1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint32_t regidx = (uintptr_t)key; 218 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 222 /* The value array need not be initialized at this point */ 223 cpu->cpreg_array_len++; 224 } 225 } 226 227 static void count_cpreg(gpointer key, gpointer opaque) 228 { 229 ARMCPU *cpu = opaque; 230 const ARMCPRegInfo *ri; 231 232 ri = g_hash_table_lookup(cpu->cp_regs, key); 233 234 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 235 cpu->cpreg_array_len++; 236 } 237 } 238 239 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 240 { 241 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 242 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 243 244 if (aidx > bidx) { 245 return 1; 246 } 247 if (aidx < bidx) { 248 return -1; 249 } 250 return 0; 251 } 252 253 void init_cpreg_list(ARMCPU *cpu) 254 { 255 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 256 * Note that we require cpreg_tuples[] to be sorted by key ID. 257 */ 258 GList *keys; 259 int arraylen; 260 261 keys = g_hash_table_get_keys(cpu->cp_regs); 262 keys = g_list_sort(keys, cpreg_key_compare); 263 264 cpu->cpreg_array_len = 0; 265 266 g_list_foreach(keys, count_cpreg, cpu); 267 268 arraylen = cpu->cpreg_array_len; 269 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 270 cpu->cpreg_values = g_new(uint64_t, arraylen); 271 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 272 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 273 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 274 cpu->cpreg_array_len = 0; 275 276 g_list_foreach(keys, add_cpreg_to_list, cpu); 277 278 assert(cpu->cpreg_array_len == arraylen); 279 280 g_list_free(keys); 281 } 282 283 /* 284 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 285 */ 286 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (!is_a64(env) && arm_current_el(env) == 3 && 291 arm_is_secure_below_el3(env)) { 292 return CP_ACCESS_TRAP_UNCATEGORIZED; 293 } 294 return CP_ACCESS_OK; 295 } 296 297 /* Some secure-only AArch32 registers trap to EL3 if used from 298 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 299 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 300 * We assume that the .access field is set to PL1_RW. 301 */ 302 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 303 const ARMCPRegInfo *ri, 304 bool isread) 305 { 306 if (arm_current_el(env) == 3) { 307 return CP_ACCESS_OK; 308 } 309 if (arm_is_secure_below_el3(env)) { 310 if (env->cp15.scr_el3 & SCR_EEL2) { 311 return CP_ACCESS_TRAP_EL2; 312 } 313 return CP_ACCESS_TRAP_EL3; 314 } 315 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 316 return CP_ACCESS_TRAP_UNCATEGORIZED; 317 } 318 319 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 320 { 321 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 322 } 323 324 /* Check for traps to "powerdown debug" registers, which are controlled 325 * by MDCR.TDOSA 326 */ 327 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 328 bool isread) 329 { 330 int el = arm_current_el(env); 331 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 332 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 333 (arm_hcr_el2_eff(env) & HCR_TGE); 334 335 if (el < 2 && mdcr_el2_tdosa) { 336 return CP_ACCESS_TRAP_EL2; 337 } 338 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 339 return CP_ACCESS_TRAP_EL3; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps to "debug ROM" registers, which are controlled 345 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 346 */ 347 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 348 bool isread) 349 { 350 int el = arm_current_el(env); 351 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 352 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 353 (arm_hcr_el2_eff(env) & HCR_TGE); 354 355 if (el < 2 && mdcr_el2_tdra) { 356 return CP_ACCESS_TRAP_EL2; 357 } 358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 359 return CP_ACCESS_TRAP_EL3; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps to general debug registers, which are controlled 365 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 366 */ 367 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 368 bool isread) 369 { 370 int el = arm_current_el(env); 371 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 372 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 373 (arm_hcr_el2_eff(env) & HCR_TGE); 374 375 if (el < 2 && mdcr_el2_tda) { 376 return CP_ACCESS_TRAP_EL2; 377 } 378 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 379 return CP_ACCESS_TRAP_EL3; 380 } 381 return CP_ACCESS_OK; 382 } 383 384 /* Check for traps to performance monitor registers, which are controlled 385 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 386 */ 387 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 int el = arm_current_el(env); 391 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 392 393 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 394 return CP_ACCESS_TRAP_EL2; 395 } 396 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL3; 398 } 399 return CP_ACCESS_OK; 400 } 401 402 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 403 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 404 bool isread) 405 { 406 if (arm_current_el(env) == 1) { 407 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 408 if (arm_hcr_el2_eff(env) & trap) { 409 return CP_ACCESS_TRAP_EL2; 410 } 411 } 412 return CP_ACCESS_OK; 413 } 414 415 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 416 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 417 bool isread) 418 { 419 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 426 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 430 return CP_ACCESS_TRAP_EL2; 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 436 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 440 return CP_ACCESS_TRAP_EL2; 441 } 442 return CP_ACCESS_OK; 443 } 444 445 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 446 { 447 ARMCPU *cpu = env_archcpu(env); 448 449 raw_write(env, ri, value); 450 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 451 } 452 453 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value) { 458 /* Unlike real hardware the qemu TLB uses virtual addresses, 459 * not modified virtual addresses, so this causes a TLB flush. 460 */ 461 tlb_flush(CPU(cpu)); 462 raw_write(env, ri, value); 463 } 464 } 465 466 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 467 uint64_t value) 468 { 469 ARMCPU *cpu = env_archcpu(env); 470 471 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 472 && !extended_addresses_enabled(env)) { 473 /* For VMSA (when not using the LPAE long descriptor page table 474 * format) this register includes the ASID, so do a TLB flush. 475 * For PMSA it is purely a process ID and no action is needed. 476 */ 477 tlb_flush(CPU(cpu)); 478 } 479 raw_write(env, ri, value); 480 } 481 482 /* IS variants of TLB operations must affect all cores */ 483 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 CPUState *cs = env_cpu(env); 487 488 tlb_flush_all_cpus_synced(cs); 489 } 490 491 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 492 uint64_t value) 493 { 494 CPUState *cs = env_cpu(env); 495 496 tlb_flush_all_cpus_synced(cs); 497 } 498 499 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 505 } 506 507 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 508 uint64_t value) 509 { 510 CPUState *cs = env_cpu(env); 511 512 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 513 } 514 515 /* 516 * Non-IS variants of TLB operations are upgraded to 517 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 518 * force broadcast of these operations. 519 */ 520 static bool tlb_force_broadcast(CPUARMState *env) 521 { 522 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 523 } 524 525 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate all (TLBIALL) */ 529 CPUState *cs = env_cpu(env); 530 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_all_cpus_synced(cs); 533 } else { 534 tlb_flush(cs); 535 } 536 } 537 538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 542 CPUState *cs = env_cpu(env); 543 544 value &= TARGET_PAGE_MASK; 545 if (tlb_force_broadcast(env)) { 546 tlb_flush_page_all_cpus_synced(cs, value); 547 } else { 548 tlb_flush_page(cs, value); 549 } 550 } 551 552 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 /* Invalidate by ASID (TLBIASID) */ 556 CPUState *cs = env_cpu(env); 557 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_all_cpus_synced(cs); 560 } else { 561 tlb_flush(cs); 562 } 563 } 564 565 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 569 CPUState *cs = env_cpu(env); 570 571 value &= TARGET_PAGE_MASK; 572 if (tlb_force_broadcast(env)) { 573 tlb_flush_page_all_cpus_synced(cs, value); 574 } else { 575 tlb_flush_page(cs, value); 576 } 577 } 578 579 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = env_cpu(env); 583 584 tlb_flush_by_mmuidx(cs, 585 ARMMMUIdxBit_E10_1 | 586 ARMMMUIdxBit_E10_1_PAN | 587 ARMMMUIdxBit_E10_0); 588 } 589 590 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = env_cpu(env); 594 595 tlb_flush_by_mmuidx_all_cpus_synced(cs, 596 ARMMMUIdxBit_E10_1 | 597 ARMMMUIdxBit_E10_1_PAN | 598 ARMMMUIdxBit_E10_0); 599 } 600 601 602 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 603 uint64_t value) 604 { 605 CPUState *cs = env_cpu(env); 606 607 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 608 } 609 610 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 CPUState *cs = env_cpu(env); 614 615 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 616 } 617 618 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 619 uint64_t value) 620 { 621 CPUState *cs = env_cpu(env); 622 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 623 624 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 625 } 626 627 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = env_cpu(env); 631 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 632 633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 634 ARMMMUIdxBit_E2); 635 } 636 637 static const ARMCPRegInfo cp_reginfo[] = { 638 /* Define the secure and non-secure FCSE identifier CP registers 639 * separately because there is no secure bank in V8 (no _EL3). This allows 640 * the secure register to be properly reset and migrated. There is also no 641 * v8 EL1 version of the register so the non-secure instance stands alone. 642 */ 643 { .name = "FCSEIDR", 644 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 645 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 646 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 647 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 648 { .name = "FCSEIDR_S", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 /* Define the secure and non-secure context identifier CP registers 654 * separately because there is no secure bank in V8 (no _EL3). This allows 655 * the secure register to be properly reset and migrated. In the 656 * non-secure case, the 32-bit register will have reset and migration 657 * disabled during registration as it is handled by the 64-bit instance. 658 */ 659 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 660 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .secure = ARM_CP_SECSTATE_NS, 663 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 664 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 665 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 666 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 667 .access = PL1_RW, .accessfn = access_tvm_trvm, 668 .secure = ARM_CP_SECSTATE_S, 669 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 670 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 671 }; 672 673 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 674 /* NB: Some of these registers exist in v8 but with more precise 675 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 676 */ 677 /* MMU Domain access control / MPU write buffer control */ 678 { .name = "DACR", 679 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 681 .writefn = dacr_write, .raw_writefn = raw_write, 682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 684 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 685 * For v6 and v5, these mappings are overly broad. 686 */ 687 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 689 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 690 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 /* Cache maintenance ops; some of this space may be overridden later. */ 696 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 697 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 698 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 699 }; 700 701 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 702 /* Not all pre-v6 cores implemented this WFI, so this is slightly 703 * over-broad. 704 */ 705 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 706 .access = PL1_W, .type = ARM_CP_WFI }, 707 }; 708 709 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 710 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 711 * is UNPREDICTABLE; we choose to NOP as most implementations do). 712 */ 713 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 714 .access = PL1_W, .type = ARM_CP_WFI }, 715 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 716 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 717 * OMAPCP will override this space. 718 */ 719 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 720 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 721 .resetvalue = 0 }, 722 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 723 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 724 .resetvalue = 0 }, 725 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 726 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 727 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 728 .resetvalue = 0 }, 729 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 730 * implementing it as RAZ means the "debug architecture version" bits 731 * will read as a reserved value, which should cause Linux to not try 732 * to use the debug hardware. 733 */ 734 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 735 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 736 /* MMU TLB control. Note that the wildcarding means we cover not just 737 * the unified TLB ops but also the dside/iside/inner-shareable variants. 738 */ 739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 755 }; 756 757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 758 uint64_t value) 759 { 760 uint32_t mask = 0; 761 762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 763 if (!arm_feature(env, ARM_FEATURE_V8)) { 764 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 765 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 766 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 767 */ 768 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 769 /* VFP coprocessor: cp10 & cp11 [23:20] */ 770 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 771 772 if (!arm_feature(env, ARM_FEATURE_NEON)) { 773 /* ASEDIS [31] bit is RAO/WI */ 774 value |= (1 << 31); 775 } 776 777 /* VFPv3 and upwards with NEON implement 32 double precision 778 * registers (D0-D31). 779 */ 780 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 781 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 782 value |= (1 << 30); 783 } 784 } 785 value &= mask; 786 } 787 788 /* 789 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 790 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 791 */ 792 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 793 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 794 value &= ~(0xf << 20); 795 value |= env->cp15.cpacr_el1 & (0xf << 20); 796 } 797 798 env->cp15.cpacr_el1 = value; 799 } 800 801 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 802 { 803 /* 804 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 805 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 806 */ 807 uint64_t value = env->cp15.cpacr_el1; 808 809 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 810 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 811 value &= ~(0xf << 20); 812 } 813 return value; 814 } 815 816 817 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 818 { 819 /* Call cpacr_write() so that we reset with the correct RAO bits set 820 * for our CPU features. 821 */ 822 cpacr_write(env, ri, 0); 823 } 824 825 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 826 bool isread) 827 { 828 if (arm_feature(env, ARM_FEATURE_V8)) { 829 /* Check if CPACR accesses are to be trapped to EL2 */ 830 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 831 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 832 return CP_ACCESS_TRAP_EL2; 833 /* Check if CPACR accesses are to be trapped to EL3 */ 834 } else if (arm_current_el(env) < 3 && 835 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 836 return CP_ACCESS_TRAP_EL3; 837 } 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 /* Check if CPTR accesses are set to trap to EL3 */ 847 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 848 return CP_ACCESS_TRAP_EL3; 849 } 850 851 return CP_ACCESS_OK; 852 } 853 854 static const ARMCPRegInfo v6_cp_reginfo[] = { 855 /* prefetch by MVA in v6, NOP in v7 */ 856 { .name = "MVA_prefetch", 857 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 858 .access = PL1_W, .type = ARM_CP_NOP }, 859 /* We need to break the TB after ISB to execute self-modifying code 860 * correctly and also to take any pending interrupts immediately. 861 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 862 */ 863 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 864 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 865 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 866 .access = PL0_W, .type = ARM_CP_NOP }, 867 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 868 .access = PL0_W, .type = ARM_CP_NOP }, 869 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 870 .access = PL1_RW, .accessfn = access_tvm_trvm, 871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 872 offsetof(CPUARMState, cp15.ifar_ns) }, 873 .resetvalue = 0, }, 874 /* Watchpoint Fault Address Register : should actually only be present 875 * for 1136, 1176, 11MPCore. 876 */ 877 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 878 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 879 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 880 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 882 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 883 }; 884 885 typedef struct pm_event { 886 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 887 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 888 bool (*supported)(CPUARMState *); 889 /* 890 * Retrieve the current count of the underlying event. The programmed 891 * counters hold a difference from the return value from this function 892 */ 893 uint64_t (*get_count)(CPUARMState *); 894 /* 895 * Return how many nanoseconds it will take (at a minimum) for count events 896 * to occur. A negative value indicates the counter will never overflow, or 897 * that the counter has otherwise arranged for the overflow bit to be set 898 * and the PMU interrupt to be raised on overflow. 899 */ 900 int64_t (*ns_per_count)(uint64_t); 901 } pm_event; 902 903 static bool event_always_supported(CPUARMState *env) 904 { 905 return true; 906 } 907 908 static uint64_t swinc_get_count(CPUARMState *env) 909 { 910 /* 911 * SW_INCR events are written directly to the pmevcntr's by writes to 912 * PMSWINC, so there is no underlying count maintained by the PMU itself 913 */ 914 return 0; 915 } 916 917 static int64_t swinc_ns_per(uint64_t ignored) 918 { 919 return -1; 920 } 921 922 /* 923 * Return the underlying cycle count for the PMU cycle counters. If we're in 924 * usermode, simply return 0. 925 */ 926 static uint64_t cycles_get_count(CPUARMState *env) 927 { 928 #ifndef CONFIG_USER_ONLY 929 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 #else 932 return cpu_get_host_ticks(); 933 #endif 934 } 935 936 #ifndef CONFIG_USER_ONLY 937 static int64_t cycles_ns_per(uint64_t cycles) 938 { 939 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 940 } 941 942 static bool instructions_supported(CPUARMState *env) 943 { 944 return icount_enabled() == 1; /* Precise instruction counting */ 945 } 946 947 static uint64_t instructions_get_count(CPUARMState *env) 948 { 949 return (uint64_t)icount_get_raw(); 950 } 951 952 static int64_t instructions_ns_per(uint64_t icount) 953 { 954 return icount_to_ns((int64_t)icount); 955 } 956 #endif 957 958 static bool pmu_8_1_events_supported(CPUARMState *env) 959 { 960 /* For events which are supported in any v8.1 PMU */ 961 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 962 } 963 964 static bool pmu_8_4_events_supported(CPUARMState *env) 965 { 966 /* For events which are supported in any v8.1 PMU */ 967 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 968 } 969 970 static uint64_t zero_event_get_count(CPUARMState *env) 971 { 972 /* For events which on QEMU never fire, so their count is always zero */ 973 return 0; 974 } 975 976 static int64_t zero_event_ns_per(uint64_t cycles) 977 { 978 /* An event which never fires can never overflow */ 979 return -1; 980 } 981 982 static const pm_event pm_events[] = { 983 { .number = 0x000, /* SW_INCR */ 984 .supported = event_always_supported, 985 .get_count = swinc_get_count, 986 .ns_per_count = swinc_ns_per, 987 }, 988 #ifndef CONFIG_USER_ONLY 989 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 990 .supported = instructions_supported, 991 .get_count = instructions_get_count, 992 .ns_per_count = instructions_ns_per, 993 }, 994 { .number = 0x011, /* CPU_CYCLES, Cycle */ 995 .supported = event_always_supported, 996 .get_count = cycles_get_count, 997 .ns_per_count = cycles_ns_per, 998 }, 999 #endif 1000 { .number = 0x023, /* STALL_FRONTEND */ 1001 .supported = pmu_8_1_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 { .number = 0x024, /* STALL_BACKEND */ 1006 .supported = pmu_8_1_events_supported, 1007 .get_count = zero_event_get_count, 1008 .ns_per_count = zero_event_ns_per, 1009 }, 1010 { .number = 0x03c, /* STALL */ 1011 .supported = pmu_8_4_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 }; 1016 1017 /* 1018 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1019 * events (i.e. the statistical profiling extension), this implementation 1020 * should first be updated to something sparse instead of the current 1021 * supported_event_map[] array. 1022 */ 1023 #define MAX_EVENT_ID 0x3c 1024 #define UNSUPPORTED_EVENT UINT16_MAX 1025 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1026 1027 /* 1028 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1029 * of ARM event numbers to indices in our pm_events array. 1030 * 1031 * Note: Events in the 0x40XX range are not currently supported. 1032 */ 1033 void pmu_init(ARMCPU *cpu) 1034 { 1035 unsigned int i; 1036 1037 /* 1038 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1039 * events to them 1040 */ 1041 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1042 supported_event_map[i] = UNSUPPORTED_EVENT; 1043 } 1044 cpu->pmceid0 = 0; 1045 cpu->pmceid1 = 0; 1046 1047 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1048 const pm_event *cnt = &pm_events[i]; 1049 assert(cnt->number <= MAX_EVENT_ID); 1050 /* We do not currently support events in the 0x40xx range */ 1051 assert(cnt->number <= 0x3f); 1052 1053 if (cnt->supported(&cpu->env)) { 1054 supported_event_map[cnt->number] = i; 1055 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1056 if (cnt->number & 0x20) { 1057 cpu->pmceid1 |= event_mask; 1058 } else { 1059 cpu->pmceid0 |= event_mask; 1060 } 1061 } 1062 } 1063 } 1064 1065 /* 1066 * Check at runtime whether a PMU event is supported for the current machine 1067 */ 1068 static bool event_supported(uint16_t number) 1069 { 1070 if (number > MAX_EVENT_ID) { 1071 return false; 1072 } 1073 return supported_event_map[number] != UNSUPPORTED_EVENT; 1074 } 1075 1076 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1077 bool isread) 1078 { 1079 /* Performance monitor registers user accessibility is controlled 1080 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1081 * trapping to EL2 or EL3 for other accesses. 1082 */ 1083 int el = arm_current_el(env); 1084 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1085 1086 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1087 return CP_ACCESS_TRAP; 1088 } 1089 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1090 return CP_ACCESS_TRAP_EL2; 1091 } 1092 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1093 return CP_ACCESS_TRAP_EL3; 1094 } 1095 1096 return CP_ACCESS_OK; 1097 } 1098 1099 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1100 const ARMCPRegInfo *ri, 1101 bool isread) 1102 { 1103 /* ER: event counter read trap control */ 1104 if (arm_feature(env, ARM_FEATURE_V8) 1105 && arm_current_el(env) == 0 1106 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1107 && isread) { 1108 return CP_ACCESS_OK; 1109 } 1110 1111 return pmreg_access(env, ri, isread); 1112 } 1113 1114 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1115 const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* SW: software increment write trap control */ 1119 if (arm_feature(env, ARM_FEATURE_V8) 1120 && arm_current_el(env) == 0 1121 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1122 && !isread) { 1123 return CP_ACCESS_OK; 1124 } 1125 1126 return pmreg_access(env, ri, isread); 1127 } 1128 1129 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1130 const ARMCPRegInfo *ri, 1131 bool isread) 1132 { 1133 /* ER: event counter read trap control */ 1134 if (arm_feature(env, ARM_FEATURE_V8) 1135 && arm_current_el(env) == 0 1136 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1137 return CP_ACCESS_OK; 1138 } 1139 1140 return pmreg_access(env, ri, isread); 1141 } 1142 1143 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1144 const ARMCPRegInfo *ri, 1145 bool isread) 1146 { 1147 /* CR: cycle counter read trap control */ 1148 if (arm_feature(env, ARM_FEATURE_V8) 1149 && arm_current_el(env) == 0 1150 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1151 && isread) { 1152 return CP_ACCESS_OK; 1153 } 1154 1155 return pmreg_access(env, ri, isread); 1156 } 1157 1158 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1159 * the current EL, security state, and register configuration. 1160 */ 1161 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1162 { 1163 uint64_t filter; 1164 bool e, p, u, nsk, nsu, nsh, m; 1165 bool enabled, prohibited, filtered; 1166 bool secure = arm_is_secure(env); 1167 int el = arm_current_el(env); 1168 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1169 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1170 1171 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1172 return false; 1173 } 1174 1175 if (!arm_feature(env, ARM_FEATURE_EL2) || 1176 (counter < hpmn || counter == 31)) { 1177 e = env->cp15.c9_pmcr & PMCRE; 1178 } else { 1179 e = mdcr_el2 & MDCR_HPME; 1180 } 1181 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1182 1183 if (!secure) { 1184 if (el == 2 && (counter < hpmn || counter == 31)) { 1185 prohibited = mdcr_el2 & MDCR_HPMD; 1186 } else { 1187 prohibited = false; 1188 } 1189 } else { 1190 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1191 !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (prohibited && counter == 31) { 1195 prohibited = env->cp15.c9_pmcr & PMCRDP; 1196 } 1197 1198 if (counter == 31) { 1199 filter = env->cp15.pmccfiltr_el0; 1200 } else { 1201 filter = env->cp15.c14_pmevtyper[counter]; 1202 } 1203 1204 p = filter & PMXEVTYPER_P; 1205 u = filter & PMXEVTYPER_U; 1206 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1207 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1208 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1209 m = arm_el_is_aa64(env, 1) && 1210 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1211 1212 if (el == 0) { 1213 filtered = secure ? u : u != nsu; 1214 } else if (el == 1) { 1215 filtered = secure ? p : p != nsk; 1216 } else if (el == 2) { 1217 filtered = !nsh; 1218 } else { /* EL3 */ 1219 filtered = m != p; 1220 } 1221 1222 if (counter != 31) { 1223 /* 1224 * If not checking PMCCNTR, ensure the counter is setup to an event we 1225 * support 1226 */ 1227 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1228 if (!event_supported(event)) { 1229 return false; 1230 } 1231 } 1232 1233 return enabled && !prohibited && !filtered; 1234 } 1235 1236 static void pmu_update_irq(CPUARMState *env) 1237 { 1238 ARMCPU *cpu = env_archcpu(env); 1239 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1240 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1241 } 1242 1243 /* 1244 * Ensure c15_ccnt is the guest-visible count so that operations such as 1245 * enabling/disabling the counter or filtering, modifying the count itself, 1246 * etc. can be done logically. This is essentially a no-op if the counter is 1247 * not enabled at the time of the call. 1248 */ 1249 static void pmccntr_op_start(CPUARMState *env) 1250 { 1251 uint64_t cycles = cycles_get_count(env); 1252 1253 if (pmu_counter_enabled(env, 31)) { 1254 uint64_t eff_cycles = cycles; 1255 if (env->cp15.c9_pmcr & PMCRD) { 1256 /* Increment once every 64 processor clock cycles */ 1257 eff_cycles /= 64; 1258 } 1259 1260 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1261 1262 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1263 1ull << 63 : 1ull << 31; 1264 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1265 env->cp15.c9_pmovsr |= (1 << 31); 1266 pmu_update_irq(env); 1267 } 1268 1269 env->cp15.c15_ccnt = new_pmccntr; 1270 } 1271 env->cp15.c15_ccnt_delta = cycles; 1272 } 1273 1274 /* 1275 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1276 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1277 * pmccntr_op_start. 1278 */ 1279 static void pmccntr_op_finish(CPUARMState *env) 1280 { 1281 if (pmu_counter_enabled(env, 31)) { 1282 #ifndef CONFIG_USER_ONLY 1283 /* Calculate when the counter will next overflow */ 1284 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1285 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1286 remaining_cycles = (uint32_t)remaining_cycles; 1287 } 1288 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1289 1290 if (overflow_in > 0) { 1291 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1292 overflow_in; 1293 ARMCPU *cpu = env_archcpu(env); 1294 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1295 } 1296 #endif 1297 1298 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1299 if (env->cp15.c9_pmcr & PMCRD) { 1300 /* Increment once every 64 processor clock cycles */ 1301 prev_cycles /= 64; 1302 } 1303 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1304 } 1305 } 1306 1307 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1308 { 1309 1310 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1311 uint64_t count = 0; 1312 if (event_supported(event)) { 1313 uint16_t event_idx = supported_event_map[event]; 1314 count = pm_events[event_idx].get_count(env); 1315 } 1316 1317 if (pmu_counter_enabled(env, counter)) { 1318 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1319 1320 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1321 env->cp15.c9_pmovsr |= (1 << counter); 1322 pmu_update_irq(env); 1323 } 1324 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1325 } 1326 env->cp15.c14_pmevcntr_delta[counter] = count; 1327 } 1328 1329 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1330 { 1331 if (pmu_counter_enabled(env, counter)) { 1332 #ifndef CONFIG_USER_ONLY 1333 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1334 uint16_t event_idx = supported_event_map[event]; 1335 uint64_t delta = UINT32_MAX - 1336 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1337 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1341 overflow_in; 1342 ARMCPU *cpu = env_archcpu(env); 1343 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1344 } 1345 #endif 1346 1347 env->cp15.c14_pmevcntr_delta[counter] -= 1348 env->cp15.c14_pmevcntr[counter]; 1349 } 1350 } 1351 1352 void pmu_op_start(CPUARMState *env) 1353 { 1354 unsigned int i; 1355 pmccntr_op_start(env); 1356 for (i = 0; i < pmu_num_counters(env); i++) { 1357 pmevcntr_op_start(env, i); 1358 } 1359 } 1360 1361 void pmu_op_finish(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_finish(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_finish(env, i); 1367 } 1368 } 1369 1370 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1371 { 1372 pmu_op_start(&cpu->env); 1373 } 1374 1375 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1376 { 1377 pmu_op_finish(&cpu->env); 1378 } 1379 1380 void arm_pmu_timer_cb(void *opaque) 1381 { 1382 ARMCPU *cpu = opaque; 1383 1384 /* 1385 * Update all the counter values based on the current underlying counts, 1386 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1387 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1388 * counter may expire. 1389 */ 1390 pmu_op_start(&cpu->env); 1391 pmu_op_finish(&cpu->env); 1392 } 1393 1394 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1395 uint64_t value) 1396 { 1397 pmu_op_start(env); 1398 1399 if (value & PMCRC) { 1400 /* The counter has been reset */ 1401 env->cp15.c15_ccnt = 0; 1402 } 1403 1404 if (value & PMCRP) { 1405 unsigned int i; 1406 for (i = 0; i < pmu_num_counters(env); i++) { 1407 env->cp15.c14_pmevcntr[i] = 0; 1408 } 1409 } 1410 1411 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1412 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1413 1414 pmu_op_finish(env); 1415 } 1416 1417 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1418 uint64_t value) 1419 { 1420 unsigned int i; 1421 for (i = 0; i < pmu_num_counters(env); i++) { 1422 /* Increment a counter's count iff: */ 1423 if ((value & (1 << i)) && /* counter's bit is set */ 1424 /* counter is enabled and not filtered */ 1425 pmu_counter_enabled(env, i) && 1426 /* counter is SW_INCR */ 1427 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1428 pmevcntr_op_start(env, i); 1429 1430 /* 1431 * Detect if this write causes an overflow since we can't predict 1432 * PMSWINC overflows like we can for other events 1433 */ 1434 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1435 1436 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1437 env->cp15.c9_pmovsr |= (1 << i); 1438 pmu_update_irq(env); 1439 } 1440 1441 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1442 1443 pmevcntr_op_finish(env, i); 1444 } 1445 } 1446 } 1447 1448 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1449 { 1450 uint64_t ret; 1451 pmccntr_op_start(env); 1452 ret = env->cp15.c15_ccnt; 1453 pmccntr_op_finish(env); 1454 return ret; 1455 } 1456 1457 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1458 uint64_t value) 1459 { 1460 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1461 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1462 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1463 * accessed. 1464 */ 1465 env->cp15.c9_pmselr = value & 0x1f; 1466 } 1467 1468 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1469 uint64_t value) 1470 { 1471 pmccntr_op_start(env); 1472 env->cp15.c15_ccnt = value; 1473 pmccntr_op_finish(env); 1474 } 1475 1476 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 uint64_t cur_val = pmccntr_read(env, NULL); 1480 1481 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1482 } 1483 1484 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 pmccntr_op_start(env); 1488 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 /* M is not accessible from AArch32 */ 1497 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1498 (value & PMCCFILTR); 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1503 { 1504 /* M is not visible in AArch32 */ 1505 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1506 } 1507 1508 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1509 uint64_t value) 1510 { 1511 value &= pmu_counter_mask(env); 1512 env->cp15.c9_pmcnten |= value; 1513 } 1514 1515 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1516 uint64_t value) 1517 { 1518 value &= pmu_counter_mask(env); 1519 env->cp15.c9_pmcnten &= ~value; 1520 } 1521 1522 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 value &= pmu_counter_mask(env); 1526 env->cp15.c9_pmovsr &= ~value; 1527 pmu_update_irq(env); 1528 } 1529 1530 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr |= value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value, const uint8_t counter) 1540 { 1541 if (counter == 31) { 1542 pmccfiltr_write(env, ri, value); 1543 } else if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 1546 /* 1547 * If this counter's event type is changing, store the current 1548 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1549 * pmevcntr_op_finish has the correct baseline when it converts back to 1550 * a delta. 1551 */ 1552 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1553 PMXEVTYPER_EVTCOUNT; 1554 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1555 if (old_event != new_event) { 1556 uint64_t count = 0; 1557 if (event_supported(new_event)) { 1558 uint16_t event_idx = supported_event_map[new_event]; 1559 count = pm_events[event_idx].get_count(env); 1560 } 1561 env->cp15.c14_pmevcntr_delta[counter] = count; 1562 } 1563 1564 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1565 pmevcntr_op_finish(env, counter); 1566 } 1567 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1568 * PMSELR value is equal to or greater than the number of implemented 1569 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1570 */ 1571 } 1572 1573 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1574 const uint8_t counter) 1575 { 1576 if (counter == 31) { 1577 return env->cp15.pmccfiltr_el0; 1578 } else if (counter < pmu_num_counters(env)) { 1579 return env->cp15.c14_pmevtyper[counter]; 1580 } else { 1581 /* 1582 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1583 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1584 */ 1585 return 0; 1586 } 1587 } 1588 1589 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 pmevtyper_write(env, ri, value, counter); 1594 } 1595 1596 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 env->cp15.c14_pmevtyper[counter] = value; 1601 1602 /* 1603 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1604 * pmu_op_finish calls when loading saved state for a migration. Because 1605 * we're potentially updating the type of event here, the value written to 1606 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1607 * different counter type. Therefore, we need to set this value to the 1608 * current count for the counter type we're writing so that pmu_op_finish 1609 * has the correct count for its calculation. 1610 */ 1611 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1612 if (event_supported(event)) { 1613 uint16_t event_idx = supported_event_map[event]; 1614 env->cp15.c14_pmevcntr_delta[counter] = 1615 pm_events[event_idx].get_count(env); 1616 } 1617 } 1618 1619 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1620 { 1621 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1622 return pmevtyper_read(env, ri, counter); 1623 } 1624 1625 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1629 } 1630 1631 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1634 } 1635 1636 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value, uint8_t counter) 1638 { 1639 if (counter < pmu_num_counters(env)) { 1640 pmevcntr_op_start(env, counter); 1641 env->cp15.c14_pmevcntr[counter] = value; 1642 pmevcntr_op_finish(env, counter); 1643 } 1644 /* 1645 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1646 * are CONSTRAINED UNPREDICTABLE. 1647 */ 1648 } 1649 1650 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1651 uint8_t counter) 1652 { 1653 if (counter < pmu_num_counters(env)) { 1654 uint64_t ret; 1655 pmevcntr_op_start(env, counter); 1656 ret = env->cp15.c14_pmevcntr[counter]; 1657 pmevcntr_op_finish(env, counter); 1658 return ret; 1659 } else { 1660 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1661 * are CONSTRAINED UNPREDICTABLE. */ 1662 return 0; 1663 } 1664 } 1665 1666 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value) 1668 { 1669 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1670 pmevcntr_write(env, ri, value, counter); 1671 } 1672 1673 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1674 { 1675 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1676 return pmevcntr_read(env, ri, counter); 1677 } 1678 1679 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1680 uint64_t value) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 assert(counter < pmu_num_counters(env)); 1684 env->cp15.c14_pmevcntr[counter] = value; 1685 pmevcntr_write(env, ri, value, counter); 1686 } 1687 1688 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 return env->cp15.c14_pmevcntr[counter]; 1693 } 1694 1695 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1699 } 1700 1701 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1702 { 1703 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1704 } 1705 1706 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 if (arm_feature(env, ARM_FEATURE_V8)) { 1710 env->cp15.c9_pmuserenr = value & 0xf; 1711 } else { 1712 env->cp15.c9_pmuserenr = value & 1; 1713 } 1714 } 1715 1716 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 /* We have no event counters so only the C bit can be changed */ 1720 value &= pmu_counter_mask(env); 1721 env->cp15.c9_pminten |= value; 1722 pmu_update_irq(env); 1723 } 1724 1725 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten &= ~value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* Note that even though the AArch64 view of this register has bits 1737 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1738 * architectural requirements for bits which are RES0 only in some 1739 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1740 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1741 */ 1742 raw_write(env, ri, value & ~0x1FULL); 1743 } 1744 1745 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1746 { 1747 /* Begin with base v8.0 state. */ 1748 uint32_t valid_mask = 0x3fff; 1749 ARMCPU *cpu = env_archcpu(env); 1750 1751 if (ri->state == ARM_CP_STATE_AA64) { 1752 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1753 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1754 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1755 } 1756 valid_mask &= ~SCR_NET; 1757 1758 if (cpu_isar_feature(aa64_ras, cpu)) { 1759 valid_mask |= SCR_TERR; 1760 } 1761 if (cpu_isar_feature(aa64_lor, cpu)) { 1762 valid_mask |= SCR_TLOR; 1763 } 1764 if (cpu_isar_feature(aa64_pauth, cpu)) { 1765 valid_mask |= SCR_API | SCR_APK; 1766 } 1767 if (cpu_isar_feature(aa64_sel2, cpu)) { 1768 valid_mask |= SCR_EEL2; 1769 } 1770 if (cpu_isar_feature(aa64_mte, cpu)) { 1771 valid_mask |= SCR_ATA; 1772 } 1773 } else { 1774 valid_mask &= ~(SCR_RW | SCR_ST); 1775 if (cpu_isar_feature(aa32_ras, cpu)) { 1776 valid_mask |= SCR_TERR; 1777 } 1778 } 1779 1780 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1781 valid_mask &= ~SCR_HCE; 1782 1783 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1784 * supported if EL2 exists. The bit is UNK/SBZP when 1785 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1786 * when EL2 is unavailable. 1787 * On ARMv8, this bit is always available. 1788 */ 1789 if (arm_feature(env, ARM_FEATURE_V7) && 1790 !arm_feature(env, ARM_FEATURE_V8)) { 1791 valid_mask &= ~SCR_SMD; 1792 } 1793 } 1794 1795 /* Clear all-context RES0 bits. */ 1796 value &= valid_mask; 1797 raw_write(env, ri, value); 1798 } 1799 1800 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1801 { 1802 /* 1803 * scr_write will set the RES1 bits on an AArch64-only CPU. 1804 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1805 */ 1806 scr_write(env, ri, 0); 1807 } 1808 1809 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1810 const ARMCPRegInfo *ri, 1811 bool isread) 1812 { 1813 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1814 return CP_ACCESS_TRAP_EL2; 1815 } 1816 1817 return CP_ACCESS_OK; 1818 } 1819 1820 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1821 { 1822 ARMCPU *cpu = env_archcpu(env); 1823 1824 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1825 * bank 1826 */ 1827 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1828 ri->secure & ARM_CP_SECSTATE_S); 1829 1830 return cpu->ccsidr[index]; 1831 } 1832 1833 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1834 uint64_t value) 1835 { 1836 raw_write(env, ri, value & 0xf); 1837 } 1838 1839 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1840 { 1841 CPUState *cs = env_cpu(env); 1842 bool el1 = arm_current_el(env) == 1; 1843 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1844 uint64_t ret = 0; 1845 1846 if (hcr_el2 & HCR_IMO) { 1847 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1848 ret |= CPSR_I; 1849 } 1850 } else { 1851 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1852 ret |= CPSR_I; 1853 } 1854 } 1855 1856 if (hcr_el2 & HCR_FMO) { 1857 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1858 ret |= CPSR_F; 1859 } 1860 } else { 1861 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1862 ret |= CPSR_F; 1863 } 1864 } 1865 1866 if (hcr_el2 & HCR_AMO) { 1867 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1868 ret |= CPSR_A; 1869 } 1870 } 1871 1872 return ret; 1873 } 1874 1875 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1876 bool isread) 1877 { 1878 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1879 return CP_ACCESS_TRAP_EL2; 1880 } 1881 1882 return CP_ACCESS_OK; 1883 } 1884 1885 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1886 bool isread) 1887 { 1888 if (arm_feature(env, ARM_FEATURE_V8)) { 1889 return access_aa64_tid1(env, ri, isread); 1890 } 1891 1892 return CP_ACCESS_OK; 1893 } 1894 1895 static const ARMCPRegInfo v7_cp_reginfo[] = { 1896 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1897 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1898 .access = PL1_W, .type = ARM_CP_NOP }, 1899 /* Performance monitors are implementation defined in v7, 1900 * but with an ARM recommended set of registers, which we 1901 * follow. 1902 * 1903 * Performance registers fall into three categories: 1904 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1905 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1906 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1907 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1908 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1909 */ 1910 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1911 .access = PL0_RW, .type = ARM_CP_ALIAS, 1912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1913 .writefn = pmcntenset_write, 1914 .accessfn = pmreg_access, 1915 .raw_writefn = raw_write }, 1916 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1917 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1918 .access = PL0_RW, .accessfn = pmreg_access, 1919 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1920 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1921 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1922 .access = PL0_RW, 1923 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1924 .accessfn = pmreg_access, 1925 .writefn = pmcntenclr_write, 1926 .type = ARM_CP_ALIAS }, 1927 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1928 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1929 .access = PL0_RW, .accessfn = pmreg_access, 1930 .type = ARM_CP_ALIAS, 1931 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1932 .writefn = pmcntenclr_write }, 1933 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1934 .access = PL0_RW, .type = ARM_CP_IO, 1935 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1936 .accessfn = pmreg_access, 1937 .writefn = pmovsr_write, 1938 .raw_writefn = raw_write }, 1939 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1940 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1941 .access = PL0_RW, .accessfn = pmreg_access, 1942 .type = ARM_CP_ALIAS | ARM_CP_IO, 1943 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1944 .writefn = pmovsr_write, 1945 .raw_writefn = raw_write }, 1946 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1947 .access = PL0_W, .accessfn = pmreg_access_swinc, 1948 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1949 .writefn = pmswinc_write }, 1950 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1951 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1952 .access = PL0_W, .accessfn = pmreg_access_swinc, 1953 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1954 .writefn = pmswinc_write }, 1955 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1956 .access = PL0_RW, .type = ARM_CP_ALIAS, 1957 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1958 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1959 .raw_writefn = raw_write}, 1960 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1961 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1962 .access = PL0_RW, .accessfn = pmreg_access_selr, 1963 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1964 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1965 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1966 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1967 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1968 .accessfn = pmreg_access_ccntr }, 1969 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1971 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1972 .type = ARM_CP_IO, 1973 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1974 .readfn = pmccntr_read, .writefn = pmccntr_write, 1975 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1976 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1977 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1978 .access = PL0_RW, .accessfn = pmreg_access, 1979 .type = ARM_CP_ALIAS | ARM_CP_IO, 1980 .resetvalue = 0, }, 1981 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1982 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1983 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1984 .access = PL0_RW, .accessfn = pmreg_access, 1985 .type = ARM_CP_IO, 1986 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1987 .resetvalue = 0, }, 1988 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1989 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1990 .accessfn = pmreg_access, 1991 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1992 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1994 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1995 .accessfn = pmreg_access, 1996 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1997 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1998 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1999 .accessfn = pmreg_access_xevcntr, 2000 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2001 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2002 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2003 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2004 .accessfn = pmreg_access_xevcntr, 2005 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2006 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2007 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2008 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2009 .resetvalue = 0, 2010 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2011 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2012 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2013 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2014 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2015 .resetvalue = 0, 2016 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2017 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2018 .access = PL1_RW, .accessfn = access_tpm, 2019 .type = ARM_CP_ALIAS | ARM_CP_IO, 2020 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2021 .resetvalue = 0, 2022 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2023 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2024 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2025 .access = PL1_RW, .accessfn = access_tpm, 2026 .type = ARM_CP_IO, 2027 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2028 .writefn = pmintenset_write, .raw_writefn = raw_write, 2029 .resetvalue = 0x0 }, 2030 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2031 .access = PL1_RW, .accessfn = access_tpm, 2032 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2034 .writefn = pmintenclr_write, }, 2035 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2036 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2037 .access = PL1_RW, .accessfn = access_tpm, 2038 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2039 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2040 .writefn = pmintenclr_write }, 2041 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2042 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2043 .access = PL1_R, 2044 .accessfn = access_aa64_tid2, 2045 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2046 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2047 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2048 .access = PL1_RW, 2049 .accessfn = access_aa64_tid2, 2050 .writefn = csselr_write, .resetvalue = 0, 2051 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2052 offsetof(CPUARMState, cp15.csselr_ns) } }, 2053 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2054 * just RAZ for all cores: 2055 */ 2056 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2057 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2058 .access = PL1_R, .type = ARM_CP_CONST, 2059 .accessfn = access_aa64_tid1, 2060 .resetvalue = 0 }, 2061 /* Auxiliary fault status registers: these also are IMPDEF, and we 2062 * choose to RAZ/WI for all cores. 2063 */ 2064 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2065 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2066 .access = PL1_RW, .accessfn = access_tvm_trvm, 2067 .type = ARM_CP_CONST, .resetvalue = 0 }, 2068 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2069 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2070 .access = PL1_RW, .accessfn = access_tvm_trvm, 2071 .type = ARM_CP_CONST, .resetvalue = 0 }, 2072 /* MAIR can just read-as-written because we don't implement caches 2073 * and so don't need to care about memory attributes. 