1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 #include "qemu/range.h" 21 22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 23 24 #ifndef CONFIG_USER_ONLY 25 /* Cacheability and shareability attributes for a memory access */ 26 typedef struct ARMCacheAttrs { 27 unsigned int attrs:8; /* as in the MAIR register encoding */ 28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 29 } ARMCacheAttrs; 30 31 static bool get_phys_addr(CPUARMState *env, target_ulong address, 32 MMUAccessType access_type, ARMMMUIdx mmu_idx, 33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 34 target_ulong *page_size, 35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 36 37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 38 MMUAccessType access_type, ARMMMUIdx mmu_idx, 39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 40 target_ulong *page_size_ptr, 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 42 43 /* Security attributes for an address, as returned by v8m_security_lookup. */ 44 typedef struct V8M_SAttributes { 45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 46 bool ns; 47 bool nsc; 48 uint8_t sregion; 49 bool srvalid; 50 uint8_t iregion; 51 bool irvalid; 52 } V8M_SAttributes; 53 54 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 55 MMUAccessType access_type, ARMMMUIdx mmu_idx, 56 V8M_SAttributes *sattrs); 57 #endif 58 59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 60 { 61 int nregs; 62 63 /* VFP data registers are always little-endian. */ 64 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 65 if (reg < nregs) { 66 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 67 return 8; 68 } 69 if (arm_feature(env, ARM_FEATURE_NEON)) { 70 /* Aliases for Q regs. */ 71 nregs += 16; 72 if (reg < nregs) { 73 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 74 stq_le_p(buf, q[0]); 75 stq_le_p(buf + 8, q[1]); 76 return 16; 77 } 78 } 79 switch (reg - nregs) { 80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 83 } 84 return 0; 85 } 86 87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 88 { 89 int nregs; 90 91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 92 if (reg < nregs) { 93 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 94 return 8; 95 } 96 if (arm_feature(env, ARM_FEATURE_NEON)) { 97 nregs += 16; 98 if (reg < nregs) { 99 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 100 q[0] = ldq_le_p(buf); 101 q[1] = ldq_le_p(buf + 8); 102 return 16; 103 } 104 } 105 switch (reg - nregs) { 106 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 107 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 108 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 109 } 110 return 0; 111 } 112 113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 114 { 115 switch (reg) { 116 case 0 ... 31: 117 /* 128 bit FP register */ 118 { 119 uint64_t *q = aa64_vfp_qreg(env, reg); 120 stq_le_p(buf, q[0]); 121 stq_le_p(buf + 8, q[1]); 122 return 16; 123 } 124 case 32: 125 /* FPSR */ 126 stl_p(buf, vfp_get_fpsr(env)); 127 return 4; 128 case 33: 129 /* FPCR */ 130 stl_p(buf, vfp_get_fpcr(env)); 131 return 4; 132 default: 133 return 0; 134 } 135 } 136 137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 138 { 139 switch (reg) { 140 case 0 ... 31: 141 /* 128 bit FP register */ 142 { 143 uint64_t *q = aa64_vfp_qreg(env, reg); 144 q[0] = ldq_le_p(buf); 145 q[1] = ldq_le_p(buf + 8); 146 return 16; 147 } 148 case 32: 149 /* FPSR */ 150 vfp_set_fpsr(env, ldl_p(buf)); 151 return 4; 152 case 33: 153 /* FPCR */ 154 vfp_set_fpcr(env, ldl_p(buf)); 155 return 4; 156 default: 157 return 0; 158 } 159 } 160 161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 162 { 163 assert(ri->fieldoffset); 164 if (cpreg_field_is_64bit(ri)) { 165 return CPREG_FIELD64(env, ri); 166 } else { 167 return CPREG_FIELD32(env, ri); 168 } 169 } 170 171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 172 uint64_t value) 173 { 174 assert(ri->fieldoffset); 175 if (cpreg_field_is_64bit(ri)) { 176 CPREG_FIELD64(env, ri) = value; 177 } else { 178 CPREG_FIELD32(env, ri) = value; 179 } 180 } 181 182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 183 { 184 return (char *)env + ri->fieldoffset; 185 } 186 187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 188 { 189 /* Raw read of a coprocessor register (as needed for migration, etc). */ 190 if (ri->type & ARM_CP_CONST) { 191 return ri->resetvalue; 192 } else if (ri->raw_readfn) { 193 return ri->raw_readfn(env, ri); 194 } else if (ri->readfn) { 195 return ri->readfn(env, ri); 196 } else { 197 return raw_read(env, ri); 198 } 199 } 200 201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 202 uint64_t v) 203 { 204 /* Raw write of a coprocessor register (as needed for migration, etc). 205 * Note that constant registers are treated as write-ignored; the 206 * caller should check for success by whether a readback gives the 207 * value written. 208 */ 209 if (ri->type & ARM_CP_CONST) { 210 return; 211 } else if (ri->raw_writefn) { 212 ri->raw_writefn(env, ri, v); 213 } else if (ri->writefn) { 214 ri->writefn(env, ri, v); 215 } else { 216 raw_write(env, ri, v); 217 } 218 } 219 220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 221 { 222 ARMCPU *cpu = arm_env_get_cpu(env); 223 const ARMCPRegInfo *ri; 224 uint32_t key; 225 226 key = cpu->dyn_xml.cpregs_keys[reg]; 227 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 228 if (ri) { 229 if (cpreg_field_is_64bit(ri)) { 230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 231 } else { 232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 233 } 234 } 235 return 0; 236 } 237 238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 239 { 240 return 0; 241 } 242 243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 244 { 245 /* Return true if the regdef would cause an assertion if you called 246 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 247 * program bug for it not to have the NO_RAW flag). 248 * NB that returning false here doesn't necessarily mean that calling 249 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 250 * read/write access functions which are safe for raw use" from "has 251 * read/write access functions which have side effects but has forgotten 252 * to provide raw access functions". 253 * The tests here line up with the conditions in read/write_raw_cp_reg() 254 * and assertions in raw_read()/raw_write(). 255 */ 256 if ((ri->type & ARM_CP_CONST) || 257 ri->fieldoffset || 258 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 259 return false; 260 } 261 return true; 262 } 263 264 bool write_cpustate_to_list(ARMCPU *cpu) 265 { 266 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 267 int i; 268 bool ok = true; 269 270 for (i = 0; i < cpu->cpreg_array_len; i++) { 271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 272 const ARMCPRegInfo *ri; 273 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 275 if (!ri) { 276 ok = false; 277 continue; 278 } 279 if (ri->type & ARM_CP_NO_RAW) { 280 continue; 281 } 282 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 283 } 284 return ok; 285 } 286 287 bool write_list_to_cpustate(ARMCPU *cpu) 288 { 289 int i; 290 bool ok = true; 291 292 for (i = 0; i < cpu->cpreg_array_len; i++) { 293 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 294 uint64_t v = cpu->cpreg_values[i]; 295 const ARMCPRegInfo *ri; 296 297 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 298 if (!ri) { 299 ok = false; 300 continue; 301 } 302 if (ri->type & ARM_CP_NO_RAW) { 303 continue; 304 } 305 /* Write value and confirm it reads back as written 306 * (to catch read-only registers and partially read-only 307 * registers where the incoming migration value doesn't match) 308 */ 309 write_raw_cp_reg(&cpu->env, ri, v); 310 if (read_raw_cp_reg(&cpu->env, ri) != v) { 311 ok = false; 312 } 313 } 314 return ok; 315 } 316 317 static void add_cpreg_to_list(gpointer key, gpointer opaque) 318 { 319 ARMCPU *cpu = opaque; 320 uint64_t regidx; 321 const ARMCPRegInfo *ri; 322 323 regidx = *(uint32_t *)key; 324 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 325 326 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 327 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 328 /* The value array need not be initialized at this point */ 329 cpu->cpreg_array_len++; 330 } 331 } 332 333 static void count_cpreg(gpointer key, gpointer opaque) 334 { 335 ARMCPU *cpu = opaque; 336 uint64_t regidx; 337 const ARMCPRegInfo *ri; 338 339 regidx = *(uint32_t *)key; 340 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 341 342 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 348 { 349 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 350 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 351 352 if (aidx > bidx) { 353 return 1; 354 } 355 if (aidx < bidx) { 356 return -1; 357 } 358 return 0; 359 } 360 361 void init_cpreg_list(ARMCPU *cpu) 362 { 363 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 364 * Note that we require cpreg_tuples[] to be sorted by key ID. 365 */ 366 GList *keys; 367 int arraylen; 368 369 keys = g_hash_table_get_keys(cpu->cp_regs); 370 keys = g_list_sort(keys, cpreg_key_compare); 371 372 cpu->cpreg_array_len = 0; 373 374 g_list_foreach(keys, count_cpreg, cpu); 375 376 arraylen = cpu->cpreg_array_len; 377 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 378 cpu->cpreg_values = g_new(uint64_t, arraylen); 379 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 380 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 381 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 382 cpu->cpreg_array_len = 0; 383 384 g_list_foreach(keys, add_cpreg_to_list, cpu); 385 386 assert(cpu->cpreg_array_len == arraylen); 387 388 g_list_free(keys); 389 } 390 391 /* 392 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 393 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 394 * 395 * access_el3_aa32ns: Used to check AArch32 register views. 396 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 397 */ 398 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 399 const ARMCPRegInfo *ri, 400 bool isread) 401 { 402 bool secure = arm_is_secure_below_el3(env); 403 404 assert(!arm_el_is_aa64(env, 3)); 405 if (secure) { 406 return CP_ACCESS_TRAP_UNCATEGORIZED; 407 } 408 return CP_ACCESS_OK; 409 } 410 411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 412 const ARMCPRegInfo *ri, 413 bool isread) 414 { 415 if (!arm_el_is_aa64(env, 3)) { 416 return access_el3_aa32ns(env, ri, isread); 417 } 418 return CP_ACCESS_OK; 419 } 420 421 /* Some secure-only AArch32 registers trap to EL3 if used from 422 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 423 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 424 * We assume that the .access field is set to PL1_RW. 425 */ 426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 427 const ARMCPRegInfo *ri, 428 bool isread) 429 { 430 if (arm_current_el(env) == 3) { 431 return CP_ACCESS_OK; 432 } 433 if (arm_is_secure_below_el3(env)) { 434 return CP_ACCESS_TRAP_EL3; 435 } 436 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 437 return CP_ACCESS_TRAP_UNCATEGORIZED; 438 } 439 440 /* Check for traps to "powerdown debug" registers, which are controlled 441 * by MDCR.TDOSA 442 */ 443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 444 bool isread) 445 { 446 int el = arm_current_el(env); 447 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 448 (env->cp15.mdcr_el2 & MDCR_TDE) || 449 (env->cp15.hcr_el2 & HCR_TGE); 450 451 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 452 return CP_ACCESS_TRAP_EL2; 453 } 454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 455 return CP_ACCESS_TRAP_EL3; 456 } 457 return CP_ACCESS_OK; 458 } 459 460 /* Check for traps to "debug ROM" registers, which are controlled 461 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 462 */ 463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 464 bool isread) 465 { 466 int el = arm_current_el(env); 467 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 468 (env->cp15.mdcr_el2 & MDCR_TDE) || 469 (env->cp15.hcr_el2 & HCR_TGE); 470 471 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 472 return CP_ACCESS_TRAP_EL2; 473 } 474 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 475 return CP_ACCESS_TRAP_EL3; 476 } 477 return CP_ACCESS_OK; 478 } 479 480 /* Check for traps to general debug registers, which are controlled 481 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 482 */ 483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 484 bool isread) 485 { 486 int el = arm_current_el(env); 487 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 488 (env->cp15.mdcr_el2 & MDCR_TDE) || 489 (env->cp15.hcr_el2 & HCR_TGE); 490 491 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 492 return CP_ACCESS_TRAP_EL2; 493 } 494 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 495 return CP_ACCESS_TRAP_EL3; 496 } 497 return CP_ACCESS_OK; 498 } 499 500 /* Check for traps to performance monitor registers, which are controlled 501 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 502 */ 503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 504 bool isread) 505 { 506 int el = arm_current_el(env); 507 508 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 509 && !arm_is_secure_below_el3(env)) { 510 return CP_ACCESS_TRAP_EL2; 511 } 512 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 513 return CP_ACCESS_TRAP_EL3; 514 } 515 return CP_ACCESS_OK; 516 } 517 518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 519 { 520 ARMCPU *cpu = arm_env_get_cpu(env); 521 522 raw_write(env, ri, value); 523 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 524 } 525 526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 527 { 528 ARMCPU *cpu = arm_env_get_cpu(env); 529 530 if (raw_read(env, ri) != value) { 531 /* Unlike real hardware the qemu TLB uses virtual addresses, 532 * not modified virtual addresses, so this causes a TLB flush. 533 */ 534 tlb_flush(CPU(cpu)); 535 raw_write(env, ri, value); 536 } 537 } 538 539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 ARMCPU *cpu = arm_env_get_cpu(env); 543 544 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 545 && !extended_addresses_enabled(env)) { 546 /* For VMSA (when not using the LPAE long descriptor page table 547 * format) this register includes the ASID, so do a TLB flush. 548 * For PMSA it is purely a process ID and no action is needed. 549 */ 550 tlb_flush(CPU(cpu)); 551 } 552 raw_write(env, ri, value); 553 } 554 555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 556 uint64_t value) 557 { 558 /* Invalidate all (TLBIALL) */ 559 ARMCPU *cpu = arm_env_get_cpu(env); 560 561 tlb_flush(CPU(cpu)); 562 } 563 564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 568 ARMCPU *cpu = arm_env_get_cpu(env); 569 570 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 571 } 572 573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 /* Invalidate by ASID (TLBIASID) */ 577 ARMCPU *cpu = arm_env_get_cpu(env); 578 579 tlb_flush(CPU(cpu)); 580 } 581 582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 586 ARMCPU *cpu = arm_env_get_cpu(env); 587 588 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 589 } 590 591 /* IS variants of TLB operations must affect all cores */ 592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = ENV_GET_CPU(env); 596 597 tlb_flush_all_cpus_synced(cs); 598 } 599 600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = ENV_GET_CPU(env); 604 605 tlb_flush_all_cpus_synced(cs); 606 } 607 608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 609 uint64_t value) 610 { 611 CPUState *cs = ENV_GET_CPU(env); 612 613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 614 } 615 616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 617 uint64_t value) 618 { 619 CPUState *cs = ENV_GET_CPU(env); 620 621 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 622 } 623 624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 625 uint64_t value) 626 { 627 CPUState *cs = ENV_GET_CPU(env); 628 629 tlb_flush_by_mmuidx(cs, 630 ARMMMUIdxBit_S12NSE1 | 631 ARMMMUIdxBit_S12NSE0 | 632 ARMMMUIdxBit_S2NS); 633 } 634 635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 636 uint64_t value) 637 { 638 CPUState *cs = ENV_GET_CPU(env); 639 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, 641 ARMMMUIdxBit_S12NSE1 | 642 ARMMMUIdxBit_S12NSE0 | 643 ARMMMUIdxBit_S2NS); 644 } 645 646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 647 uint64_t value) 648 { 649 /* Invalidate by IPA. This has to invalidate any structures that 650 * contain only stage 2 translation information, but does not need 651 * to apply to structures that contain combined stage 1 and stage 2 652 * translation information. 653 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 654 */ 655 CPUState *cs = ENV_GET_CPU(env); 656 uint64_t pageaddr; 657 658 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 659 return; 660 } 661 662 pageaddr = sextract64(value << 12, 0, 40); 663 664 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 665 } 666 667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 668 uint64_t value) 669 { 670 CPUState *cs = ENV_GET_CPU(env); 671 uint64_t pageaddr; 672 673 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 674 return; 675 } 676 677 pageaddr = sextract64(value << 12, 0, 40); 678 679 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 680 ARMMMUIdxBit_S2NS); 681 } 682 683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 684 uint64_t value) 685 { 686 CPUState *cs = ENV_GET_CPU(env); 687 688 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 689 } 690 691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 CPUState *cs = ENV_GET_CPU(env); 695 696 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 697 } 698 699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 700 uint64_t value) 701 { 702 CPUState *cs = ENV_GET_CPU(env); 703 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 704 705 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 706 } 707 708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 709 uint64_t value) 710 { 711 CPUState *cs = ENV_GET_CPU(env); 712 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 713 714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 715 ARMMMUIdxBit_S1E2); 716 } 717 718 static const ARMCPRegInfo cp_reginfo[] = { 719 /* Define the secure and non-secure FCSE identifier CP registers 720 * separately because there is no secure bank in V8 (no _EL3). This allows 721 * the secure register to be properly reset and migrated. There is also no 722 * v8 EL1 version of the register so the non-secure instance stands alone. 723 */ 724 { .name = "FCSEIDR", 725 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 726 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 727 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 728 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 729 { .name = "FCSEIDR_S", 730 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 731 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 732 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 733 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 734 /* Define the secure and non-secure context identifier CP registers 735 * separately because there is no secure bank in V8 (no _EL3). This allows 736 * the secure register to be properly reset and migrated. In the 737 * non-secure case, the 32-bit register will have reset and migration 738 * disabled during registration as it is handled by the 64-bit instance. 739 */ 740 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 741 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 742 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 743 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 744 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 745 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 746 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 747 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 748 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 749 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 750 REGINFO_SENTINEL 751 }; 752 753 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 754 /* NB: Some of these registers exist in v8 but with more precise 755 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 756 */ 757 /* MMU Domain access control / MPU write buffer control */ 758 { .name = "DACR", 759 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 760 .access = PL1_RW, .resetvalue = 0, 761 .writefn = dacr_write, .raw_writefn = raw_write, 762 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 763 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 764 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 765 * For v6 and v5, these mappings are overly broad. 766 */ 767 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 768 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 769 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 770 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 771 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 772 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 773 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 774 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 775 /* Cache maintenance ops; some of this space may be overridden later. */ 776 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 777 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 778 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 779 REGINFO_SENTINEL 780 }; 781 782 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 783 /* Not all pre-v6 cores implemented this WFI, so this is slightly 784 * over-broad. 785 */ 786 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 787 .access = PL1_W, .type = ARM_CP_WFI }, 788 REGINFO_SENTINEL 789 }; 790 791 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 792 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 793 * is UNPREDICTABLE; we choose to NOP as most implementations do). 794 */ 795 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 796 .access = PL1_W, .type = ARM_CP_WFI }, 797 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 798 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 799 * OMAPCP will override this space. 800 */ 801 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 802 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 803 .resetvalue = 0 }, 804 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 806 .resetvalue = 0 }, 807 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 808 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 809 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 810 .resetvalue = 0 }, 811 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 812 * implementing it as RAZ means the "debug architecture version" bits 813 * will read as a reserved value, which should cause Linux to not try 814 * to use the debug hardware. 815 */ 816 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 817 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 818 /* MMU TLB control. Note that the wildcarding means we cover not just 819 * the unified TLB ops but also the dside/iside/inner-shareable variants. 820 */ 821 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 822 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 823 .type = ARM_CP_NO_RAW }, 824 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 825 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 826 .type = ARM_CP_NO_RAW }, 827 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 828 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 829 .type = ARM_CP_NO_RAW }, 830 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 831 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 832 .type = ARM_CP_NO_RAW }, 833 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 834 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 835 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 836 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 837 REGINFO_SENTINEL 838 }; 839 840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 841 uint64_t value) 842 { 843 uint32_t mask = 0; 844 845 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 846 if (!arm_feature(env, ARM_FEATURE_V8)) { 847 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 848 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 849 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 850 */ 851 if (arm_feature(env, ARM_FEATURE_VFP)) { 852 /* VFP coprocessor: cp10 & cp11 [23:20] */ 853 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 854 855 if (!arm_feature(env, ARM_FEATURE_NEON)) { 856 /* ASEDIS [31] bit is RAO/WI */ 857 value |= (1 << 31); 858 } 859 860 /* VFPv3 and upwards with NEON implement 32 double precision 861 * registers (D0-D31). 862 */ 863 if (!arm_feature(env, ARM_FEATURE_NEON) || 864 !arm_feature(env, ARM_FEATURE_VFP3)) { 865 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 866 value |= (1 << 30); 867 } 868 } 869 value &= mask; 870 } 871 env->cp15.cpacr_el1 = value; 872 } 873 874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 875 { 876 /* Call cpacr_write() so that we reset with the correct RAO bits set 877 * for our CPU features. 878 */ 879 cpacr_write(env, ri, 0); 880 } 881 882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 883 bool isread) 884 { 885 if (arm_feature(env, ARM_FEATURE_V8)) { 886 /* Check if CPACR accesses are to be trapped to EL2 */ 887 if (arm_current_el(env) == 1 && 888 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 889 return CP_ACCESS_TRAP_EL2; 890 /* Check if CPACR accesses are to be trapped to EL3 */ 891 } else if (arm_current_el(env) < 3 && 892 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 893 return CP_ACCESS_TRAP_EL3; 894 } 895 } 896 897 return CP_ACCESS_OK; 898 } 899 900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 901 bool isread) 902 { 903 /* Check if CPTR accesses are set to trap to EL3 */ 904 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 905 return CP_ACCESS_TRAP_EL3; 906 } 907 908 return CP_ACCESS_OK; 909 } 910 911 static const ARMCPRegInfo v6_cp_reginfo[] = { 912 /* prefetch by MVA in v6, NOP in v7 */ 913 { .name = "MVA_prefetch", 914 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 915 .access = PL1_W, .type = ARM_CP_NOP }, 916 /* We need to break the TB after ISB to execute self-modifying code 917 * correctly and also to take any pending interrupts immediately. 