620 .writefn = tlbi_aa64_rvae1is_write }, 7621 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7622 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7623 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7624 .fgt = FGT_TLBIRVAE1OS, 7625 .writefn = tlbi_aa64_rvae1is_write }, 7626 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7628 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7629 .fgt = FGT_TLBIRVAAE1OS, 7630 .writefn = tlbi_aa64_rvae1is_write }, 7631 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7632 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7633 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7634 .fgt = FGT_TLBIRVALE1OS, 7635 .writefn = tlbi_aa64_rvae1is_write }, 7636 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7638 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7639 .fgt = FGT_TLBIRVAALE1OS, 7640 .writefn = tlbi_aa64_rvae1is_write }, 7641 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7643 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7644 .fgt = FGT_TLBIRVAE1, 7645 .writefn = tlbi_aa64_rvae1_write }, 7646 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7648 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7649 .fgt = FGT_TLBIRVAAE1, 7650 .writefn = tlbi_aa64_rvae1_write }, 7651 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7652 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7653 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7654 .fgt = FGT_TLBIRVALE1, 7655 .writefn = tlbi_aa64_rvae1_write }, 7656 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7658 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7659 .fgt = FGT_TLBIRVAALE1, 7660 .writefn = tlbi_aa64_rvae1_write }, 7661 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7663 .access = PL2_W, .type = ARM_CP_NO_RAW, 7664 .writefn = tlbi_aa64_ripas2e1is_write }, 7665 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7667 .access = PL2_W, .type = ARM_CP_NO_RAW, 7668 .writefn = tlbi_aa64_ripas2e1is_write }, 7669 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7671 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7672 .writefn = tlbi_aa64_rvae2is_write }, 7673 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7674 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7675 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7676 .writefn = tlbi_aa64_rvae2is_write }, 7677 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7678 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7679 .access = PL2_W, .type = ARM_CP_NO_RAW, 7680 .writefn = tlbi_aa64_ripas2e1_write }, 7681 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7683 .access = PL2_W, .type = ARM_CP_NO_RAW, 7684 .writefn = tlbi_aa64_ripas2e1_write }, 7685 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7687 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7688 .writefn = tlbi_aa64_rvae2is_write }, 7689 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7691 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7692 .writefn = tlbi_aa64_rvae2is_write }, 7693 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7694 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7695 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7696 .writefn = tlbi_aa64_rvae2_write }, 7697 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7698 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7699 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7700 .writefn = tlbi_aa64_rvae2_write }, 7701 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7703 .access = PL3_W, .type = ARM_CP_NO_RAW, 7704 .writefn = tlbi_aa64_rvae3is_write }, 7705 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7707 .access = PL3_W, .type = ARM_CP_NO_RAW, 7708 .writefn = tlbi_aa64_rvae3is_write }, 7709 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7710 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7711 .access = PL3_W, .type = ARM_CP_NO_RAW, 7712 .writefn = tlbi_aa64_rvae3is_write }, 7713 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7714 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7715 .access = PL3_W, .type = ARM_CP_NO_RAW, 7716 .writefn = tlbi_aa64_rvae3is_write }, 7717 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7718 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7719 .access = PL3_W, .type = ARM_CP_NO_RAW, 7720 .writefn = tlbi_aa64_rvae3_write }, 7721 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7723 .access = PL3_W, .type = ARM_CP_NO_RAW, 7724 .writefn = tlbi_aa64_rvae3_write }, 7725 }; 7726 7727 static const ARMCPRegInfo tlbios_reginfo[] = { 7728 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7729 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7730 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7731 .fgt = FGT_TLBIVMALLE1OS, 7732 .writefn = tlbi_aa64_vmalle1is_write }, 7733 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7734 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7735 .fgt = FGT_TLBIVAE1OS, 7736 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7737 .writefn = tlbi_aa64_vae1is_write }, 7738 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7740 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7741 .fgt = FGT_TLBIASIDE1OS, 7742 .writefn = tlbi_aa64_vmalle1is_write }, 7743 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7745 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7746 .fgt = FGT_TLBIVAAE1OS, 7747 .writefn = tlbi_aa64_vae1is_write }, 7748 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7749 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7750 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7751 .fgt = FGT_TLBIVALE1OS, 7752 .writefn = tlbi_aa64_vae1is_write }, 7753 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7755 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7756 .fgt = FGT_TLBIVAALE1OS, 7757 .writefn = tlbi_aa64_vae1is_write }, 7758 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7760 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7761 .writefn = tlbi_aa64_alle2is_write }, 7762 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7763 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7764 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7765 .writefn = tlbi_aa64_vae2is_write }, 7766 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7768 .access = PL2_W, .type = ARM_CP_NO_RAW, 7769 .writefn = tlbi_aa64_alle1is_write }, 7770 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7772 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7773 .writefn = tlbi_aa64_vae2is_write }, 7774 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7776 .access = PL2_W, .type = ARM_CP_NO_RAW, 7777 .writefn = tlbi_aa64_alle1is_write }, 7778 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7780 .access = PL2_W, .type = ARM_CP_NOP }, 7781 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7783 .access = PL2_W, .type = ARM_CP_NOP }, 7784 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7786 .access = PL2_W, .type = ARM_CP_NOP }, 7787 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7788 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7789 .access = PL2_W, .type = ARM_CP_NOP }, 7790 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7792 .access = PL3_W, .type = ARM_CP_NO_RAW, 7793 .writefn = tlbi_aa64_alle3is_write }, 7794 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7796 .access = PL3_W, .type = ARM_CP_NO_RAW, 7797 .writefn = tlbi_aa64_vae3is_write }, 7798 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7800 .access = PL3_W, .type = ARM_CP_NO_RAW, 7801 .writefn = tlbi_aa64_vae3is_write }, 7802 }; 7803 7804 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7805 { 7806 Error *err = NULL; 7807 uint64_t ret; 7808 7809 /* Success sets NZCV = 0000. */ 7810 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7811 7812 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7813 /* 7814 * ??? Failed, for unknown reasons in the crypto subsystem. 7815 * The best we can do is log the reason and return the 7816 * timed-out indication to the guest. There is no reason 7817 * we know to expect this failure to be transitory, so the 7818 * guest may well hang retrying the operation. 7819 */ 7820 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7821 ri->name, error_get_pretty(err)); 7822 error_free(err); 7823 7824 env->ZF = 0; /* NZCF = 0100 */ 7825 return 0; 7826 } 7827 return ret; 7828 } 7829 7830 /* We do not support re-seeding, so the two registers operate the same. */ 7831 static const ARMCPRegInfo rndr_reginfo[] = { 7832 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7833 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7834 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7835 .access = PL0_R, .readfn = rndr_readfn }, 7836 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7837 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7838 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7839 .access = PL0_R, .readfn = rndr_readfn }, 7840 }; 7841 7842 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7843 uint64_t value) 7844 { 7845 #ifdef CONFIG_TCG 7846 ARMCPU *cpu = env_archcpu(env); 7847 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7848 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7849 uint64_t vaddr_in = (uint64_t) value; 7850 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7851 void *haddr; 7852 int mem_idx = arm_env_mmu_index(env); 7853 7854 /* This won't be crossing page boundaries */ 7855 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7856 if (haddr) { 7857 #ifndef CONFIG_USER_ONLY 7858 7859 ram_addr_t offset; 7860 MemoryRegion *mr; 7861 7862 /* RCU lock is already being held */ 7863 mr = memory_region_from_host(haddr, &offset); 7864 7865 if (mr) { 7866 memory_region_writeback(mr, offset, dline_size); 7867 } 7868 #endif /*CONFIG_USER_ONLY*/ 7869 } 7870 #else 7871 /* Handled by hardware accelerator. */ 7872 g_assert_not_reached(); 7873 #endif /* CONFIG_TCG */ 7874 } 7875 7876 static const ARMCPRegInfo dcpop_reg[] = { 7877 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7878 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7879 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7880 .fgt = FGT_DCCVAP, 7881 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7882 }; 7883 7884 static const ARMCPRegInfo dcpodp_reg[] = { 7885 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7887 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7888 .fgt = FGT_DCCVADP, 7889 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7890 }; 7891 7892 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7893 bool isread) 7894 { 7895 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7896 return CP_ACCESS_TRAP_EL2; 7897 } 7898 7899 return CP_ACCESS_OK; 7900 } 7901 7902 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7903 bool isread) 7904 { 7905 int el = arm_current_el(env); 7906 if (el < 2 && arm_is_el2_enabled(env)) { 7907 uint64_t hcr = arm_hcr_el2_eff(env); 7908 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7909 return CP_ACCESS_TRAP_EL2; 7910 } 7911 } 7912 if (el < 3 && 7913 arm_feature(env, ARM_FEATURE_EL3) && 7914 !(env->cp15.scr_el3 & SCR_ATA)) { 7915 return CP_ACCESS_TRAP_EL3; 7916 } 7917 return CP_ACCESS_OK; 7918 } 7919 7920 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 7921 bool isread) 7922 { 7923 CPAccessResult nv1 = access_nv1(env, ri, isread); 7924 7925 if (nv1 != CP_ACCESS_OK) { 7926 return nv1; 7927 } 7928 return access_mte(env, ri, isread); 7929 } 7930 7931 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 7932 bool isread) 7933 { 7934 /* 7935 * TFSR_EL2: similar to generic access_mte(), but we need to 7936 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 7937 * if NV2 is enabled then we will redirect this to TFSR_EL1 7938 * after doing the HCR and SCR ATA traps; otherwise this will 7939 * be a trap to EL2 and the HCR/SCR traps do not apply. 7940 */ 7941 int el = arm_current_el(env); 7942 7943 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7944 return CP_ACCESS_OK; 7945 } 7946 if (el < 2 && arm_is_el2_enabled(env)) { 7947 uint64_t hcr = arm_hcr_el2_eff(env); 7948 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7949 return CP_ACCESS_TRAP_EL2; 7950 } 7951 } 7952 if (el < 3 && 7953 arm_feature(env, ARM_FEATURE_EL3) && 7954 !(env->cp15.scr_el3 & SCR_ATA)) { 7955 return CP_ACCESS_TRAP_EL3; 7956 } 7957 return CP_ACCESS_OK; 7958 } 7959 7960 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7961 { 7962 return env->pstate & PSTATE_TCO; 7963 } 7964 7965 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7966 { 7967 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7968 } 7969 7970 static const ARMCPRegInfo mte_reginfo[] = { 7971 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7973 .access = PL1_RW, .accessfn = access_mte, 7974 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7975 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7976 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7977 .access = PL1_RW, .accessfn = access_tfsr_el1, 7978 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7979 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7980 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7981 .type = ARM_CP_NV2_REDIRECT, 7982 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7983 .access = PL2_RW, .accessfn = access_tfsr_el2, 7984 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7985 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7986 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7987 .access = PL3_RW, 7988 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7989 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7990 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7991 .access = PL1_RW, .accessfn = access_mte, 7992 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7993 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7995 .access = PL1_RW, .accessfn = access_mte, 7996 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7997 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7998 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7999 .type = ARM_CP_NO_RAW, 8000 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8001 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8002 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8003 .type = ARM_CP_NOP, .access = PL1_W, 8004 .fgt = FGT_DCIVAC, 8005 .accessfn = aa64_cacheop_poc_access }, 8006 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8007 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8008 .fgt = FGT_DCISW, 8009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8010 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8012 .type = ARM_CP_NOP, .access = PL1_W, 8013 .fgt = FGT_DCIVAC, 8014 .accessfn = aa64_cacheop_poc_access }, 8015 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8016 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8017 .fgt = FGT_DCISW, 8018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8019 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8020 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8021 .fgt = FGT_DCCSW, 8022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8023 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8025 .fgt = FGT_DCCSW, 8026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8027 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8028 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8029 .fgt = FGT_DCCISW, 8030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8031 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8033 .fgt = FGT_DCCISW, 8034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8035 }; 8036 8037 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8038 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8040 .type = ARM_CP_CONST, .access = PL0_RW, }, 8041 }; 8042 8043 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8044 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8045 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8046 .type = ARM_CP_NOP, .access = PL0_W, 8047 .fgt = FGT_DCCVAC, 8048 .accessfn = aa64_cacheop_poc_access }, 8049 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8050 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8051 .type = ARM_CP_NOP, .access = PL0_W, 8052 .fgt = FGT_DCCVAC, 8053 .accessfn = aa64_cacheop_poc_access }, 8054 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8055 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8056 .type = ARM_CP_NOP, .access = PL0_W, 8057 .fgt = FGT_DCCVAP, 8058 .accessfn = aa64_cacheop_poc_access }, 8059 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8060 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8061 .type = ARM_CP_NOP, .access = PL0_W, 8062 .fgt = FGT_DCCVAP, 8063 .accessfn = aa64_cacheop_poc_access }, 8064 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8066 .type = ARM_CP_NOP, .access = PL0_W, 8067 .fgt = FGT_DCCVADP, 8068 .accessfn = aa64_cacheop_poc_access }, 8069 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8070 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8071 .type = ARM_CP_NOP, .access = PL0_W, 8072 .fgt = FGT_DCCVADP, 8073 .accessfn = aa64_cacheop_poc_access }, 8074 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8075 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8076 .type = ARM_CP_NOP, .access = PL0_W, 8077 .fgt = FGT_DCCIVAC, 8078 .accessfn = aa64_cacheop_poc_access }, 8079 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8080 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8081 .type = ARM_CP_NOP, .access = PL0_W, 8082 .fgt = FGT_DCCIVAC, 8083 .accessfn = aa64_cacheop_poc_access }, 8084 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8086 .access = PL0_W, .type = ARM_CP_DC_GVA, 8087 #ifndef CONFIG_USER_ONLY 8088 /* Avoid overhead of an access check that always passes in user-mode */ 8089 .accessfn = aa64_zva_access, 8090 .fgt = FGT_DCZVA, 8091 #endif 8092 }, 8093 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8094 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8095 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8096 #ifndef CONFIG_USER_ONLY 8097 /* Avoid overhead of an access check that always passes in user-mode */ 8098 .accessfn = aa64_zva_access, 8099 .fgt = FGT_DCZVA, 8100 #endif 8101 }, 8102 }; 8103 8104 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8105 bool isread) 8106 { 8107 uint64_t hcr = arm_hcr_el2_eff(env); 8108 int el = arm_current_el(env); 8109 8110 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8111 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8112 if (hcr & HCR_TGE) { 8113 return CP_ACCESS_TRAP_EL2; 8114 } 8115 return CP_ACCESS_TRAP; 8116 } 8117 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8118 return CP_ACCESS_TRAP_EL2; 8119 } 8120 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8121 return CP_ACCESS_TRAP_EL2; 8122 } 8123 if (el < 3 8124 && arm_feature(env, ARM_FEATURE_EL3) 8125 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8126 return CP_ACCESS_TRAP_EL3; 8127 } 8128 return CP_ACCESS_OK; 8129 } 8130 8131 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8132 const ARMCPRegInfo *ri, 8133 bool isread) 8134 { 8135 CPAccessResult nv1 = access_nv1(env, ri, isread); 8136 8137 if (nv1 != CP_ACCESS_OK) { 8138 return nv1; 8139 } 8140 return access_scxtnum(env, ri, isread); 8141 } 8142 8143 static const ARMCPRegInfo scxtnum_reginfo[] = { 8144 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8145 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8146 .access = PL0_RW, .accessfn = access_scxtnum, 8147 .fgt = FGT_SCXTNUM_EL0, 8148 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8149 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8150 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8151 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8152 .fgt = FGT_SCXTNUM_EL1, 8153 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8154 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8155 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8156 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8157 .access = PL2_RW, .accessfn = access_scxtnum, 8158 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8159 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8160 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8161 .access = PL3_RW, 8162 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8163 }; 8164 8165 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8166 bool isread) 8167 { 8168 if (arm_current_el(env) == 2 && 8169 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8170 return CP_ACCESS_TRAP_EL3; 8171 } 8172 return CP_ACCESS_OK; 8173 } 8174 8175 static const ARMCPRegInfo fgt_reginfo[] = { 8176 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8177 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8178 .nv2_redirect_offset = 0x1b8, 8179 .access = PL2_RW, .accessfn = access_fgt, 8180 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8181 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8182 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8183 .nv2_redirect_offset = 0x1c0, 8184 .access = PL2_RW, .accessfn = access_fgt, 8185 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8186 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8187 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8188 .nv2_redirect_offset = 0x1d0, 8189 .access = PL2_RW, .accessfn = access_fgt, 8190 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8191 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8192 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8193 .nv2_redirect_offset = 0x1d8, 8194 .access = PL2_RW, .accessfn = access_fgt, 8195 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8196 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8197 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8198 .nv2_redirect_offset = 0x1c8, 8199 .access = PL2_RW, .accessfn = access_fgt, 8200 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8201 }; 8202 8203 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8204 uint64_t value) 8205 { 8206 /* 8207 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8208 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8209 * about the RESS bits at the top -- we choose the "generate an EL2 8210 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8211 * the ptw.c code detect the resulting invalid address). 