2074 */ 2075 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2076 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2077 .access = PL1_RW, .accessfn = access_tvm_trvm, 2078 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2079 .resetvalue = 0 }, 2080 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2082 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2083 .resetvalue = 0 }, 2084 /* For non-long-descriptor page tables these are PRRR and NMRR; 2085 * regardless they still act as reads-as-written for QEMU. 2086 */ 2087 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2088 * allows them to assign the correct fieldoffset based on the endianness 2089 * handled in the field definitions. 2090 */ 2091 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2092 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2093 .access = PL1_RW, .accessfn = access_tvm_trvm, 2094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2095 offsetof(CPUARMState, cp15.mair0_ns) }, 2096 .resetfn = arm_cp_reset_ignore }, 2097 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2098 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2099 .access = PL1_RW, .accessfn = access_tvm_trvm, 2100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2101 offsetof(CPUARMState, cp15.mair1_ns) }, 2102 .resetfn = arm_cp_reset_ignore }, 2103 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2104 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2105 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2106 /* 32 bit ITLB invalidates */ 2107 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2108 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2109 .writefn = tlbiall_write }, 2110 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2111 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2112 .writefn = tlbimva_write }, 2113 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2114 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2115 .writefn = tlbiasid_write }, 2116 /* 32 bit DTLB invalidates */ 2117 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2118 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2119 .writefn = tlbiall_write }, 2120 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2121 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2122 .writefn = tlbimva_write }, 2123 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2124 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2125 .writefn = tlbiasid_write }, 2126 /* 32 bit TLB invalidates */ 2127 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2128 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2129 .writefn = tlbiall_write }, 2130 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbimva_write }, 2133 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbiasid_write }, 2136 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbimvaa_write }, 2139 }; 2140 2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2142 /* 32 bit TLB invalidates, Inner Shareable */ 2143 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiall_is_write }, 2146 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimva_is_write }, 2149 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiasid_is_write }, 2152 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimvaa_is_write }, 2155 }; 2156 2157 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2158 /* PMOVSSET is not implemented in v7 before v7ve */ 2159 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2160 .access = PL0_RW, .accessfn = pmreg_access, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO, 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2163 .writefn = pmovsset_write, 2164 .raw_writefn = raw_write }, 2165 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2167 .access = PL0_RW, .accessfn = pmreg_access, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2170 .writefn = pmovsset_write, 2171 .raw_writefn = raw_write }, 2172 }; 2173 2174 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2175 uint64_t value) 2176 { 2177 value &= 1; 2178 env->teecr = value; 2179 } 2180 2181 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2182 bool isread) 2183 { 2184 /* 2185 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2186 * at all, so we don't need to check whether we're v8A. 2187 */ 2188 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2189 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2190 return CP_ACCESS_TRAP_EL2; 2191 } 2192 return CP_ACCESS_OK; 2193 } 2194 2195 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2196 bool isread) 2197 { 2198 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2199 return CP_ACCESS_TRAP; 2200 } 2201 return teecr_access(env, ri, isread); 2202 } 2203 2204 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2205 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2206 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2207 .resetvalue = 0, 2208 .writefn = teecr_write, .accessfn = teecr_access }, 2209 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2210 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2211 .accessfn = teehbr_access, .resetvalue = 0 }, 2212 }; 2213 2214 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2215 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2216 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2217 .access = PL0_RW, 2218 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2219 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2220 .access = PL0_RW, 2221 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2222 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2223 .resetfn = arm_cp_reset_ignore }, 2224 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2225 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2226 .access = PL0_R|PL1_W, 2227 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2228 .resetvalue = 0}, 2229 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2230 .access = PL0_R|PL1_W, 2231 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2232 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2233 .resetfn = arm_cp_reset_ignore }, 2234 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2236 .access = PL1_RW, 2237 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2238 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2239 .access = PL1_RW, 2240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2241 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2242 .resetvalue = 0 }, 2243 }; 2244 2245 #ifndef CONFIG_USER_ONLY 2246 2247 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2248 bool isread) 2249 { 2250 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2251 * Writable only at the highest implemented exception level. 2252 */ 2253 int el = arm_current_el(env); 2254 uint64_t hcr; 2255 uint32_t cntkctl; 2256 2257 switch (el) { 2258 case 0: 2259 hcr = arm_hcr_el2_eff(env); 2260 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2261 cntkctl = env->cp15.cnthctl_el2; 2262 } else { 2263 cntkctl = env->cp15.c14_cntkctl; 2264 } 2265 if (!extract32(cntkctl, 0, 2)) { 2266 return CP_ACCESS_TRAP; 2267 } 2268 break; 2269 case 1: 2270 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2271 arm_is_secure_below_el3(env)) { 2272 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2273 return CP_ACCESS_TRAP_UNCATEGORIZED; 2274 } 2275 break; 2276 case 2: 2277 case 3: 2278 break; 2279 } 2280 2281 if (!isread && el < arm_highest_el(env)) { 2282 return CP_ACCESS_TRAP_UNCATEGORIZED; 2283 } 2284 2285 return CP_ACCESS_OK; 2286 } 2287 2288 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2289 bool isread) 2290 { 2291 unsigned int cur_el = arm_current_el(env); 2292 bool has_el2 = arm_is_el2_enabled(env); 2293 uint64_t hcr = arm_hcr_el2_eff(env); 2294 2295 switch (cur_el) { 2296 case 0: 2297 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2298 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2299 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2300 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2301 } 2302 2303 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2304 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2305 return CP_ACCESS_TRAP; 2306 } 2307 2308 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2309 if (hcr & HCR_E2H) { 2310 if (timeridx == GTIMER_PHYS && 2311 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2312 return CP_ACCESS_TRAP_EL2; 2313 } 2314 } else { 2315 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2316 if (has_el2 && timeridx == GTIMER_PHYS && 2317 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2318 return CP_ACCESS_TRAP_EL2; 2319 } 2320 } 2321 break; 2322 2323 case 1: 2324 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2325 if (has_el2 && timeridx == GTIMER_PHYS && 2326 (hcr & HCR_E2H 2327 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2328 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2329 return CP_ACCESS_TRAP_EL2; 2330 } 2331 break; 2332 } 2333 return CP_ACCESS_OK; 2334 } 2335 2336 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2337 bool isread) 2338 { 2339 unsigned int cur_el = arm_current_el(env); 2340 bool has_el2 = arm_is_el2_enabled(env); 2341 uint64_t hcr = arm_hcr_el2_eff(env); 2342 2343 switch (cur_el) { 2344 case 0: 2345 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2346 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2347 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2348 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2349 } 2350 2351 /* 2352 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2353 * EL0 if EL0[PV]TEN is zero. 2354 */ 2355 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2356 return CP_ACCESS_TRAP; 2357 } 2358 /* fall through */ 2359 2360 case 1: 2361 if (has_el2 && timeridx == GTIMER_PHYS) { 2362 if (hcr & HCR_E2H) { 2363 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2364 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2365 return CP_ACCESS_TRAP_EL2; 2366 } 2367 } else { 2368 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2369 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2370 return CP_ACCESS_TRAP_EL2; 2371 } 2372 } 2373 } 2374 break; 2375 } 2376 return CP_ACCESS_OK; 2377 } 2378 2379 static CPAccessResult gt_pct_access(CPUARMState *env, 2380 const ARMCPRegInfo *ri, 2381 bool isread) 2382 { 2383 return gt_counter_access(env, GTIMER_PHYS, isread); 2384 } 2385 2386 static CPAccessResult gt_vct_access(CPUARMState *env, 2387 const ARMCPRegInfo *ri, 2388 bool isread) 2389 { 2390 return gt_counter_access(env, GTIMER_VIRT, isread); 2391 } 2392 2393 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2394 bool isread) 2395 { 2396 return gt_timer_access(env, GTIMER_PHYS, isread); 2397 } 2398 2399 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2400 bool isread) 2401 { 2402 return gt_timer_access(env, GTIMER_VIRT, isread); 2403 } 2404 2405 static CPAccessResult gt_stimer_access(CPUARMState *env, 2406 const ARMCPRegInfo *ri, 2407 bool isread) 2408 { 2409 /* The AArch64 register view of the secure physical timer is 2410 * always accessible from EL3, and configurably accessible from 2411 * Secure EL1. 2412 */ 2413 switch (arm_current_el(env)) { 2414 case 1: 2415 if (!arm_is_secure(env)) { 2416 return CP_ACCESS_TRAP; 2417 } 2418 if (!(env->cp15.scr_el3 & SCR_ST)) { 2419 return CP_ACCESS_TRAP_EL3; 2420 } 2421 return CP_ACCESS_OK; 2422 case 0: 2423 case 2: 2424 return CP_ACCESS_TRAP; 2425 case 3: 2426 return CP_ACCESS_OK; 2427 default: 2428 g_assert_not_reached(); 2429 } 2430 } 2431 2432 static uint64_t gt_get_countervalue(CPUARMState *env) 2433 { 2434 ARMCPU *cpu = env_archcpu(env); 2435 2436 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2437 } 2438 2439 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2440 { 2441 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2442 2443 if (gt->ctl & 1) { 2444 /* Timer enabled: calculate and set current ISTATUS, irq, and 2445 * reset timer to when ISTATUS next has to change 2446 */ 2447 uint64_t offset = timeridx == GTIMER_VIRT ? 2448 cpu->env.cp15.cntvoff_el2 : 0; 2449 uint64_t count = gt_get_countervalue(&cpu->env); 2450 /* Note that this must be unsigned 64 bit arithmetic: */ 2451 int istatus = count - offset >= gt->cval; 2452 uint64_t nexttick; 2453 int irqstate; 2454 2455 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2456 2457 irqstate = (istatus && !(gt->ctl & 2)); 2458 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2459 2460 if (istatus) { 2461 /* Next transition is when count rolls back over to zero */ 2462 nexttick = UINT64_MAX; 2463 } else { 2464 /* Next transition is when we hit cval */ 2465 nexttick = gt->cval + offset; 2466 } 2467 /* Note that the desired next expiry time might be beyond the 2468 * signed-64-bit range of a QEMUTimer -- in this case we just 2469 * set the timer for as far in the future as possible. When the 2470 * timer expires we will reset the timer for any remaining period. 2471 */ 2472 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2473 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2474 } else { 2475 timer_mod(cpu->gt_timer[timeridx], nexttick); 2476 } 2477 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2478 } else { 2479 /* Timer disabled: ISTATUS and timer output always clear */ 2480 gt->ctl &= ~4; 2481 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2482 timer_del(cpu->gt_timer[timeridx]); 2483 trace_arm_gt_recalc_disabled(timeridx); 2484 } 2485 } 2486 2487 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2488 int timeridx) 2489 { 2490 ARMCPU *cpu = env_archcpu(env); 2491 2492 timer_del(cpu->gt_timer[timeridx]); 2493 } 2494 2495 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2496 { 2497 return gt_get_countervalue(env); 2498 } 2499 2500 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2501 { 2502 uint64_t hcr; 2503 2504 switch (arm_current_el(env)) { 2505 case 2: 2506 hcr = arm_hcr_el2_eff(env); 2507 if (hcr & HCR_E2H) { 2508 return 0; 2509 } 2510 break; 2511 case 0: 2512 hcr = arm_hcr_el2_eff(env); 2513 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2514 return 0; 2515 } 2516 break; 2517 } 2518 2519 return env->cp15.cntvoff_el2; 2520 } 2521 2522 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2523 { 2524 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2525 } 2526 2527 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2528 int timeridx, 2529 uint64_t value) 2530 { 2531 trace_arm_gt_cval_write(timeridx, value); 2532 env->cp15.c14_timer[timeridx].cval = value; 2533 gt_recalc_timer(env_archcpu(env), timeridx); 2534 } 2535 2536 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2537 int timeridx) 2538 { 2539 uint64_t offset = 0; 2540 2541 switch (timeridx) { 2542 case GTIMER_VIRT: 2543 case GTIMER_HYPVIRT: 2544 offset = gt_virt_cnt_offset(env); 2545 break; 2546 } 2547 2548 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2549 (gt_get_countervalue(env) - offset)); 2550 } 2551 2552 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2553 int timeridx, 2554 uint64_t value) 2555 { 2556 uint64_t offset = 0; 2557 2558 switch (timeridx) { 2559 case GTIMER_VIRT: 2560 case GTIMER_HYPVIRT: 2561 offset = gt_virt_cnt_offset(env); 2562 break; 2563 } 2564 2565 trace_arm_gt_tval_write(timeridx, value); 2566 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2567 sextract64(value, 0, 32); 2568 gt_recalc_timer(env_archcpu(env), timeridx); 2569 } 2570 2571 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2572 int timeridx, 2573 uint64_t value) 2574 { 2575 ARMCPU *cpu = env_archcpu(env); 2576 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2577 2578 trace_arm_gt_ctl_write(timeridx, value); 2579 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2580 if ((oldval ^ value) & 1) { 2581 /* Enable toggled */ 2582 gt_recalc_timer(cpu, timeridx); 2583 } else if ((oldval ^ value) & 2) { 2584 /* IMASK toggled: don't need to recalculate, 2585 * just set the interrupt line based on ISTATUS 2586 */ 2587 int irqstate = (oldval & 4) && !(value & 2); 2588 2589 trace_arm_gt_imask_toggle(timeridx, irqstate); 2590 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2591 } 2592 } 2593 2594 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2595 { 2596 gt_timer_reset(env, ri, GTIMER_PHYS); 2597 } 2598 2599 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2600 uint64_t value) 2601 { 2602 gt_cval_write(env, ri, GTIMER_PHYS, value); 2603 } 2604 2605 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2606 { 2607 return gt_tval_read(env, ri, GTIMER_PHYS); 2608 } 2609 2610 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2611 uint64_t value) 2612 { 2613 gt_tval_write(env, ri, GTIMER_PHYS, value); 2614 } 2615 2616 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2617 uint64_t value) 2618 { 2619 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2620 } 2621 2622 static int gt_phys_redir_timeridx(CPUARMState *env) 2623 { 2624 switch (arm_mmu_idx(env)) { 2625 case ARMMMUIdx_E20_0: 2626 case ARMMMUIdx_E20_2: 2627 case ARMMMUIdx_E20_2_PAN: 2628 case ARMMMUIdx_SE20_0: 2629 case ARMMMUIdx_SE20_2: 2630 case ARMMMUIdx_SE20_2_PAN: 2631 return GTIMER_HYP; 2632 default: 2633 return GTIMER_PHYS; 2634 } 2635 } 2636 2637 static int gt_virt_redir_timeridx(CPUARMState *env) 2638 { 2639 switch (arm_mmu_idx(env)) { 2640 case ARMMMUIdx_E20_0: 2641 case ARMMMUIdx_E20_2: 2642 case ARMMMUIdx_E20_2_PAN: 2643 case ARMMMUIdx_SE20_0: 2644 case ARMMMUIdx_SE20_2: 2645 case ARMMMUIdx_SE20_2_PAN: 2646 return GTIMER_HYPVIRT; 2647 default: 2648 return GTIMER_VIRT; 2649 } 2650 } 2651 2652 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2653 const ARMCPRegInfo *ri) 2654 { 2655 int timeridx = gt_phys_redir_timeridx(env); 2656 return env->cp15.c14_timer[timeridx].cval; 2657 } 2658 2659 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2660 uint64_t value) 2661 { 2662 int timeridx = gt_phys_redir_timeridx(env); 2663 gt_cval_write(env, ri, timeridx, value); 2664 } 2665 2666 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2667 const ARMCPRegInfo *ri) 2668 { 2669 int timeridx = gt_phys_redir_timeridx(env); 2670 return gt_tval_read(env, ri, timeridx); 2671 } 2672 2673 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2674 uint64_t value) 2675 { 2676 int timeridx = gt_phys_redir_timeridx(env); 2677 gt_tval_write(env, ri, timeridx, value); 2678 } 2679 2680 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2681 const ARMCPRegInfo *ri) 2682 { 2683 int timeridx = gt_phys_redir_timeridx(env); 2684 return env->cp15.c14_timer[timeridx].ctl; 2685 } 2686 2687 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2688 uint64_t value) 2689 { 2690 int timeridx = gt_phys_redir_timeridx(env); 2691 gt_ctl_write(env, ri, timeridx, value); 2692 } 2693 2694 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2695 { 2696 gt_timer_reset(env, ri, GTIMER_VIRT); 2697 } 2698 2699 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2700 uint64_t value) 2701 { 2702 gt_cval_write(env, ri, GTIMER_VIRT, value); 2703 } 2704 2705 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2706 { 2707 return gt_tval_read(env, ri, GTIMER_VIRT); 2708 } 2709 2710 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2711 uint64_t value) 2712 { 2713 gt_tval_write(env, ri, GTIMER_VIRT, value); 2714 } 2715 2716 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2717 uint64_t value) 2718 { 2719 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2720 } 2721 2722 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2723 uint64_t value) 2724 { 2725 ARMCPU *cpu = env_archcpu(env); 2726 2727 trace_arm_gt_cntvoff_write(value); 2728 raw_write(env, ri, value); 2729 gt_recalc_timer(cpu, GTIMER_VIRT); 2730 } 2731 2732 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2733 const ARMCPRegInfo *ri) 2734 { 2735 int timeridx = gt_virt_redir_timeridx(env); 2736 return env->cp15.c14_timer[timeridx].cval; 2737 } 2738 2739 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2740 uint64_t value) 2741 { 2742 int timeridx = gt_virt_redir_timeridx(env); 2743 gt_cval_write(env, ri, timeridx, value); 2744 } 2745 2746 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2747 const ARMCPRegInfo *ri) 2748 { 2749 int timeridx = gt_virt_redir_timeridx(env); 2750 return gt_tval_read(env, ri, timeridx); 2751 } 2752 2753 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2754 uint64_t value) 2755 { 2756 int timeridx = gt_virt_redir_timeridx(env); 2757 gt_tval_write(env, ri, timeridx, value); 2758 } 2759 2760 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2761 const ARMCPRegInfo *ri) 2762 { 2763 int timeridx = gt_virt_redir_timeridx(env); 2764 return env->cp15.c14_timer[timeridx].ctl; 2765 } 2766 2767 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2768 uint64_t value) 2769 { 2770 int timeridx = gt_virt_redir_timeridx(env); 2771 gt_ctl_write(env, ri, timeridx, value); 2772 } 2773 2774 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2775 { 2776 gt_timer_reset(env, ri, GTIMER_HYP); 2777 } 2778 2779 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2780 uint64_t value) 2781 { 2782 gt_cval_write(env, ri, GTIMER_HYP, value); 2783 } 2784 2785 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2786 { 2787 return gt_tval_read(env, ri, GTIMER_HYP); 2788 } 2789 2790 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2791 uint64_t value) 2792 { 2793 gt_tval_write(env, ri, GTIMER_HYP, value); 2794 } 2795 2796 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2797 uint64_t value) 2798 { 2799 gt_ctl_write(env, ri, GTIMER_HYP, value); 2800 } 2801 2802 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2803 { 2804 gt_timer_reset(env, ri, GTIMER_SEC); 2805 } 2806 2807 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2808 uint64_t value) 2809 { 2810 gt_cval_write(env, ri, GTIMER_SEC, value); 2811 } 2812 2813 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2814 { 2815 return gt_tval_read(env, ri, GTIMER_SEC); 2816 } 2817 2818 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2819 uint64_t value) 2820 { 2821 gt_tval_write(env, ri, GTIMER_SEC, value); 2822 } 2823 2824 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2825 uint64_t value) 2826 { 2827 gt_ctl_write(env, ri, GTIMER_SEC, value); 2828 } 2829 2830 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2831 { 2832 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2833 } 2834 2835 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2836 uint64_t value) 2837 { 2838 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2839 } 2840 2841 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2842 { 2843 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2844 } 2845 2846 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2847 uint64_t value) 2848 { 2849 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2850 } 2851 2852 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2853 uint64_t value) 2854 { 2855 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2856 } 2857 2858 void arm_gt_ptimer_cb(void *opaque) 2859 { 2860 ARMCPU *cpu = opaque; 2861 2862 gt_recalc_timer(cpu, GTIMER_PHYS); 2863 } 2864 2865 void arm_gt_vtimer_cb(void *opaque) 2866 { 2867 ARMCPU *cpu = opaque; 2868 2869 gt_recalc_timer(cpu, GTIMER_VIRT); 2870 } 2871 2872 void arm_gt_htimer_cb(void *opaque) 2873 { 2874 ARMCPU *cpu = opaque; 2875 2876 gt_recalc_timer(cpu, GTIMER_HYP); 2877 } 2878 2879 void arm_gt_stimer_cb(void *opaque) 2880 { 2881 ARMCPU *cpu = opaque; 2882 2883 gt_recalc_timer(cpu, GTIMER_SEC); 2884 } 2885 2886 void arm_gt_hvtimer_cb(void *opaque) 2887 { 2888 ARMCPU *cpu = opaque; 2889 2890 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2891 } 2892 2893 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2894 { 2895 ARMCPU *cpu = env_archcpu(env); 2896 2897 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2898 } 2899 2900 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2901 /* Note that CNTFRQ is purely reads-as-written for the benefit 2902 * of software; writing it doesn't actually change the timer frequency. 2903 * Our reset value matches the fixed frequency we implement the timer at. 2904 */ 2905 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2906 .type = ARM_CP_ALIAS, 2907 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2908 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2909 }, 2910 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2911 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2912 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2913 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2914 .resetfn = arm_gt_cntfrq_reset, 2915 }, 2916 /* overall control: mostly access permissions */ 2917 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2918 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2919 .access = PL1_RW, 2920 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2921 .resetvalue = 0, 2922 }, 2923 /* per-timer control */ 2924 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2925 .secure = ARM_CP_SECSTATE_NS, 2926 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2927 .accessfn = gt_ptimer_access, 2928 .fieldoffset = offsetoflow32(CPUARMState, 2929 cp15.c14_timer[GTIMER_PHYS].ctl), 2930 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2931 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2932 }, 2933 { .name = "CNTP_CTL_S", 2934 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2935 .secure = ARM_CP_SECSTATE_S, 2936 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2937 .accessfn = gt_ptimer_access, 2938 .fieldoffset = offsetoflow32(CPUARMState, 2939 cp15.c14_timer[GTIMER_SEC].ctl), 2940 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2941 }, 2942 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2943 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2944 .type = ARM_CP_IO, .access = PL0_RW, 2945 .accessfn = gt_ptimer_access, 2946 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2947 .resetvalue = 0, 2948 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2949 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2950 }, 2951 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2952 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2953 .accessfn = gt_vtimer_access, 2954 .fieldoffset = offsetoflow32(CPUARMState, 2955 cp15.c14_timer[GTIMER_VIRT].ctl), 2956 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2957 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2958 }, 2959 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2960 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2961 .type = ARM_CP_IO, .access = PL0_RW, 2962 .accessfn = gt_vtimer_access, 2963 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2964 .resetvalue = 0, 2965 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2966 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2967 }, 2968 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2969 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2970 .secure = ARM_CP_SECSTATE_NS, 2971 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2972 .accessfn = gt_ptimer_access, 2973 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2974 }, 2975 { .name = "CNTP_TVAL_S", 2976 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2977 .secure = ARM_CP_SECSTATE_S, 2978 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2979 .accessfn = gt_ptimer_access, 2980 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2981 }, 2982 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2983 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2984 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2985 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2986 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2987 }, 2988 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2989 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2990 .accessfn = gt_vtimer_access, 2991 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2992 }, 2993 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2994 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2996 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2997 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2998 }, 2999 /* The counter itself */ 3000 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3001 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3002 .accessfn = gt_pct_access, 3003 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3004 }, 3005 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3006 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3007 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3008 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3009 }, 3010 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3011 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_vct_access, 3013 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3014 }, 3015 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3016 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3017 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3018 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3019 }, 3020 /* Comparison value, indicating when the timer goes off */ 3021 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3022 .secure = ARM_CP_SECSTATE_NS, 3023 .access = PL0_RW, 3024 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3025 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3026 .accessfn = gt_ptimer_access, 3027 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3028 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3029 }, 3030 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3031 .secure = ARM_CP_SECSTATE_S, 3032 .access = PL0_RW, 3033 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3035 .accessfn = gt_ptimer_access, 3036 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3037 }, 3038 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3039 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3040 .access = PL0_RW, 3041 .type = ARM_CP_IO, 3042 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3043 .resetvalue = 0, .accessfn = gt_ptimer_access, 3044 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3045 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3046 }, 3047 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3048 .access = PL0_RW, 3049 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3050 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3051 .accessfn = gt_vtimer_access, 3052 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3053 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3054 }, 3055 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3056 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3057 .access = PL0_RW, 3058 .type = ARM_CP_IO, 3059 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3060 .resetvalue = 0, .accessfn = gt_vtimer_access, 3061 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3062 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3063 }, 3064 /* Secure timer -- this is actually restricted to only EL3 3065 * and configurably Secure-EL1 via the accessfn. 3066 */ 3067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3070 .accessfn = gt_stimer_access, 3071 .readfn = gt_sec_tval_read, 3072 .writefn = gt_sec_tval_write, 3073 .resetfn = gt_sec_timer_reset, 3074 }, 3075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3077 .type = ARM_CP_IO, .access = PL1_RW, 3078 .accessfn = gt_stimer_access, 3079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3080 .resetvalue = 0, 3081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3082 }, 3083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3085 .type = ARM_CP_IO, .access = PL1_RW, 3086 .accessfn = gt_stimer_access, 3087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3089 }, 3090 }; 3091 3092 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3093 bool isread) 3094 { 3095 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3096 return CP_ACCESS_TRAP; 3097 } 3098 return CP_ACCESS_OK; 3099 } 3100 3101 #else 3102 3103 /* In user-mode most of the generic timer registers are inaccessible 3104 * however modern kernels (4.12+) allow access to cntvct_el0 3105 */ 3106 3107 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3108 { 3109 ARMCPU *cpu = env_archcpu(env); 3110 3111 /* Currently we have no support for QEMUTimer in linux-user so we 3112 * can't call gt_get_countervalue(env), instead we directly 3113 * call the lower level functions. 3114 */ 3115 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3116 } 3117 3118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3119 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3121 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3122 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3123 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3124 }, 3125 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3126 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3127 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3128 .readfn = gt_virt_cnt_read, 3129 }, 3130 }; 3131 3132 #endif 3133 3134 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3135 { 3136 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3137 raw_write(env, ri, value); 3138 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3139 raw_write(env, ri, value & 0xfffff6ff); 3140 } else { 3141 raw_write(env, ri, value & 0xfffff1ff); 3142 } 3143 } 3144 3145 #ifndef CONFIG_USER_ONLY 3146 /* get_phys_addr() isn't present for user-mode-only targets */ 3147 3148 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3149 bool isread) 3150 { 3151 if (ri->opc2 & 4) { 3152 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3153 * Secure EL1 (which can only happen if EL3 is AArch64). 3154 * They are simply UNDEF if executed from NS EL1. 3155 * They function normally from EL2 or EL3. 3156 */ 3157 if (arm_current_el(env) == 1) { 3158 if (arm_is_secure_below_el3(env)) { 3159 if (env->cp15.scr_el3 & SCR_EEL2) { 3160 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3161 } 3162 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3163 } 3164 return CP_ACCESS_TRAP_UNCATEGORIZED; 3165 } 3166 } 3167 return CP_ACCESS_OK; 3168 } 3169 3170 #ifdef CONFIG_TCG 3171 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3172 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3173 { 3174 hwaddr phys_addr; 3175 target_ulong page_size; 3176 int prot; 3177 bool ret; 3178 uint64_t par64; 3179 bool format64 = false; 3180 MemTxAttrs attrs = {}; 3181 ARMMMUFaultInfo fi = {}; 3182 ARMCacheAttrs cacheattrs = {}; 3183 3184 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3185 &prot, &page_size, &fi, &cacheattrs); 3186 3187 if (ret) { 3188 /* 3189 * Some kinds of translation fault must cause exceptions rather 3190 * than being reported in the PAR. 3191 */ 3192 int current_el = arm_current_el(env); 3193 int target_el; 3194 uint32_t syn, fsr, fsc; 3195 bool take_exc = false; 3196 3197 if (fi.s1ptw && current_el == 1 3198 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3199 /* 3200 * Synchronous stage 2 fault on an access made as part of the 3201 * translation table walk for AT S1E0* or AT S1E1* insn 3202 * executed from NS EL1. If this is a synchronous external abort 3203 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3204 * to EL3. Otherwise the fault is taken as an exception to EL2, 3205 * and HPFAR_EL2 holds the faulting IPA. 3206 */ 3207 if (fi.type == ARMFault_SyncExternalOnWalk && 3208 (env->cp15.scr_el3 & SCR_EA)) { 3209 target_el = 3; 3210 } else { 3211 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3212 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3213 env->cp15.hpfar_el2 |= HPFAR_NS; 3214 } 3215 target_el = 2; 3216 } 3217 take_exc = true; 3218 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3219 /* 3220 * Synchronous external aborts during a translation table walk 3221 * are taken as Data Abort exceptions. 3222 */ 3223 if (fi.stage2) { 3224 if (current_el == 3) { 3225 target_el = 3; 3226 } else { 3227 target_el = 2; 3228 } 3229 } else { 3230 target_el = exception_target_el(env); 3231 } 3232 take_exc = true; 3233 } 3234 3235 if (take_exc) { 3236 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3237 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3238 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3239 fsr = arm_fi_to_lfsc(&fi); 3240 fsc = extract32(fsr, 0, 6); 3241 } else { 3242 fsr = arm_fi_to_sfsc(&fi); 3243 fsc = 0x3f; 3244 } 3245 /* 3246 * Report exception with ESR indicating a fault due to a 3247 * translation table walk for a cache maintenance instruction. 3248 */ 3249 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3250 fi.ea, 1, fi.s1ptw, 1, fsc); 3251 env->exception.vaddress = value; 3252 env->exception.fsr = fsr; 3253 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3254 } 3255 } 3256 3257 if (is_a64(env)) { 3258 format64 = true; 3259 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3260 /* 3261 * ATS1Cxx: 3262 * * TTBCR.EAE determines whether the result is returned using the 3263 * 32-bit or the 64-bit PAR format 3264 * * Instructions executed in Hyp mode always use the 64bit format 3265 * 3266 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3267 * * The Non-secure TTBCR.EAE bit is set to 1 3268 * * The implementation includes EL2, and the value of HCR.VM is 1 3269 * 3270 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3271 * 3272 * ATS1Hx always uses the 64bit format. 3273 */ 3274 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3275 3276 if (arm_feature(env, ARM_FEATURE_EL2)) { 3277 if (mmu_idx == ARMMMUIdx_E10_0 || 3278 mmu_idx == ARMMMUIdx_E10_1 || 3279 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3280 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3281 } else { 3282 format64 |= arm_current_el(env) == 2; 3283 } 3284 } 3285 } 3286 3287 if (format64) { 3288 /* Create a 64-bit PAR */ 3289 par64 = (1 << 11); /* LPAE bit always set */ 3290 if (!ret) { 3291 par64 |= phys_addr & ~0xfffULL; 3292 if (!attrs.secure) { 3293 par64 |= (1 << 9); /* NS */ 3294 } 3295 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3296 par64 |= cacheattrs.shareability << 7; /* SH */ 3297 } else { 3298 uint32_t fsr = arm_fi_to_lfsc(&fi); 3299 3300 par64 |= 1; /* F */ 3301 par64 |= (fsr & 0x3f) << 1; /* FS */ 3302 if (fi.stage2) { 3303 par64 |= (1 << 9); /* S */ 3304 } 3305 if (fi.s1ptw) { 3306 par64 |= (1 << 8); /* PTW */ 3307 } 3308 } 3309 } else { 3310 /* fsr is a DFSR/IFSR value for the short descriptor 3311 * translation table format (with WnR always clear). 3312 * Convert it to a 32-bit PAR. 3313 */ 3314 if (!ret) { 3315 /* We do not set any attribute bits in the PAR */ 3316 if (page_size == (1 << 24) 3317 && arm_feature(env, ARM_FEATURE_V7)) { 3318 par64 = (phys_addr & 0xff000000) | (1 << 1); 3319 } else { 3320 par64 = phys_addr & 0xfffff000; 3321 } 3322 if (!attrs.secure) { 3323 par64 |= (1 << 9); /* NS */ 3324 } 3325 } else { 3326 uint32_t fsr = arm_fi_to_sfsc(&fi); 3327 3328 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3329 ((fsr & 0xf) << 1) | 1; 3330 } 3331 } 3332 return par64; 3333 } 3334 #endif /* CONFIG_TCG */ 3335 3336 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3337 { 3338 #ifdef CONFIG_TCG 3339 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3340 uint64_t par64; 3341 ARMMMUIdx mmu_idx; 3342 int el = arm_current_el(env); 3343 bool secure = arm_is_secure_below_el3(env); 3344 3345 switch (ri->opc2 & 6) { 3346 case 0: 3347 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3348 switch (el) { 3349 case 3: 3350 mmu_idx = ARMMMUIdx_SE3; 3351 break; 3352 case 2: 3353 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3354 /* fall through */ 3355 case 1: 3356 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3357 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3358 : ARMMMUIdx_Stage1_E1_PAN); 3359 } else { 3360 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3361 } 3362 break; 3363 default: 3364 g_assert_not_reached(); 3365 } 3366 break; 3367 case 2: 3368 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3369 switch (el) { 3370 case 3: 3371 mmu_idx = ARMMMUIdx_SE10_0; 3372 break; 3373 case 2: 3374 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3375 mmu_idx = ARMMMUIdx_Stage1_E0; 3376 break; 3377 case 1: 3378 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3379 break; 3380 default: 3381 g_assert_not_reached(); 3382 } 3383 break; 3384 case 4: 3385 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3386 mmu_idx = ARMMMUIdx_E10_1; 3387 break; 3388 case 6: 3389 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3390 mmu_idx = ARMMMUIdx_E10_0; 3391 break; 3392 default: 3393 g_assert_not_reached(); 3394 } 3395 3396 par64 = do_ats_write(env, value, access_type, mmu_idx); 3397 3398 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3399 #else 3400 /* Handled by hardware accelerator. */ 3401 g_assert_not_reached(); 3402 #endif /* CONFIG_TCG */ 3403 } 3404 3405 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3406 uint64_t value) 3407 { 3408 #ifdef CONFIG_TCG 3409 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3410 uint64_t par64; 3411 3412 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3413 3414 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3415 #else 3416 /* Handled by hardware accelerator. */ 3417 g_assert_not_reached(); 3418 #endif /* CONFIG_TCG */ 3419 } 3420 3421 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3422 bool isread) 3423 { 3424 if (arm_current_el(env) == 3 && 3425 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3426 return CP_ACCESS_TRAP; 3427 } 3428 return CP_ACCESS_OK; 3429 } 3430 3431 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3432 uint64_t value) 3433 { 3434 #ifdef CONFIG_TCG 3435 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3436 ARMMMUIdx mmu_idx; 3437 int secure = arm_is_secure_below_el3(env); 3438 3439 switch (ri->opc2 & 6) { 3440 case 0: 3441 switch (ri->opc1) { 3442 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3443 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3444 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3445 : ARMMMUIdx_Stage1_E1_PAN); 3446 } else { 3447 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3448 } 3449 break; 3450 case 4: /* AT S1E2R, AT S1E2W */ 3451 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3452 break; 3453 case 6: /* AT S1E3R, AT S1E3W */ 3454 mmu_idx = ARMMMUIdx_SE3; 3455 break; 3456 default: 3457 g_assert_not_reached(); 3458 } 3459 break; 3460 case 2: /* AT S1E0R, AT S1E0W */ 3461 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3462 break; 3463 case 4: /* AT S12E1R, AT S12E1W */ 3464 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3465 break; 3466 case 6: /* AT S12E0R, AT S12E0W */ 3467 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 3473 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3474 #else 3475 /* Handled by hardware accelerator. */ 3476 g_assert_not_reached(); 3477 #endif /* CONFIG_TCG */ 3478 } 3479 #endif 3480 3481 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3482 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3483 .access = PL1_RW, .resetvalue = 0, 3484 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3485 offsetoflow32(CPUARMState, cp15.par_ns) }, 3486 .writefn = par_write }, 3487 #ifndef CONFIG_USER_ONLY 3488 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3489 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3490 .access = PL1_W, .accessfn = ats_access, 3491 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3492 #endif 3493 }; 3494 3495 /* Return basic MPU access permission bits. */ 3496 static uint32_t simple_mpu_ap_bits(uint32_t val) 3497 { 3498 uint32_t ret; 3499 uint32_t mask; 3500 int i; 3501 ret = 0; 3502 mask = 3; 3503 for (i = 0; i < 16; i += 2) { 3504 ret |= (val >> i) & mask; 3505 mask <<= 2; 3506 } 3507 return ret; 3508 } 3509 3510 /* Pad basic MPU access permission bits to extended format. */ 3511 static uint32_t extended_mpu_ap_bits(uint32_t val) 3512 { 3513 uint32_t ret; 3514 uint32_t mask; 3515 int i; 3516 ret = 0; 3517 mask = 3; 3518 for (i = 0; i < 16; i += 2) { 3519 ret |= (val & mask) << i; 3520 mask <<= 2; 3521 } 3522 return ret; 3523 } 3524 3525 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3526 uint64_t value) 3527 { 3528 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3529 } 3530 3531 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3532 { 3533 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3534 } 3535 3536 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3537 uint64_t value) 3538 { 3539 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3540 } 3541 3542 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3543 { 3544 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3545 } 3546 3547 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3548 { 3549 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3550 3551 if (!u32p) { 3552 return 0; 3553 } 3554 3555 u32p += env->pmsav7.rnr[M_REG_NS]; 3556 return *u32p; 3557 } 3558 3559 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3560 uint64_t value) 3561 { 3562 ARMCPU *cpu = env_archcpu(env); 3563 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3564 3565 if (!u32p) { 3566 return; 3567 } 3568 3569 u32p += env->pmsav7.rnr[M_REG_NS]; 3570 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3571 *u32p = value; 3572 } 3573 3574 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3575 uint64_t value) 3576 { 3577 ARMCPU *cpu = env_archcpu(env); 3578 uint32_t nrgs = cpu->pmsav7_dregion; 3579 3580 if (value >= nrgs) { 3581 qemu_log_mask(LOG_GUEST_ERROR, 3582 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3583 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3584 return; 3585 } 3586 3587 raw_write(env, ri, value); 3588 } 3589 3590 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3591 /* Reset for all these registers is handled in arm_cpu_reset(), 3592 * because the PMSAv7 is also used by M-profile CPUs, which do 3593 * not register cpregs but still need the state to be reset. 3594 */ 3595 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3596 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3597 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3598 .readfn = pmsav7_read, .writefn = pmsav7_write, 3599 .resetfn = arm_cp_reset_ignore }, 3600 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3601 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3602 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3603 .readfn = pmsav7_read, .writefn = pmsav7_write, 3604 .resetfn = arm_cp_reset_ignore }, 3605 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3606 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3607 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3608 .readfn = pmsav7_read, .writefn = pmsav7_write, 3609 .resetfn = arm_cp_reset_ignore }, 3610 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3611 .access = PL1_RW, 3612 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3613 .writefn = pmsav7_rgnr_write, 3614 .resetfn = arm_cp_reset_ignore }, 3615 }; 3616 3617 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3618 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3619 .access = PL1_RW, .type = ARM_CP_ALIAS, 3620 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3621 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3622 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3623 .access = PL1_RW, .type = ARM_CP_ALIAS, 3624 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3625 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3626 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3627 .access = PL1_RW, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .resetvalue = 0, }, 3630 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3631 .access = PL1_RW, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .resetvalue = 0, }, 3634 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3637 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3638 .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3640 /* Protection region base and size registers */ 3641 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3642 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3644 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3645 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3647 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3648 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3649 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3650 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3653 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3656 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3659 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3662 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3665 }; 3666 3667 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3668 uint64_t value) 3669 { 3670 TCR *tcr = raw_ptr(env, ri); 3671 int maskshift = extract32(value, 0, 3); 3672 3673 if (!arm_feature(env, ARM_FEATURE_V8)) { 3674 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3675 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3676 * using Long-desciptor translation table format */ 3677 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3678 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3679 /* In an implementation that includes the Security Extensions 3680 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3681 * Short-descriptor translation table format. 3682 */ 3683 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3684 } else { 3685 value &= TTBCR_N; 3686 } 3687 } 3688 3689 /* Update the masks corresponding to the TCR bank being written 3690 * Note that we always calculate mask and base_mask, but 3691 * they are only used for short-descriptor tables (ie if EAE is 0); 3692 * for long-descriptor tables the TCR fields are used differently 3693 * and the mask and base_mask values are meaningless. 3694 */ 3695 tcr->raw_tcr = value; 3696 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3697 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3698 } 3699 3700 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3701 uint64_t value) 3702 { 3703 ARMCPU *cpu = env_archcpu(env); 3704 TCR *tcr = raw_ptr(env, ri); 3705 3706 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3707 /* With LPAE the TTBCR could result in a change of ASID 3708 * via the TTBCR.A1 bit, so do a TLB flush. 3709 */ 3710 tlb_flush(CPU(cpu)); 3711 } 3712 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3713 value = deposit64(tcr->raw_tcr, 0, 32, value); 3714 vmsa_ttbcr_raw_write(env, ri, value); 3715 } 3716 3717 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3718 { 3719 TCR *tcr = raw_ptr(env, ri); 3720 3721 /* Reset both the TCR as well as the masks corresponding to the bank of 3722 * the TCR being reset. 3723 */ 3724 tcr->raw_tcr = 0; 3725 tcr->mask = 0; 3726 tcr->base_mask = 0xffffc000u; 3727 } 3728 3729 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3730 uint64_t value) 3731 { 3732 ARMCPU *cpu = env_archcpu(env); 3733 TCR *tcr = raw_ptr(env, ri); 3734 3735 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3736 tlb_flush(CPU(cpu)); 3737 tcr->raw_tcr = value; 3738 } 3739 3740 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3741 uint64_t value) 3742 { 3743 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3744 if (cpreg_field_is_64bit(ri) && 3745 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3746 ARMCPU *cpu = env_archcpu(env); 3747 tlb_flush(CPU(cpu)); 3748 } 3749 raw_write(env, ri, value); 3750 } 3751 3752 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3753 uint64_t value) 3754 { 3755 /* 3756 * If we are running with E2&0 regime, then an ASID is active. 3757 * Flush if that might be changing. Note we're not checking 3758 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3759 * holds the active ASID, only checking the field that might. 3760 */ 3761 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3762 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3763 uint16_t mask = ARMMMUIdxBit_E20_2 | 3764 ARMMMUIdxBit_E20_2_PAN | 3765 ARMMMUIdxBit_E20_0; 3766 3767 if (arm_is_secure_below_el3(env)) { 3768 mask >>= ARM_MMU_IDX_A_NS; 3769 } 3770 3771 tlb_flush_by_mmuidx(env_cpu(env), mask); 3772 } 3773 raw_write(env, ri, value); 3774 } 3775 3776 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3777 uint64_t value) 3778 { 3779 ARMCPU *cpu = env_archcpu(env); 3780 CPUState *cs = CPU(cpu); 3781 3782 /* 3783 * A change in VMID to the stage2 page table (Stage2) invalidates 3784 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3785 */ 3786 if (raw_read(env, ri) != value) { 3787 uint16_t mask = ARMMMUIdxBit_E10_1 | 3788 ARMMMUIdxBit_E10_1_PAN | 3789 ARMMMUIdxBit_E10_0; 3790 3791 if (arm_is_secure_below_el3(env)) { 3792 mask >>= ARM_MMU_IDX_A_NS; 3793 } 3794 3795 tlb_flush_by_mmuidx(cs, mask); 3796 raw_write(env, ri, value); 3797 } 3798 } 3799 3800 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3801 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3802 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3803 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3804 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3805 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3806 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3808 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3809 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3811 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3812 offsetof(CPUARMState, cp15.dfar_ns) } }, 3813 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3814 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, 3816 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3817 .resetvalue = 0, }, 3818 }; 3819 3820 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3821 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3825 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3827 .access = PL1_RW, .accessfn = access_tvm_trvm, 3828 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3830 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3831 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3832 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3835 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3836 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3837 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3838 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3839 .access = PL1_RW, .accessfn = access_tvm_trvm, 3840 .writefn = vmsa_tcr_el12_write, 3841 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3842 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3843 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3844 .access = PL1_RW, .accessfn = access_tvm_trvm, 3845 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3846 .raw_writefn = vmsa_ttbcr_raw_write, 3847 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3848 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3849 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3850 }; 3851 3852 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3853 * qemu tlbs nor adjusting cached masks. 