918 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 919 */ 920 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 921 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 922 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 923 .access = PL0_W, .type = ARM_CP_NOP }, 924 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 925 .access = PL0_W, .type = ARM_CP_NOP }, 926 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 927 .access = PL1_RW, 928 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 929 offsetof(CPUARMState, cp15.ifar_ns) }, 930 .resetvalue = 0, }, 931 /* Watchpoint Fault Address Register : should actually only be present 932 * for 1136, 1176, 11MPCore. 933 */ 934 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 935 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 936 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 937 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 939 .resetfn = cpacr_reset, .writefn = cpacr_write }, 940 REGINFO_SENTINEL 941 }; 942 943 /* Definitions for the PMU registers */ 944 #define PMCRN_MASK 0xf800 945 #define PMCRN_SHIFT 11 946 #define PMCRD 0x8 947 #define PMCRC 0x4 948 #define PMCRE 0x1 949 950 static inline uint32_t pmu_num_counters(CPUARMState *env) 951 { 952 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 953 } 954 955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 956 static inline uint64_t pmu_counter_mask(CPUARMState *env) 957 { 958 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 959 } 960 961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 962 bool isread) 963 { 964 /* Performance monitor registers user accessibility is controlled 965 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 966 * trapping to EL2 or EL3 for other accesses. 967 */ 968 int el = arm_current_el(env); 969 970 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 971 return CP_ACCESS_TRAP; 972 } 973 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 974 && !arm_is_secure_below_el3(env)) { 975 return CP_ACCESS_TRAP_EL2; 976 } 977 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 978 return CP_ACCESS_TRAP_EL3; 979 } 980 981 return CP_ACCESS_OK; 982 } 983 984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 985 const ARMCPRegInfo *ri, 986 bool isread) 987 { 988 /* ER: event counter read trap control */ 989 if (arm_feature(env, ARM_FEATURE_V8) 990 && arm_current_el(env) == 0 991 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 992 && isread) { 993 return CP_ACCESS_OK; 994 } 995 996 return pmreg_access(env, ri, isread); 997 } 998 999 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1000 const ARMCPRegInfo *ri, 1001 bool isread) 1002 { 1003 /* SW: software increment write trap control */ 1004 if (arm_feature(env, ARM_FEATURE_V8) 1005 && arm_current_el(env) == 0 1006 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1007 && !isread) { 1008 return CP_ACCESS_OK; 1009 } 1010 1011 return pmreg_access(env, ri, isread); 1012 } 1013 1014 #ifndef CONFIG_USER_ONLY 1015 1016 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1017 const ARMCPRegInfo *ri, 1018 bool isread) 1019 { 1020 /* ER: event counter read trap control */ 1021 if (arm_feature(env, ARM_FEATURE_V8) 1022 && arm_current_el(env) == 0 1023 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1024 return CP_ACCESS_OK; 1025 } 1026 1027 return pmreg_access(env, ri, isread); 1028 } 1029 1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1031 const ARMCPRegInfo *ri, 1032 bool isread) 1033 { 1034 /* CR: cycle counter read trap control */ 1035 if (arm_feature(env, ARM_FEATURE_V8) 1036 && arm_current_el(env) == 0 1037 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1038 && isread) { 1039 return CP_ACCESS_OK; 1040 } 1041 1042 return pmreg_access(env, ri, isread); 1043 } 1044 1045 static inline bool arm_ccnt_enabled(CPUARMState *env) 1046 { 1047 /* This does not support checking PMCCFILTR_EL0 register */ 1048 1049 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1050 return false; 1051 } 1052 1053 return true; 1054 } 1055 1056 void pmccntr_sync(CPUARMState *env) 1057 { 1058 uint64_t temp_ticks; 1059 1060 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1062 1063 if (env->cp15.c9_pmcr & PMCRD) { 1064 /* Increment once every 64 processor clock cycles */ 1065 temp_ticks /= 64; 1066 } 1067 1068 if (arm_ccnt_enabled(env)) { 1069 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1070 } 1071 } 1072 1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1074 uint64_t value) 1075 { 1076 pmccntr_sync(env); 1077 1078 if (value & PMCRC) { 1079 /* The counter has been reset */ 1080 env->cp15.c15_ccnt = 0; 1081 } 1082 1083 /* only the DP, X, D and E bits are writable */ 1084 env->cp15.c9_pmcr &= ~0x39; 1085 env->cp15.c9_pmcr |= (value & 0x39); 1086 1087 pmccntr_sync(env); 1088 } 1089 1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1091 { 1092 uint64_t total_ticks; 1093 1094 if (!arm_ccnt_enabled(env)) { 1095 /* Counter is disabled, do not change value */ 1096 return env->cp15.c15_ccnt; 1097 } 1098 1099 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1100 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1101 1102 if (env->cp15.c9_pmcr & PMCRD) { 1103 /* Increment once every 64 processor clock cycles */ 1104 total_ticks /= 64; 1105 } 1106 return total_ticks - env->cp15.c15_ccnt; 1107 } 1108 1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1110 uint64_t value) 1111 { 1112 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1113 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1114 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1115 * accessed. 1116 */ 1117 env->cp15.c9_pmselr = value & 0x1f; 1118 } 1119 1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1121 uint64_t value) 1122 { 1123 uint64_t total_ticks; 1124 1125 if (!arm_ccnt_enabled(env)) { 1126 /* Counter is disabled, set the absolute value */ 1127 env->cp15.c15_ccnt = value; 1128 return; 1129 } 1130 1131 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1132 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1133 1134 if (env->cp15.c9_pmcr & PMCRD) { 1135 /* Increment once every 64 processor clock cycles */ 1136 total_ticks /= 64; 1137 } 1138 env->cp15.c15_ccnt = total_ticks - value; 1139 } 1140 1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1142 uint64_t value) 1143 { 1144 uint64_t cur_val = pmccntr_read(env, NULL); 1145 1146 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1147 } 1148 1149 #else /* CONFIG_USER_ONLY */ 1150 1151 void pmccntr_sync(CPUARMState *env) 1152 { 1153 } 1154 1155 #endif 1156 1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1158 uint64_t value) 1159 { 1160 pmccntr_sync(env); 1161 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1162 pmccntr_sync(env); 1163 } 1164 1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 value &= pmu_counter_mask(env); 1169 env->cp15.c9_pmcnten |= value; 1170 } 1171 1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1173 uint64_t value) 1174 { 1175 value &= pmu_counter_mask(env); 1176 env->cp15.c9_pmcnten &= ~value; 1177 } 1178 1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1180 uint64_t value) 1181 { 1182 env->cp15.c9_pmovsr &= ~value; 1183 } 1184 1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1186 uint64_t value) 1187 { 1188 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1189 * PMSELR value is equal to or greater than the number of implemented 1190 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1191 */ 1192 if (env->cp15.c9_pmselr == 0x1f) { 1193 pmccfiltr_write(env, ri, value); 1194 } 1195 } 1196 1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1198 { 1199 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1200 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1201 */ 1202 if (env->cp15.c9_pmselr == 0x1f) { 1203 return env->cp15.pmccfiltr_el0; 1204 } else { 1205 return 0; 1206 } 1207 } 1208 1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1210 uint64_t value) 1211 { 1212 if (arm_feature(env, ARM_FEATURE_V8)) { 1213 env->cp15.c9_pmuserenr = value & 0xf; 1214 } else { 1215 env->cp15.c9_pmuserenr = value & 1; 1216 } 1217 } 1218 1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 /* We have no event counters so only the C bit can be changed */ 1223 value &= pmu_counter_mask(env); 1224 env->cp15.c9_pminten |= value; 1225 } 1226 1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1228 uint64_t value) 1229 { 1230 value &= pmu_counter_mask(env); 1231 env->cp15.c9_pminten &= ~value; 1232 } 1233 1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1235 uint64_t value) 1236 { 1237 /* Note that even though the AArch64 view of this register has bits 1238 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1239 * architectural requirements for bits which are RES0 only in some 1240 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1241 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1242 */ 1243 raw_write(env, ri, value & ~0x1FULL); 1244 } 1245 1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1247 { 1248 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1249 * For bits that vary between AArch32/64, code needs to check the 1250 * current execution mode before directly using the feature bit. 1251 */ 1252 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1253 1254 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1255 valid_mask &= ~SCR_HCE; 1256 1257 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1258 * supported if EL2 exists. The bit is UNK/SBZP when 1259 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1260 * when EL2 is unavailable. 1261 * On ARMv8, this bit is always available. 1262 */ 1263 if (arm_feature(env, ARM_FEATURE_V7) && 1264 !arm_feature(env, ARM_FEATURE_V8)) { 1265 valid_mask &= ~SCR_SMD; 1266 } 1267 } 1268 1269 /* Clear all-context RES0 bits. */ 1270 value &= valid_mask; 1271 raw_write(env, ri, value); 1272 } 1273 1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1275 { 1276 ARMCPU *cpu = arm_env_get_cpu(env); 1277 1278 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1279 * bank 1280 */ 1281 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1282 ri->secure & ARM_CP_SECSTATE_S); 1283 1284 return cpu->ccsidr[index]; 1285 } 1286 1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1288 uint64_t value) 1289 { 1290 raw_write(env, ri, value & 0xf); 1291 } 1292 1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1294 { 1295 CPUState *cs = ENV_GET_CPU(env); 1296 uint64_t ret = 0; 1297 1298 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1299 ret |= CPSR_I; 1300 } 1301 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1302 ret |= CPSR_F; 1303 } 1304 /* External aborts are not possible in QEMU so A bit is always clear */ 1305 return ret; 1306 } 1307 1308 static const ARMCPRegInfo v7_cp_reginfo[] = { 1309 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1310 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1311 .access = PL1_W, .type = ARM_CP_NOP }, 1312 /* Performance monitors are implementation defined in v7, 1313 * but with an ARM recommended set of registers, which we 1314 * follow (although we don't actually implement any counters) 1315 * 1316 * Performance registers fall into three categories: 1317 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1318 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1319 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1320 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1321 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1322 */ 1323 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1324 .access = PL0_RW, .type = ARM_CP_ALIAS, 1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1326 .writefn = pmcntenset_write, 1327 .accessfn = pmreg_access, 1328 .raw_writefn = raw_write }, 1329 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1331 .access = PL0_RW, .accessfn = pmreg_access, 1332 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1333 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1334 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1335 .access = PL0_RW, 1336 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1337 .accessfn = pmreg_access, 1338 .writefn = pmcntenclr_write, 1339 .type = ARM_CP_ALIAS }, 1340 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1341 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1342 .access = PL0_RW, .accessfn = pmreg_access, 1343 .type = ARM_CP_ALIAS, 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1345 .writefn = pmcntenclr_write }, 1346 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1347 .access = PL0_RW, 1348 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1349 .accessfn = pmreg_access, 1350 .writefn = pmovsr_write, 1351 .raw_writefn = raw_write }, 1352 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1354 .access = PL0_RW, .accessfn = pmreg_access, 1355 .type = ARM_CP_ALIAS, 1356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1357 .writefn = pmovsr_write, 1358 .raw_writefn = raw_write }, 1359 /* Unimplemented so WI. */ 1360 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1361 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1362 #ifndef CONFIG_USER_ONLY 1363 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1364 .access = PL0_RW, .type = ARM_CP_ALIAS, 1365 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1366 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1367 .raw_writefn = raw_write}, 1368 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1369 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1370 .access = PL0_RW, .accessfn = pmreg_access_selr, 1371 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1372 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1373 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1374 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1375 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1376 .accessfn = pmreg_access_ccntr }, 1377 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1379 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1380 .type = ARM_CP_IO, 1381 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1382 #endif 1383 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1385 .writefn = pmccfiltr_write, 1386 .access = PL0_RW, .accessfn = pmreg_access, 1387 .type = ARM_CP_IO, 1388 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1389 .resetvalue = 0, }, 1390 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1391 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1392 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1393 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1394 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1395 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1396 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1397 /* Unimplemented, RAZ/WI. */ 1398 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1399 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1400 .accessfn = pmreg_access_xevcntr }, 1401 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1402 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1403 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1404 .resetvalue = 0, 1405 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1406 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1407 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1408 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1409 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1410 .resetvalue = 0, 1411 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1412 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1413 .access = PL1_RW, .accessfn = access_tpm, 1414 .type = ARM_CP_ALIAS | ARM_CP_IO, 1415 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1416 .resetvalue = 0, 1417 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1418 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1419 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1420 .access = PL1_RW, .accessfn = access_tpm, 1421 .type = ARM_CP_IO, 1422 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1423 .writefn = pmintenset_write, .raw_writefn = raw_write, 1424 .resetvalue = 0x0 }, 1425 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1426 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1427 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1428 .writefn = pmintenclr_write, }, 1429 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1430 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1431 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1432 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1433 .writefn = pmintenclr_write }, 1434 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1435 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1436 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1437 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1438 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1439 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1441 offsetof(CPUARMState, cp15.csselr_ns) } }, 1442 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1443 * just RAZ for all cores: 1444 */ 1445 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1446 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1448 /* Auxiliary fault status registers: these also are IMPDEF, and we 1449 * choose to RAZ/WI for all cores. 1450 */ 1451 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1452 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1453 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1454 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1455 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1456 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1457 /* MAIR can just read-as-written because we don't implement caches 1458 * and so don't need to care about memory attributes. 1459 */ 1460 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1461 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1463 .resetvalue = 0 }, 1464 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1465 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1466 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1467 .resetvalue = 0 }, 1468 /* For non-long-descriptor page tables these are PRRR and NMRR; 1469 * regardless they still act as reads-as-written for QEMU. 1470 */ 1471 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1472 * allows them to assign the correct fieldoffset based on the endianness 1473 * handled in the field definitions. 1474 */ 1475 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1476 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1477 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1478 offsetof(CPUARMState, cp15.mair0_ns) }, 1479 .resetfn = arm_cp_reset_ignore }, 1480 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1481 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1482 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1483 offsetof(CPUARMState, cp15.mair1_ns) }, 1484 .resetfn = arm_cp_reset_ignore }, 1485 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1486 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1487 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1488 /* 32 bit ITLB invalidates */ 1489 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1491 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1493 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1495 /* 32 bit DTLB invalidates */ 1496 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1498 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1500 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1502 /* 32 bit TLB invalidates */ 1503 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1504 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1505 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1506 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1507 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1508 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1509 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1511 REGINFO_SENTINEL 1512 }; 1513 1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1515 /* 32 bit TLB invalidates, Inner Shareable */ 1516 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1517 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1518 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1519 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1520 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1521 .type = ARM_CP_NO_RAW, .access = PL1_W, 1522 .writefn = tlbiasid_is_write }, 1523 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1524 .type = ARM_CP_NO_RAW, .access = PL1_W, 1525 .writefn = tlbimvaa_is_write }, 1526 REGINFO_SENTINEL 1527 }; 1528 1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1530 uint64_t value) 1531 { 1532 value &= 1; 1533 env->teecr = value; 1534 } 1535 1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1537 bool isread) 1538 { 1539 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1540 return CP_ACCESS_TRAP; 1541 } 1542 return CP_ACCESS_OK; 1543 } 1544 1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1546 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1547 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1548 .resetvalue = 0, 1549 .writefn = teecr_write }, 1550 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1551 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1552 .accessfn = teehbr_access, .resetvalue = 0 }, 1553 REGINFO_SENTINEL 1554 }; 1555 1556 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1557 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1558 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1559 .access = PL0_RW, 1560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1561 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1562 .access = PL0_RW, 1563 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1564 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1565 .resetfn = arm_cp_reset_ignore }, 1566 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1567 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1568 .access = PL0_R|PL1_W, 1569 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1570 .resetvalue = 0}, 1571 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1572 .access = PL0_R|PL1_W, 1573 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1574 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1575 .resetfn = arm_cp_reset_ignore }, 1576 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1577 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1578 .access = PL1_RW, 1579 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1580 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1581 .access = PL1_RW, 1582 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1583 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1584 .resetvalue = 0 }, 1585 REGINFO_SENTINEL 1586 }; 1587 1588 #ifndef CONFIG_USER_ONLY 1589 1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1591 bool isread) 1592 { 1593 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1594 * Writable only at the highest implemented exception level. 1595 */ 1596 int el = arm_current_el(env); 1597 1598 switch (el) { 1599 case 0: 1600 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1601 return CP_ACCESS_TRAP; 1602 } 1603 break; 1604 case 1: 1605 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1606 arm_is_secure_below_el3(env)) { 1607 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1608 return CP_ACCESS_TRAP_UNCATEGORIZED; 1609 } 1610 break; 1611 case 2: 1612 case 3: 1613 break; 1614 } 1615 1616 if (!isread && el < arm_highest_el(env)) { 1617 return CP_ACCESS_TRAP_UNCATEGORIZED; 1618 } 1619 1620 return CP_ACCESS_OK; 1621 } 1622 1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1624 bool isread) 1625 { 1626 unsigned int cur_el = arm_current_el(env); 1627 bool secure = arm_is_secure(env); 1628 1629 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1630 if (cur_el == 0 && 1631 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1632 return CP_ACCESS_TRAP; 1633 } 1634 1635 if (arm_feature(env, ARM_FEATURE_EL2) && 1636 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1637 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1638 return CP_ACCESS_TRAP_EL2; 1639 } 1640 return CP_ACCESS_OK; 1641 } 1642 1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1644 bool isread) 1645 { 1646 unsigned int cur_el = arm_current_el(env); 1647 bool secure = arm_is_secure(env); 1648 1649 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1650 * EL0[PV]TEN is zero. 1651 */ 1652 if (cur_el == 0 && 1653 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1654 return CP_ACCESS_TRAP; 1655 } 1656 1657 if (arm_feature(env, ARM_FEATURE_EL2) && 1658 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1659 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1660 return CP_ACCESS_TRAP_EL2; 1661 } 1662 return CP_ACCESS_OK; 1663 } 1664 1665 static CPAccessResult gt_pct_access(CPUARMState *env, 1666 const ARMCPRegInfo *ri, 1667 bool isread) 1668 { 1669 return gt_counter_access(env, GTIMER_PHYS, isread); 1670 } 1671 1672 static CPAccessResult gt_vct_access(CPUARMState *env, 1673 const ARMCPRegInfo *ri, 1674 bool isread) 1675 { 1676 return gt_counter_access(env, GTIMER_VIRT, isread); 1677 } 1678 1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1680 bool isread) 1681 { 1682 return gt_timer_access(env, GTIMER_PHYS, isread); 1683 } 1684 1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1686 bool isread) 1687 { 1688 return gt_timer_access(env, GTIMER_VIRT, isread); 1689 } 1690 1691 static CPAccessResult gt_stimer_access(CPUARMState *env, 1692 const ARMCPRegInfo *ri, 1693 bool isread) 1694 { 1695 /* The AArch64 register view of the secure physical timer is 1696 * always accessible from EL3, and configurably accessible from 1697 * Secure EL1. 