8212 */ 8213 env->cp15.vncr_el2 = value & ~0xfffULL; 8214 } 8215 8216 static const ARMCPRegInfo nv2_reginfo[] = { 8217 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8218 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8219 .access = PL2_RW, 8220 .writefn = vncr_write, 8221 .nv2_redirect_offset = 0xb0, 8222 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8223 }; 8224 8225 #endif /* TARGET_AARCH64 */ 8226 8227 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8228 bool isread) 8229 { 8230 int el = arm_current_el(env); 8231 8232 if (el == 0) { 8233 uint64_t sctlr = arm_sctlr(env, el); 8234 if (!(sctlr & SCTLR_EnRCTX)) { 8235 return CP_ACCESS_TRAP; 8236 } 8237 } else if (el == 1) { 8238 uint64_t hcr = arm_hcr_el2_eff(env); 8239 if (hcr & HCR_NV) { 8240 return CP_ACCESS_TRAP_EL2; 8241 } 8242 } 8243 return CP_ACCESS_OK; 8244 } 8245 8246 static const ARMCPRegInfo predinv_reginfo[] = { 8247 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8248 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8249 .fgt = FGT_CFPRCTX, 8250 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8251 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8252 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8253 .fgt = FGT_DVPRCTX, 8254 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8255 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8257 .fgt = FGT_CPPRCTX, 8258 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8259 /* 8260 * Note the AArch32 opcodes have a different OPC1. 8261 */ 8262 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8263 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8264 .fgt = FGT_CFPRCTX, 8265 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8266 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8267 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8268 .fgt = FGT_DVPRCTX, 8269 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8270 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8271 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8272 .fgt = FGT_CPPRCTX, 8273 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8274 }; 8275 8276 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8277 { 8278 /* Read the high 32 bits of the current CCSIDR */ 8279 return extract64(ccsidr_read(env, ri), 32, 32); 8280 } 8281 8282 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8283 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8284 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8285 .access = PL1_R, 8286 .accessfn = access_tid4, 8287 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8288 }; 8289 8290 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8291 bool isread) 8292 { 8293 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8294 return CP_ACCESS_TRAP_EL2; 8295 } 8296 8297 return CP_ACCESS_OK; 8298 } 8299 8300 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8301 bool isread) 8302 { 8303 if (arm_feature(env, ARM_FEATURE_V8)) { 8304 return access_aa64_tid3(env, ri, isread); 8305 } 8306 8307 return CP_ACCESS_OK; 8308 } 8309 8310 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8311 bool isread) 8312 { 8313 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8314 return CP_ACCESS_TRAP_EL2; 8315 } 8316 8317 return CP_ACCESS_OK; 8318 } 8319 8320 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8321 const ARMCPRegInfo *ri, bool isread) 8322 { 8323 /* 8324 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8325 * in v7A, not in v8A. 8326 */ 8327 if (!arm_feature(env, ARM_FEATURE_V8) && 8328 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8329 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8330 return CP_ACCESS_TRAP_EL2; 8331 } 8332 return CP_ACCESS_OK; 8333 } 8334 8335 static const ARMCPRegInfo jazelle_regs[] = { 8336 { .name = "JIDR", 8337 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8338 .access = PL1_R, .accessfn = access_jazelle, 8339 .type = ARM_CP_CONST, .resetvalue = 0 }, 8340 { .name = "JOSCR", 8341 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8342 .accessfn = access_joscr_jmcr, 8343 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8344 { .name = "JMCR", 8345 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8346 .accessfn = access_joscr_jmcr, 8347 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8348 }; 8349 8350 static const ARMCPRegInfo contextidr_el2 = { 8351 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8352 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8353 .access = PL2_RW, 8354 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8355 }; 8356 8357 static const ARMCPRegInfo vhe_reginfo[] = { 8358 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8359 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8360 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8361 .raw_writefn = raw_write, 8362 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8363 #ifndef CONFIG_USER_ONLY 8364 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8365 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8366 .fieldoffset = 8367 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8368 .type = ARM_CP_IO, .access = PL2_RW, 8369 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8370 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8371 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8372 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8373 .resetfn = gt_hv_timer_reset, 8374 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8375 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8376 .type = ARM_CP_IO, 8377 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8378 .access = PL2_RW, 8379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8380 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8381 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8382 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8383 .type = ARM_CP_IO | ARM_CP_ALIAS, 8384 .access = PL2_RW, .accessfn = e2h_access, 8385 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8386 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8387 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8388 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8389 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8390 .type = ARM_CP_IO | ARM_CP_ALIAS, 8391 .access = PL2_RW, .accessfn = e2h_access, 8392 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8393 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8394 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8395 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8396 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8397 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8398 .access = PL2_RW, .accessfn = e2h_access, 8399 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8400 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8401 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8402 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8403 .access = PL2_RW, .accessfn = e2h_access, 8404 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8405 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8406 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8407 .type = ARM_CP_IO | ARM_CP_ALIAS, 8408 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8409 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8410 .access = PL2_RW, .accessfn = e2h_access, 8411 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8412 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8414 .type = ARM_CP_IO | ARM_CP_ALIAS, 8415 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8416 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8417 .access = PL2_RW, .accessfn = e2h_access, 8418 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8419 #endif 8420 }; 8421 8422 #ifndef CONFIG_USER_ONLY 8423 static const ARMCPRegInfo ats1e1_reginfo[] = { 8424 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8427 .fgt = FGT_ATS1E1RP, 8428 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8429 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8432 .fgt = FGT_ATS1E1WP, 8433 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8434 }; 8435 8436 static const ARMCPRegInfo ats1cp_reginfo[] = { 8437 { .name = "ATS1CPRP", 8438 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8439 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8440 .writefn = ats_write }, 8441 { .name = "ATS1CPWP", 8442 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8443 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8444 .writefn = ats_write }, 8445 }; 8446 #endif 8447 8448 /* 8449 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8450 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8451 * is non-zero, which is never for ARMv7, optionally in ARMv8 8452 * and mandatorily for ARMv8.2 and up. 8453 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8454 * implementation is RAZ/WI we can ignore this detail, as we 8455 * do for ACTLR. 8456 */ 8457 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8458 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8459 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8460 .access = PL1_RW, .accessfn = access_tacr, 8461 .type = ARM_CP_CONST, .resetvalue = 0 }, 8462 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8463 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8464 .access = PL2_RW, .type = ARM_CP_CONST, 8465 .resetvalue = 0 }, 8466 }; 8467 8468 void register_cp_regs_for_features(ARMCPU *cpu) 8469 { 8470 /* Register all the coprocessor registers based on feature bits */ 8471 CPUARMState *env = &cpu->env; 8472 if (arm_feature(env, ARM_FEATURE_M)) { 8473 /* M profile has no coprocessor registers */ 8474 return; 8475 } 8476 8477 define_arm_cp_regs(cpu, cp_reginfo); 8478 if (!arm_feature(env, ARM_FEATURE_V8)) { 8479 /* 8480 * Must go early as it is full of wildcards that may be 8481 * overridden by later definitions. 8482 */ 8483 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8484 } 8485 8486 if (arm_feature(env, ARM_FEATURE_V6)) { 8487 /* The ID registers all have impdef reset values */ 8488 ARMCPRegInfo v6_idregs[] = { 8489 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8491 .access = PL1_R, .type = ARM_CP_CONST, 8492 .accessfn = access_aa32_tid3, 8493 .resetvalue = cpu->isar.id_pfr0 }, 8494 /* 8495 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8496 * the value of the GIC field until after we define these regs. 8497 */ 8498 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8500 .access = PL1_R, .type = ARM_CP_NO_RAW, 8501 .accessfn = access_aa32_tid3, 8502 #ifdef CONFIG_USER_ONLY 8503 .type = ARM_CP_CONST, 8504 .resetvalue = cpu->isar.id_pfr1, 8505 #else 8506 .type = ARM_CP_NO_RAW, 8507 .accessfn = access_aa32_tid3, 8508 .readfn = id_pfr1_read, 8509 .writefn = arm_cp_write_ignore 8510 #endif 8511 }, 8512 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8514 .access = PL1_R, .type = ARM_CP_CONST, 8515 .accessfn = access_aa32_tid3, 8516 .resetvalue = cpu->isar.id_dfr0 }, 8517 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8519 .access = PL1_R, .type = ARM_CP_CONST, 8520 .accessfn = access_aa32_tid3, 8521 .resetvalue = cpu->id_afr0 }, 8522 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8524 .access = PL1_R, .type = ARM_CP_CONST, 8525 .accessfn = access_aa32_tid3, 8526 .resetvalue = cpu->isar.id_mmfr0 }, 8527 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8529 .access = PL1_R, .type = ARM_CP_CONST, 8530 .accessfn = access_aa32_tid3, 8531 .resetvalue = cpu->isar.id_mmfr1 }, 8532 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8534 .access = PL1_R, .type = ARM_CP_CONST, 8535 .accessfn = access_aa32_tid3, 8536 .resetvalue = cpu->isar.id_mmfr2 }, 8537 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8539 .access = PL1_R, .type = ARM_CP_CONST, 8540 .accessfn = access_aa32_tid3, 8541 .resetvalue = cpu->isar.id_mmfr3 }, 8542 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8544 .access = PL1_R, .type = ARM_CP_CONST, 8545 .accessfn = access_aa32_tid3, 8546 .resetvalue = cpu->isar.id_isar0 }, 8547 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8549 .access = PL1_R, .type = ARM_CP_CONST, 8550 .accessfn = access_aa32_tid3, 8551 .resetvalue = cpu->isar.id_isar1 }, 8552 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8554 .access = PL1_R, .type = ARM_CP_CONST, 8555 .accessfn = access_aa32_tid3, 8556 .resetvalue = cpu->isar.id_isar2 }, 8557 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8559 .access = PL1_R, .type = ARM_CP_CONST, 8560 .accessfn = access_aa32_tid3, 8561 .resetvalue = cpu->isar.id_isar3 }, 8562 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8564 .access = PL1_R, .type = ARM_CP_CONST, 8565 .accessfn = access_aa32_tid3, 8566 .resetvalue = cpu->isar.id_isar4 }, 8567 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8569 .access = PL1_R, .type = ARM_CP_CONST, 8570 .accessfn = access_aa32_tid3, 8571 .resetvalue = cpu->isar.id_isar5 }, 8572 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8574 .access = PL1_R, .type = ARM_CP_CONST, 8575 .accessfn = access_aa32_tid3, 8576 .resetvalue = cpu->isar.id_mmfr4 }, 8577 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8579 .access = PL1_R, .type = ARM_CP_CONST, 8580 .accessfn = access_aa32_tid3, 8581 .resetvalue = cpu->isar.id_isar6 }, 8582 }; 8583 define_arm_cp_regs(cpu, v6_idregs); 8584 define_arm_cp_regs(cpu, v6_cp_reginfo); 8585 } else { 8586 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8587 } 8588 if (arm_feature(env, ARM_FEATURE_V6K)) { 8589 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8590 } 8591 if (arm_feature(env, ARM_FEATURE_V7MP) && 8592 !arm_feature(env, ARM_FEATURE_PMSA)) { 8593 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8594 } 8595 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8596 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8597 } 8598 if (arm_feature(env, ARM_FEATURE_V7)) { 8599 ARMCPRegInfo clidr = { 8600 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8601 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8602 .access = PL1_R, .type = ARM_CP_CONST, 8603 .accessfn = access_tid4, 8604 .fgt = FGT_CLIDR_EL1, 8605 .resetvalue = cpu->clidr 8606 }; 8607 define_one_arm_cp_reg(cpu, &clidr); 8608 define_arm_cp_regs(cpu, v7_cp_reginfo); 8609 define_debug_regs(cpu); 8610 define_pmu_regs(cpu); 8611 } else { 8612 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8613 } 8614 if (arm_feature(env, ARM_FEATURE_V8)) { 8615 /* 8616 * v8 ID registers, which all have impdef reset values. 8617 * Note that within the ID register ranges the unused slots 8618 * must all RAZ, not UNDEF; future architecture versions may 8619 * define new registers here. 8620 * ID registers which are AArch64 views of the AArch32 ID registers 8621 * which already existed in v6 and v7 are handled elsewhere, 8622 * in v6_idregs[]. 8623 */ 8624 int i; 8625 ARMCPRegInfo v8_idregs[] = { 8626 /* 8627 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8628 * emulation because we don't know the right value for the 8629 * GIC field until after we define these regs. 8630 */ 8631 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8633 .access = PL1_R, 8634 #ifdef CONFIG_USER_ONLY 8635 .type = ARM_CP_CONST, 8636 .resetvalue = cpu->isar.id_aa64pfr0 8637 #else 8638 .type = ARM_CP_NO_RAW, 8639 .accessfn = access_aa64_tid3, 8640 .readfn = id_aa64pfr0_read, 8641 .writefn = arm_cp_write_ignore 8642 #endif 8643 }, 8644 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8646 .access = PL1_R, .type = ARM_CP_CONST, 8647 .accessfn = access_aa64_tid3, 8648 .resetvalue = cpu->isar.id_aa64pfr1}, 8649 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8651 .access = PL1_R, .type = ARM_CP_CONST, 8652 .accessfn = access_aa64_tid3, 8653 .resetvalue = 0 }, 8654 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8656 .access = PL1_R, .type = ARM_CP_CONST, 8657 .accessfn = access_aa64_tid3, 8658 .resetvalue = 0 }, 8659 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8661 .access = PL1_R, .type = ARM_CP_CONST, 8662 .accessfn = access_aa64_tid3, 8663 .resetvalue = cpu->isar.id_aa64zfr0 }, 8664 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8666 .access = PL1_R, .type = ARM_CP_CONST, 8667 .accessfn = access_aa64_tid3, 8668 .resetvalue = cpu->isar.id_aa64smfr0 }, 8669 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8671 .access = PL1_R, .type = ARM_CP_CONST, 8672 .accessfn = access_aa64_tid3, 8673 .resetvalue = 0 }, 8674 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8676 .access = PL1_R, .type = ARM_CP_CONST, 8677 .accessfn = access_aa64_tid3, 8678 .resetvalue = 0 }, 8679 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8681 .access = PL1_R, .type = ARM_CP_CONST, 8682 .accessfn = access_aa64_tid3, 8683 .resetvalue = cpu->isar.id_aa64dfr0 }, 8684 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8686 .access = PL1_R, .type = ARM_CP_CONST, 8687 .accessfn = access_aa64_tid3, 8688 .resetvalue = cpu->isar.id_aa64dfr1 }, 8689 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8691 .access = PL1_R, .type = ARM_CP_CONST, 8692 .accessfn = access_aa64_tid3, 8693 .resetvalue = 0 }, 8694 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8696 .access = PL1_R, .type = ARM_CP_CONST, 8697 .accessfn = access_aa64_tid3, 8698 .resetvalue = 0 }, 8699 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8701 .access = PL1_R, .type = ARM_CP_CONST, 8702 .accessfn = access_aa64_tid3, 8703 .resetvalue = cpu->id_aa64afr0 }, 8704 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8706 .access = PL1_R, .type = ARM_CP_CONST, 8707 .accessfn = access_aa64_tid3, 8708 .resetvalue = cpu->id_aa64afr1 }, 8709 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8711 .access = PL1_R, .type = ARM_CP_CONST, 8712 .accessfn = access_aa64_tid3, 8713 .resetvalue = 0 }, 8714 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8716 .access = PL1_R, .type = ARM_CP_CONST, 8717 .accessfn = access_aa64_tid3, 8718 .resetvalue = 0 }, 8719 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8721 .access = PL1_R, .type = ARM_CP_CONST, 8722 .accessfn = access_aa64_tid3, 8723 .resetvalue = cpu->isar.id_aa64isar0 }, 8724 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8726 .access = PL1_R, .type = ARM_CP_CONST, 8727 .accessfn = access_aa64_tid3, 8728 .resetvalue = cpu->isar.id_aa64isar1 }, 8729 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8731 .access = PL1_R, .type = ARM_CP_CONST, 8732 .accessfn = access_aa64_tid3, 8733 .resetvalue = cpu->isar.id_aa64isar2 }, 8734 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8736 .access = PL1_R, .type = ARM_CP_CONST, 8737 .accessfn = access_aa64_tid3, 8738 .resetvalue = 0 }, 8739 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8741 .access = PL1_R, .type = ARM_CP_CONST, 8742 .accessfn = access_aa64_tid3, 8743 .resetvalue = 0 }, 8744 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8746 .access = PL1_R, .type = ARM_CP_CONST, 8747 .accessfn = access_aa64_tid3, 8748 .resetvalue = 0 }, 8749 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8751 .access = PL1_R, .type = ARM_CP_CONST, 8752 .accessfn = access_aa64_tid3, 8753 .resetvalue = 0 }, 8754 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8756 .access = PL1_R, .type = ARM_CP_CONST, 8757 .accessfn = access_aa64_tid3, 8758 .resetvalue = 0 }, 8759 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8761 .access = PL1_R, .type = ARM_CP_CONST, 8762 .accessfn = access_aa64_tid3, 8763 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8764 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8766 .access = PL1_R, .type = ARM_CP_CONST, 8767 .accessfn = access_aa64_tid3, 8768 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8769 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8771 .access = PL1_R, .type = ARM_CP_CONST, 8772 .accessfn = access_aa64_tid3, 8773 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8774 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8776 .access = PL1_R, .type = ARM_CP_CONST, 8777 .accessfn = access_aa64_tid3, 8778 .resetvalue = 0 }, 8779 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8781 .access = PL1_R, .type = ARM_CP_CONST, 8782 .accessfn = access_aa64_tid3, 8783 .resetvalue = 0 }, 8784 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8786 .access = PL1_R, .type = ARM_CP_CONST, 8787 .accessfn = access_aa64_tid3, 8788 .resetvalue = 0 }, 8789 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8791 .access = PL1_R, .type = ARM_CP_CONST, 8792 .accessfn = access_aa64_tid3, 8793 .resetvalue = 0 }, 8794 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8796 .access = PL1_R, .type = ARM_CP_CONST, 8797 .accessfn = access_aa64_tid3, 8798 .resetvalue = 0 }, 8799 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8801 .access = PL1_R, .type = ARM_CP_CONST, 8802 .accessfn = access_aa64_tid3, 8803 .resetvalue = cpu->isar.mvfr0 }, 8804 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8806 .access = PL1_R, .type = ARM_CP_CONST, 8807 .accessfn = access_aa64_tid3, 8808 .resetvalue = cpu->isar.mvfr1 }, 8809 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8811 .access = PL1_R, .type = ARM_CP_CONST, 8812 .accessfn = access_aa64_tid3, 8813 .resetvalue = cpu->isar.mvfr2 }, 8814 /* 8815 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8816 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8817 * as RAZ, since it is in the "reserved for future ID 8818 * registers, RAZ" part of the AArch32 encoding space. 