3854 */ 3855 static const ARMCPRegInfo ttbcr2_reginfo = { 3856 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3857 .access = PL1_RW, .accessfn = access_tvm_trvm, 3858 .type = ARM_CP_ALIAS, 3859 .bank_fieldoffsets = { 3860 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3861 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3862 }, 3863 }; 3864 3865 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3866 uint64_t value) 3867 { 3868 env->cp15.c15_ticonfig = value & 0xe7; 3869 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3870 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3871 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3872 } 3873 3874 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 env->cp15.c15_threadid = value & 0xffff; 3878 } 3879 3880 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3881 uint64_t value) 3882 { 3883 /* Wait-for-interrupt (deprecated) */ 3884 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3885 } 3886 3887 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3888 uint64_t value) 3889 { 3890 /* On OMAP there are registers indicating the max/min index of dcache lines 3891 * containing a dirty line; cache flush operations have to reset these. 3892 */ 3893 env->cp15.c15_i_max = 0x000; 3894 env->cp15.c15_i_min = 0xff0; 3895 } 3896 3897 static const ARMCPRegInfo omap_cp_reginfo[] = { 3898 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3899 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3900 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3901 .resetvalue = 0, }, 3902 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3903 .access = PL1_RW, .type = ARM_CP_NOP }, 3904 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3905 .access = PL1_RW, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3907 .writefn = omap_ticonfig_write }, 3908 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3909 .access = PL1_RW, 3910 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3911 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, .resetvalue = 0xff0, 3913 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3914 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3917 .writefn = omap_threadid_write }, 3918 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3919 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3920 .type = ARM_CP_NO_RAW, 3921 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3922 /* TODO: Peripheral port remap register: 3923 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3924 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3925 * when MMU is off. 3926 */ 3927 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3928 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3929 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3930 .writefn = omap_cachemaint_write }, 3931 { .name = "C9", .cp = 15, .crn = 9, 3932 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3933 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3934 }; 3935 3936 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3937 uint64_t value) 3938 { 3939 env->cp15.c15_cpar = value & 0x3fff; 3940 } 3941 3942 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3943 { .name = "XSCALE_CPAR", 3944 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3945 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3946 .writefn = xscale_cpar_write, }, 3947 { .name = "XSCALE_AUXCR", 3948 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3949 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3950 .resetvalue = 0, }, 3951 /* XScale specific cache-lockdown: since we have no cache we NOP these 3952 * and hope the guest does not really rely on cache behaviour. 3953 */ 3954 { .name = "XSCALE_LOCK_ICACHE_LINE", 3955 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3956 .access = PL1_W, .type = ARM_CP_NOP }, 3957 { .name = "XSCALE_UNLOCK_ICACHE", 3958 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3959 .access = PL1_W, .type = ARM_CP_NOP }, 3960 { .name = "XSCALE_DCACHE_LOCK", 3961 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3962 .access = PL1_RW, .type = ARM_CP_NOP }, 3963 { .name = "XSCALE_UNLOCK_DCACHE", 3964 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3965 .access = PL1_W, .type = ARM_CP_NOP }, 3966 }; 3967 3968 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3969 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3970 * implementation of this implementation-defined space. 3971 * Ideally this should eventually disappear in favour of actually 3972 * implementing the correct behaviour for all cores. 3973 */ 3974 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3975 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3976 .access = PL1_RW, 3977 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3978 .resetvalue = 0 }, 3979 }; 3980 3981 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3982 /* Cache status: RAZ because we have no cache so it's always clean */ 3983 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3984 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3985 .resetvalue = 0 }, 3986 }; 3987 3988 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3989 /* We never have a a block transfer operation in progress */ 3990 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3991 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3992 .resetvalue = 0 }, 3993 /* The cache ops themselves: these all NOP for QEMU */ 3994 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3995 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3996 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3997 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3998 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3999 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4000 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4001 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4002 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4003 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4004 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4005 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4006 }; 4007 4008 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4009 /* The cache test-and-clean instructions always return (1 << 30) 4010 * to indicate that there are no dirty cache lines. 4011 */ 4012 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4013 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4014 .resetvalue = (1 << 30) }, 4015 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4016 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4017 .resetvalue = (1 << 30) }, 4018 }; 4019 4020 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4021 /* Ignore ReadBuffer accesses */ 4022 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4023 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4024 .access = PL1_RW, .resetvalue = 0, 4025 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4026 }; 4027 4028 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4029 { 4030 unsigned int cur_el = arm_current_el(env); 4031 4032 if (arm_is_el2_enabled(env) && cur_el == 1) { 4033 return env->cp15.vpidr_el2; 4034 } 4035 return raw_read(env, ri); 4036 } 4037 4038 static uint64_t mpidr_read_val(CPUARMState *env) 4039 { 4040 ARMCPU *cpu = env_archcpu(env); 4041 uint64_t mpidr = cpu->mp_affinity; 4042 4043 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4044 mpidr |= (1U << 31); 4045 /* Cores which are uniprocessor (non-coherent) 4046 * but still implement the MP extensions set 4047 * bit 30. (For instance, Cortex-R5). 4048 */ 4049 if (cpu->mp_is_up) { 4050 mpidr |= (1u << 30); 4051 } 4052 } 4053 return mpidr; 4054 } 4055 4056 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4057 { 4058 unsigned int cur_el = arm_current_el(env); 4059 4060 if (arm_is_el2_enabled(env) && cur_el == 1) { 4061 return env->cp15.vmpidr_el2; 4062 } 4063 return mpidr_read_val(env); 4064 } 4065 4066 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4067 /* NOP AMAIR0/1 */ 4068 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4069 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4070 .access = PL1_RW, .accessfn = access_tvm_trvm, 4071 .type = ARM_CP_CONST, .resetvalue = 0 }, 4072 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4073 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4074 .access = PL1_RW, .accessfn = access_tvm_trvm, 4075 .type = ARM_CP_CONST, .resetvalue = 0 }, 4076 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4077 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4079 offsetof(CPUARMState, cp15.par_ns)} }, 4080 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4081 .access = PL1_RW, .accessfn = access_tvm_trvm, 4082 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4084 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4085 .writefn = vmsa_ttbr_write, }, 4086 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4087 .access = PL1_RW, .accessfn = access_tvm_trvm, 4088 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4089 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4090 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4091 .writefn = vmsa_ttbr_write, }, 4092 }; 4093 4094 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4095 { 4096 return vfp_get_fpcr(env); 4097 } 4098 4099 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4100 uint64_t value) 4101 { 4102 vfp_set_fpcr(env, value); 4103 } 4104 4105 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4106 { 4107 return vfp_get_fpsr(env); 4108 } 4109 4110 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4111 uint64_t value) 4112 { 4113 vfp_set_fpsr(env, value); 4114 } 4115 4116 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4117 bool isread) 4118 { 4119 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4120 return CP_ACCESS_TRAP; 4121 } 4122 return CP_ACCESS_OK; 4123 } 4124 4125 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4126 uint64_t value) 4127 { 4128 env->daif = value & PSTATE_DAIF; 4129 } 4130 4131 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4132 { 4133 return env->pstate & PSTATE_PAN; 4134 } 4135 4136 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4137 uint64_t value) 4138 { 4139 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4140 } 4141 4142 static const ARMCPRegInfo pan_reginfo = { 4143 .name = "PAN", .state = ARM_CP_STATE_AA64, 4144 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4145 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4146 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4147 }; 4148 4149 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4150 { 4151 return env->pstate & PSTATE_UAO; 4152 } 4153 4154 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4155 uint64_t value) 4156 { 4157 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4158 } 4159 4160 static const ARMCPRegInfo uao_reginfo = { 4161 .name = "UAO", .state = ARM_CP_STATE_AA64, 4162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4163 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4164 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4165 }; 4166 4167 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4168 { 4169 return env->pstate & PSTATE_DIT; 4170 } 4171 4172 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4176 } 4177 4178 static const ARMCPRegInfo dit_reginfo = { 4179 .name = "DIT", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4181 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4182 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4183 }; 4184 4185 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4186 { 4187 return env->pstate & PSTATE_SSBS; 4188 } 4189 4190 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4191 uint64_t value) 4192 { 4193 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4194 } 4195 4196 static const ARMCPRegInfo ssbs_reginfo = { 4197 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4199 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4200 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4201 }; 4202 4203 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4204 const ARMCPRegInfo *ri, 4205 bool isread) 4206 { 4207 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4208 switch (arm_current_el(env)) { 4209 case 0: 4210 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4211 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4212 return CP_ACCESS_TRAP; 4213 } 4214 /* fall through */ 4215 case 1: 4216 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4217 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4218 return CP_ACCESS_TRAP_EL2; 4219 } 4220 break; 4221 } 4222 return CP_ACCESS_OK; 4223 } 4224 4225 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4226 const ARMCPRegInfo *ri, 4227 bool isread) 4228 { 4229 /* Cache invalidate/clean to Point of Unification... */ 4230 switch (arm_current_el(env)) { 4231 case 0: 4232 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4233 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4234 return CP_ACCESS_TRAP; 4235 } 4236 /* fall through */ 4237 case 1: 4238 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4239 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4240 return CP_ACCESS_TRAP_EL2; 4241 } 4242 break; 4243 } 4244 return CP_ACCESS_OK; 4245 } 4246 4247 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4248 * Page D4-1736 (DDI0487A.b) 4249 */ 4250 4251 static int vae1_tlbmask(CPUARMState *env) 4252 { 4253 uint64_t hcr = arm_hcr_el2_eff(env); 4254 uint16_t mask; 4255 4256 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4257 mask = ARMMMUIdxBit_E20_2 | 4258 ARMMMUIdxBit_E20_2_PAN | 4259 ARMMMUIdxBit_E20_0; 4260 } else { 4261 mask = ARMMMUIdxBit_E10_1 | 4262 ARMMMUIdxBit_E10_1_PAN | 4263 ARMMMUIdxBit_E10_0; 4264 } 4265 4266 if (arm_is_secure_below_el3(env)) { 4267 mask >>= ARM_MMU_IDX_A_NS; 4268 } 4269 4270 return mask; 4271 } 4272 4273 /* Return 56 if TBI is enabled, 64 otherwise. */ 4274 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4275 uint64_t addr) 4276 { 4277 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4278 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4279 int select = extract64(addr, 55, 1); 4280 4281 return (tbi >> select) & 1 ? 56 : 64; 4282 } 4283 4284 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4285 { 4286 uint64_t hcr = arm_hcr_el2_eff(env); 4287 ARMMMUIdx mmu_idx; 4288 4289 /* Only the regime of the mmu_idx below is significant. */ 4290 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4291 mmu_idx = ARMMMUIdx_E20_0; 4292 } else { 4293 mmu_idx = ARMMMUIdx_E10_0; 4294 } 4295 4296 if (arm_is_secure_below_el3(env)) { 4297 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4298 } 4299 4300 return tlbbits_for_regime(env, mmu_idx, addr); 4301 } 4302 4303 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4304 uint64_t value) 4305 { 4306 CPUState *cs = env_cpu(env); 4307 int mask = vae1_tlbmask(env); 4308 4309 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4310 } 4311 4312 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 CPUState *cs = env_cpu(env); 4316 int mask = vae1_tlbmask(env); 4317 4318 if (tlb_force_broadcast(env)) { 4319 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4320 } else { 4321 tlb_flush_by_mmuidx(cs, mask); 4322 } 4323 } 4324 4325 static int alle1_tlbmask(CPUARMState *env) 4326 { 4327 /* 4328 * Note that the 'ALL' scope must invalidate both stage 1 and 4329 * stage 2 translations, whereas most other scopes only invalidate 4330 * stage 1 translations. 4331 */ 4332 if (arm_is_secure_below_el3(env)) { 4333 return ARMMMUIdxBit_SE10_1 | 4334 ARMMMUIdxBit_SE10_1_PAN | 4335 ARMMMUIdxBit_SE10_0; 4336 } else { 4337 return ARMMMUIdxBit_E10_1 | 4338 ARMMMUIdxBit_E10_1_PAN | 4339 ARMMMUIdxBit_E10_0; 4340 } 4341 } 4342 4343 static int e2_tlbmask(CPUARMState *env) 4344 { 4345 if (arm_is_secure_below_el3(env)) { 4346 return ARMMMUIdxBit_SE20_0 | 4347 ARMMMUIdxBit_SE20_2 | 4348 ARMMMUIdxBit_SE20_2_PAN | 4349 ARMMMUIdxBit_SE2; 4350 } else { 4351 return ARMMMUIdxBit_E20_0 | 4352 ARMMMUIdxBit_E20_2 | 4353 ARMMMUIdxBit_E20_2_PAN | 4354 ARMMMUIdxBit_E2; 4355 } 4356 } 4357 4358 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4359 uint64_t value) 4360 { 4361 CPUState *cs = env_cpu(env); 4362 int mask = alle1_tlbmask(env); 4363 4364 tlb_flush_by_mmuidx(cs, mask); 4365 } 4366 4367 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 CPUState *cs = env_cpu(env); 4371 int mask = e2_tlbmask(env); 4372 4373 tlb_flush_by_mmuidx(cs, mask); 4374 } 4375 4376 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 ARMCPU *cpu = env_archcpu(env); 4380 CPUState *cs = CPU(cpu); 4381 4382 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4383 } 4384 4385 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 CPUState *cs = env_cpu(env); 4389 int mask = alle1_tlbmask(env); 4390 4391 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4392 } 4393 4394 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 CPUState *cs = env_cpu(env); 4398 int mask = e2_tlbmask(env); 4399 4400 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4401 } 4402 4403 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 CPUState *cs = env_cpu(env); 4407 4408 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4409 } 4410 4411 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4412 uint64_t value) 4413 { 4414 /* Invalidate by VA, EL2 4415 * Currently handles both VAE2 and VALE2, since we don't support 4416 * flush-last-level-only. 4417 */ 4418 CPUState *cs = env_cpu(env); 4419 int mask = e2_tlbmask(env); 4420 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4421 4422 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4423 } 4424 4425 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4426 uint64_t value) 4427 { 4428 /* Invalidate by VA, EL3 4429 * Currently handles both VAE3 and VALE3, since we don't support 4430 * flush-last-level-only. 4431 */ 4432 ARMCPU *cpu = env_archcpu(env); 4433 CPUState *cs = CPU(cpu); 4434 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4435 4436 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4437 } 4438 4439 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4440 uint64_t value) 4441 { 4442 CPUState *cs = env_cpu(env); 4443 int mask = vae1_tlbmask(env); 4444 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4445 int bits = vae1_tlbbits(env, pageaddr); 4446 4447 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4448 } 4449 4450 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4451 uint64_t value) 4452 { 4453 /* Invalidate by VA, EL1&0 (AArch64 version). 4454 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4455 * since we don't support flush-for-specific-ASID-only or 4456 * flush-last-level-only. 4457 */ 4458 CPUState *cs = env_cpu(env); 4459 int mask = vae1_tlbmask(env); 4460 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4461 int bits = vae1_tlbbits(env, pageaddr); 4462 4463 if (tlb_force_broadcast(env)) { 4464 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4465 } else { 4466 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4467 } 4468 } 4469 4470 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4471 uint64_t value) 4472 { 4473 CPUState *cs = env_cpu(env); 4474 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4475 bool secure = arm_is_secure_below_el3(env); 4476 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4477 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4478 pageaddr); 4479 4480 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4481 } 4482 4483 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4484 uint64_t value) 4485 { 4486 CPUState *cs = env_cpu(env); 4487 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4488 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4489 4490 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4491 ARMMMUIdxBit_SE3, bits); 4492 } 4493 4494 #ifdef TARGET_AARCH64 4495 typedef struct { 4496 uint64_t base; 4497 uint64_t length; 4498 } TLBIRange; 4499 4500 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4501 uint64_t value) 4502 { 4503 unsigned int page_size_granule, page_shift, num, scale, exponent; 4504 /* Extract one bit to represent the va selector in use. */ 4505 uint64_t select = sextract64(value, 36, 1); 4506 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4507 TLBIRange ret = { }; 4508 4509 page_size_granule = extract64(value, 46, 2); 4510 4511 /* The granule encoded in value must match the granule in use. */ 4512 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4513 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4514 page_size_granule); 4515 return ret; 4516 } 4517 4518 page_shift = (page_size_granule - 1) * 2 + 12; 4519 num = extract64(value, 39, 5); 4520 scale = extract64(value, 44, 2); 4521 exponent = (5 * scale) + 1; 4522 4523 ret.length = (num + 1) << (exponent + page_shift); 4524 4525 if (param.select) { 4526 ret.base = sextract64(value, 0, 37); 4527 } else { 4528 ret.base = extract64(value, 0, 37); 4529 } 4530 if (param.ds) { 4531 /* 4532 * With DS=1, BaseADDR is always shifted 16 so that it is able 4533 * to address all 52 va bits. The input address is perforce 4534 * aligned on a 64k boundary regardless of translation granule. 4535 */ 4536 page_shift = 16; 4537 } 4538 ret.base <<= page_shift; 4539 4540 return ret; 4541 } 4542 4543 static void do_rvae_write(CPUARMState *env, uint64_t value, 4544 int idxmap, bool synced) 4545 { 4546 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4547 TLBIRange range; 4548 int bits; 4549 4550 range = tlbi_aa64_get_range(env, one_idx, value); 4551 bits = tlbbits_for_regime(env, one_idx, range.base); 4552 4553 if (synced) { 4554 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4555 range.base, 4556 range.length, 4557 idxmap, 4558 bits); 4559 } else { 4560 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4561 range.length, idxmap, bits); 4562 } 4563 } 4564 4565 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4566 const ARMCPRegInfo *ri, 4567 uint64_t value) 4568 { 4569 /* 4570 * Invalidate by VA range, EL1&0. 4571 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4572 * since we don't support flush-for-specific-ASID-only or 4573 * flush-last-level-only. 4574 */ 4575 4576 do_rvae_write(env, value, vae1_tlbmask(env), 4577 tlb_force_broadcast(env)); 4578 } 4579 4580 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4581 const ARMCPRegInfo *ri, 4582 uint64_t value) 4583 { 4584 /* 4585 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4586 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4587 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4588 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4589 * shareable specific flushes. 4590 */ 4591 4592 do_rvae_write(env, value, vae1_tlbmask(env), true); 4593 } 4594 4595 static int vae2_tlbmask(CPUARMState *env) 4596 { 4597 return (arm_is_secure_below_el3(env) 4598 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4599 } 4600 4601 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4602 const ARMCPRegInfo *ri, 4603 uint64_t value) 4604 { 4605 /* 4606 * Invalidate by VA range, EL2. 4607 * Currently handles all of RVAE2 and RVALE2, 4608 * since we don't support flush-for-specific-ASID-only or 4609 * flush-last-level-only. 4610 */ 4611 4612 do_rvae_write(env, value, vae2_tlbmask(env), 4613 tlb_force_broadcast(env)); 4614 4615 4616 } 4617 4618 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4619 const ARMCPRegInfo *ri, 4620 uint64_t value) 4621 { 4622 /* 4623 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4624 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4625 * since we don't support flush-for-specific-ASID-only, 4626 * flush-last-level-only or inner/outer shareable specific flushes. 4627 */ 4628 4629 do_rvae_write(env, value, vae2_tlbmask(env), true); 4630 4631 } 4632 4633 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4634 const ARMCPRegInfo *ri, 4635 uint64_t value) 4636 { 4637 /* 4638 * Invalidate by VA range, EL3. 4639 * Currently handles all of RVAE3 and RVALE3, 4640 * since we don't support flush-for-specific-ASID-only or 4641 * flush-last-level-only. 4642 */ 4643 4644 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4645 tlb_force_broadcast(env)); 4646 } 4647 4648 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4649 const ARMCPRegInfo *ri, 4650 uint64_t value) 4651 { 4652 /* 4653 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4654 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4655 * since we don't support flush-for-specific-ASID-only, 4656 * flush-last-level-only or inner/outer specific flushes. 4657 */ 4658 4659 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4660 } 4661 #endif 4662 4663 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4664 bool isread) 4665 { 4666 int cur_el = arm_current_el(env); 4667 4668 if (cur_el < 2) { 4669 uint64_t hcr = arm_hcr_el2_eff(env); 4670 4671 if (cur_el == 0) { 4672 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4673 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4674 return CP_ACCESS_TRAP_EL2; 4675 } 4676 } else { 4677 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4678 return CP_ACCESS_TRAP; 4679 } 4680 if (hcr & HCR_TDZ) { 4681 return CP_ACCESS_TRAP_EL2; 4682 } 4683 } 4684 } else if (hcr & HCR_TDZ) { 4685 return CP_ACCESS_TRAP_EL2; 4686 } 4687 } 4688 return CP_ACCESS_OK; 4689 } 4690 4691 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4692 { 4693 ARMCPU *cpu = env_archcpu(env); 4694 int dzp_bit = 1 << 4; 4695 4696 /* DZP indicates whether DC ZVA access is allowed */ 4697 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4698 dzp_bit = 0; 4699 } 4700 return cpu->dcz_blocksize | dzp_bit; 4701 } 4702 4703 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4704 bool isread) 4705 { 4706 if (!(env->pstate & PSTATE_SP)) { 4707 /* Access to SP_EL0 is undefined if it's being used as 4708 * the stack pointer. 4709 */ 4710 return CP_ACCESS_TRAP_UNCATEGORIZED; 4711 } 4712 return CP_ACCESS_OK; 4713 } 4714 4715 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4716 { 4717 return env->pstate & PSTATE_SP; 4718 } 4719 4720 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4721 { 4722 update_spsel(env, val); 4723 } 4724 4725 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4726 uint64_t value) 4727 { 4728 ARMCPU *cpu = env_archcpu(env); 4729 4730 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4731 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4732 value &= ~SCTLR_M; 4733 } 4734 4735 /* ??? Lots of these bits are not implemented. */ 4736 4737 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4738 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4739 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4740 } else { 4741 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4742 SCTLR_ATA0 | SCTLR_ATA); 4743 } 4744 } 4745 4746 if (raw_read(env, ri) == value) { 4747 /* Skip the TLB flush if nothing actually changed; Linux likes 4748 * to do a lot of pointless SCTLR writes. 4749 */ 4750 return; 4751 } 4752 4753 raw_write(env, ri, value); 4754 4755 /* This may enable/disable the MMU, so do a TLB flush. */ 4756 tlb_flush(CPU(cpu)); 4757 4758 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4759 /* 4760 * Normally we would always end the TB on an SCTLR write; see the 4761 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4762 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4763 * of hflags from the translator, so do it here. 4764 */ 4765 arm_rebuild_hflags(env); 4766 } 4767 } 4768 4769 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4770 uint64_t value) 4771 { 4772 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4773 } 4774 4775 static const ARMCPRegInfo v8_cp_reginfo[] = { 4776 /* Minimal set of EL0-visible registers. This will need to be expanded 4777 * significantly for system emulation of AArch64 CPUs. 4778 */ 4779 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4781 .access = PL0_RW, .type = ARM_CP_NZCV }, 4782 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4783 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4784 .type = ARM_CP_NO_RAW, 4785 .access = PL0_RW, .accessfn = aa64_daif_access, 4786 .fieldoffset = offsetof(CPUARMState, daif), 4787 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4788 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4789 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4790 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4791 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4792 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4793 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4794 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4795 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4796 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4797 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4798 .access = PL0_R, .type = ARM_CP_NO_RAW, 4799 .readfn = aa64_dczid_read }, 4800 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4802 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4803 #ifndef CONFIG_USER_ONLY 4804 /* Avoid overhead of an access check that always passes in user-mode */ 4805 .accessfn = aa64_zva_access, 4806 #endif 4807 }, 4808 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4810 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4811 /* Cache ops: all NOPs since we don't emulate caches */ 4812 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4814 .access = PL1_W, .type = ARM_CP_NOP, 4815 .accessfn = aa64_cacheop_pou_access }, 4816 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4818 .access = PL1_W, .type = ARM_CP_NOP, 4819 .accessfn = aa64_cacheop_pou_access }, 4820 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4822 .access = PL0_W, .type = ARM_CP_NOP, 4823 .accessfn = aa64_cacheop_pou_access }, 4824 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4826 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4827 .type = ARM_CP_NOP }, 4828 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4829 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4830 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4831 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4833 .access = PL0_W, .type = ARM_CP_NOP, 4834 .accessfn = aa64_cacheop_poc_access }, 4835 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4837 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4838 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4840 .access = PL0_W, .type = ARM_CP_NOP, 4841 .accessfn = aa64_cacheop_pou_access }, 4842 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4844 .access = PL0_W, .type = ARM_CP_NOP, 4845 .accessfn = aa64_cacheop_poc_access }, 4846 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4848 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4849 /* TLBI operations */ 4850 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4852 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4853 .writefn = tlbi_aa64_vmalle1is_write }, 4854 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4856 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4857 .writefn = tlbi_aa64_vae1is_write }, 4858 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4860 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4861 .writefn = tlbi_aa64_vmalle1is_write }, 4862 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4864 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4865 .writefn = tlbi_aa64_vae1is_write }, 4866 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4868 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4869 .writefn = tlbi_aa64_vae1is_write }, 4870 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4873 .writefn = tlbi_aa64_vae1is_write }, 4874 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4877 .writefn = tlbi_aa64_vmalle1_write }, 4878 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vae1_write }, 4882 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vmalle1_write }, 4886 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4889 .writefn = tlbi_aa64_vae1_write }, 4890 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4893 .writefn = tlbi_aa64_vae1_write }, 4894 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_vae1_write }, 4898 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4900 .access = PL2_W, .type = ARM_CP_NOP }, 4901 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4903 .access = PL2_W, .type = ARM_CP_NOP }, 4904 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4906 .access = PL2_W, .type = ARM_CP_NO_RAW, 4907 .writefn = tlbi_aa64_alle1is_write }, 4908 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4910 .access = PL2_W, .type = ARM_CP_NO_RAW, 4911 .writefn = tlbi_aa64_alle1is_write }, 4912 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4914 .access = PL2_W, .type = ARM_CP_NOP }, 4915 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4917 .access = PL2_W, .type = ARM_CP_NOP }, 4918 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4920 .access = PL2_W, .type = ARM_CP_NO_RAW, 4921 .writefn = tlbi_aa64_alle1_write }, 4922 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4924 .access = PL2_W, .type = ARM_CP_NO_RAW, 4925 .writefn = tlbi_aa64_alle1is_write }, 4926 #ifndef CONFIG_USER_ONLY 4927 /* 64 bit address translation operations */ 4928 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4930 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4931 .writefn = ats_write64 }, 4932 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4934 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4935 .writefn = ats_write64 }, 4936 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4938 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4939 .writefn = ats_write64 }, 4940 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4943 .writefn = ats_write64 }, 4944 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4946 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4947 .writefn = ats_write64 }, 4948 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4950 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4951 .writefn = ats_write64 }, 4952 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4954 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4955 .writefn = ats_write64 }, 4956 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4958 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4959 .writefn = ats_write64 }, 4960 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4961 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4963 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4964 .writefn = ats_write64 }, 4965 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4967 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4968 .writefn = ats_write64 }, 4969 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4970 .type = ARM_CP_ALIAS, 4971 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4972 .access = PL1_RW, .resetvalue = 0, 4973 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4974 .writefn = par_write }, 4975 #endif 4976 /* TLB invalidate last level of translation table walk */ 4977 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4978 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4979 .writefn = tlbimva_is_write }, 4980 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4981 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4982 .writefn = tlbimvaa_is_write }, 4983 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4984 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4985 .writefn = tlbimva_write }, 4986 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4987 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4988 .writefn = tlbimvaa_write }, 4989 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4990 .type = ARM_CP_NO_RAW, .access = PL2_W, 4991 .writefn = tlbimva_hyp_write }, 4992 { .name = "TLBIMVALHIS", 4993 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4994 .type = ARM_CP_NO_RAW, .access = PL2_W, 4995 .writefn = tlbimva_hyp_is_write }, 4996 { .name = "TLBIIPAS2", 4997 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4998 .type = ARM_CP_NOP, .access = PL2_W }, 4999 { .name = "TLBIIPAS2IS", 5000 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5001 .type = ARM_CP_NOP, .access = PL2_W }, 5002 { .name = "TLBIIPAS2L", 5003 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5004 .type = ARM_CP_NOP, .access = PL2_W }, 5005 { .name = "TLBIIPAS2LIS", 5006 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5007 .type = ARM_CP_NOP, .access = PL2_W }, 5008 /* 32 bit cache operations */ 5009 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5011 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5012 .type = ARM_CP_NOP, .access = PL1_W }, 5013 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5015 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5017 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5018 .type = ARM_CP_NOP, .access = PL1_W }, 5019 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5020 .type = ARM_CP_NOP, .access = PL1_W }, 5021 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5023 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5024 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5025 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5027 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5028 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5029 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5031 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5033 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5035 /* MMU Domain access control / MPU write buffer control */ 5036 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5037 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5038 .writefn = dacr_write, .raw_writefn = raw_write, 5039 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5040 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5041 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5042 .type = ARM_CP_ALIAS, 5043 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5044 .access = PL1_RW, 5045 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5046 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5047 .type = ARM_CP_ALIAS, 5048 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5049 .access = PL1_RW, 5050 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5051 /* We rely on the access checks not allowing the guest to write to the 5052 * state field when SPSel indicates that it's being used as the stack 5053 * pointer. 5054 */ 5055 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5056 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5057 .access = PL1_RW, .accessfn = sp_el0_access, 5058 .type = ARM_CP_ALIAS, 5059 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5060 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5062 .access = PL2_RW, .type = ARM_CP_ALIAS, 5063 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5064 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5065 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5066 .type = ARM_CP_NO_RAW, 5067 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5068 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5070 .access = PL2_RW, 5071 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5072 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5073 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5075 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5076 .writefn = dacr_write, .raw_writefn = raw_write, 5077 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5078 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5080 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5081 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5082 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5083 .type = ARM_CP_ALIAS, 5084 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5085 .access = PL2_RW, 5086 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5087 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5088 .type = ARM_CP_ALIAS, 5089 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5090 .access = PL2_RW, 5091 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5092 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5093 .type = ARM_CP_ALIAS, 5094 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5095 .access = PL2_RW, 5096 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5097 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5098 .type = ARM_CP_ALIAS, 5099 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5100 .access = PL2_RW, 5101 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5102 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5103 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5104 .resetvalue = 0, 5105 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5106 { .name = "SDCR", .type = ARM_CP_ALIAS, 5107 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5108 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5109 .writefn = sdcr_write, 5110 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5111 }; 5112 5113 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5114 { 5115 ARMCPU *cpu = env_archcpu(env); 5116 5117 if (arm_feature(env, ARM_FEATURE_V8)) { 5118 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5119 } else { 5120 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5121 } 5122 5123 if (arm_feature(env, ARM_FEATURE_EL3)) { 5124 valid_mask &= ~HCR_HCD; 5125 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5126 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5127 * However, if we're using the SMC PSCI conduit then QEMU is 5128 * effectively acting like EL3 firmware and so the guest at 5129 * EL2 should retain the ability to prevent EL1 from being 5130 * able to make SMC calls into the ersatz firmware, so in 5131 * that case HCR.TSC should be read/write. 5132 */ 5133 valid_mask &= ~HCR_TSC; 5134 } 5135 5136 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5137 if (cpu_isar_feature(aa64_vh, cpu)) { 5138 valid_mask |= HCR_E2H; 5139 } 5140 if (cpu_isar_feature(aa64_ras, cpu)) { 5141 valid_mask |= HCR_TERR | HCR_TEA; 5142 } 5143 if (cpu_isar_feature(aa64_lor, cpu)) { 5144 valid_mask |= HCR_TLOR; 5145 } 5146 if (cpu_isar_feature(aa64_pauth, cpu)) { 5147 valid_mask |= HCR_API | HCR_APK; 5148 } 5149 if (cpu_isar_feature(aa64_mte, cpu)) { 5150 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5151 } 5152 } 5153 5154 /* Clear RES0 bits. */ 5155 value &= valid_mask; 5156 5157 /* 5158 * These bits change the MMU setup: 5159 * HCR_VM enables stage 2 translation 5160 * HCR_PTW forbids certain page-table setups 5161 * HCR_DC disables stage1 and enables stage2 translation 5162 * HCR_DCT enables tagging on (disabled) stage1 translation 5163 */ 5164 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5165 tlb_flush(CPU(cpu)); 5166 } 5167 env->cp15.hcr_el2 = value; 5168 5169 /* 5170 * Updates to VI and VF require us to update the status of 5171 * virtual interrupts, which are the logical OR of these bits 5172 * and the state of the input lines from the GIC. (This requires 5173 * that we have the iothread lock, which is done by marking the 5174 * reginfo structs as ARM_CP_IO.) 5175 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5176 * possible for it to be taken immediately, because VIRQ and 5177 * VFIQ are masked unless running at EL0 or EL1, and HCR 5178 * can only be written at EL2. 5179 */ 5180 g_assert(qemu_mutex_iothread_locked()); 5181 arm_cpu_update_virq(cpu); 5182 arm_cpu_update_vfiq(cpu); 5183 arm_cpu_update_vserr(cpu); 5184 } 5185 5186 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5187 { 5188 do_hcr_write(env, value, 0); 5189 } 5190 5191 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5192 uint64_t value) 5193 { 5194 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5195 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5196 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5197 } 5198 5199 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5200 uint64_t value) 5201 { 5202 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5203 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5204 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5205 } 5206 5207 /* 5208 * Return the effective value of HCR_EL2. 5209 * Bits that are not included here: 5210 * RW (read from SCR_EL3.RW as needed) 5211 */ 5212 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5213 { 5214 uint64_t ret = env->cp15.hcr_el2; 5215 5216 if (!arm_is_el2_enabled(env)) { 5217 /* 5218 * "This register has no effect if EL2 is not enabled in the 5219 * current Security state". This is ARMv8.4-SecEL2 speak for 5220 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5221 * 5222 * Prior to that, the language was "In an implementation that 5223 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5224 * as if this field is 0 for all purposes other than a direct 5225 * read or write access of HCR_EL2". With lots of enumeration 5226 * on a per-field basis. In current QEMU, this is condition 5227 * is arm_is_secure_below_el3. 5228 * 5229 * Since the v8.4 language applies to the entire register, and 5230 * appears to be backward compatible, use that. 5231 */ 5232 return 0; 5233 } 5234 5235 /* 5236 * For a cpu that supports both aarch64 and aarch32, we can set bits 5237 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5238 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5239 */ 5240 if (!arm_el_is_aa64(env, 2)) { 5241 uint64_t aa32_valid; 5242 5243 /* 5244 * These bits are up-to-date as of ARMv8.6. 5245 * For HCR, it's easiest to list just the 2 bits that are invalid. 5246 * For HCR2, list those that are valid. 5247 */ 5248 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5249 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5250 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5251 ret &= aa32_valid; 5252 } 5253 5254 if (ret & HCR_TGE) { 5255 /* These bits are up-to-date as of ARMv8.6. */ 5256 if (ret & HCR_E2H) { 5257 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5258 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5259 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5260 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5261 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5262 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5263 } else { 5264 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5265 } 5266 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5267 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5268 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5269 HCR_TLOR); 5270 } 5271 5272 return ret; 5273 } 5274 5275 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5276 uint64_t value) 5277 { 5278 /* 5279 * For A-profile AArch32 EL3, if NSACR.CP10 5280 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5281 */ 5282 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5283 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5284 value &= ~(0x3 << 10); 5285 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5286 } 5287 env->cp15.cptr_el[2] = value; 5288 } 5289 5290 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5291 { 5292 /* 5293 * For A-profile AArch32 EL3, if NSACR.CP10 5294 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5295 */ 5296 uint64_t value = env->cp15.cptr_el[2]; 5297 5298 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5299 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5300 value |= 0x3 << 10; 5301 } 5302 return value; 5303 } 5304 5305 static const ARMCPRegInfo el2_cp_reginfo[] = { 5306 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5307 .type = ARM_CP_IO, 5308 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5309 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5310 .writefn = hcr_write }, 5311 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5312 .type = ARM_CP_ALIAS | ARM_CP_IO, 5313 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5314 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5315 .writefn = hcr_writelow }, 5316 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5317 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5318 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5319 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5320 .type = ARM_CP_ALIAS, 5321 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5322 .access = PL2_RW, 5323 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5324 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5325 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5326 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5327 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5328 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5329 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5330 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5331 .type = ARM_CP_ALIAS, 5332 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5333 .access = PL2_RW, 5334 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5335 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5336 .type = ARM_CP_ALIAS, 5337 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5338 .access = PL2_RW, 5339 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5340 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5341 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5342 .access = PL2_RW, .writefn = vbar_write, 5343 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5344 .resetvalue = 0 }, 5345 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5346 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5347 .access = PL3_RW, .type = ARM_CP_ALIAS, 5348 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5349 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5350 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5351 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5352 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5353 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5354 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5355 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5356 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5357 .resetvalue = 0 }, 5358 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5359 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5360 .access = PL2_RW, .type = ARM_CP_ALIAS, 5361 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5362 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5363 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5364 .access = PL2_RW, .type = ARM_CP_CONST, 5365 .resetvalue = 0 }, 5366 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5367 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5368 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5369 .access = PL2_RW, .type = ARM_CP_CONST, 5370 .resetvalue = 0 }, 5371 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5372 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5373 .access = PL2_RW, .type = ARM_CP_CONST, 5374 .resetvalue = 0 }, 5375 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5376 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5377 .access = PL2_RW, .type = ARM_CP_CONST, 5378 .resetvalue = 0 }, 5379 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5380 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5381 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5382 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5383 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5384 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5385 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5386 .type = ARM_CP_ALIAS, 5387 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5388 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5389 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5390 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5391 .access = PL2_RW, 5392 /* no .writefn needed as this can't cause an ASID change; 5393 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5394 */ 5395 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5396 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5397 .cp = 15, .opc1 = 6, .crm = 2, 5398 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5399 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5400 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5401 .writefn = vttbr_write }, 5402 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5403 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5404 .access = PL2_RW, .writefn = vttbr_write, 5405 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5406 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5407 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5408 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5409 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5410 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5411 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5412 .access = PL2_RW, .resetvalue = 0, 5413 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5414 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5415 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5416 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5417 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5418 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5419 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5420 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5421 { .name = "TLBIALLNSNH", 5422 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5423 .type = ARM_CP_NO_RAW, .access = PL2_W, 5424 .writefn = tlbiall_nsnh_write }, 5425 { .name = "TLBIALLNSNHIS", 5426 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5427 .type = ARM_CP_NO_RAW, .access = PL2_W, 5428 .writefn = tlbiall_nsnh_is_write }, 5429 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5430 .type = ARM_CP_NO_RAW, .access = PL2_W, 5431 .writefn = tlbiall_hyp_write }, 5432 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5433 .type = ARM_CP_NO_RAW, .access = PL2_W, 5434 .writefn = tlbiall_hyp_is_write }, 5435 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5436 .type = ARM_CP_NO_RAW, .access = PL2_W, 5437 .writefn = tlbimva_hyp_write }, 5438 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5439 .type = ARM_CP_NO_RAW, .access = PL2_W, 5440 .writefn = tlbimva_hyp_is_write }, 5441 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5442 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5444 .writefn = tlbi_aa64_alle2_write }, 5445 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5446 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5447 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5448 .writefn = tlbi_aa64_vae2_write }, 5449 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5451 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5452 .writefn = tlbi_aa64_vae2_write }, 5453 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5454 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5455 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5456 .writefn = tlbi_aa64_alle2is_write }, 5457 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5458 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5459 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5460 .writefn = tlbi_aa64_vae2is_write }, 5461 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5462 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5463 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5464 .writefn = tlbi_aa64_vae2is_write }, 5465 #ifndef CONFIG_USER_ONLY 5466 /* Unlike the other EL2-related AT operations, these must 5467 * UNDEF from EL3 if EL2 is not implemented, which is why we 5468 * define them here rather than with the rest of the AT ops. 5469 */ 5470 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5471 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5472 .access = PL2_W, .accessfn = at_s1e2_access, 5473 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5474 .writefn = ats_write64 }, 5475 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5476 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5477 .access = PL2_W, .accessfn = at_s1e2_access, 5478 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5479 .writefn = ats_write64 }, 5480 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5481 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5482 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5483 * to behave as if SCR.NS was 1. 