1698 */ 1699 switch (arm_current_el(env)) { 1700 case 1: 1701 if (!arm_is_secure(env)) { 1702 return CP_ACCESS_TRAP; 1703 } 1704 if (!(env->cp15.scr_el3 & SCR_ST)) { 1705 return CP_ACCESS_TRAP_EL3; 1706 } 1707 return CP_ACCESS_OK; 1708 case 0: 1709 case 2: 1710 return CP_ACCESS_TRAP; 1711 case 3: 1712 return CP_ACCESS_OK; 1713 default: 1714 g_assert_not_reached(); 1715 } 1716 } 1717 1718 static uint64_t gt_get_countervalue(CPUARMState *env) 1719 { 1720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1721 } 1722 1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1724 { 1725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1726 1727 if (gt->ctl & 1) { 1728 /* Timer enabled: calculate and set current ISTATUS, irq, and 1729 * reset timer to when ISTATUS next has to change 1730 */ 1731 uint64_t offset = timeridx == GTIMER_VIRT ? 1732 cpu->env.cp15.cntvoff_el2 : 0; 1733 uint64_t count = gt_get_countervalue(&cpu->env); 1734 /* Note that this must be unsigned 64 bit arithmetic: */ 1735 int istatus = count - offset >= gt->cval; 1736 uint64_t nexttick; 1737 int irqstate; 1738 1739 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1740 1741 irqstate = (istatus && !(gt->ctl & 2)); 1742 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1743 1744 if (istatus) { 1745 /* Next transition is when count rolls back over to zero */ 1746 nexttick = UINT64_MAX; 1747 } else { 1748 /* Next transition is when we hit cval */ 1749 nexttick = gt->cval + offset; 1750 } 1751 /* Note that the desired next expiry time might be beyond the 1752 * signed-64-bit range of a QEMUTimer -- in this case we just 1753 * set the timer for as far in the future as possible. When the 1754 * timer expires we will reset the timer for any remaining period. 1755 */ 1756 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1757 nexttick = INT64_MAX / GTIMER_SCALE; 1758 } 1759 timer_mod(cpu->gt_timer[timeridx], nexttick); 1760 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1761 } else { 1762 /* Timer disabled: ISTATUS and timer output always clear */ 1763 gt->ctl &= ~4; 1764 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1765 timer_del(cpu->gt_timer[timeridx]); 1766 trace_arm_gt_recalc_disabled(timeridx); 1767 } 1768 } 1769 1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1771 int timeridx) 1772 { 1773 ARMCPU *cpu = arm_env_get_cpu(env); 1774 1775 timer_del(cpu->gt_timer[timeridx]); 1776 } 1777 1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 return gt_get_countervalue(env); 1781 } 1782 1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1786 } 1787 1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 int timeridx, 1790 uint64_t value) 1791 { 1792 trace_arm_gt_cval_write(timeridx, value); 1793 env->cp15.c14_timer[timeridx].cval = value; 1794 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1795 } 1796 1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1798 int timeridx) 1799 { 1800 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1801 1802 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1803 (gt_get_countervalue(env) - offset)); 1804 } 1805 1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 int timeridx, 1808 uint64_t value) 1809 { 1810 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1811 1812 trace_arm_gt_tval_write(timeridx, value); 1813 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1814 sextract64(value, 0, 32); 1815 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1816 } 1817 1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1819 int timeridx, 1820 uint64_t value) 1821 { 1822 ARMCPU *cpu = arm_env_get_cpu(env); 1823 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1824 1825 trace_arm_gt_ctl_write(timeridx, value); 1826 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1827 if ((oldval ^ value) & 1) { 1828 /* Enable toggled */ 1829 gt_recalc_timer(cpu, timeridx); 1830 } else if ((oldval ^ value) & 2) { 1831 /* IMASK toggled: don't need to recalculate, 1832 * just set the interrupt line based on ISTATUS 1833 */ 1834 int irqstate = (oldval & 4) && !(value & 2); 1835 1836 trace_arm_gt_imask_toggle(timeridx, irqstate); 1837 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1838 } 1839 } 1840 1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1842 { 1843 gt_timer_reset(env, ri, GTIMER_PHYS); 1844 } 1845 1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 gt_cval_write(env, ri, GTIMER_PHYS, value); 1850 } 1851 1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1853 { 1854 return gt_tval_read(env, ri, GTIMER_PHYS); 1855 } 1856 1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 gt_tval_write(env, ri, GTIMER_PHYS, value); 1861 } 1862 1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1864 uint64_t value) 1865 { 1866 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1867 } 1868 1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1870 { 1871 gt_timer_reset(env, ri, GTIMER_VIRT); 1872 } 1873 1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1875 uint64_t value) 1876 { 1877 gt_cval_write(env, ri, GTIMER_VIRT, value); 1878 } 1879 1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1881 { 1882 return gt_tval_read(env, ri, GTIMER_VIRT); 1883 } 1884 1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1886 uint64_t value) 1887 { 1888 gt_tval_write(env, ri, GTIMER_VIRT, value); 1889 } 1890 1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1892 uint64_t value) 1893 { 1894 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1895 } 1896 1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1898 uint64_t value) 1899 { 1900 ARMCPU *cpu = arm_env_get_cpu(env); 1901 1902 trace_arm_gt_cntvoff_write(value); 1903 raw_write(env, ri, value); 1904 gt_recalc_timer(cpu, GTIMER_VIRT); 1905 } 1906 1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 gt_timer_reset(env, ri, GTIMER_HYP); 1910 } 1911 1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value) 1914 { 1915 gt_cval_write(env, ri, GTIMER_HYP, value); 1916 } 1917 1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1919 { 1920 return gt_tval_read(env, ri, GTIMER_HYP); 1921 } 1922 1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1924 uint64_t value) 1925 { 1926 gt_tval_write(env, ri, GTIMER_HYP, value); 1927 } 1928 1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1930 uint64_t value) 1931 { 1932 gt_ctl_write(env, ri, GTIMER_HYP, value); 1933 } 1934 1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1936 { 1937 gt_timer_reset(env, ri, GTIMER_SEC); 1938 } 1939 1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1941 uint64_t value) 1942 { 1943 gt_cval_write(env, ri, GTIMER_SEC, value); 1944 } 1945 1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1947 { 1948 return gt_tval_read(env, ri, GTIMER_SEC); 1949 } 1950 1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1952 uint64_t value) 1953 { 1954 gt_tval_write(env, ri, GTIMER_SEC, value); 1955 } 1956 1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1958 uint64_t value) 1959 { 1960 gt_ctl_write(env, ri, GTIMER_SEC, value); 1961 } 1962 1963 void arm_gt_ptimer_cb(void *opaque) 1964 { 1965 ARMCPU *cpu = opaque; 1966 1967 gt_recalc_timer(cpu, GTIMER_PHYS); 1968 } 1969 1970 void arm_gt_vtimer_cb(void *opaque) 1971 { 1972 ARMCPU *cpu = opaque; 1973 1974 gt_recalc_timer(cpu, GTIMER_VIRT); 1975 } 1976 1977 void arm_gt_htimer_cb(void *opaque) 1978 { 1979 ARMCPU *cpu = opaque; 1980 1981 gt_recalc_timer(cpu, GTIMER_HYP); 1982 } 1983 1984 void arm_gt_stimer_cb(void *opaque) 1985 { 1986 ARMCPU *cpu = opaque; 1987 1988 gt_recalc_timer(cpu, GTIMER_SEC); 1989 } 1990 1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1992 /* Note that CNTFRQ is purely reads-as-written for the benefit 1993 * of software; writing it doesn't actually change the timer frequency. 1994 * Our reset value matches the fixed frequency we implement the timer at. 1995 */ 1996 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1997 .type = ARM_CP_ALIAS, 1998 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2000 }, 2001 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2003 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2005 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2006 }, 2007 /* overall control: mostly access permissions */ 2008 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2009 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2010 .access = PL1_RW, 2011 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2012 .resetvalue = 0, 2013 }, 2014 /* per-timer control */ 2015 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2016 .secure = ARM_CP_SECSTATE_NS, 2017 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2018 .accessfn = gt_ptimer_access, 2019 .fieldoffset = offsetoflow32(CPUARMState, 2020 cp15.c14_timer[GTIMER_PHYS].ctl), 2021 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2022 }, 2023 { .name = "CNTP_CTL_S", 2024 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2025 .secure = ARM_CP_SECSTATE_S, 2026 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2027 .accessfn = gt_ptimer_access, 2028 .fieldoffset = offsetoflow32(CPUARMState, 2029 cp15.c14_timer[GTIMER_SEC].ctl), 2030 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2031 }, 2032 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2033 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2034 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2035 .accessfn = gt_ptimer_access, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2037 .resetvalue = 0, 2038 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2039 }, 2040 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2041 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2042 .accessfn = gt_vtimer_access, 2043 .fieldoffset = offsetoflow32(CPUARMState, 2044 cp15.c14_timer[GTIMER_VIRT].ctl), 2045 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2046 }, 2047 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2049 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2050 .accessfn = gt_vtimer_access, 2051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2052 .resetvalue = 0, 2053 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2054 }, 2055 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2056 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2057 .secure = ARM_CP_SECSTATE_NS, 2058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2059 .accessfn = gt_ptimer_access, 2060 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2061 }, 2062 { .name = "CNTP_TVAL_S", 2063 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2064 .secure = ARM_CP_SECSTATE_S, 2065 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2066 .accessfn = gt_ptimer_access, 2067 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2068 }, 2069 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2072 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2073 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2074 }, 2075 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2076 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2077 .accessfn = gt_vtimer_access, 2078 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2079 }, 2080 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2082 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2083 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2084 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2085 }, 2086 /* The counter itself */ 2087 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2089 .accessfn = gt_pct_access, 2090 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2091 }, 2092 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2095 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2096 }, 2097 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2098 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2099 .accessfn = gt_vct_access, 2100 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2101 }, 2102 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2104 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2105 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2106 }, 2107 /* Comparison value, indicating when the timer goes off */ 2108 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2109 .secure = ARM_CP_SECSTATE_NS, 2110 .access = PL1_RW | PL0_R, 2111 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2113 .accessfn = gt_ptimer_access, 2114 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2115 }, 2116 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2117 .secure = ARM_CP_SECSTATE_S, 2118 .access = PL1_RW | PL0_R, 2119 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2121 .accessfn = gt_ptimer_access, 2122 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2123 }, 2124 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2126 .access = PL1_RW | PL0_R, 2127 .type = ARM_CP_IO, 2128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2129 .resetvalue = 0, .accessfn = gt_ptimer_access, 2130 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2131 }, 2132 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2133 .access = PL1_RW | PL0_R, 2134 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2135 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2136 .accessfn = gt_vtimer_access, 2137 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2138 }, 2139 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2141 .access = PL1_RW | PL0_R, 2142 .type = ARM_CP_IO, 2143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2144 .resetvalue = 0, .accessfn = gt_vtimer_access, 2145 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2146 }, 2147 /* Secure timer -- this is actually restricted to only EL3 2148 * and configurably Secure-EL1 via the accessfn. 2149 */ 2150 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2152 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2153 .accessfn = gt_stimer_access, 2154 .readfn = gt_sec_tval_read, 2155 .writefn = gt_sec_tval_write, 2156 .resetfn = gt_sec_timer_reset, 2157 }, 2158 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2160 .type = ARM_CP_IO, .access = PL1_RW, 2161 .accessfn = gt_stimer_access, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2163 .resetvalue = 0, 2164 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2165 }, 2166 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2168 .type = ARM_CP_IO, .access = PL1_RW, 2169 .accessfn = gt_stimer_access, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2171 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2172 }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 #else 2177 2178 /* In user-mode most of the generic timer registers are inaccessible 2179 * however modern kernels (4.12+) allow access to cntvct_el0 2180 */ 2181 2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2183 { 2184 /* Currently we have no support for QEMUTimer in linux-user so we 2185 * can't call gt_get_countervalue(env), instead we directly 2186 * call the lower level functions. 2187 */ 2188 return cpu_get_clock() / GTIMER_SCALE; 2189 } 2190 2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2192 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2193 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2194 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2195 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2196 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2197 }, 2198 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2200 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2201 .readfn = gt_virt_cnt_read, 2202 }, 2203 REGINFO_SENTINEL 2204 }; 2205 2206 #endif 2207 2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2209 { 2210 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2211 raw_write(env, ri, value); 2212 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2213 raw_write(env, ri, value & 0xfffff6ff); 2214 } else { 2215 raw_write(env, ri, value & 0xfffff1ff); 2216 } 2217 } 2218 2219 #ifndef CONFIG_USER_ONLY 2220 /* get_phys_addr() isn't present for user-mode-only targets */ 2221 2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2223 bool isread) 2224 { 2225 if (ri->opc2 & 4) { 2226 /* The ATS12NSO* operations must trap to EL3 if executed in 2227 * Secure EL1 (which can only happen if EL3 is AArch64). 2228 * They are simply UNDEF if executed from NS EL1. 2229 * They function normally from EL2 or EL3. 2230 */ 2231 if (arm_current_el(env) == 1) { 2232 if (arm_is_secure_below_el3(env)) { 2233 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2234 } 2235 return CP_ACCESS_TRAP_UNCATEGORIZED; 2236 } 2237 } 2238 return CP_ACCESS_OK; 2239 } 2240 2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2242 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2243 { 2244 hwaddr phys_addr; 2245 target_ulong page_size; 2246 int prot; 2247 bool ret; 2248 uint64_t par64; 2249 bool format64 = false; 2250 MemTxAttrs attrs = {}; 2251 ARMMMUFaultInfo fi = {}; 2252 ARMCacheAttrs cacheattrs = {}; 2253 2254 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2255 &prot, &page_size, &fi, &cacheattrs); 2256 2257 if (is_a64(env)) { 2258 format64 = true; 2259 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2260 /* 2261 * ATS1Cxx: 2262 * * TTBCR.EAE determines whether the result is returned using the 2263 * 32-bit or the 64-bit PAR format 2264 * * Instructions executed in Hyp mode always use the 64bit format 2265 * 2266 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2267 * * The Non-secure TTBCR.EAE bit is set to 1 2268 * * The implementation includes EL2, and the value of HCR.VM is 1 2269 * 2270 * ATS1Hx always uses the 64bit format (not supported yet). 2271 */ 2272 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2273 2274 if (arm_feature(env, ARM_FEATURE_EL2)) { 2275 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2276 format64 |= env->cp15.hcr_el2 & HCR_VM; 2277 } else { 2278 format64 |= arm_current_el(env) == 2; 2279 } 2280 } 2281 } 2282 2283 if (format64) { 2284 /* Create a 64-bit PAR */ 2285 par64 = (1 << 11); /* LPAE bit always set */ 2286 if (!ret) { 2287 par64 |= phys_addr & ~0xfffULL; 2288 if (!attrs.secure) { 2289 par64 |= (1 << 9); /* NS */ 2290 } 2291 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2292 par64 |= cacheattrs.shareability << 7; /* SH */ 2293 } else { 2294 uint32_t fsr = arm_fi_to_lfsc(&fi); 2295 2296 par64 |= 1; /* F */ 2297 par64 |= (fsr & 0x3f) << 1; /* FS */ 2298 /* Note that S2WLK and FSTAGE are always zero, because we don't 2299 * implement virtualization and therefore there can't be a stage 2 2300 * fault. 2301 */ 2302 } 2303 } else { 2304 /* fsr is a DFSR/IFSR value for the short descriptor 2305 * translation table format (with WnR always clear). 2306 * Convert it to a 32-bit PAR. 2307 */ 2308 if (!ret) { 2309 /* We do not set any attribute bits in the PAR */ 2310 if (page_size == (1 << 24) 2311 && arm_feature(env, ARM_FEATURE_V7)) { 2312 par64 = (phys_addr & 0xff000000) | (1 << 1); 2313 } else { 2314 par64 = phys_addr & 0xfffff000; 2315 } 2316 if (!attrs.secure) { 2317 par64 |= (1 << 9); /* NS */ 2318 } 2319 } else { 2320 uint32_t fsr = arm_fi_to_sfsc(&fi); 2321 2322 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2323 ((fsr & 0xf) << 1) | 1; 2324 } 2325 } 2326 return par64; 2327 } 2328 2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2330 { 2331 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2332 uint64_t par64; 2333 ARMMMUIdx mmu_idx; 2334 int el = arm_current_el(env); 2335 bool secure = arm_is_secure_below_el3(env); 2336 2337 switch (ri->opc2 & 6) { 2338 case 0: 2339 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2340 switch (el) { 2341 case 3: 2342 mmu_idx = ARMMMUIdx_S1E3; 2343 break; 2344 case 2: 2345 mmu_idx = ARMMMUIdx_S1NSE1; 2346 break; 2347 case 1: 2348 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2349 break; 2350 default: 2351 g_assert_not_reached(); 2352 } 2353 break; 2354 case 2: 2355 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2356 switch (el) { 2357 case 3: 2358 mmu_idx = ARMMMUIdx_S1SE0; 2359 break; 2360 case 2: 2361 mmu_idx = ARMMMUIdx_S1NSE0; 2362 break; 2363 case 1: 2364 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2365 break; 2366 default: 2367 g_assert_not_reached(); 2368 } 2369 break; 2370 case 4: 2371 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2372 mmu_idx = ARMMMUIdx_S12NSE1; 2373 break; 2374 case 6: 2375 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2376 mmu_idx = ARMMMUIdx_S12NSE0; 2377 break; 2378 default: 2379 g_assert_not_reached(); 2380 } 2381 2382 par64 = do_ats_write(env, value, access_type, mmu_idx); 2383 2384 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2385 } 2386 2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2388 uint64_t value) 2389 { 2390 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2391 uint64_t par64; 2392 2393 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2394 2395 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2396 } 2397 2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2399 bool isread) 2400 { 2401 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2402 return CP_ACCESS_TRAP; 2403 } 2404 return CP_ACCESS_OK; 2405 } 2406 2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2408 uint64_t value) 2409 { 2410 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2411 ARMMMUIdx mmu_idx; 2412 int secure = arm_is_secure_below_el3(env); 2413 2414 switch (ri->opc2 & 6) { 2415 case 0: 2416 switch (ri->opc1) { 2417 case 0: /* AT S1E1R, AT S1E1W */ 2418 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2419 break; 2420 case 4: /* AT S1E2R, AT S1E2W */ 2421 mmu_idx = ARMMMUIdx_S1E2; 2422 break; 2423 case 6: /* AT S1E3R, AT S1E3W */ 2424 mmu_idx = ARMMMUIdx_S1E3; 2425 break; 2426 default: 2427 g_assert_not_reached(); 2428 } 2429 break; 2430 case 2: /* AT S1E0R, AT S1E0W */ 2431 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2432 break; 2433 case 4: /* AT S12E1R, AT S12E1W */ 2434 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2435 break; 2436 case 6: /* AT S12E0R, AT S12E0W */ 2437 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2438 break; 2439 default: 2440 g_assert_not_reached(); 2441 } 2442 2443 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2444 } 2445 #endif 2446 2447 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2448 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2449 .access = PL1_RW, .resetvalue = 0, 2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2451 offsetoflow32(CPUARMState, cp15.par_ns) }, 2452 .writefn = par_write }, 2453 #ifndef CONFIG_USER_ONLY 2454 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2455 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2456 .access = PL1_W, .accessfn = ats_access, 2457 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2458 #endif 2459 REGINFO_SENTINEL 2460 }; 2461 2462 /* Return basic MPU access permission bits. */ 2463 static uint32_t simple_mpu_ap_bits(uint32_t val) 2464 { 2465 uint32_t ret; 2466 uint32_t mask; 2467 int i; 2468 ret = 0; 2469 mask = 3; 2470 for (i = 0; i < 16; i += 2) { 2471 ret |= (val >> i) & mask; 2472 mask <<= 2; 2473 } 2474 return ret; 2475 } 2476 2477 /* Pad basic MPU access permission bits to extended format. */ 2478 static uint32_t extended_mpu_ap_bits(uint32_t val) 2479 { 2480 uint32_t ret; 2481 uint32_t mask; 2482 int i; 2483 ret = 0; 2484 mask = 3; 2485 for (i = 0; i < 16; i += 2) { 2486 ret |= (val & mask) << i; 2487 mask <<= 2; 2488 } 2489 return ret; 2490 } 2491 2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2493 uint64_t value) 2494 { 2495 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2496 } 2497 2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2501 } 2502 2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2504 uint64_t value) 2505 { 2506 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2507 } 2508 2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2510 { 2511 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2512 } 2513 2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2515 { 2516 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2517 2518 if (!u32p) { 2519 return 0; 2520 } 2521 2522 u32p += env->pmsav7.rnr[M_REG_NS]; 2523 return *u32p; 2524 } 2525 2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2527 uint64_t value) 2528 { 2529 ARMCPU *cpu = arm_env_get_cpu(env); 2530 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2531 2532 if (!u32p) { 2533 return; 2534 } 2535 2536 u32p += env->pmsav7.rnr[M_REG_NS]; 2537 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2538 *u32p = value; 2539 } 2540 2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2542 uint64_t value) 2543 { 2544 ARMCPU *cpu = arm_env_get_cpu(env); 2545 uint32_t nrgs = cpu->pmsav7_dregion; 2546 2547 if (value >= nrgs) { 2548 qemu_log_mask(LOG_GUEST_ERROR, 2549 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2550 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2551 return; 2552 } 2553 2554 raw_write(env, ri, value); 2555 } 2556 2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2558 /* Reset for all these registers is handled in arm_cpu_reset(), 2559 * because the PMSAv7 is also used by M-profile CPUs, which do 2560 * not register cpregs but still need the state to be reset. 