8819 */ 8820 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8821 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8822 .access = PL1_R, .type = ARM_CP_CONST, 8823 .accessfn = access_aa64_tid3, 8824 .resetvalue = 0 }, 8825 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8826 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8827 .access = PL1_R, .type = ARM_CP_CONST, 8828 .accessfn = access_aa64_tid3, 8829 .resetvalue = 0 }, 8830 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8831 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8832 .access = PL1_R, .type = ARM_CP_CONST, 8833 .accessfn = access_aa64_tid3, 8834 .resetvalue = 0 }, 8835 /* 8836 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8837 * they're also RAZ for AArch64, and in v8 are gradually 8838 * being filled with AArch64-view-of-AArch32-ID-register 8839 * for new ID registers. 8840 */ 8841 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8843 .access = PL1_R, .type = ARM_CP_CONST, 8844 .accessfn = access_aa64_tid3, 8845 .resetvalue = 0 }, 8846 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8848 .access = PL1_R, .type = ARM_CP_CONST, 8849 .accessfn = access_aa64_tid3, 8850 .resetvalue = cpu->isar.id_pfr2 }, 8851 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8853 .access = PL1_R, .type = ARM_CP_CONST, 8854 .accessfn = access_aa64_tid3, 8855 .resetvalue = cpu->isar.id_dfr1 }, 8856 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8858 .access = PL1_R, .type = ARM_CP_CONST, 8859 .accessfn = access_aa64_tid3, 8860 .resetvalue = cpu->isar.id_mmfr5 }, 8861 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8863 .access = PL1_R, .type = ARM_CP_CONST, 8864 .accessfn = access_aa64_tid3, 8865 .resetvalue = 0 }, 8866 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8867 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8868 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8869 .fgt = FGT_PMCEIDN_EL0, 8870 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8871 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8872 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8873 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8874 .fgt = FGT_PMCEIDN_EL0, 8875 .resetvalue = cpu->pmceid0 }, 8876 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8877 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8878 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8879 .fgt = FGT_PMCEIDN_EL0, 8880 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8881 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8882 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8883 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8884 .fgt = FGT_PMCEIDN_EL0, 8885 .resetvalue = cpu->pmceid1 }, 8886 }; 8887 #ifdef CONFIG_USER_ONLY 8888 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8889 { .name = "ID_AA64PFR0_EL1", 8890 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8891 R_ID_AA64PFR0_ADVSIMD_MASK | 8892 R_ID_AA64PFR0_SVE_MASK | 8893 R_ID_AA64PFR0_DIT_MASK, 8894 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8895 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8896 { .name = "ID_AA64PFR1_EL1", 8897 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8898 R_ID_AA64PFR1_SSBS_MASK | 8899 R_ID_AA64PFR1_MTE_MASK | 8900 R_ID_AA64PFR1_SME_MASK }, 8901 { .name = "ID_AA64PFR*_EL1_RESERVED", 8902 .is_glob = true }, 8903 { .name = "ID_AA64ZFR0_EL1", 8904 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8905 R_ID_AA64ZFR0_AES_MASK | 8906 R_ID_AA64ZFR0_BITPERM_MASK | 8907 R_ID_AA64ZFR0_BFLOAT16_MASK | 8908 R_ID_AA64ZFR0_B16B16_MASK | 8909 R_ID_AA64ZFR0_SHA3_MASK | 8910 R_ID_AA64ZFR0_SM4_MASK | 8911 R_ID_AA64ZFR0_I8MM_MASK | 8912 R_ID_AA64ZFR0_F32MM_MASK | 8913 R_ID_AA64ZFR0_F64MM_MASK }, 8914 { .name = "ID_AA64SMFR0_EL1", 8915 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8916 R_ID_AA64SMFR0_BI32I32_MASK | 8917 R_ID_AA64SMFR0_B16F32_MASK | 8918 R_ID_AA64SMFR0_F16F32_MASK | 8919 R_ID_AA64SMFR0_I8I32_MASK | 8920 R_ID_AA64SMFR0_F16F16_MASK | 8921 R_ID_AA64SMFR0_B16B16_MASK | 8922 R_ID_AA64SMFR0_I16I32_MASK | 8923 R_ID_AA64SMFR0_F64F64_MASK | 8924 R_ID_AA64SMFR0_I16I64_MASK | 8925 R_ID_AA64SMFR0_SMEVER_MASK | 8926 R_ID_AA64SMFR0_FA64_MASK }, 8927 { .name = "ID_AA64MMFR0_EL1", 8928 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8929 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8930 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8931 { .name = "ID_AA64MMFR1_EL1", 8932 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8933 { .name = "ID_AA64MMFR2_EL1", 8934 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8935 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8936 .is_glob = true }, 8937 { .name = "ID_AA64DFR0_EL1", 8938 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8939 { .name = "ID_AA64DFR1_EL1" }, 8940 { .name = "ID_AA64DFR*_EL1_RESERVED", 8941 .is_glob = true }, 8942 { .name = "ID_AA64AFR*", 8943 .is_glob = true }, 8944 { .name = "ID_AA64ISAR0_EL1", 8945 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8946 R_ID_AA64ISAR0_SHA1_MASK | 8947 R_ID_AA64ISAR0_SHA2_MASK | 8948 R_ID_AA64ISAR0_CRC32_MASK | 8949 R_ID_AA64ISAR0_ATOMIC_MASK | 8950 R_ID_AA64ISAR0_RDM_MASK | 8951 R_ID_AA64ISAR0_SHA3_MASK | 8952 R_ID_AA64ISAR0_SM3_MASK | 8953 R_ID_AA64ISAR0_SM4_MASK | 8954 R_ID_AA64ISAR0_DP_MASK | 8955 R_ID_AA64ISAR0_FHM_MASK | 8956 R_ID_AA64ISAR0_TS_MASK | 8957 R_ID_AA64ISAR0_RNDR_MASK }, 8958 { .name = "ID_AA64ISAR1_EL1", 8959 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8960 R_ID_AA64ISAR1_APA_MASK | 8961 R_ID_AA64ISAR1_API_MASK | 8962 R_ID_AA64ISAR1_JSCVT_MASK | 8963 R_ID_AA64ISAR1_FCMA_MASK | 8964 R_ID_AA64ISAR1_LRCPC_MASK | 8965 R_ID_AA64ISAR1_GPA_MASK | 8966 R_ID_AA64ISAR1_GPI_MASK | 8967 R_ID_AA64ISAR1_FRINTTS_MASK | 8968 R_ID_AA64ISAR1_SB_MASK | 8969 R_ID_AA64ISAR1_BF16_MASK | 8970 R_ID_AA64ISAR1_DGH_MASK | 8971 R_ID_AA64ISAR1_I8MM_MASK }, 8972 { .name = "ID_AA64ISAR2_EL1", 8973 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8974 R_ID_AA64ISAR2_RPRES_MASK | 8975 R_ID_AA64ISAR2_GPA3_MASK | 8976 R_ID_AA64ISAR2_APA3_MASK | 8977 R_ID_AA64ISAR2_MOPS_MASK | 8978 R_ID_AA64ISAR2_BC_MASK | 8979 R_ID_AA64ISAR2_RPRFM_MASK | 8980 R_ID_AA64ISAR2_CSSC_MASK }, 8981 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8982 .is_glob = true }, 8983 }; 8984 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8985 #endif 8986 /* 8987 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8988 * TODO: For RMR, a write with bit 1 set should do something with 8989 * cpu_reset(). In the meantime, "the bit is strictly a request", 8990 * so we are in spec just ignoring writes. 8991 */ 8992 if (!arm_feature(env, ARM_FEATURE_EL3) && 8993 !arm_feature(env, ARM_FEATURE_EL2)) { 8994 ARMCPRegInfo el1_reset_regs[] = { 8995 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8996 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8997 .access = PL1_R, 8998 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8999 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9000 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9001 .access = PL1_RW, .type = ARM_CP_CONST, 9002 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9003 }; 9004 define_arm_cp_regs(cpu, el1_reset_regs); 9005 } 9006 define_arm_cp_regs(cpu, v8_idregs); 9007 define_arm_cp_regs(cpu, v8_cp_reginfo); 9008 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9009 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9010 } 9011 9012 for (i = 4; i < 16; i++) { 9013 /* 9014 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9015 * For pre-v8 cores there are RAZ patterns for these in 9016 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9017 * v8 extends the "must RAZ" part of the ID register space 9018 * to also cover c0, 0, c{8-15}, {0-7}. 9019 * These are STATE_AA32 because in the AArch64 sysreg space 9020 * c4-c7 is where the AArch64 ID registers live (and we've 9021 * already defined those in v8_idregs[]), and c8-c15 are not 9022 * "must RAZ" for AArch64. 9023 */ 9024 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9025 ARMCPRegInfo v8_aa32_raz_idregs = { 9026 .name = name, 9027 .state = ARM_CP_STATE_AA32, 9028 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9029 .access = PL1_R, .type = ARM_CP_CONST, 9030 .accessfn = access_aa64_tid3, 9031 .resetvalue = 0 }; 9032 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9033 } 9034 } 9035 9036 /* 9037 * Register the base EL2 cpregs. 9038 * Pre v8, these registers are implemented only as part of the 9039 * Virtualization Extensions (EL2 present). Beginning with v8, 9040 * if EL2 is missing but EL3 is enabled, mostly these become 9041 * RES0 from EL3, with some specific exceptions. 9042 */ 9043 if (arm_feature(env, ARM_FEATURE_EL2) 9044 || (arm_feature(env, ARM_FEATURE_EL3) 9045 && arm_feature(env, ARM_FEATURE_V8))) { 9046 uint64_t vmpidr_def = mpidr_read_val(env); 9047 ARMCPRegInfo vpidr_regs[] = { 9048 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9049 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9050 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9051 .resetvalue = cpu->midr, 9052 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9053 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9054 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9055 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9056 .access = PL2_RW, .resetvalue = cpu->midr, 9057 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9058 .nv2_redirect_offset = 0x88, 9059 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9060 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9061 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9062 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9063 .resetvalue = vmpidr_def, 9064 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9065 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9066 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9067 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9068 .access = PL2_RW, .resetvalue = vmpidr_def, 9069 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9070 .nv2_redirect_offset = 0x50, 9071 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9072 }; 9073 /* 9074 * The only field of MDCR_EL2 that has a defined architectural reset 9075 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9076 */ 9077 ARMCPRegInfo mdcr_el2 = { 9078 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9079 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9080 .writefn = mdcr_el2_write, 9081 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9082 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9083 }; 9084 define_one_arm_cp_reg(cpu, &mdcr_el2); 9085 define_arm_cp_regs(cpu, vpidr_regs); 9086 define_arm_cp_regs(cpu, el2_cp_reginfo); 9087 if (arm_feature(env, ARM_FEATURE_V8)) { 9088 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9089 } 9090 if (cpu_isar_feature(aa64_sel2, cpu)) { 9091 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9092 } 9093 /* 9094 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9095 * See commentary near RMR_EL1. 9096 */ 9097 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9098 static const ARMCPRegInfo el2_reset_regs[] = { 9099 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9100 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9101 .access = PL2_R, 9102 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9103 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9104 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9105 .access = PL2_R, 9106 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9107 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9108 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9109 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9110 }; 9111 define_arm_cp_regs(cpu, el2_reset_regs); 9112 } 9113 } 9114 9115 /* Register the base EL3 cpregs. */ 9116 if (arm_feature(env, ARM_FEATURE_EL3)) { 9117 define_arm_cp_regs(cpu, el3_cp_reginfo); 9118 ARMCPRegInfo el3_regs[] = { 9119 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9120 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9121 .access = PL3_R, 9122 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9123 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9124 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9125 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9126 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9127 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9128 .access = PL3_RW, .type = ARM_CP_CONST, 9129 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9130 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9131 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9132 .access = PL3_RW, 9133 .raw_writefn = raw_write, .writefn = sctlr_write, 9134 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9135 .resetvalue = cpu->reset_sctlr }, 9136 }; 9137 9138 define_arm_cp_regs(cpu, el3_regs); 9139 } 9140 /* 9141 * The behaviour of NSACR is sufficiently various that we don't 9142 * try to describe it in a single reginfo: 9143 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9144 * reads as constant 0xc00 from NS EL1 and NS EL2 9145 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9146 * if v7 without EL3, register doesn't exist 9147 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9148 */ 9149 if (arm_feature(env, ARM_FEATURE_EL3)) { 9150 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9151 static const ARMCPRegInfo nsacr = { 9152 .name = "NSACR", .type = ARM_CP_CONST, 9153 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9154 .access = PL1_RW, .accessfn = nsacr_access, 9155 .resetvalue = 0xc00 9156 }; 9157 define_one_arm_cp_reg(cpu, &nsacr); 9158 } else { 9159 static const ARMCPRegInfo nsacr = { 9160 .name = "NSACR", 9161 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9162 .access = PL3_RW | PL1_R, 9163 .resetvalue = 0, 9164 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9165 }; 9166 define_one_arm_cp_reg(cpu, &nsacr); 9167 } 9168 } else { 9169 if (arm_feature(env, ARM_FEATURE_V8)) { 9170 static const ARMCPRegInfo nsacr = { 9171 .name = "NSACR", .type = ARM_CP_CONST, 9172 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9173 .access = PL1_R, 9174 .resetvalue = 0xc00 9175 }; 9176 define_one_arm_cp_reg(cpu, &nsacr); 9177 } 9178 } 9179 9180 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9181 if (arm_feature(env, ARM_FEATURE_V6)) { 9182 /* PMSAv6 not implemented */ 9183 assert(arm_feature(env, ARM_FEATURE_V7)); 9184 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9185 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9186 } else { 9187 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9188 } 9189 } else { 9190 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9191 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9192 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9193 if (cpu_isar_feature(aa32_hpd, cpu)) { 9194 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9195 } 9196 } 9197 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9198 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9199 } 9200 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9201 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9202 } 9203 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9204 ARMCPRegInfo vapa_cp_reginfo[] = { 9205 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9206 .access = PL1_RW, .resetvalue = 0, 9207 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9208 offsetoflow32(CPUARMState, cp15.par_ns) }, 9209 .writefn = par_write}, 9210 #ifndef CONFIG_USER_ONLY 9211 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9212 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9213 .access = PL1_W, .accessfn = ats_access, 9214 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9215 #endif 9216 }; 9217 9218 /* 9219 * When LPAE exists this 32-bit PAR register is an alias of the 9220 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9221 */ 9222 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9223 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9224 } 9225 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9226 } 9227 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9228 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9229 } 9230 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9231 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9232 } 9233 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9234 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9235 } 9236 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9237 define_arm_cp_regs(cpu, omap_cp_reginfo); 9238 } 9239 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9240 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9241 } 9242 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9243 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9244 } 9245 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9246 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9247 } 9248 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9249 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9250 } 9251 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9252 define_arm_cp_regs(cpu, jazelle_regs); 9253 } 9254 /* 9255 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9256 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9257 * be read-only (ie write causes UNDEF exception). 9258 */ 9259 { 9260 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9261 /* 9262 * Pre-v8 MIDR space. 9263 * Note that the MIDR isn't a simple constant register because 9264 * of the TI925 behaviour where writes to another register can 9265 * cause the MIDR value to change. 9266 * 9267 * Unimplemented registers in the c15 0 0 0 space default to 9268 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9269 * and friends override accordingly. 