5484 */ 5485 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5486 .access = PL2_W, 5487 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5488 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5489 .access = PL2_W, 5490 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5491 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5492 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5493 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5494 * reset values as IMPDEF. We choose to reset to 3 to comply with 5495 * both ARMv7 and ARMv8. 5496 */ 5497 .access = PL2_RW, .resetvalue = 3, 5498 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5499 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5500 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5501 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5502 .writefn = gt_cntvoff_write, 5503 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5504 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5505 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5506 .writefn = gt_cntvoff_write, 5507 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5508 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5510 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5511 .type = ARM_CP_IO, .access = PL2_RW, 5512 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5513 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5514 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5515 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5516 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5517 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5518 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5519 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5520 .resetfn = gt_hyp_timer_reset, 5521 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5522 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5523 .type = ARM_CP_IO, 5524 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5525 .access = PL2_RW, 5526 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5527 .resetvalue = 0, 5528 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5529 #endif 5530 /* The only field of MDCR_EL2 that has a defined architectural reset value 5531 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5532 */ 5533 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5534 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5535 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5536 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5537 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5538 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5539 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5540 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5541 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5543 .access = PL2_RW, 5544 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5545 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5546 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5547 .access = PL2_RW, 5548 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5549 }; 5550 5551 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5552 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5553 .type = ARM_CP_ALIAS | ARM_CP_IO, 5554 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5555 .access = PL2_RW, 5556 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5557 .writefn = hcr_writehigh }, 5558 }; 5559 5560 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5561 bool isread) 5562 { 5563 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5564 return CP_ACCESS_OK; 5565 } 5566 return CP_ACCESS_TRAP_UNCATEGORIZED; 5567 } 5568 5569 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5570 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5571 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5572 .access = PL2_RW, .accessfn = sel2_access, 5573 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5574 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5576 .access = PL2_RW, .accessfn = sel2_access, 5577 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5578 }; 5579 5580 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5581 bool isread) 5582 { 5583 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5584 * At Secure EL1 it traps to EL3 or EL2. 5585 */ 5586 if (arm_current_el(env) == 3) { 5587 return CP_ACCESS_OK; 5588 } 5589 if (arm_is_secure_below_el3(env)) { 5590 if (env->cp15.scr_el3 & SCR_EEL2) { 5591 return CP_ACCESS_TRAP_EL2; 5592 } 5593 return CP_ACCESS_TRAP_EL3; 5594 } 5595 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5596 if (isread) { 5597 return CP_ACCESS_OK; 5598 } 5599 return CP_ACCESS_TRAP_UNCATEGORIZED; 5600 } 5601 5602 static const ARMCPRegInfo el3_cp_reginfo[] = { 5603 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5605 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5606 .resetfn = scr_reset, .writefn = scr_write }, 5607 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5608 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5609 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5610 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5611 .writefn = scr_write }, 5612 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5613 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5614 .access = PL3_RW, .resetvalue = 0, 5615 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5616 { .name = "SDER", 5617 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5618 .access = PL3_RW, .resetvalue = 0, 5619 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5620 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5621 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5622 .writefn = vbar_write, .resetvalue = 0, 5623 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5624 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5625 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5626 .access = PL3_RW, .resetvalue = 0, 5627 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5628 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5629 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5630 .access = PL3_RW, 5631 /* no .writefn needed as this can't cause an ASID change; 5632 * we must provide a .raw_writefn and .resetfn because we handle 5633 * reset and migration for the AArch32 TTBCR(S), which might be 5634 * using mask and base_mask. 5635 */ 5636 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5637 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5638 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5639 .type = ARM_CP_ALIAS, 5640 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5641 .access = PL3_RW, 5642 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5643 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5644 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5645 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5646 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5647 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5648 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5649 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5650 .type = ARM_CP_ALIAS, 5651 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5652 .access = PL3_RW, 5653 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5654 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5655 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5656 .access = PL3_RW, .writefn = vbar_write, 5657 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5658 .resetvalue = 0 }, 5659 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5660 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5661 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5662 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5663 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5664 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5665 .access = PL3_RW, .resetvalue = 0, 5666 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5667 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5668 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5669 .access = PL3_RW, .type = ARM_CP_CONST, 5670 .resetvalue = 0 }, 5671 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5672 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5673 .access = PL3_RW, .type = ARM_CP_CONST, 5674 .resetvalue = 0 }, 5675 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5676 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5677 .access = PL3_RW, .type = ARM_CP_CONST, 5678 .resetvalue = 0 }, 5679 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5680 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5681 .access = PL3_W, .type = ARM_CP_NO_RAW, 5682 .writefn = tlbi_aa64_alle3is_write }, 5683 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5685 .access = PL3_W, .type = ARM_CP_NO_RAW, 5686 .writefn = tlbi_aa64_vae3is_write }, 5687 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5689 .access = PL3_W, .type = ARM_CP_NO_RAW, 5690 .writefn = tlbi_aa64_vae3is_write }, 5691 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5692 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5693 .access = PL3_W, .type = ARM_CP_NO_RAW, 5694 .writefn = tlbi_aa64_alle3_write }, 5695 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5696 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5697 .access = PL3_W, .type = ARM_CP_NO_RAW, 5698 .writefn = tlbi_aa64_vae3_write }, 5699 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5701 .access = PL3_W, .type = ARM_CP_NO_RAW, 5702 .writefn = tlbi_aa64_vae3_write }, 5703 }; 5704 5705 #ifndef CONFIG_USER_ONLY 5706 /* Test if system register redirection is to occur in the current state. */ 5707 static bool redirect_for_e2h(CPUARMState *env) 5708 { 5709 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5710 } 5711 5712 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5713 { 5714 CPReadFn *readfn; 5715 5716 if (redirect_for_e2h(env)) { 5717 /* Switch to the saved EL2 version of the register. */ 5718 ri = ri->opaque; 5719 readfn = ri->readfn; 5720 } else { 5721 readfn = ri->orig_readfn; 5722 } 5723 if (readfn == NULL) { 5724 readfn = raw_read; 5725 } 5726 return readfn(env, ri); 5727 } 5728 5729 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5730 uint64_t value) 5731 { 5732 CPWriteFn *writefn; 5733 5734 if (redirect_for_e2h(env)) { 5735 /* Switch to the saved EL2 version of the register. */ 5736 ri = ri->opaque; 5737 writefn = ri->writefn; 5738 } else { 5739 writefn = ri->orig_writefn; 5740 } 5741 if (writefn == NULL) { 5742 writefn = raw_write; 5743 } 5744 writefn(env, ri, value); 5745 } 5746 5747 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5748 { 5749 struct E2HAlias { 5750 uint32_t src_key, dst_key, new_key; 5751 const char *src_name, *dst_name, *new_name; 5752 bool (*feature)(const ARMISARegisters *id); 5753 }; 5754 5755 #define K(op0, op1, crn, crm, op2) \ 5756 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5757 5758 static const struct E2HAlias aliases[] = { 5759 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5760 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5761 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5762 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5763 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5764 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5765 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5766 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5767 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5768 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5769 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5770 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5771 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5772 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5773 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5774 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5775 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5776 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5777 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5778 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5779 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5780 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5781 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5782 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5783 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5784 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5785 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5786 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5787 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5788 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5789 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5790 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5791 5792 /* 5793 * Note that redirection of ZCR is mentioned in the description 5794 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5795 * not in the summary table. 5796 */ 5797 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5798 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5799 5800 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5801 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5802 5803 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5804 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5805 }; 5806 #undef K 5807 5808 size_t i; 5809 5810 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5811 const struct E2HAlias *a = &aliases[i]; 5812 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5813 bool ok; 5814 5815 if (a->feature && !a->feature(&cpu->isar)) { 5816 continue; 5817 } 5818 5819 src_reg = g_hash_table_lookup(cpu->cp_regs, 5820 (gpointer)(uintptr_t)a->src_key); 5821 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5822 (gpointer)(uintptr_t)a->dst_key); 5823 g_assert(src_reg != NULL); 5824 g_assert(dst_reg != NULL); 5825 5826 /* Cross-compare names to detect typos in the keys. */ 5827 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5828 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5829 5830 /* None of the core system registers use opaque; we will. */ 5831 g_assert(src_reg->opaque == NULL); 5832 5833 /* Create alias before redirection so we dup the right data. */ 5834 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5835 5836 new_reg->name = a->new_name; 5837 new_reg->type |= ARM_CP_ALIAS; 5838 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5839 new_reg->access &= PL2_RW | PL3_RW; 5840 5841 ok = g_hash_table_insert(cpu->cp_regs, 5842 (gpointer)(uintptr_t)a->new_key, new_reg); 5843 g_assert(ok); 5844 5845 src_reg->opaque = dst_reg; 5846 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5847 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5848 if (!src_reg->raw_readfn) { 5849 src_reg->raw_readfn = raw_read; 5850 } 5851 if (!src_reg->raw_writefn) { 5852 src_reg->raw_writefn = raw_write; 5853 } 5854 src_reg->readfn = el2_e2h_read; 5855 src_reg->writefn = el2_e2h_write; 5856 } 5857 } 5858 #endif 5859 5860 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5861 bool isread) 5862 { 5863 int cur_el = arm_current_el(env); 5864 5865 if (cur_el < 2) { 5866 uint64_t hcr = arm_hcr_el2_eff(env); 5867 5868 if (cur_el == 0) { 5869 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5870 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5871 return CP_ACCESS_TRAP_EL2; 5872 } 5873 } else { 5874 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5875 return CP_ACCESS_TRAP; 5876 } 5877 if (hcr & HCR_TID2) { 5878 return CP_ACCESS_TRAP_EL2; 5879 } 5880 } 5881 } else if (hcr & HCR_TID2) { 5882 return CP_ACCESS_TRAP_EL2; 5883 } 5884 } 5885 5886 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5887 return CP_ACCESS_TRAP_EL2; 5888 } 5889 5890 return CP_ACCESS_OK; 5891 } 5892 5893 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5894 uint64_t value) 5895 { 5896 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5897 * read via a bit in OSLSR_EL1. 5898 */ 5899 int oslock; 5900 5901 if (ri->state == ARM_CP_STATE_AA32) { 5902 oslock = (value == 0xC5ACCE55); 5903 } else { 5904 oslock = value & 1; 5905 } 5906 5907 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5908 } 5909 5910 static const ARMCPRegInfo debug_cp_reginfo[] = { 5911 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5912 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5913 * unlike DBGDRAR it is never accessible from EL0. 5914 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5915 * accessor. 5916 */ 5917 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5918 .access = PL0_R, .accessfn = access_tdra, 5919 .type = ARM_CP_CONST, .resetvalue = 0 }, 5920 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5921 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5922 .access = PL1_R, .accessfn = access_tdra, 5923 .type = ARM_CP_CONST, .resetvalue = 0 }, 5924 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5925 .access = PL0_R, .accessfn = access_tdra, 5926 .type = ARM_CP_CONST, .resetvalue = 0 }, 5927 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5928 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5929 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5930 .access = PL1_RW, .accessfn = access_tda, 5931 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5932 .resetvalue = 0 }, 5933 /* 5934 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 5935 * Debug Communication Channel is not implemented. 5936 */ 5937 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 5938 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 5939 .access = PL0_R, .accessfn = access_tda, 5940 .type = ARM_CP_CONST, .resetvalue = 0 }, 5941 /* 5942 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 5943 * it is unlikely a guest will care. 5944 * We don't implement the configurable EL0 access. 5945 */ 5946 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 5947 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5948 .type = ARM_CP_ALIAS, 5949 .access = PL1_R, .accessfn = access_tda, 5950 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5951 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5952 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5953 .access = PL1_W, .type = ARM_CP_NO_RAW, 5954 .accessfn = access_tdosa, 5955 .writefn = oslar_write }, 5956 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5957 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5958 .access = PL1_R, .resetvalue = 10, 5959 .accessfn = access_tdosa, 5960 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5961 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5962 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5963 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5964 .access = PL1_RW, .accessfn = access_tdosa, 5965 .type = ARM_CP_NOP }, 5966 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5967 * implement vector catch debug events yet. 5968 */ 5969 { .name = "DBGVCR", 5970 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5971 .access = PL1_RW, .accessfn = access_tda, 5972 .type = ARM_CP_NOP }, 5973 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5974 * to save and restore a 32-bit guest's DBGVCR) 5975 */ 5976 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5977 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5978 .access = PL2_RW, .accessfn = access_tda, 5979 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 5980 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5981 * Channel but Linux may try to access this register. The 32-bit 5982 * alias is DBGDCCINT. 5983 */ 5984 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5985 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5986 .access = PL1_RW, .accessfn = access_tda, 5987 .type = ARM_CP_NOP }, 5988 }; 5989 5990 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5991 /* 64 bit access versions of the (dummy) debug registers */ 5992 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5993 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5994 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5995 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5996 }; 5997 5998 /* 5999 * Check for traps to RAS registers, which are controlled 6000 * by HCR_EL2.TERR and SCR_EL3.TERR. 6001 */ 6002 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6003 bool isread) 6004 { 6005 int el = arm_current_el(env); 6006 6007 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6008 return CP_ACCESS_TRAP_EL2; 6009 } 6010 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6011 return CP_ACCESS_TRAP_EL3; 6012 } 6013 return CP_ACCESS_OK; 6014 } 6015 6016 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6017 { 6018 int el = arm_current_el(env); 6019 6020 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6021 return env->cp15.vdisr_el2; 6022 } 6023 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6024 return 0; /* RAZ/WI */ 6025 } 6026 return env->cp15.disr_el1; 6027 } 6028 6029 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6030 { 6031 int el = arm_current_el(env); 6032 6033 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6034 env->cp15.vdisr_el2 = val; 6035 return; 6036 } 6037 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6038 return; /* RAZ/WI */ 6039 } 6040 env->cp15.disr_el1 = val; 6041 } 6042 6043 /* 6044 * Minimal RAS implementation with no Error Records. 6045 * Which means that all of the Error Record registers: 6046 * ERXADDR_EL1 6047 * ERXCTLR_EL1 6048 * ERXFR_EL1 6049 * ERXMISC0_EL1 6050 * ERXMISC1_EL1 6051 * ERXMISC2_EL1 6052 * ERXMISC3_EL1 6053 * ERXPFGCDN_EL1 (RASv1p1) 6054 * ERXPFGCTL_EL1 (RASv1p1) 6055 * ERXPFGF_EL1 (RASv1p1) 6056 * ERXSTATUS_EL1 6057 * and 6058 * ERRSELR_EL1 6059 * may generate UNDEFINED, which is the effect we get by not 6060 * listing them at all. 6061 */ 6062 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6063 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6064 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6065 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6066 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6067 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6069 .access = PL1_R, .accessfn = access_terr, 6070 .type = ARM_CP_CONST, .resetvalue = 0 }, 6071 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6072 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6073 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6074 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6075 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6076 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6077 }; 6078 6079 /* Return the exception level to which exceptions should be taken 6080 * via SVEAccessTrap. If an exception should be routed through 6081 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6082 * take care of raising that exception. 6083 * C.f. the ARM pseudocode function CheckSVEEnabled. 6084 */ 6085 int sve_exception_el(CPUARMState *env, int el) 6086 { 6087 #ifndef CONFIG_USER_ONLY 6088 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6089 6090 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6091 /* Check CPACR.ZEN. */ 6092 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6093 case 1: 6094 if (el != 0) { 6095 break; 6096 } 6097 /* fall through */ 6098 case 0: 6099 case 2: 6100 /* route_to_el2 */ 6101 return hcr_el2 & HCR_TGE ? 2 : 1; 6102 } 6103 6104 /* Check CPACR.FPEN. */ 6105 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6106 case 1: 6107 if (el != 0) { 6108 break; 6109 } 6110 /* fall through */ 6111 case 0: 6112 case 2: 6113 return 0; 6114 } 6115 } 6116 6117 /* 6118 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6119 */ 6120 if (el <= 2) { 6121 if (hcr_el2 & HCR_E2H) { 6122 /* Check CPTR_EL2.ZEN. */ 6123 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6124 case 1: 6125 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6126 break; 6127 } 6128 /* fall through */ 6129 case 0: 6130 case 2: 6131 return 2; 6132 } 6133 6134 /* Check CPTR_EL2.FPEN. */ 6135 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6136 case 1: 6137 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6138 break; 6139 } 6140 /* fall through */ 6141 case 0: 6142 case 2: 6143 return 0; 6144 } 6145 } else if (arm_is_el2_enabled(env)) { 6146 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6147 return 2; 6148 } 6149 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6150 return 0; 6151 } 6152 } 6153 } 6154 6155 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6156 if (arm_feature(env, ARM_FEATURE_EL3) 6157 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6158 return 3; 6159 } 6160 #endif 6161 return 0; 6162 } 6163 6164 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6165 { 6166 uint32_t end_len; 6167 6168 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6169 end_len = start_len; 6170 6171 if (!test_bit(start_len, cpu->sve_vq_map)) { 6172 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6173 assert(end_len < start_len); 6174 } 6175 return end_len; 6176 } 6177 6178 /* 6179 * Given that SVE is enabled, return the vector length for EL. 6180 */ 6181 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6182 { 6183 ARMCPU *cpu = env_archcpu(env); 6184 uint32_t zcr_len = cpu->sve_max_vq - 1; 6185 6186 if (el <= 1 && 6187 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6188 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6189 } 6190 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6191 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6192 } 6193 if (arm_feature(env, ARM_FEATURE_EL3)) { 6194 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6195 } 6196 6197 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6198 } 6199 6200 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6201 uint64_t value) 6202 { 6203 int cur_el = arm_current_el(env); 6204 int old_len = sve_zcr_len_for_el(env, cur_el); 6205 int new_len; 6206 6207 /* Bits other than [3:0] are RAZ/WI. */ 6208 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6209 raw_write(env, ri, value & 0xf); 6210 6211 /* 6212 * Because we arrived here, we know both FP and SVE are enabled; 6213 * otherwise we would have trapped access to the ZCR_ELn register. 6214 */ 6215 new_len = sve_zcr_len_for_el(env, cur_el); 6216 if (new_len < old_len) { 6217 aarch64_sve_narrow_vq(env, new_len + 1); 6218 } 6219 } 6220 6221 static const ARMCPRegInfo zcr_reginfo[] = { 6222 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6223 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6224 .access = PL1_RW, .type = ARM_CP_SVE, 6225 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6226 .writefn = zcr_write, .raw_writefn = raw_write }, 6227 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6228 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6229 .access = PL2_RW, .type = ARM_CP_SVE, 6230 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6231 .writefn = zcr_write, .raw_writefn = raw_write }, 6232 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6233 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6234 .access = PL3_RW, .type = ARM_CP_SVE, 6235 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6236 .writefn = zcr_write, .raw_writefn = raw_write }, 6237 }; 6238 6239 void hw_watchpoint_update(ARMCPU *cpu, int n) 6240 { 6241 CPUARMState *env = &cpu->env; 6242 vaddr len = 0; 6243 vaddr wvr = env->cp15.dbgwvr[n]; 6244 uint64_t wcr = env->cp15.dbgwcr[n]; 6245 int mask; 6246 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6247 6248 if (env->cpu_watchpoint[n]) { 6249 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6250 env->cpu_watchpoint[n] = NULL; 6251 } 6252 6253 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6254 /* E bit clear : watchpoint disabled */ 6255 return; 6256 } 6257 6258 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6259 case 0: 6260 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6261 return; 6262 case 1: 6263 flags |= BP_MEM_READ; 6264 break; 6265 case 2: 6266 flags |= BP_MEM_WRITE; 6267 break; 6268 case 3: 6269 flags |= BP_MEM_ACCESS; 6270 break; 6271 } 6272 6273 /* Attempts to use both MASK and BAS fields simultaneously are 6274 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6275 * thus generating a watchpoint for every byte in the masked region. 6276 */ 6277 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6278 if (mask == 1 || mask == 2) { 6279 /* Reserved values of MASK; we must act as if the mask value was 6280 * some non-reserved value, or as if the watchpoint were disabled. 6281 * We choose the latter. 6282 */ 6283 return; 6284 } else if (mask) { 6285 /* Watchpoint covers an aligned area up to 2GB in size */ 6286 len = 1ULL << mask; 6287 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6288 * whether the watchpoint fires when the unmasked bits match; we opt 6289 * to generate the exceptions. 6290 */ 6291 wvr &= ~(len - 1); 6292 } else { 6293 /* Watchpoint covers bytes defined by the byte address select bits */ 6294 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6295 int basstart; 6296 6297 if (extract64(wvr, 2, 1)) { 6298 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6299 * ignored, and BAS[3:0] define which bytes to watch. 6300 */ 6301 bas &= 0xf; 6302 } 6303 6304 if (bas == 0) { 6305 /* This must act as if the watchpoint is disabled */ 6306 return; 6307 } 6308 6309 /* The BAS bits are supposed to be programmed to indicate a contiguous 6310 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6311 * we fire for each byte in the word/doubleword addressed by the WVR. 6312 * We choose to ignore any non-zero bits after the first range of 1s. 6313 */ 6314 basstart = ctz32(bas); 6315 len = cto32(bas >> basstart); 6316 wvr += basstart; 6317 } 6318 6319 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6320 &env->cpu_watchpoint[n]); 6321 } 6322 6323 void hw_watchpoint_update_all(ARMCPU *cpu) 6324 { 6325 int i; 6326 CPUARMState *env = &cpu->env; 6327 6328 /* Completely clear out existing QEMU watchpoints and our array, to 6329 * avoid possible stale entries following migration load. 6330 */ 6331 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6332 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6333 6334 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6335 hw_watchpoint_update(cpu, i); 6336 } 6337 } 6338 6339 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6340 uint64_t value) 6341 { 6342 ARMCPU *cpu = env_archcpu(env); 6343 int i = ri->crm; 6344 6345 /* 6346 * Bits [1:0] are RES0. 6347 * 6348 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6349 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6350 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6351 * whether the RESS bits are ignored when comparing an address. 6352 * 6353 * Therefore we are allowed to compare the entire register, which lets 6354 * us avoid considering whether or not FEAT_LVA is actually enabled. 6355 */ 6356 value &= ~3ULL; 6357 6358 raw_write(env, ri, value); 6359 hw_watchpoint_update(cpu, i); 6360 } 6361 6362 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6363 uint64_t value) 6364 { 6365 ARMCPU *cpu = env_archcpu(env); 6366 int i = ri->crm; 6367 6368 raw_write(env, ri, value); 6369 hw_watchpoint_update(cpu, i); 6370 } 6371 6372 void hw_breakpoint_update(ARMCPU *cpu, int n) 6373 { 6374 CPUARMState *env = &cpu->env; 6375 uint64_t bvr = env->cp15.dbgbvr[n]; 6376 uint64_t bcr = env->cp15.dbgbcr[n]; 6377 vaddr addr; 6378 int bt; 6379 int flags = BP_CPU; 6380 6381 if (env->cpu_breakpoint[n]) { 6382 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6383 env->cpu_breakpoint[n] = NULL; 6384 } 6385 6386 if (!extract64(bcr, 0, 1)) { 6387 /* E bit clear : watchpoint disabled */ 6388 return; 6389 } 6390 6391 bt = extract64(bcr, 20, 4); 6392 6393 switch (bt) { 6394 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6395 case 5: /* linked address mismatch (reserved if AArch64) */ 6396 qemu_log_mask(LOG_UNIMP, 6397 "arm: address mismatch breakpoint types not implemented\n"); 6398 return; 6399 case 0: /* unlinked address match */ 6400 case 1: /* linked address match */ 6401 { 6402 /* 6403 * Bits [1:0] are RES0. 6404 * 6405 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6406 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6407 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6408 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6409 * whether the RESS bits are ignored when comparing an address. 6410 * Therefore we are allowed to compare the entire register, which 6411 * lets us avoid considering whether FEAT_LVA is actually enabled. 6412 * 6413 * The BAS field is used to allow setting breakpoints on 16-bit 6414 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6415 * a bp will fire if the addresses covered by the bp and the addresses 6416 * covered by the insn overlap but the insn doesn't start at the 6417 * start of the bp address range. We choose to require the insn and 6418 * the bp to have the same address. The constraints on writing to 6419 * BAS enforced in dbgbcr_write mean we have only four cases: 6420 * 0b0000 => no breakpoint 6421 * 0b0011 => breakpoint on addr 6422 * 0b1100 => breakpoint on addr + 2 6423 * 0b1111 => breakpoint on addr 6424 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6425 */ 6426 int bas = extract64(bcr, 5, 4); 6427 addr = bvr & ~3ULL; 6428 if (bas == 0) { 6429 return; 6430 } 6431 if (bas == 0xc) { 6432 addr += 2; 6433 } 6434 break; 6435 } 6436 case 2: /* unlinked context ID match */ 6437 case 8: /* unlinked VMID match (reserved if no EL2) */ 6438 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6439 qemu_log_mask(LOG_UNIMP, 6440 "arm: unlinked context breakpoint types not implemented\n"); 6441 return; 6442 case 9: /* linked VMID match (reserved if no EL2) */ 6443 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6444 case 3: /* linked context ID match */ 6445 default: 6446 /* We must generate no events for Linked context matches (unless 6447 * they are linked to by some other bp/wp, which is handled in 6448 * updates for the linking bp/wp). We choose to also generate no events 6449 * for reserved values. 6450 */ 6451 return; 6452 } 6453 6454 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6455 } 6456 6457 void hw_breakpoint_update_all(ARMCPU *cpu) 6458 { 6459 int i; 6460 CPUARMState *env = &cpu->env; 6461 6462 /* Completely clear out existing QEMU breakpoints and our array, to 6463 * avoid possible stale entries following migration load. 6464 */ 6465 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6466 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6467 6468 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6469 hw_breakpoint_update(cpu, i); 6470 } 6471 } 6472 6473 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6474 uint64_t value) 6475 { 6476 ARMCPU *cpu = env_archcpu(env); 6477 int i = ri->crm; 6478 6479 raw_write(env, ri, value); 6480 hw_breakpoint_update(cpu, i); 6481 } 6482 6483 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6484 uint64_t value) 6485 { 6486 ARMCPU *cpu = env_archcpu(env); 6487 int i = ri->crm; 6488 6489 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6490 * copy of BAS[0]. 6491 */ 6492 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6493 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6494 6495 raw_write(env, ri, value); 6496 hw_breakpoint_update(cpu, i); 6497 } 6498 6499 static void define_debug_regs(ARMCPU *cpu) 6500 { 6501 /* Define v7 and v8 architectural debug registers. 6502 * These are just dummy implementations for now. 6503 */ 6504 int i; 6505 int wrps, brps, ctx_cmps; 6506 6507 /* 6508 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6509 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6510 * the register must not exist for this cpu. 6511 */ 6512 if (cpu->isar.dbgdidr != 0) { 6513 ARMCPRegInfo dbgdidr = { 6514 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6515 .opc1 = 0, .opc2 = 0, 6516 .access = PL0_R, .accessfn = access_tda, 6517 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6518 }; 6519 define_one_arm_cp_reg(cpu, &dbgdidr); 6520 } 6521 6522 /* Note that all these register fields hold "number of Xs minus 1". */ 6523 brps = arm_num_brps(cpu); 6524 wrps = arm_num_wrps(cpu); 6525 ctx_cmps = arm_num_ctx_cmps(cpu); 6526 6527 assert(ctx_cmps <= brps); 6528 6529 define_arm_cp_regs(cpu, debug_cp_reginfo); 6530 6531 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6532 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6533 } 6534 6535 for (i = 0; i < brps; i++) { 6536 ARMCPRegInfo dbgregs[] = { 6537 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6538 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6539 .access = PL1_RW, .accessfn = access_tda, 6540 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6541 .writefn = dbgbvr_write, .raw_writefn = raw_write 6542 }, 6543 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6544 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6545 .access = PL1_RW, .accessfn = access_tda, 6546 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6547 .writefn = dbgbcr_write, .raw_writefn = raw_write 6548 }, 6549 }; 6550 define_arm_cp_regs(cpu, dbgregs); 6551 } 6552 6553 for (i = 0; i < wrps; i++) { 6554 ARMCPRegInfo dbgregs[] = { 6555 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6556 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6557 .access = PL1_RW, .accessfn = access_tda, 6558 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6559 .writefn = dbgwvr_write, .raw_writefn = raw_write 6560 }, 6561 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6562 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6563 .access = PL1_RW, .accessfn = access_tda, 6564 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6565 .writefn = dbgwcr_write, .raw_writefn = raw_write 6566 }, 6567 }; 6568 define_arm_cp_regs(cpu, dbgregs); 6569 } 6570 } 6571 6572 static void define_pmu_regs(ARMCPU *cpu) 6573 { 6574 /* 6575 * v7 performance monitor control register: same implementor 6576 * field as main ID register, and we implement four counters in 6577 * addition to the cycle count register. 6578 */ 6579 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6580 ARMCPRegInfo pmcr = { 6581 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6582 .access = PL0_RW, 6583 .type = ARM_CP_IO | ARM_CP_ALIAS, 6584 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6585 .accessfn = pmreg_access, .writefn = pmcr_write, 6586 .raw_writefn = raw_write, 6587 }; 6588 ARMCPRegInfo pmcr64 = { 6589 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6590 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6591 .access = PL0_RW, .accessfn = pmreg_access, 6592 .type = ARM_CP_IO, 6593 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6594 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6595 PMCRLC, 6596 .writefn = pmcr_write, .raw_writefn = raw_write, 6597 }; 6598 define_one_arm_cp_reg(cpu, &pmcr); 6599 define_one_arm_cp_reg(cpu, &pmcr64); 6600 for (i = 0; i < pmcrn; i++) { 6601 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6602 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6603 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6604 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6605 ARMCPRegInfo pmev_regs[] = { 6606 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6607 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6608 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6609 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6610 .accessfn = pmreg_access_xevcntr }, 6611 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6612 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6613 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6614 .type = ARM_CP_IO, 6615 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6616 .raw_readfn = pmevcntr_rawread, 6617 .raw_writefn = pmevcntr_rawwrite }, 6618 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6619 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6620 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6621 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6622 .accessfn = pmreg_access }, 6623 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6624 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6625 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6626 .type = ARM_CP_IO, 6627 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6628 .raw_writefn = pmevtyper_rawwrite }, 6629 }; 6630 define_arm_cp_regs(cpu, pmev_regs); 6631 g_free(pmevcntr_name); 6632 g_free(pmevcntr_el0_name); 6633 g_free(pmevtyper_name); 6634 g_free(pmevtyper_el0_name); 6635 } 6636 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6637 ARMCPRegInfo v81_pmu_regs[] = { 6638 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6639 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6640 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6641 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6642 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6643 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6644 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6645 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6646 }; 6647 define_arm_cp_regs(cpu, v81_pmu_regs); 6648 } 6649 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6650 static const ARMCPRegInfo v84_pmmir = { 6651 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6652 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6653 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6654 .resetvalue = 0 6655 }; 6656 define_one_arm_cp_reg(cpu, &v84_pmmir); 6657 } 6658 } 6659 6660 /* We don't know until after realize whether there's a GICv3 6661 * attached, and that is what registers the gicv3 sysregs. 6662 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6663 * at runtime. 6664 */ 6665 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6666 { 6667 ARMCPU *cpu = env_archcpu(env); 6668 uint64_t pfr1 = cpu->isar.id_pfr1; 6669 6670 if (env->gicv3state) { 6671 pfr1 |= 1 << 28; 6672 } 6673 return pfr1; 6674 } 6675 6676 #ifndef CONFIG_USER_ONLY 6677 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6678 { 6679 ARMCPU *cpu = env_archcpu(env); 6680 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6681 6682 if (env->gicv3state) { 6683 pfr0 |= 1 << 24; 6684 } 6685 return pfr0; 6686 } 6687 #endif 6688 6689 /* Shared logic between LORID and the rest of the LOR* registers. 6690 * Secure state exclusion has already been dealt with. 6691 */ 6692 static CPAccessResult access_lor_ns(CPUARMState *env, 6693 const ARMCPRegInfo *ri, bool isread) 6694 { 6695 int el = arm_current_el(env); 6696 6697 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6698 return CP_ACCESS_TRAP_EL2; 6699 } 6700 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6701 return CP_ACCESS_TRAP_EL3; 6702 } 6703 return CP_ACCESS_OK; 6704 } 6705 6706 static CPAccessResult access_lor_other(CPUARMState *env, 6707 const ARMCPRegInfo *ri, bool isread) 6708 { 6709 if (arm_is_secure_below_el3(env)) { 6710 /* Access denied in secure mode. */ 6711 return CP_ACCESS_TRAP; 6712 } 6713 return access_lor_ns(env, ri, isread); 6714 } 6715 6716 /* 6717 * A trivial implementation of ARMv8.1-LOR leaves all of these 6718 * registers fixed at 0, which indicates that there are zero 6719 * supported Limited Ordering regions. 6720 */ 6721 static const ARMCPRegInfo lor_reginfo[] = { 6722 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6723 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6724 .access = PL1_RW, .accessfn = access_lor_other, 6725 .type = ARM_CP_CONST, .resetvalue = 0 }, 6726 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6727 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6728 .access = PL1_RW, .accessfn = access_lor_other, 6729 .type = ARM_CP_CONST, .resetvalue = 0 }, 6730 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6731 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6732 .access = PL1_RW, .accessfn = access_lor_other, 6733 .type = ARM_CP_CONST, .resetvalue = 0 }, 6734 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6735 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6736 .access = PL1_RW, .accessfn = access_lor_other, 6737 .type = ARM_CP_CONST, .resetvalue = 0 }, 6738 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6739 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6740 .access = PL1_R, .accessfn = access_lor_ns, 6741 .type = ARM_CP_CONST, .resetvalue = 0 }, 6742 }; 6743 6744 #ifdef TARGET_AARCH64 6745 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6746 bool isread) 6747 { 6748 int el = arm_current_el(env); 6749 6750 if (el < 2 && 6751 arm_feature(env, ARM_FEATURE_EL2) && 6752 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6753 return CP_ACCESS_TRAP_EL2; 6754 } 6755 if (el < 3 && 6756 arm_feature(env, ARM_FEATURE_EL3) && 6757 !(env->cp15.scr_el3 & SCR_APK)) { 6758 return CP_ACCESS_TRAP_EL3; 6759 } 6760 return CP_ACCESS_OK; 6761 } 6762 6763 static const ARMCPRegInfo pauth_reginfo[] = { 6764 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6765 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6766 .access = PL1_RW, .accessfn = access_pauth, 6767 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6768 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6769 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6770 .access = PL1_RW, .accessfn = access_pauth, 6771 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6772 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6773 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6774 .access = PL1_RW, .accessfn = access_pauth, 6775 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6776 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6777 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6778 .access = PL1_RW, .accessfn = access_pauth, 6779 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6780 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6781 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6782 .access = PL1_RW, .accessfn = access_pauth, 6783 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6784 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6785 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6786 .access = PL1_RW, .accessfn = access_pauth, 6787 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6788 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6789 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6790 .access = PL1_RW, .accessfn = access_pauth, 6791 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6792 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6793 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6794 .access = PL1_RW, .accessfn = access_pauth, 6795 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6796 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6797 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6798 .access = PL1_RW, .accessfn = access_pauth, 6799 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6800 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6801 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6802 .access = PL1_RW, .accessfn = access_pauth, 6803 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6804 }; 6805 6806 static const ARMCPRegInfo tlbirange_reginfo[] = { 6807 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6808 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6809 .access = PL1_W, .type = ARM_CP_NO_RAW, 6810 .writefn = tlbi_aa64_rvae1is_write }, 6811 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6812 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6813 .access = PL1_W, .type = ARM_CP_NO_RAW, 6814 .writefn = tlbi_aa64_rvae1is_write }, 6815 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6816 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6817 .access = PL1_W, .type = ARM_CP_NO_RAW, 6818 .writefn = tlbi_aa64_rvae1is_write }, 6819 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6821 .access = PL1_W, .type = ARM_CP_NO_RAW, 6822 .writefn = tlbi_aa64_rvae1is_write }, 6823 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6824 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6825 .access = PL1_W, .type = ARM_CP_NO_RAW, 6826 .writefn = tlbi_aa64_rvae1is_write }, 6827 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6828 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6829 .access = PL1_W, .type = ARM_CP_NO_RAW, 6830 .writefn = tlbi_aa64_rvae1is_write }, 6831 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6833 .access = PL1_W, .type = ARM_CP_NO_RAW, 6834 .writefn = tlbi_aa64_rvae1is_write }, 6835 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6837 .access = PL1_W, .type = ARM_CP_NO_RAW, 6838 .writefn = tlbi_aa64_rvae1is_write }, 6839 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6841 .access = PL1_W, .type = ARM_CP_NO_RAW, 6842 .writefn = tlbi_aa64_rvae1_write }, 6843 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6845 .access = PL1_W, .type = ARM_CP_NO_RAW, 6846 .writefn = tlbi_aa64_rvae1_write }, 6847 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6849 .access = PL1_W, .type = ARM_CP_NO_RAW, 6850 .writefn = tlbi_aa64_rvae1_write }, 6851 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6853 .access = PL1_W, .type = ARM_CP_NO_RAW, 6854 .writefn = tlbi_aa64_rvae1_write }, 6855 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6856 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6857 .access = PL2_W, .type = ARM_CP_NOP }, 6858 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6859 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6860 .access = PL2_W, .type = ARM_CP_NOP }, 6861 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6863 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6864 .writefn = tlbi_aa64_rvae2is_write }, 6865 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6867 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6868 .writefn = tlbi_aa64_rvae2is_write }, 6869 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6871 .access = PL2_W, .type = ARM_CP_NOP }, 6872 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6874 .access = PL2_W, .type = ARM_CP_NOP }, 6875 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6877 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6878 .writefn = tlbi_aa64_rvae2is_write }, 6879 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6881 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6882 .writefn = tlbi_aa64_rvae2is_write }, 6883 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6885 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6886 .writefn = tlbi_aa64_rvae2_write }, 6887 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6889 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6890 .writefn = tlbi_aa64_rvae2_write }, 6891 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6892 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6893 .access = PL3_W, .type = ARM_CP_NO_RAW, 6894 .writefn = tlbi_aa64_rvae3is_write }, 6895 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6897 .access = PL3_W, .type = ARM_CP_NO_RAW, 6898 .writefn = tlbi_aa64_rvae3is_write }, 6899 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6900 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6901 .access = PL3_W, .type = ARM_CP_NO_RAW, 6902 .writefn = tlbi_aa64_rvae3is_write }, 6903 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6904 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6905 .access = PL3_W, .type = ARM_CP_NO_RAW, 6906 .writefn = tlbi_aa64_rvae3is_write }, 6907 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6908 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6909 .access = PL3_W, .type = ARM_CP_NO_RAW, 6910 .writefn = tlbi_aa64_rvae3_write }, 6911 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6912 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6913 .access = PL3_W, .type = ARM_CP_NO_RAW, 6914 .writefn = tlbi_aa64_rvae3_write }, 6915 }; 6916 6917 static const ARMCPRegInfo tlbios_reginfo[] = { 6918 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6920 .access = PL1_W, .type = ARM_CP_NO_RAW, 6921 .writefn = tlbi_aa64_vmalle1is_write }, 6922 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6923 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6924 .access = PL1_W, .type = ARM_CP_NO_RAW, 6925 .writefn = tlbi_aa64_vae1is_write }, 6926 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6927 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6928 .access = PL1_W, .type = ARM_CP_NO_RAW, 6929 .writefn = tlbi_aa64_vmalle1is_write }, 6930 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6931 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6932 .access = PL1_W, .type = ARM_CP_NO_RAW, 6933 .writefn = tlbi_aa64_vae1is_write }, 6934 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6936 .access = PL1_W, .type = ARM_CP_NO_RAW, 6937 .writefn = tlbi_aa64_vae1is_write }, 6938 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6939 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6940 .access = PL1_W, .type = ARM_CP_NO_RAW, 6941 .writefn = tlbi_aa64_vae1is_write }, 6942 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6944 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6945 .writefn = tlbi_aa64_alle2is_write }, 6946 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6948 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6949 .writefn = tlbi_aa64_vae2is_write }, 6950 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6952 .access = PL2_W, .type = ARM_CP_NO_RAW, 6953 .writefn = tlbi_aa64_alle1is_write }, 6954 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6956 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6957 .writefn = tlbi_aa64_vae2is_write }, 6958 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6960 .access = PL2_W, .type = ARM_CP_NO_RAW, 6961 .writefn = tlbi_aa64_alle1is_write }, 6962 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6964 .access = PL2_W, .type = ARM_CP_NOP }, 6965 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6966 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6967 .access = PL2_W, .type = ARM_CP_NOP }, 6968 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6970 .access = PL2_W, .type = ARM_CP_NOP }, 6971 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6973 .access = PL2_W, .type = ARM_CP_NOP }, 6974 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6976 .access = PL3_W, .type = ARM_CP_NO_RAW, 6977 .writefn = tlbi_aa64_alle3is_write }, 6978 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6979 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6980 .access = PL3_W, .type = ARM_CP_NO_RAW, 6981 .writefn = tlbi_aa64_vae3is_write }, 6982 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6984 .access = PL3_W, .type = ARM_CP_NO_RAW, 6985 .writefn = tlbi_aa64_vae3is_write }, 6986 }; 6987 6988 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6989 { 6990 Error *err = NULL; 6991 uint64_t ret; 6992 6993 /* Success sets NZCV = 0000. */ 6994 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6995 6996 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6997 /* 6998 * ??? Failed, for unknown reasons in the crypto subsystem. 