2561 */ 2562 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2563 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2564 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2565 .readfn = pmsav7_read, .writefn = pmsav7_write, 2566 .resetfn = arm_cp_reset_ignore }, 2567 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2568 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2569 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2570 .readfn = pmsav7_read, .writefn = pmsav7_write, 2571 .resetfn = arm_cp_reset_ignore }, 2572 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2573 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2574 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2575 .readfn = pmsav7_read, .writefn = pmsav7_write, 2576 .resetfn = arm_cp_reset_ignore }, 2577 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2578 .access = PL1_RW, 2579 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2580 .writefn = pmsav7_rgnr_write, 2581 .resetfn = arm_cp_reset_ignore }, 2582 REGINFO_SENTINEL 2583 }; 2584 2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2586 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2587 .access = PL1_RW, .type = ARM_CP_ALIAS, 2588 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2589 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2590 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2591 .access = PL1_RW, .type = ARM_CP_ALIAS, 2592 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2593 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2594 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2595 .access = PL1_RW, 2596 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2597 .resetvalue = 0, }, 2598 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2599 .access = PL1_RW, 2600 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2601 .resetvalue = 0, }, 2602 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2603 .access = PL1_RW, 2604 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2605 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2606 .access = PL1_RW, 2607 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2608 /* Protection region base and size registers */ 2609 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2610 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2611 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2612 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2613 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2614 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2615 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2616 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2617 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2618 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2619 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2620 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2621 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2622 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2623 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2624 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2625 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2626 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2627 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2628 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2629 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2630 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2631 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2632 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2633 REGINFO_SENTINEL 2634 }; 2635 2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2637 uint64_t value) 2638 { 2639 TCR *tcr = raw_ptr(env, ri); 2640 int maskshift = extract32(value, 0, 3); 2641 2642 if (!arm_feature(env, ARM_FEATURE_V8)) { 2643 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2644 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2645 * using Long-desciptor translation table format */ 2646 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2647 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2648 /* In an implementation that includes the Security Extensions 2649 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2650 * Short-descriptor translation table format. 2651 */ 2652 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2653 } else { 2654 value &= TTBCR_N; 2655 } 2656 } 2657 2658 /* Update the masks corresponding to the TCR bank being written 2659 * Note that we always calculate mask and base_mask, but 2660 * they are only used for short-descriptor tables (ie if EAE is 0); 2661 * for long-descriptor tables the TCR fields are used differently 2662 * and the mask and base_mask values are meaningless. 2663 */ 2664 tcr->raw_tcr = value; 2665 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2666 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2667 } 2668 2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2670 uint64_t value) 2671 { 2672 ARMCPU *cpu = arm_env_get_cpu(env); 2673 2674 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2675 /* With LPAE the TTBCR could result in a change of ASID 2676 * via the TTBCR.A1 bit, so do a TLB flush. 2677 */ 2678 tlb_flush(CPU(cpu)); 2679 } 2680 vmsa_ttbcr_raw_write(env, ri, value); 2681 } 2682 2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2684 { 2685 TCR *tcr = raw_ptr(env, ri); 2686 2687 /* Reset both the TCR as well as the masks corresponding to the bank of 2688 * the TCR being reset. 2689 */ 2690 tcr->raw_tcr = 0; 2691 tcr->mask = 0; 2692 tcr->base_mask = 0xffffc000u; 2693 } 2694 2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2696 uint64_t value) 2697 { 2698 ARMCPU *cpu = arm_env_get_cpu(env); 2699 TCR *tcr = raw_ptr(env, ri); 2700 2701 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2702 tlb_flush(CPU(cpu)); 2703 tcr->raw_tcr = value; 2704 } 2705 2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2707 uint64_t value) 2708 { 2709 /* 64 bit accesses to the TTBRs can change the ASID and so we 2710 * must flush the TLB. 2711 */ 2712 if (cpreg_field_is_64bit(ri)) { 2713 ARMCPU *cpu = arm_env_get_cpu(env); 2714 2715 tlb_flush(CPU(cpu)); 2716 } 2717 raw_write(env, ri, value); 2718 } 2719 2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 ARMCPU *cpu = arm_env_get_cpu(env); 2724 CPUState *cs = CPU(cpu); 2725 2726 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2727 if (raw_read(env, ri) != value) { 2728 tlb_flush_by_mmuidx(cs, 2729 ARMMMUIdxBit_S12NSE1 | 2730 ARMMMUIdxBit_S12NSE0 | 2731 ARMMMUIdxBit_S2NS); 2732 raw_write(env, ri, value); 2733 } 2734 } 2735 2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2737 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2738 .access = PL1_RW, .type = ARM_CP_ALIAS, 2739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2740 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2741 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2742 .access = PL1_RW, .resetvalue = 0, 2743 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2744 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2745 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2746 .access = PL1_RW, .resetvalue = 0, 2747 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2748 offsetof(CPUARMState, cp15.dfar_ns) } }, 2749 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2750 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2752 .resetvalue = 0, }, 2753 REGINFO_SENTINEL 2754 }; 2755 2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2757 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2758 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2759 .access = PL1_RW, 2760 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2761 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2763 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2764 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2765 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2766 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2768 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2769 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2770 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2771 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2772 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2773 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2774 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2775 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2776 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2777 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2778 .raw_writefn = vmsa_ttbcr_raw_write, 2779 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2780 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2781 REGINFO_SENTINEL 2782 }; 2783 2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2785 uint64_t value) 2786 { 2787 env->cp15.c15_ticonfig = value & 0xe7; 2788 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2789 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2790 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2791 } 2792 2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 env->cp15.c15_threadid = value & 0xffff; 2797 } 2798 2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 /* Wait-for-interrupt (deprecated) */ 2803 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2804 } 2805 2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 uint64_t value) 2808 { 2809 /* On OMAP there are registers indicating the max/min index of dcache lines 2810 * containing a dirty line; cache flush operations have to reset these. 2811 */ 2812 env->cp15.c15_i_max = 0x000; 2813 env->cp15.c15_i_min = 0xff0; 2814 } 2815 2816 static const ARMCPRegInfo omap_cp_reginfo[] = { 2817 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2819 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2820 .resetvalue = 0, }, 2821 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2822 .access = PL1_RW, .type = ARM_CP_NOP }, 2823 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2824 .access = PL1_RW, 2825 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2826 .writefn = omap_ticonfig_write }, 2827 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2828 .access = PL1_RW, 2829 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2830 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2831 .access = PL1_RW, .resetvalue = 0xff0, 2832 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2833 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2834 .access = PL1_RW, 2835 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2836 .writefn = omap_threadid_write }, 2837 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2838 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2839 .type = ARM_CP_NO_RAW, 2840 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2841 /* TODO: Peripheral port remap register: 2842 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2843 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2844 * when MMU is off. 2845 */ 2846 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2847 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2848 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2849 .writefn = omap_cachemaint_write }, 2850 { .name = "C9", .cp = 15, .crn = 9, 2851 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2852 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2853 REGINFO_SENTINEL 2854 }; 2855 2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 env->cp15.c15_cpar = value & 0x3fff; 2860 } 2861 2862 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2863 { .name = "XSCALE_CPAR", 2864 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2865 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2866 .writefn = xscale_cpar_write, }, 2867 { .name = "XSCALE_AUXCR", 2868 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2869 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2870 .resetvalue = 0, }, 2871 /* XScale specific cache-lockdown: since we have no cache we NOP these 2872 * and hope the guest does not really rely on cache behaviour. 2873 */ 2874 { .name = "XSCALE_LOCK_ICACHE_LINE", 2875 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2876 .access = PL1_W, .type = ARM_CP_NOP }, 2877 { .name = "XSCALE_UNLOCK_ICACHE", 2878 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2879 .access = PL1_W, .type = ARM_CP_NOP }, 2880 { .name = "XSCALE_DCACHE_LOCK", 2881 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2882 .access = PL1_RW, .type = ARM_CP_NOP }, 2883 { .name = "XSCALE_UNLOCK_DCACHE", 2884 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2885 .access = PL1_W, .type = ARM_CP_NOP }, 2886 REGINFO_SENTINEL 2887 }; 2888 2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2890 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2891 * implementation of this implementation-defined space. 2892 * Ideally this should eventually disappear in favour of actually 2893 * implementing the correct behaviour for all cores. 2894 */ 2895 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2897 .access = PL1_RW, 2898 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2899 .resetvalue = 0 }, 2900 REGINFO_SENTINEL 2901 }; 2902 2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2904 /* Cache status: RAZ because we have no cache so it's always clean */ 2905 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2906 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2907 .resetvalue = 0 }, 2908 REGINFO_SENTINEL 2909 }; 2910 2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2912 /* We never have a a block transfer operation in progress */ 2913 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2914 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2915 .resetvalue = 0 }, 2916 /* The cache ops themselves: these all NOP for QEMU */ 2917 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2918 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2919 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2920 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2921 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2922 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2923 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2924 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2925 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2926 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2927 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2928 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2929 REGINFO_SENTINEL 2930 }; 2931 2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2933 /* The cache test-and-clean instructions always return (1 << 30) 2934 * to indicate that there are no dirty cache lines. 2935 */ 2936 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2937 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2938 .resetvalue = (1 << 30) }, 2939 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2940 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2941 .resetvalue = (1 << 30) }, 2942 REGINFO_SENTINEL 2943 }; 2944 2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2946 /* Ignore ReadBuffer accesses */ 2947 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2949 .access = PL1_RW, .resetvalue = 0, 2950 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2951 REGINFO_SENTINEL 2952 }; 2953 2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2955 { 2956 ARMCPU *cpu = arm_env_get_cpu(env); 2957 unsigned int cur_el = arm_current_el(env); 2958 bool secure = arm_is_secure(env); 2959 2960 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2961 return env->cp15.vpidr_el2; 2962 } 2963 return raw_read(env, ri); 2964 } 2965 2966 static uint64_t mpidr_read_val(CPUARMState *env) 2967 { 2968 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2969 uint64_t mpidr = cpu->mp_affinity; 2970 2971 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2972 mpidr |= (1U << 31); 2973 /* Cores which are uniprocessor (non-coherent) 2974 * but still implement the MP extensions set 2975 * bit 30. (For instance, Cortex-R5). 2976 */ 2977 if (cpu->mp_is_up) { 2978 mpidr |= (1u << 30); 2979 } 2980 } 2981 return mpidr; 2982 } 2983 2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2985 { 2986 unsigned int cur_el = arm_current_el(env); 2987 bool secure = arm_is_secure(env); 2988 2989 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2990 return env->cp15.vmpidr_el2; 2991 } 2992 return mpidr_read_val(env); 2993 } 2994 2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2996 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2997 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2998 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2999 REGINFO_SENTINEL 3000 }; 3001 3002 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3003 /* NOP AMAIR0/1 */ 3004 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3005 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3006 .access = PL1_RW, .type = ARM_CP_CONST, 3007 .resetvalue = 0 }, 3008 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3009 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3010 .access = PL1_RW, .type = ARM_CP_CONST, 3011 .resetvalue = 0 }, 3012 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3013 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3014 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3015 offsetof(CPUARMState, cp15.par_ns)} }, 3016 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3017 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3018 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3019 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3020 .writefn = vmsa_ttbr_write, }, 3021 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3022 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3023 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3024 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3025 .writefn = vmsa_ttbr_write, }, 3026 REGINFO_SENTINEL 3027 }; 3028 3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3030 { 3031 return vfp_get_fpcr(env); 3032 } 3033 3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3035 uint64_t value) 3036 { 3037 vfp_set_fpcr(env, value); 3038 } 3039 3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3041 { 3042 return vfp_get_fpsr(env); 3043 } 3044 3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3046 uint64_t value) 3047 { 3048 vfp_set_fpsr(env, value); 3049 } 3050 3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3052 bool isread) 3053 { 3054 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3055 return CP_ACCESS_TRAP; 3056 } 3057 return CP_ACCESS_OK; 3058 } 3059 3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3061 uint64_t value) 3062 { 3063 env->daif = value & PSTATE_DAIF; 3064 } 3065 3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3067 const ARMCPRegInfo *ri, 3068 bool isread) 3069 { 3070 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3071 * SCTLR_EL1.UCI is set. 3072 */ 3073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3074 return CP_ACCESS_TRAP; 3075 } 3076 return CP_ACCESS_OK; 3077 } 3078 3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3080 * Page D4-1736 (DDI0487A.b) 3081 */ 3082 3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 CPUState *cs = ENV_GET_CPU(env); 3087 3088 if (arm_is_secure_below_el3(env)) { 3089 tlb_flush_by_mmuidx(cs, 3090 ARMMMUIdxBit_S1SE1 | 3091 ARMMMUIdxBit_S1SE0); 3092 } else { 3093 tlb_flush_by_mmuidx(cs, 3094 ARMMMUIdxBit_S12NSE1 | 3095 ARMMMUIdxBit_S12NSE0); 3096 } 3097 } 3098 3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3100 uint64_t value) 3101 { 3102 CPUState *cs = ENV_GET_CPU(env); 3103 bool sec = arm_is_secure_below_el3(env); 3104 3105 if (sec) { 3106 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3107 ARMMMUIdxBit_S1SE1 | 3108 ARMMMUIdxBit_S1SE0); 3109 } else { 3110 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3111 ARMMMUIdxBit_S12NSE1 | 3112 ARMMMUIdxBit_S12NSE0); 3113 } 3114 } 3115 3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3117 uint64_t value) 3118 { 3119 /* Note that the 'ALL' scope must invalidate both stage 1 and 3120 * stage 2 translations, whereas most other scopes only invalidate 3121 * stage 1 translations. 3122 */ 3123 ARMCPU *cpu = arm_env_get_cpu(env); 3124 CPUState *cs = CPU(cpu); 3125 3126 if (arm_is_secure_below_el3(env)) { 3127 tlb_flush_by_mmuidx(cs, 3128 ARMMMUIdxBit_S1SE1 | 3129 ARMMMUIdxBit_S1SE0); 3130 } else { 3131 if (arm_feature(env, ARM_FEATURE_EL2)) { 3132 tlb_flush_by_mmuidx(cs, 3133 ARMMMUIdxBit_S12NSE1 | 3134 ARMMMUIdxBit_S12NSE0 | 3135 ARMMMUIdxBit_S2NS); 3136 } else { 3137 tlb_flush_by_mmuidx(cs, 3138 ARMMMUIdxBit_S12NSE1 | 3139 ARMMMUIdxBit_S12NSE0); 3140 } 3141 } 3142 } 3143 3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 ARMCPU *cpu = arm_env_get_cpu(env); 3148 CPUState *cs = CPU(cpu); 3149 3150 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3151 } 3152 3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3154 uint64_t value) 3155 { 3156 ARMCPU *cpu = arm_env_get_cpu(env); 3157 CPUState *cs = CPU(cpu); 3158 3159 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3160 } 3161 3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3163 uint64_t value) 3164 { 3165 /* Note that the 'ALL' scope must invalidate both stage 1 and 3166 * stage 2 translations, whereas most other scopes only invalidate 3167 * stage 1 translations. 3168 */ 3169 CPUState *cs = ENV_GET_CPU(env); 3170 bool sec = arm_is_secure_below_el3(env); 3171 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3172 3173 if (sec) { 3174 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3175 ARMMMUIdxBit_S1SE1 | 3176 ARMMMUIdxBit_S1SE0); 3177 } else if (has_el2) { 3178 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3179 ARMMMUIdxBit_S12NSE1 | 3180 ARMMMUIdxBit_S12NSE0 | 3181 ARMMMUIdxBit_S2NS); 3182 } else { 3183 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3184 ARMMMUIdxBit_S12NSE1 | 3185 ARMMMUIdxBit_S12NSE0); 3186 } 3187 } 3188 3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3190 uint64_t value) 3191 { 3192 CPUState *cs = ENV_GET_CPU(env); 3193 3194 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3195 } 3196 3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3198 uint64_t value) 3199 { 3200 CPUState *cs = ENV_GET_CPU(env); 3201 3202 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3203 } 3204 3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3206 uint64_t value) 3207 { 3208 /* Invalidate by VA, EL1&0 (AArch64 version). 3209 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3210 * since we don't support flush-for-specific-ASID-only or 3211 * flush-last-level-only. 3212 */ 3213 ARMCPU *cpu = arm_env_get_cpu(env); 3214 CPUState *cs = CPU(cpu); 3215 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3216 3217 if (arm_is_secure_below_el3(env)) { 3218 tlb_flush_page_by_mmuidx(cs, pageaddr, 3219 ARMMMUIdxBit_S1SE1 | 3220 ARMMMUIdxBit_S1SE0); 3221 } else { 3222 tlb_flush_page_by_mmuidx(cs, pageaddr, 3223 ARMMMUIdxBit_S12NSE1 | 3224 ARMMMUIdxBit_S12NSE0); 3225 } 3226 } 3227 3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3229 uint64_t value) 3230 { 3231 /* Invalidate by VA, EL2 3232 * Currently handles both VAE2 and VALE2, since we don't support 3233 * flush-last-level-only. 3234 */ 3235 ARMCPU *cpu = arm_env_get_cpu(env); 3236 CPUState *cs = CPU(cpu); 3237 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3238 3239 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3240 } 3241 3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3243 uint64_t value) 3244 { 3245 /* Invalidate by VA, EL3 3246 * Currently handles both VAE3 and VALE3, since we don't support 3247 * flush-last-level-only. 3248 */ 3249 ARMCPU *cpu = arm_env_get_cpu(env); 3250 CPUState *cs = CPU(cpu); 3251 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3252 3253 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3254 } 3255 3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3257 uint64_t value) 3258 { 3259 ARMCPU *cpu = arm_env_get_cpu(env); 3260 CPUState *cs = CPU(cpu); 3261 bool sec = arm_is_secure_below_el3(env); 3262 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3263 3264 if (sec) { 3265 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3266 ARMMMUIdxBit_S1SE1 | 3267 ARMMMUIdxBit_S1SE0); 3268 } else { 3269 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3270 ARMMMUIdxBit_S12NSE1 | 3271 ARMMMUIdxBit_S12NSE0); 3272 } 3273 } 3274 3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3276 uint64_t value) 3277 { 3278 CPUState *cs = ENV_GET_CPU(env); 3279 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3280 3281 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3282 ARMMMUIdxBit_S1E2); 3283 } 3284 3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3286 uint64_t value) 3287 { 3288 CPUState *cs = ENV_GET_CPU(env); 3289 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3290 3291 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3292 ARMMMUIdxBit_S1E3); 3293 } 3294 3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3296 uint64_t value) 3297 { 3298 /* Invalidate by IPA. This has to invalidate any structures that 3299 * contain only stage 2 translation information, but does not need 3300 * to apply to structures that contain combined stage 1 and stage 2 3301 * translation information. 3302 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3303 */ 3304 ARMCPU *cpu = arm_env_get_cpu(env); 3305 CPUState *cs = CPU(cpu); 3306 uint64_t pageaddr; 3307 3308 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3309 return; 3310 } 3311 3312 pageaddr = sextract64(value << 12, 0, 48); 3313 3314 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3315 } 3316 3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3318 uint64_t value) 3319 { 3320 CPUState *cs = ENV_GET_CPU(env); 3321 uint64_t pageaddr; 3322 3323 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3324 return; 3325 } 3326 3327 pageaddr = sextract64(value << 12, 0, 48); 3328 3329 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3330 ARMMMUIdxBit_S2NS); 3331 } 3332 3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3334 bool isread) 3335 { 3336 /* We don't implement EL2, so the only control on DC ZVA is the 3337 * bit in the SCTLR which can prohibit access for EL0. 