9270 */ 9271 { .name = "MIDR", 9272 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9273 .access = PL1_R, .resetvalue = cpu->midr, 9274 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9275 .readfn = midr_read, 9276 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9277 .type = ARM_CP_OVERRIDE }, 9278 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9279 { .name = "DUMMY", 9280 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9281 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9282 { .name = "DUMMY", 9283 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9284 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9285 { .name = "DUMMY", 9286 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9287 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9288 { .name = "DUMMY", 9289 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9290 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9291 { .name = "DUMMY", 9292 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9293 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9294 }; 9295 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9296 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9298 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9299 .fgt = FGT_MIDR_EL1, 9300 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9301 .readfn = midr_read }, 9302 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9303 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9304 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9305 .access = PL1_R, .resetvalue = cpu->midr }, 9306 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9308 .access = PL1_R, 9309 .accessfn = access_aa64_tid1, 9310 .fgt = FGT_REVIDR_EL1, 9311 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9312 }; 9313 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9314 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9315 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9316 .access = PL1_R, .resetvalue = cpu->midr 9317 }; 9318 ARMCPRegInfo id_cp_reginfo[] = { 9319 /* These are common to v8 and pre-v8 */ 9320 { .name = "CTR", 9321 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9322 .access = PL1_R, .accessfn = ctr_el0_access, 9323 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9324 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9325 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9326 .access = PL0_R, .accessfn = ctr_el0_access, 9327 .fgt = FGT_CTR_EL0, 9328 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9329 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9330 { .name = "TCMTR", 9331 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9332 .access = PL1_R, 9333 .accessfn = access_aa32_tid1, 9334 .type = ARM_CP_CONST, .resetvalue = 0 }, 9335 }; 9336 /* TLBTR is specific to VMSA */ 9337 ARMCPRegInfo id_tlbtr_reginfo = { 9338 .name = "TLBTR", 9339 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9340 .access = PL1_R, 9341 .accessfn = access_aa32_tid1, 9342 .type = ARM_CP_CONST, .resetvalue = 0, 9343 }; 9344 /* MPUIR is specific to PMSA V6+ */ 9345 ARMCPRegInfo id_mpuir_reginfo = { 9346 .name = "MPUIR", 9347 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9348 .access = PL1_R, .type = ARM_CP_CONST, 9349 .resetvalue = cpu->pmsav7_dregion << 8 9350 }; 9351 /* HMPUIR is specific to PMSA V8 */ 9352 ARMCPRegInfo id_hmpuir_reginfo = { 9353 .name = "HMPUIR", 9354 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9355 .access = PL2_R, .type = ARM_CP_CONST, 9356 .resetvalue = cpu->pmsav8r_hdregion 9357 }; 9358 static const ARMCPRegInfo crn0_wi_reginfo = { 9359 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9360 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9361 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9362 }; 9363 #ifdef CONFIG_USER_ONLY 9364 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9365 { .name = "MIDR_EL1", 9366 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9367 R_MIDR_EL1_PARTNUM_MASK | 9368 R_MIDR_EL1_ARCHITECTURE_MASK | 9369 R_MIDR_EL1_VARIANT_MASK | 9370 R_MIDR_EL1_IMPLEMENTER_MASK }, 9371 { .name = "REVIDR_EL1" }, 9372 }; 9373 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9374 #endif 9375 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9376 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9377 size_t i; 9378 /* 9379 * Register the blanket "writes ignored" value first to cover the 9380 * whole space. Then update the specific ID registers to allow write 9381 * access, so that they ignore writes rather than causing them to 9382 * UNDEF. 9383 */ 9384 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9385 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9386 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9387 } 9388 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9389 id_cp_reginfo[i].access = PL1_RW; 9390 } 9391 id_mpuir_reginfo.access = PL1_RW; 9392 id_tlbtr_reginfo.access = PL1_RW; 9393 } 9394 if (arm_feature(env, ARM_FEATURE_V8)) { 9395 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9396 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9397 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9398 } 9399 } else { 9400 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9401 } 9402 define_arm_cp_regs(cpu, id_cp_reginfo); 9403 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9404 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9405 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9406 arm_feature(env, ARM_FEATURE_V8)) { 9407 uint32_t i = 0; 9408 char *tmp_string; 9409 9410 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9411 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9412 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9413 9414 /* Register alias is only valid for first 32 indexes */ 9415 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9416 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9417 uint8_t opc1 = extract32(i, 4, 1); 9418 uint8_t opc2 = extract32(i, 0, 1) << 2; 9419 9420 tmp_string = g_strdup_printf("PRBAR%u", i); 9421 ARMCPRegInfo tmp_prbarn_reginfo = { 9422 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9423 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9424 .access = PL1_RW, .resetvalue = 0, 9425 .accessfn = access_tvm_trvm, 9426 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9427 }; 9428 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9429 g_free(tmp_string); 9430 9431 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9432 tmp_string = g_strdup_printf("PRLAR%u", i); 9433 ARMCPRegInfo tmp_prlarn_reginfo = { 9434 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9435 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9436 .access = PL1_RW, .resetvalue = 0, 9437 .accessfn = access_tvm_trvm, 9438 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9439 }; 9440 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9441 g_free(tmp_string); 9442 } 9443 9444 /* Register alias is only valid for first 32 indexes */ 9445 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9446 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9447 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9448 uint8_t opc2 = extract32(i, 0, 1) << 2; 9449 9450 tmp_string = g_strdup_printf("HPRBAR%u", i); 9451 ARMCPRegInfo tmp_hprbarn_reginfo = { 9452 .name = tmp_string, 9453 .type = ARM_CP_NO_RAW, 9454 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9455 .access = PL2_RW, .resetvalue = 0, 9456 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9457 }; 9458 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9459 g_free(tmp_string); 9460 9461 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9462 tmp_string = g_strdup_printf("HPRLAR%u", i); 9463 ARMCPRegInfo tmp_hprlarn_reginfo = { 9464 .name = tmp_string, 9465 .type = ARM_CP_NO_RAW, 9466 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9467 .access = PL2_RW, .resetvalue = 0, 9468 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9469 }; 9470 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9471 g_free(tmp_string); 9472 } 9473 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9474 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9475 } 9476 } 9477 9478 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9479 ARMCPRegInfo mpidr_cp_reginfo[] = { 9480 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9481 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9482 .fgt = FGT_MPIDR_EL1, 9483 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9484 }; 9485 #ifdef CONFIG_USER_ONLY 9486 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9487 { .name = "MPIDR_EL1", 9488 .fixed_bits = 0x0000000080000000 }, 9489 }; 9490 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9491 #endif 9492 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9493 } 9494 9495 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9496 ARMCPRegInfo auxcr_reginfo[] = { 9497 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9498 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9499 .access = PL1_RW, .accessfn = access_tacr, 9500 .nv2_redirect_offset = 0x118, 9501 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9502 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9504 .access = PL2_RW, .type = ARM_CP_CONST, 9505 .resetvalue = 0 }, 9506 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9507 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9508 .access = PL3_RW, .type = ARM_CP_CONST, 9509 .resetvalue = 0 }, 9510 }; 9511 define_arm_cp_regs(cpu, auxcr_reginfo); 9512 if (cpu_isar_feature(aa32_ac2, cpu)) { 9513 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9514 } 9515 } 9516 9517 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9518 /* 9519 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9520 * There are two flavours: 9521 * (1) older 32-bit only cores have a simple 32-bit CBAR 9522 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9523 * 32-bit register visible to AArch32 at a different encoding 9524 * to the "flavour 1" register and with the bits rearranged to 9525 * be able to squash a 64-bit address into the 32-bit view. 9526 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9527 * in future if we support AArch32-only configs of some of the 9528 * AArch64 cores we might need to add a specific feature flag 9529 * to indicate cores with "flavour 2" CBAR. 9530 */ 9531 if (arm_feature(env, ARM_FEATURE_V8)) { 9532 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9533 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9534 | extract64(cpu->reset_cbar, 32, 12); 9535 ARMCPRegInfo cbar_reginfo[] = { 9536 { .name = "CBAR", 9537 .type = ARM_CP_CONST, 9538 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9539 .access = PL1_R, .resetvalue = cbar32 }, 9540 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9541 .type = ARM_CP_CONST, 9542 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9543 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9544 }; 9545 /* We don't implement a r/w 64 bit CBAR currently */ 9546 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9547 define_arm_cp_regs(cpu, cbar_reginfo); 9548 } else { 9549 ARMCPRegInfo cbar = { 9550 .name = "CBAR", 9551 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9552 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9553 .fieldoffset = offsetof(CPUARMState, 9554 cp15.c15_config_base_address) 9555 }; 9556 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9557 cbar.access = PL1_R; 9558 cbar.fieldoffset = 0; 9559 cbar.type = ARM_CP_CONST; 9560 } 9561 define_one_arm_cp_reg(cpu, &cbar); 9562 } 9563 } 9564 9565 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9566 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9567 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9568 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9569 .access = PL1_RW, .writefn = vbar_write, 9570 .accessfn = access_nv1, 9571 .fgt = FGT_VBAR_EL1, 9572 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9573 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9574 offsetof(CPUARMState, cp15.vbar_ns) }, 9575 .resetvalue = 0 }, 9576 }; 9577 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9578 } 9579 9580 /* Generic registers whose values depend on the implementation */ 9581 { 9582 ARMCPRegInfo sctlr = { 9583 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9584 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9585 .access = PL1_RW, .accessfn = access_tvm_trvm, 9586 .fgt = FGT_SCTLR_EL1, 9587 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9588 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9589 offsetof(CPUARMState, cp15.sctlr_ns) }, 9590 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9591 .raw_writefn = raw_write, 9592 }; 9593 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9594 /* 9595 * Normally we would always end the TB on an SCTLR write, but Linux 9596 * arch/arm/mach-pxa/sleep.S expects two instructions following 9597 * an MMU enable to execute from cache. Imitate this behaviour. 9598 */ 9599 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9600 } 9601 define_one_arm_cp_reg(cpu, &sctlr); 9602 9603 if (arm_feature(env, ARM_FEATURE_PMSA) && 9604 arm_feature(env, ARM_FEATURE_V8)) { 9605 ARMCPRegInfo vsctlr = { 9606 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9607 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9608 .access = PL2_RW, .resetvalue = 0x0, 9609 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9610 }; 9611 define_one_arm_cp_reg(cpu, &vsctlr); 9612 } 9613 } 9614 9615 if (cpu_isar_feature(aa64_lor, cpu)) { 9616 define_arm_cp_regs(cpu, lor_reginfo); 9617 } 9618 if (cpu_isar_feature(aa64_pan, cpu)) { 9619 define_one_arm_cp_reg(cpu, &pan_reginfo); 9620 } 9621 #ifndef CONFIG_USER_ONLY 9622 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9623 define_arm_cp_regs(cpu, ats1e1_reginfo); 9624 } 9625 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9626 define_arm_cp_regs(cpu, ats1cp_reginfo); 9627 } 9628 #endif 9629 if (cpu_isar_feature(aa64_uao, cpu)) { 9630 define_one_arm_cp_reg(cpu, &uao_reginfo); 9631 } 9632 9633 if (cpu_isar_feature(aa64_dit, cpu)) { 9634 define_one_arm_cp_reg(cpu, &dit_reginfo); 9635 } 9636 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9637 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9638 } 9639 if (cpu_isar_feature(any_ras, cpu)) { 9640 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9641 } 9642 9643 if (cpu_isar_feature(aa64_vh, cpu) || 9644 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9645 define_one_arm_cp_reg(cpu, &contextidr_el2); 9646 } 9647 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9648 define_arm_cp_regs(cpu, vhe_reginfo); 9649 } 9650 9651 if (cpu_isar_feature(aa64_sve, cpu)) { 9652 define_arm_cp_regs(cpu, zcr_reginfo); 9653 } 9654 9655 if (cpu_isar_feature(aa64_hcx, cpu)) { 9656 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9657 } 9658 9659 #ifdef TARGET_AARCH64 9660 if (cpu_isar_feature(aa64_sme, cpu)) { 9661 define_arm_cp_regs(cpu, sme_reginfo); 9662 } 9663 if (cpu_isar_feature(aa64_pauth, cpu)) { 9664 define_arm_cp_regs(cpu, pauth_reginfo); 9665 } 9666 if (cpu_isar_feature(aa64_rndr, cpu)) { 9667 define_arm_cp_regs(cpu, rndr_reginfo); 9668 } 9669 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9670 define_arm_cp_regs(cpu, tlbirange_reginfo); 9671 } 9672 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9673 define_arm_cp_regs(cpu, tlbios_reginfo); 9674 } 9675 /* Data Cache clean instructions up to PoP */ 9676 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9677 define_one_arm_cp_reg(cpu, dcpop_reg); 9678 9679 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9680 define_one_arm_cp_reg(cpu, dcpodp_reg); 9681 } 9682 } 9683 9684 /* 9685 * If full MTE is enabled, add all of the system registers. 9686 * If only "instructions available at EL0" are enabled, 9687 * then define only a RAZ/WI version of PSTATE.TCO. 9688 */ 9689 if (cpu_isar_feature(aa64_mte, cpu)) { 9690 ARMCPRegInfo gmid_reginfo = { 9691 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9692 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9693 .access = PL1_R, .accessfn = access_aa64_tid5, 9694 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9695 }; 9696 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9697 define_arm_cp_regs(cpu, mte_reginfo); 9698 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9699 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9700 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9701 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9702 } 9703 9704 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9705 define_arm_cp_regs(cpu, scxtnum_reginfo); 9706 } 9707 9708 if (cpu_isar_feature(aa64_fgt, cpu)) { 9709 define_arm_cp_regs(cpu, fgt_reginfo); 9710 } 9711 9712 if (cpu_isar_feature(aa64_rme, cpu)) { 9713 define_arm_cp_regs(cpu, rme_reginfo); 9714 if (cpu_isar_feature(aa64_mte, cpu)) { 9715 define_arm_cp_regs(cpu, rme_mte_reginfo); 9716 } 9717 } 9718 9719 if (cpu_isar_feature(aa64_nv2, cpu)) { 9720 define_arm_cp_regs(cpu, nv2_reginfo); 9721 } 9722 #endif 9723 9724 if (cpu_isar_feature(any_predinv, cpu)) { 9725 define_arm_cp_regs(cpu, predinv_reginfo); 9726 } 9727 9728 if (cpu_isar_feature(any_ccidx, cpu)) { 9729 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9730 } 9731 9732 #ifndef CONFIG_USER_ONLY 9733 /* 9734 * Register redirections and aliases must be done last, 9735 * after the registers from the other extensions have been defined. 9736 */ 9737 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9738 define_arm_vh_e2h_redirects_aliases(cpu); 9739 } 9740 #endif 9741 } 9742 9743 /* 9744 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9745 * add a single reginfo struct to the hash table. 9746 */ 9747 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9748 void *opaque, CPState state, 9749 CPSecureState secstate, 9750 int crm, int opc1, int opc2, 9751 const char *name) 9752 { 9753 CPUARMState *env = &cpu->env; 9754 uint32_t key; 9755 ARMCPRegInfo *r2; 9756 bool is64 = r->type & ARM_CP_64BIT; 9757 bool ns = secstate & ARM_CP_SECSTATE_NS; 9758 int cp = r->cp; 9759 size_t name_len; 9760 bool make_const; 9761 9762 switch (state) { 9763 case ARM_CP_STATE_AA32: 9764 /* We assume it is a cp15 register if the .cp field is left unset. */ 9765 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9766 cp = 15; 9767 } 9768 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9769 break; 9770 case ARM_CP_STATE_AA64: 9771 /* 9772 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9773 * cp == 0 as equivalent to the value for "standard guest-visible 9774 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9775 * in their AArch64 view (the .cp value may be non-zero for the 9776 * benefit of the AArch32 view). 9777 */ 9778 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9779 cp = CP_REG_ARM64_SYSREG_CP; 9780 } 9781 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9782 break; 9783 default: 9784 g_assert_not_reached(); 9785 } 9786 9787 /* Overriding of an existing definition must be explicitly requested. */ 9788 if (!(r->type & ARM_CP_OVERRIDE)) { 9789 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9790 if (oldreg) { 9791 assert(oldreg->type & ARM_CP_OVERRIDE); 9792 } 9793 } 9794 9795 /* 9796 * Eliminate registers that are not present because the EL is missing. 9797 * Doing this here makes it easier to put all registers for a given 9798 * feature into the same ARMCPRegInfo array and define them all at once. 9799 */ 9800 make_const = false; 9801 if (arm_feature(env, ARM_FEATURE_EL3)) { 9802 /* 9803 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9804 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9805 */ 9806 int min_el = ctz32(r->access) / 2; 9807 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9808 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9809 return; 9810 } 9811 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9812 } 9813 } else { 9814 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9815 ? PL2_RW : PL1_RW); 9816 if ((r->access & max_el) == 0) { 9817 return; 9818 } 9819 } 9820 9821 /* Combine cpreg and name into one allocation. */ 9822 name_len = strlen(name) + 1; 9823 r2 = g_malloc(sizeof(*r2) + name_len); 9824 *r2 = *r; 9825 r2->name = memcpy(r2 + 1, name, name_len); 9826 9827 /* 9828 * Update fields to match the instantiation, overwiting wildcards 9829 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9830 */ 9831 r2->cp = cp; 9832 r2->crm = crm; 9833 r2->opc1 = opc1; 9834 r2->opc2 = opc2; 9835 r2->state = state; 9836 r2->secure = secstate; 9837 if (opaque) { 9838 r2->opaque = opaque; 9839 } 9840 9841 if (make_const) { 9842 /* This should not have been a very special register to begin. */ 9843 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9844 assert(old_special == 0 || old_special == ARM_CP_NOP); 9845 /* 9846 * Set the special function to CONST, retaining the other flags. 9847 * This is important for e.g. ARM_CP_SVE so that we still 9848 * take the SVE trap if CPTR_EL3.EZ == 0. 9849 */ 9850 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9851 /* 9852 * Usually, these registers become RES0, but there are a few 9853 * special cases like VPIDR_EL2 which have a constant non-zero 9854 * value with writes ignored. 