6999 * The best we can do is log the reason and return the 7000 * timed-out indication to the guest. There is no reason 7001 * we know to expect this failure to be transitory, so the 7002 * guest may well hang retrying the operation. 7003 */ 7004 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7005 ri->name, error_get_pretty(err)); 7006 error_free(err); 7007 7008 env->ZF = 0; /* NZCF = 0100 */ 7009 return 0; 7010 } 7011 return ret; 7012 } 7013 7014 /* We do not support re-seeding, so the two registers operate the same. */ 7015 static const ARMCPRegInfo rndr_reginfo[] = { 7016 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7017 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7018 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7019 .access = PL0_R, .readfn = rndr_readfn }, 7020 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7021 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7022 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7023 .access = PL0_R, .readfn = rndr_readfn }, 7024 }; 7025 7026 #ifndef CONFIG_USER_ONLY 7027 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7028 uint64_t value) 7029 { 7030 ARMCPU *cpu = env_archcpu(env); 7031 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7032 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7033 uint64_t vaddr_in = (uint64_t) value; 7034 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7035 void *haddr; 7036 int mem_idx = cpu_mmu_index(env, false); 7037 7038 /* This won't be crossing page boundaries */ 7039 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7040 if (haddr) { 7041 7042 ram_addr_t offset; 7043 MemoryRegion *mr; 7044 7045 /* RCU lock is already being held */ 7046 mr = memory_region_from_host(haddr, &offset); 7047 7048 if (mr) { 7049 memory_region_writeback(mr, offset, dline_size); 7050 } 7051 } 7052 } 7053 7054 static const ARMCPRegInfo dcpop_reg[] = { 7055 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7057 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7058 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7059 }; 7060 7061 static const ARMCPRegInfo dcpodp_reg[] = { 7062 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7064 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7065 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7066 }; 7067 #endif /*CONFIG_USER_ONLY*/ 7068 7069 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7070 bool isread) 7071 { 7072 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7073 return CP_ACCESS_TRAP_EL2; 7074 } 7075 7076 return CP_ACCESS_OK; 7077 } 7078 7079 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7080 bool isread) 7081 { 7082 int el = arm_current_el(env); 7083 7084 if (el < 2 && arm_is_el2_enabled(env)) { 7085 uint64_t hcr = arm_hcr_el2_eff(env); 7086 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7087 return CP_ACCESS_TRAP_EL2; 7088 } 7089 } 7090 if (el < 3 && 7091 arm_feature(env, ARM_FEATURE_EL3) && 7092 !(env->cp15.scr_el3 & SCR_ATA)) { 7093 return CP_ACCESS_TRAP_EL3; 7094 } 7095 return CP_ACCESS_OK; 7096 } 7097 7098 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7099 { 7100 return env->pstate & PSTATE_TCO; 7101 } 7102 7103 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7104 { 7105 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7106 } 7107 7108 static const ARMCPRegInfo mte_reginfo[] = { 7109 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7111 .access = PL1_RW, .accessfn = access_mte, 7112 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7113 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7114 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7115 .access = PL1_RW, .accessfn = access_mte, 7116 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7117 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7118 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7119 .access = PL2_RW, .accessfn = access_mte, 7120 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7121 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7122 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7123 .access = PL3_RW, 7124 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7125 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7126 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7127 .access = PL1_RW, .accessfn = access_mte, 7128 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7129 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7131 .access = PL1_RW, .accessfn = access_mte, 7132 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7133 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7135 .access = PL1_R, .accessfn = access_aa64_tid5, 7136 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7137 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7138 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7139 .type = ARM_CP_NO_RAW, 7140 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7141 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7143 .type = ARM_CP_NOP, .access = PL1_W, 7144 .accessfn = aa64_cacheop_poc_access }, 7145 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7146 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7147 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7148 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7150 .type = ARM_CP_NOP, .access = PL1_W, 7151 .accessfn = aa64_cacheop_poc_access }, 7152 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7153 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7154 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7155 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7156 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7157 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7158 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7160 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7161 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7162 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7163 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7164 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7165 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7167 }; 7168 7169 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7170 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7172 .type = ARM_CP_CONST, .access = PL0_RW, }, 7173 }; 7174 7175 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7176 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7177 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7178 .type = ARM_CP_NOP, .access = PL0_W, 7179 .accessfn = aa64_cacheop_poc_access }, 7180 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7182 .type = ARM_CP_NOP, .access = PL0_W, 7183 .accessfn = aa64_cacheop_poc_access }, 7184 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7186 .type = ARM_CP_NOP, .access = PL0_W, 7187 .accessfn = aa64_cacheop_poc_access }, 7188 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7190 .type = ARM_CP_NOP, .access = PL0_W, 7191 .accessfn = aa64_cacheop_poc_access }, 7192 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7194 .type = ARM_CP_NOP, .access = PL0_W, 7195 .accessfn = aa64_cacheop_poc_access }, 7196 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7198 .type = ARM_CP_NOP, .access = PL0_W, 7199 .accessfn = aa64_cacheop_poc_access }, 7200 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7202 .type = ARM_CP_NOP, .access = PL0_W, 7203 .accessfn = aa64_cacheop_poc_access }, 7204 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7206 .type = ARM_CP_NOP, .access = PL0_W, 7207 .accessfn = aa64_cacheop_poc_access }, 7208 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7210 .access = PL0_W, .type = ARM_CP_DC_GVA, 7211 #ifndef CONFIG_USER_ONLY 7212 /* Avoid overhead of an access check that always passes in user-mode */ 7213 .accessfn = aa64_zva_access, 7214 #endif 7215 }, 7216 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7218 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7219 #ifndef CONFIG_USER_ONLY 7220 /* Avoid overhead of an access check that always passes in user-mode */ 7221 .accessfn = aa64_zva_access, 7222 #endif 7223 }, 7224 }; 7225 7226 #endif 7227 7228 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7229 bool isread) 7230 { 7231 int el = arm_current_el(env); 7232 7233 if (el == 0) { 7234 uint64_t sctlr = arm_sctlr(env, el); 7235 if (!(sctlr & SCTLR_EnRCTX)) { 7236 return CP_ACCESS_TRAP; 7237 } 7238 } else if (el == 1) { 7239 uint64_t hcr = arm_hcr_el2_eff(env); 7240 if (hcr & HCR_NV) { 7241 return CP_ACCESS_TRAP_EL2; 7242 } 7243 } 7244 return CP_ACCESS_OK; 7245 } 7246 7247 static const ARMCPRegInfo predinv_reginfo[] = { 7248 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7249 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7250 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7251 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7253 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7254 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7255 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7256 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7257 /* 7258 * Note the AArch32 opcodes have a different OPC1. 7259 */ 7260 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7261 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7262 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7263 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7264 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7265 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7266 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7267 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7268 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7269 }; 7270 7271 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7272 { 7273 /* Read the high 32 bits of the current CCSIDR */ 7274 return extract64(ccsidr_read(env, ri), 32, 32); 7275 } 7276 7277 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7278 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7279 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7280 .access = PL1_R, 7281 .accessfn = access_aa64_tid2, 7282 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7283 }; 7284 7285 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7286 bool isread) 7287 { 7288 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7289 return CP_ACCESS_TRAP_EL2; 7290 } 7291 7292 return CP_ACCESS_OK; 7293 } 7294 7295 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7296 bool isread) 7297 { 7298 if (arm_feature(env, ARM_FEATURE_V8)) { 7299 return access_aa64_tid3(env, ri, isread); 7300 } 7301 7302 return CP_ACCESS_OK; 7303 } 7304 7305 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7306 bool isread) 7307 { 7308 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7309 return CP_ACCESS_TRAP_EL2; 7310 } 7311 7312 return CP_ACCESS_OK; 7313 } 7314 7315 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7316 const ARMCPRegInfo *ri, bool isread) 7317 { 7318 /* 7319 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7320 * in v7A, not in v8A. 7321 */ 7322 if (!arm_feature(env, ARM_FEATURE_V8) && 7323 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7324 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7325 return CP_ACCESS_TRAP_EL2; 7326 } 7327 return CP_ACCESS_OK; 7328 } 7329 7330 static const ARMCPRegInfo jazelle_regs[] = { 7331 { .name = "JIDR", 7332 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7333 .access = PL1_R, .accessfn = access_jazelle, 7334 .type = ARM_CP_CONST, .resetvalue = 0 }, 7335 { .name = "JOSCR", 7336 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7337 .accessfn = access_joscr_jmcr, 7338 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7339 { .name = "JMCR", 7340 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7341 .accessfn = access_joscr_jmcr, 7342 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7343 }; 7344 7345 static const ARMCPRegInfo contextidr_el2 = { 7346 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7348 .access = PL2_RW, 7349 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7350 }; 7351 7352 static const ARMCPRegInfo vhe_reginfo[] = { 7353 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7355 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7356 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7357 #ifndef CONFIG_USER_ONLY 7358 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7359 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7360 .fieldoffset = 7361 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7362 .type = ARM_CP_IO, .access = PL2_RW, 7363 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7364 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7365 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7366 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7367 .resetfn = gt_hv_timer_reset, 7368 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7369 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7370 .type = ARM_CP_IO, 7371 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7372 .access = PL2_RW, 7373 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7374 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7375 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7376 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7377 .type = ARM_CP_IO | ARM_CP_ALIAS, 7378 .access = PL2_RW, .accessfn = e2h_access, 7379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7380 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7381 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7382 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7383 .type = ARM_CP_IO | ARM_CP_ALIAS, 7384 .access = PL2_RW, .accessfn = e2h_access, 7385 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7386 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7387 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7389 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7390 .access = PL2_RW, .accessfn = e2h_access, 7391 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7392 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7394 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7395 .access = PL2_RW, .accessfn = e2h_access, 7396 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7397 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7399 .type = ARM_CP_IO | ARM_CP_ALIAS, 7400 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7401 .access = PL2_RW, .accessfn = e2h_access, 7402 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7403 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7404 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7405 .type = ARM_CP_IO | ARM_CP_ALIAS, 7406 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7407 .access = PL2_RW, .accessfn = e2h_access, 7408 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7409 #endif 7410 }; 7411 7412 #ifndef CONFIG_USER_ONLY 7413 static const ARMCPRegInfo ats1e1_reginfo[] = { 7414 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7416 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7417 .writefn = ats_write64 }, 7418 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7419 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7420 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7421 .writefn = ats_write64 }, 7422 }; 7423 7424 static const ARMCPRegInfo ats1cp_reginfo[] = { 7425 { .name = "ATS1CPRP", 7426 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7427 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7428 .writefn = ats_write }, 7429 { .name = "ATS1CPWP", 7430 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7432 .writefn = ats_write }, 7433 }; 7434 #endif 7435 7436 /* 7437 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7438 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7439 * is non-zero, which is never for ARMv7, optionally in ARMv8 7440 * and mandatorily for ARMv8.2 and up. 7441 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7442 * implementation is RAZ/WI we can ignore this detail, as we 7443 * do for ACTLR. 7444 */ 7445 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7446 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7447 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7448 .access = PL1_RW, .accessfn = access_tacr, 7449 .type = ARM_CP_CONST, .resetvalue = 0 }, 7450 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7451 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7452 .access = PL2_RW, .type = ARM_CP_CONST, 7453 .resetvalue = 0 }, 7454 }; 7455 7456 void register_cp_regs_for_features(ARMCPU *cpu) 7457 { 7458 /* Register all the coprocessor registers based on feature bits */ 7459 CPUARMState *env = &cpu->env; 7460 if (arm_feature(env, ARM_FEATURE_M)) { 7461 /* M profile has no coprocessor registers */ 7462 return; 7463 } 7464 7465 define_arm_cp_regs(cpu, cp_reginfo); 7466 if (!arm_feature(env, ARM_FEATURE_V8)) { 7467 /* Must go early as it is full of wildcards that may be 7468 * overridden by later definitions. 7469 */ 7470 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7471 } 7472 7473 if (arm_feature(env, ARM_FEATURE_V6)) { 7474 /* The ID registers all have impdef reset values */ 7475 ARMCPRegInfo v6_idregs[] = { 7476 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7478 .access = PL1_R, .type = ARM_CP_CONST, 7479 .accessfn = access_aa32_tid3, 7480 .resetvalue = cpu->isar.id_pfr0 }, 7481 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7482 * the value of the GIC field until after we define these regs. 7483 */ 7484 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7486 .access = PL1_R, .type = ARM_CP_NO_RAW, 7487 .accessfn = access_aa32_tid3, 7488 .readfn = id_pfr1_read, 7489 .writefn = arm_cp_write_ignore }, 7490 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7492 .access = PL1_R, .type = ARM_CP_CONST, 7493 .accessfn = access_aa32_tid3, 7494 .resetvalue = cpu->isar.id_dfr0 }, 7495 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7497 .access = PL1_R, .type = ARM_CP_CONST, 7498 .accessfn = access_aa32_tid3, 7499 .resetvalue = cpu->id_afr0 }, 7500 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7502 .access = PL1_R, .type = ARM_CP_CONST, 7503 .accessfn = access_aa32_tid3, 7504 .resetvalue = cpu->isar.id_mmfr0 }, 7505 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7507 .access = PL1_R, .type = ARM_CP_CONST, 7508 .accessfn = access_aa32_tid3, 7509 .resetvalue = cpu->isar.id_mmfr1 }, 7510 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7512 .access = PL1_R, .type = ARM_CP_CONST, 7513 .accessfn = access_aa32_tid3, 7514 .resetvalue = cpu->isar.id_mmfr2 }, 7515 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7517 .access = PL1_R, .type = ARM_CP_CONST, 7518 .accessfn = access_aa32_tid3, 7519 .resetvalue = cpu->isar.id_mmfr3 }, 7520 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7522 .access = PL1_R, .type = ARM_CP_CONST, 7523 .accessfn = access_aa32_tid3, 7524 .resetvalue = cpu->isar.id_isar0 }, 7525 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7527 .access = PL1_R, .type = ARM_CP_CONST, 7528 .accessfn = access_aa32_tid3, 7529 .resetvalue = cpu->isar.id_isar1 }, 7530 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7532 .access = PL1_R, .type = ARM_CP_CONST, 7533 .accessfn = access_aa32_tid3, 7534 .resetvalue = cpu->isar.id_isar2 }, 7535 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7537 .access = PL1_R, .type = ARM_CP_CONST, 7538 .accessfn = access_aa32_tid3, 7539 .resetvalue = cpu->isar.id_isar3 }, 7540 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7542 .access = PL1_R, .type = ARM_CP_CONST, 7543 .accessfn = access_aa32_tid3, 7544 .resetvalue = cpu->isar.id_isar4 }, 7545 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7547 .access = PL1_R, .type = ARM_CP_CONST, 7548 .accessfn = access_aa32_tid3, 7549 .resetvalue = cpu->isar.id_isar5 }, 7550 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa32_tid3, 7554 .resetvalue = cpu->isar.id_mmfr4 }, 7555 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7557 .access = PL1_R, .type = ARM_CP_CONST, 7558 .accessfn = access_aa32_tid3, 7559 .resetvalue = cpu->isar.id_isar6 }, 7560 }; 7561 define_arm_cp_regs(cpu, v6_idregs); 7562 define_arm_cp_regs(cpu, v6_cp_reginfo); 7563 } else { 7564 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7565 } 7566 if (arm_feature(env, ARM_FEATURE_V6K)) { 7567 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7568 } 7569 if (arm_feature(env, ARM_FEATURE_V7MP) && 7570 !arm_feature(env, ARM_FEATURE_PMSA)) { 7571 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7572 } 7573 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7574 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7575 } 7576 if (arm_feature(env, ARM_FEATURE_V7)) { 7577 ARMCPRegInfo clidr = { 7578 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7579 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa64_tid2, 7582 .resetvalue = cpu->clidr 7583 }; 7584 define_one_arm_cp_reg(cpu, &clidr); 7585 define_arm_cp_regs(cpu, v7_cp_reginfo); 7586 define_debug_regs(cpu); 7587 define_pmu_regs(cpu); 7588 } else { 7589 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7590 } 7591 if (arm_feature(env, ARM_FEATURE_V8)) { 7592 /* AArch64 ID registers, which all have impdef reset values. 7593 * Note that within the ID register ranges the unused slots 7594 * must all RAZ, not UNDEF; future architecture versions may 7595 * define new registers here. 7596 */ 7597 ARMCPRegInfo v8_idregs[] = { 7598 /* 7599 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7600 * emulation because we don't know the right value for the 7601 * GIC field until after we define these regs. 7602 */ 7603 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7605 .access = PL1_R, 7606 #ifdef CONFIG_USER_ONLY 7607 .type = ARM_CP_CONST, 7608 .resetvalue = cpu->isar.id_aa64pfr0 7609 #else 7610 .type = ARM_CP_NO_RAW, 7611 .accessfn = access_aa64_tid3, 7612 .readfn = id_aa64pfr0_read, 7613 .writefn = arm_cp_write_ignore 7614 #endif 7615 }, 7616 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa64_tid3, 7620 .resetvalue = cpu->isar.id_aa64pfr1}, 7621 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa64_tid3, 7625 .resetvalue = 0 }, 7626 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa64_tid3, 7630 .resetvalue = 0 }, 7631 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa64_tid3, 7635 .resetvalue = cpu->isar.id_aa64zfr0 }, 7636 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa64_tid3, 7640 .resetvalue = 0 }, 7641 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7643 .access = PL1_R, .type = ARM_CP_CONST, 7644 .accessfn = access_aa64_tid3, 7645 .resetvalue = 0 }, 7646 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7648 .access = PL1_R, .type = ARM_CP_CONST, 7649 .accessfn = access_aa64_tid3, 7650 .resetvalue = 0 }, 7651 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7653 .access = PL1_R, .type = ARM_CP_CONST, 7654 .accessfn = access_aa64_tid3, 7655 .resetvalue = cpu->isar.id_aa64dfr0 }, 7656 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7658 .access = PL1_R, .type = ARM_CP_CONST, 7659 .accessfn = access_aa64_tid3, 7660 .resetvalue = cpu->isar.id_aa64dfr1 }, 7661 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7663 .access = PL1_R, .type = ARM_CP_CONST, 7664 .accessfn = access_aa64_tid3, 7665 .resetvalue = 0 }, 7666 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7668 .access = PL1_R, .type = ARM_CP_CONST, 7669 .accessfn = access_aa64_tid3, 7670 .resetvalue = 0 }, 7671 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7673 .access = PL1_R, .type = ARM_CP_CONST, 7674 .accessfn = access_aa64_tid3, 7675 .resetvalue = cpu->id_aa64afr0 }, 7676 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7678 .access = PL1_R, .type = ARM_CP_CONST, 7679 .accessfn = access_aa64_tid3, 7680 .resetvalue = cpu->id_aa64afr1 }, 7681 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid3, 7685 .resetvalue = 0 }, 7686 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7688 .access = PL1_R, .type = ARM_CP_CONST, 7689 .accessfn = access_aa64_tid3, 7690 .resetvalue = 0 }, 7691 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7693 .access = PL1_R, .type = ARM_CP_CONST, 7694 .accessfn = access_aa64_tid3, 7695 .resetvalue = cpu->isar.id_aa64isar0 }, 7696 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7698 .access = PL1_R, .type = ARM_CP_CONST, 7699 .accessfn = access_aa64_tid3, 7700 .resetvalue = cpu->isar.id_aa64isar1 }, 7701 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7703 .access = PL1_R, .type = ARM_CP_CONST, 7704 .accessfn = access_aa64_tid3, 7705 .resetvalue = 0 }, 7706 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7708 .access = PL1_R, .type = ARM_CP_CONST, 7709 .accessfn = access_aa64_tid3, 7710 .resetvalue = 0 }, 7711 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = 0 }, 7716 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = 0 }, 7721 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = 0 }, 7726 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = 0 }, 7731 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7736 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7741 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7746 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = 0 }, 7751 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa64_tid3, 7755 .resetvalue = 0 }, 7756 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa64_tid3, 7760 .resetvalue = 0 }, 7761 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa64_tid3, 7765 .resetvalue = 0 }, 7766 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa64_tid3, 7770 .resetvalue = 0 }, 7771 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa64_tid3, 7775 .resetvalue = cpu->isar.mvfr0 }, 7776 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa64_tid3, 7780 .resetvalue = cpu->isar.mvfr1 }, 7781 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = cpu->isar.mvfr2 }, 7786 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = 0 }, 7791 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = cpu->isar.id_pfr2 }, 7796 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = 0 }, 7801 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = 0 }, 7811 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7812 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7813 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7814 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7815 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7817 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7818 .resetvalue = cpu->pmceid0 }, 7819 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7820 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7821 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7822 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7823 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7825 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7826 .resetvalue = cpu->pmceid1 }, 7827 }; 7828 #ifdef CONFIG_USER_ONLY 7829 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7830 { .name = "ID_AA64PFR0_EL1", 7831 .exported_bits = 0x000f000f00ff0000, 7832 .fixed_bits = 0x0000000000000011 }, 7833 { .name = "ID_AA64PFR1_EL1", 7834 .exported_bits = 0x00000000000000f0 }, 7835 { .name = "ID_AA64PFR*_EL1_RESERVED", 7836 .is_glob = true }, 7837 { .name = "ID_AA64ZFR0_EL1" }, 7838 { .name = "ID_AA64MMFR0_EL1", 7839 .fixed_bits = 0x00000000ff000000 }, 7840 { .name = "ID_AA64MMFR1_EL1" }, 7841 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7842 .is_glob = true }, 7843 { .name = "ID_AA64DFR0_EL1", 7844 .fixed_bits = 0x0000000000000006 }, 7845 { .name = "ID_AA64DFR1_EL1" }, 7846 { .name = "ID_AA64DFR*_EL1_RESERVED", 7847 .is_glob = true }, 7848 { .name = "ID_AA64AFR*", 7849 .is_glob = true }, 7850 { .name = "ID_AA64ISAR0_EL1", 7851 .exported_bits = 0x00fffffff0fffff0 }, 7852 { .name = "ID_AA64ISAR1_EL1", 7853 .exported_bits = 0x000000f0ffffffff }, 7854 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7855 .is_glob = true }, 7856 }; 7857 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7858 #endif 7859 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7860 if (!arm_feature(env, ARM_FEATURE_EL3) && 7861 !arm_feature(env, ARM_FEATURE_EL2)) { 7862 ARMCPRegInfo rvbar = { 7863 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7865 .access = PL1_R, 7866 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7867 }; 7868 define_one_arm_cp_reg(cpu, &rvbar); 7869 } 7870 define_arm_cp_regs(cpu, v8_idregs); 7871 define_arm_cp_regs(cpu, v8_cp_reginfo); 7872 } 7873 7874 /* 7875 * Register the base EL2 cpregs. 7876 * Pre v8, these registers are implemented only as part of the 7877 * Virtualization Extensions (EL2 present). Beginning with v8, 7878 * if EL2 is missing but EL3 is enabled, mostly these become 7879 * RES0 from EL3, with some specific exceptions. 7880 */ 7881 if (arm_feature(env, ARM_FEATURE_EL2) 7882 || (arm_feature(env, ARM_FEATURE_EL3) 7883 && arm_feature(env, ARM_FEATURE_V8))) { 7884 uint64_t vmpidr_def = mpidr_read_val(env); 7885 ARMCPRegInfo vpidr_regs[] = { 7886 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7887 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7888 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7889 .resetvalue = cpu->midr, 7890 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7891 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7892 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7893 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7894 .access = PL2_RW, .resetvalue = cpu->midr, 7895 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7896 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7897 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7898 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7899 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7900 .resetvalue = vmpidr_def, 7901 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7902 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7903 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7904 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7905 .access = PL2_RW, .resetvalue = vmpidr_def, 7906 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7907 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7908 }; 7909 define_arm_cp_regs(cpu, vpidr_regs); 7910 define_arm_cp_regs(cpu, el2_cp_reginfo); 7911 if (arm_feature(env, ARM_FEATURE_V8)) { 7912 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7913 } 7914 if (cpu_isar_feature(aa64_sel2, cpu)) { 7915 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7916 } 7917 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7918 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7919 ARMCPRegInfo rvbar = { 7920 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7921 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7922 .access = PL2_R, 7923 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7924 }; 7925 define_one_arm_cp_reg(cpu, &rvbar); 7926 } 7927 } 7928 7929 /* Register the base EL3 cpregs. */ 7930 if (arm_feature(env, ARM_FEATURE_EL3)) { 7931 define_arm_cp_regs(cpu, el3_cp_reginfo); 7932 ARMCPRegInfo el3_regs[] = { 7933 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7935 .access = PL3_R, 7936 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7937 }, 7938 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7940 .access = PL3_RW, 7941 .raw_writefn = raw_write, .writefn = sctlr_write, 7942 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7943 .resetvalue = cpu->reset_sctlr }, 7944 }; 7945 7946 define_arm_cp_regs(cpu, el3_regs); 7947 } 7948 /* The behaviour of NSACR is sufficiently various that we don't 7949 * try to describe it in a single reginfo: 7950 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7951 * reads as constant 0xc00 from NS EL1 and NS EL2 7952 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7953 * if v7 without EL3, register doesn't exist 7954 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7955 */ 7956 if (arm_feature(env, ARM_FEATURE_EL3)) { 7957 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7958 static const ARMCPRegInfo nsacr = { 7959 .name = "NSACR", .type = ARM_CP_CONST, 7960 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7961 .access = PL1_RW, .accessfn = nsacr_access, 7962 .resetvalue = 0xc00 7963 }; 7964 define_one_arm_cp_reg(cpu, &nsacr); 7965 } else { 7966 static const ARMCPRegInfo nsacr = { 7967 .name = "NSACR", 7968 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7969 .access = PL3_RW | PL1_R, 7970 .resetvalue = 0, 7971 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7972 }; 7973 define_one_arm_cp_reg(cpu, &nsacr); 7974 } 7975 } else { 7976 if (arm_feature(env, ARM_FEATURE_V8)) { 7977 static const ARMCPRegInfo nsacr = { 7978 .name = "NSACR", .type = ARM_CP_CONST, 7979 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7980 .access = PL1_R, 7981 .resetvalue = 0xc00 7982 }; 7983 define_one_arm_cp_reg(cpu, &nsacr); 7984 } 7985 } 7986 7987 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7988 if (arm_feature(env, ARM_FEATURE_V6)) { 7989 /* PMSAv6 not implemented */ 7990 assert(arm_feature(env, ARM_FEATURE_V7)); 7991 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7992 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7993 } else { 7994 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7995 } 7996 } else { 7997 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7998 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7999 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8000 if (cpu_isar_feature(aa32_hpd, cpu)) { 8001 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8002 } 8003 } 8004 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8005 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8006 } 8007 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8008 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8009 } 8010 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8011 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8012 } 8013 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8014 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8015 } 8016 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8017 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8018 } 8019 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8020 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8021 } 8022 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8023 define_arm_cp_regs(cpu, omap_cp_reginfo); 8024 } 8025 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8026 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8027 } 8028 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8029 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8030 } 8031 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8032 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8033 } 8034 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8035 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8036 } 8037 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8038 define_arm_cp_regs(cpu, jazelle_regs); 8039 } 8040 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8041 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8042 * be read-only (ie write causes UNDEF exception). 8043 */ 8044 { 8045 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8046 /* Pre-v8 MIDR space. 8047 * Note that the MIDR isn't a simple constant register because 8048 * of the TI925 behaviour where writes to another register can 8049 * cause the MIDR value to change. 8050 * 8051 * Unimplemented registers in the c15 0 0 0 space default to 8052 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8053 * and friends override accordingly. 8054 */ 8055 { .name = "MIDR", 8056 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8057 .access = PL1_R, .resetvalue = cpu->midr, 8058 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8059 .readfn = midr_read, 8060 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8061 .type = ARM_CP_OVERRIDE }, 8062 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8063 { .name = "DUMMY", 8064 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8065 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8066 { .name = "DUMMY", 8067 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8068 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8069 { .name = "DUMMY", 8070 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8071 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8072 { .name = "DUMMY", 8073 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8074 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8075 { .name = "DUMMY", 8076 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8077 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8078 }; 8079 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8080 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8082 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8083 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8084 .readfn = midr_read }, 8085 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8086 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8088 .access = PL1_R, .resetvalue = cpu->midr }, 8089 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8090 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8091 .access = PL1_R, .resetvalue = cpu->midr }, 8092 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8094 .access = PL1_R, 8095 .accessfn = access_aa64_tid1, 8096 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8097 }; 8098 ARMCPRegInfo id_cp_reginfo[] = { 8099 /* These are common to v8 and pre-v8 */ 8100 { .name = "CTR", 8101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8102 .access = PL1_R, .accessfn = ctr_el0_access, 8103 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8104 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8105 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8106 .access = PL0_R, .accessfn = ctr_el0_access, 8107 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8108 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8109 { .name = "TCMTR", 8110 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8111 .access = PL1_R, 8112 .accessfn = access_aa32_tid1, 8113 .type = ARM_CP_CONST, .resetvalue = 0 }, 8114 }; 8115 /* TLBTR is specific to VMSA */ 8116 ARMCPRegInfo id_tlbtr_reginfo = { 8117 .name = "TLBTR", 8118 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8119 .access = PL1_R, 8120 .accessfn = access_aa32_tid1, 8121 .type = ARM_CP_CONST, .resetvalue = 0, 8122 }; 8123 /* MPUIR is specific to PMSA V6+ */ 8124 ARMCPRegInfo id_mpuir_reginfo = { 8125 .name = "MPUIR", 8126 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8127 .access = PL1_R, .type = ARM_CP_CONST, 8128 .resetvalue = cpu->pmsav7_dregion << 8 8129 }; 8130 static const ARMCPRegInfo crn0_wi_reginfo = { 8131 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8132 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8133 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8134 }; 8135 #ifdef CONFIG_USER_ONLY 8136 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8137 { .name = "MIDR_EL1", 8138 .exported_bits = 0x00000000ffffffff }, 8139 { .name = "REVIDR_EL1" }, 8140 }; 8141 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8142 #endif 8143 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8144 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8145 size_t i; 8146 /* Register the blanket "writes ignored" value first to cover the 8147 * whole space. Then update the specific ID registers to allow write 8148 * access, so that they ignore writes rather than causing them to 8149 * UNDEF. 8150 */ 8151 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8152 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8153 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8154 } 8155 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8156 id_cp_reginfo[i].access = PL1_RW; 8157 } 8158 id_mpuir_reginfo.access = PL1_RW; 8159 id_tlbtr_reginfo.access = PL1_RW; 8160 } 8161 if (arm_feature(env, ARM_FEATURE_V8)) { 8162 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8163 } else { 8164 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8165 } 8166 define_arm_cp_regs(cpu, id_cp_reginfo); 8167 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8168 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8169 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8170 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8171 } 8172 } 8173 8174 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8175 ARMCPRegInfo mpidr_cp_reginfo[] = { 8176 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8177 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8178 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8179 }; 8180 #ifdef CONFIG_USER_ONLY 8181 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8182 { .name = "MPIDR_EL1", 8183 .fixed_bits = 0x0000000080000000 }, 8184 }; 8185 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8186 #endif 8187 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8188 } 8189 8190 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8191 ARMCPRegInfo auxcr_reginfo[] = { 8192 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8193 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8194 .access = PL1_RW, .accessfn = access_tacr, 8195 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8196 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8197 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8198 .access = PL2_RW, .type = ARM_CP_CONST, 8199 .resetvalue = 0 }, 8200 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8201 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8202 .access = PL3_RW, .type = ARM_CP_CONST, 8203 .resetvalue = 0 }, 8204 }; 8205 define_arm_cp_regs(cpu, auxcr_reginfo); 8206 if (cpu_isar_feature(aa32_ac2, cpu)) { 8207 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8208 } 8209 } 8210 8211 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8212 /* 8213 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8214 * There are two flavours: 8215 * (1) older 32-bit only cores have a simple 32-bit CBAR 8216 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8217 * 32-bit register visible to AArch32 at a different encoding 8218 * to the "flavour 1" register and with the bits rearranged to 8219 * be able to squash a 64-bit address into the 32-bit view. 8220 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8221 * in future if we support AArch32-only configs of some of the 8222 * AArch64 cores we might need to add a specific feature flag 8223 * to indicate cores with "flavour 2" CBAR. 8224 */ 8225 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8226 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8227 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8228 | extract64(cpu->reset_cbar, 32, 12); 8229 ARMCPRegInfo cbar_reginfo[] = { 8230 { .name = "CBAR", 8231 .type = ARM_CP_CONST, 8232 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8233 .access = PL1_R, .resetvalue = cbar32 }, 8234 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8235 .type = ARM_CP_CONST, 8236 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8237 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8238 }; 8239 /* We don't implement a r/w 64 bit CBAR currently */ 8240 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8241 define_arm_cp_regs(cpu, cbar_reginfo); 8242 } else { 8243 ARMCPRegInfo cbar = { 8244 .name = "CBAR", 8245 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8246 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8247 .fieldoffset = offsetof(CPUARMState, 8248 cp15.c15_config_base_address) 8249 }; 8250 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8251 cbar.access = PL1_R; 8252 cbar.fieldoffset = 0; 8253 cbar.type = ARM_CP_CONST; 8254 } 8255 define_one_arm_cp_reg(cpu, &cbar); 8256 } 8257 } 8258 8259 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8260 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8261 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8262 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8263 .access = PL1_RW, .writefn = vbar_write, 8264 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8265 offsetof(CPUARMState, cp15.vbar_ns) }, 8266 .resetvalue = 0 }, 8267 }; 8268 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8269 } 8270 8271 /* Generic registers whose values depend on the implementation */ 8272 { 8273 ARMCPRegInfo sctlr = { 8274 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8275 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8276 .access = PL1_RW, .accessfn = access_tvm_trvm, 8277 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8278 offsetof(CPUARMState, cp15.sctlr_ns) }, 8279 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8280 .raw_writefn = raw_write, 8281 }; 8282 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8283 /* Normally we would always end the TB on an SCTLR write, but Linux 8284 * arch/arm/mach-pxa/sleep.S expects two instructions following 8285 * an MMU enable to execute from cache. Imitate this behaviour. 8286 */ 8287 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8288 } 8289 define_one_arm_cp_reg(cpu, &sctlr); 8290 } 8291 8292 if (cpu_isar_feature(aa64_lor, cpu)) { 8293 define_arm_cp_regs(cpu, lor_reginfo); 8294 } 8295 if (cpu_isar_feature(aa64_pan, cpu)) { 8296 define_one_arm_cp_reg(cpu, &pan_reginfo); 8297 } 8298 #ifndef CONFIG_USER_ONLY 8299 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8300 define_arm_cp_regs(cpu, ats1e1_reginfo); 8301 } 8302 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8303 define_arm_cp_regs(cpu, ats1cp_reginfo); 8304 } 8305 #endif 8306 if (cpu_isar_feature(aa64_uao, cpu)) { 8307 define_one_arm_cp_reg(cpu, &uao_reginfo); 8308 } 8309 8310 if (cpu_isar_feature(aa64_dit, cpu)) { 8311 define_one_arm_cp_reg(cpu, &dit_reginfo); 8312 } 8313 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8314 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8315 } 8316 if (cpu_isar_feature(any_ras, cpu)) { 8317 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8318 } 8319 8320 if (cpu_isar_feature(aa64_vh, cpu) || 8321 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8322 define_one_arm_cp_reg(cpu, &contextidr_el2); 8323 } 8324 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8325 define_arm_cp_regs(cpu, vhe_reginfo); 8326 } 8327 8328 if (cpu_isar_feature(aa64_sve, cpu)) { 8329 define_arm_cp_regs(cpu, zcr_reginfo); 8330 } 8331 8332 #ifdef TARGET_AARCH64 8333 if (cpu_isar_feature(aa64_pauth, cpu)) { 8334 define_arm_cp_regs(cpu, pauth_reginfo); 8335 } 8336 if (cpu_isar_feature(aa64_rndr, cpu)) { 8337 define_arm_cp_regs(cpu, rndr_reginfo); 8338 } 8339 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8340 define_arm_cp_regs(cpu, tlbirange_reginfo); 8341 } 8342 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8343 define_arm_cp_regs(cpu, tlbios_reginfo); 8344 } 8345 #ifndef CONFIG_USER_ONLY 8346 /* Data Cache clean instructions up to PoP */ 8347 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8348 define_one_arm_cp_reg(cpu, dcpop_reg); 8349 8350 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8351 define_one_arm_cp_reg(cpu, dcpodp_reg); 8352 } 8353 } 8354 #endif /*CONFIG_USER_ONLY*/ 8355 8356 /* 8357 * If full MTE is enabled, add all of the system registers. 8358 * If only "instructions available at EL0" are enabled, 8359 * then define only a RAZ/WI version of PSTATE.TCO. 8360 */ 8361 if (cpu_isar_feature(aa64_mte, cpu)) { 8362 define_arm_cp_regs(cpu, mte_reginfo); 8363 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8364 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8365 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8366 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8367 } 8368 #endif 8369 8370 if (cpu_isar_feature(any_predinv, cpu)) { 8371 define_arm_cp_regs(cpu, predinv_reginfo); 8372 } 8373 8374 if (cpu_isar_feature(any_ccidx, cpu)) { 8375 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8376 } 8377 8378 #ifndef CONFIG_USER_ONLY 8379 /* 8380 * Register redirections and aliases must be done last, 8381 * after the registers from the other extensions have been defined. 8382 */ 8383 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8384 define_arm_vh_e2h_redirects_aliases(cpu); 8385 } 8386 #endif 8387 } 8388 8389 /* Sort alphabetically by type name, except for "any". */ 8390 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8391 { 8392 ObjectClass *class_a = (ObjectClass *)a; 8393 ObjectClass *class_b = (ObjectClass *)b; 8394 const char *name_a, *name_b; 8395 8396 name_a = object_class_get_name(class_a); 8397 name_b = object_class_get_name(class_b); 8398 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8399 return 1; 8400 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8401 return -1; 8402 } else { 8403 return strcmp(name_a, name_b); 8404 } 8405 } 8406 8407 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8408 { 8409 ObjectClass *oc = data; 8410 const char *typename; 8411 char *name; 8412 8413 typename = object_class_get_name(oc); 8414 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8415 qemu_printf(" %s\n", name); 8416 g_free(name); 8417 } 8418 8419 void arm_cpu_list(void) 8420 { 8421 GSList *list; 8422 8423 list = object_class_get_list(TYPE_ARM_CPU, false); 8424 list = g_slist_sort(list, arm_cpu_list_compare); 8425 qemu_printf("Available CPUs:\n"); 8426 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8427 g_slist_free(list); 8428 } 8429 8430 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8431 { 8432 ObjectClass *oc = data; 8433 CpuDefinitionInfoList **cpu_list = user_data; 8434 CpuDefinitionInfo *info; 8435 const char *typename; 8436 8437 typename = object_class_get_name(oc); 8438 info = g_malloc0(sizeof(*info)); 8439 info->name = g_strndup(typename, 8440 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8441 info->q_typename = g_strdup(typename); 8442 8443 QAPI_LIST_PREPEND(*cpu_list, info); 8444 } 8445 8446 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8447 { 8448 CpuDefinitionInfoList *cpu_list = NULL; 8449 GSList *list; 8450 8451 list = object_class_get_list(TYPE_ARM_CPU, false); 8452 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8453 g_slist_free(list); 8454 8455 return cpu_list; 8456 } 8457 8458 /* 8459 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8460 * add a single reginfo struct to the hash table. 8461 */ 8462 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8463 void *opaque, CPState state, 8464 CPSecureState secstate, 8465 int crm, int opc1, int opc2, 8466 const char *name) 8467 { 8468 CPUARMState *env = &cpu->env; 8469 uint32_t key; 8470 ARMCPRegInfo *r2; 8471 bool is64 = r->type & ARM_CP_64BIT; 8472 bool ns = secstate & ARM_CP_SECSTATE_NS; 8473 int cp = r->cp; 8474 size_t name_len; 8475 bool make_const; 8476 8477 switch (state) { 8478 case ARM_CP_STATE_AA32: 8479 /* We assume it is a cp15 register if the .cp field is left unset. */ 8480 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8481 cp = 15; 8482 } 8483 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8484 break; 8485 case ARM_CP_STATE_AA64: 8486 /* 8487 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8488 * cp == 0 as equivalent to the value for "standard guest-visible 8489 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8490 * in their AArch64 view (the .cp value may be non-zero for the 8491 * benefit of the AArch32 view). 8492 */ 8493 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8494 cp = CP_REG_ARM64_SYSREG_CP; 8495 } 8496 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8497 break; 8498 default: 8499 g_assert_not_reached(); 8500 } 8501 8502 /* Overriding of an existing definition must be explicitly requested. */ 8503 if (!