3338 */ 3339 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3340 return CP_ACCESS_TRAP; 3341 } 3342 return CP_ACCESS_OK; 3343 } 3344 3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3346 { 3347 ARMCPU *cpu = arm_env_get_cpu(env); 3348 int dzp_bit = 1 << 4; 3349 3350 /* DZP indicates whether DC ZVA access is allowed */ 3351 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3352 dzp_bit = 0; 3353 } 3354 return cpu->dcz_blocksize | dzp_bit; 3355 } 3356 3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3358 bool isread) 3359 { 3360 if (!(env->pstate & PSTATE_SP)) { 3361 /* Access to SP_EL0 is undefined if it's being used as 3362 * the stack pointer. 3363 */ 3364 return CP_ACCESS_TRAP_UNCATEGORIZED; 3365 } 3366 return CP_ACCESS_OK; 3367 } 3368 3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3370 { 3371 return env->pstate & PSTATE_SP; 3372 } 3373 3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3375 { 3376 update_spsel(env, val); 3377 } 3378 3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3380 uint64_t value) 3381 { 3382 ARMCPU *cpu = arm_env_get_cpu(env); 3383 3384 if (raw_read(env, ri) == value) { 3385 /* Skip the TLB flush if nothing actually changed; Linux likes 3386 * to do a lot of pointless SCTLR writes. 3387 */ 3388 return; 3389 } 3390 3391 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3392 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3393 value &= ~SCTLR_M; 3394 } 3395 3396 raw_write(env, ri, value); 3397 /* ??? Lots of these bits are not implemented. */ 3398 /* This may enable/disable the MMU, so do a TLB flush. */ 3399 tlb_flush(CPU(cpu)); 3400 } 3401 3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3403 bool isread) 3404 { 3405 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3406 return CP_ACCESS_TRAP_FP_EL2; 3407 } 3408 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3409 return CP_ACCESS_TRAP_FP_EL3; 3410 } 3411 return CP_ACCESS_OK; 3412 } 3413 3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3415 uint64_t value) 3416 { 3417 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3418 } 3419 3420 static const ARMCPRegInfo v8_cp_reginfo[] = { 3421 /* Minimal set of EL0-visible registers. This will need to be expanded 3422 * significantly for system emulation of AArch64 CPUs. 3423 */ 3424 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3425 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3426 .access = PL0_RW, .type = ARM_CP_NZCV }, 3427 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3429 .type = ARM_CP_NO_RAW, 3430 .access = PL0_RW, .accessfn = aa64_daif_access, 3431 .fieldoffset = offsetof(CPUARMState, daif), 3432 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3433 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3435 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3436 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3437 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3438 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3439 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3440 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3441 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3442 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3443 .access = PL0_R, .type = ARM_CP_NO_RAW, 3444 .readfn = aa64_dczid_read }, 3445 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3446 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3447 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3448 #ifndef CONFIG_USER_ONLY 3449 /* Avoid overhead of an access check that always passes in user-mode */ 3450 .accessfn = aa64_zva_access, 3451 #endif 3452 }, 3453 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3454 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3455 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3456 /* Cache ops: all NOPs since we don't emulate caches */ 3457 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3459 .access = PL1_W, .type = ARM_CP_NOP }, 3460 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3462 .access = PL1_W, .type = ARM_CP_NOP }, 3463 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3465 .access = PL0_W, .type = ARM_CP_NOP, 3466 .accessfn = aa64_cacheop_access }, 3467 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3469 .access = PL1_W, .type = ARM_CP_NOP }, 3470 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3472 .access = PL1_W, .type = ARM_CP_NOP }, 3473 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3475 .access = PL0_W, .type = ARM_CP_NOP, 3476 .accessfn = aa64_cacheop_access }, 3477 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3479 .access = PL1_W, .type = ARM_CP_NOP }, 3480 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3482 .access = PL0_W, .type = ARM_CP_NOP, 3483 .accessfn = aa64_cacheop_access }, 3484 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3486 .access = PL0_W, .type = ARM_CP_NOP, 3487 .accessfn = aa64_cacheop_access }, 3488 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3490 .access = PL1_W, .type = ARM_CP_NOP }, 3491 /* TLBI operations */ 3492 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3494 .access = PL1_W, .type = ARM_CP_NO_RAW, 3495 .writefn = tlbi_aa64_vmalle1is_write }, 3496 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3497 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3498 .access = PL1_W, .type = ARM_CP_NO_RAW, 3499 .writefn = tlbi_aa64_vae1is_write }, 3500 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3502 .access = PL1_W, .type = ARM_CP_NO_RAW, 3503 .writefn = tlbi_aa64_vmalle1is_write }, 3504 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3506 .access = PL1_W, .type = ARM_CP_NO_RAW, 3507 .writefn = tlbi_aa64_vae1is_write }, 3508 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3510 .access = PL1_W, .type = ARM_CP_NO_RAW, 3511 .writefn = tlbi_aa64_vae1is_write }, 3512 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3514 .access = PL1_W, .type = ARM_CP_NO_RAW, 3515 .writefn = tlbi_aa64_vae1is_write }, 3516 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3517 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3518 .access = PL1_W, .type = ARM_CP_NO_RAW, 3519 .writefn = tlbi_aa64_vmalle1_write }, 3520 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3521 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3522 .access = PL1_W, .type = ARM_CP_NO_RAW, 3523 .writefn = tlbi_aa64_vae1_write }, 3524 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3526 .access = PL1_W, .type = ARM_CP_NO_RAW, 3527 .writefn = tlbi_aa64_vmalle1_write }, 3528 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3530 .access = PL1_W, .type = ARM_CP_NO_RAW, 3531 .writefn = tlbi_aa64_vae1_write }, 3532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3534 .access = PL1_W, .type = ARM_CP_NO_RAW, 3535 .writefn = tlbi_aa64_vae1_write }, 3536 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3537 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3538 .access = PL1_W, .type = ARM_CP_NO_RAW, 3539 .writefn = tlbi_aa64_vae1_write }, 3540 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3542 .access = PL2_W, .type = ARM_CP_NO_RAW, 3543 .writefn = tlbi_aa64_ipas2e1is_write }, 3544 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3546 .access = PL2_W, .type = ARM_CP_NO_RAW, 3547 .writefn = tlbi_aa64_ipas2e1is_write }, 3548 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3550 .access = PL2_W, .type = ARM_CP_NO_RAW, 3551 .writefn = tlbi_aa64_alle1is_write }, 3552 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3554 .access = PL2_W, .type = ARM_CP_NO_RAW, 3555 .writefn = tlbi_aa64_alle1is_write }, 3556 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3558 .access = PL2_W, .type = ARM_CP_NO_RAW, 3559 .writefn = tlbi_aa64_ipas2e1_write }, 3560 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3562 .access = PL2_W, .type = ARM_CP_NO_RAW, 3563 .writefn = tlbi_aa64_ipas2e1_write }, 3564 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3566 .access = PL2_W, .type = ARM_CP_NO_RAW, 3567 .writefn = tlbi_aa64_alle1_write }, 3568 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3569 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3570 .access = PL2_W, .type = ARM_CP_NO_RAW, 3571 .writefn = tlbi_aa64_alle1is_write }, 3572 #ifndef CONFIG_USER_ONLY 3573 /* 64 bit address translation operations */ 3574 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3575 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3576 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3577 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3579 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3580 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3581 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3582 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3583 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3584 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3585 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3586 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3588 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3589 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3590 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3591 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3592 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3593 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3594 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3595 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3597 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3601 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3602 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3603 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3604 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3605 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3606 .type = ARM_CP_ALIAS, 3607 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3608 .access = PL1_RW, .resetvalue = 0, 3609 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3610 .writefn = par_write }, 3611 #endif 3612 /* TLB invalidate last level of translation table walk */ 3613 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3614 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3615 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3616 .type = ARM_CP_NO_RAW, .access = PL1_W, 3617 .writefn = tlbimvaa_is_write }, 3618 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3619 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3620 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3621 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3622 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3623 .type = ARM_CP_NO_RAW, .access = PL2_W, 3624 .writefn = tlbimva_hyp_write }, 3625 { .name = "TLBIMVALHIS", 3626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3627 .type = ARM_CP_NO_RAW, .access = PL2_W, 3628 .writefn = tlbimva_hyp_is_write }, 3629 { .name = "TLBIIPAS2", 3630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3631 .type = ARM_CP_NO_RAW, .access = PL2_W, 3632 .writefn = tlbiipas2_write }, 3633 { .name = "TLBIIPAS2IS", 3634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3635 .type = ARM_CP_NO_RAW, .access = PL2_W, 3636 .writefn = tlbiipas2_is_write }, 3637 { .name = "TLBIIPAS2L", 3638 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3639 .type = ARM_CP_NO_RAW, .access = PL2_W, 3640 .writefn = tlbiipas2_write }, 3641 { .name = "TLBIIPAS2LIS", 3642 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3643 .type = ARM_CP_NO_RAW, .access = PL2_W, 3644 .writefn = tlbiipas2_is_write }, 3645 /* 32 bit cache operations */ 3646 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3647 .type = ARM_CP_NOP, .access = PL1_W }, 3648 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3649 .type = ARM_CP_NOP, .access = PL1_W }, 3650 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3651 .type = ARM_CP_NOP, .access = PL1_W }, 3652 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3653 .type = ARM_CP_NOP, .access = PL1_W }, 3654 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3655 .type = ARM_CP_NOP, .access = PL1_W }, 3656 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3657 .type = ARM_CP_NOP, .access = PL1_W }, 3658 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3659 .type = ARM_CP_NOP, .access = PL1_W }, 3660 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3661 .type = ARM_CP_NOP, .access = PL1_W }, 3662 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3663 .type = ARM_CP_NOP, .access = PL1_W }, 3664 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3665 .type = ARM_CP_NOP, .access = PL1_W }, 3666 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3667 .type = ARM_CP_NOP, .access = PL1_W }, 3668 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3669 .type = ARM_CP_NOP, .access = PL1_W }, 3670 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3671 .type = ARM_CP_NOP, .access = PL1_W }, 3672 /* MMU Domain access control / MPU write buffer control */ 3673 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3674 .access = PL1_RW, .resetvalue = 0, 3675 .writefn = dacr_write, .raw_writefn = raw_write, 3676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3677 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3678 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3679 .type = ARM_CP_ALIAS, 3680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3681 .access = PL1_RW, 3682 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3683 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3684 .type = ARM_CP_ALIAS, 3685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3686 .access = PL1_RW, 3687 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3688 /* We rely on the access checks not allowing the guest to write to the 3689 * state field when SPSel indicates that it's being used as the stack 3690 * pointer. 3691 */ 3692 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3693 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3694 .access = PL1_RW, .accessfn = sp_el0_access, 3695 .type = ARM_CP_ALIAS, 3696 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3697 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3698 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3699 .access = PL2_RW, .type = ARM_CP_ALIAS, 3700 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3701 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3702 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3703 .type = ARM_CP_NO_RAW, 3704 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3705 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3707 .type = ARM_CP_ALIAS, 3708 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3709 .access = PL2_RW, .accessfn = fpexc32_access }, 3710 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3711 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3712 .access = PL2_RW, .resetvalue = 0, 3713 .writefn = dacr_write, .raw_writefn = raw_write, 3714 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3715 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3716 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3717 .access = PL2_RW, .resetvalue = 0, 3718 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3719 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3720 .type = ARM_CP_ALIAS, 3721 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3722 .access = PL2_RW, 3723 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3724 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3725 .type = ARM_CP_ALIAS, 3726 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3727 .access = PL2_RW, 3728 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3729 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3730 .type = ARM_CP_ALIAS, 3731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3732 .access = PL2_RW, 3733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3734 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3735 .type = ARM_CP_ALIAS, 3736 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3737 .access = PL2_RW, 3738 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3739 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3741 .resetvalue = 0, 3742 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3743 { .name = "SDCR", .type = ARM_CP_ALIAS, 3744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3746 .writefn = sdcr_write, 3747 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3748 REGINFO_SENTINEL 3749 }; 3750 3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3753 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3754 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3755 .access = PL2_RW, 3756 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3757 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3758 .type = ARM_CP_NO_RAW, 3759 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3760 .access = PL2_RW, 3761 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3762 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3763 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3764 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3765 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3766 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3767 .access = PL2_RW, .type = ARM_CP_CONST, 3768 .resetvalue = 0 }, 3769 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3770 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3771 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3772 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3773 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3774 .access = PL2_RW, .type = ARM_CP_CONST, 3775 .resetvalue = 0 }, 3776 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3777 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3778 .access = PL2_RW, .type = ARM_CP_CONST, 3779 .resetvalue = 0 }, 3780 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3781 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3782 .access = PL2_RW, .type = ARM_CP_CONST, 3783 .resetvalue = 0 }, 3784 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3785 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3786 .access = PL2_RW, .type = ARM_CP_CONST, 3787 .resetvalue = 0 }, 3788 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3789 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3790 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3791 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3792 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3793 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3794 .type = ARM_CP_CONST, .resetvalue = 0 }, 3795 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3796 .cp = 15, .opc1 = 6, .crm = 2, 3797 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3798 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3799 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3801 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3802 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3803 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3804 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3805 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3806 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3807 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3808 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3810 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3811 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3812 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3813 .resetvalue = 0 }, 3814 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3815 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3816 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3817 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3818 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3819 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3820 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3821 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3822 .resetvalue = 0 }, 3823 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3824 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3825 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3826 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3827 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3828 .resetvalue = 0 }, 3829 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3830 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3831 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3832 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3833 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3834 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3835 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3836 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3837 .access = PL2_RW, .accessfn = access_tda, 3838 .type = ARM_CP_CONST, .resetvalue = 0 }, 3839 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3840 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3841 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3842 .type = ARM_CP_CONST, .resetvalue = 0 }, 3843 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3844 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3845 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3846 REGINFO_SENTINEL 3847 }; 3848 3849 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3850 { 3851 ARMCPU *cpu = arm_env_get_cpu(env); 3852 uint64_t valid_mask = HCR_MASK; 3853 3854 if (arm_feature(env, ARM_FEATURE_EL3)) { 3855 valid_mask &= ~HCR_HCD; 3856 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3857 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3858 * However, if we're using the SMC PSCI conduit then QEMU is 3859 * effectively acting like EL3 firmware and so the guest at 3860 * EL2 should retain the ability to prevent EL1 from being 3861 * able to make SMC calls into the ersatz firmware, so in 3862 * that case HCR.TSC should be read/write. 