9855 */ 9856 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9857 r2->resetvalue = 0; 9858 } 9859 /* 9860 * ARM_CP_CONST has precedence, so removing the callbacks and 9861 * offsets are not strictly necessary, but it is potentially 9862 * less confusing to debug later. 9863 */ 9864 r2->readfn = NULL; 9865 r2->writefn = NULL; 9866 r2->raw_readfn = NULL; 9867 r2->raw_writefn = NULL; 9868 r2->resetfn = NULL; 9869 r2->fieldoffset = 0; 9870 r2->bank_fieldoffsets[0] = 0; 9871 r2->bank_fieldoffsets[1] = 0; 9872 } else { 9873 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9874 9875 if (isbanked) { 9876 /* 9877 * Register is banked (using both entries in array). 9878 * Overwriting fieldoffset as the array is only used to define 9879 * banked registers but later only fieldoffset is used. 9880 */ 9881 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9882 } 9883 if (state == ARM_CP_STATE_AA32) { 9884 if (isbanked) { 9885 /* 9886 * If the register is banked then we don't need to migrate or 9887 * reset the 32-bit instance in certain cases: 9888 * 9889 * 1) If the register has both 32-bit and 64-bit instances 9890 * then we can count on the 64-bit instance taking care 9891 * of the non-secure bank. 9892 * 2) If ARMv8 is enabled then we can count on a 64-bit 9893 * version taking care of the secure bank. This requires 9894 * that separate 32 and 64-bit definitions are provided. 9895 */ 9896 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9897 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9898 r2->type |= ARM_CP_ALIAS; 9899 } 9900 } else if ((secstate != r->secure) && !ns) { 9901 /* 9902 * The register is not banked so we only want to allow 9903 * migration of the non-secure instance. 9904 */ 9905 r2->type |= ARM_CP_ALIAS; 9906 } 9907 9908 if (HOST_BIG_ENDIAN && 9909 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9910 r2->fieldoffset += sizeof(uint32_t); 9911 } 9912 } 9913 } 9914 9915 /* 9916 * By convention, for wildcarded registers only the first 9917 * entry is used for migration; the others are marked as 9918 * ALIAS so we don't try to transfer the register 9919 * multiple times. Special registers (ie NOP/WFI) are 9920 * never migratable and not even raw-accessible. 9921 */ 9922 if (r2->type & ARM_CP_SPECIAL_MASK) { 9923 r2->type |= ARM_CP_NO_RAW; 9924 } 9925 if (((r->crm == CP_ANY) && crm != 0) || 9926 ((r->opc1 == CP_ANY) && opc1 != 0) || 9927 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9928 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9929 } 9930 9931 /* 9932 * Check that raw accesses are either forbidden or handled. Note that 9933 * we can't assert this earlier because the setup of fieldoffset for 9934 * banked registers has to be done first. 9935 */ 9936 if (!(r2->type & ARM_CP_NO_RAW)) { 9937 assert(!raw_accessors_invalid(r2)); 9938 } 9939 9940 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9941 } 9942 9943 9944 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9945 const ARMCPRegInfo *r, void *opaque) 9946 { 9947 /* 9948 * Define implementations of coprocessor registers. 9949 * We store these in a hashtable because typically 9950 * there are less than 150 registers in a space which 9951 * is 16*16*16*8*8 = 262144 in size. 9952 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9953 * If a register is defined twice then the second definition is 9954 * used, so this can be used to define some generic registers and 9955 * then override them with implementation specific variations. 9956 * At least one of the original and the second definition should 9957 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9958 * against accidental use. 9959 * 9960 * The state field defines whether the register is to be 9961 * visible in the AArch32 or AArch64 execution state. If the 9962 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9963 * reginfo structure for the AArch32 view, which sees the lower 9964 * 32 bits of the 64 bit register. 9965 * 9966 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9967 * be wildcarded. AArch64 registers are always considered to be 64 9968 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9969 * the register, if any. 9970 */ 9971 int crm, opc1, opc2; 9972 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9973 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9974 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9975 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9976 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9977 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9978 CPState state; 9979 9980 /* 64 bit registers have only CRm and Opc1 fields */ 9981 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9982 /* op0 only exists in the AArch64 encodings */ 9983 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9984 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9985 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9986 /* 9987 * This API is only for Arm's system coprocessors (14 and 15) or 9988 * (M-profile or v7A-and-earlier only) for implementation defined 9989 * coprocessors in the range 0..7. Our decode assumes this, since 9990 * 8..13 can be used for other insns including VFP and Neon. See 9991 * valid_cp() in translate.c. Assert here that we haven't tried 9992 * to use an invalid coprocessor number. 9993 */ 9994 switch (r->state) { 9995 case ARM_CP_STATE_BOTH: 9996 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9997 if (r->cp == 0) { 9998 break; 9999 } 10000 /* fall through */ 10001 case ARM_CP_STATE_AA32: 10002 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10003 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10004 assert(r->cp >= 14 && r->cp <= 15); 10005 } else { 10006 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10007 } 10008 break; 10009 case ARM_CP_STATE_AA64: 10010 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10011 break; 10012 default: 10013 g_assert_not_reached(); 10014 } 10015 /* 10016 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10017 * encodes a minimum access level for the register. We roll this 10018 * runtime check into our general permission check code, so check 10019 * here that the reginfo's specified permissions are strict enough 10020 * to encompass the generic architectural permission check. 10021 */ 10022 if (r->state != ARM_CP_STATE_AA32) { 10023 CPAccessRights mask; 10024 switch (r->opc1) { 10025 case 0: 10026 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10027 mask = PL0U_R | PL1_RW; 10028 break; 10029 case 1: case 2: 10030 /* min_EL EL1 */ 10031 mask = PL1_RW; 10032 break; 10033 case 3: 10034 /* min_EL EL0 */ 10035 mask = PL0_RW; 10036 break; 10037 case 4: 10038 case 5: 10039 /* min_EL EL2 */ 10040 mask = PL2_RW; 10041 break; 10042 case 6: 10043 /* min_EL EL3 */ 10044 mask = PL3_RW; 10045 break; 10046 case 7: 10047 /* min_EL EL1, secure mode only (we don't check the latter) */ 10048 mask = PL1_RW; 10049 break; 10050 default: 10051 /* broken reginfo with out-of-range opc1 */ 10052 g_assert_not_reached(); 10053 } 10054 /* assert our permissions are not too lax (stricter is fine) */ 10055 assert((r->access & ~mask) == 0); 10056 } 10057 10058 /* 10059 * Check that the register definition has enough info to handle 10060 * reads and writes if they are permitted. 10061 */ 10062 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10063 if (r->access & PL3_R) { 10064 assert((r->fieldoffset || 10065 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10066 r->readfn); 10067 } 10068 if (r->access & PL3_W) { 10069 assert((r->fieldoffset || 10070 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10071 r->writefn); 10072 } 10073 } 10074 10075 for (crm = crmmin; crm <= crmmax; crm++) { 10076 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10077 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10078 for (state = ARM_CP_STATE_AA32; 10079 state <= ARM_CP_STATE_AA64; state++) { 10080 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10081 continue; 10082 } 10083 if (state == ARM_CP_STATE_AA32) { 10084 /* 10085 * Under AArch32 CP registers can be common 10086 * (same for secure and non-secure world) or banked. 10087 */ 10088 char *name; 10089 10090 switch (r->secure) { 10091 case ARM_CP_SECSTATE_S: 10092 case ARM_CP_SECSTATE_NS: 10093 add_cpreg_to_hashtable(cpu, r, opaque, state, 10094 r->secure, crm, opc1, opc2, 10095 r->name); 10096 break; 10097 case ARM_CP_SECSTATE_BOTH: 10098 name = g_strdup_printf("%s_S", r->name); 10099 add_cpreg_to_hashtable(cpu, r, opaque, state, 10100 ARM_CP_SECSTATE_S, 10101 crm, opc1, opc2, name); 10102 g_free(name); 10103 add_cpreg_to_hashtable(cpu, r, opaque, state, 10104 ARM_CP_SECSTATE_NS, 10105 crm, opc1, opc2, r->name); 10106 break; 10107 default: 10108 g_assert_not_reached(); 10109 } 10110 } else { 10111 /* 10112 * AArch64 registers get mapped to non-secure instance 10113 * of AArch32 10114 */ 10115 add_cpreg_to_hashtable(cpu, r, opaque, state, 10116 ARM_CP_SECSTATE_NS, 10117 crm, opc1, opc2, r->name); 10118 } 10119 } 10120 } 10121 } 10122 } 10123 } 10124 10125 /* Define a whole list of registers */ 10126 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10127 void *opaque, size_t len) 10128 { 10129 size_t i; 10130 for (i = 0; i < len; ++i) { 10131 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10132 } 10133 } 10134 10135 /* 10136 * Modify ARMCPRegInfo for access from userspace. 10137 * 10138 * This is a data driven modification directed by 10139 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10140 * user-space cannot alter any values and dynamic values pertaining to 10141 * execution state are hidden from user space view anyway. 10142 */ 10143 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10144 const ARMCPRegUserSpaceInfo *mods, 10145 size_t mods_len) 10146 { 10147 for (size_t mi = 0; mi < mods_len; ++mi) { 10148 const ARMCPRegUserSpaceInfo *m = mods + mi; 10149 GPatternSpec *pat = NULL; 10150 10151 if (m->is_glob) { 10152 pat = g_pattern_spec_new(m->name); 10153 } 10154 for (size_t ri = 0; ri < regs_len; ++ri) { 10155 ARMCPRegInfo *r = regs + ri; 10156 10157 if (pat && g_pattern_match_string(pat, r->name)) { 10158 r->type = ARM_CP_CONST; 10159 r->access = PL0U_R; 10160 r->resetvalue = 0; 10161 /* continue */ 10162 } else if (strcmp(r->name, m->name) == 0) { 10163 r->type = ARM_CP_CONST; 10164 r->access = PL0U_R; 10165 r->resetvalue &= m->exported_bits; 10166 r->resetvalue |= m->fixed_bits; 10167 break; 10168 } 10169 } 10170 if (pat) { 10171 g_pattern_spec_free(pat); 10172 } 10173 } 10174 } 10175 10176 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10177 { 10178 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10179 } 10180 10181 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10182 uint64_t value) 10183 { 10184 /* Helper coprocessor write function for write-ignore registers */ 10185 } 10186 10187 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10188 { 10189 /* Helper coprocessor write function for read-as-zero registers */ 10190 return 0; 10191 } 10192 10193 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10194 { 10195 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10196 } 10197 10198 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10199 { 10200 /* 10201 * Return true if it is not valid for us to switch to 10202 * this CPU mode (ie all the UNPREDICTABLE cases in 10203 * the ARM ARM CPSRWriteByInstr pseudocode). 10204 */ 10205 10206 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10207 if (write_type == CPSRWriteByInstr && 10208 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10209 mode == ARM_CPU_MODE_HYP)) { 10210 return 1; 10211 } 10212 10213 switch (mode) { 10214 case ARM_CPU_MODE_USR: 10215 return 0; 10216 case ARM_CPU_MODE_SYS: 10217 case ARM_CPU_MODE_SVC: 10218 case ARM_CPU_MODE_ABT: 10219 case ARM_CPU_MODE_UND: 10220 case ARM_CPU_MODE_IRQ: 10221 case ARM_CPU_MODE_FIQ: 10222 /* 10223 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10224 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10225 */ 10226 /* 10227 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10228 * and CPS are treated as illegal mode changes. 10229 */ 10230 if (write_type == CPSRWriteByInstr && 10231 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10232 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10233 return 1; 10234 } 10235 return 0; 10236 case ARM_CPU_MODE_HYP: 10237 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10238 case ARM_CPU_MODE_MON: 10239 return arm_current_el(env) < 3; 10240 default: 10241 return 1; 10242 } 10243 } 10244 10245 uint32_t cpsr_read(CPUARMState *env) 10246 { 10247 int ZF; 10248 ZF = (env->ZF == 0); 10249 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10250 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10251 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10252 | ((env->condexec_bits & 0xfc) << 8) 10253 | (env->GE << 16) | (env->daif & CPSR_AIF); 10254 } 10255 10256 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10257 CPSRWriteType write_type) 10258 { 10259 uint32_t changed_daif; 10260 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10261 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10262 10263 if (mask & CPSR_NZCV) { 10264 env->ZF = (~val) & CPSR_Z; 10265 env->NF = val; 10266 env->CF = (val >> 29) & 1; 10267 env->VF = (val << 3) & 0x80000000; 10268 } 10269 if (mask & CPSR_Q) { 10270 env->QF = ((val & CPSR_Q) != 0); 10271 } 10272 if (mask & CPSR_T) { 10273 env->thumb = ((val & CPSR_T) != 0); 10274 } 10275 if (mask & CPSR_IT_0_1) { 10276 env->condexec_bits &= ~3; 10277 env->condexec_bits |= (val >> 25) & 3; 10278 } 10279 if (mask & CPSR_IT_2_7) { 10280 env->condexec_bits &= 3; 10281 env->condexec_bits |= (val >> 8) & 0xfc; 10282 } 10283 if (mask & CPSR_GE) { 10284 env->GE = (val >> 16) & 0xf; 10285 } 10286 10287 /* 10288 * In a V7 implementation that includes the security extensions but does 10289 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10290 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10291 * bits respectively. 10292 * 10293 * In a V8 implementation, it is permitted for privileged software to 10294 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10295 */ 10296 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10297 arm_feature(env, ARM_FEATURE_EL3) && 10298 !arm_feature(env, ARM_FEATURE_EL2) && 10299 !arm_is_secure(env)) { 10300 10301 changed_daif = (env->daif ^ val) & mask; 10302 10303 if (changed_daif & CPSR_A) { 10304 /* 10305 * Check to see if we are allowed to change the masking of async 10306 * abort exceptions from a non-secure state. 10307 */ 10308 if (!(env->cp15.scr_el3 & SCR_AW)) { 10309 qemu_log_mask(LOG_GUEST_ERROR, 10310 "Ignoring attempt to switch CPSR_A flag from " 10311 "non-secure world with SCR.AW bit clear\n"); 10312 mask &= ~CPSR_A; 10313 } 10314 } 10315 10316 if (changed_daif & CPSR_F) { 10317 /* 10318 * Check to see if we are allowed to change the masking of FIQ 10319 * exceptions from a non-secure state. 10320 */ 10321 if (!(env->cp15.scr_el3 & SCR_FW)) { 10322 qemu_log_mask(LOG_GUEST_ERROR, 10323 "Ignoring attempt to switch CPSR_F flag from " 10324 "non-secure world with SCR.FW bit clear\n"); 10325 mask &= ~CPSR_F; 10326 } 10327 10328 /* 10329 * Check whether non-maskable FIQ (NMFI) support is enabled. 10330 * If this bit is set software is not allowed to mask 10331 * FIQs, but is allowed to set CPSR_F to 0. 10332 */ 10333 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10334 (val & CPSR_F)) { 10335 qemu_log_mask(LOG_GUEST_ERROR, 10336 "Ignoring attempt to enable CPSR_F flag " 10337 "(non-maskable FIQ [NMFI] support enabled)\n"); 10338 mask &= ~CPSR_F; 10339 } 10340 } 10341 } 10342 10343 env->daif &= ~(CPSR_AIF & mask); 10344 env->daif |= val & CPSR_AIF & mask; 10345 10346 if (write_type != CPSRWriteRaw && 10347 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10348 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10349 /* 10350 * Note that we can only get here in USR mode if this is a 10351 * gdb stub write; for this case we follow the architectural 10352 * behaviour for guest writes in USR mode of ignoring an attempt 10353 * to switch mode. (Those are caught by translate.c for writes 10354 * triggered by guest instructions.) 10355 */ 10356 mask &= ~CPSR_M; 10357 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10358 /* 10359 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10360 * v7, and has defined behaviour in v8: 10361 * + leave CPSR.M untouched 10362 * + allow changes to the other CPSR fields 10363 * + set PSTATE.IL 10364 * For user changes via the GDB stub, we don't set PSTATE.IL, 10365 * as this would be unnecessarily harsh for a user error. 10366 */ 10367 mask &= ~CPSR_M; 10368 if (write_type != CPSRWriteByGDBStub && 10369 arm_feature(env, ARM_FEATURE_V8)) { 10370 mask |= CPSR_IL; 10371 val |= CPSR_IL; 10372 } 10373 qemu_log_mask(LOG_GUEST_ERROR, 10374 "Illegal AArch32 mode switch attempt from %s to %s\n", 10375 aarch32_mode_name(env->uncached_cpsr), 10376 aarch32_mode_name(val)); 10377 } else { 10378 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10379 write_type == CPSRWriteExceptionReturn ? 10380 "Exception return from AArch32" : 10381 "AArch32 mode switch from", 10382 aarch32_mode_name(env->uncached_cpsr), 10383 aarch32_mode_name(val), env->regs[15]); 10384 switch_mode(env, val & CPSR_M); 10385 } 10386 } 10387 mask &= ~CACHED_CPSR_BITS; 10388 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10389 if (tcg_enabled() && rebuild_hflags) { 10390 arm_rebuild_hflags(env); 10391 } 10392 } 10393 10394 #ifdef CONFIG_USER_ONLY 10395 10396 static void switch_mode(CPUARMState *env, int mode) 10397 { 10398 ARMCPU *cpu = env_archcpu(env); 10399 10400 if (mode != ARM_CPU_MODE_USR) { 10401 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10402 } 10403 } 10404 10405 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10406 uint32_t cur_el, bool secure) 10407 { 10408 return 1; 10409 } 10410 10411 void aarch64_sync_64_to_32(CPUARMState *env) 10412 { 10413 g_assert_not_reached(); 10414 } 10415 10416 #else 10417 10418 static void switch_mode(CPUARMState *env, int mode) 10419 { 10420 int old_mode; 10421 int i; 10422 10423 old_mode = env->uncached_cpsr & CPSR_M; 10424 if (mode == old_mode) { 10425 return; 10426 } 10427 10428 if (old_mode == ARM_CPU_MODE_FIQ) { 10429 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10430 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10431 } else if (mode == ARM_CPU_MODE_FIQ) { 10432 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10433 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10434 } 10435 10436 i = bank_number(old_mode); 10437 env->banked_r13[i] = env->regs[13]; 10438 env->banked_spsr[i] = env->spsr; 10439 10440 i = bank_number(mode); 10441 env->regs[13] = env->banked_r13[i]; 10442 env->spsr = env->banked_spsr[i]; 10443 10444 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10445 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10446 } 10447 10448 /* 10449 * Physical Interrupt Target EL Lookup Table 10450 * 10451 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10452 * 10453 * The below multi-dimensional table is used for looking up the target 10454 * exception level given numerous condition criteria. Specifically, the 10455 * target EL is based on SCR and HCR routing controls as well as the 10456 * currently executing EL and secure state. 10457 * 10458 * Dimensions: 10459 * target_el_table[2][2][2][2][2][4] 10460 * | | | | | +--- Current EL 10461 * | | | | +------ Non-secure(0)/Secure(1) 10462 * | | | +--------- HCR mask override 10463 * | | +------------ SCR exec state control 10464 * | +--------------- SCR mask override 10465 * +------------------ 32-bit(0)/64-bit(1) EL3 10466 * 10467 * The table values are as such: 10468 * 0-3 = EL0-EL3 10469 * -1 = Cannot occur 10470 * 10471 * The ARM ARM target EL table includes entries indicating that an "exception 10472 * is not taken". The two cases where this is applicable are: 10473 * 1) An exception is taken from EL3 but the SCR does not have the exception 10474 * routed to EL3. 10475 * 2) An exception is taken from EL2 but the HCR does not have the exception 10476 * routed to EL2. 10477 * In these two cases, the below table contain a target of EL1. This value is 10478 * returned as it is expected that the consumer of the table data will check 10479 * for "target EL >= current EL" to ensure the exception is not taken. 