(r->type & ARM_CP_OVERRIDE)) { 8504 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8505 if (oldreg) { 8506 assert(oldreg->type & ARM_CP_OVERRIDE); 8507 } 8508 } 8509 8510 /* 8511 * Eliminate registers that are not present because the EL is missing. 8512 * Doing this here makes it easier to put all registers for a given 8513 * feature into the same ARMCPRegInfo array and define them all at once. 8514 */ 8515 make_const = false; 8516 if (arm_feature(env, ARM_FEATURE_EL3)) { 8517 /* 8518 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8519 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8520 */ 8521 int min_el = ctz32(r->access) / 2; 8522 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8523 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8524 return; 8525 } 8526 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8527 } 8528 } else { 8529 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8530 ? PL2_RW : PL1_RW); 8531 if ((r->access & max_el) == 0) { 8532 return; 8533 } 8534 } 8535 8536 /* Combine cpreg and name into one allocation. */ 8537 name_len = strlen(name) + 1; 8538 r2 = g_malloc(sizeof(*r2) + name_len); 8539 *r2 = *r; 8540 r2->name = memcpy(r2 + 1, name, name_len); 8541 8542 /* 8543 * Update fields to match the instantiation, overwiting wildcards 8544 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8545 */ 8546 r2->cp = cp; 8547 r2->crm = crm; 8548 r2->opc1 = opc1; 8549 r2->opc2 = opc2; 8550 r2->state = state; 8551 r2->secure = secstate; 8552 if (opaque) { 8553 r2->opaque = opaque; 8554 } 8555 8556 if (make_const) { 8557 /* This should not have been a very special register to begin. */ 8558 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8559 assert(old_special == 0 || old_special == ARM_CP_NOP); 8560 /* 8561 * Set the special function to CONST, retaining the other flags. 8562 * This is important for e.g. ARM_CP_SVE so that we still 8563 * take the SVE trap if CPTR_EL3.EZ == 0. 8564 */ 8565 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8566 /* 8567 * Usually, these registers become RES0, but there are a few 8568 * special cases like VPIDR_EL2 which have a constant non-zero 8569 * value with writes ignored. 8570 */ 8571 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8572 r2->resetvalue = 0; 8573 } 8574 /* 8575 * ARM_CP_CONST has precedence, so removing the callbacks and 8576 * offsets are not strictly necessary, but it is potentially 8577 * less confusing to debug later. 8578 */ 8579 r2->readfn = NULL; 8580 r2->writefn = NULL; 8581 r2->raw_readfn = NULL; 8582 r2->raw_writefn = NULL; 8583 r2->resetfn = NULL; 8584 r2->fieldoffset = 0; 8585 r2->bank_fieldoffsets[0] = 0; 8586 r2->bank_fieldoffsets[1] = 0; 8587 } else { 8588 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8589 8590 if (isbanked) { 8591 /* 8592 * Register is banked (using both entries in array). 8593 * Overwriting fieldoffset as the array is only used to define 8594 * banked registers but later only fieldoffset is used. 8595 */ 8596 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8597 } 8598 if (state == ARM_CP_STATE_AA32) { 8599 if (isbanked) { 8600 /* 8601 * If the register is banked then we don't need to migrate or 8602 * reset the 32-bit instance in certain cases: 8603 * 8604 * 1) If the register has both 32-bit and 64-bit instances 8605 * then we can count on the 64-bit instance taking care 8606 * of the non-secure bank. 8607 * 2) If ARMv8 is enabled then we can count on a 64-bit 8608 * version taking care of the secure bank. This requires 8609 * that separate 32 and 64-bit definitions are provided. 8610 */ 8611 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8612 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8613 r2->type |= ARM_CP_ALIAS; 8614 } 8615 } else if ((secstate != r->secure) && !ns) { 8616 /* 8617 * The register is not banked so we only want to allow 8618 * migration of the non-secure instance. 8619 */ 8620 r2->type |= ARM_CP_ALIAS; 8621 } 8622 8623 if (HOST_BIG_ENDIAN && 8624 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8625 r2->fieldoffset += sizeof(uint32_t); 8626 } 8627 } 8628 } 8629 8630 /* 8631 * By convention, for wildcarded registers only the first 8632 * entry is used for migration; the others are marked as 8633 * ALIAS so we don't try to transfer the register 8634 * multiple times. Special registers (ie NOP/WFI) are 8635 * never migratable and not even raw-accessible. 8636 */ 8637 if (r2->type & ARM_CP_SPECIAL_MASK) { 8638 r2->type |= ARM_CP_NO_RAW; 8639 } 8640 if (((r->crm == CP_ANY) && crm != 0) || 8641 ((r->opc1 == CP_ANY) && opc1 != 0) || 8642 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8643 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8644 } 8645 8646 /* 8647 * Check that raw accesses are either forbidden or handled. Note that 8648 * we can't assert this earlier because the setup of fieldoffset for 8649 * banked registers has to be done first. 8650 */ 8651 if (!(r2->type & ARM_CP_NO_RAW)) { 8652 assert(!raw_accessors_invalid(r2)); 8653 } 8654 8655 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8656 } 8657 8658 8659 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8660 const ARMCPRegInfo *r, void *opaque) 8661 { 8662 /* Define implementations of coprocessor registers. 8663 * We store these in a hashtable because typically 8664 * there are less than 150 registers in a space which 8665 * is 16*16*16*8*8 = 262144 in size. 8666 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8667 * If a register is defined twice then the second definition is 8668 * used, so this can be used to define some generic registers and 8669 * then override them with implementation specific variations. 8670 * At least one of the original and the second definition should 8671 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8672 * against accidental use. 8673 * 8674 * The state field defines whether the register is to be 8675 * visible in the AArch32 or AArch64 execution state. If the 8676 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8677 * reginfo structure for the AArch32 view, which sees the lower 8678 * 32 bits of the 64 bit register. 8679 * 8680 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8681 * be wildcarded. AArch64 registers are always considered to be 64 8682 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8683 * the register, if any. 8684 */ 8685 int crm, opc1, opc2; 8686 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8687 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8688 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8689 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8690 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8691 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8692 CPState state; 8693 8694 /* 64 bit registers have only CRm and Opc1 fields */ 8695 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8696 /* op0 only exists in the AArch64 encodings */ 8697 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8698 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8699 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8700 /* 8701 * This API is only for Arm's system coprocessors (14 and 15) or 8702 * (M-profile or v7A-and-earlier only) for implementation defined 8703 * coprocessors in the range 0..7. Our decode assumes this, since 8704 * 8..13 can be used for other insns including VFP and Neon. See 8705 * valid_cp() in translate.c. Assert here that we haven't tried 8706 * to use an invalid coprocessor number. 8707 */ 8708 switch (r->state) { 8709 case ARM_CP_STATE_BOTH: 8710 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8711 if (r->cp == 0) { 8712 break; 8713 } 8714 /* fall through */ 8715 case ARM_CP_STATE_AA32: 8716 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8717 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8718 assert(r->cp >= 14 && r->cp <= 15); 8719 } else { 8720 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8721 } 8722 break; 8723 case ARM_CP_STATE_AA64: 8724 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8725 break; 8726 default: 8727 g_assert_not_reached(); 8728 } 8729 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8730 * encodes a minimum access level for the register. We roll this 8731 * runtime check into our general permission check code, so check 8732 * here that the reginfo's specified permissions are strict enough 8733 * to encompass the generic architectural permission check. 8734 */ 8735 if (r->state != ARM_CP_STATE_AA32) { 8736 CPAccessRights mask; 8737 switch (r->opc1) { 8738 case 0: 8739 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8740 mask = PL0U_R | PL1_RW; 8741 break; 8742 case 1: case 2: 8743 /* min_EL EL1 */ 8744 mask = PL1_RW; 8745 break; 8746 case 3: 8747 /* min_EL EL0 */ 8748 mask = PL0_RW; 8749 break; 8750 case 4: 8751 case 5: 8752 /* min_EL EL2 */ 8753 mask = PL2_RW; 8754 break; 8755 case 6: 8756 /* min_EL EL3 */ 8757 mask = PL3_RW; 8758 break; 8759 case 7: 8760 /* min_EL EL1, secure mode only (we don't check the latter) */ 8761 mask = PL1_RW; 8762 break; 8763 default: 8764 /* broken reginfo with out-of-range opc1 */ 8765 g_assert_not_reached(); 8766 } 8767 /* assert our permissions are not too lax (stricter is fine) */ 8768 assert((r->access & ~mask) == 0); 8769 } 8770 8771 /* Check that the register definition has enough info to handle 8772 * reads and writes if they are permitted. 8773 */ 8774 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8775 if (r->access & PL3_R) { 8776 assert((r->fieldoffset || 8777 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8778 r->readfn); 8779 } 8780 if (r->access & PL3_W) { 8781 assert((r->fieldoffset || 8782 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8783 r->writefn); 8784 } 8785 } 8786 8787 for (crm = crmmin; crm <= crmmax; crm++) { 8788 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8789 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8790 for (state = ARM_CP_STATE_AA32; 8791 state <= ARM_CP_STATE_AA64; state++) { 8792 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8793 continue; 8794 } 8795 if (state == ARM_CP_STATE_AA32) { 8796 /* Under AArch32 CP registers can be common 8797 * (same for secure and non-secure world) or banked. 8798 */ 8799 char *name; 8800 8801 switch (r->secure) { 8802 case ARM_CP_SECSTATE_S: 8803 case ARM_CP_SECSTATE_NS: 8804 add_cpreg_to_hashtable(cpu, r, opaque, state, 8805 r->secure, crm, opc1, opc2, 8806 r->name); 8807 break; 8808 case ARM_CP_SECSTATE_BOTH: 8809 name = g_strdup_printf("%s_S", r->name); 8810 add_cpreg_to_hashtable(cpu, r, opaque, state, 8811 ARM_CP_SECSTATE_S, 8812 crm, opc1, opc2, name); 8813 g_free(name); 8814 add_cpreg_to_hashtable(cpu, r, opaque, state, 8815 ARM_CP_SECSTATE_NS, 8816 crm, opc1, opc2, r->name); 8817 break; 8818 default: 8819 g_assert_not_reached(); 8820 } 8821 } else { 8822 /* AArch64 registers get mapped to non-secure instance 8823 * of AArch32 */ 8824 add_cpreg_to_hashtable(cpu, r, opaque, state, 8825 ARM_CP_SECSTATE_NS, 8826 crm, opc1, opc2, r->name); 8827 } 8828 } 8829 } 8830 } 8831 } 8832 } 8833 8834 /* Define a whole list of registers */ 8835 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8836 void *opaque, size_t len) 8837 { 8838 size_t i; 8839 for (i = 0; i < len; ++i) { 8840 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8841 } 8842 } 8843 8844 /* 8845 * Modify ARMCPRegInfo for access from userspace. 8846 * 8847 * This is a data driven modification directed by 8848 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8849 * user-space cannot alter any values and dynamic values pertaining to 8850 * execution state are hidden from user space view anyway. 8851 */ 8852 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8853 const ARMCPRegUserSpaceInfo *mods, 8854 size_t mods_len) 8855 { 8856 for (size_t mi = 0; mi < mods_len; ++mi) { 8857 const ARMCPRegUserSpaceInfo *m = mods + mi; 8858 GPatternSpec *pat = NULL; 8859 8860 if (m->is_glob) { 8861 pat = g_pattern_spec_new(m->name); 8862 } 8863 for (size_t ri = 0; ri < regs_len; ++ri) { 8864 ARMCPRegInfo *r = regs + ri; 8865 8866 if (pat && g_pattern_match_string(pat, r->name)) { 8867 r->type = ARM_CP_CONST; 8868 r->access = PL0U_R; 8869 r->resetvalue = 0; 8870 /* continue */ 8871 } else if (strcmp(r->name, m->name) == 0) { 8872 r->type = ARM_CP_CONST; 8873 r->access = PL0U_R; 8874 r->resetvalue &= m->exported_bits; 8875 r->resetvalue |= m->fixed_bits; 8876 break; 8877 } 8878 } 8879 if (pat) { 8880 g_pattern_spec_free(pat); 8881 } 8882 } 8883 } 8884 8885 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8886 { 8887 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8888 } 8889 8890 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8891 uint64_t value) 8892 { 8893 /* Helper coprocessor write function for write-ignore registers */ 8894 } 8895 8896 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8897 { 8898 /* Helper coprocessor write function for read-as-zero registers */ 8899 return 0; 8900 } 8901 8902 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8903 { 8904 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8905 } 8906 8907 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8908 { 8909 /* Return true if it is not valid for us to switch to 8910 * this CPU mode (ie all the UNPREDICTABLE cases in 8911 * the ARM ARM CPSRWriteByInstr pseudocode). 8912 */ 8913 8914 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8915 if (write_type == CPSRWriteByInstr && 8916 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8917 mode == ARM_CPU_MODE_HYP)) { 8918 return 1; 8919 } 8920 8921 switch (mode) { 8922 case ARM_CPU_MODE_USR: 8923 return 0; 8924 case ARM_CPU_MODE_SYS: 8925 case ARM_CPU_MODE_SVC: 8926 case ARM_CPU_MODE_ABT: 8927 case ARM_CPU_MODE_UND: 8928 case ARM_CPU_MODE_IRQ: 8929 case ARM_CPU_MODE_FIQ: 8930 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8931 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8932 */ 8933 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8934 * and CPS are treated as illegal mode changes. 8935 */ 8936 if (write_type == CPSRWriteByInstr && 8937 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8938 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8939 return 1; 8940 } 8941 return 0; 8942 case ARM_CPU_MODE_HYP: 8943 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8944 case ARM_CPU_MODE_MON: 8945 return arm_current_el(env) < 3; 8946 default: 8947 return 1; 8948 } 8949 } 8950 8951 uint32_t cpsr_read(CPUARMState *env) 8952 { 8953 int ZF; 8954 ZF = (env->ZF == 0); 8955 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8956 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8957 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8958 | ((env->condexec_bits & 0xfc) << 8) 8959 | (env->GE << 16) | (env->daif & CPSR_AIF); 8960 } 8961 8962 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8963 CPSRWriteType write_type) 8964 { 8965 uint32_t changed_daif; 8966 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8967 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8968 8969 if (mask & CPSR_NZCV) { 8970 env->ZF = (~val) & CPSR_Z; 8971 env->NF = val; 8972 env->CF = (val >> 29) & 1; 8973 env->VF = (val << 3) & 0x80000000; 8974 } 8975 if (mask & CPSR_Q) 8976 env->QF = ((val & CPSR_Q) != 0); 8977 if (mask & CPSR_T) 8978 env->thumb = ((val & CPSR_T) != 0); 8979 if (mask & CPSR_IT_0_1) { 8980 env->condexec_bits &= ~3; 8981 env->condexec_bits |= (val >> 25) & 3; 8982 } 8983 if (mask & CPSR_IT_2_7) { 8984 env->condexec_bits &= 3; 8985 env->condexec_bits |= (val >> 8) & 0xfc; 8986 } 8987 if (mask & CPSR_GE) { 8988 env->GE = (val >> 16) & 0xf; 8989 } 8990 8991 /* In a V7 implementation that includes the security extensions but does 8992 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8993 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8994 * bits respectively. 8995 * 8996 * In a V8 implementation, it is permitted for privileged software to 8997 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8998 */ 8999 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9000 arm_feature(env, ARM_FEATURE_EL3) && 9001 !arm_feature(env, ARM_FEATURE_EL2) && 9002 !arm_is_secure(env)) { 9003 9004 changed_daif = (env->daif ^ val) & mask; 9005 9006 if (changed_daif & CPSR_A) { 9007 /* Check to see if we are allowed to change the masking of async 9008 * abort exceptions from a non-secure state. 9009 */ 9010 if (!(env->cp15.scr_el3 & SCR_AW)) { 9011 qemu_log_mask(LOG_GUEST_ERROR, 9012 "Ignoring attempt to switch CPSR_A flag from " 9013 "non-secure world with SCR.AW bit clear\n"); 9014 mask &= ~CPSR_A; 9015 } 9016 } 9017 9018 if (changed_daif & CPSR_F) { 9019 /* Check to see if we are allowed to change the masking of FIQ 9020 * exceptions from a non-secure state. 9021 */ 9022 if (!(env->cp15.scr_el3 & SCR_FW)) { 9023 qemu_log_mask(LOG_GUEST_ERROR, 9024 "Ignoring attempt to switch CPSR_F flag from " 9025 "non-secure world with SCR.FW bit clear\n"); 9026 mask &= ~CPSR_F; 9027 } 9028 9029 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9030 * If this bit is set software is not allowed to mask 9031 * FIQs, but is allowed to set CPSR_F to 0. 9032 */ 9033 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9034 (val & CPSR_F)) { 9035 qemu_log_mask(LOG_GUEST_ERROR, 9036 "Ignoring attempt to enable CPSR_F flag " 9037 "(non-maskable FIQ [NMFI] support enabled)\n"); 9038 mask &= ~CPSR_F; 9039 } 9040 } 9041 } 9042 9043 env->daif &= ~(CPSR_AIF & mask); 9044 env->daif |= val & CPSR_AIF & mask; 9045 9046 if (write_type != CPSRWriteRaw && 9047 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9048 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9049 /* Note that we can only get here in USR mode if this is a 9050 * gdb stub write; for this case we follow the architectural 9051 * behaviour for guest writes in USR mode of ignoring an attempt 9052 * to switch mode. (Those are caught by translate.c for writes 9053 * triggered by guest instructions.) 9054 */ 9055 mask &= ~CPSR_M; 9056 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9057 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9058 * v7, and has defined behaviour in v8: 9059 * + leave CPSR.M untouched 9060 * + allow changes to the other CPSR fields 9061 * + set PSTATE.IL 9062 * For user changes via the GDB stub, we don't set PSTATE.IL, 9063 * as this would be unnecessarily harsh for a user error. 9064 */ 9065 mask &= ~CPSR_M; 9066 if (write_type != CPSRWriteByGDBStub && 9067 arm_feature(env, ARM_FEATURE_V8)) { 9068 mask |= CPSR_IL; 9069 val |= CPSR_IL; 9070 } 9071 qemu_log_mask(LOG_GUEST_ERROR, 9072 "Illegal AArch32 mode switch attempt from %s to %s\n", 9073 aarch32_mode_name(env->uncached_cpsr), 9074 aarch32_mode_name(val)); 9075 } else { 9076 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9077 write_type == CPSRWriteExceptionReturn ? 9078 "Exception return from AArch32" : 9079 "AArch32 mode switch from", 9080 aarch32_mode_name(env->uncached_cpsr), 9081 aarch32_mode_name(val), env->regs[15]); 9082 switch_mode(env, val & CPSR_M); 9083 } 9084 } 9085 mask &= ~CACHED_CPSR_BITS; 9086 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9087 if (rebuild_hflags) { 9088 arm_rebuild_hflags(env); 9089 } 9090 } 9091 9092 /* Sign/zero extend */ 9093 uint32_t HELPER(sxtb16)(uint32_t x) 9094 { 9095 uint32_t res; 9096 res = (uint16_t)(int8_t)x; 9097 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9098 return res; 9099 } 9100 9101 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9102 { 9103 /* 9104 * Take a division-by-zero exception if necessary; otherwise return 9105 * to get the usual non-trapping division behaviour (result of 0) 9106 */ 9107 if (arm_feature(env, ARM_FEATURE_M) 9108 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9109 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9110 } 9111 } 9112 9113 uint32_t HELPER(uxtb16)(uint32_t x) 9114 { 9115 uint32_t res; 9116 res = (uint16_t)(uint8_t)x; 9117 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9118 return res; 9119 } 9120 9121 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9122 { 9123 if (den == 0) { 9124 handle_possible_div0_trap(env, GETPC()); 9125 return 0; 9126 } 9127 if (num == INT_MIN && den == -1) { 9128 return INT_MIN; 9129 } 9130 return num / den; 9131 } 9132 9133 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9134 { 9135 if (den == 0) { 9136 handle_possible_div0_trap(env, GETPC()); 9137 return 0; 9138 } 9139 return num / den; 9140 } 9141 9142 uint32_t HELPER(rbit)(uint32_t x) 9143 { 9144 return revbit32(x); 9145 } 9146 9147 #ifdef CONFIG_USER_ONLY 9148 9149 static void switch_mode(CPUARMState *env, int mode) 9150 { 9151 ARMCPU *cpu = env_archcpu(env); 9152 9153 if (mode != ARM_CPU_MODE_USR) { 9154 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9155 } 9156 } 9157 9158 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9159 uint32_t cur_el, bool secure) 9160 { 9161 return 1; 9162 } 9163 9164 void aarch64_sync_64_to_32(CPUARMState *env) 9165 { 9166 g_assert_not_reached(); 9167 } 9168 9169 #else 9170 9171 static void switch_mode(CPUARMState *env, int mode) 9172 { 9173 int old_mode; 9174 int i; 9175 9176 old_mode = env->uncached_cpsr & CPSR_M; 9177 if (mode == old_mode) 9178 return; 9179 9180 if (old_mode == ARM_CPU_MODE_FIQ) { 9181 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9182 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9183 } else if (mode == ARM_CPU_MODE_FIQ) { 9184 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9185 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9186 } 9187 9188 i = bank_number(old_mode); 9189 env->banked_r13[i] = env->regs[13]; 9190 env->banked_spsr[i] = env->spsr; 9191 9192 i = bank_number(mode); 9193 env->regs[13] = env->banked_r13[i]; 9194 env->spsr = env->banked_spsr[i]; 9195 9196 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9197 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9198 } 9199 9200 /* Physical Interrupt Target EL Lookup Table 9201 * 9202 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9203 * 9204 * The below multi-dimensional table is used for looking up the target 9205 * exception level given numerous condition criteria. Specifically, the 9206 * target EL is based on SCR and HCR routing controls as well as the 9207 * currently executing EL and secure state. 9208 * 9209 * Dimensions: 9210 * target_el_table[2][2][2][2][2][4] 9211 * | | | | | +--- Current EL 9212 * | | | | +------ Non-secure(0)/Secure(1) 9213 * | | | +--------- HCR mask override 9214 * | | +------------ SCR exec state control 9215 * | +--------------- SCR mask override 9216 * +------------------ 32-bit(0)/64-bit(1) EL3 9217 * 9218 * The table values are as such: 9219 * 0-3 = EL0-EL3 9220 * -1 = Cannot occur 9221 * 9222 * The ARM ARM target EL table includes entries indicating that an "exception 9223 * is not taken". The two cases where this is applicable are: 9224 * 1) An exception is taken from EL3 but the SCR does not have the exception 9225 * routed to EL3. 9226 * 2) An exception is taken from EL2 but the HCR does not have the exception 9227 * routed to EL2. 9228 * In these two cases, the below table contain a target of EL1. This value is 9229 * returned as it is expected that the consumer of the table data will check 9230 * for "target EL >= current EL" to ensure the exception is not taken. 9231 * 9232 * SCR HCR 9233 * 64 EA AMO From 9234 * BIT IRQ IMO Non-secure Secure 9235 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9236 */ 9237 static const int8_t target_el_table[2][2][2][2][2][4] = { 9238 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9239 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9240 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9241 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9242 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9243 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9244 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9245 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9246 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9247 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9248 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9249 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9250 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9251 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9252 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9253 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9254 }; 9255 9256 /* 9257 * Determine the target EL for physical exceptions 9258 */ 9259 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9260 uint32_t cur_el, bool secure) 9261 { 9262 CPUARMState *env = cs->env_ptr; 9263 bool rw; 9264 bool scr; 9265 bool hcr; 9266 int target_el; 9267 /* Is the highest EL AArch64? */ 9268 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9269 uint64_t hcr_el2; 9270 9271 if (arm_feature(env, ARM_FEATURE_EL3)) { 9272 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9273 } else { 9274 /* Either EL2 is the highest EL (and so the EL2 register width 9275 * is given by is64); or there is no EL2 or EL3, in which case 9276 * the value of 'rw' does not affect the table lookup anyway. 9277 */ 9278 rw = is64; 9279 } 9280 9281 hcr_el2 = arm_hcr_el2_eff(env); 9282 switch (excp_idx) { 9283 case EXCP_IRQ: 9284 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9285 hcr = hcr_el2 & HCR_IMO; 9286 break; 9287 case EXCP_FIQ: 9288 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9289 hcr = hcr_el2 & HCR_FMO; 9290 break; 9291 default: 9292 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9293 hcr = hcr_el2 & HCR_AMO; 9294 break; 9295 }; 9296 9297 /* 9298 * For these purposes, TGE and AMO/IMO/FMO both force the 9299 * interrupt to EL2. Fold TGE into the bit extracted above. 9300 */ 9301 hcr |= (hcr_el2 & HCR_TGE) != 0; 9302 9303 /* Perform a table-lookup for the target EL given the current state */ 9304 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9305 9306 assert(target_el > 0); 9307 9308 return target_el; 9309 } 9310 9311 void arm_log_exception(CPUState *cs) 9312 { 9313 int idx = cs->exception_index; 9314 9315 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9316 const char *exc = NULL; 9317 static const char * const excnames[] = { 9318 [EXCP_UDEF] = "Undefined Instruction", 9319 [EXCP_SWI] = "SVC", 9320 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9321 [EXCP_DATA_ABORT] = "Data Abort", 9322 [EXCP_IRQ] = "IRQ", 9323 [EXCP_FIQ] = "FIQ", 9324 [EXCP_BKPT] = "Breakpoint", 9325 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9326 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9327 [EXCP_HVC] = "Hypervisor Call", 9328 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9329 [EXCP_SMC] = "Secure Monitor Call", 9330 [EXCP_VIRQ] = "Virtual IRQ", 9331 [EXCP_VFIQ] = "Virtual FIQ", 9332 [EXCP_SEMIHOST] = "Semihosting call", 9333 [EXCP_NOCP] = "v7M NOCP UsageFault", 9334 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9335 [EXCP_STKOF] = "v8M STKOF UsageFault", 9336 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9337 [EXCP_LSERR] = "v8M LSERR UsageFault", 9338 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9339 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9340 [EXCP_VSERR] = "Virtual SERR", 9341 }; 9342 9343 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9344 exc = excnames[idx]; 9345 } 9346 if (!exc) { 9347 exc = "unknown"; 9348 } 9349 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9350 idx, exc, cs->cpu_index); 9351 } 9352 } 9353 9354 /* 9355 * Function used to synchronize QEMU's AArch64 register set with AArch32 9356 * register set. This is necessary when switching between AArch32 and AArch64 9357 * execution state. 9358 */ 9359 void aarch64_sync_32_to_64(CPUARMState *env) 9360 { 9361 int i; 9362 uint32_t mode = env->uncached_cpsr & CPSR_M; 9363 9364 /* We can blanket copy R[0:7] to X[0:7] */ 9365 for (i = 0; i < 8; i++) { 9366 env->xregs[i] = env->regs[i]; 9367 } 9368 9369 /* 9370 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9371 * Otherwise, they come from the banked user regs. 9372 */ 9373 if (mode == ARM_CPU_MODE_FIQ) { 9374 for (i = 8; i < 13; i++) { 9375 env->xregs[i] = env->usr_regs[i - 8]; 9376 } 9377 } else { 9378 for (i = 8; i < 13; i++) { 9379 env->xregs[i] = env->regs[i]; 9380 } 9381 } 9382 9383 /* 9384 * Registers x13-x23 are the various mode SP and FP registers. Registers 9385 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9386 * from the mode banked register. 9387 */ 9388 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9389 env->xregs[13] = env->regs[13]; 9390 env->xregs[14] = env->regs[14]; 9391 } else { 9392 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9393 /* HYP is an exception in that it is copied from r14 */ 9394 if (mode == ARM_CPU_MODE_HYP) { 9395 env->xregs[14] = env->regs[14]; 9396 } else { 9397 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9398 } 9399 } 9400 9401 if (mode == ARM_CPU_MODE_HYP) { 9402 env->xregs[15] = env->regs[13]; 9403 } else { 9404 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9405 } 9406 9407 if (mode == ARM_CPU_MODE_IRQ) { 9408 env->xregs[16] = env->regs[14]; 9409 env->xregs[17] = env->regs[13]; 9410 } else { 9411 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9412 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9413 } 9414 9415 if (mode == ARM_CPU_MODE_SVC) { 9416 env->xregs[18] = env->regs[14]; 9417 env->xregs[19] = env->regs[13]; 9418 } else { 9419 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9420 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9421 } 9422 9423 if (mode == ARM_CPU_MODE_ABT) { 9424 env->xregs[20] = env->regs[14]; 9425 env->xregs[21] = env->regs[13]; 9426 } else { 9427 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9428 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9429 } 9430 9431 if (mode == ARM_CPU_MODE_UND) { 9432 env->xregs[22] = env->regs[14]; 9433 env->xregs[23] = env->regs[13]; 9434 } else { 9435 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9436 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9437 } 9438 9439 /* 9440 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9441 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9442 * FIQ bank for r8-r14. 9443 */ 9444 if (mode == ARM_CPU_MODE_FIQ) { 9445 for (i = 24; i < 31; i++) { 9446 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9447 } 9448 } else { 9449 for (i = 24; i < 29; i++) { 9450 env->xregs[i] = env->fiq_regs[i - 24]; 9451 } 9452 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9453 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9454 } 9455 9456 env->pc = env->regs[15]; 9457 } 9458 9459 /* 9460 * Function used to synchronize QEMU's AArch32 register set with AArch64 9461 * register set. This is necessary when switching between AArch32 and AArch64 9462 * execution state. 9463 */ 9464 void aarch64_sync_64_to_32(CPUARMState *env) 9465 { 9466 int i; 9467 uint32_t mode = env->uncached_cpsr & CPSR_M; 9468 9469 /* We can blanket copy X[0:7] to R[0:7] */ 9470 for (i = 0; i < 8; i++) { 9471 env->regs[i] = env->xregs[i]; 9472 } 9473 9474 /* 9475 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9476 * Otherwise, we copy x8-x12 into the banked user regs. 9477 */ 9478 if (mode == ARM_CPU_MODE_FIQ) { 9479 for (i = 8; i < 13; i++) { 9480 env->usr_regs[i - 8] = env->xregs[i]; 9481 } 9482 } else { 9483 for (i = 8; i < 13; i++) { 9484 env->regs[i] = env->xregs[i]; 9485 } 9486 } 9487 9488 /* 9489 * Registers r13 & r14 depend on the current mode. 9490 * If we are in a given mode, we copy the corresponding x registers to r13 9491 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9492 * for the mode. 9493 */ 9494 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9495 env->regs[13] = env->xregs[13]; 9496 env->regs[14] = env->xregs[14]; 9497 } else { 9498 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9499 9500 /* 9501 * HYP is an exception in that it does not have its own banked r14 but 9502 * shares the USR r14 9503 */ 9504 if (mode == ARM_CPU_MODE_HYP) { 9505 env->regs[14] = env->xregs[14]; 9506 } else { 9507 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9508 } 9509 } 9510 9511 if (mode == ARM_CPU_MODE_HYP) { 9512 env->regs[13] = env->xregs[15]; 9513 } else { 9514 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9515 } 9516 9517 if (mode == ARM_CPU_MODE_IRQ) { 9518 env->regs[14] = env->xregs[16]; 9519 env->regs[13] = env->xregs[17]; 9520 } else { 9521 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9522 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9523 } 9524 9525 if (mode == ARM_CPU_MODE_SVC) { 9526 env->regs[14] = env->xregs[18]; 9527 env->regs[13] = env->xregs[19]; 9528 } else { 9529 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9530 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9531 } 9532 9533 if (mode == ARM_CPU_MODE_ABT) { 9534 env->regs[14] = env->xregs[20]; 9535 env->regs[13] = env->xregs[21]; 9536 } else { 9537 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9538 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9539 } 9540 9541 if (mode == ARM_CPU_MODE_UND) { 9542 env->regs[14] = env->xregs[22]; 9543 env->regs[13] = env->xregs[23]; 9544 } else { 9545 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9546 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9547 } 9548 9549 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9550 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9551 * FIQ bank for r8-r14. 9552 */ 9553 if (mode == ARM_CPU_MODE_FIQ) { 9554 for (i = 24; i < 31; i++) { 9555 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9556 } 9557 } else { 9558 for (i = 24; i < 29; i++) { 9559 env->fiq_regs[i - 24] = env->xregs[i]; 9560 } 9561 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9563 } 9564 9565 env->regs[15] = env->pc; 9566 } 9567 9568 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9569 uint32_t mask, uint32_t offset, 9570 uint32_t newpc) 9571 { 9572 int new_el; 9573 9574 /* Change the CPU state so as to actually take the exception. */ 9575 switch_mode(env, new_mode); 9576 9577 /* 9578 * For exceptions taken to AArch32 we must clear the SS bit in both 9579 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9580 */ 9581 env->pstate &= ~PSTATE_SS; 9582 env->spsr = cpsr_read(env); 9583 /* Clear IT bits. */ 9584 env->condexec_bits = 0; 9585 /* Switch to the new mode, and to the correct instruction set. */ 9586 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9587 9588 /* This must be after mode switching. */ 9589 new_el = arm_current_el(env); 9590 9591 /* Set new mode endianness */ 9592 env->uncached_cpsr &= ~CPSR_E; 9593 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9594 env->uncached_cpsr |= CPSR_E; 9595 } 9596 /* J and IL must always be cleared for exception entry */ 9597 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9598 env->daif |= mask; 9599 9600 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9601 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9602 env->uncached_cpsr |= CPSR_SSBS; 9603 } else { 9604 env->uncached_cpsr &= ~CPSR_SSBS; 9605 } 9606 } 9607 9608 if (new_mode == ARM_CPU_MODE_HYP) { 9609 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9610 env->elr_el[2] = env->regs[15]; 9611 } else { 9612 /* CPSR.PAN is normally preserved preserved unless... */ 9613 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9614 switch (new_el) { 9615 case 3: 9616 if (!arm_is_secure_below_el3(env)) { 9617 /* ... the target is EL3, from non-secure state. */ 9618 env->uncached_cpsr &= ~CPSR_PAN; 9619 break; 9620 } 9621 /* ... the target is EL3, from secure state ... */ 9622 /* fall through */ 9623 case 1: 9624 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9625 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9626 env->uncached_cpsr |= CPSR_PAN; 9627 } 9628 break; 9629 } 9630 } 9631 /* 9632 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9633 * and we should just guard the thumb mode on V4 9634 */ 9635 if (arm_feature(env, ARM_FEATURE_V4T)) { 9636 env->thumb = 9637 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9638 } 9639 env->regs[14] = env->regs[15] + offset; 9640 } 9641 env->regs[15] = newpc; 9642 arm_rebuild_hflags(env); 9643 } 9644 9645 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9646 { 9647 /* 9648 * Handle exception entry to Hyp mode; this is sufficiently 9649 * different to entry to other AArch32 modes that we handle it 9650 * separately here. 9651 * 9652 * The vector table entry used is always the 0x14 Hyp mode entry point, 9653 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9654 * The offset applied to the preferred return address is always zero 9655 * (see DDI0487C.a section G1.12.3). 9656 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9657 */ 9658 uint32_t addr, mask; 9659 ARMCPU *cpu = ARM_CPU(cs); 9660 CPUARMState *env = &cpu->env; 9661 9662 switch (cs->exception_index) { 9663 case EXCP_UDEF: 9664 addr = 0x04; 9665 break; 9666 case EXCP_SWI: 9667 addr = 0x08; 9668 break; 9669 case EXCP_BKPT: 9670 /* Fall through to prefetch abort. */ 9671 case EXCP_PREFETCH_ABORT: 9672 env->cp15.ifar_s = env->exception.vaddress; 9673 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9674 (uint32_t)env->exception.vaddress); 9675 addr = 0x0c; 9676 break; 9677 case EXCP_DATA_ABORT: 9678 env->cp15.dfar_s = env->exception.vaddress; 9679 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9680 (uint32_t)env->exception.vaddress); 9681 addr = 0x10; 9682 break; 9683 case EXCP_IRQ: 9684 addr = 0x18; 9685 break; 9686 case EXCP_FIQ: 9687 addr = 0x1c; 9688 break; 9689 case EXCP_HVC: 9690 addr = 0x08; 9691 break; 9692 case EXCP_HYP_TRAP: 9693 addr = 0x14; 9694 break; 9695 default: 9696 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9697 } 9698 9699 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9700 if (!arm_feature(env, ARM_FEATURE_V8)) { 9701 /* 9702 * QEMU syndrome values are v8-style. v7 has the IL bit 9703 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9704 * If this is a v7 CPU, squash the IL bit in those cases. 9705 */ 9706 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9707 (cs->exception_index == EXCP_DATA_ABORT && 9708 !(env->exception.syndrome & ARM_EL_ISV)) || 9709 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9710 env->exception.syndrome &= ~ARM_EL_IL; 9711 } 9712 } 9713 env->cp15.esr_el[2] = env->exception.syndrome; 9714 } 9715 9716 if (arm_current_el(env) != 2 && addr < 0x14) { 9717 addr = 0x14; 9718 } 9719 9720 mask = 0; 9721 if (!(env->cp15.scr_el3 & SCR_EA)) { 9722 mask |= CPSR_A; 9723 } 9724 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9725 mask |= CPSR_I; 9726 } 9727 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9728 mask |= CPSR_F; 9729 } 9730 9731 addr += env->cp15.hvbar; 9732 9733 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9734 } 9735 9736 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9737 { 9738 ARMCPU *cpu = ARM_CPU(cs); 9739 CPUARMState *env = &cpu->env; 9740 uint32_t addr; 9741 uint32_t mask; 9742 int new_mode; 9743 uint32_t offset; 9744 uint32_t moe; 9745 9746 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9747 switch (syn_get_ec(env->exception.syndrome)) { 9748 case EC_BREAKPOINT: 9749 case EC_BREAKPOINT_SAME_EL: 9750 moe = 1; 9751 break; 9752 case EC_WATCHPOINT: 9753 case EC_WATCHPOINT_SAME_EL: 9754 moe = 10; 9755 break; 9756 case EC_AA32_BKPT: 9757 moe = 3; 9758 break; 9759 case EC_VECTORCATCH: 9760 moe = 5; 9761 break; 9762 default: 9763 moe = 0; 9764 break; 9765 } 9766 9767 if (moe) { 9768 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9769 } 9770 9771 if (env->exception.target_el == 2) { 9772 arm_cpu_do_interrupt_aarch32_hyp(cs); 9773 return; 9774 } 9775 9776 switch (cs->exception_index) { 9777 case EXCP_UDEF: 9778 new_mode = ARM_CPU_MODE_UND; 9779 addr = 0x04; 9780 mask = CPSR_I; 9781 if (env->thumb) 9782 offset = 2; 9783 else 9784 offset = 4; 9785 break; 9786 case EXCP_SWI: 9787 new_mode = ARM_CPU_MODE_SVC; 9788 addr = 0x08; 9789 mask = CPSR_I; 9790 /* The PC already points to the next instruction. */ 9791 offset = 0; 9792 break; 9793 case EXCP_BKPT: 9794 /* Fall through to prefetch abort. */ 9795 case EXCP_PREFETCH_ABORT: 9796 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9797 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9798 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9799 env->exception.fsr, (uint32_t)env->exception.vaddress); 9800 new_mode = ARM_CPU_MODE_ABT; 9801 addr = 0x0c; 9802 mask = CPSR_A | CPSR_I; 9803 offset = 4; 9804 break; 9805 case EXCP_DATA_ABORT: 9806 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9807 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9808 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9809 env->exception.fsr, 9810 (uint32_t)env->exception.vaddress); 9811 new_mode = ARM_CPU_MODE_ABT; 9812 addr = 0x10; 9813 mask = CPSR_A | CPSR_I; 9814 offset = 8; 9815 break; 9816 case EXCP_IRQ: 9817 new_mode = ARM_CPU_MODE_IRQ; 9818 addr = 0x18; 9819 /* Disable IRQ and imprecise data aborts. */ 9820 mask = CPSR_A | CPSR_I; 9821 offset = 4; 9822 if (env->cp15.scr_el3 & SCR_IRQ) { 9823 /* IRQ routed to monitor mode */ 9824 new_mode = ARM_CPU_MODE_MON; 9825 mask |= CPSR_F; 9826 } 9827 break; 9828 case EXCP_FIQ: 9829 new_mode = ARM_CPU_MODE_FIQ; 9830 addr = 0x1c; 9831 /* Disable FIQ, IRQ and imprecise data aborts. */ 9832 mask = CPSR_A | CPSR_I | CPSR_F; 9833 if (env->cp15.scr_el3 & SCR_FIQ) { 9834 /* FIQ routed to monitor mode */ 9835 new_mode = ARM_CPU_MODE_MON; 9836 } 9837 offset = 4; 9838 break; 9839 case EXCP_VIRQ: 9840 new_mode = ARM_CPU_MODE_IRQ; 9841 addr = 0x18; 9842 /* Disable IRQ and imprecise data aborts. */ 9843 mask = CPSR_A | CPSR_I; 9844 offset = 4; 9845 break; 9846 case EXCP_VFIQ: 9847 new_mode = ARM_CPU_MODE_FIQ; 9848 addr = 0x1c; 9849 /* Disable FIQ, IRQ and imprecise data aborts. */ 9850 mask = CPSR_A | CPSR_I | CPSR_F; 9851 offset = 4; 9852 break; 9853 case EXCP_VSERR: 9854 { 9855 /* 9856 * Note that this is reported as a data abort, but the DFAR 9857 * has an UNKNOWN value. Construct the SError syndrome from 9858 * AET and ExT fields. 9859 */ 9860 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9861 9862 if (extended_addresses_enabled(env)) { 9863 env->exception.fsr = arm_fi_to_lfsc(&fi); 9864 } else { 9865 env->exception.fsr = arm_fi_to_sfsc(&fi); 9866 } 9867 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9868 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9869 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9870 env->exception.fsr); 9871 9872 new_mode = ARM_CPU_MODE_ABT; 9873 addr = 0x10; 9874 mask = CPSR_A | CPSR_I; 9875 offset = 8; 9876 } 9877 break; 9878 case EXCP_SMC: 9879 new_mode = ARM_CPU_MODE_MON; 9880 addr = 0x08; 9881 mask = CPSR_A | CPSR_I | CPSR_F; 9882 offset = 0; 9883 break; 9884 default: 9885 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9886 return; /* Never happens. Keep compiler happy. */ 9887 } 9888 9889 if (new_mode == ARM_CPU_MODE_MON) { 9890 addr += env->cp15.mvbar; 9891 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9892 /* High vectors. When enabled, base address cannot be remapped. */ 9893 addr += 0xffff0000; 9894 } else { 9895 /* ARM v7 architectures provide a vector base address register to remap 9896 * the interrupt vector table. 9897 * This register is only followed in non-monitor mode, and is banked. 9898 * Note: only bits 31:5 are valid. 9899 */ 9900 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9901 } 9902 9903 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9904 env->cp15.scr_el3 &= ~SCR_NS; 9905 } 9906 9907 take_aarch32_exception(env, new_mode, mask, offset, addr); 9908 } 9909 9910 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9911 { 9912 /* 9913 * Return the register number of the AArch64 view of the AArch32 9914 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9915 * be that of the AArch32 mode the exception came from. 9916 */ 9917 int mode = env->uncached_cpsr & CPSR_M; 9918 9919 switch (aarch32_reg) { 9920 case 0 ... 7: 9921 return aarch32_reg; 9922 case 8 ... 12: 9923 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9924 case 13: 9925 switch (mode) { 9926 case ARM_CPU_MODE_USR: 9927 case ARM_CPU_MODE_SYS: 9928 return 13; 9929 case ARM_CPU_MODE_HYP: 9930 return 15; 9931 case ARM_CPU_MODE_IRQ: 9932 return 17; 9933 case ARM_CPU_MODE_SVC: 9934 return 19; 9935 case ARM_CPU_MODE_ABT: 9936 return 21; 9937 case ARM_CPU_MODE_UND: 9938 return 23; 9939 case ARM_CPU_MODE_FIQ: 9940 return 29; 9941 default: 9942 g_assert_not_reached(); 9943 } 9944 case 14: 9945 switch (mode) { 9946 case ARM_CPU_MODE_USR: 9947 case ARM_CPU_MODE_SYS: 9948 case ARM_CPU_MODE_HYP: 9949 return 14; 9950 case ARM_CPU_MODE_IRQ: 9951 return 16; 9952 case ARM_CPU_MODE_SVC: 9953 return 18; 9954 case ARM_CPU_MODE_ABT: 9955 return 20; 9956 case ARM_CPU_MODE_UND: 9957 return 22; 9958 case ARM_CPU_MODE_FIQ: 9959 return 30; 9960 default: 9961 g_assert_not_reached(); 9962 } 9963 case 15: 9964 return 31; 9965 default: 9966 g_assert_not_reached(); 9967 } 9968 } 9969 9970 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9971 { 9972 uint32_t ret = cpsr_read(env); 9973 9974 /* Move DIT to the correct location for SPSR_ELx */ 9975 if (ret & CPSR_DIT) { 9976 ret &= ~CPSR_DIT; 9977 ret |= PSTATE_DIT; 9978 } 9979 /* Merge PSTATE.SS into SPSR_ELx */ 9980 ret |= env->pstate & PSTATE_SS; 9981 9982 return ret; 9983 } 9984 9985 /* Handle exception entry to a target EL which is using AArch64 */ 9986 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9987 { 9988 ARMCPU *cpu = ARM_CPU(cs); 9989 CPUARMState *env = &cpu->env; 9990 unsigned int new_el = env->exception.target_el; 9991 target_ulong addr = env->cp15.vbar_el[new_el]; 9992 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9993 unsigned int old_mode; 9994 unsigned int cur_el = arm_current_el(env); 9995 int rt; 9996 9997 /* 9998 * Note that new_el can never be 0. If cur_el is 0, then 9999 * el0_a64 is is_a64(), else el0_a64 is ignored. 10000 */ 10001 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10002 10003 if (cur_el < new_el) { 10004 /* Entry vector offset depends on whether the implemented EL 10005 * immediately lower than the target level is using AArch32 or AArch64 10006 */ 10007 bool is_aa64; 10008 uint64_t hcr; 10009 10010 switch (new_el) { 10011 case 3: 10012 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10013 break; 10014 case 2: 10015 hcr = arm_hcr_el2_eff(env); 10016 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10017 is_aa64 = (hcr & HCR_RW) != 0; 10018 break; 10019 } 10020 /* fall through */ 10021 case 1: 10022 is_aa64 = is_a64(env); 10023 break; 10024 default: 10025 g_assert_not_reached(); 10026 } 10027 10028 if (is_aa64) { 10029 addr += 0x400; 10030 } else { 10031 addr += 0x600; 10032 } 10033 } else if (pstate_read(env) & PSTATE_SP) { 10034 addr += 0x200; 10035 } 10036 10037 switch (cs->exception_index) { 10038 case EXCP_PREFETCH_ABORT: 10039 case EXCP_DATA_ABORT: 10040 env->cp15.far_el[new_el] = env->exception.vaddress; 10041 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10042 env->cp15.far_el[new_el]); 10043 /* fall through */ 10044 case EXCP_BKPT: 10045 case EXCP_UDEF: 10046 case EXCP_SWI: 10047 case EXCP_HVC: 10048 case EXCP_HYP_TRAP: 10049 case EXCP_SMC: 10050 switch (syn_get_ec(env->exception.syndrome)) { 10051 case EC_ADVSIMDFPACCESSTRAP: 10052 /* 10053 * QEMU internal FP/SIMD syndromes from AArch32 include the 10054 * TA and coproc fields which are only exposed if the exception 10055 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10056 * AArch64 format syndrome. 10057 */ 10058 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10059 break; 10060 case EC_CP14RTTRAP: 10061 case EC_CP15RTTRAP: 10062 case EC_CP14DTTRAP: 10063 /* 10064 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10065 * the raw register field from the insn; when taking this to 10066 * AArch64 we must convert it to the AArch64 view of the register 10067 * number. Notice that we read a 4-bit AArch32 register number and 10068 * write back a 5-bit AArch64 one. 10069 */ 10070 rt = extract32(env->exception.syndrome, 5, 4); 10071 rt = aarch64_regnum(env, rt); 10072 env->exception.syndrome = deposit32(env->exception.syndrome, 10073 5, 5, rt); 10074 break; 10075 case EC_CP15RRTTRAP: 10076 case EC_CP14RRTTRAP: 10077 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10078 rt = extract32(env->exception.syndrome, 5, 4); 10079 rt = aarch64_regnum(env, rt); 10080 env->exception.syndrome = deposit32(env->exception.syndrome, 10081 5, 5, rt); 10082 rt = extract32(env->exception.syndrome, 10, 4); 10083 rt = aarch64_regnum(env, rt); 10084 env->exception.syndrome = deposit32(env->exception.syndrome, 10085 10, 5, rt); 10086 break; 10087 } 10088 env->cp15.esr_el[new_el] = env->exception.syndrome; 10089 break; 10090 case EXCP_IRQ: 10091 case EXCP_VIRQ: 10092 addr += 0x80; 10093 break; 10094 case EXCP_FIQ: 10095 case EXCP_VFIQ: 10096 addr += 0x100; 10097 break; 10098 case EXCP_VSERR: 10099 addr += 0x180; 10100 /* Construct the SError syndrome from IDS and ISS fields. */ 10101 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10102 env->cp15.esr_el[new_el] = env->exception.syndrome; 10103 break; 10104 default: 10105 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10106 } 10107 10108 if (is_a64(env)) { 10109 old_mode = pstate_read(env); 10110 aarch64_save_sp(env, arm_current_el(env)); 10111 env->elr_el[new_el] = env->pc; 10112 } else { 10113 old_mode = cpsr_read_for_spsr_elx(env); 10114 env->elr_el[new_el] = env->regs[15]; 10115 10116 aarch64_sync_32_to_64(env); 10117 10118 env->condexec_bits = 0; 10119 } 10120 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10121 10122 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10123 env->elr_el[new_el]); 10124 10125 if (cpu_isar_feature(aa64_pan, cpu)) { 10126 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10127 new_mode |= old_mode & PSTATE_PAN; 10128 switch (new_el) { 10129 case 2: 10130 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10131 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10132 != (HCR_E2H | HCR_TGE)) { 10133 break; 10134 } 10135 /* fall through */ 10136 case 1: 10137 /* ... the target is EL1 ... */ 10138 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10139 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10140 new_mode |= PSTATE_PAN; 10141 } 10142 break; 10143 } 10144 } 10145 if (cpu_isar_feature(aa64_mte, cpu)) { 10146 new_mode |= PSTATE_TCO; 10147 } 10148 10149 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10150 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10151 new_mode |= PSTATE_SSBS; 10152 } else { 10153 new_mode &= ~PSTATE_SSBS; 10154 } 10155 } 10156 10157 pstate_write(env, PSTATE_DAIF | new_mode); 10158 env->aarch64 = true; 10159 aarch64_restore_sp(env, new_el); 10160 helper_rebuild_hflags_a64(env, new_el); 10161 10162 env->pc = addr; 10163 10164 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10165 new_el, env->pc, pstate_read(env)); 10166 } 10167 10168 /* 10169 * Do semihosting call and set the appropriate return value. All the 10170 * permission and validity checks have been done at translate time. 10171 * 10172 * We only see semihosting exceptions in TCG only as they are not 10173 * trapped to the hypervisor in KVM. 10174 */ 10175 #ifdef CONFIG_TCG 10176 static void handle_semihosting(CPUState *cs) 10177 { 10178 ARMCPU *cpu = ARM_CPU(cs); 10179 CPUARMState *env = &cpu->env; 10180 10181 if (is_a64(env)) { 10182 qemu_log_mask(CPU_LOG_INT, 10183 "...handling as semihosting call 0x%" PRIx64 "\n", 10184 env->xregs[0]); 10185 env->xregs[0] = do_common_semihosting(cs); 10186 env->pc += 4; 10187 } else { 10188 qemu_log_mask(CPU_LOG_INT, 10189 "...handling as semihosting call 0x%x\n", 10190 env->regs[0]); 10191 env->regs[0] = do_common_semihosting(cs); 10192 env->regs[15] += env->thumb ? 2 : 4; 10193 } 10194 } 10195 #endif 10196 10197 /* Handle a CPU exception for A and R profile CPUs. 10198 * Do any appropriate logging, handle PSCI calls, and then hand off 10199 * to the AArch64-entry or AArch32-entry function depending on the 10200 * target exception level's register width. 10201 * 10202 * Note: this is used for both TCG (as the do_interrupt tcg op), 10203 * and KVM to re-inject guest debug exceptions, and to 10204 * inject a Synchronous-External-Abort. 10205 */ 10206 void arm_cpu_do_interrupt(CPUState *cs) 10207 { 10208 ARMCPU *cpu = ARM_CPU(cs); 10209 CPUARMState *env = &cpu->env; 10210 unsigned int new_el = env->exception.target_el; 10211 10212 assert(!arm_feature(env, ARM_FEATURE_M)); 10213 10214 arm_log_exception(cs); 10215 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10216 new_el); 10217 if (qemu_loglevel_mask(CPU_LOG_INT) 10218 && !excp_is_internal(cs->exception_index)) { 10219 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10220 syn_get_ec(env->exception.syndrome), 10221 env->exception.syndrome); 10222 } 10223 10224 if (arm_is_psci_call(cpu, cs->exception_index)) { 10225 arm_handle_psci_call(cpu); 10226 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10227 return; 10228 } 10229 10230 /* 10231 * Semihosting semantics depend on the register width of the code 10232 * that caused the exception, not the target exception level, so 10233 * must be handled here. 10234 */ 10235 #ifdef CONFIG_TCG 10236 if (cs->exception_index == EXCP_SEMIHOST) { 10237 handle_semihosting(cs); 10238 return; 10239 } 10240 #endif 10241 10242 /* Hooks may change global state so BQL should be held, also the 10243 * BQL needs to be held for any modification of 10244 * cs->interrupt_request. 10245 */ 10246 g_assert(qemu_mutex_iothread_locked()); 10247 10248 arm_call_pre_el_change_hook(cpu); 10249 10250 assert(!excp_is_internal(cs->exception_index)); 10251 if (arm_el_is_aa64(env, new_el)) { 10252 arm_cpu_do_interrupt_aarch64(cs); 10253 } else { 10254 arm_cpu_do_interrupt_aarch32(cs); 10255 } 10256 10257 arm_call_el_change_hook(cpu); 10258 10259 if (!kvm_enabled()) { 10260 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10261 } 10262 } 10263 #endif /* !CONFIG_USER_ONLY */ 10264 10265 uint64_t arm_sctlr(CPUARMState *env, int el) 10266 { 10267 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10268 if (el == 0) { 10269 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10270 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10271 ? 