3863 */ 3864 valid_mask &= ~HCR_TSC; 3865 } 3866 3867 /* Clear RES0 bits. */ 3868 value &= valid_mask; 3869 3870 /* These bits change the MMU setup: 3871 * HCR_VM enables stage 2 translation 3872 * HCR_PTW forbids certain page-table setups 3873 * HCR_DC Disables stage1 and enables stage2 translation 3874 */ 3875 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3876 tlb_flush(CPU(cpu)); 3877 } 3878 raw_write(env, ri, value); 3879 } 3880 3881 static const ARMCPRegInfo el2_cp_reginfo[] = { 3882 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3883 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3884 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3885 .writefn = hcr_write }, 3886 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3887 .type = ARM_CP_ALIAS, 3888 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3889 .access = PL2_RW, 3890 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3891 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3892 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3893 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3894 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3895 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3896 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3897 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3898 .type = ARM_CP_ALIAS, 3899 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3900 .access = PL2_RW, 3901 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3902 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3903 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3904 .access = PL2_RW, .writefn = vbar_write, 3905 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3906 .resetvalue = 0 }, 3907 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3908 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3909 .access = PL3_RW, .type = ARM_CP_ALIAS, 3910 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3911 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3912 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3913 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3914 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3915 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3916 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3917 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3918 .resetvalue = 0 }, 3919 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3920 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3921 .access = PL2_RW, .type = ARM_CP_ALIAS, 3922 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3923 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3924 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3925 .access = PL2_RW, .type = ARM_CP_CONST, 3926 .resetvalue = 0 }, 3927 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3928 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3929 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3930 .access = PL2_RW, .type = ARM_CP_CONST, 3931 .resetvalue = 0 }, 3932 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3933 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3934 .access = PL2_RW, .type = ARM_CP_CONST, 3935 .resetvalue = 0 }, 3936 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3937 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3938 .access = PL2_RW, .type = ARM_CP_CONST, 3939 .resetvalue = 0 }, 3940 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3941 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3942 .access = PL2_RW, 3943 /* no .writefn needed as this can't cause an ASID change; 3944 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3945 */ 3946 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3947 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3948 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3949 .type = ARM_CP_ALIAS, 3950 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3951 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3952 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3953 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3954 .access = PL2_RW, 3955 /* no .writefn needed as this can't cause an ASID change; 3956 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3957 */ 3958 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3959 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3960 .cp = 15, .opc1 = 6, .crm = 2, 3961 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3962 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3963 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3964 .writefn = vttbr_write }, 3965 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3966 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3967 .access = PL2_RW, .writefn = vttbr_write, 3968 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3969 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3970 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3971 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3972 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3973 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3974 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3975 .access = PL2_RW, .resetvalue = 0, 3976 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3977 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3978 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3979 .access = PL2_RW, .resetvalue = 0, 3980 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3981 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3982 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3983 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3984 { .name = "TLBIALLNSNH", 3985 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3986 .type = ARM_CP_NO_RAW, .access = PL2_W, 3987 .writefn = tlbiall_nsnh_write }, 3988 { .name = "TLBIALLNSNHIS", 3989 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3990 .type = ARM_CP_NO_RAW, .access = PL2_W, 3991 .writefn = tlbiall_nsnh_is_write }, 3992 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3993 .type = ARM_CP_NO_RAW, .access = PL2_W, 3994 .writefn = tlbiall_hyp_write }, 3995 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3996 .type = ARM_CP_NO_RAW, .access = PL2_W, 3997 .writefn = tlbiall_hyp_is_write }, 3998 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3999 .type = ARM_CP_NO_RAW, .access = PL2_W, 4000 .writefn = tlbimva_hyp_write }, 4001 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4002 .type = ARM_CP_NO_RAW, .access = PL2_W, 4003 .writefn = tlbimva_hyp_is_write }, 4004 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4005 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4006 .type = ARM_CP_NO_RAW, .access = PL2_W, 4007 .writefn = tlbi_aa64_alle2_write }, 4008 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4009 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4010 .type = ARM_CP_NO_RAW, .access = PL2_W, 4011 .writefn = tlbi_aa64_vae2_write }, 4012 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4014 .access = PL2_W, .type = ARM_CP_NO_RAW, 4015 .writefn = tlbi_aa64_vae2_write }, 4016 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4018 .access = PL2_W, .type = ARM_CP_NO_RAW, 4019 .writefn = tlbi_aa64_alle2is_write }, 4020 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4022 .type = ARM_CP_NO_RAW, .access = PL2_W, 4023 .writefn = tlbi_aa64_vae2is_write }, 4024 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4026 .access = PL2_W, .type = ARM_CP_NO_RAW, 4027 .writefn = tlbi_aa64_vae2is_write }, 4028 #ifndef CONFIG_USER_ONLY 4029 /* Unlike the other EL2-related AT operations, these must 4030 * UNDEF from EL3 if EL2 is not implemented, which is why we 4031 * define them here rather than with the rest of the AT ops. 4032 */ 4033 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4034 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4035 .access = PL2_W, .accessfn = at_s1e2_access, 4036 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4037 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4038 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4039 .access = PL2_W, .accessfn = at_s1e2_access, 4040 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4041 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4042 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4043 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4044 * to behave as if SCR.NS was 1. 4045 */ 4046 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4047 .access = PL2_W, 4048 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4049 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4050 .access = PL2_W, 4051 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4052 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4053 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4054 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4055 * reset values as IMPDEF. We choose to reset to 3 to comply with 4056 * both ARMv7 and ARMv8. 4057 */ 4058 .access = PL2_RW, .resetvalue = 3, 4059 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4060 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4061 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4062 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4063 .writefn = gt_cntvoff_write, 4064 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4065 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4066 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4067 .writefn = gt_cntvoff_write, 4068 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4069 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4070 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4071 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4072 .type = ARM_CP_IO, .access = PL2_RW, 4073 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4074 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4075 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4076 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4077 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4078 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4079 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4080 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4081 .resetfn = gt_hyp_timer_reset, 4082 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4083 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4084 .type = ARM_CP_IO, 4085 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4086 .access = PL2_RW, 4087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4088 .resetvalue = 0, 4089 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4090 #endif 4091 /* The only field of MDCR_EL2 that has a defined architectural reset value 4092 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4093 * don't impelment any PMU event counters, so using zero as a reset 4094 * value for MDCR_EL2 is okay 4095 */ 4096 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4097 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4098 .access = PL2_RW, .resetvalue = 0, 4099 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4100 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4101 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4102 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4103 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4104 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4105 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4106 .access = PL2_RW, 4107 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4108 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4109 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4110 .access = PL2_RW, 4111 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4112 REGINFO_SENTINEL 4113 }; 4114 4115 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4116 bool isread) 4117 { 4118 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4119 * At Secure EL1 it traps to EL3. 4120 */ 4121 if (arm_current_el(env) == 3) { 4122 return CP_ACCESS_OK; 4123 } 4124 if (arm_is_secure_below_el3(env)) { 4125 return CP_ACCESS_TRAP_EL3; 4126 } 4127 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4128 if (isread) { 4129 return CP_ACCESS_OK; 4130 } 4131 return CP_ACCESS_TRAP_UNCATEGORIZED; 4132 } 4133 4134 static const ARMCPRegInfo el3_cp_reginfo[] = { 4135 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4136 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4137 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4138 .resetvalue = 0, .writefn = scr_write }, 4139 { .name = "SCR", .type = ARM_CP_ALIAS, 4140 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4141 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4142 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4143 .writefn = scr_write }, 4144 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4145 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4146 .access = PL3_RW, .resetvalue = 0, 4147 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4148 { .name = "SDER", 4149 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4150 .access = PL3_RW, .resetvalue = 0, 4151 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4152 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4153 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4154 .writefn = vbar_write, .resetvalue = 0, 4155 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4156 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4157 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4158 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4159 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4160 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4161 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4162 .access = PL3_RW, 4163 /* no .writefn needed as this can't cause an ASID change; 4164 * we must provide a .raw_writefn and .resetfn because we handle 4165 * reset and migration for the AArch32 TTBCR(S), which might be 4166 * using mask and base_mask. 4167 */ 4168 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4169 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4170 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4171 .type = ARM_CP_ALIAS, 4172 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4173 .access = PL3_RW, 4174 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4175 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4176 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4177 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4178 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4179 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4181 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4182 .type = ARM_CP_ALIAS, 4183 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4184 .access = PL3_RW, 4185 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4186 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4187 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4188 .access = PL3_RW, .writefn = vbar_write, 4189 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4190 .resetvalue = 0 }, 4191 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4192 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4193 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4194 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4195 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4196 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4197 .access = PL3_RW, .resetvalue = 0, 4198 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4199 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4200 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4201 .access = PL3_RW, .type = ARM_CP_CONST, 4202 .resetvalue = 0 }, 4203 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4204 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4205 .access = PL3_RW, .type = ARM_CP_CONST, 4206 .resetvalue = 0 }, 4207 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4208 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4209 .access = PL3_RW, .type = ARM_CP_CONST, 4210 .resetvalue = 0 }, 4211 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4212 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4213 .access = PL3_W, .type = ARM_CP_NO_RAW, 4214 .writefn = tlbi_aa64_alle3is_write }, 4215 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4216 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4217 .access = PL3_W, .type = ARM_CP_NO_RAW, 4218 .writefn = tlbi_aa64_vae3is_write }, 4219 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4220 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4221 .access = PL3_W, .type = ARM_CP_NO_RAW, 4222 .writefn = tlbi_aa64_vae3is_write }, 4223 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4224 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4225 .access = PL3_W, .type = ARM_CP_NO_RAW, 4226 .writefn = tlbi_aa64_alle3_write }, 4227 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4228 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4229 .access = PL3_W, .type = ARM_CP_NO_RAW, 4230 .writefn = tlbi_aa64_vae3_write }, 4231 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4233 .access = PL3_W, .type = ARM_CP_NO_RAW, 4234 .writefn = tlbi_aa64_vae3_write }, 4235 REGINFO_SENTINEL 4236 }; 4237 4238 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4239 bool isread) 4240 { 4241 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4242 * but the AArch32 CTR has its own reginfo struct) 4243 */ 4244 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4245 return CP_ACCESS_TRAP; 4246 } 4247 return CP_ACCESS_OK; 4248 } 4249 4250 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4251 uint64_t value) 4252 { 4253 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4254 * read via a bit in OSLSR_EL1. 4255 */ 4256 int oslock; 4257 4258 if (ri->state == ARM_CP_STATE_AA32) { 4259 oslock = (value == 0xC5ACCE55); 4260 } else { 4261 oslock = value & 1; 4262 } 4263 4264 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4265 } 4266 4267 static const ARMCPRegInfo debug_cp_reginfo[] = { 4268 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4269 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4270 * unlike DBGDRAR it is never accessible from EL0. 4271 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4272 * accessor. 4273 */ 4274 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4275 .access = PL0_R, .accessfn = access_tdra, 4276 .type = ARM_CP_CONST, .resetvalue = 0 }, 4277 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4278 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4279 .access = PL1_R, .accessfn = access_tdra, 4280 .type = ARM_CP_CONST, .resetvalue = 0 }, 4281 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4282 .access = PL0_R, .accessfn = access_tdra, 4283 .type = ARM_CP_CONST, .resetvalue = 0 }, 4284 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4285 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4286 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4287 .access = PL1_RW, .accessfn = access_tda, 4288 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4289 .resetvalue = 0 }, 4290 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4291 * We don't implement the configurable EL0 access. 4292 */ 4293 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4294 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4295 .type = ARM_CP_ALIAS, 4296 .access = PL1_R, .accessfn = access_tda, 4297 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4298 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4299 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4300 .access = PL1_W, .type = ARM_CP_NO_RAW, 4301 .accessfn = access_tdosa, 4302 .writefn = oslar_write }, 4303 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4304 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4305 .access = PL1_R, .resetvalue = 10, 4306 .accessfn = access_tdosa, 4307 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4308 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4309 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4310 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4311 .access = PL1_RW, .accessfn = access_tdosa, 4312 .type = ARM_CP_NOP }, 4313 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4314 * implement vector catch debug events yet. 4315 */ 4316 { .name = "DBGVCR", 4317 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4318 .access = PL1_RW, .accessfn = access_tda, 4319 .type = ARM_CP_NOP }, 4320 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4321 * to save and restore a 32-bit guest's DBGVCR) 4322 */ 4323 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4324 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4325 .access = PL2_RW, .accessfn = access_tda, 4326 .type = ARM_CP_NOP }, 4327 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4328 * Channel but Linux may try to access this register. The 32-bit 4329 * alias is DBGDCCINT. 4330 */ 4331 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4332 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4333 .access = PL1_RW, .accessfn = access_tda, 4334 .type = ARM_CP_NOP }, 4335 REGINFO_SENTINEL 4336 }; 4337 4338 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4339 /* 64 bit access versions of the (dummy) debug registers */ 4340 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4341 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4342 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4343 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4344 REGINFO_SENTINEL 4345 }; 4346 4347 /* Return the exception level to which SVE-disabled exceptions should 4348 * be taken, or 0 if SVE is enabled. 4349 */ 4350 static int sve_exception_el(CPUARMState *env) 4351 { 4352 #ifndef CONFIG_USER_ONLY 4353 unsigned current_el = arm_current_el(env); 4354 4355 /* The CPACR.ZEN controls traps to EL1: 4356 * 0, 2 : trap EL0 and EL1 accesses 4357 * 1 : trap only EL0 accesses 4358 * 3 : trap no accesses 4359 */ 4360 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4361 default: 4362 if (current_el <= 1) { 4363 /* Trap to PL1, which might be EL1 or EL3 */ 4364 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4365 return 3; 4366 } 4367 return 1; 4368 } 4369 break; 4370 case 1: 4371 if (current_el == 0) { 4372 return 1; 4373 } 4374 break; 4375 case 3: 4376 break; 4377 } 4378 4379 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4380 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4381 default: 4382 if (current_el <= 1) { 4383 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4384 return 3; 4385 } 4386 return 1; 4387 } 4388 break; 4389 case 1: 4390 if (current_el == 0) { 4391 return 1; 4392 } 4393 break; 4394 case 3: 4395 break; 4396 } 4397 4398 /* CPTR_EL2. Check both TZ and TFP. */ 4399 if (current_el <= 2 4400 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4401 && !arm_is_secure_below_el3(env)) { 4402 return 2; 4403 } 4404 4405 /* CPTR_EL3. Check both EZ and TFP. */ 4406 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4407 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4408 return 3; 4409 } 4410 #endif 4411 return 0; 4412 } 4413 4414 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4415 uint64_t value) 4416 { 4417 /* Bits other than [3:0] are RAZ/WI. */ 4418 raw_write(env, ri, value & 0xf); 4419 } 4420 4421 static const ARMCPRegInfo zcr_el1_reginfo = { 4422 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4423 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4424 .access = PL1_RW, .type = ARM_CP_SVE, 4425 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4426 .writefn = zcr_write, .raw_writefn = raw_write 4427 }; 4428 4429 static const ARMCPRegInfo zcr_el2_reginfo = { 4430 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4432 .access = PL2_RW, .type = ARM_CP_SVE, 4433 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4434 .writefn = zcr_write, .raw_writefn = raw_write 4435 }; 4436 4437 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4438 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4439 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4440 .access = PL2_RW, .type = ARM_CP_SVE, 4441 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4442 }; 4443 4444 static const ARMCPRegInfo zcr_el3_reginfo = { 4445 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4446 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4447 .access = PL3_RW, .type = ARM_CP_SVE, 4448 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4449 .writefn = zcr_write, .raw_writefn = raw_write 4450 }; 4451 4452 void hw_watchpoint_update(ARMCPU *cpu, int n) 4453 { 4454 CPUARMState *env = &cpu->env; 4455 vaddr len = 0; 4456 vaddr wvr = env->cp15.dbgwvr[n]; 4457 uint64_t wcr = env->cp15.dbgwcr[n]; 4458 int mask; 4459 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4460 4461 if (env->cpu_watchpoint[n]) { 4462 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4463 env->cpu_watchpoint[n] = NULL; 4464 } 4465 4466 if (!extract64(wcr, 0, 1)) { 4467 /* E bit clear : watchpoint disabled */ 4468 return; 4469 } 4470 4471 switch (extract64(wcr, 3, 2)) { 4472 case 0: 4473 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4474 return; 4475 case 1: 4476 flags |= BP_MEM_READ; 4477 break; 4478 case 2: 4479 flags |= BP_MEM_WRITE; 4480 break; 4481 case 3: 4482 flags |= BP_MEM_ACCESS; 4483 break; 4484 } 4485 4486 /* Attempts to use both MASK and BAS fields simultaneously are 4487 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4488 * thus generating a watchpoint for every byte in the masked region. 4489 */ 4490 mask = extract64(wcr, 24, 4); 4491 if (mask == 1 || mask == 2) { 4492 /* Reserved values of MASK; we must act as if the mask value was 4493 * some non-reserved value, or as if the watchpoint were disabled. 4494 * We choose the latter. 4495 */ 4496 return; 4497 } else if (mask) { 4498 /* Watchpoint covers an aligned area up to 2GB in size */ 4499 len = 1ULL << mask; 4500 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4501 * whether the watchpoint fires when the unmasked bits match; we opt 4502 * to generate the exceptions. 4503 */ 4504 wvr &= ~(len - 1); 4505 } else { 4506 /* Watchpoint covers bytes defined by the byte address select bits */ 4507 int bas = extract64(wcr, 5, 8); 4508 int basstart; 4509 4510 if (bas == 0) { 4511 /* This must act as if the watchpoint is disabled */ 4512 return; 4513 } 4514 4515 if (extract64(wvr, 2, 1)) { 4516 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4517 * ignored, and BAS[3:0] define which bytes to watch. 4518 */ 4519 bas &= 0xf; 4520 } 4521 /* The BAS bits are supposed to be programmed to indicate a contiguous 4522 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4523 * we fire for each byte in the word/doubleword addressed by the WVR. 4524 * We choose to ignore any non-zero bits after the first range of 1s. 4525 */ 4526 basstart = ctz32(bas); 4527 len = cto32(bas >> basstart); 4528 wvr += basstart; 4529 } 4530 4531 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4532 &env->cpu_watchpoint[n]); 4533 } 4534 4535 void hw_watchpoint_update_all(ARMCPU *cpu) 4536 { 4537 int i; 4538 CPUARMState *env = &cpu->env; 4539 4540 /* Completely clear out existing QEMU watchpoints and our array, to 4541 * avoid possible stale entries following migration load. 4542 */ 4543 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4544 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4545 4546 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4547 hw_watchpoint_update(cpu, i); 4548 } 4549 } 4550 4551 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4552 uint64_t value) 4553 { 4554 ARMCPU *cpu = arm_env_get_cpu(env); 4555 int i = ri->crm; 4556 4557 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4558 * register reads and behaves as if values written are sign extended. 4559 * Bits [1:0] are RES0. 