10480 * 10481 * SCR HCR 10482 * 64 EA AMO From 10483 * BIT IRQ IMO Non-secure Secure 10484 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10485 */ 10486 static const int8_t target_el_table[2][2][2][2][2][4] = { 10487 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10488 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10489 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10490 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10491 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10492 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10493 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10494 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10495 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10496 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10497 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10498 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10499 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10500 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10501 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10502 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10503 }; 10504 10505 /* 10506 * Determine the target EL for physical exceptions 10507 */ 10508 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10509 uint32_t cur_el, bool secure) 10510 { 10511 CPUARMState *env = cpu_env(cs); 10512 bool rw; 10513 bool scr; 10514 bool hcr; 10515 int target_el; 10516 /* Is the highest EL AArch64? */ 10517 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10518 uint64_t hcr_el2; 10519 10520 if (arm_feature(env, ARM_FEATURE_EL3)) { 10521 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10522 } else { 10523 /* 10524 * Either EL2 is the highest EL (and so the EL2 register width 10525 * is given by is64); or there is no EL2 or EL3, in which case 10526 * the value of 'rw' does not affect the table lookup anyway. 10527 */ 10528 rw = is64; 10529 } 10530 10531 hcr_el2 = arm_hcr_el2_eff(env); 10532 switch (excp_idx) { 10533 case EXCP_IRQ: 10534 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10535 hcr = hcr_el2 & HCR_IMO; 10536 break; 10537 case EXCP_FIQ: 10538 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10539 hcr = hcr_el2 & HCR_FMO; 10540 break; 10541 default: 10542 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10543 hcr = hcr_el2 & HCR_AMO; 10544 break; 10545 }; 10546 10547 /* 10548 * For these purposes, TGE and AMO/IMO/FMO both force the 10549 * interrupt to EL2. Fold TGE into the bit extracted above. 10550 */ 10551 hcr |= (hcr_el2 & HCR_TGE) != 0; 10552 10553 /* Perform a table-lookup for the target EL given the current state */ 10554 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10555 10556 assert(target_el > 0); 10557 10558 return target_el; 10559 } 10560 10561 void arm_log_exception(CPUState *cs) 10562 { 10563 int idx = cs->exception_index; 10564 10565 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10566 const char *exc = NULL; 10567 static const char * const excnames[] = { 10568 [EXCP_UDEF] = "Undefined Instruction", 10569 [EXCP_SWI] = "SVC", 10570 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10571 [EXCP_DATA_ABORT] = "Data Abort", 10572 [EXCP_IRQ] = "IRQ", 10573 [EXCP_FIQ] = "FIQ", 10574 [EXCP_BKPT] = "Breakpoint", 10575 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10576 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10577 [EXCP_HVC] = "Hypervisor Call", 10578 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10579 [EXCP_SMC] = "Secure Monitor Call", 10580 [EXCP_VIRQ] = "Virtual IRQ", 10581 [EXCP_VFIQ] = "Virtual FIQ", 10582 [EXCP_SEMIHOST] = "Semihosting call", 10583 [EXCP_NOCP] = "v7M NOCP UsageFault", 10584 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10585 [EXCP_STKOF] = "v8M STKOF UsageFault", 10586 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10587 [EXCP_LSERR] = "v8M LSERR UsageFault", 10588 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10589 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10590 [EXCP_VSERR] = "Virtual SERR", 10591 [EXCP_GPC] = "Granule Protection Check", 10592 }; 10593 10594 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10595 exc = excnames[idx]; 10596 } 10597 if (!exc) { 10598 exc = "unknown"; 10599 } 10600 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10601 idx, exc, cs->cpu_index); 10602 } 10603 } 10604 10605 /* 10606 * Function used to synchronize QEMU's AArch64 register set with AArch32 10607 * register set. This is necessary when switching between AArch32 and AArch64 10608 * execution state. 10609 */ 10610 void aarch64_sync_32_to_64(CPUARMState *env) 10611 { 10612 int i; 10613 uint32_t mode = env->uncached_cpsr & CPSR_M; 10614 10615 /* We can blanket copy R[0:7] to X[0:7] */ 10616 for (i = 0; i < 8; i++) { 10617 env->xregs[i] = env->regs[i]; 10618 } 10619 10620 /* 10621 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10622 * Otherwise, they come from the banked user regs. 10623 */ 10624 if (mode == ARM_CPU_MODE_FIQ) { 10625 for (i = 8; i < 13; i++) { 10626 env->xregs[i] = env->usr_regs[i - 8]; 10627 } 10628 } else { 10629 for (i = 8; i < 13; i++) { 10630 env->xregs[i] = env->regs[i]; 10631 } 10632 } 10633 10634 /* 10635 * Registers x13-x23 are the various mode SP and FP registers. Registers 10636 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10637 * from the mode banked register. 10638 */ 10639 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10640 env->xregs[13] = env->regs[13]; 10641 env->xregs[14] = env->regs[14]; 10642 } else { 10643 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10644 /* HYP is an exception in that it is copied from r14 */ 10645 if (mode == ARM_CPU_MODE_HYP) { 10646 env->xregs[14] = env->regs[14]; 10647 } else { 10648 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10649 } 10650 } 10651 10652 if (mode == ARM_CPU_MODE_HYP) { 10653 env->xregs[15] = env->regs[13]; 10654 } else { 10655 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10656 } 10657 10658 if (mode == ARM_CPU_MODE_IRQ) { 10659 env->xregs[16] = env->regs[14]; 10660 env->xregs[17] = env->regs[13]; 10661 } else { 10662 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10663 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10664 } 10665 10666 if (mode == ARM_CPU_MODE_SVC) { 10667 env->xregs[18] = env->regs[14]; 10668 env->xregs[19] = env->regs[13]; 10669 } else { 10670 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10671 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10672 } 10673 10674 if (mode == ARM_CPU_MODE_ABT) { 10675 env->xregs[20] = env->regs[14]; 10676 env->xregs[21] = env->regs[13]; 10677 } else { 10678 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10679 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10680 } 10681 10682 if (mode == ARM_CPU_MODE_UND) { 10683 env->xregs[22] = env->regs[14]; 10684 env->xregs[23] = env->regs[13]; 10685 } else { 10686 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10687 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10688 } 10689 10690 /* 10691 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10692 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10693 * FIQ bank for r8-r14. 10694 */ 10695 if (mode == ARM_CPU_MODE_FIQ) { 10696 for (i = 24; i < 31; i++) { 10697 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10698 } 10699 } else { 10700 for (i = 24; i < 29; i++) { 10701 env->xregs[i] = env->fiq_regs[i - 24]; 10702 } 10703 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10704 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10705 } 10706 10707 env->pc = env->regs[15]; 10708 } 10709 10710 /* 10711 * Function used to synchronize QEMU's AArch32 register set with AArch64 10712 * register set. This is necessary when switching between AArch32 and AArch64 10713 * execution state. 10714 */ 10715 void aarch64_sync_64_to_32(CPUARMState *env) 10716 { 10717 int i; 10718 uint32_t mode = env->uncached_cpsr & CPSR_M; 10719 10720 /* We can blanket copy X[0:7] to R[0:7] */ 10721 for (i = 0; i < 8; i++) { 10722 env->regs[i] = env->xregs[i]; 10723 } 10724 10725 /* 10726 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10727 * Otherwise, we copy x8-x12 into the banked user regs. 10728 */ 10729 if (mode == ARM_CPU_MODE_FIQ) { 10730 for (i = 8; i < 13; i++) { 10731 env->usr_regs[i - 8] = env->xregs[i]; 10732 } 10733 } else { 10734 for (i = 8; i < 13; i++) { 10735 env->regs[i] = env->xregs[i]; 10736 } 10737 } 10738 10739 /* 10740 * Registers r13 & r14 depend on the current mode. 10741 * If we are in a given mode, we copy the corresponding x registers to r13 10742 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10743 * for the mode. 10744 */ 10745 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10746 env->regs[13] = env->xregs[13]; 10747 env->regs[14] = env->xregs[14]; 10748 } else { 10749 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10750 10751 /* 10752 * HYP is an exception in that it does not have its own banked r14 but 10753 * shares the USR r14 10754 */ 10755 if (mode == ARM_CPU_MODE_HYP) { 10756 env->regs[14] = env->xregs[14]; 10757 } else { 10758 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10759 } 10760 } 10761 10762 if (mode == ARM_CPU_MODE_HYP) { 10763 env->regs[13] = env->xregs[15]; 10764 } else { 10765 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10766 } 10767 10768 if (mode == ARM_CPU_MODE_IRQ) { 10769 env->regs[14] = env->xregs[16]; 10770 env->regs[13] = env->xregs[17]; 10771 } else { 10772 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10773 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10774 } 10775 10776 if (mode == ARM_CPU_MODE_SVC) { 10777 env->regs[14] = env->xregs[18]; 10778 env->regs[13] = env->xregs[19]; 10779 } else { 10780 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10781 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10782 } 10783 10784 if (mode == ARM_CPU_MODE_ABT) { 10785 env->regs[14] = env->xregs[20]; 10786 env->regs[13] = env->xregs[21]; 10787 } else { 10788 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10789 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10790 } 10791 10792 if (mode == ARM_CPU_MODE_UND) { 10793 env->regs[14] = env->xregs[22]; 10794 env->regs[13] = env->xregs[23]; 10795 } else { 10796 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10797 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10798 } 10799 10800 /* 10801 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10802 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10803 * FIQ bank for r8-r14. 10804 */ 10805 if (mode == ARM_CPU_MODE_FIQ) { 10806 for (i = 24; i < 31; i++) { 10807 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10808 } 10809 } else { 10810 for (i = 24; i < 29; i++) { 10811 env->fiq_regs[i - 24] = env->xregs[i]; 10812 } 10813 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10814 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10815 } 10816 10817 env->regs[15] = env->pc; 10818 } 10819 10820 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10821 uint32_t mask, uint32_t offset, 10822 uint32_t newpc) 10823 { 10824 int new_el; 10825 10826 /* Change the CPU state so as to actually take the exception. */ 10827 switch_mode(env, new_mode); 10828 10829 /* 10830 * For exceptions taken to AArch32 we must clear the SS bit in both 10831 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10832 */ 10833 env->pstate &= ~PSTATE_SS; 10834 env->spsr = cpsr_read(env); 10835 /* Clear IT bits. */ 10836 env->condexec_bits = 0; 10837 /* Switch to the new mode, and to the correct instruction set. */ 10838 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10839 10840 /* This must be after mode switching. */ 10841 new_el = arm_current_el(env); 10842 10843 /* Set new mode endianness */ 10844 env->uncached_cpsr &= ~CPSR_E; 10845 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10846 env->uncached_cpsr |= CPSR_E; 10847 } 10848 /* J and IL must always be cleared for exception entry */ 10849 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10850 env->daif |= mask; 10851 10852 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10853 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10854 env->uncached_cpsr |= CPSR_SSBS; 10855 } else { 10856 env->uncached_cpsr &= ~CPSR_SSBS; 10857 } 10858 } 10859 10860 if (new_mode == ARM_CPU_MODE_HYP) { 10861 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10862 env->elr_el[2] = env->regs[15]; 10863 } else { 10864 /* CPSR.PAN is normally preserved preserved unless... */ 10865 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10866 switch (new_el) { 10867 case 3: 10868 if (!arm_is_secure_below_el3(env)) { 10869 /* ... the target is EL3, from non-secure state. */ 10870 env->uncached_cpsr &= ~CPSR_PAN; 10871 break; 10872 } 10873 /* ... the target is EL3, from secure state ... */ 10874 /* fall through */ 10875 case 1: 10876 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10877 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10878 env->uncached_cpsr |= CPSR_PAN; 10879 } 10880 break; 10881 } 10882 } 10883 /* 10884 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10885 * and we should just guard the thumb mode on V4 10886 */ 10887 if (arm_feature(env, ARM_FEATURE_V4T)) { 10888 env->thumb = 10889 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10890 } 10891 env->regs[14] = env->regs[15] + offset; 10892 } 10893 env->regs[15] = newpc; 10894 10895 if (tcg_enabled()) { 10896 arm_rebuild_hflags(env); 10897 } 10898 } 10899 10900 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10901 { 10902 /* 10903 * Handle exception entry to Hyp mode; this is sufficiently 10904 * different to entry to other AArch32 modes that we handle it 10905 * separately here. 10906 * 10907 * The vector table entry used is always the 0x14 Hyp mode entry point, 10908 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10909 * The offset applied to the preferred return address is always zero 10910 * (see DDI0487C.a section G1.12.3). 10911 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10912 */ 10913 uint32_t addr, mask; 10914 ARMCPU *cpu = ARM_CPU(cs); 10915 CPUARMState *env = &cpu->env; 10916 10917 switch (cs->exception_index) { 10918 case EXCP_UDEF: 10919 addr = 0x04; 10920 break; 10921 case EXCP_SWI: 10922 addr = 0x08; 10923 break; 10924 case EXCP_BKPT: 10925 /* Fall through to prefetch abort. */ 10926 case EXCP_PREFETCH_ABORT: 10927 env->cp15.ifar_s = env->exception.vaddress; 10928 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10929 (uint32_t)env->exception.vaddress); 10930 addr = 0x0c; 10931 break; 10932 case EXCP_DATA_ABORT: 10933 env->cp15.dfar_s = env->exception.vaddress; 10934 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10935 (uint32_t)env->exception.vaddress); 10936 addr = 0x10; 10937 break; 10938 case EXCP_IRQ: 10939 addr = 0x18; 10940 break; 10941 case EXCP_FIQ: 10942 addr = 0x1c; 10943 break; 10944 case EXCP_HVC: 10945 addr = 0x08; 10946 break; 10947 case EXCP_HYP_TRAP: 10948 addr = 0x14; 10949 break; 10950 default: 10951 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10952 } 10953 10954 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10955 if (!arm_feature(env, ARM_FEATURE_V8)) { 10956 /* 10957 * QEMU syndrome values are v8-style. v7 has the IL bit 10958 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10959 * If this is a v7 CPU, squash the IL bit in those cases. 10960 */ 10961 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10962 (cs->exception_index == EXCP_DATA_ABORT && 10963 !(env->exception.syndrome & ARM_EL_ISV)) || 10964 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10965 env->exception.syndrome &= ~ARM_EL_IL; 10966 } 10967 } 10968 env->cp15.esr_el[2] = env->exception.syndrome; 10969 } 10970 10971 if (arm_current_el(env) != 2 && addr < 0x14) { 10972 addr = 0x14; 10973 } 10974 10975 mask = 0; 10976 if (!(env->cp15.scr_el3 & SCR_EA)) { 10977 mask |= CPSR_A; 10978 } 10979 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10980 mask |= CPSR_I; 10981 } 10982 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10983 mask |= CPSR_F; 10984 } 10985 10986 addr += env->cp15.hvbar; 10987 10988 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10989 } 10990 10991 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10992 { 10993 ARMCPU *cpu = ARM_CPU(cs); 10994 CPUARMState *env = &cpu->env; 10995 uint32_t addr; 10996 uint32_t mask; 10997 int new_mode; 10998 uint32_t offset; 10999 uint32_t moe; 11000 11001 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11002 switch (syn_get_ec(env->exception.syndrome)) { 11003 case EC_BREAKPOINT: 11004 case EC_BREAKPOINT_SAME_EL: 11005 moe = 1; 11006 break; 11007 case EC_WATCHPOINT: 11008 case EC_WATCHPOINT_SAME_EL: 11009 moe = 10; 11010 break; 11011 case EC_AA32_BKPT: 11012 moe = 3; 11013 break; 11014 case EC_VECTORCATCH: 11015 moe = 5; 11016 break; 11017 default: 11018 moe = 0; 11019 break; 11020 } 11021 11022 if (moe) { 11023 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11024 } 11025 11026 if (env->exception.target_el == 2) { 11027 /* Debug exceptions are reported differently on AArch32 */ 11028 switch (syn_get_ec(env->exception.syndrome)) { 11029 case EC_BREAKPOINT: 11030 case EC_BREAKPOINT_SAME_EL: 11031 case EC_AA32_BKPT: 11032 case EC_VECTORCATCH: 11033 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11034 0, 0, 0x22); 11035 break; 11036 case EC_WATCHPOINT: 11037 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11038 EC_DATAABORT); 11039 break; 11040 case EC_WATCHPOINT_SAME_EL: 11041 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11042 EC_DATAABORT_SAME_EL); 11043 break; 11044 } 11045 arm_cpu_do_interrupt_aarch32_hyp(cs); 11046 return; 11047 } 11048 11049 switch (cs->exception_index) { 11050 case EXCP_UDEF: 11051 new_mode = ARM_CPU_MODE_UND; 11052 addr = 0x04; 11053 mask = CPSR_I; 11054 if (env->thumb) { 11055 offset = 2; 11056 } else { 11057 offset = 4; 11058 } 11059 break; 11060 case EXCP_SWI: 11061 new_mode = ARM_CPU_MODE_SVC; 11062 addr = 0x08; 11063 mask = CPSR_I; 11064 /* The PC already points to the next instruction. */ 11065 offset = 0; 11066 break; 11067 case EXCP_BKPT: 11068 /* Fall through to prefetch abort. */ 11069 case EXCP_PREFETCH_ABORT: 11070 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11071 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11072 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11073 env->exception.fsr, (uint32_t)env->exception.vaddress); 11074 new_mode = ARM_CPU_MODE_ABT; 11075 addr = 0x0c; 11076 mask = CPSR_A | CPSR_I; 11077 offset = 4; 11078 break; 11079 case EXCP_DATA_ABORT: 11080 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11081 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11082 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11083 env->exception.fsr, 11084 (uint32_t)env->exception.vaddress); 11085 new_mode = ARM_CPU_MODE_ABT; 11086 addr = 0x10; 11087 mask = CPSR_A | CPSR_I; 11088 offset = 8; 11089 break; 11090 case EXCP_IRQ: 11091 new_mode = ARM_CPU_MODE_IRQ; 11092 addr = 0x18; 11093 /* Disable IRQ and imprecise data aborts. */ 11094 mask = CPSR_A | CPSR_I; 11095 offset = 4; 11096 if (env->cp15.scr_el3 & SCR_IRQ) { 11097 /* IRQ routed to monitor mode */ 11098 new_mode = ARM_CPU_MODE_MON; 11099 mask |= CPSR_F; 11100 } 11101 break; 11102 case EXCP_FIQ: 11103 new_mode = ARM_CPU_MODE_FIQ; 11104 addr = 0x1c; 11105 /* Disable FIQ, IRQ and imprecise data aborts. */ 11106 mask = CPSR_A | CPSR_I | CPSR_F; 11107 if (env->cp15.scr_el3 & SCR_FIQ) { 11108 /* FIQ routed to monitor mode */ 11109 new_mode = ARM_CPU_MODE_MON; 11110 } 11111 offset = 4; 11112 break; 11113 case EXCP_VIRQ: 11114 new_mode = ARM_CPU_MODE_IRQ; 11115 addr = 0x18; 11116 /* Disable IRQ and imprecise data aborts. */ 11117 mask = CPSR_A | CPSR_I; 11118 offset = 4; 11119 break; 11120 case EXCP_VFIQ: 11121 new_mode = ARM_CPU_MODE_FIQ; 11122 addr = 0x1c; 11123 /* Disable FIQ, IRQ and imprecise data aborts. */ 11124 mask = CPSR_A | CPSR_I | CPSR_F; 11125 offset = 4; 11126 break; 11127 case EXCP_VSERR: 11128 { 11129 /* 11130 * Note that this is reported as a data abort, but the DFAR 11131 * has an UNKNOWN value. Construct the SError syndrome from 11132 * AET and ExT fields. 11133 */ 11134 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11135 11136 if (extended_addresses_enabled(env)) { 11137 env->exception.fsr = arm_fi_to_lfsc(&fi); 11138 } else { 11139 env->exception.fsr = arm_fi_to_sfsc(&fi); 11140 } 11141 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11142 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11143 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11144 env->exception.fsr); 11145 11146 new_mode = ARM_CPU_MODE_ABT; 11147 addr = 0x10; 11148 mask = CPSR_A | CPSR_I; 11149 offset = 8; 11150 } 11151 break; 11152 case EXCP_SMC: 11153 new_mode = ARM_CPU_MODE_MON; 11154 addr = 0x08; 11155 mask = CPSR_A | CPSR_I | CPSR_F; 11156 offset = 0; 11157 break; 11158 default: 11159 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11160 return; /* Never happens. Keep compiler happy. */ 11161 } 11162 11163 if (new_mode == ARM_CPU_MODE_MON) { 11164 addr += env->cp15.mvbar; 11165 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11166 /* High vectors. When enabled, base address cannot be remapped. */ 11167 addr += 0xffff0000; 11168 } else { 11169 /* 11170 * ARM v7 architectures provide a vector base address register to remap 11171 * the interrupt vector table. 