2 : 1; 10272 } 10273 return env->cp15.sctlr_el[el]; 10274 } 10275 10276 /* Return the SCTLR value which controls this address translation regime */ 10277 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10278 { 10279 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10280 } 10281 10282 #ifndef CONFIG_USER_ONLY 10283 10284 /* Return true if the specified stage of address translation is disabled */ 10285 static inline bool regime_translation_disabled(CPUARMState *env, 10286 ARMMMUIdx mmu_idx) 10287 { 10288 uint64_t hcr_el2; 10289 10290 if (arm_feature(env, ARM_FEATURE_M)) { 10291 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10292 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10293 case R_V7M_MPU_CTRL_ENABLE_MASK: 10294 /* Enabled, but not for HardFault and NMI */ 10295 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10296 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10297 /* Enabled for all cases */ 10298 return false; 10299 case 0: 10300 default: 10301 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10302 * we warned about that in armv7m_nvic.c when the guest set it. 10303 */ 10304 return true; 10305 } 10306 } 10307 10308 hcr_el2 = arm_hcr_el2_eff(env); 10309 10310 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10311 /* HCR.DC means HCR.VM behaves as 1 */ 10312 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10313 } 10314 10315 if (hcr_el2 & HCR_TGE) { 10316 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10317 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10318 return true; 10319 } 10320 } 10321 10322 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10323 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10324 return true; 10325 } 10326 10327 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10328 } 10329 10330 static inline bool regime_translation_big_endian(CPUARMState *env, 10331 ARMMMUIdx mmu_idx) 10332 { 10333 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10334 } 10335 10336 /* Return the TTBR associated with this translation regime */ 10337 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10338 int ttbrn) 10339 { 10340 if (mmu_idx == ARMMMUIdx_Stage2) { 10341 return env->cp15.vttbr_el2; 10342 } 10343 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10344 return env->cp15.vsttbr_el2; 10345 } 10346 if (ttbrn == 0) { 10347 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10348 } else { 10349 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10350 } 10351 } 10352 10353 #endif /* !CONFIG_USER_ONLY */ 10354 10355 /* Convert a possible stage1+2 MMU index into the appropriate 10356 * stage 1 MMU index 10357 */ 10358 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10359 { 10360 switch (mmu_idx) { 10361 case ARMMMUIdx_SE10_0: 10362 return ARMMMUIdx_Stage1_SE0; 10363 case ARMMMUIdx_SE10_1: 10364 return ARMMMUIdx_Stage1_SE1; 10365 case ARMMMUIdx_SE10_1_PAN: 10366 return ARMMMUIdx_Stage1_SE1_PAN; 10367 case ARMMMUIdx_E10_0: 10368 return ARMMMUIdx_Stage1_E0; 10369 case ARMMMUIdx_E10_1: 10370 return ARMMMUIdx_Stage1_E1; 10371 case ARMMMUIdx_E10_1_PAN: 10372 return ARMMMUIdx_Stage1_E1_PAN; 10373 default: 10374 return mmu_idx; 10375 } 10376 } 10377 10378 /* Return true if the translation regime is using LPAE format page tables */ 10379 static inline bool regime_using_lpae_format(CPUARMState *env, 10380 ARMMMUIdx mmu_idx) 10381 { 10382 int el = regime_el(env, mmu_idx); 10383 if (el == 2 || arm_el_is_aa64(env, el)) { 10384 return true; 10385 } 10386 if (arm_feature(env, ARM_FEATURE_LPAE) 10387 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10388 return true; 10389 } 10390 return false; 10391 } 10392 10393 /* Returns true if the stage 1 translation regime is using LPAE format page 10394 * tables. Used when raising alignment exceptions, whose FSR changes depending 10395 * on whether the long or short descriptor format is in use. */ 10396 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10397 { 10398 mmu_idx = stage_1_mmu_idx(mmu_idx); 10399 10400 return regime_using_lpae_format(env, mmu_idx); 10401 } 10402 10403 #ifndef CONFIG_USER_ONLY 10404 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10405 { 10406 switch (mmu_idx) { 10407 case ARMMMUIdx_SE10_0: 10408 case ARMMMUIdx_E20_0: 10409 case ARMMMUIdx_SE20_0: 10410 case ARMMMUIdx_Stage1_E0: 10411 case ARMMMUIdx_Stage1_SE0: 10412 case ARMMMUIdx_MUser: 10413 case ARMMMUIdx_MSUser: 10414 case ARMMMUIdx_MUserNegPri: 10415 case ARMMMUIdx_MSUserNegPri: 10416 return true; 10417 default: 10418 return false; 10419 case ARMMMUIdx_E10_0: 10420 case ARMMMUIdx_E10_1: 10421 case ARMMMUIdx_E10_1_PAN: 10422 g_assert_not_reached(); 10423 } 10424 } 10425 10426 /* Translate section/page access permissions to page 10427 * R/W protection flags 10428 * 10429 * @env: CPUARMState 10430 * @mmu_idx: MMU index indicating required translation regime 10431 * @ap: The 3-bit access permissions (AP[2:0]) 10432 * @domain_prot: The 2-bit domain access permissions 10433 */ 10434 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10435 int ap, int domain_prot) 10436 { 10437 bool is_user = regime_is_user(env, mmu_idx); 10438 10439 if (domain_prot == 3) { 10440 return PAGE_READ | PAGE_WRITE; 10441 } 10442 10443 switch (ap) { 10444 case 0: 10445 if (arm_feature(env, ARM_FEATURE_V7)) { 10446 return 0; 10447 } 10448 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10449 case SCTLR_S: 10450 return is_user ? 0 : PAGE_READ; 10451 case SCTLR_R: 10452 return PAGE_READ; 10453 default: 10454 return 0; 10455 } 10456 case 1: 10457 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10458 case 2: 10459 if (is_user) { 10460 return PAGE_READ; 10461 } else { 10462 return PAGE_READ | PAGE_WRITE; 10463 } 10464 case 3: 10465 return PAGE_READ | PAGE_WRITE; 10466 case 4: /* Reserved. */ 10467 return 0; 10468 case 5: 10469 return is_user ? 0 : PAGE_READ; 10470 case 6: 10471 return PAGE_READ; 10472 case 7: 10473 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10474 return 0; 10475 } 10476 return PAGE_READ; 10477 default: 10478 g_assert_not_reached(); 10479 } 10480 } 10481 10482 /* Translate section/page access permissions to page 10483 * R/W protection flags. 10484 * 10485 * @ap: The 2-bit simple AP (AP[2:1]) 10486 * @is_user: TRUE if accessing from PL0 10487 */ 10488 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10489 { 10490 switch (ap) { 10491 case 0: 10492 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10493 case 1: 10494 return PAGE_READ | PAGE_WRITE; 10495 case 2: 10496 return is_user ? 0 : PAGE_READ; 10497 case 3: 10498 return PAGE_READ; 10499 default: 10500 g_assert_not_reached(); 10501 } 10502 } 10503 10504 static inline int 10505 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10506 { 10507 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10508 } 10509 10510 /* Translate S2 section/page access permissions to protection flags 10511 * 10512 * @env: CPUARMState 10513 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10514 * @xn: XN (execute-never) bits 10515 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10516 */ 10517 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10518 { 10519 int prot = 0; 10520 10521 if (s2ap & 1) { 10522 prot |= PAGE_READ; 10523 } 10524 if (s2ap & 2) { 10525 prot |= PAGE_WRITE; 10526 } 10527 10528 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10529 switch (xn) { 10530 case 0: 10531 prot |= PAGE_EXEC; 10532 break; 10533 case 1: 10534 if (s1_is_el0) { 10535 prot |= PAGE_EXEC; 10536 } 10537 break; 10538 case 2: 10539 break; 10540 case 3: 10541 if (!s1_is_el0) { 10542 prot |= PAGE_EXEC; 10543 } 10544 break; 10545 default: 10546 g_assert_not_reached(); 10547 } 10548 } else { 10549 if (!extract32(xn, 1, 1)) { 10550 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10551 prot |= PAGE_EXEC; 10552 } 10553 } 10554 } 10555 return prot; 10556 } 10557 10558 /* Translate section/page access permissions to protection flags 10559 * 10560 * @env: CPUARMState 10561 * @mmu_idx: MMU index indicating required translation regime 10562 * @is_aa64: TRUE if AArch64 10563 * @ap: The 2-bit simple AP (AP[2:1]) 10564 * @ns: NS (non-secure) bit 10565 * @xn: XN (execute-never) bit 10566 * @pxn: PXN (privileged execute-never) bit 10567 */ 10568 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10569 int ap, int ns, int xn, int pxn) 10570 { 10571 bool is_user = regime_is_user(env, mmu_idx); 10572 int prot_rw, user_rw; 10573 bool have_wxn; 10574 int wxn = 0; 10575 10576 assert(mmu_idx != ARMMMUIdx_Stage2); 10577 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10578 10579 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10580 if (is_user) { 10581 prot_rw = user_rw; 10582 } else { 10583 if (user_rw && regime_is_pan(env, mmu_idx)) { 10584 /* PAN forbids data accesses but doesn't affect insn fetch */ 10585 prot_rw = 0; 10586 } else { 10587 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10588 } 10589 } 10590 10591 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10592 return prot_rw; 10593 } 10594 10595 /* TODO have_wxn should be replaced with 10596 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10597 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10598 * compatible processors have EL2, which is required for [U]WXN. 10599 */ 10600 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10601 10602 if (have_wxn) { 10603 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10604 } 10605 10606 if (is_aa64) { 10607 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10608 xn = pxn || (user_rw & PAGE_WRITE); 10609 } 10610 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10611 switch (regime_el(env, mmu_idx)) { 10612 case 1: 10613 case 3: 10614 if (is_user) { 10615 xn = xn || !(user_rw & PAGE_READ); 10616 } else { 10617 int uwxn = 0; 10618 if (have_wxn) { 10619 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10620 } 10621 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10622 (uwxn && (user_rw & PAGE_WRITE)); 10623 } 10624 break; 10625 case 2: 10626 break; 10627 } 10628 } else { 10629 xn = wxn = 0; 10630 } 10631 10632 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10633 return prot_rw; 10634 } 10635 return prot_rw | PAGE_EXEC; 10636 } 10637 10638 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10639 uint32_t *table, uint32_t address) 10640 { 10641 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10642 TCR *tcr = regime_tcr(env, mmu_idx); 10643 10644 if (address & tcr->mask) { 10645 if (tcr->raw_tcr & TTBCR_PD1) { 10646 /* Translation table walk disabled for TTBR1 */ 10647 return false; 10648 } 10649 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10650 } else { 10651 if (tcr->raw_tcr & TTBCR_PD0) { 10652 /* Translation table walk disabled for TTBR0 */ 10653 return false; 10654 } 10655 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10656 } 10657 *table |= (address >> 18) & 0x3ffc; 10658 return true; 10659 } 10660 10661 /* Translate a S1 pagetable walk through S2 if needed. */ 10662 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10663 hwaddr addr, bool *is_secure, 10664 ARMMMUFaultInfo *fi) 10665 { 10666 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10667 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10668 target_ulong s2size; 10669 hwaddr s2pa; 10670 int s2prot; 10671 int ret; 10672 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10673 : ARMMMUIdx_Stage2; 10674 ARMCacheAttrs cacheattrs = {}; 10675 MemTxAttrs txattrs = {}; 10676 10677 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10678 &s2pa, &txattrs, &s2prot, &s2size, fi, 10679 &cacheattrs); 10680 if (ret) { 10681 assert(fi->type != ARMFault_None); 10682 fi->s2addr = addr; 10683 fi->stage2 = true; 10684 fi->s1ptw = true; 10685 fi->s1ns = !*is_secure; 10686 return ~0; 10687 } 10688 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10689 (cacheattrs.attrs & 0xf0) == 0) { 10690 /* 10691 * PTW set and S1 walk touched S2 Device memory: 10692 * generate Permission fault. 10693 */ 10694 fi->type = ARMFault_Permission; 10695 fi->s2addr = addr; 10696 fi->stage2 = true; 10697 fi->s1ptw = true; 10698 fi->s1ns = !*is_secure; 10699 return ~0; 10700 } 10701 10702 if (arm_is_secure_below_el3(env)) { 10703 /* Check if page table walk is to secure or non-secure PA space. */ 10704 if (*is_secure) { 10705 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10706 } else { 10707 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10708 } 10709 } else { 10710 assert(!*is_secure); 10711 } 10712 10713 addr = s2pa; 10714 } 10715 return addr; 10716 } 10717 10718 /* All loads done in the course of a page table walk go through here. */ 10719 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10720 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10721 { 10722 ARMCPU *cpu = ARM_CPU(cs); 10723 CPUARMState *env = &cpu->env; 10724 MemTxAttrs attrs = {}; 10725 MemTxResult result = MEMTX_OK; 10726 AddressSpace *as; 10727 uint32_t data; 10728 10729 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10730 attrs.secure = is_secure; 10731 as = arm_addressspace(cs, attrs); 10732 if (fi->s1ptw) { 10733 return 0; 10734 } 10735 if (regime_translation_big_endian(env, mmu_idx)) { 10736 data = address_space_ldl_be(as, addr, attrs, &result); 10737 } else { 10738 data = address_space_ldl_le(as, addr, attrs, &result); 10739 } 10740 if (result == MEMTX_OK) { 10741 return data; 10742 } 10743 fi->type = ARMFault_SyncExternalOnWalk; 10744 fi->ea = arm_extabort_type(result); 10745 return 0; 10746 } 10747 10748 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10749 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10750 { 10751 ARMCPU *cpu = ARM_CPU(cs); 10752 CPUARMState *env = &cpu->env; 10753 MemTxAttrs attrs = {}; 10754 MemTxResult result = MEMTX_OK; 10755 AddressSpace *as; 10756 uint64_t data; 10757 10758 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10759 attrs.secure = is_secure; 10760 as = arm_addressspace(cs, attrs); 10761 if (fi->s1ptw) { 10762 return 0; 10763 } 10764 if (regime_translation_big_endian(env, mmu_idx)) { 10765 data = address_space_ldq_be(as, addr, attrs, &result); 10766 } else { 10767 data = address_space_ldq_le(as, addr, attrs, &result); 10768 } 10769 if (result == MEMTX_OK) { 10770 return data; 10771 } 10772 fi->type = ARMFault_SyncExternalOnWalk; 10773 fi->ea = arm_extabort_type(result); 10774 return 0; 10775 } 10776 10777 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10778 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10779 hwaddr *phys_ptr, int *prot, 10780 target_ulong *page_size, 10781 ARMMMUFaultInfo *fi) 10782 { 10783 CPUState *cs = env_cpu(env); 10784 int level = 1; 10785 uint32_t table; 10786 uint32_t desc; 10787 int type; 10788 int ap; 10789 int domain = 0; 10790 int domain_prot; 10791 hwaddr phys_addr; 10792 uint32_t dacr; 10793 10794 /* Pagetable walk. */ 10795 /* Lookup l1 descriptor. */ 10796 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10797 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10798 fi->type = ARMFault_Translation; 10799 goto do_fault; 10800 } 10801 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10802 mmu_idx, fi); 10803 if (fi->type != ARMFault_None) { 10804 goto do_fault; 10805 } 10806 type = (desc & 3); 10807 domain = (desc >> 5) & 0x0f; 10808 if (regime_el(env, mmu_idx) == 1) { 10809 dacr = env->cp15.dacr_ns; 10810 } else { 10811 dacr = env->cp15.dacr_s; 10812 } 10813 domain_prot = (dacr >> (domain * 2)) & 3; 10814 if (type == 0) { 10815 /* Section translation fault. */ 10816 fi->type = ARMFault_Translation; 10817 goto do_fault; 10818 } 10819 if (type != 2) { 10820 level = 2; 10821 } 10822 if (domain_prot == 0 || domain_prot == 2) { 10823 fi->type = ARMFault_Domain; 10824 goto do_fault; 10825 } 10826 if (type == 2) { 10827 /* 1Mb section. */ 10828 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10829 ap = (desc >> 10) & 3; 10830 *page_size = 1024 * 1024; 10831 } else { 10832 /* Lookup l2 entry. */ 10833 if (type == 1) { 10834 /* Coarse pagetable. */ 10835 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10836 } else { 10837 /* Fine pagetable. */ 10838 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10839 } 10840 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10841 mmu_idx, fi); 10842 if (fi->type != ARMFault_None) { 10843 goto do_fault; 10844 } 10845 switch (desc & 3) { 10846 case 0: /* Page translation fault. */ 10847 fi->type = ARMFault_Translation; 10848 goto do_fault; 10849 case 1: /* 64k page. */ 10850 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10851 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10852 *page_size = 0x10000; 10853 break; 10854 case 2: /* 4k page. */ 10855 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10856 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10857 *page_size = 0x1000; 10858 break; 10859 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10860 if (type == 1) { 10861 /* ARMv6/XScale extended small page format */ 10862 if (arm_feature(env, ARM_FEATURE_XSCALE) 10863 || arm_feature(env, ARM_FEATURE_V6)) { 10864 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10865 *page_size = 0x1000; 10866 } else { 10867 /* UNPREDICTABLE in ARMv5; we choose to take a 10868 * page translation fault. 10869 */ 10870 fi->type = ARMFault_Translation; 10871 goto do_fault; 10872 } 10873 } else { 10874 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10875 *page_size = 0x400; 10876 } 10877 ap = (desc >> 4) & 3; 10878 break; 10879 default: 10880 /* Never happens, but compiler isn't smart enough to tell. */ 10881 g_assert_not_reached(); 10882 } 10883 } 10884 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10885 *prot |= *prot ? PAGE_EXEC : 0; 10886 if (!(*prot & (1 << access_type))) { 10887 /* Access permission fault. */ 10888 fi->type = ARMFault_Permission; 10889 goto do_fault; 10890 } 10891 *phys_ptr = phys_addr; 10892 return false; 10893 do_fault: 10894 fi->domain = domain; 10895 fi->level = level; 10896 return true; 10897 } 10898 10899 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10900 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10901 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10902 target_ulong *page_size, ARMMMUFaultInfo *fi) 10903 { 10904 CPUState *cs = env_cpu(env); 10905 ARMCPU *cpu = env_archcpu(env); 10906 int level = 1; 10907 uint32_t table; 10908 uint32_t desc; 10909 uint32_t xn; 10910 uint32_t pxn = 0; 10911 int type; 10912 int ap; 10913 int domain = 0; 10914 int domain_prot; 10915 hwaddr phys_addr; 10916 uint32_t dacr; 10917 bool ns; 10918 10919 /* Pagetable walk. */ 10920 /* Lookup l1 descriptor. */ 10921 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10922 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10923 fi->type = ARMFault_Translation; 10924 goto do_fault; 10925 } 10926 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10927 mmu_idx, fi); 10928 if (fi->type != ARMFault_None) { 10929 goto do_fault; 10930 } 10931 type = (desc & 3); 10932 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10933 /* Section translation fault, or attempt to use the encoding 10934 * which is Reserved on implementations without PXN. 10935 */ 10936 fi->type = ARMFault_Translation; 10937 goto do_fault; 10938 } 10939 if ((type == 1) || !(desc & (1 << 18))) { 10940 /* Page or Section. */ 10941 domain = (desc >> 5) & 0x0f; 10942 } 10943 if (regime_el(env, mmu_idx) == 1) { 10944 dacr = env->cp15.dacr_ns; 10945 } else { 10946 dacr = env->cp15.dacr_s; 10947 } 10948 if (type == 1) { 10949 level = 2; 10950 } 10951 domain_prot = (dacr >> (domain * 2)) & 3; 10952 if (domain_prot == 0 || domain_prot == 2) { 10953 /* Section or Page domain fault */ 10954 fi->type = ARMFault_Domain; 10955 goto do_fault; 10956 } 10957 if (type != 1) { 10958 if (desc & (1 << 18)) { 10959 /* Supersection. */ 10960 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10961 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10962 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10963 *page_size = 0x1000000; 10964 } else { 10965 /* Section. */ 10966 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10967 *page_size = 0x100000; 10968 } 10969 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10970 xn = desc & (1 << 4); 10971 pxn = desc & 1; 10972 ns = extract32(desc, 19, 1); 10973 } else { 10974 if (cpu_isar_feature(aa32_pxn, cpu)) { 10975 pxn = (desc >> 2) & 1; 10976 } 10977 ns = extract32(desc, 3, 1); 10978 /* Lookup l2 entry. */ 10979 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10980 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10981 mmu_idx, fi); 10982 if (fi->type != ARMFault_None) { 10983 goto do_fault; 10984 } 10985 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10986 switch (desc & 3) { 10987 case 0: /* Page translation fault. */ 10988 fi->type = ARMFault_Translation; 10989 goto do_fault; 10990 case 1: /* 64k page. */ 10991 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10992 xn = desc & (1 << 15); 10993 *page_size = 0x10000; 10994 break; 10995 case 2: case 3: /* 4k page. */ 10996 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10997 xn = desc & 1; 10998 *page_size = 0x1000; 10999 break; 11000 default: 11001 /* Never happens, but compiler isn't smart enough to tell. */ 11002 g_assert_not_reached(); 11003 } 11004 } 11005 if (domain_prot == 3) { 11006 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11007 } else { 11008 if (pxn && !regime_is_user(env, mmu_idx)) { 11009 xn = 1; 11010 } 11011 if (xn && access_type == MMU_INST_FETCH) { 11012 fi->type = ARMFault_Permission; 11013 goto do_fault; 11014 } 11015 11016 if (arm_feature(env, ARM_FEATURE_V6K) && 11017 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11018 /* The simplified model uses AP[0] as an access control bit. */ 11019 if ((ap & 1) == 0) { 11020 /* Access flag fault. */ 11021 fi->type = ARMFault_AccessFlag; 11022 goto do_fault; 11023 } 11024 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11025 } else { 11026 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11027 } 11028 if (*prot && !xn) { 11029 *prot |= PAGE_EXEC; 11030 } 11031 if (!(*prot & (1 << access_type))) { 11032 /* Access permission fault. */ 11033 fi->type = ARMFault_Permission; 11034 goto do_fault; 11035 } 11036 } 11037 if (ns) { 11038 /* The NS bit will (as required by the architecture) have no effect if 11039 * the CPU doesn't support TZ or this is a non-secure translation 11040 * regime, because the attribute will already be non-secure. 11041 */ 11042 attrs->secure = false; 11043 } 11044 *phys_ptr = phys_addr; 11045 return false; 11046 do_fault: 11047 fi->domain = domain; 11048 fi->level = level; 11049 return true; 11050 } 11051 11052 /* 11053 * check_s2_mmu_setup 11054 * @cpu: ARMCPU 11055 * @is_aa64: True if the translation regime is in AArch64 state 11056 * @startlevel: Suggested starting level 11057 * @inputsize: Bitsize of IPAs 11058 * @stride: Page-table stride (See the ARM ARM) 11059 * 11060 * Returns true if the suggested S2 translation parameters are OK and 11061 * false otherwise. 11062 */ 11063 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11064 int inputsize, int stride, int outputsize) 11065 { 11066 const int grainsize = stride + 3; 11067 int startsizecheck; 11068 11069 /* 11070 * Negative levels are usually not allowed... 11071 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11072 * begins with level -1. Note that previous feature tests will have 11073 * eliminated this combination if it is not enabled. 11074 */ 11075 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11076 return false; 11077 } 11078 11079 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11080 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11081 return false; 11082 } 11083 11084 if (is_aa64) { 11085 switch (stride) { 11086 case 13: /* 64KB Pages. */ 11087 if (level == 0 || (level == 1 && outputsize <= 42)) { 11088 return false; 11089 } 11090 break; 11091 case 11: /* 16KB Pages. */ 11092 if (level == 0 || (level == 1 && outputsize <= 40)) { 11093 return false; 11094 } 11095 break; 11096 case 9: /* 4KB Pages. */ 11097 if (level == 0 && outputsize <= 42) { 11098 return false; 11099 } 11100 break; 11101 default: 11102 g_assert_not_reached(); 11103 } 11104 11105 /* Inputsize checks. */ 11106 if (inputsize > outputsize && 11107 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11108 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11109 return false; 11110 } 11111 } else { 11112 /* AArch32 only supports 4KB pages. Assert on that. */ 11113 assert(stride == 9); 11114 11115 if (level == 0) { 11116 return false; 11117 } 11118 } 11119 return true; 11120 } 11121 11122 /* Translate from the 4-bit stage 2 representation of 11123 * memory attributes (without cache-allocation hints) to 11124 * the 8-bit representation of the stage 1 MAIR registers 11125 * (which includes allocation hints). 11126 * 11127 * ref: shared/translation/attrs/S2AttrDecode() 11128 * .../S2ConvertAttrsHints() 11129 */ 11130 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11131 { 11132 uint8_t hiattr = extract32(s2attrs, 2, 2); 11133 uint8_t loattr = extract32(s2attrs, 0, 2); 11134 uint8_t hihint = 0, lohint = 0; 11135 11136 if (hiattr != 0) { /* normal memory */ 11137 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11138 hiattr = loattr = 1; /* non-cacheable */ 11139 } else { 11140 if (hiattr != 1) { /* Write-through or write-back */ 11141 hihint = 3; /* RW allocate */ 11142 } 11143 if (loattr != 1) { /* Write-through or write-back */ 11144 lohint = 3; /* RW allocate */ 11145 } 11146 } 11147 } 11148 11149 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11150 } 11151 #endif /* !CONFIG_USER_ONLY */ 11152 11153 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11154 static const uint8_t pamax_map[] = { 11155 [0] = 32, 11156 [1] = 36, 11157 [2] = 40, 11158 [3] = 42, 11159 [4] = 44, 11160 [5] = 48, 11161 [6] = 52, 11162 }; 11163 11164 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11165 unsigned int arm_pamax(ARMCPU *cpu) 11166 { 11167 unsigned int parange = 11168 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11169 11170 /* 11171 * id_aa64mmfr0 is a read-only register so values outside of the 11172 * supported mappings can be considered an implementation error. 11173 */ 11174 assert(parange < ARRAY_SIZE(pamax_map)); 11175 return pamax_map[parange]; 11176 } 11177 11178 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11179 { 11180 if (regime_has_2_ranges(mmu_idx)) { 11181 return extract64(tcr, 37, 2); 11182 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11183 return 0; /* VTCR_EL2 */ 11184 } else { 11185 /* Replicate the single TBI bit so we always have 2 bits. */ 11186 return extract32(tcr, 20, 1) * 3; 11187 } 11188 } 11189 11190 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11191 { 11192 if (regime_has_2_ranges(mmu_idx)) { 11193 return extract64(tcr, 51, 2); 11194 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11195 return 0; /* VTCR_EL2 */ 11196 } else { 11197 /* Replicate the single TBID bit so we always have 2 bits. */ 11198 return extract32(tcr, 29, 1) * 3; 11199 } 11200 } 11201 11202 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11203 { 11204 if (regime_has_2_ranges(mmu_idx)) { 11205 return extract64(tcr, 57, 2); 11206 } else { 11207 /* Replicate the single TCMA bit so we always have 2 bits. */ 11208 return extract32(tcr, 30, 1) * 3; 11209 } 11210 } 11211 11212 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11213 ARMMMUIdx mmu_idx, bool data) 11214 { 11215 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11216 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11217 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11218 ARMCPU *cpu = env_archcpu(env); 11219 11220 if (!regime_has_2_ranges(mmu_idx)) { 11221 select = 0; 11222 tsz = extract32(tcr, 0, 6); 11223 using64k = extract32(tcr, 14, 1); 11224 using16k = extract32(tcr, 15, 1); 11225 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11226 /* VTCR_EL2 */ 11227 hpd = false; 11228 } else { 11229 hpd = extract32(tcr, 24, 1); 11230 } 11231 epd = false; 11232 sh = extract32(tcr, 12, 2); 11233 ps = extract32(tcr, 16, 3); 11234 ds = extract64(tcr, 32, 1); 11235 } else { 11236 /* 11237 * Bit 55 is always between the two regions, and is canonical for 11238 * determining if address tagging is enabled. 11239 */ 11240 select = extract64(va, 55, 1); 11241 if (!select) { 11242 tsz = extract32(tcr, 0, 6); 11243 epd = extract32(tcr, 7, 1); 11244 sh = extract32(tcr, 12, 2); 11245 using64k = extract32(tcr, 14, 1); 11246 using16k = extract32(tcr, 15, 1); 11247 hpd = extract64(tcr, 41, 1); 11248 } else { 11249 int tg = extract32(tcr, 30, 2); 11250 using16k = tg == 1; 11251 using64k = tg == 3; 11252 tsz = extract32(tcr, 16, 6); 11253 epd = extract32(tcr, 23, 1); 11254 sh = extract32(tcr, 28, 2); 11255 hpd = extract64(tcr, 42, 1); 11256 } 11257 ps = extract64(tcr, 32, 3); 11258 ds = extract64(tcr, 59, 1); 11259 } 11260 11261 if (cpu_isar_feature(aa64_st, cpu)) { 11262 max_tsz = 48 - using64k; 11263 } else { 11264 max_tsz = 39; 11265 } 11266 11267 /* 11268 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11269 * adjust the effective value of DS, as documented. 11270 */ 11271 min_tsz = 16; 11272 if (using64k) { 11273 if (cpu_isar_feature(aa64_lva, cpu)) { 11274 min_tsz = 12; 11275 } 11276 ds = false; 11277 } else if (ds) { 11278 switch (mmu_idx) { 11279 case ARMMMUIdx_Stage2: 11280 case ARMMMUIdx_Stage2_S: 11281 if (using16k) { 11282 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11283 } else { 11284 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11285 } 11286 break; 11287 default: 11288 if (using16k) { 11289 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11290 } else { 11291 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11292 } 11293 break; 11294 } 11295 if (ds) { 11296 min_tsz = 12; 11297 } 11298 } 11299 11300 if (tsz > max_tsz) { 11301 tsz = max_tsz; 11302 tsz_oob = true; 11303 } else if (tsz < min_tsz) { 11304 tsz = min_tsz; 11305 tsz_oob = true; 11306 } else { 11307 tsz_oob = false; 11308 } 11309 11310 /* Present TBI as a composite with TBID. */ 11311 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11312 if (!data) { 11313 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11314 } 11315 tbi = (tbi >> select) & 1; 11316 11317 return (ARMVAParameters) { 11318 .tsz = tsz, 11319 .ps = ps, 11320 .sh = sh, 11321 .select = select, 11322 .tbi = tbi, 11323 .epd = epd, 11324 .hpd = hpd, 11325 .using16k = using16k, 11326 .using64k = using64k, 11327 .tsz_oob = tsz_oob, 11328 .ds = ds, 11329 }; 11330 } 11331 11332 #ifndef CONFIG_USER_ONLY 11333 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11334 ARMMMUIdx mmu_idx) 11335 { 11336 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11337 uint32_t el = regime_el(env, mmu_idx); 11338 int select, tsz; 11339 bool epd, hpd; 11340 11341 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11342 11343 if (mmu_idx == ARMMMUIdx_Stage2) { 11344 /* VTCR */ 11345 bool sext = extract32(tcr, 4, 1); 11346 bool sign = extract32(tcr, 3, 1); 11347 11348 /* 11349 * If the sign-extend bit is not the same as t0sz[3], the result 11350 * is unpredictable. Flag this as a guest error. 11351 */ 11352 if (sign != sext) { 11353 qemu_log_mask(LOG_GUEST_ERROR, 11354 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11355 } 11356 tsz = sextract32(tcr, 0, 4) + 8; 11357 select = 0; 11358 hpd = false; 11359 epd = false; 11360 } else if (el == 2) { 11361 /* HTCR */ 11362 tsz = extract32(tcr, 0, 3); 11363 select = 0; 11364 hpd = extract64(tcr, 24, 1); 11365 epd = false; 11366 } else { 11367 int t0sz = extract32(tcr, 0, 3); 11368 int t1sz = extract32(tcr, 16, 3); 11369 11370 if (t1sz == 0) { 11371 select = va > (0xffffffffu >> t0sz); 11372 } else { 11373 /* Note that we will detect errors later. */ 11374 select = va >= ~(0xffffffffu >> t1sz); 11375 } 11376 if (!select) { 11377 tsz = t0sz; 11378 epd = extract32(tcr, 7, 1); 11379 hpd = extract64(tcr, 41, 1); 11380 } else { 11381 tsz = t1sz; 11382 epd = extract32(tcr, 23, 1); 11383 hpd = extract64(tcr, 42, 1); 11384 } 11385 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11386 hpd &= extract32(tcr, 6, 1); 11387 } 11388 11389 return (ARMVAParameters) { 11390 .tsz = tsz, 11391 .select = select, 11392 .epd = epd, 11393 .hpd = hpd, 11394 }; 11395 } 11396 11397 /** 11398 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11399 * 11400 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11401 * prot and page_size may not be filled in, and the populated fsr value provides 11402 * information on why the translation aborted, in the format of a long-format 11403 * DFSR/IFSR fault register, with the following caveats: 11404 * * the WnR bit is never set (the caller must do this). 11405 * 11406 * @env: CPUARMState 11407 * @address: virtual address to get physical address for 11408 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11409 * @mmu_idx: MMU index indicating required translation regime 11410 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11411 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11412 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11413 * @phys_ptr: set to the physical address corresponding to the virtual address 11414 * @attrs: set to the memory transaction attributes to use 11415 * @prot: set to the permissions for the page containing phys_ptr 11416 * @page_size_ptr: set to the size of the page containing phys_ptr 11417 * @fi: set to fault info if the translation fails 11418 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11419 */ 11420 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11421 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11422 bool s1_is_el0, 11423 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11424 target_ulong *page_size_ptr, 11425 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11426 { 11427 ARMCPU *cpu = env_archcpu(env); 11428 CPUState *cs = CPU(cpu); 11429 /* Read an LPAE long-descriptor translation table. */ 11430 ARMFaultType fault_type = ARMFault_Translation; 11431 uint32_t level; 11432 ARMVAParameters param; 11433 uint64_t ttbr; 11434 hwaddr descaddr, indexmask, indexmask_grainsize; 11435 uint32_t tableattrs; 11436 target_ulong page_size; 11437 uint32_t attrs; 11438 int32_t stride; 11439 int addrsize, inputsize, outputsize; 11440 TCR *tcr = regime_tcr(env, mmu_idx); 11441 int ap, ns, xn, pxn; 11442 uint32_t el = regime_el(env, mmu_idx); 11443 uint64_t descaddrmask; 11444 bool aarch64 = arm_el_is_aa64(env, el); 11445 bool guarded = false; 11446 11447 /* TODO: This code does not support shareability levels. */ 11448 if (aarch64) { 11449 int ps; 11450 11451 param = aa64_va_parameters(env, address, mmu_idx, 11452 access_type != MMU_INST_FETCH); 11453 level = 0; 11454 11455 /* 11456 * If TxSZ is programmed to a value larger than the maximum, 11457 * or smaller than the effective minimum, it is IMPLEMENTATION 11458 * DEFINED whether we behave as if the field were programmed 11459 * within bounds, or if a level 0 Translation fault is generated. 11460 * 11461 * With FEAT_LVA, fault on less than minimum becomes required, 11462 * so our choice is to always raise the fault. 11463 */ 11464 if (param.tsz_oob) { 11465 fault_type = ARMFault_Translation; 11466 goto do_fault; 11467 } 11468 11469 addrsize = 64 - 8 * param.tbi; 11470 inputsize = 64 - param.tsz; 11471 11472 /* 11473 * Bound PS by PARANGE to find the effective output address size. 11474 * ID_AA64MMFR0 is a read-only register so values outside of the 11475 * supported mappings can be considered an implementation error. 11476 */ 11477 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11478 ps = MIN(ps, param.ps); 11479 assert(ps < ARRAY_SIZE(pamax_map)); 11480 outputsize = pamax_map[ps]; 11481 } else { 11482 param = aa32_va_parameters(env, address, mmu_idx); 11483 level = 1; 11484 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11485 inputsize = addrsize - param.tsz; 11486 outputsize = 40; 11487 } 11488 11489 /* 11490 * We determined the region when collecting the parameters, but we 11491 * have not yet validated that the address is valid for the region. 11492 * Extract the top bits and verify that they all match select. 11493 * 11494 * For aa32, if inputsize == addrsize, then we have selected the 11495 * region by exclusion in aa32_va_parameters and there is no more 11496 * validation to do here. 11497 */ 11498 if (inputsize < addrsize) { 11499 target_ulong top_bits = sextract64(address, inputsize, 11500 addrsize - inputsize); 11501 if (-top_bits != param.select) { 11502 /* The gap between the two regions is a Translation fault */ 11503 fault_type = ARMFault_Translation; 11504 goto do_fault; 11505 } 11506 } 11507 11508 if (param.using64k) { 11509 stride = 13; 11510 } else if (param.using16k) { 11511 stride = 11; 11512 } else { 11513 stride = 9; 11514 } 11515 11516 /* Note that QEMU ignores shareability and cacheability attributes, 11517 * so we don't need to do anything with the SH, ORGN, IRGN fields 11518 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11519 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11520 * implement any ASID-like capability so we can ignore it (instead 11521 * we will always flush the TLB any time the ASID is changed). 11522 */ 11523 ttbr = regime_ttbr(env, mmu_idx, param.select); 11524 11525 /* Here we should have set up all the parameters for the translation: 11526 * inputsize, ttbr, epd, stride, tbi 11527 */ 11528 11529 if (param.epd) { 11530 /* Translation table walk disabled => Translation fault on TLB miss 11531 * Note: This is always 0 on 64-bit EL2 and EL3. 11532 */ 11533 goto do_fault; 11534 } 11535 11536 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11537 /* The starting level depends on the virtual address size (which can 11538 * be up to 48 bits) and the translation granule size. It indicates 11539 * the number of strides (stride bits at a time) needed to 11540 * consume the bits of the input address. In the pseudocode this is: 11541 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11542 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11543 * our 'stride + 3' and 'stride' is our 'stride'. 11544 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11545 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11546 * = 4 - (inputsize - 4) / stride; 11547 */ 11548 level = 4 - (inputsize - 4) / stride; 11549 } else { 11550 /* For stage 2 translations the starting level is specified by the 11551 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11552 */ 11553 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11554 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11555 uint32_t startlevel; 11556 bool ok; 11557 11558 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11559 if (param.ds && stride == 9 && sl2) { 11560 if (sl0 != 0) { 11561 level = 0; 11562 fault_type = ARMFault_Translation; 11563 goto do_fault; 11564 } 11565 startlevel = -1; 11566 } else if (!aarch64 || stride == 9) { 11567 /* AArch32 or 4KB pages */ 11568 startlevel = 2 - sl0; 11569 11570 if (cpu_isar_feature(aa64_st, cpu)) { 11571 startlevel &= 3; 11572 } 11573 } else { 11574 /* 16KB or 64KB pages */ 11575 startlevel = 3 - sl0; 11576 } 11577 11578 /* Check that the starting level is valid. */ 11579 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11580 inputsize, stride, outputsize); 11581 if (!ok) { 11582 fault_type = ARMFault_Translation; 11583 goto do_fault; 11584 } 11585 level = startlevel; 11586 } 11587 11588 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11589 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11590 11591 /* Now we can extract the actual base address from the TTBR */ 11592 descaddr = extract64(ttbr, 0, 48); 11593 11594 /* 11595 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11596 * 11597 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11598 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11599 * but we've just cleared the bits above 47, so simplify the test. 11600 */ 11601 if (outputsize > 48) { 11602 descaddr |= extract64(ttbr, 2, 4) << 48; 11603 } else if (descaddr >> outputsize) { 11604 level = 0; 11605 fault_type = ARMFault_AddressSize; 11606 goto do_fault; 11607 } 11608 11609 /* 11610 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11611 * and also to mask out CnP (bit 0) which could validly be non-zero. 11612 */ 11613 descaddr &= ~indexmask; 11614 11615 /* 11616 * For AArch32, the address field in the descriptor goes up to bit 39 11617 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11618 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11619 * bits as part of the address, which will be checked via outputsize. 11620 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11621 * the highest bits of a 52-bit output are placed elsewhere. 11622 */ 11623 if (param.ds) { 11624 descaddrmask = MAKE_64BIT_MASK(0, 50); 11625 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11626 descaddrmask = MAKE_64BIT_MASK(0, 48); 11627 } else { 11628 descaddrmask = MAKE_64BIT_MASK(0, 40); 11629 } 11630 descaddrmask &= ~indexmask_grainsize; 11631 11632 /* Secure accesses start with the page table in secure memory and 11633 * can be downgraded to non-secure at any step. Non-secure accesses 11634 * remain non-secure. We implement this by just ORing in the NSTable/NS 11635 * bits at each step. 11636 */ 11637 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11638 for (;;) { 11639 uint64_t descriptor; 11640 bool nstable; 11641 11642 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11643 descaddr &= ~7ULL; 11644 nstable = extract32(tableattrs, 4, 1); 11645 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11646 if (fi->type != ARMFault_None) { 11647 goto do_fault; 11648 } 11649 11650 if (!(descriptor & 1) || 11651 (!(descriptor & 2) && (level == 3))) { 11652 /* Invalid, or the Reserved level 3 encoding */ 11653 goto do_fault; 11654 } 11655 11656 descaddr = descriptor & descaddrmask; 11657 11658 /* 11659 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11660 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11661 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11662 * raise AddressSizeFault. 11663 */ 11664 if (outputsize > 48) { 11665 if (param.ds) { 11666 descaddr |= extract64(descriptor, 8, 2) << 50; 11667 } else { 11668 descaddr |= extract64(descriptor, 12, 4) << 48; 11669 } 11670 } else if (descaddr >> outputsize) { 11671 fault_type = ARMFault_AddressSize; 11672 goto do_fault; 11673 } 11674 11675 if ((descriptor & 2) && (level < 3)) { 11676 /* Table entry. The top five bits are attributes which may 11677 * propagate down through lower levels of the table (and 11678 * which are all arranged so that 0 means "no effect", so 11679 * we can gather them up by ORing in the bits at each level). 11680 */ 11681 tableattrs |= extract64(descriptor, 59, 5); 11682 level++; 11683 indexmask = indexmask_grainsize; 11684 continue; 11685 } 11686 /* 11687 * Block entry at level 1 or 2, or page entry at level 3. 11688 * These are basically the same thing, although the number 11689 * of bits we pull in from the vaddr varies. Note that although 11690 * descaddrmask masks enough of the low bits of the descriptor 11691 * to give a correct page or table address, the address field 11692 * in a block descriptor is smaller; so we need to explicitly 11693 * clear the lower bits here before ORing in the low vaddr bits. 11694 */ 11695 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11696 descaddr &= ~(page_size - 1); 11697 descaddr |= (address & (page_size - 1)); 11698 /* Extract attributes from the descriptor */ 11699 attrs = extract64(descriptor, 2, 10) 11700 | (extract64(descriptor, 52, 12) << 10); 11701 11702 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11703 /* Stage 2 table descriptors do not include any attribute fields */ 11704 break; 11705 } 11706 /* Merge in attributes from table descriptors */ 11707 attrs |= nstable << 3; /* NS */ 11708 guarded = extract64(descriptor, 50, 1); /* GP */ 11709 if (param.hpd) { 11710 /* HPD disables all the table attributes except NSTable. */ 11711 break; 11712 } 11713 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11714 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11715 * means "force PL1 access only", which means forcing AP[1] to 0. 11716 */ 11717 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11718 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11719 break; 11720 } 11721 /* Here descaddr is the final physical address, and attributes 11722 * are all in attrs. 11723 */ 11724 fault_type = ARMFault_AccessFlag; 11725 if ((attrs & (1 << 8)) == 0) { 11726 /* Access flag */ 11727 goto do_fault; 11728 } 11729 11730 ap = extract32(attrs, 4, 2); 11731 11732 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11733 ns = mmu_idx == ARMMMUIdx_Stage2; 11734 xn = extract32(attrs, 11, 2); 11735 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11736 } else { 11737 ns = extract32(attrs, 3, 1); 11738 xn = extract32(attrs, 12, 1); 11739 pxn = extract32(attrs, 11, 1); 11740 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11741 } 11742 11743 fault_type = ARMFault_Permission; 11744 if (!(*prot & (1 << access_type))) { 11745 goto do_fault; 11746 } 11747 11748 if (ns) { 11749 /* The NS bit will (as required by the architecture) have no effect if 11750 * the CPU doesn't support TZ or this is a non-secure translation 11751 * regime, because the attribute will already be non-secure. 11752 */ 11753 txattrs->secure = false; 11754 } 11755 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11756 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11757 arm_tlb_bti_gp(txattrs) = true; 11758 } 11759 11760 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11761 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11762 } else { 11763 /* Index into MAIR registers for cache attributes */ 11764 uint8_t attrindx = extract32(attrs, 0, 3); 11765 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11766 assert(attrindx <= 7); 11767 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11768 } 11769 11770 /* 11771 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11772 * was re-purposed for output address bits. The SH attribute in 11773 * that case comes from TCR_ELx, which we extracted earlier. 11774 */ 11775 if (param.ds) { 11776 cacheattrs->shareability = param.sh; 11777 } else { 11778 cacheattrs->shareability = extract32(attrs, 6, 2); 11779 } 11780 11781 *phys_ptr = descaddr; 11782 *page_size_ptr = page_size; 11783 return false; 11784 11785 do_fault: 11786 fi->type = fault_type; 11787 fi->level = level; 11788 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11789 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11790 mmu_idx == ARMMMUIdx_Stage2_S); 11791 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11792 return true; 11793 } 11794 11795 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11796 ARMMMUIdx mmu_idx, 11797 int32_t address, int *prot) 11798 { 11799 if (!arm_feature(env, ARM_FEATURE_M)) { 11800 *prot = PAGE_READ | PAGE_WRITE; 11801 switch (address) { 11802 case 0xF0000000 ... 0xFFFFFFFF: 11803 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11804 /* hivecs execing is ok */ 11805 *prot |= PAGE_EXEC; 11806 } 11807 break; 11808 case 0x00000000 ... 0x7FFFFFFF: 11809 *prot |= PAGE_EXEC; 11810 break; 11811 } 11812 } else { 11813 /* Default system address map for M profile cores. 11814 * The architecture specifies which regions are execute-never; 11815 * at the MPU level no other checks are defined. 11816 */ 11817 switch (address) { 11818 case 0x00000000 ... 0x1fffffff: /* ROM */ 11819 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11820 case 0x60000000 ... 0x7fffffff: /* RAM */ 11821 case 0x80000000 ... 0x9fffffff: /* RAM */ 11822 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11823 break; 11824 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11825 case 0xa0000000 ... 0xbfffffff: /* Device */ 11826 case 0xc0000000 ... 0xdfffffff: /* Device */ 11827 case 0xe0000000 ... 0xffffffff: /* System */ 11828 *prot = PAGE_READ | PAGE_WRITE; 11829 break; 11830 default: 11831 g_assert_not_reached(); 11832 } 11833 } 11834 } 11835 11836 static bool pmsav7_use_background_region(ARMCPU *cpu, 11837 ARMMMUIdx mmu_idx, bool is_user) 11838 { 11839 /* Return true if we should use the default memory map as a 11840 * "background" region if there are no hits against any MPU regions. 11841 */ 11842 CPUARMState *env = &cpu->env; 11843 11844 if (is_user) { 11845 return false; 11846 } 11847 11848 if (arm_feature(env, ARM_FEATURE_M)) { 11849 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11850 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11851 } else { 11852 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11853 } 11854 } 11855 11856 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11857 { 11858 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11859 return arm_feature(env, ARM_FEATURE_M) && 11860 extract32(address, 20, 12) == 0xe00; 11861 } 11862 11863 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11864 { 11865 /* True if address is in the M profile system region 11866 * 0xe0000000 - 0xffffffff 11867 */ 11868 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11869 } 11870 11871 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11872 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11873 hwaddr *phys_ptr, int *prot, 11874 target_ulong *page_size, 11875 ARMMMUFaultInfo *fi) 11876 { 11877 ARMCPU *cpu = env_archcpu(env); 11878 int n; 11879 bool is_user = regime_is_user(env, mmu_idx); 11880 11881 *phys_ptr = address; 11882 *page_size = TARGET_PAGE_SIZE; 11883 *prot = 0; 11884 11885 if (regime_translation_disabled(env, mmu_idx) || 11886 m_is_ppb_region(env, address)) { 11887 /* MPU disabled or M profile PPB access: use default memory map. 11888 * The other case which uses the default memory map in the 11889 * v7M ARM ARM pseudocode is exception vector reads from the vector 11890 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11891 * which always does a direct read using address_space_ldl(), rather 11892 * than going via this function, so we don't need to check that here. 11893 */ 11894 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11895 } else { /* MPU enabled */ 11896 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11897 /* region search */ 11898 uint32_t base = env->pmsav7.drbar[n]; 11899 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11900 uint32_t rmask; 11901 bool srdis = false; 11902 11903 if (!(env->pmsav7.drsr[n] & 0x1)) { 11904 continue; 11905 } 11906 11907 if (!rsize) { 11908 qemu_log_mask(LOG_GUEST_ERROR, 11909 "DRSR[%d]: Rsize field cannot be 0\n", n); 11910 continue; 11911 } 11912 rsize++; 11913 rmask = (1ull << rsize) - 1; 11914 11915 if (base & rmask) { 11916 qemu_log_mask(LOG_GUEST_ERROR, 11917 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11918 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11919 n, base, rmask); 11920 continue; 11921 } 11922 11923 if (address < base || address > base + rmask) { 11924 /* 11925 * Address not in this region. We must check whether the 11926 * region covers addresses in the same page as our address. 11927 * In that case we must not report a size that covers the 11928 * whole page for a subsequent hit against a different MPU 11929 * region or the background region, because it would result in 11930 * incorrect TLB hits for subsequent accesses to addresses that 11931 * are in this MPU region. 11932 */ 11933 if (ranges_overlap(base, rmask, 11934 address & TARGET_PAGE_MASK, 11935 TARGET_PAGE_SIZE)) { 11936 *page_size = 1; 11937 } 11938 continue; 11939 } 11940 11941 /* Region matched */ 11942 11943 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11944 int i, snd; 11945 uint32_t srdis_mask; 11946 11947 rsize -= 3; /* sub region size (power of 2) */ 11948 snd = ((address - base) >> rsize) & 0x7; 11949 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11950 11951 srdis_mask = srdis ? 0x3 : 0x0; 11952 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11953 /* This will check in groups of 2, 4 and then 8, whether 11954 * the subregion bits are consistent. rsize is incremented 11955 * back up to give the region size, considering consistent 11956 * adjacent subregions as one region. Stop testing if rsize 11957 * is already big enough for an entire QEMU page. 11958 */ 11959 int snd_rounded = snd & ~(i - 1); 11960 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11961 snd_rounded + 8, i); 11962 if (srdis_mask ^ srdis_multi) { 11963 break; 11964 } 11965 srdis_mask = (srdis_mask << i) | srdis_mask; 11966 rsize++; 11967 } 11968 } 11969 if (srdis) { 11970 continue; 11971 } 11972 if (rsize < TARGET_PAGE_BITS) { 11973 *page_size = 1 << rsize; 11974 } 11975 break; 11976 } 11977 11978 if (n == -1) { /* no hits */ 11979 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11980 /* background fault */ 11981 fi->type = ARMFault_Background; 11982 return true; 11983 } 11984 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11985 } else { /* a MPU hit! */ 11986 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11987 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11988 11989 if (m_is_system_region(env, address)) { 11990 /* System space is always execute never */ 11991 xn = 1; 11992 } 11993 11994 if (is_user) { /* User mode AP bit decoding */ 11995 switch (ap) { 11996 case 0: 11997 case 1: 11998 case 5: 11999 break; /* no access */ 12000 case 3: 12001 *prot |= PAGE_WRITE; 12002 /* fall through */ 12003 case 2: 12004 case 6: 12005 *prot |= PAGE_READ | PAGE_EXEC; 12006 break; 12007 case 7: 12008 /* for v7M, same as 6; for R profile a reserved value */ 12009 if (arm_feature(env, ARM_FEATURE_M)) { 12010 *prot |= PAGE_READ | PAGE_EXEC; 12011 break; 12012 } 12013 /* fall through */ 12014 default: 12015 qemu_log_mask(LOG_GUEST_ERROR, 12016 "DRACR[%d]: Bad value for AP bits: 0x%" 12017 PRIx32 "\n", n, ap); 12018 } 12019 } else { /* Priv. mode AP bits decoding */ 12020 switch (ap) { 12021 case 0: 12022 break; /* no access */ 12023 case 1: 12024 case 2: 12025 case 3: 12026 *prot |= PAGE_WRITE; 12027 /* fall through */ 12028 case 5: 12029 case 6: 12030 *prot |= PAGE_READ | PAGE_EXEC; 12031 break; 12032 case 7: 12033 /* for v7M, same as 6; for R profile a reserved value */ 12034 if (arm_feature(env, ARM_FEATURE_M)) { 12035 *prot |= PAGE_READ | PAGE_EXEC; 12036 break; 12037 } 12038 /* fall through */ 12039 default: 12040 qemu_log_mask(LOG_GUEST_ERROR, 12041 "DRACR[%d]: Bad value for AP bits: 0x%" 12042 PRIx32 "\n", n, ap); 12043 } 12044 } 12045 12046 /* execute never */ 12047 if (xn) { 12048 *prot &= ~PAGE_EXEC; 12049 } 12050 } 12051 } 12052 12053 fi->type = ARMFault_Permission; 12054 fi->level = 1; 12055 return !(*prot & (1 << access_type)); 12056 } 12057 12058 static bool v8m_is_sau_exempt(CPUARMState *env, 12059 uint32_t address, MMUAccessType access_type) 12060 { 12061 /* The architecture specifies that certain address ranges are 12062 * exempt from v8M SAU/IDAU checks. 