4560 */ 4561 value = sextract64(value, 0, 49) & ~3ULL; 4562 4563 raw_write(env, ri, value); 4564 hw_watchpoint_update(cpu, i); 4565 } 4566 4567 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4568 uint64_t value) 4569 { 4570 ARMCPU *cpu = arm_env_get_cpu(env); 4571 int i = ri->crm; 4572 4573 raw_write(env, ri, value); 4574 hw_watchpoint_update(cpu, i); 4575 } 4576 4577 void hw_breakpoint_update(ARMCPU *cpu, int n) 4578 { 4579 CPUARMState *env = &cpu->env; 4580 uint64_t bvr = env->cp15.dbgbvr[n]; 4581 uint64_t bcr = env->cp15.dbgbcr[n]; 4582 vaddr addr; 4583 int bt; 4584 int flags = BP_CPU; 4585 4586 if (env->cpu_breakpoint[n]) { 4587 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4588 env->cpu_breakpoint[n] = NULL; 4589 } 4590 4591 if (!extract64(bcr, 0, 1)) { 4592 /* E bit clear : watchpoint disabled */ 4593 return; 4594 } 4595 4596 bt = extract64(bcr, 20, 4); 4597 4598 switch (bt) { 4599 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4600 case 5: /* linked address mismatch (reserved if AArch64) */ 4601 qemu_log_mask(LOG_UNIMP, 4602 "arm: address mismatch breakpoint types not implemented\n"); 4603 return; 4604 case 0: /* unlinked address match */ 4605 case 1: /* linked address match */ 4606 { 4607 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4608 * we behave as if the register was sign extended. Bits [1:0] are 4609 * RES0. The BAS field is used to allow setting breakpoints on 16 4610 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4611 * a bp will fire if the addresses covered by the bp and the addresses 4612 * covered by the insn overlap but the insn doesn't start at the 4613 * start of the bp address range. We choose to require the insn and 4614 * the bp to have the same address. The constraints on writing to 4615 * BAS enforced in dbgbcr_write mean we have only four cases: 4616 * 0b0000 => no breakpoint 4617 * 0b0011 => breakpoint on addr 4618 * 0b1100 => breakpoint on addr + 2 4619 * 0b1111 => breakpoint on addr 4620 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4621 */ 4622 int bas = extract64(bcr, 5, 4); 4623 addr = sextract64(bvr, 0, 49) & ~3ULL; 4624 if (bas == 0) { 4625 return; 4626 } 4627 if (bas == 0xc) { 4628 addr += 2; 4629 } 4630 break; 4631 } 4632 case 2: /* unlinked context ID match */ 4633 case 8: /* unlinked VMID match (reserved if no EL2) */ 4634 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4635 qemu_log_mask(LOG_UNIMP, 4636 "arm: unlinked context breakpoint types not implemented\n"); 4637 return; 4638 case 9: /* linked VMID match (reserved if no EL2) */ 4639 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4640 case 3: /* linked context ID match */ 4641 default: 4642 /* We must generate no events for Linked context matches (unless 4643 * they are linked to by some other bp/wp, which is handled in 4644 * updates for the linking bp/wp). We choose to also generate no events 4645 * for reserved values. 4646 */ 4647 return; 4648 } 4649 4650 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4651 } 4652 4653 void hw_breakpoint_update_all(ARMCPU *cpu) 4654 { 4655 int i; 4656 CPUARMState *env = &cpu->env; 4657 4658 /* Completely clear out existing QEMU breakpoints and our array, to 4659 * avoid possible stale entries following migration load. 4660 */ 4661 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4662 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4663 4664 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4665 hw_breakpoint_update(cpu, i); 4666 } 4667 } 4668 4669 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4670 uint64_t value) 4671 { 4672 ARMCPU *cpu = arm_env_get_cpu(env); 4673 int i = ri->crm; 4674 4675 raw_write(env, ri, value); 4676 hw_breakpoint_update(cpu, i); 4677 } 4678 4679 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4680 uint64_t value) 4681 { 4682 ARMCPU *cpu = arm_env_get_cpu(env); 4683 int i = ri->crm; 4684 4685 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4686 * copy of BAS[0]. 4687 */ 4688 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4689 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4690 4691 raw_write(env, ri, value); 4692 hw_breakpoint_update(cpu, i); 4693 } 4694 4695 static void define_debug_regs(ARMCPU *cpu) 4696 { 4697 /* Define v7 and v8 architectural debug registers. 4698 * These are just dummy implementations for now. 4699 */ 4700 int i; 4701 int wrps, brps, ctx_cmps; 4702 ARMCPRegInfo dbgdidr = { 4703 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4704 .access = PL0_R, .accessfn = access_tda, 4705 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4706 }; 4707 4708 /* Note that all these register fields hold "number of Xs minus 1". */ 4709 brps = extract32(cpu->dbgdidr, 24, 4); 4710 wrps = extract32(cpu->dbgdidr, 28, 4); 4711 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4712 4713 assert(ctx_cmps <= brps); 4714 4715 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4716 * of the debug registers such as number of breakpoints; 4717 * check that if they both exist then they agree. 4718 */ 4719 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4720 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4721 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4722 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4723 } 4724 4725 define_one_arm_cp_reg(cpu, &dbgdidr); 4726 define_arm_cp_regs(cpu, debug_cp_reginfo); 4727 4728 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4729 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4730 } 4731 4732 for (i = 0; i < brps + 1; i++) { 4733 ARMCPRegInfo dbgregs[] = { 4734 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4735 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4736 .access = PL1_RW, .accessfn = access_tda, 4737 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4738 .writefn = dbgbvr_write, .raw_writefn = raw_write 4739 }, 4740 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4741 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4742 .access = PL1_RW, .accessfn = access_tda, 4743 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4744 .writefn = dbgbcr_write, .raw_writefn = raw_write 4745 }, 4746 REGINFO_SENTINEL 4747 }; 4748 define_arm_cp_regs(cpu, dbgregs); 4749 } 4750 4751 for (i = 0; i < wrps + 1; i++) { 4752 ARMCPRegInfo dbgregs[] = { 4753 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4754 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4755 .access = PL1_RW, .accessfn = access_tda, 4756 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4757 .writefn = dbgwvr_write, .raw_writefn = raw_write 4758 }, 4759 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4760 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4761 .access = PL1_RW, .accessfn = access_tda, 4762 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4763 .writefn = dbgwcr_write, .raw_writefn = raw_write 4764 }, 4765 REGINFO_SENTINEL 4766 }; 4767 define_arm_cp_regs(cpu, dbgregs); 4768 } 4769 } 4770 4771 /* We don't know until after realize whether there's a GICv3 4772 * attached, and that is what registers the gicv3 sysregs. 4773 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4774 * at runtime. 4775 */ 4776 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4777 { 4778 ARMCPU *cpu = arm_env_get_cpu(env); 4779 uint64_t pfr1 = cpu->id_pfr1; 4780 4781 if (env->gicv3state) { 4782 pfr1 |= 1 << 28; 4783 } 4784 return pfr1; 4785 } 4786 4787 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4788 { 4789 ARMCPU *cpu = arm_env_get_cpu(env); 4790 uint64_t pfr0 = cpu->id_aa64pfr0; 4791 4792 if (env->gicv3state) { 4793 pfr0 |= 1 << 24; 4794 } 4795 return pfr0; 4796 } 4797 4798 void register_cp_regs_for_features(ARMCPU *cpu) 4799 { 4800 /* Register all the coprocessor registers based on feature bits */ 4801 CPUARMState *env = &cpu->env; 4802 if (arm_feature(env, ARM_FEATURE_M)) { 4803 /* M profile has no coprocessor registers */ 4804 return; 4805 } 4806 4807 define_arm_cp_regs(cpu, cp_reginfo); 4808 if (!arm_feature(env, ARM_FEATURE_V8)) { 4809 /* Must go early as it is full of wildcards that may be 4810 * overridden by later definitions. 4811 */ 4812 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4813 } 4814 4815 if (arm_feature(env, ARM_FEATURE_V6)) { 4816 /* The ID registers all have impdef reset values */ 4817 ARMCPRegInfo v6_idregs[] = { 4818 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4820 .access = PL1_R, .type = ARM_CP_CONST, 4821 .resetvalue = cpu->id_pfr0 }, 4822 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4823 * the value of the GIC field until after we define these regs. 4824 */ 4825 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4827 .access = PL1_R, .type = ARM_CP_NO_RAW, 4828 .readfn = id_pfr1_read, 4829 .writefn = arm_cp_write_ignore }, 4830 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4832 .access = PL1_R, .type = ARM_CP_CONST, 4833 .resetvalue = cpu->id_dfr0 }, 4834 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4836 .access = PL1_R, .type = ARM_CP_CONST, 4837 .resetvalue = cpu->id_afr0 }, 4838 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4840 .access = PL1_R, .type = ARM_CP_CONST, 4841 .resetvalue = cpu->id_mmfr0 }, 4842 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4844 .access = PL1_R, .type = ARM_CP_CONST, 4845 .resetvalue = cpu->id_mmfr1 }, 4846 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4848 .access = PL1_R, .type = ARM_CP_CONST, 4849 .resetvalue = cpu->id_mmfr2 }, 4850 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4852 .access = PL1_R, .type = ARM_CP_CONST, 4853 .resetvalue = cpu->id_mmfr3 }, 4854 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4856 .access = PL1_R, .type = ARM_CP_CONST, 4857 .resetvalue = cpu->id_isar0 }, 4858 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4860 .access = PL1_R, .type = ARM_CP_CONST, 4861 .resetvalue = cpu->id_isar1 }, 4862 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4864 .access = PL1_R, .type = ARM_CP_CONST, 4865 .resetvalue = cpu->id_isar2 }, 4866 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4868 .access = PL1_R, .type = ARM_CP_CONST, 4869 .resetvalue = cpu->id_isar3 }, 4870 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4872 .access = PL1_R, .type = ARM_CP_CONST, 4873 .resetvalue = cpu->id_isar4 }, 4874 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4876 .access = PL1_R, .type = ARM_CP_CONST, 4877 .resetvalue = cpu->id_isar5 }, 4878 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4880 .access = PL1_R, .type = ARM_CP_CONST, 4881 .resetvalue = cpu->id_mmfr4 }, 4882 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 4883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4884 .access = PL1_R, .type = ARM_CP_CONST, 4885 .resetvalue = cpu->id_isar6 }, 4886 REGINFO_SENTINEL 4887 }; 4888 define_arm_cp_regs(cpu, v6_idregs); 4889 define_arm_cp_regs(cpu, v6_cp_reginfo); 4890 } else { 4891 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4892 } 4893 if (arm_feature(env, ARM_FEATURE_V6K)) { 4894 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4895 } 4896 if (arm_feature(env, ARM_FEATURE_V7MP) && 4897 !arm_feature(env, ARM_FEATURE_PMSA)) { 4898 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4899 } 4900 if (arm_feature(env, ARM_FEATURE_V7)) { 4901 /* v7 performance monitor control register: same implementor 4902 * field as main ID register, and we implement only the cycle 4903 * count register. 4904 */ 4905 #ifndef CONFIG_USER_ONLY 4906 ARMCPRegInfo pmcr = { 4907 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4908 .access = PL0_RW, 4909 .type = ARM_CP_IO | ARM_CP_ALIAS, 4910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4911 .accessfn = pmreg_access, .writefn = pmcr_write, 4912 .raw_writefn = raw_write, 4913 }; 4914 ARMCPRegInfo pmcr64 = { 4915 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4917 .access = PL0_RW, .accessfn = pmreg_access, 4918 .type = ARM_CP_IO, 4919 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4920 .resetvalue = cpu->midr & 0xff000000, 4921 .writefn = pmcr_write, .raw_writefn = raw_write, 4922 }; 4923 define_one_arm_cp_reg(cpu, &pmcr); 4924 define_one_arm_cp_reg(cpu, &pmcr64); 4925 #endif 4926 ARMCPRegInfo clidr = { 4927 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4928 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4929 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4930 }; 4931 define_one_arm_cp_reg(cpu, &clidr); 4932 define_arm_cp_regs(cpu, v7_cp_reginfo); 4933 define_debug_regs(cpu); 4934 } else { 4935 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4936 } 4937 if (arm_feature(env, ARM_FEATURE_V8)) { 4938 /* AArch64 ID registers, which all have impdef reset values. 4939 * Note that within the ID register ranges the unused slots 4940 * must all RAZ, not UNDEF; future architecture versions may 4941 * define new registers here. 4942 */ 4943 ARMCPRegInfo v8_idregs[] = { 4944 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4945 * know the right value for the GIC field until after we 4946 * define these regs. 4947 */ 4948 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4950 .access = PL1_R, .type = ARM_CP_NO_RAW, 4951 .readfn = id_aa64pfr0_read, 4952 .writefn = arm_cp_write_ignore }, 4953 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4955 .access = PL1_R, .type = ARM_CP_CONST, 4956 .resetvalue = cpu->id_aa64pfr1}, 4957 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4959 .access = PL1_R, .type = ARM_CP_CONST, 4960 .resetvalue = 0 }, 4961 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4963 .access = PL1_R, .type = ARM_CP_CONST, 4964 .resetvalue = 0 }, 4965 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4967 .access = PL1_R, .type = ARM_CP_CONST, 4968 .resetvalue = 0 }, 4969 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4971 .access = PL1_R, .type = ARM_CP_CONST, 4972 .resetvalue = 0 }, 4973 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4975 .access = PL1_R, .type = ARM_CP_CONST, 4976 .resetvalue = 0 }, 4977 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4979 .access = PL1_R, .type = ARM_CP_CONST, 4980 .resetvalue = 0 }, 4981 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4983 .access = PL1_R, .type = ARM_CP_CONST, 4984 .resetvalue = cpu->id_aa64dfr0 }, 4985 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4987 .access = PL1_R, .type = ARM_CP_CONST, 4988 .resetvalue = cpu->id_aa64dfr1 }, 4989 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4991 .access = PL1_R, .type = ARM_CP_CONST, 4992 .resetvalue = 0 }, 4993 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4995 .access = PL1_R, .type = ARM_CP_CONST, 4996 .resetvalue = 0 }, 4997 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4999 .access = PL1_R, .type = ARM_CP_CONST, 5000 .resetvalue = cpu->id_aa64afr0 }, 5001 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 5003 .access = PL1_R, .type = ARM_CP_CONST, 5004 .resetvalue = cpu->id_aa64afr1 }, 5005 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 5007 .access = PL1_R, .type = ARM_CP_CONST, 5008 .resetvalue = 0 }, 5009 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 5011 .access = PL1_R, .type = ARM_CP_CONST, 5012 .resetvalue = 0 }, 5013 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 5015 .access = PL1_R, .type = ARM_CP_CONST, 5016 .resetvalue = cpu->id_aa64isar0 }, 5017 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 5019 .access = PL1_R, .type = ARM_CP_CONST, 5020 .resetvalue = cpu->id_aa64isar1 }, 5021 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 5023 .access = PL1_R, .type = ARM_CP_CONST, 5024 .resetvalue = 0 }, 5025 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 5027 .access = PL1_R, .type = ARM_CP_CONST, 5028 .resetvalue = 0 }, 5029 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 5031 .access = PL1_R, .type = ARM_CP_CONST, 5032 .resetvalue = 0 }, 5033 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 5035 .access = PL1_R, .type = ARM_CP_CONST, 5036 .resetvalue = 0 }, 5037 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5039 .access = PL1_R, .type = ARM_CP_CONST, 5040 .resetvalue = 0 }, 5041 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5043 .access = PL1_R, .type = ARM_CP_CONST, 5044 .resetvalue = 0 }, 5045 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5047 .access = PL1_R, .type = ARM_CP_CONST, 5048 .resetvalue = cpu->id_aa64mmfr0 }, 5049 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5051 .access = PL1_R, .type = ARM_CP_CONST, 5052 .resetvalue = cpu->id_aa64mmfr1 }, 5053 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5055 .access = PL1_R, .type = ARM_CP_CONST, 5056 .resetvalue = 0 }, 5057 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5059 .access = PL1_R, .type = ARM_CP_CONST, 5060 .resetvalue = 0 }, 5061 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5063 .access = PL1_R, .type = ARM_CP_CONST, 5064 .resetvalue = 0 }, 5065 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5067 .access = PL1_R, .type = ARM_CP_CONST, 5068 .resetvalue = 0 }, 5069 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5071 .access = PL1_R, .type = ARM_CP_CONST, 5072 .resetvalue = 0 }, 5073 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5075 .access = PL1_R, .type = ARM_CP_CONST, 5076 .resetvalue = 0 }, 5077 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5079 .access = PL1_R, .type = ARM_CP_CONST, 5080 .resetvalue = cpu->mvfr0 }, 5081 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5083 .access = PL1_R, .type = ARM_CP_CONST, 5084 .resetvalue = cpu->mvfr1 }, 5085 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5087 .access = PL1_R, .type = ARM_CP_CONST, 5088 .resetvalue = cpu->mvfr2 }, 5089 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5091 .access = PL1_R, .type = ARM_CP_CONST, 5092 .resetvalue = 0 }, 5093 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5095 .access = PL1_R, .type = ARM_CP_CONST, 5096 .resetvalue = 0 }, 5097 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5099 .access = PL1_R, .type = ARM_CP_CONST, 5100 .resetvalue = 0 }, 5101 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5103 .access = PL1_R, .type = ARM_CP_CONST, 5104 .resetvalue = 0 }, 5105 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5107 .access = PL1_R, .type = ARM_CP_CONST, 5108 .resetvalue = 0 }, 5109 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5110 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5111 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5112 .resetvalue = cpu->pmceid0 }, 5113 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5114 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5115 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5116 .resetvalue = cpu->pmceid0 }, 5117 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5118 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5119 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5120 .resetvalue = cpu->pmceid1 }, 5121 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5122 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5123 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5124 .resetvalue = cpu->pmceid1 }, 5125 REGINFO_SENTINEL 5126 }; 5127 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5128 if (!arm_feature(env, ARM_FEATURE_EL3) && 5129 !arm_feature(env, ARM_FEATURE_EL2)) { 5130 ARMCPRegInfo rvbar = { 5131 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5133 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5134 }; 5135 define_one_arm_cp_reg(cpu, &rvbar); 5136 } 5137 define_arm_cp_regs(cpu, v8_idregs); 5138 define_arm_cp_regs(cpu, v8_cp_reginfo); 5139 } 5140 if (arm_feature(env, ARM_FEATURE_EL2)) { 5141 uint64_t vmpidr_def = mpidr_read_val(env); 5142 ARMCPRegInfo vpidr_regs[] = { 5143 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5144 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5145 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5146 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5147 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5148 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5149 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5150 .access = PL2_RW, .resetvalue = cpu->midr, 5151 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5152 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5153 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5154 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5155 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5156 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5157 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5158 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5159 .access = PL2_RW, 5160 .resetvalue = vmpidr_def, 5161 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5162 REGINFO_SENTINEL 5163 }; 5164 define_arm_cp_regs(cpu, vpidr_regs); 5165 define_arm_cp_regs(cpu, el2_cp_reginfo); 5166 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5167 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5168 ARMCPRegInfo rvbar = { 5169 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5170 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5171 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5172 }; 5173 define_one_arm_cp_reg(cpu, &rvbar); 5174 } 5175 } else { 5176 /* If EL2 is missing but higher ELs are enabled, we need to 5177 * register the no_el2 reginfos. 5178 */ 5179 if (arm_feature(env, ARM_FEATURE_EL3)) { 5180 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5181 * of MIDR_EL1 and MPIDR_EL1. 5182 */ 5183 ARMCPRegInfo vpidr_regs[] = { 5184 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5185 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5186 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5187 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5188 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5189 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5190 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5191 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5192 .type = ARM_CP_NO_RAW, 5193 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5194 REGINFO_SENTINEL 5195 }; 5196 define_arm_cp_regs(cpu, vpidr_regs); 5197 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5198 } 5199 } 5200 if (arm_feature(env, ARM_FEATURE_EL3)) { 5201 define_arm_cp_regs(cpu, el3_cp_reginfo); 5202 ARMCPRegInfo el3_regs[] = { 5203 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5204 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5205 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5206 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5207 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5208 .access = PL3_RW, 5209 .raw_writefn = raw_write, .writefn = sctlr_write, 5210 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5211 .resetvalue = cpu->reset_sctlr }, 5212 REGINFO_SENTINEL 5213 }; 5214 5215 define_arm_cp_regs(cpu, el3_regs); 5216 } 5217 /* The behaviour of NSACR is sufficiently various that we don't 5218 * try to describe it in a single reginfo: 5219 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5220 * reads as constant 0xc00 from NS EL1 and NS EL2 5221 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5222 * if v7 without EL3, register doesn't exist 5223 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5224 */ 5225 if (arm_feature(env, ARM_FEATURE_EL3)) { 5226 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5227 ARMCPRegInfo nsacr = { 5228 .name = "NSACR", .type = ARM_CP_CONST, 5229 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5230 .access = PL1_RW, .accessfn = nsacr_access, 5231 .resetvalue = 0xc00 5232 }; 5233 define_one_arm_cp_reg(cpu, &nsacr); 5234 } else { 5235 ARMCPRegInfo nsacr = { 5236 .name = "NSACR", 5237 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5238 .access = PL3_RW | PL1_R, 5239 .resetvalue = 0, 5240 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5241 }; 5242 define_one_arm_cp_reg(cpu, &nsacr); 5243 } 5244 } else { 5245 if (arm_feature(env, ARM_FEATURE_V8)) { 5246 ARMCPRegInfo nsacr = { 5247 .name = "NSACR", .type = ARM_CP_CONST, 5248 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5249 .access = PL1_R, 5250 .resetvalue = 0xc00 5251 }; 5252 define_one_arm_cp_reg(cpu, &nsacr); 5253 } 5254 } 5255 5256 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5257 if (arm_feature(env, ARM_FEATURE_V6)) { 5258 /* PMSAv6 not implemented */ 5259 assert(arm_feature(env, ARM_FEATURE_V7)); 5260 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5261 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5262 } else { 5263 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5264 } 5265 } else { 5266 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5267 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5268 } 5269 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5270 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5271 } 5272 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5273 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5274 } 5275 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5276 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5277 } 5278 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5279 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5280 } 5281 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5282 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5283 } 5284 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5285 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5286 } 5287 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5288 define_arm_cp_regs(cpu, omap_cp_reginfo); 5289 } 5290 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5291 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5292 } 5293 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5294 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5295 } 5296 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5297 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5298 } 5299 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5300 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5301 } 5302 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5303 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5304 * be read-only (ie write causes UNDEF exception). 5305 */ 5306 { 5307 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5308 /* Pre-v8 MIDR space. 5309 * Note that the MIDR isn't a simple constant register because 5310 * of the TI925 behaviour where writes to another register can 5311 * cause the MIDR value to change. 5312 * 5313 * Unimplemented registers in the c15 0 0 0 space default to 5314 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5315 * and friends override accordingly. 