11172 * This register is only followed in non-monitor mode, and is banked. 11173 * Note: only bits 31:5 are valid. 11174 */ 11175 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11176 } 11177 11178 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11179 env->cp15.scr_el3 &= ~SCR_NS; 11180 } 11181 11182 take_aarch32_exception(env, new_mode, mask, offset, addr); 11183 } 11184 11185 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11186 { 11187 /* 11188 * Return the register number of the AArch64 view of the AArch32 11189 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11190 * be that of the AArch32 mode the exception came from. 11191 */ 11192 int mode = env->uncached_cpsr & CPSR_M; 11193 11194 switch (aarch32_reg) { 11195 case 0 ... 7: 11196 return aarch32_reg; 11197 case 8 ... 12: 11198 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11199 case 13: 11200 switch (mode) { 11201 case ARM_CPU_MODE_USR: 11202 case ARM_CPU_MODE_SYS: 11203 return 13; 11204 case ARM_CPU_MODE_HYP: 11205 return 15; 11206 case ARM_CPU_MODE_IRQ: 11207 return 17; 11208 case ARM_CPU_MODE_SVC: 11209 return 19; 11210 case ARM_CPU_MODE_ABT: 11211 return 21; 11212 case ARM_CPU_MODE_UND: 11213 return 23; 11214 case ARM_CPU_MODE_FIQ: 11215 return 29; 11216 default: 11217 g_assert_not_reached(); 11218 } 11219 case 14: 11220 switch (mode) { 11221 case ARM_CPU_MODE_USR: 11222 case ARM_CPU_MODE_SYS: 11223 case ARM_CPU_MODE_HYP: 11224 return 14; 11225 case ARM_CPU_MODE_IRQ: 11226 return 16; 11227 case ARM_CPU_MODE_SVC: 11228 return 18; 11229 case ARM_CPU_MODE_ABT: 11230 return 20; 11231 case ARM_CPU_MODE_UND: 11232 return 22; 11233 case ARM_CPU_MODE_FIQ: 11234 return 30; 11235 default: 11236 g_assert_not_reached(); 11237 } 11238 case 15: 11239 return 31; 11240 default: 11241 g_assert_not_reached(); 11242 } 11243 } 11244 11245 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11246 { 11247 uint32_t ret = cpsr_read(env); 11248 11249 /* Move DIT to the correct location for SPSR_ELx */ 11250 if (ret & CPSR_DIT) { 11251 ret &= ~CPSR_DIT; 11252 ret |= PSTATE_DIT; 11253 } 11254 /* Merge PSTATE.SS into SPSR_ELx */ 11255 ret |= env->pstate & PSTATE_SS; 11256 11257 return ret; 11258 } 11259 11260 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11261 { 11262 /* Return true if this syndrome value is a synchronous external abort */ 11263 switch (syn_get_ec(syndrome)) { 11264 case EC_INSNABORT: 11265 case EC_INSNABORT_SAME_EL: 11266 case EC_DATAABORT: 11267 case EC_DATAABORT_SAME_EL: 11268 /* Look at fault status code for all the synchronous ext abort cases */ 11269 switch (syndrome & 0x3f) { 11270 case 0x10: 11271 case 0x13: 11272 case 0x14: 11273 case 0x15: 11274 case 0x16: 11275 case 0x17: 11276 return true; 11277 default: 11278 return false; 11279 } 11280 default: 11281 return false; 11282 } 11283 } 11284 11285 /* Handle exception entry to a target EL which is using AArch64 */ 11286 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11287 { 11288 ARMCPU *cpu = ARM_CPU(cs); 11289 CPUARMState *env = &cpu->env; 11290 unsigned int new_el = env->exception.target_el; 11291 target_ulong addr = env->cp15.vbar_el[new_el]; 11292 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11293 unsigned int old_mode; 11294 unsigned int cur_el = arm_current_el(env); 11295 int rt; 11296 11297 if (tcg_enabled()) { 11298 /* 11299 * Note that new_el can never be 0. If cur_el is 0, then 11300 * el0_a64 is is_a64(), else el0_a64 is ignored. 11301 */ 11302 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11303 } 11304 11305 if (cur_el < new_el) { 11306 /* 11307 * Entry vector offset depends on whether the implemented EL 11308 * immediately lower than the target level is using AArch32 or AArch64 11309 */ 11310 bool is_aa64; 11311 uint64_t hcr; 11312 11313 switch (new_el) { 11314 case 3: 11315 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11316 break; 11317 case 2: 11318 hcr = arm_hcr_el2_eff(env); 11319 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11320 is_aa64 = (hcr & HCR_RW) != 0; 11321 break; 11322 } 11323 /* fall through */ 11324 case 1: 11325 is_aa64 = is_a64(env); 11326 break; 11327 default: 11328 g_assert_not_reached(); 11329 } 11330 11331 if (is_aa64) { 11332 addr += 0x400; 11333 } else { 11334 addr += 0x600; 11335 } 11336 } else if (pstate_read(env) & PSTATE_SP) { 11337 addr += 0x200; 11338 } 11339 11340 switch (cs->exception_index) { 11341 case EXCP_GPC: 11342 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11343 env->cp15.mfar_el3); 11344 /* fall through */ 11345 case EXCP_PREFETCH_ABORT: 11346 case EXCP_DATA_ABORT: 11347 /* 11348 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11349 * to be taken to the SError vector entrypoint. 11350 */ 11351 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11352 syndrome_is_sync_extabt(env->exception.syndrome)) { 11353 addr += 0x180; 11354 } 11355 env->cp15.far_el[new_el] = env->exception.vaddress; 11356 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11357 env->cp15.far_el[new_el]); 11358 /* fall through */ 11359 case EXCP_BKPT: 11360 case EXCP_UDEF: 11361 case EXCP_SWI: 11362 case EXCP_HVC: 11363 case EXCP_HYP_TRAP: 11364 case EXCP_SMC: 11365 switch (syn_get_ec(env->exception.syndrome)) { 11366 case EC_ADVSIMDFPACCESSTRAP: 11367 /* 11368 * QEMU internal FP/SIMD syndromes from AArch32 include the 11369 * TA and coproc fields which are only exposed if the exception 11370 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11371 * AArch64 format syndrome. 11372 */ 11373 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11374 break; 11375 case EC_CP14RTTRAP: 11376 case EC_CP15RTTRAP: 11377 case EC_CP14DTTRAP: 11378 /* 11379 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11380 * the raw register field from the insn; when taking this to 11381 * AArch64 we must convert it to the AArch64 view of the register 11382 * number. Notice that we read a 4-bit AArch32 register number and 11383 * write back a 5-bit AArch64 one. 11384 */ 11385 rt = extract32(env->exception.syndrome, 5, 4); 11386 rt = aarch64_regnum(env, rt); 11387 env->exception.syndrome = deposit32(env->exception.syndrome, 11388 5, 5, rt); 11389 break; 11390 case EC_CP15RRTTRAP: 11391 case EC_CP14RRTTRAP: 11392 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11393 rt = extract32(env->exception.syndrome, 5, 4); 11394 rt = aarch64_regnum(env, rt); 11395 env->exception.syndrome = deposit32(env->exception.syndrome, 11396 5, 5, rt); 11397 rt = extract32(env->exception.syndrome, 10, 4); 11398 rt = aarch64_regnum(env, rt); 11399 env->exception.syndrome = deposit32(env->exception.syndrome, 11400 10, 5, rt); 11401 break; 11402 } 11403 env->cp15.esr_el[new_el] = env->exception.syndrome; 11404 break; 11405 case EXCP_IRQ: 11406 case EXCP_VIRQ: 11407 addr += 0x80; 11408 break; 11409 case EXCP_FIQ: 11410 case EXCP_VFIQ: 11411 addr += 0x100; 11412 break; 11413 case EXCP_VSERR: 11414 addr += 0x180; 11415 /* Construct the SError syndrome from IDS and ISS fields. */ 11416 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11417 env->cp15.esr_el[new_el] = env->exception.syndrome; 11418 break; 11419 default: 11420 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11421 } 11422 11423 if (is_a64(env)) { 11424 old_mode = pstate_read(env); 11425 aarch64_save_sp(env, arm_current_el(env)); 11426 env->elr_el[new_el] = env->pc; 11427 11428 if (cur_el == 1 && new_el == 1) { 11429 uint64_t hcr = arm_hcr_el2_eff(env); 11430 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11431 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11432 /* 11433 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11434 * by setting M[3:2] to 0b10. 11435 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11436 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11437 */ 11438 old_mode = deposit32(old_mode, 2, 2, 2); 11439 } 11440 } 11441 } else { 11442 old_mode = cpsr_read_for_spsr_elx(env); 11443 env->elr_el[new_el] = env->regs[15]; 11444 11445 aarch64_sync_32_to_64(env); 11446 11447 env->condexec_bits = 0; 11448 } 11449 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11450 11451 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11452 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11453 env->elr_el[new_el]); 11454 11455 if (cpu_isar_feature(aa64_pan, cpu)) { 11456 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11457 new_mode |= old_mode & PSTATE_PAN; 11458 switch (new_el) { 11459 case 2: 11460 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11461 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11462 != (HCR_E2H | HCR_TGE)) { 11463 break; 11464 } 11465 /* fall through */ 11466 case 1: 11467 /* ... the target is EL1 ... */ 11468 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11469 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11470 new_mode |= PSTATE_PAN; 11471 } 11472 break; 11473 } 11474 } 11475 if (cpu_isar_feature(aa64_mte, cpu)) { 11476 new_mode |= PSTATE_TCO; 11477 } 11478 11479 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11480 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11481 new_mode |= PSTATE_SSBS; 11482 } else { 11483 new_mode &= ~PSTATE_SSBS; 11484 } 11485 } 11486 11487 pstate_write(env, PSTATE_DAIF | new_mode); 11488 env->aarch64 = true; 11489 aarch64_restore_sp(env, new_el); 11490 11491 if (tcg_enabled()) { 11492 helper_rebuild_hflags_a64(env, new_el); 11493 } 11494 11495 env->pc = addr; 11496 11497 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11498 new_el, env->pc, pstate_read(env)); 11499 } 11500 11501 /* 11502 * Do semihosting call and set the appropriate return value. All the 11503 * permission and validity checks have been done at translate time. 11504 * 11505 * We only see semihosting exceptions in TCG only as they are not 11506 * trapped to the hypervisor in KVM. 11507 */ 11508 #ifdef CONFIG_TCG 11509 static void tcg_handle_semihosting(CPUState *cs) 11510 { 11511 ARMCPU *cpu = ARM_CPU(cs); 11512 CPUARMState *env = &cpu->env; 11513 11514 if (is_a64(env)) { 11515 qemu_log_mask(CPU_LOG_INT, 11516 "...handling as semihosting call 0x%" PRIx64 "\n", 11517 env->xregs[0]); 11518 do_common_semihosting(cs); 11519 env->pc += 4; 11520 } else { 11521 qemu_log_mask(CPU_LOG_INT, 11522 "...handling as semihosting call 0x%x\n", 11523 env->regs[0]); 11524 do_common_semihosting(cs); 11525 env->regs[15] += env->thumb ? 2 : 4; 11526 } 11527 } 11528 #endif 11529 11530 /* 11531 * Handle a CPU exception for A and R profile CPUs. 11532 * Do any appropriate logging, handle PSCI calls, and then hand off 11533 * to the AArch64-entry or AArch32-entry function depending on the 11534 * target exception level's register width. 11535 * 11536 * Note: this is used for both TCG (as the do_interrupt tcg op), 11537 * and KVM to re-inject guest debug exceptions, and to 11538 * inject a Synchronous-External-Abort. 11539 */ 11540 void arm_cpu_do_interrupt(CPUState *cs) 11541 { 11542 ARMCPU *cpu = ARM_CPU(cs); 11543 CPUARMState *env = &cpu->env; 11544 unsigned int new_el = env->exception.target_el; 11545 11546 assert(!arm_feature(env, ARM_FEATURE_M)); 11547 11548 arm_log_exception(cs); 11549 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11550 new_el); 11551 if (qemu_loglevel_mask(CPU_LOG_INT) 11552 && !excp_is_internal(cs->exception_index)) { 11553 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11554 syn_get_ec(env->exception.syndrome), 11555 env->exception.syndrome); 11556 } 11557 11558 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11559 arm_handle_psci_call(cpu); 11560 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11561 return; 11562 } 11563 11564 /* 11565 * Semihosting semantics depend on the register width of the code 11566 * that caused the exception, not the target exception level, so 11567 * must be handled here. 11568 */ 11569 #ifdef CONFIG_TCG 11570 if (cs->exception_index == EXCP_SEMIHOST) { 11571 tcg_handle_semihosting(cs); 11572 return; 11573 } 11574 #endif 11575 11576 /* 11577 * Hooks may change global state so BQL should be held, also the 11578 * BQL needs to be held for any modification of 11579 * cs->interrupt_request. 11580 */ 11581 g_assert(bql_locked()); 11582 11583 arm_call_pre_el_change_hook(cpu); 11584 11585 assert(!excp_is_internal(cs->exception_index)); 11586 if (arm_el_is_aa64(env, new_el)) { 11587 arm_cpu_do_interrupt_aarch64(cs); 11588 } else { 11589 arm_cpu_do_interrupt_aarch32(cs); 11590 } 11591 11592 arm_call_el_change_hook(cpu); 11593 11594 if (!kvm_enabled()) { 11595 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11596 } 11597 } 11598 #endif /* !CONFIG_USER_ONLY */ 11599 11600 uint64_t arm_sctlr(CPUARMState *env, int el) 11601 { 11602 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11603 if (el == 0) { 11604 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11605 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11606 } 11607 return env->cp15.sctlr_el[el]; 11608 } 11609 11610 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11611 { 11612 if (regime_has_2_ranges(mmu_idx)) { 11613 return extract64(tcr, 37, 2); 11614 } else if (regime_is_stage2(mmu_idx)) { 11615 return 0; /* VTCR_EL2 */ 11616 } else { 11617 /* Replicate the single TBI bit so we always have 2 bits. */ 11618 return extract32(tcr, 20, 1) * 3; 11619 } 11620 } 11621 11622 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11623 { 11624 if (regime_has_2_ranges(mmu_idx)) { 11625 return extract64(tcr, 51, 2); 11626 } else if (regime_is_stage2(mmu_idx)) { 11627 return 0; /* VTCR_EL2 */ 11628 } else { 11629 /* Replicate the single TBID bit so we always have 2 bits. */ 11630 return extract32(tcr, 29, 1) * 3; 11631 } 11632 } 11633 11634 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11635 { 11636 if (regime_has_2_ranges(mmu_idx)) { 11637 return extract64(tcr, 57, 2); 11638 } else { 11639 /* Replicate the single TCMA bit so we always have 2 bits. */ 11640 return extract32(tcr, 30, 1) * 3; 11641 } 11642 } 11643 11644 static ARMGranuleSize tg0_to_gran_size(int tg) 11645 { 11646 switch (tg) { 11647 case 0: 11648 return Gran4K; 11649 case 1: 11650 return Gran64K; 11651 case 2: 11652 return Gran16K; 11653 default: 11654 return GranInvalid; 11655 } 11656 } 11657 11658 static ARMGranuleSize tg1_to_gran_size(int tg) 11659 { 11660 switch (tg) { 11661 case 1: 11662 return Gran16K; 11663 case 2: 11664 return Gran4K; 11665 case 3: 11666 return Gran64K; 11667 default: 11668 return GranInvalid; 11669 } 11670 } 11671 11672 static inline bool have4k(ARMCPU *cpu, bool stage2) 11673 { 11674 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11675 : cpu_isar_feature(aa64_tgran4, cpu); 11676 } 11677 11678 static inline bool have16k(ARMCPU *cpu, bool stage2) 11679 { 11680 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11681 : cpu_isar_feature(aa64_tgran16, cpu); 11682 } 11683 11684 static inline bool have64k(ARMCPU *cpu, bool stage2) 11685 { 11686 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11687 : cpu_isar_feature(aa64_tgran64, cpu); 11688 } 11689 11690 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11691 bool stage2) 11692 { 11693 switch (gran) { 11694 case Gran4K: 11695 if (have4k(cpu, stage2)) { 11696 return gran; 11697 } 11698 break; 11699 case Gran16K: 11700 if (have16k(cpu, stage2)) { 11701 return gran; 11702 } 11703 break; 11704 case Gran64K: 11705 if (have64k(cpu, stage2)) { 11706 return gran; 11707 } 11708 break; 11709 case GranInvalid: 11710 break; 11711 } 11712 /* 11713 * If the guest selects a granule size that isn't implemented, 11714 * the architecture requires that we behave as if it selected one 11715 * that is (with an IMPDEF choice of which one to pick). We choose 11716 * to implement the smallest supported granule size. 11717 */ 11718 if (have4k(cpu, stage2)) { 11719 return Gran4K; 11720 } 11721 if (have16k(cpu, stage2)) { 11722 return Gran16K; 11723 } 11724 assert(have64k(cpu, stage2)); 11725 return Gran64K; 11726 } 11727 11728 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11729 ARMMMUIdx mmu_idx, bool data, 11730 bool el1_is_aa32) 11731 { 11732 uint64_t tcr = regime_tcr(env, mmu_idx); 11733 bool epd, hpd, tsz_oob, ds, ha, hd; 11734 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11735 ARMGranuleSize gran; 11736 ARMCPU *cpu = env_archcpu(env); 11737 bool stage2 = regime_is_stage2(mmu_idx); 11738 11739 if (!regime_has_2_ranges(mmu_idx)) { 11740 select = 0; 11741 tsz = extract32(tcr, 0, 6); 11742 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11743 if (stage2) { 11744 /* VTCR_EL2 */ 11745 hpd = false; 11746 } else { 11747 hpd = extract32(tcr, 24, 1); 11748 } 11749 epd = false; 11750 sh = extract32(tcr, 12, 2); 11751 ps = extract32(tcr, 16, 3); 11752 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11753 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11754 ds = extract64(tcr, 32, 1); 11755 } else { 11756 bool e0pd; 11757 11758 /* 11759 * Bit 55 is always between the two regions, and is canonical for 11760 * determining if address tagging is enabled. 11761 */ 11762 select = extract64(va, 55, 1); 11763 if (!select) { 11764 tsz = extract32(tcr, 0, 6); 11765 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11766 epd = extract32(tcr, 7, 1); 11767 sh = extract32(tcr, 12, 2); 11768 hpd = extract64(tcr, 41, 1); 11769 e0pd = extract64(tcr, 55, 1); 11770 } else { 11771 tsz = extract32(tcr, 16, 6); 11772 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11773 epd = extract32(tcr, 23, 1); 11774 sh = extract32(tcr, 28, 2); 11775 hpd = extract64(tcr, 42, 1); 11776 e0pd = extract64(tcr, 56, 1); 11777 } 11778 ps = extract64(tcr, 32, 3); 11779 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11780 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11781 ds = extract64(tcr, 59, 1); 11782 11783 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11784 regime_is_user(env, mmu_idx)) { 11785 epd = true; 11786 } 11787 } 11788 11789 gran = sanitize_gran_size(cpu, gran, stage2); 11790 11791 if (cpu_isar_feature(aa64_st, cpu)) { 11792 max_tsz = 48 - (gran == Gran64K); 11793 } else { 11794 max_tsz = 39; 11795 } 11796 11797 /* 11798 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11799 * adjust the effective value of DS, as documented. 11800 */ 11801 min_tsz = 16; 11802 if (gran == Gran64K) { 11803 if (cpu_isar_feature(aa64_lva, cpu)) { 11804 min_tsz = 12; 11805 } 11806 ds = false; 11807 } else if (ds) { 11808 if (regime_is_stage2(mmu_idx)) { 11809 if (gran == Gran16K) { 11810 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11811 } else { 11812 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11813 } 11814 } else { 11815 if (gran == Gran16K) { 11816 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11817 } else { 11818 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11819 } 11820 } 11821 if (ds) { 11822 min_tsz = 12; 11823 } 11824 } 11825 11826 if (stage2 && el1_is_aa32) { 11827 /* 11828 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11829 * are loosened: a configured IPA of 40 bits is permitted even if 11830 * the implemented PA is less than that (and so a 40 bit IPA would 11831 * fault for an AArch64 EL1). See R_DTLMN. 11832 */ 11833 min_tsz = MIN(min_tsz, 24); 11834 } 11835 11836 if (tsz > max_tsz) { 11837 tsz = max_tsz; 11838 tsz_oob = true; 11839 } else if (tsz < min_tsz) { 11840 tsz = min_tsz; 11841 tsz_oob = true; 11842 } else { 11843 tsz_oob = false; 11844 } 11845 11846 /* Present TBI as a composite with TBID. */ 11847 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11848 if (!data) { 11849 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11850 } 11851 tbi = (tbi >> select) & 1; 11852 11853 return (ARMVAParameters) { 11854 .tsz = tsz, 11855 .ps = ps, 11856 .sh = sh, 11857 .select = select, 11858 .tbi = tbi, 11859 .epd = epd, 11860 .hpd = hpd, 11861 .tsz_oob = tsz_oob, 11862 .ds = ds, 11863 .ha = ha, 11864 .hd = ha && hd, 11865 .gran = gran, 11866 }; 11867 } 11868 11869 /* 11870 * Note that signed overflow is undefined in C. The following routines are 11871 * careful to use unsigned types where modulo arithmetic is required. 