12063 */ 12064 return 12065 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12066 (address >= 0xe0000000 && address <= 0xe0002fff) || 12067 (address >= 0xe000e000 && address <= 0xe000efff) || 12068 (address >= 0xe002e000 && address <= 0xe002efff) || 12069 (address >= 0xe0040000 && address <= 0xe0041fff) || 12070 (address >= 0xe00ff000 && address <= 0xe00fffff); 12071 } 12072 12073 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12074 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12075 V8M_SAttributes *sattrs) 12076 { 12077 /* Look up the security attributes for this address. Compare the 12078 * pseudocode SecurityCheck() function. 12079 * We assume the caller has zero-initialized *sattrs. 12080 */ 12081 ARMCPU *cpu = env_archcpu(env); 12082 int r; 12083 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12084 int idau_region = IREGION_NOTVALID; 12085 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12086 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12087 12088 if (cpu->idau) { 12089 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12090 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12091 12092 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12093 &idau_nsc); 12094 } 12095 12096 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12097 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12098 return; 12099 } 12100 12101 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12102 sattrs->ns = !regime_is_secure(env, mmu_idx); 12103 return; 12104 } 12105 12106 if (idau_region != IREGION_NOTVALID) { 12107 sattrs->irvalid = true; 12108 sattrs->iregion = idau_region; 12109 } 12110 12111 switch (env->sau.ctrl & 3) { 12112 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12113 break; 12114 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12115 sattrs->ns = true; 12116 break; 12117 default: /* SAU.ENABLE == 1 */ 12118 for (r = 0; r < cpu->sau_sregion; r++) { 12119 if (env->sau.rlar[r] & 1) { 12120 uint32_t base = env->sau.rbar[r] & ~0x1f; 12121 uint32_t limit = env->sau.rlar[r] | 0x1f; 12122 12123 if (base <= address && limit >= address) { 12124 if (base > addr_page_base || limit < addr_page_limit) { 12125 sattrs->subpage = true; 12126 } 12127 if (sattrs->srvalid) { 12128 /* If we hit in more than one region then we must report 12129 * as Secure, not NS-Callable, with no valid region 12130 * number info. 12131 */ 12132 sattrs->ns = false; 12133 sattrs->nsc = false; 12134 sattrs->sregion = 0; 12135 sattrs->srvalid = false; 12136 break; 12137 } else { 12138 if (env->sau.rlar[r] & 2) { 12139 sattrs->nsc = true; 12140 } else { 12141 sattrs->ns = true; 12142 } 12143 sattrs->srvalid = true; 12144 sattrs->sregion = r; 12145 } 12146 } else { 12147 /* 12148 * Address not in this region. We must check whether the 12149 * region covers addresses in the same page as our address. 12150 * In that case we must not report a size that covers the 12151 * whole page for a subsequent hit against a different MPU 12152 * region or the background region, because it would result 12153 * in incorrect TLB hits for subsequent accesses to 12154 * addresses that are in this MPU region. 12155 */ 12156 if (limit >= base && 12157 ranges_overlap(base, limit - base + 1, 12158 addr_page_base, 12159 TARGET_PAGE_SIZE)) { 12160 sattrs->subpage = true; 12161 } 12162 } 12163 } 12164 } 12165 break; 12166 } 12167 12168 /* 12169 * The IDAU will override the SAU lookup results if it specifies 12170 * higher security than the SAU does. 12171 */ 12172 if (!idau_ns) { 12173 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12174 sattrs->ns = false; 12175 sattrs->nsc = idau_nsc; 12176 } 12177 } 12178 } 12179 12180 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12181 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12182 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12183 int *prot, bool *is_subpage, 12184 ARMMMUFaultInfo *fi, uint32_t *mregion) 12185 { 12186 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12187 * that a full phys-to-virt translation does). 12188 * mregion is (if not NULL) set to the region number which matched, 12189 * or -1 if no region number is returned (MPU off, address did not 12190 * hit a region, address hit in multiple regions). 12191 * We set is_subpage to true if the region hit doesn't cover the 12192 * entire TARGET_PAGE the address is within. 12193 */ 12194 ARMCPU *cpu = env_archcpu(env); 12195 bool is_user = regime_is_user(env, mmu_idx); 12196 uint32_t secure = regime_is_secure(env, mmu_idx); 12197 int n; 12198 int matchregion = -1; 12199 bool hit = false; 12200 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12201 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12202 12203 *is_subpage = false; 12204 *phys_ptr = address; 12205 *prot = 0; 12206 if (mregion) { 12207 *mregion = -1; 12208 } 12209 12210 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12211 * was an exception vector read from the vector table (which is always 12212 * done using the default system address map), because those accesses 12213 * are done in arm_v7m_load_vector(), which always does a direct 12214 * read using address_space_ldl(), rather than going via this function. 12215 */ 12216 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12217 hit = true; 12218 } else if (m_is_ppb_region(env, address)) { 12219 hit = true; 12220 } else { 12221 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12222 hit = true; 12223 } 12224 12225 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12226 /* region search */ 12227 /* Note that the base address is bits [31:5] from the register 12228 * with bits [4:0] all zeroes, but the limit address is bits 12229 * [31:5] from the register with bits [4:0] all ones. 12230 */ 12231 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12232 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12233 12234 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12235 /* Region disabled */ 12236 continue; 12237 } 12238 12239 if (address < base || address > limit) { 12240 /* 12241 * Address not in this region. We must check whether the 12242 * region covers addresses in the same page as our address. 12243 * In that case we must not report a size that covers the 12244 * whole page for a subsequent hit against a different MPU 12245 * region or the background region, because it would result in 12246 * incorrect TLB hits for subsequent accesses to addresses that 12247 * are in this MPU region. 12248 */ 12249 if (limit >= base && 12250 ranges_overlap(base, limit - base + 1, 12251 addr_page_base, 12252 TARGET_PAGE_SIZE)) { 12253 *is_subpage = true; 12254 } 12255 continue; 12256 } 12257 12258 if (base > addr_page_base || limit < addr_page_limit) { 12259 *is_subpage = true; 12260 } 12261 12262 if (matchregion != -1) { 12263 /* Multiple regions match -- always a failure (unlike 12264 * PMSAv7 where highest-numbered-region wins) 12265 */ 12266 fi->type = ARMFault_Permission; 12267 fi->level = 1; 12268 return true; 12269 } 12270 12271 matchregion = n; 12272 hit = true; 12273 } 12274 } 12275 12276 if (!hit) { 12277 /* background fault */ 12278 fi->type = ARMFault_Background; 12279 return true; 12280 } 12281 12282 if (matchregion == -1) { 12283 /* hit using the background region */ 12284 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12285 } else { 12286 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12287 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12288 bool pxn = false; 12289 12290 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12291 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12292 } 12293 12294 if (m_is_system_region(env, address)) { 12295 /* System space is always execute never */ 12296 xn = 1; 12297 } 12298 12299 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12300 if (*prot && !xn && !(pxn && !is_user)) { 12301 *prot |= PAGE_EXEC; 12302 } 12303 /* We don't need to look the attribute up in the MAIR0/MAIR1 12304 * registers because that only tells us about cacheability. 12305 */ 12306 if (mregion) { 12307 *mregion = matchregion; 12308 } 12309 } 12310 12311 fi->type = ARMFault_Permission; 12312 fi->level = 1; 12313 return !(*prot & (1 << access_type)); 12314 } 12315 12316 12317 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12318 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12319 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12320 int *prot, target_ulong *page_size, 12321 ARMMMUFaultInfo *fi) 12322 { 12323 uint32_t secure = regime_is_secure(env, mmu_idx); 12324 V8M_SAttributes sattrs = {}; 12325 bool ret; 12326 bool mpu_is_subpage; 12327 12328 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12329 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12330 if (access_type == MMU_INST_FETCH) { 12331 /* Instruction fetches always use the MMU bank and the 12332 * transaction attribute determined by the fetch address, 12333 * regardless of CPU state. This is painful for QEMU 12334 * to handle, because it would mean we need to encode 12335 * into the mmu_idx not just the (user, negpri) information 12336 * for the current security state but also that for the 12337 * other security state, which would balloon the number 12338 * of mmu_idx values needed alarmingly. 12339 * Fortunately we can avoid this because it's not actually 12340 * possible to arbitrarily execute code from memory with 12341 * the wrong security attribute: it will always generate 12342 * an exception of some kind or another, apart from the 12343 * special case of an NS CPU executing an SG instruction 12344 * in S&NSC memory. So we always just fail the translation 12345 * here and sort things out in the exception handler 12346 * (including possibly emulating an SG instruction). 12347 */ 12348 if (sattrs.ns != !secure) { 12349 if (sattrs.nsc) { 12350 fi->type = ARMFault_QEMU_NSCExec; 12351 } else { 12352 fi->type = ARMFault_QEMU_SFault; 12353 } 12354 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12355 *phys_ptr = address; 12356 *prot = 0; 12357 return true; 12358 } 12359 } else { 12360 /* For data accesses we always use the MMU bank indicated 12361 * by the current CPU state, but the security attributes 12362 * might downgrade a secure access to nonsecure. 12363 */ 12364 if (sattrs.ns) { 12365 txattrs->secure = false; 12366 } else if (!secure) { 12367 /* NS access to S memory must fault. 12368 * Architecturally we should first check whether the 12369 * MPU information for this address indicates that we 12370 * are doing an unaligned access to Device memory, which 12371 * should generate a UsageFault instead. QEMU does not 12372 * currently check for that kind of unaligned access though. 12373 * If we added it we would need to do so as a special case 12374 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12375 */ 12376 fi->type = ARMFault_QEMU_SFault; 12377 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12378 *phys_ptr = address; 12379 *prot = 0; 12380 return true; 12381 } 12382 } 12383 } 12384 12385 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12386 txattrs, prot, &mpu_is_subpage, fi, NULL); 12387 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12388 return ret; 12389 } 12390 12391 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12392 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12393 hwaddr *phys_ptr, int *prot, 12394 ARMMMUFaultInfo *fi) 12395 { 12396 int n; 12397 uint32_t mask; 12398 uint32_t base; 12399 bool is_user = regime_is_user(env, mmu_idx); 12400 12401 if (regime_translation_disabled(env, mmu_idx)) { 12402 /* MPU disabled. */ 12403 *phys_ptr = address; 12404 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12405 return false; 12406 } 12407 12408 *phys_ptr = address; 12409 for (n = 7; n >= 0; n--) { 12410 base = env->cp15.c6_region[n]; 12411 if ((base & 1) == 0) { 12412 continue; 12413 } 12414 mask = 1 << ((base >> 1) & 0x1f); 12415 /* Keep this shift separate from the above to avoid an 12416 (undefined) << 32. */ 12417 mask = (mask << 1) - 1; 12418 if (((base ^ address) & ~mask) == 0) { 12419 break; 12420 } 12421 } 12422 if (n < 0) { 12423 fi->type = ARMFault_Background; 12424 return true; 12425 } 12426 12427 if (access_type == MMU_INST_FETCH) { 12428 mask = env->cp15.pmsav5_insn_ap; 12429 } else { 12430 mask = env->cp15.pmsav5_data_ap; 12431 } 12432 mask = (mask >> (n * 4)) & 0xf; 12433 switch (mask) { 12434 case 0: 12435 fi->type = ARMFault_Permission; 12436 fi->level = 1; 12437 return true; 12438 case 1: 12439 if (is_user) { 12440 fi->type = ARMFault_Permission; 12441 fi->level = 1; 12442 return true; 12443 } 12444 *prot = PAGE_READ | PAGE_WRITE; 12445 break; 12446 case 2: 12447 *prot = PAGE_READ; 12448 if (!is_user) { 12449 *prot |= PAGE_WRITE; 12450 } 12451 break; 12452 case 3: 12453 *prot = PAGE_READ | PAGE_WRITE; 12454 break; 12455 case 5: 12456 if (is_user) { 12457 fi->type = ARMFault_Permission; 12458 fi->level = 1; 12459 return true; 12460 } 12461 *prot = PAGE_READ; 12462 break; 12463 case 6: 12464 *prot = PAGE_READ; 12465 break; 12466 default: 12467 /* Bad permission. */ 12468 fi->type = ARMFault_Permission; 12469 fi->level = 1; 12470 return true; 12471 } 12472 *prot |= PAGE_EXEC; 12473 return false; 12474 } 12475 12476 /* Combine either inner or outer cacheability attributes for normal 12477 * memory, according to table D4-42 and pseudocode procedure 12478 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12479 * 12480 * NB: only stage 1 includes allocation hints (RW bits), leading to 12481 * some asymmetry. 12482 */ 12483 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12484 { 12485 if (s1 == 4 || s2 == 4) { 12486 /* non-cacheable has precedence */ 12487 return 4; 12488 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12489 /* stage 1 write-through takes precedence */ 12490 return s1; 12491 } else if (extract32(s2, 2, 2) == 2) { 12492 /* stage 2 write-through takes precedence, but the allocation hint 12493 * is still taken from stage 1 12494 */ 12495 return (2 << 2) | extract32(s1, 0, 2); 12496 } else { /* write-back */ 12497 return s1; 12498 } 12499 } 12500 12501 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12502 * and CombineS1S2Desc() 12503 * 12504 * @s1: Attributes from stage 1 walk 12505 * @s2: Attributes from stage 2 walk 12506 */ 12507 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12508 { 12509 uint8_t s1lo, s2lo, s1hi, s2hi; 12510 ARMCacheAttrs ret; 12511 bool tagged = false; 12512 12513 if (s1.attrs == 0xf0) { 12514 tagged = true; 12515 s1.attrs = 0xff; 12516 } 12517 12518 s1lo = extract32(s1.attrs, 0, 4); 12519 s2lo = extract32(s2.attrs, 0, 4); 12520 s1hi = extract32(s1.attrs, 4, 4); 12521 s2hi = extract32(s2.attrs, 4, 4); 12522 12523 /* Combine shareability attributes (table D4-43) */ 12524 if (s1.shareability == 2 || s2.shareability == 2) { 12525 /* if either are outer-shareable, the result is outer-shareable */ 12526 ret.shareability = 2; 12527 } else if (s1.shareability == 3 || s2.shareability == 3) { 12528 /* if either are inner-shareable, the result is inner-shareable */ 12529 ret.shareability = 3; 12530 } else { 12531 /* both non-shareable */ 12532 ret.shareability = 0; 12533 } 12534 12535 /* Combine memory type and cacheability attributes */ 12536 if (s1hi == 0 || s2hi == 0) { 12537 /* Device has precedence over normal */ 12538 if (s1lo == 0 || s2lo == 0) { 12539 /* nGnRnE has precedence over anything */ 12540 ret.attrs = 0; 12541 } else if (s1lo == 4 || s2lo == 4) { 12542 /* non-Reordering has precedence over Reordering */ 12543 ret.attrs = 4; /* nGnRE */ 12544 } else if (s1lo == 8 || s2lo == 8) { 12545 /* non-Gathering has precedence over Gathering */ 12546 ret.attrs = 8; /* nGRE */ 12547 } else { 12548 ret.attrs = 0xc; /* GRE */ 12549 } 12550 12551 /* Any location for which the resultant memory type is any 12552 * type of Device memory is always treated as Outer Shareable. 12553 */ 12554 ret.shareability = 2; 12555 } else { /* Normal memory */ 12556 /* Outer/inner cacheability combine independently */ 12557 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12558 | combine_cacheattr_nibble(s1lo, s2lo); 12559 12560 if (ret.attrs == 0x44) { 12561 /* Any location for which the resultant memory type is Normal 12562 * Inner Non-cacheable, Outer Non-cacheable is always treated 12563 * as Outer Shareable. 12564 */ 12565 ret.shareability = 2; 12566 } 12567 } 12568 12569 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12570 if (tagged && ret.attrs == 0xff) { 12571 ret.attrs = 0xf0; 12572 } 12573 12574 return ret; 12575 } 12576 12577 12578 /* get_phys_addr - get the physical address for this virtual address 12579 * 12580 * Find the physical address corresponding to the given virtual address, 12581 * by doing a translation table walk on MMU based systems or using the 12582 * MPU state on MPU based systems. 12583 * 12584 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12585 * prot and page_size may not be filled in, and the populated fsr value provides 12586 * information on why the translation aborted, in the format of a 12587 * DFSR/IFSR fault register, with the following caveats: 12588 * * we honour the short vs long DFSR format differences. 12589 * * the WnR bit is never set (the caller must do this). 12590 * * for PSMAv5 based systems we don't bother to return a full FSR format 12591 * value. 12592 * 12593 * @env: CPUARMState 12594 * @address: virtual address to get physical address for 12595 * @access_type: 0 for read, 1 for write, 2 for execute 12596 * @mmu_idx: MMU index indicating required translation regime 12597 * @phys_ptr: set to the physical address corresponding to the virtual address 12598 * @attrs: set to the memory transaction attributes to use 12599 * @prot: set to the permissions for the page containing phys_ptr 12600 * @page_size: set to the size of the page containing phys_ptr 12601 * @fi: set to fault info if the translation fails 12602 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12603 */ 12604 bool get_phys_addr(CPUARMState *env, target_ulong address, 12605 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12606 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12607 target_ulong *page_size, 12608 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12609 { 12610 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12611 12612 if (mmu_idx != s1_mmu_idx) { 12613 /* Call ourselves recursively to do the stage 1 and then stage 2 12614 * translations if mmu_idx is a two-stage regime. 12615 */ 12616 if (arm_feature(env, ARM_FEATURE_EL2)) { 12617 hwaddr ipa; 12618 int s2_prot; 12619 int ret; 12620 bool ipa_secure; 12621 ARMCacheAttrs cacheattrs2 = {}; 12622 ARMMMUIdx s2_mmu_idx; 12623 bool is_el0; 12624 12625 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12626 attrs, prot, page_size, fi, cacheattrs); 12627 12628 /* If S1 fails or S2 is disabled, return early. */ 12629 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12630 *phys_ptr = ipa; 12631 return ret; 12632 } 12633 12634 ipa_secure = attrs->secure; 12635 if (arm_is_secure_below_el3(env)) { 12636 if (ipa_secure) { 12637 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12638 } else { 12639 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12640 } 12641 } else { 12642 assert(!ipa_secure); 12643 } 12644 12645 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12646 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12647 12648 /* S1 is done. Now do S2 translation. */ 12649 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12650 phys_ptr, attrs, &s2_prot, 12651 page_size, fi, &cacheattrs2); 12652 fi->s2addr = ipa; 12653 /* Combine the S1 and S2 perms. */ 12654 *prot &= s2_prot; 12655 12656 /* If S2 fails, return early. */ 12657 if (ret) { 12658 return ret; 12659 } 12660 12661 /* Combine the S1 and S2 cache attributes. */ 12662 if (arm_hcr_el2_eff(env) & HCR_DC) { 12663 /* 12664 * HCR.DC forces the first stage attributes to 12665 * Normal Non-Shareable, 12666 * Inner Write-Back Read-Allocate Write-Allocate, 12667 * Outer Write-Back Read-Allocate Write-Allocate. 12668 * Do not overwrite Tagged within attrs. 12669 */ 12670 if (cacheattrs->attrs != 0xf0) { 12671 cacheattrs->attrs = 0xff; 12672 } 12673 cacheattrs->shareability = 0; 12674 } 12675 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12676 12677 /* Check if IPA translates to secure or non-secure PA space. */ 12678 if (arm_is_secure_below_el3(env)) { 12679 if (ipa_secure) { 12680 attrs->secure = 12681 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12682 } else { 12683 attrs->secure = 12684 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12685 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12686 } 12687 } 12688 return 0; 12689 } else { 12690 /* 12691 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12692 */ 12693 mmu_idx = stage_1_mmu_idx(mmu_idx); 12694 } 12695 } 12696 12697 /* The page table entries may downgrade secure to non-secure, but 12698 * cannot upgrade an non-secure translation regime's attributes 12699 * to secure. 12700 */ 12701 attrs->secure = regime_is_secure(env, mmu_idx); 12702 attrs->user = regime_is_user(env, mmu_idx); 12703 12704 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12705 * In v7 and earlier it affects all stage 1 translations. 12706 */ 12707 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12708 && !arm_feature(env, ARM_FEATURE_V8)) { 12709 if (regime_el(env, mmu_idx) == 3) { 12710 address += env->cp15.fcseidr_s; 12711 } else { 12712 address += env->cp15.fcseidr_ns; 12713 } 12714 } 12715 12716 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12717 bool ret; 12718 *page_size = TARGET_PAGE_SIZE; 12719 12720 if (arm_feature(env, ARM_FEATURE_V8)) { 12721 /* PMSAv8 */ 12722 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12723 phys_ptr, attrs, prot, page_size, fi); 12724 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12725 /* PMSAv7 */ 12726 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12727 phys_ptr, prot, page_size, fi); 12728 } else { 12729 /* Pre-v7 MPU */ 12730 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12731 phys_ptr, prot, fi); 12732 } 12733 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12734 " mmu_idx %u -> %s (prot %c%c%c)\n", 12735 access_type == MMU_DATA_LOAD ? "reading" : 12736 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12737 (uint32_t)address, mmu_idx, 12738 ret ? "Miss" : "Hit", 12739 *prot & PAGE_READ ? 'r' : '-', 12740 *prot & PAGE_WRITE ? 'w' : '-', 12741 *prot & PAGE_EXEC ? 'x' : '-'); 12742 12743 return ret; 12744 } 12745 12746 /* Definitely a real MMU, not an MPU */ 12747 12748 if (regime_translation_disabled(env, mmu_idx)) { 12749 uint64_t hcr; 12750 uint8_t memattr; 12751 12752 /* 12753 * MMU disabled. S1 addresses within aa64 translation regimes are 12754 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12755 */ 12756 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12757 int r_el = regime_el(env, mmu_idx); 12758 if (arm_el_is_aa64(env, r_el)) { 12759 int pamax = arm_pamax(env_archcpu(env)); 12760 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12761 int addrtop, tbi; 12762 12763 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12764 if (access_type == MMU_INST_FETCH) { 12765 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12766 } 12767 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12768 addrtop = (tbi ? 55 : 63); 12769 12770 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12771 fi->type = ARMFault_AddressSize; 12772 fi->level = 0; 12773 fi->stage2 = false; 12774 return 1; 12775 } 12776 12777 /* 12778 * When TBI is disabled, we've just validated that all of the 12779 * bits above PAMax are zero, so logically we only need to 12780 * clear the top byte for TBI. But it's clearer to follow 12781 * the pseudocode set of addrdesc.paddress. 12782 */ 12783 address = extract64(address, 0, 52); 12784 } 12785 } 12786 *phys_ptr = address; 12787 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12788 *page_size = TARGET_PAGE_SIZE; 12789 12790 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12791 hcr = arm_hcr_el2_eff(env); 12792 cacheattrs->shareability = 0; 12793 if (hcr & HCR_DC) { 12794 if (hcr & HCR_DCT) { 12795 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12796 } else { 12797 memattr = 0xff; /* Normal, WB, RWA */ 12798 } 12799 } else if (access_type == MMU_INST_FETCH) { 12800 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12801 memattr = 0xee; /* Normal, WT, RA, NT */ 12802 } else { 12803 memattr = 0x44; /* Normal, NC, No */ 12804 } 12805 cacheattrs->shareability = 2; /* outer sharable */ 12806 } else { 12807 memattr = 0x00; /* Device, nGnRnE */ 12808 } 12809 cacheattrs->attrs = memattr; 12810 return 0; 12811 } 12812 12813 if (regime_using_lpae_format(env, mmu_idx)) { 12814 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12815 phys_ptr, attrs, prot, page_size, 12816 fi, cacheattrs); 12817 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12818 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12819 phys_ptr, attrs, prot, page_size, fi); 12820 } else { 12821 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12822 phys_ptr, prot, page_size, fi); 12823 } 12824 } 12825 12826 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12827 MemTxAttrs *attrs) 12828 { 12829 ARMCPU *cpu = ARM_CPU(cs); 12830 CPUARMState *env = &cpu->env; 12831 hwaddr phys_addr; 12832 target_ulong page_size; 12833 int prot; 12834 bool ret; 12835 ARMMMUFaultInfo fi = {}; 12836 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12837 ARMCacheAttrs cacheattrs = {}; 12838 12839 *attrs = (MemTxAttrs) {}; 12840 12841 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12842 attrs, &prot, &page_size, &fi, &cacheattrs); 12843 12844 if (ret) { 12845 return -1; 12846 } 12847 return phys_addr; 12848 } 12849 12850 #endif 12851 12852 /* Note that signed overflow is undefined in C. The following routines are 12853 careful to use unsigned types where modulo arithmetic is required. 12854 Failure to do so _will_ break on newer gcc. */ 12855 12856 /* Signed saturating arithmetic. */ 12857 12858 /* Perform 16-bit signed saturating addition. */ 12859 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12860 { 12861 uint16_t res; 12862 12863 res = a + b; 12864 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12865 if (a & 0x8000) 12866 res = 0x8000; 12867 else 12868 res = 0x7fff; 12869 } 12870 return res; 12871 } 12872 12873 /* Perform 8-bit signed saturating addition. */ 12874 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12875 { 12876 uint8_t res; 12877 12878 res = a + b; 12879 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12880 if (a & 0x80) 12881 res = 0x80; 12882 else 12883 res = 0x7f; 12884 } 12885 return res; 12886 } 12887 12888 /* Perform 16-bit signed saturating subtraction. */ 12889 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12890 { 12891 uint16_t res; 12892 12893 res = a - b; 12894 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12895 if (a & 0x8000) 12896 res = 0x8000; 12897 else 12898 res = 0x7fff; 12899 } 12900 return res; 12901 } 12902 12903 /* Perform 8-bit signed saturating subtraction. */ 12904 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12905 { 12906 uint8_t res; 12907 12908 res = a - b; 12909 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12910 if (a & 0x80) 12911 res = 0x80; 12912 else 12913 res = 0x7f; 12914 } 12915 return res; 12916 } 12917 12918 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12919 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12920 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12921 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12922 #define PFX q 12923 12924 #include "op_addsub.h" 12925 12926 /* Unsigned saturating arithmetic. */ 12927 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12928 { 12929 uint16_t res; 12930 res = a + b; 12931 if (res < a) 12932 res = 0xffff; 12933 return res; 12934 } 12935 12936 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12937 { 12938 if (a > b) 12939 return a - b; 12940 else 12941 return 0; 12942 } 12943 12944 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12945 { 12946 uint8_t res; 12947 res = a + b; 12948 if (res < a) 12949 res = 0xff; 12950 return res; 12951 } 12952 12953 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12954 { 12955 if (a > b) 12956 return a - b; 12957 else 12958 return 0; 12959 } 12960 12961 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12962 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12963 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12964 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12965 #define PFX uq 12966 12967 #include "op_addsub.h" 12968 12969 /* Signed modulo arithmetic. */ 12970 #define SARITH16(a, b, n, op) do { \ 12971 int32_t sum; \ 12972 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12973 RESULT(sum, n, 16); \ 12974 if (sum >= 0) \ 12975 ge |= 3 << (n * 2); \ 12976 } while(0) 12977 12978 #define SARITH8(a, b, n, op) do { \ 12979 int32_t sum; \ 12980 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12981 RESULT(sum, n, 8); \ 12982 if (sum >= 0) \ 12983 ge |= 1 << n; \ 12984 } while(0) 12985 12986 12987 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12988 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12989 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12990 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12991 #define PFX s 12992 #define ARITH_GE 12993 12994 #include "op_addsub.h" 12995 12996 /* Unsigned modulo arithmetic. */ 12997 #define ADD16(a, b, n) do { \ 12998 uint32_t sum; \ 12999 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13000 RESULT(sum, n, 16); \ 13001 if ((sum >> 16) == 1) \ 13002 ge |= 3 << (n * 2); \ 13003 } while(0) 13004 13005 #define ADD8(a, b, n) do { \ 13006 uint32_t sum; \ 13007 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13008 RESULT(sum, n, 8); \ 13009 if ((sum >> 8) == 1) \ 13010 ge |= 1 << n; \ 13011 } while(0) 13012 13013 #define SUB16(a, b, n) do { \ 13014 uint32_t sum; \ 13015 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13016 RESULT(sum, n, 16); \ 13017 if ((sum >> 16) == 0) \ 13018 ge |= 3 << (n * 2); \ 13019 } while(0) 13020 13021 #define SUB8(a, b, n) do { \ 13022 uint32_t sum; \ 13023 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13024 RESULT(sum, n, 8); \ 13025 if ((sum >> 8) == 0) \ 13026 ge |= 1 << n; \ 13027 } while(0) 13028 13029 #define PFX u 13030 #define ARITH_GE 13031 13032 #include "op_addsub.h" 13033 13034 /* Halved signed arithmetic. */ 13035 #define ADD16(a, b, n) \ 13036 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13037 #define SUB16(a, b, n) \ 13038 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13039 #define ADD8(a, b, n) \ 13040 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13041 #define SUB8(a, b, n) \ 13042 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13043 #define PFX sh 13044 13045 #include "op_addsub.h" 13046 13047 /* Halved unsigned arithmetic. */ 13048 #define ADD16(a, b, n) \ 13049 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13050 #define SUB16(a, b, n) \ 13051 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13052 #define ADD8(a, b, n) \ 13053 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13054 #define SUB8(a, b, n) \ 13055 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13056 #define PFX uh 13057 13058 #include "op_addsub.h" 13059 13060 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13061 { 13062 if (a > b) 13063 return a - b; 13064 else 13065 return b - a; 13066 } 13067 13068 /* Unsigned sum of absolute byte differences. */ 13069 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13070 { 13071 uint32_t sum; 13072 sum = do_usad(a, b); 13073 sum += do_usad(a >> 8, b >> 8); 13074 sum += do_usad(a >> 16, b >> 16); 13075 sum += do_usad(a >> 24, b >> 24); 13076 return sum; 13077 } 13078 13079 /* For ARMv6 SEL instruction. */ 13080 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13081 { 13082 uint32_t mask; 13083 13084 mask = 0; 13085 if (flags & 1) 13086 mask |= 0xff; 13087 if (flags & 2) 13088 mask |= 0xff00; 13089 if (flags & 4) 13090 mask |= 0xff0000; 13091 if (flags & 8) 13092 mask |= 0xff000000; 13093 return (a & mask) | (b & ~mask); 13094 } 13095 13096 /* CRC helpers. 13097 * The upper bytes of val (above the number specified by 'bytes') must have 13098 * been zeroed out by the caller. 13099 */ 13100 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13101 { 13102 uint8_t buf[4]; 13103 13104 stl_le_p(buf, val); 13105 13106 /* zlib crc32 converts the accumulator and output to one's complement. */ 13107 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13108 } 13109 13110 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13111 { 13112 uint8_t buf[4]; 13113 13114 stl_le_p(buf, val); 13115 13116 /* Linux crc32c converts the output to one's complement. */ 13117 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13118 } 13119 13120 /* Return the exception level to which FP-disabled exceptions should 13121 * be taken, or 0 if FP is enabled. 13122 */ 13123 int fp_exception_el(CPUARMState *env, int cur_el) 13124 { 13125 #ifndef CONFIG_USER_ONLY 13126 uint64_t hcr_el2; 13127 13128 /* CPACR and the CPTR registers don't exist before v6, so FP is 13129 * always accessible 13130 */ 13131 if (!arm_feature(env, ARM_FEATURE_V6)) { 13132 return 0; 13133 } 13134 13135 if (arm_feature(env, ARM_FEATURE_M)) { 13136 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13137 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13138 return 1; 13139 } 13140 13141 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13142 if (!extract32(env->v7m.nsacr, 10, 1)) { 13143 /* FP insns cause a NOCP UsageFault taken to Secure */ 13144 return 3; 13145 } 13146 } 13147 13148 return 0; 13149 } 13150 13151 hcr_el2 = arm_hcr_el2_eff(env); 13152 13153 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13154 * 0, 2 : trap EL0 and EL1/PL1 accesses 13155 * 1 : trap only EL0 accesses 13156 * 3 : trap no accesses 13157 * This register is ignored if E2H+TGE are both set. 13158 */ 13159 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13160 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13161 13162 switch (fpen) { 13163 case 0: 13164 case 2: 13165 if (cur_el == 0 || cur_el == 1) { 13166 /* Trap to PL1, which might be EL1 or EL3 */ 13167 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13168 return 3; 13169 } 13170 return 1; 13171 } 13172 if (cur_el == 3 && !is_a64(env)) { 13173 /* Secure PL1 running at EL3 */ 13174 return 3; 13175 } 13176 break; 13177 case 1: 13178 if (cur_el == 0) { 13179 return 1; 13180 } 13181 break; 13182 case 3: 13183 break; 13184 } 13185 } 13186 13187 /* 13188 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13189 * to control non-secure access to the FPU. It doesn't have any 13190 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13191 */ 13192 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13193 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13194 if (!extract32(env->cp15.nsacr, 10, 1)) { 13195 /* FP insns act as UNDEF */ 13196 return cur_el == 2 ? 2 : 1; 13197 } 13198 } 13199 13200 /* 13201 * CPTR_EL2 is present in v7VE or v8, and changes format 13202 * with HCR_EL2.E2H (regardless of TGE). 13203 */ 13204 if (cur_el <= 2) { 13205 if (hcr_el2 & HCR_E2H) { 13206 /* Check CPTR_EL2.FPEN. */ 13207 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13208 case 1: 13209 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13210 break; 13211 } 13212 /* fall through */ 13213 case 0: 13214 case 2: 13215 return 2; 13216 } 13217 } else if (arm_is_el2_enabled(env)) { 13218 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13219 return 2; 13220 } 13221 } 13222 } 13223 13224 /* CPTR_EL3 : present in v8 */ 13225 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13226 /* Trap all FP ops to EL3 */ 13227 return 3; 13228 } 13229 #endif 13230 return 0; 13231 } 13232 13233 /* Return the exception level we're running at if this is our mmu_idx */ 13234 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13235 { 13236 if (mmu_idx & ARM_MMU_IDX_M) { 13237 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13238 } 13239 13240 switch (mmu_idx) { 13241 case ARMMMUIdx_E10_0: 13242 case ARMMMUIdx_E20_0: 13243 case ARMMMUIdx_SE10_0: 13244 case ARMMMUIdx_SE20_0: 13245 return 0; 13246 case ARMMMUIdx_E10_1: 13247 case ARMMMUIdx_E10_1_PAN: 13248 case ARMMMUIdx_SE10_1: 13249 case ARMMMUIdx_SE10_1_PAN: 13250 return 1; 13251 case ARMMMUIdx_E2: 13252 case ARMMMUIdx_E20_2: 13253 case ARMMMUIdx_E20_2_PAN: 13254 case ARMMMUIdx_SE2: 13255 case ARMMMUIdx_SE20_2: 13256 case ARMMMUIdx_SE20_2_PAN: 13257 return 2; 13258 case ARMMMUIdx_SE3: 13259 return 3; 13260 default: 13261 g_assert_not_reached(); 13262 } 13263 } 13264 13265 #ifndef CONFIG_TCG 13266 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13267 { 13268 g_assert_not_reached(); 13269 } 13270 #endif 13271 13272 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13273 { 13274 ARMMMUIdx idx; 13275 uint64_t hcr; 13276 13277 if (arm_feature(env, ARM_FEATURE_M)) { 13278 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13279 } 13280 13281 /* See ARM pseudo-function ELIsInHost. */ 13282 switch (el) { 13283 case 0: 13284 hcr = arm_hcr_el2_eff(env); 13285 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13286 idx = ARMMMUIdx_E20_0; 13287 } else { 13288 idx = ARMMMUIdx_E10_0; 13289 } 13290 break; 13291 case 1: 13292 if (env->pstate & PSTATE_PAN) { 13293 idx = ARMMMUIdx_E10_1_PAN; 13294 } else { 13295 idx = ARMMMUIdx_E10_1; 13296 } 13297 break; 13298 case 2: 13299 /* Note that TGE does not apply at EL2. */ 13300 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13301 if (env->pstate & PSTATE_PAN) { 13302 idx = ARMMMUIdx_E20_2_PAN; 13303 } else { 13304 idx = ARMMMUIdx_E20_2; 13305 } 13306 } else { 13307 idx = ARMMMUIdx_E2; 13308 } 13309 break; 13310 case 3: 13311 return ARMMMUIdx_SE3; 13312 default: 13313 g_assert_not_reached(); 13314 } 13315 13316 if (arm_is_secure_below_el3(env)) { 13317 idx &= ~ARM_MMU_IDX_A_NS; 13318 } 13319 13320 return idx; 13321 } 13322 13323 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13324 { 13325 return arm_mmu_idx_el(env, arm_current_el(env)); 13326 } 13327 13328 #ifndef CONFIG_USER_ONLY 13329 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13330 { 13331 return stage_1_mmu_idx(arm_mmu_idx(env)); 13332 } 13333 #endif 13334 13335 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13336 ARMMMUIdx mmu_idx, 13337 CPUARMTBFlags flags) 13338 { 13339 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13340 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13341 13342 if (arm_singlestep_active(env)) { 13343 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13344 } 13345 return flags; 13346 } 13347 13348 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13349 ARMMMUIdx mmu_idx, 13350 CPUARMTBFlags flags) 13351 { 13352 bool sctlr_b = arm_sctlr_b(env); 13353 13354 if (sctlr_b) { 13355 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13356 } 13357 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13358 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13359 } 13360 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13361 13362 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13363 } 13364 13365 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13366 ARMMMUIdx mmu_idx) 13367 { 13368 CPUARMTBFlags flags = {}; 13369 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13370 13371 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13372 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13373 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13374 } 13375 13376 if (arm_v7m_is_handler_mode(env)) { 13377 DP_TBFLAG_M32(flags, HANDLER, 1); 13378 } 13379 13380 /* 13381 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13382 * is suppressing them because the requested execution priority 13383 * is less than 0. 13384 */ 13385 if (arm_feature(env, ARM_FEATURE_V8) && 13386 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13387 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13388 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13389 } 13390 13391 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13392 } 13393 13394 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13395 { 13396 CPUARMTBFlags flags = {}; 13397 13398 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13399 return flags; 13400 } 13401 13402 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13403 ARMMMUIdx mmu_idx) 13404 { 13405 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13406 int el = arm_current_el(env); 13407 13408 if (arm_sctlr(env, el) & SCTLR_A) { 13409 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13410 } 13411 13412 if (arm_el_is_aa64(env, 1)) { 13413 DP_TBFLAG_A32(flags, VFPEN, 1); 13414 } 13415 13416 if (el < 2 && env->cp15.hstr_el2 && 13417 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13418 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13419 } 13420 13421 if (env->uncached_cpsr & CPSR_IL) { 13422 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13423 } 13424 13425 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13426 } 13427 13428 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13429 ARMMMUIdx mmu_idx) 13430 { 13431 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13432 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13433 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13434 uint64_t sctlr; 13435 int tbii, tbid; 13436 13437 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13438 13439 /* Get control bits for tagged addresses. */ 13440 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13441 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13442 13443 DP_TBFLAG_A64(flags, TBII, tbii); 13444 DP_TBFLAG_A64(flags, TBID, tbid); 13445 13446 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13447 int sve_el = sve_exception_el(env, el); 13448 uint32_t zcr_len; 13449 13450 /* 13451 * If SVE is disabled, but FP is enabled, 13452 * then the effective len is 0. 13453 */ 13454 if (sve_el != 0 && fp_el == 0) { 13455 zcr_len = 0; 13456 } else { 13457 zcr_len = sve_zcr_len_for_el(env, el); 13458 } 13459 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13460 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13461 } 13462 13463 sctlr = regime_sctlr(env, stage1); 13464 13465 if (sctlr & SCTLR_A) { 13466 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13467 } 13468 13469 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13470 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13471 } 13472 13473 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13474 /* 13475 * In order to save space in flags, we record only whether 13476 * pauth is "inactive", meaning all insns are implemented as 13477 * a nop, or "active" when some action must be performed. 13478 * The decision of which action to take is left to a helper. 13479 */ 13480 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13481 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13482 } 13483 } 13484 13485 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13486 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13487 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13488 DP_TBFLAG_A64(flags, BT, 1); 13489 } 13490 } 13491 13492 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13493 if (!(env->pstate & PSTATE_UAO)) { 13494 switch (mmu_idx) { 13495 case ARMMMUIdx_E10_1: 13496 case ARMMMUIdx_E10_1_PAN: 13497 case ARMMMUIdx_SE10_1: 13498 case ARMMMUIdx_SE10_1_PAN: 13499 /* TODO: ARMv8.3-NV */ 13500 DP_TBFLAG_A64(flags, UNPRIV, 1); 13501 break; 13502 case ARMMMUIdx_E20_2: 13503 case ARMMMUIdx_E20_2_PAN: 13504 case ARMMMUIdx_SE20_2: 13505 case ARMMMUIdx_SE20_2_PAN: 13506 /* 13507 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13508 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13509 */ 13510 if (env->cp15.hcr_el2 & HCR_TGE) { 13511 DP_TBFLAG_A64(flags, UNPRIV, 1); 13512 } 13513 break; 13514 default: 13515 break; 13516 } 13517 } 13518 13519 if (env->pstate & PSTATE_IL) { 13520 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13521 } 13522 13523 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13524 /* 13525 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13526 * if all accesses must be Unchecked: 13527 * 1) If no TBI, then there are no tags in the address to check, 13528 * 2) If Tag Check Override, then all accesses are Unchecked, 13529 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13530 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13531 */ 13532 if (allocation_tag_access_enabled(env, el, sctlr)) { 13533 DP_TBFLAG_A64(flags, ATA, 1); 13534 if (tbid 13535 && !(env->pstate & PSTATE_TCO) 13536 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13537 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13538 } 13539 } 13540 /* And again for unprivileged accesses, if required. */ 13541 if (EX_TBFLAG_A64(flags, UNPRIV) 13542 && tbid 13543 && !(env->pstate & PSTATE_TCO) 13544 && (sctlr & SCTLR_TCF0) 13545 && allocation_tag_access_enabled(env, 0, sctlr)) { 13546 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13547 } 13548 /* Cache TCMA as well as TBI. */ 13549 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13550 } 13551 13552 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13553 } 13554 13555 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13556 { 13557 int el = arm_current_el(env); 13558 int fp_el = fp_exception_el(env, el); 13559 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13560 13561 if (is_a64(env)) { 13562 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13563 } else if (arm_feature(env, ARM_FEATURE_M)) { 13564 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13565 } else { 13566 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13567 } 13568 } 13569 13570 void arm_rebuild_hflags(CPUARMState *env) 13571 { 13572 env->hflags = rebuild_hflags_internal(env); 13573 } 13574 13575 /* 13576 * If we have triggered a EL state change we can't rely on the 13577 * translator having passed it to us, we need to recompute. 13578 */ 13579 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13580 { 13581 int el = arm_current_el(env); 13582 int fp_el = fp_exception_el(env, el); 13583 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13584 13585 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13586 } 13587 13588 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13589 { 13590 int fp_el = fp_exception_el(env, el); 13591 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13592 13593 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13594 } 13595 13596 /* 13597 * If we have triggered a EL state change we can't rely on the 13598 * translator having passed it to us, we need to recompute. 13599 */ 13600 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13601 { 13602 int el = arm_current_el(env); 13603 int fp_el = fp_exception_el(env, el); 13604 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13605 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13606 } 13607 13608 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13609 { 13610 int fp_el = fp_exception_el(env, el); 13611 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13612 13613 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13614 } 13615 13616 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13617 { 13618 int fp_el = fp_exception_el(env, el); 13619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13620 13621 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13622 } 13623 13624 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13625 { 13626 #ifdef CONFIG_DEBUG_TCG 13627 CPUARMTBFlags c = env->hflags; 13628 CPUARMTBFlags r = rebuild_hflags_internal(env); 13629 13630 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13631 fprintf(stderr, "TCG hflags mismatch " 13632 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13633 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13634 c.flags, c.flags2, r.flags, r.flags2); 13635 abort(); 13636 } 13637 #endif 13638 } 13639 13640 static bool mve_no_pred(CPUARMState *env) 13641 { 13642 /* 13643 * Return true if there is definitely no predication of MVE 13644 * instructions by VPR or LTPSIZE. (Returning false even if there 13645 * isn't any predication is OK; generated code will just be 13646 * a little worse.) 13647 * If the CPU does not implement MVE then this TB flag is always 0. 13648 * 13649 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13650 * logic in gen_update_fp_context() needs to be updated to match. 13651 * 13652 * We do not include the effect of the ECI bits here -- they are 13653 * tracked in other TB flags. This simplifies the logic for 13654 * "when did we emit code that changes the MVE_NO_PRED TB flag 13655 * and thus need to end the TB?". 13656 */ 13657 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13658 return false; 13659 } 13660 if (env->v7m.vpr) { 13661 return false; 13662 } 13663 if (env->v7m.ltpsize < 4) { 13664 return false; 13665 } 13666 return true; 13667 } 13668 13669 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13670 target_ulong *cs_base, uint32_t *pflags) 13671 { 13672 CPUARMTBFlags flags; 13673 13674 assert_hflags_rebuild_correctly(env); 13675 flags = env->hflags; 13676 13677 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13678 *pc = env->pc; 13679 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13680 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13681 } 13682 } else { 13683 *pc = env->regs[15]; 13684 13685 if (arm_feature(env, ARM_FEATURE_M)) { 13686 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13687 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13688 != env->v7m.secure) { 13689 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13690 } 13691 13692 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13693 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13694 (env->v7m.secure && 13695 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13696 /* 13697 * ASPEN is set, but FPCA/SFPA indicate that there is no 13698 * active FP context; we must create a new FP context before 13699 * executing any FP insn. 13700 */ 13701 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13702 } 13703 13704 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13705 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13706 DP_TBFLAG_M32(flags, LSPACT, 1); 13707 } 13708 13709 if (mve_no_pred(env)) { 13710 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13711 } 13712 } else { 13713 /* 13714 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13715 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13716 */ 13717 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13718 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13719 } else { 13720 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13721 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13722 } 13723 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13724 DP_TBFLAG_A32(flags, VFPEN, 1); 13725 } 13726 } 13727 13728 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13729 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13730 } 13731 13732 /* 13733 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13734 * states defined in the ARM ARM for software singlestep: 13735 * SS_ACTIVE PSTATE.SS State 13736 * 0 x Inactive (the TB flag for SS is always 0) 13737 * 1 0 Active-pending 13738 * 1 1 Active-not-pending 13739 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13740 */ 13741 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13742 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13743 } 13744 13745 *pflags = flags.flags; 13746 *cs_base = flags.flags2; 13747 } 13748 13749 #ifdef TARGET_AARCH64 13750 /* 13751 * The manual says that when SVE is enabled and VQ is widened the 13752 * implementation is allowed to zero the previously inaccessible 13753 * portion of the registers. The corollary to that is that when 13754 * SVE is enabled and VQ is narrowed we are also allowed to zero 13755 * the now inaccessible portion of the registers. 13756 * 13757 * The intent of this is that no predicate bit beyond VQ is ever set. 13758 * Which means that some operations on predicate registers themselves 13759 * may operate on full uint64_t or even unrolled across the maximum 13760 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13761 * may well be cheaper than conditionals to restrict the operation 13762 * to the relevant portion of a uint16_t[16]. 13763 */ 13764 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13765 { 13766 int i, j; 13767 uint64_t pmask; 13768 13769 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13770 assert(vq <= env_archcpu(env)->sve_max_vq); 13771 13772 /* Zap the high bits of the zregs. */ 13773 for (i = 0; i < 32; i++) { 13774 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13775 } 13776 13777 /* Zap the high bits of the pregs and ffr. */ 13778 pmask = 0; 13779 if (vq & 3) { 13780 pmask = ~(-1ULL << (16 * (vq & 3))); 13781 } 13782 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13783 for (i = 0; i < 17; ++i) { 13784 env->vfp.pregs[i].p[j] &= pmask; 13785 } 13786 pmask = 0; 13787 } 13788 } 13789 13790 /* 13791 * Notice a change in SVE vector size when changing EL. 13792 */ 13793 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13794 int new_el, bool el0_a64) 13795 { 13796 ARMCPU *cpu = env_archcpu(env); 13797 int old_len, new_len; 13798 bool old_a64, new_a64; 13799 13800 /* Nothing to do if no SVE. */ 13801 if (!cpu_isar_feature(aa64_sve, cpu)) { 13802 return; 13803 } 13804 13805 /* Nothing to do if FP is disabled in either EL. */ 13806 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13807 return; 13808 } 13809 13810 /* 13811 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13812 * at ELx, or not available because the EL is in AArch32 state, then 13813 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13814 * has an effective value of 0". 13815 * 13816 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13817 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13818 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13819 * we already have the correct register contents when encountering the 13820 * vq0->vq0 transition between EL0->EL1. 13821 */ 13822 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13823 old_len = (old_a64 && !sve_exception_el(env, old_el) 13824 ? sve_zcr_len_for_el(env, old_el) : 0); 13825 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13826 new_len = (new_a64 && !sve_exception_el(env, new_el) 13827 ? sve_zcr_len_for_el(env, new_el) : 0); 13828 13829 /* When changing vector length, clear inaccessible state. */ 13830 if (new_len < old_len) { 13831 aarch64_sve_narrow_vq(env, new_len + 1); 13832 } 13833 } 13834 #endif 13835