11872 * Failure to do so _will_ break on newer gcc. 11873 */ 11874 11875 /* Signed saturating arithmetic. */ 11876 11877 /* Perform 16-bit signed saturating addition. */ 11878 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11879 { 11880 uint16_t res; 11881 11882 res = a + b; 11883 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11884 if (a & 0x8000) { 11885 res = 0x8000; 11886 } else { 11887 res = 0x7fff; 11888 } 11889 } 11890 return res; 11891 } 11892 11893 /* Perform 8-bit signed saturating addition. */ 11894 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11895 { 11896 uint8_t res; 11897 11898 res = a + b; 11899 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11900 if (a & 0x80) { 11901 res = 0x80; 11902 } else { 11903 res = 0x7f; 11904 } 11905 } 11906 return res; 11907 } 11908 11909 /* Perform 16-bit signed saturating subtraction. */ 11910 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11911 { 11912 uint16_t res; 11913 11914 res = a - b; 11915 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11916 if (a & 0x8000) { 11917 res = 0x8000; 11918 } else { 11919 res = 0x7fff; 11920 } 11921 } 11922 return res; 11923 } 11924 11925 /* Perform 8-bit signed saturating subtraction. */ 11926 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11927 { 11928 uint8_t res; 11929 11930 res = a - b; 11931 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11932 if (a & 0x80) { 11933 res = 0x80; 11934 } else { 11935 res = 0x7f; 11936 } 11937 } 11938 return res; 11939 } 11940 11941 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11942 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11943 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11944 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11945 #define PFX q 11946 11947 #include "op_addsub.h" 11948 11949 /* Unsigned saturating arithmetic. */ 11950 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11951 { 11952 uint16_t res; 11953 res = a + b; 11954 if (res < a) { 11955 res = 0xffff; 11956 } 11957 return res; 11958 } 11959 11960 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11961 { 11962 if (a > b) { 11963 return a - b; 11964 } else { 11965 return 0; 11966 } 11967 } 11968 11969 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11970 { 11971 uint8_t res; 11972 res = a + b; 11973 if (res < a) { 11974 res = 0xff; 11975 } 11976 return res; 11977 } 11978 11979 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11980 { 11981 if (a > b) { 11982 return a - b; 11983 } else { 11984 return 0; 11985 } 11986 } 11987 11988 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11989 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11990 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11991 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11992 #define PFX uq 11993 11994 #include "op_addsub.h" 11995 11996 /* Signed modulo arithmetic. */ 11997 #define SARITH16(a, b, n, op) do { \ 11998 int32_t sum; \ 11999 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12000 RESULT(sum, n, 16); \ 12001 if (sum >= 0) \ 12002 ge |= 3 << (n * 2); \ 12003 } while (0) 12004 12005 #define SARITH8(a, b, n, op) do { \ 12006 int32_t sum; \ 12007 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12008 RESULT(sum, n, 8); \ 12009 if (sum >= 0) \ 12010 ge |= 1 << n; \ 12011 } while (0) 12012 12013 12014 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12015 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12016 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12017 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12018 #define PFX s 12019 #define ARITH_GE 12020 12021 #include "op_addsub.h" 12022 12023 /* Unsigned modulo arithmetic. */ 12024 #define ADD16(a, b, n) do { \ 12025 uint32_t sum; \ 12026 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12027 RESULT(sum, n, 16); \ 12028 if ((sum >> 16) == 1) \ 12029 ge |= 3 << (n * 2); \ 12030 } while (0) 12031 12032 #define ADD8(a, b, n) do { \ 12033 uint32_t sum; \ 12034 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12035 RESULT(sum, n, 8); \ 12036 if ((sum >> 8) == 1) \ 12037 ge |= 1 << n; \ 12038 } while (0) 12039 12040 #define SUB16(a, b, n) do { \ 12041 uint32_t sum; \ 12042 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12043 RESULT(sum, n, 16); \ 12044 if ((sum >> 16) == 0) \ 12045 ge |= 3 << (n * 2); \ 12046 } while (0) 12047 12048 #define SUB8(a, b, n) do { \ 12049 uint32_t sum; \ 12050 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12051 RESULT(sum, n, 8); \ 12052 if ((sum >> 8) == 0) \ 12053 ge |= 1 << n; \ 12054 } while (0) 12055 12056 #define PFX u 12057 #define ARITH_GE 12058 12059 #include "op_addsub.h" 12060 12061 /* Halved signed arithmetic. */ 12062 #define ADD16(a, b, n) \ 12063 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12064 #define SUB16(a, b, n) \ 12065 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12066 #define ADD8(a, b, n) \ 12067 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12068 #define SUB8(a, b, n) \ 12069 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12070 #define PFX sh 12071 12072 #include "op_addsub.h" 12073 12074 /* Halved unsigned arithmetic. */ 12075 #define ADD16(a, b, n) \ 12076 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12077 #define SUB16(a, b, n) \ 12078 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12079 #define ADD8(a, b, n) \ 12080 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12081 #define SUB8(a, b, n) \ 12082 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12083 #define PFX uh 12084 12085 #include "op_addsub.h" 12086 12087 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12088 { 12089 if (a > b) { 12090 return a - b; 12091 } else { 12092 return b - a; 12093 } 12094 } 12095 12096 /* Unsigned sum of absolute byte differences. */ 12097 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12098 { 12099 uint32_t sum; 12100 sum = do_usad(a, b); 12101 sum += do_usad(a >> 8, b >> 8); 12102 sum += do_usad(a >> 16, b >> 16); 12103 sum += do_usad(a >> 24, b >> 24); 12104 return sum; 12105 } 12106 12107 /* For ARMv6 SEL instruction. */ 12108 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12109 { 12110 uint32_t mask; 12111 12112 mask = 0; 12113 if (flags & 1) { 12114 mask |= 0xff; 12115 } 12116 if (flags & 2) { 12117 mask |= 0xff00; 12118 } 12119 if (flags & 4) { 12120 mask |= 0xff0000; 12121 } 12122 if (flags & 8) { 12123 mask |= 0xff000000; 12124 } 12125 return (a & mask) | (b & ~mask); 12126 } 12127 12128 /* 12129 * CRC helpers. 12130 * The upper bytes of val (above the number specified by 'bytes') must have 12131 * been zeroed out by the caller. 12132 */ 12133 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12134 { 12135 uint8_t buf[4]; 12136 12137 stl_le_p(buf, val); 12138 12139 /* zlib crc32 converts the accumulator and output to one's complement. */ 12140 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12141 } 12142 12143 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12144 { 12145 uint8_t buf[4]; 12146 12147 stl_le_p(buf, val); 12148 12149 /* Linux crc32c converts the output to one's complement. */ 12150 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12151 } 12152 12153 /* 12154 * Return the exception level to which FP-disabled exceptions should 12155 * be taken, or 0 if FP is enabled. 12156 */ 12157 int fp_exception_el(CPUARMState *env, int cur_el) 12158 { 12159 #ifndef CONFIG_USER_ONLY 12160 uint64_t hcr_el2; 12161 12162 /* 12163 * CPACR and the CPTR registers don't exist before v6, so FP is 12164 * always accessible 12165 */ 12166 if (!arm_feature(env, ARM_FEATURE_V6)) { 12167 return 0; 12168 } 12169 12170 if (arm_feature(env, ARM_FEATURE_M)) { 12171 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12172 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12173 return 1; 12174 } 12175 12176 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12177 if (!extract32(env->v7m.nsacr, 10, 1)) { 12178 /* FP insns cause a NOCP UsageFault taken to Secure */ 12179 return 3; 12180 } 12181 } 12182 12183 return 0; 12184 } 12185 12186 hcr_el2 = arm_hcr_el2_eff(env); 12187 12188 /* 12189 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12190 * 0, 2 : trap EL0 and EL1/PL1 accesses 12191 * 1 : trap only EL0 accesses 12192 * 3 : trap no accesses 12193 * This register is ignored if E2H+TGE are both set. 12194 */ 12195 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12196 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12197 12198 switch (fpen) { 12199 case 1: 12200 if (cur_el != 0) { 12201 break; 12202 } 12203 /* fall through */ 12204 case 0: 12205 case 2: 12206 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12207 if (!arm_el_is_aa64(env, 3) 12208 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12209 return 3; 12210 } 12211 if (cur_el <= 1) { 12212 return 1; 12213 } 12214 break; 12215 } 12216 } 12217 12218 /* 12219 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12220 * to control non-secure access to the FPU. It doesn't have any 12221 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12222 */ 12223 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12224 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12225 if (!extract32(env->cp15.nsacr, 10, 1)) { 12226 /* FP insns act as UNDEF */ 12227 return cur_el == 2 ? 2 : 1; 12228 } 12229 } 12230 12231 /* 12232 * CPTR_EL2 is present in v7VE or v8, and changes format 12233 * with HCR_EL2.E2H (regardless of TGE). 12234 */ 12235 if (cur_el <= 2) { 12236 if (hcr_el2 & HCR_E2H) { 12237 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12238 case 1: 12239 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12240 break; 12241 } 12242 /* fall through */ 12243 case 0: 12244 case 2: 12245 return 2; 12246 } 12247 } else if (arm_is_el2_enabled(env)) { 12248 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12249 return 2; 12250 } 12251 } 12252 } 12253 12254 /* CPTR_EL3 : present in v8 */ 12255 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12256 /* Trap all FP ops to EL3 */ 12257 return 3; 12258 } 12259 #endif 12260 return 0; 12261 } 12262 12263 /* Return the exception level we're running at if this is our mmu_idx */ 12264 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12265 { 12266 if (mmu_idx & ARM_MMU_IDX_M) { 12267 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12268 } 12269 12270 switch (mmu_idx) { 12271 case ARMMMUIdx_E10_0: 12272 case ARMMMUIdx_E20_0: 12273 return 0; 12274 case ARMMMUIdx_E10_1: 12275 case ARMMMUIdx_E10_1_PAN: 12276 return 1; 12277 case ARMMMUIdx_E2: 12278 case ARMMMUIdx_E20_2: 12279 case ARMMMUIdx_E20_2_PAN: 12280 return 2; 12281 case ARMMMUIdx_E3: 12282 return 3; 12283 default: 12284 g_assert_not_reached(); 12285 } 12286 } 12287 12288 #ifndef CONFIG_TCG 12289 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12290 { 12291 g_assert_not_reached(); 12292 } 12293 #endif 12294 12295 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12296 { 12297 ARMMMUIdx idx; 12298 uint64_t hcr; 12299 12300 if (arm_feature(env, ARM_FEATURE_M)) { 12301 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12302 } 12303 12304 /* See ARM pseudo-function ELIsInHost. */ 12305 switch (el) { 12306 case 0: 12307 hcr = arm_hcr_el2_eff(env); 12308 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12309 idx = ARMMMUIdx_E20_0; 12310 } else { 12311 idx = ARMMMUIdx_E10_0; 12312 } 12313 break; 12314 case 1: 12315 if (arm_pan_enabled(env)) { 12316 idx = ARMMMUIdx_E10_1_PAN; 12317 } else { 12318 idx = ARMMMUIdx_E10_1; 12319 } 12320 break; 12321 case 2: 12322 /* Note that TGE does not apply at EL2. */ 12323 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12324 if (arm_pan_enabled(env)) { 12325 idx = ARMMMUIdx_E20_2_PAN; 12326 } else { 12327 idx = ARMMMUIdx_E20_2; 12328 } 12329 } else { 12330 idx = ARMMMUIdx_E2; 12331 } 12332 break; 12333 case 3: 12334 return ARMMMUIdx_E3; 12335 default: 12336 g_assert_not_reached(); 12337 } 12338 12339 return idx; 12340 } 12341 12342 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12343 { 12344 return arm_mmu_idx_el(env, arm_current_el(env)); 12345 } 12346 12347 static bool mve_no_pred(CPUARMState *env) 12348 { 12349 /* 12350 * Return true if there is definitely no predication of MVE 12351 * instructions by VPR or LTPSIZE. (Returning false even if there 12352 * isn't any predication is OK; generated code will just be 12353 * a little worse.) 12354 * If the CPU does not implement MVE then this TB flag is always 0. 12355 * 12356 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12357 * logic in gen_update_fp_context() needs to be updated to match. 12358 * 12359 * We do not include the effect of the ECI bits here -- they are 12360 * tracked in other TB flags. This simplifies the logic for 12361 * "when did we emit code that changes the MVE_NO_PRED TB flag 12362 * and thus need to end the TB?". 12363 */ 12364 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12365 return false; 12366 } 12367 if (env->v7m.vpr) { 12368 return false; 12369 } 12370 if (env->v7m.ltpsize < 4) { 12371 return false; 12372 } 12373 return true; 12374 } 12375 12376 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12377 uint64_t *cs_base, uint32_t *pflags) 12378 { 12379 CPUARMTBFlags flags; 12380 12381 assert_hflags_rebuild_correctly(env); 12382 flags = env->hflags; 12383 12384 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12385 *pc = env->pc; 12386 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12387 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12388 } 12389 } else { 12390 *pc = env->regs[15]; 12391 12392 if (arm_feature(env, ARM_FEATURE_M)) { 12393 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12394 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12395 != env->v7m.secure) { 12396 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12397 } 12398 12399 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12400 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12401 (env->v7m.secure && 12402 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12403 /* 12404 * ASPEN is set, but FPCA/SFPA indicate that there is no 12405 * active FP context; we must create a new FP context before 12406 * executing any FP insn. 12407 */ 12408 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12409 } 12410 12411 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12412 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12413 DP_TBFLAG_M32(flags, LSPACT, 1); 12414 } 12415 12416 if (mve_no_pred(env)) { 12417 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12418 } 12419 } else { 12420 /* 12421 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12422 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12423 */ 12424 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12425 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12426 } else { 12427 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12428 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12429 } 12430 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12431 DP_TBFLAG_A32(flags, VFPEN, 1); 12432 } 12433 } 12434 12435 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12436 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12437 } 12438 12439 /* 12440 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12441 * states defined in the ARM ARM for software singlestep: 12442 * SS_ACTIVE PSTATE.SS State 12443 * 0 x Inactive (the TB flag for SS is always 0) 12444 * 1 0 Active-pending 12445 * 1 1 Active-not-pending 12446 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12447 */ 12448 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12449 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12450 } 12451 12452 *pflags = flags.flags; 12453 *cs_base = flags.flags2; 12454 } 12455 12456 #ifdef TARGET_AARCH64 12457 /* 12458 * The manual says that when SVE is enabled and VQ is widened the 12459 * implementation is allowed to zero the previously inaccessible 12460 * portion of the registers. The corollary to that is that when 12461 * SVE is enabled and VQ is narrowed we are also allowed to zero 12462 * the now inaccessible portion of the registers. 12463 * 12464 * The intent of this is that no predicate bit beyond VQ is ever set. 12465 * Which means that some operations on predicate registers themselves 12466 * may operate on full uint64_t or even unrolled across the maximum 12467 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12468 * may well be cheaper than conditionals to restrict the operation 12469 * to the relevant portion of a uint16_t[16]. 12470 */ 12471 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12472 { 12473 int i, j; 12474 uint64_t pmask; 12475 12476 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12477 assert(vq <= env_archcpu(env)->sve_max_vq); 12478 12479 /* Zap the high bits of the zregs. */ 12480 for (i = 0; i < 32; i++) { 12481 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12482 } 12483 12484 /* Zap the high bits of the pregs and ffr. */ 12485 pmask = 0; 12486 if (vq & 3) { 12487 pmask = ~(-1ULL << (16 * (vq & 3))); 12488 } 12489 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12490 for (i = 0; i < 17; ++i) { 12491 env->vfp.pregs[i].p[j] &= pmask; 12492 } 12493 pmask = 0; 12494 } 12495 } 12496 12497 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12498 { 12499 int exc_el; 12500 12501 if (sm) { 12502 exc_el = sme_exception_el(env, el); 12503 } else { 12504 exc_el = sve_exception_el(env, el); 12505 } 12506 if (exc_el) { 12507 return 0; /* disabled */ 12508 } 12509 return sve_vqm1_for_el_sm(env, el, sm); 12510 } 12511 12512 /* 12513 * Notice a change in SVE vector size when changing EL. 12514 */ 12515 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12516 int new_el, bool el0_a64) 12517 { 12518 ARMCPU *cpu = env_archcpu(env); 12519 int old_len, new_len; 12520 bool old_a64, new_a64, sm; 12521 12522 /* Nothing to do if no SVE. */ 12523 if (!cpu_isar_feature(aa64_sve, cpu)) { 12524 return; 12525 } 12526 12527 /* Nothing to do if FP is disabled in either EL. */ 12528 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12529 return; 12530 } 12531 12532 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12533 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12534 12535 /* 12536 * Both AArch64.TakeException and AArch64.ExceptionReturn 12537 * invoke ResetSVEState when taking an exception from, or 12538 * returning to, AArch32 state when PSTATE.SM is enabled. 12539 */ 12540 sm = FIELD_EX64(env->svcr, SVCR, SM); 12541 if (old_a64 != new_a64 && sm) { 12542 arm_reset_sve_state(env); 12543 return; 12544 } 12545 12546 /* 12547 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12548 * at ELx, or not available because the EL is in AArch32 state, then 12549 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12550 * has an effective value of 0". 12551 * 12552 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12553 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12554 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12555 * we already have the correct register contents when encountering the 12556 * vq0->vq0 transition between EL0->EL1. 12557 */ 12558 old_len = new_len = 0; 12559 if (old_a64) { 12560 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12561 } 12562 if (new_a64) { 12563 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12564 } 12565 12566 /* When changing vector length, clear inaccessible state. */ 12567 if (new_len < old_len) { 12568 aarch64_sve_narrow_vq(env, new_len + 1); 12569 } 12570 } 12571 #endif 12572 12573 #ifndef CONFIG_USER_ONLY 12574 ARMSecuritySpace arm_security_space(CPUARMState *env) 12575 { 12576 if (arm_feature(env, ARM_FEATURE_M)) { 12577 return arm_secure_to_space(env->v7m.secure); 12578 } 12579 12580 /* 12581 * If EL3 is not supported then the secure state is implementation 12582 * defined, in which case QEMU defaults to non-secure. 12583 */ 12584 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12585 return ARMSS_NonSecure; 12586 } 12587 12588 /* Check for AArch64 EL3 or AArch32 Mon. */ 12589 if (is_a64(env)) { 12590 if (extract32(env->pstate, 2, 2) == 3) { 12591 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12592 return ARMSS_Root; 12593 } else { 12594 return ARMSS_Secure; 12595 } 12596 } 12597 } else { 12598 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12599 return ARMSS_Secure; 12600 } 12601 } 12602 12603 return arm_security_space_below_el3(env); 12604 } 12605 12606 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12607 { 12608 assert(!arm_feature(env, ARM_FEATURE_M)); 12609 12610 /* 12611 * If EL3 is not supported then the secure state is implementation 12612 * defined, in which case QEMU defaults to non-secure. 12613 */ 12614 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12615 return ARMSS_NonSecure; 12616 } 12617 12618 /* 12619 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12620 * Ignoring NSE when !NS retains consistency without having to 12621 * modify other predicates. 12622 */ 12623 if (!(env->cp15.scr_el3 & SCR_NS)) { 12624 return ARMSS_Secure; 12625 } else if (env->cp15.scr_el3 & SCR_NSE) { 12626 return ARMSS_Realm; 12627 } else { 12628 return ARMSS_NonSecure; 12629 } 12630 } 12631 #endif /* !CONFIG_USER_ONLY */ 12632