5316 */ 5317 { .name = "MIDR", 5318 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5319 .access = PL1_R, .resetvalue = cpu->midr, 5320 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5321 .readfn = midr_read, 5322 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5323 .type = ARM_CP_OVERRIDE }, 5324 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5325 { .name = "DUMMY", 5326 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5327 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5328 { .name = "DUMMY", 5329 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5330 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5331 { .name = "DUMMY", 5332 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5334 { .name = "DUMMY", 5335 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5336 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5337 { .name = "DUMMY", 5338 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5339 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5340 REGINFO_SENTINEL 5341 }; 5342 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5343 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5345 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5346 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5347 .readfn = midr_read }, 5348 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5349 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5350 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5351 .access = PL1_R, .resetvalue = cpu->midr }, 5352 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5353 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5354 .access = PL1_R, .resetvalue = cpu->midr }, 5355 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5357 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5358 REGINFO_SENTINEL 5359 }; 5360 ARMCPRegInfo id_cp_reginfo[] = { 5361 /* These are common to v8 and pre-v8 */ 5362 { .name = "CTR", 5363 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5365 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5366 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5367 .access = PL0_R, .accessfn = ctr_el0_access, 5368 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5369 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5370 { .name = "TCMTR", 5371 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5372 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5373 REGINFO_SENTINEL 5374 }; 5375 /* TLBTR is specific to VMSA */ 5376 ARMCPRegInfo id_tlbtr_reginfo = { 5377 .name = "TLBTR", 5378 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5379 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5380 }; 5381 /* MPUIR is specific to PMSA V6+ */ 5382 ARMCPRegInfo id_mpuir_reginfo = { 5383 .name = "MPUIR", 5384 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5385 .access = PL1_R, .type = ARM_CP_CONST, 5386 .resetvalue = cpu->pmsav7_dregion << 8 5387 }; 5388 ARMCPRegInfo crn0_wi_reginfo = { 5389 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5390 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5391 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5392 }; 5393 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5394 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5395 ARMCPRegInfo *r; 5396 /* Register the blanket "writes ignored" value first to cover the 5397 * whole space. Then update the specific ID registers to allow write 5398 * access, so that they ignore writes rather than causing them to 5399 * UNDEF. 5400 */ 5401 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5402 for (r = id_pre_v8_midr_cp_reginfo; 5403 r->type != ARM_CP_SENTINEL; r++) { 5404 r->access = PL1_RW; 5405 } 5406 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5407 r->access = PL1_RW; 5408 } 5409 id_mpuir_reginfo.access = PL1_RW; 5410 id_tlbtr_reginfo.access = PL1_RW; 5411 } 5412 if (arm_feature(env, ARM_FEATURE_V8)) { 5413 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5414 } else { 5415 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5416 } 5417 define_arm_cp_regs(cpu, id_cp_reginfo); 5418 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5419 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5420 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5421 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5422 } 5423 } 5424 5425 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5426 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5427 } 5428 5429 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5430 ARMCPRegInfo auxcr_reginfo[] = { 5431 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5432 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5433 .access = PL1_RW, .type = ARM_CP_CONST, 5434 .resetvalue = cpu->reset_auxcr }, 5435 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5436 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5437 .access = PL2_RW, .type = ARM_CP_CONST, 5438 .resetvalue = 0 }, 5439 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5440 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5441 .access = PL3_RW, .type = ARM_CP_CONST, 5442 .resetvalue = 0 }, 5443 REGINFO_SENTINEL 5444 }; 5445 define_arm_cp_regs(cpu, auxcr_reginfo); 5446 } 5447 5448 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5449 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5450 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5451 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5452 | extract64(cpu->reset_cbar, 32, 12); 5453 ARMCPRegInfo cbar_reginfo[] = { 5454 { .name = "CBAR", 5455 .type = ARM_CP_CONST, 5456 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5457 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5458 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5459 .type = ARM_CP_CONST, 5460 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5461 .access = PL1_R, .resetvalue = cbar32 }, 5462 REGINFO_SENTINEL 5463 }; 5464 /* We don't implement a r/w 64 bit CBAR currently */ 5465 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5466 define_arm_cp_regs(cpu, cbar_reginfo); 5467 } else { 5468 ARMCPRegInfo cbar = { 5469 .name = "CBAR", 5470 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5471 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5472 .fieldoffset = offsetof(CPUARMState, 5473 cp15.c15_config_base_address) 5474 }; 5475 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5476 cbar.access = PL1_R; 5477 cbar.fieldoffset = 0; 5478 cbar.type = ARM_CP_CONST; 5479 } 5480 define_one_arm_cp_reg(cpu, &cbar); 5481 } 5482 } 5483 5484 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5485 ARMCPRegInfo vbar_cp_reginfo[] = { 5486 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5487 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5488 .access = PL1_RW, .writefn = vbar_write, 5489 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5490 offsetof(CPUARMState, cp15.vbar_ns) }, 5491 .resetvalue = 0 }, 5492 REGINFO_SENTINEL 5493 }; 5494 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5495 } 5496 5497 /* Generic registers whose values depend on the implementation */ 5498 { 5499 ARMCPRegInfo sctlr = { 5500 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5501 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5502 .access = PL1_RW, 5503 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5504 offsetof(CPUARMState, cp15.sctlr_ns) }, 5505 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5506 .raw_writefn = raw_write, 5507 }; 5508 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5509 /* Normally we would always end the TB on an SCTLR write, but Linux 5510 * arch/arm/mach-pxa/sleep.S expects two instructions following 5511 * an MMU enable to execute from cache. Imitate this behaviour. 5512 */ 5513 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5514 } 5515 define_one_arm_cp_reg(cpu, &sctlr); 5516 } 5517 5518 if (arm_feature(env, ARM_FEATURE_SVE)) { 5519 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5520 if (arm_feature(env, ARM_FEATURE_EL2)) { 5521 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5522 } else { 5523 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5524 } 5525 if (arm_feature(env, ARM_FEATURE_EL3)) { 5526 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5527 } 5528 } 5529 } 5530 5531 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5532 { 5533 CPUState *cs = CPU(cpu); 5534 CPUARMState *env = &cpu->env; 5535 5536 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5537 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5538 aarch64_fpu_gdb_set_reg, 5539 34, "aarch64-fpu.xml", 0); 5540 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5541 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5542 51, "arm-neon.xml", 0); 5543 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5544 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5545 35, "arm-vfp3.xml", 0); 5546 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5547 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5548 19, "arm-vfp.xml", 0); 5549 } 5550 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 5551 arm_gen_dynamic_xml(cs), 5552 "system-registers.xml", 0); 5553 } 5554 5555 /* Sort alphabetically by type name, except for "any". */ 5556 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5557 { 5558 ObjectClass *class_a = (ObjectClass *)a; 5559 ObjectClass *class_b = (ObjectClass *)b; 5560 const char *name_a, *name_b; 5561 5562 name_a = object_class_get_name(class_a); 5563 name_b = object_class_get_name(class_b); 5564 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5565 return 1; 5566 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5567 return -1; 5568 } else { 5569 return strcmp(name_a, name_b); 5570 } 5571 } 5572 5573 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5574 { 5575 ObjectClass *oc = data; 5576 CPUListState *s = user_data; 5577 const char *typename; 5578 char *name; 5579 5580 typename = object_class_get_name(oc); 5581 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5582 (*s->cpu_fprintf)(s->file, " %s\n", 5583 name); 5584 g_free(name); 5585 } 5586 5587 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5588 { 5589 CPUListState s = { 5590 .file = f, 5591 .cpu_fprintf = cpu_fprintf, 5592 }; 5593 GSList *list; 5594 5595 list = object_class_get_list(TYPE_ARM_CPU, false); 5596 list = g_slist_sort(list, arm_cpu_list_compare); 5597 (*cpu_fprintf)(f, "Available CPUs:\n"); 5598 g_slist_foreach(list, arm_cpu_list_entry, &s); 5599 g_slist_free(list); 5600 } 5601 5602 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5603 { 5604 ObjectClass *oc = data; 5605 CpuDefinitionInfoList **cpu_list = user_data; 5606 CpuDefinitionInfoList *entry; 5607 CpuDefinitionInfo *info; 5608 const char *typename; 5609 5610 typename = object_class_get_name(oc); 5611 info = g_malloc0(sizeof(*info)); 5612 info->name = g_strndup(typename, 5613 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5614 info->q_typename = g_strdup(typename); 5615 5616 entry = g_malloc0(sizeof(*entry)); 5617 entry->value = info; 5618 entry->next = *cpu_list; 5619 *cpu_list = entry; 5620 } 5621 5622 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5623 { 5624 CpuDefinitionInfoList *cpu_list = NULL; 5625 GSList *list; 5626 5627 list = object_class_get_list(TYPE_ARM_CPU, false); 5628 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5629 g_slist_free(list); 5630 5631 return cpu_list; 5632 } 5633 5634 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5635 void *opaque, int state, int secstate, 5636 int crm, int opc1, int opc2, 5637 const char *name) 5638 { 5639 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5640 * add a single reginfo struct to the hash table. 5641 */ 5642 uint32_t *key = g_new(uint32_t, 1); 5643 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5644 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5645 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5646 5647 r2->name = g_strdup(name); 5648 /* Reset the secure state to the specific incoming state. This is 5649 * necessary as the register may have been defined with both states. 5650 */ 5651 r2->secure = secstate; 5652 5653 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5654 /* Register is banked (using both entries in array). 5655 * Overwriting fieldoffset as the array is only used to define 5656 * banked registers but later only fieldoffset is used. 5657 */ 5658 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5659 } 5660 5661 if (state == ARM_CP_STATE_AA32) { 5662 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5663 /* If the register is banked then we don't need to migrate or 5664 * reset the 32-bit instance in certain cases: 5665 * 5666 * 1) If the register has both 32-bit and 64-bit instances then we 5667 * can count on the 64-bit instance taking care of the 5668 * non-secure bank. 5669 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5670 * taking care of the secure bank. This requires that separate 5671 * 32 and 64-bit definitions are provided. 5672 */ 5673 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5674 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5675 r2->type |= ARM_CP_ALIAS; 5676 } 5677 } else if ((secstate != r->secure) && !ns) { 5678 /* The register is not banked so we only want to allow migration of 5679 * the non-secure instance. 5680 */ 5681 r2->type |= ARM_CP_ALIAS; 5682 } 5683 5684 if (r->state == ARM_CP_STATE_BOTH) { 5685 /* We assume it is a cp15 register if the .cp field is left unset. 5686 */ 5687 if (r2->cp == 0) { 5688 r2->cp = 15; 5689 } 5690 5691 #ifdef HOST_WORDS_BIGENDIAN 5692 if (r2->fieldoffset) { 5693 r2->fieldoffset += sizeof(uint32_t); 5694 } 5695 #endif 5696 } 5697 } 5698 if (state == ARM_CP_STATE_AA64) { 5699 /* To allow abbreviation of ARMCPRegInfo 5700 * definitions, we treat cp == 0 as equivalent to 5701 * the value for "standard guest-visible sysreg". 5702 * STATE_BOTH definitions are also always "standard 5703 * sysreg" in their AArch64 view (the .cp value may 5704 * be non-zero for the benefit of the AArch32 view). 5705 */ 5706 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5707 r2->cp = CP_REG_ARM64_SYSREG_CP; 5708 } 5709 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5710 r2->opc0, opc1, opc2); 5711 } else { 5712 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5713 } 5714 if (opaque) { 5715 r2->opaque = opaque; 5716 } 5717 /* reginfo passed to helpers is correct for the actual access, 5718 * and is never ARM_CP_STATE_BOTH: 5719 */ 5720 r2->state = state; 5721 /* Make sure reginfo passed to helpers for wildcarded regs 5722 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5723 */ 5724 r2->crm = crm; 5725 r2->opc1 = opc1; 5726 r2->opc2 = opc2; 5727 /* By convention, for wildcarded registers only the first 5728 * entry is used for migration; the others are marked as 5729 * ALIAS so we don't try to transfer the register 5730 * multiple times. Special registers (ie NOP/WFI) are 5731 * never migratable and not even raw-accessible. 5732 */ 5733 if ((r->type & ARM_CP_SPECIAL)) { 5734 r2->type |= ARM_CP_NO_RAW; 5735 } 5736 if (((r->crm == CP_ANY) && crm != 0) || 5737 ((r->opc1 == CP_ANY) && opc1 != 0) || 5738 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5739 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 5740 } 5741 5742 /* Check that raw accesses are either forbidden or handled. Note that 5743 * we can't assert this earlier because the setup of fieldoffset for 5744 * banked registers has to be done first. 5745 */ 5746 if (!(r2->type & ARM_CP_NO_RAW)) { 5747 assert(!raw_accessors_invalid(r2)); 5748 } 5749 5750 /* Overriding of an existing definition must be explicitly 5751 * requested. 5752 */ 5753 if (!(r->type & ARM_CP_OVERRIDE)) { 5754 ARMCPRegInfo *oldreg; 5755 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5756 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5757 fprintf(stderr, "Register redefined: cp=%d %d bit " 5758 "crn=%d crm=%d opc1=%d opc2=%d, " 5759 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5760 r2->crn, r2->crm, r2->opc1, r2->opc2, 5761 oldreg->name, r2->name); 5762 g_assert_not_reached(); 5763 } 5764 } 5765 g_hash_table_insert(cpu->cp_regs, key, r2); 5766 } 5767 5768 5769 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5770 const ARMCPRegInfo *r, void *opaque) 5771 { 5772 /* Define implementations of coprocessor registers. 5773 * We store these in a hashtable because typically 5774 * there are less than 150 registers in a space which 5775 * is 16*16*16*8*8 = 262144 in size. 5776 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5777 * If a register is defined twice then the second definition is 5778 * used, so this can be used to define some generic registers and 5779 * then override them with implementation specific variations. 5780 * At least one of the original and the second definition should 5781 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5782 * against accidental use. 5783 * 5784 * The state field defines whether the register is to be 5785 * visible in the AArch32 or AArch64 execution state. If the 5786 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5787 * reginfo structure for the AArch32 view, which sees the lower 5788 * 32 bits of the 64 bit register. 5789 * 5790 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5791 * be wildcarded. AArch64 registers are always considered to be 64 5792 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5793 * the register, if any. 5794 */ 5795 int crm, opc1, opc2, state; 5796 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5797 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5798 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5799 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5800 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5801 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5802 /* 64 bit registers have only CRm and Opc1 fields */ 5803 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5804 /* op0 only exists in the AArch64 encodings */ 5805 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5806 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5807 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5808 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5809 * encodes a minimum access level for the register. We roll this 5810 * runtime check into our general permission check code, so check 5811 * here that the reginfo's specified permissions are strict enough 5812 * to encompass the generic architectural permission check. 5813 */ 5814 if (r->state != ARM_CP_STATE_AA32) { 5815 int mask = 0; 5816 switch (r->opc1) { 5817 case 0: case 1: case 2: 5818 /* min_EL EL1 */ 5819 mask = PL1_RW; 5820 break; 5821 case 3: 5822 /* min_EL EL0 */ 5823 mask = PL0_RW; 5824 break; 5825 case 4: 5826 /* min_EL EL2 */ 5827 mask = PL2_RW; 5828 break; 5829 case 5: 5830 /* unallocated encoding, so not possible */ 5831 assert(false); 5832 break; 5833 case 6: 5834 /* min_EL EL3 */ 5835 mask = PL3_RW; 5836 break; 5837 case 7: 5838 /* min_EL EL1, secure mode only (we don't check the latter) */ 5839 mask = PL1_RW; 5840 break; 5841 default: 5842 /* broken reginfo with out-of-range opc1 */ 5843 assert(false); 5844 break; 5845 } 5846 /* assert our permissions are not too lax (stricter is fine) */ 5847 assert((r->access & ~mask) == 0); 5848 } 5849 5850 /* Check that the register definition has enough info to handle 5851 * reads and writes if they are permitted. 5852 */ 5853 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5854 if (r->access & PL3_R) { 5855 assert((r->fieldoffset || 5856 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5857 r->readfn); 5858 } 5859 if (r->access & PL3_W) { 5860 assert((r->fieldoffset || 5861 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5862 r->writefn); 5863 } 5864 } 5865 /* Bad type field probably means missing sentinel at end of reg list */ 5866 assert(cptype_valid(r->type)); 5867 for (crm = crmmin; crm <= crmmax; crm++) { 5868 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5869 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5870 for (state = ARM_CP_STATE_AA32; 5871 state <= ARM_CP_STATE_AA64; state++) { 5872 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5873 continue; 5874 } 5875 if (state == ARM_CP_STATE_AA32) { 5876 /* Under AArch32 CP registers can be common 5877 * (same for secure and non-secure world) or banked. 5878 */ 5879 char *name; 5880 5881 switch (r->secure) { 5882 case ARM_CP_SECSTATE_S: 5883 case ARM_CP_SECSTATE_NS: 5884 add_cpreg_to_hashtable(cpu, r, opaque, state, 5885 r->secure, crm, opc1, opc2, 5886 r->name); 5887 break; 5888 default: 5889 name = g_strdup_printf("%s_S", r->name); 5890 add_cpreg_to_hashtable(cpu, r, opaque, state, 5891 ARM_CP_SECSTATE_S, 5892 crm, opc1, opc2, name); 5893 g_free(name); 5894 add_cpreg_to_hashtable(cpu, r, opaque, state, 5895 ARM_CP_SECSTATE_NS, 5896 crm, opc1, opc2, r->name); 5897 break; 5898 } 5899 } else { 5900 /* AArch64 registers get mapped to non-secure instance 5901 * of AArch32 */ 5902 add_cpreg_to_hashtable(cpu, r, opaque, state, 5903 ARM_CP_SECSTATE_NS, 5904 crm, opc1, opc2, r->name); 5905 } 5906 } 5907 } 5908 } 5909 } 5910 } 5911 5912 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5913 const ARMCPRegInfo *regs, void *opaque) 5914 { 5915 /* Define a whole list of registers */ 5916 const ARMCPRegInfo *r; 5917 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5918 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5919 } 5920 } 5921 5922 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5923 { 5924 return g_hash_table_lookup(cpregs, &encoded_cp); 5925 } 5926 5927 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5928 uint64_t value) 5929 { 5930 /* Helper coprocessor write function for write-ignore registers */ 5931 } 5932 5933 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5934 { 5935 /* Helper coprocessor write function for read-as-zero registers */ 5936 return 0; 5937 } 5938 5939 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5940 { 5941 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5942 } 5943 5944 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5945 { 5946 /* Return true if it is not valid for us to switch to 5947 * this CPU mode (ie all the UNPREDICTABLE cases in 5948 * the ARM ARM CPSRWriteByInstr pseudocode). 5949 */ 5950 5951 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5952 if (write_type == CPSRWriteByInstr && 5953 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5954 mode == ARM_CPU_MODE_HYP)) { 5955 return 1; 5956 } 5957 5958 switch (mode) { 5959 case ARM_CPU_MODE_USR: 5960 return 0; 5961 case ARM_CPU_MODE_SYS: 5962 case ARM_CPU_MODE_SVC: 5963 case ARM_CPU_MODE_ABT: 5964 case ARM_CPU_MODE_UND: 5965 case ARM_CPU_MODE_IRQ: 5966 case ARM_CPU_MODE_FIQ: 5967 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5968 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5969 */ 5970 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5971 * and CPS are treated as illegal mode changes. 5972 */ 5973 if (write_type == CPSRWriteByInstr && 5974 (env->cp15.hcr_el2 & HCR_TGE) && 5975 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5976 !arm_is_secure_below_el3(env)) { 5977 return 1; 5978 } 5979 return 0; 5980 case ARM_CPU_MODE_HYP: 5981 return !arm_feature(env, ARM_FEATURE_EL2) 5982 || arm_current_el(env) < 2 || arm_is_secure(env); 5983 case ARM_CPU_MODE_MON: 5984 return arm_current_el(env) < 3; 5985 default: 5986 return 1; 5987 } 5988 } 5989 5990 uint32_t cpsr_read(CPUARMState *env) 5991 { 5992 int ZF; 5993 ZF = (env->ZF == 0); 5994 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5995 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5996 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5997 | ((env->condexec_bits & 0xfc) << 8) 5998 | (env->GE << 16) | (env->daif & CPSR_AIF); 5999 } 6000 6001 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 6002 CPSRWriteType write_type) 6003 { 6004 uint32_t changed_daif; 6005 6006 if (mask & CPSR_NZCV) { 6007 env->ZF = (~val) & CPSR_Z; 6008 env->NF = val; 6009 env->CF = (val >> 29) & 1; 6010 env->VF = (val << 3) & 0x80000000; 6011 } 6012 if (mask & CPSR_Q) 6013 env->QF = ((val & CPSR_Q) != 0); 6014 if (mask & CPSR_T) 6015 env->thumb = ((val & CPSR_T) != 0); 6016 if (mask & CPSR_IT_0_1) { 6017 env->condexec_bits &= ~3; 6018 env->condexec_bits |= (val >> 25) & 3; 6019 } 6020 if (mask & CPSR_IT_2_7) { 6021 env->condexec_bits &= 3; 6022 env->condexec_bits |= (val >> 8) & 0xfc; 6023 } 6024 if (mask & CPSR_GE) { 6025 env->GE = (val >> 16) & 0xf; 6026 } 6027 6028 /* In a V7 implementation that includes the security extensions but does 6029 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6030 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6031 * bits respectively. 6032 * 6033 * In a V8 implementation, it is permitted for privileged software to 6034 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6035 */ 6036 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6037 arm_feature(env, ARM_FEATURE_EL3) && 6038 !arm_feature(env, ARM_FEATURE_EL2) && 6039 !arm_is_secure(env)) { 6040 6041 changed_daif = (env->daif ^ val) & mask; 6042 6043 if (changed_daif & CPSR_A) { 6044 /* Check to see if we are allowed to change the masking of async 6045 * abort exceptions from a non-secure state. 6046 */ 6047 if (!(env->cp15.scr_el3 & SCR_AW)) { 6048 qemu_log_mask(LOG_GUEST_ERROR, 6049 "Ignoring attempt to switch CPSR_A flag from " 6050 "non-secure world with SCR.AW bit clear\n"); 6051 mask &= ~CPSR_A; 6052 } 6053 } 6054 6055 if (changed_daif & CPSR_F) { 6056 /* Check to see if we are allowed to change the masking of FIQ 6057 * exceptions from a non-secure state. 6058 */ 6059 if (!(env->cp15.scr_el3 & SCR_FW)) { 6060 qemu_log_mask(LOG_GUEST_ERROR, 6061 "Ignoring attempt to switch CPSR_F flag from " 6062 "non-secure world with SCR.FW bit clear\n"); 6063 mask &= ~CPSR_F; 6064 } 6065 6066 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6067 * If this bit is set software is not allowed to mask 6068 * FIQs, but is allowed to set CPSR_F to 0. 6069 */ 6070 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6071 (val & CPSR_F)) { 6072 qemu_log_mask(LOG_GUEST_ERROR, 6073 "Ignoring attempt to enable CPSR_F flag " 6074 "(non-maskable FIQ [NMFI] support enabled)\n"); 6075 mask &= ~CPSR_F; 6076 } 6077 } 6078 } 6079 6080 env->daif &= ~(CPSR_AIF & mask); 6081 env->daif |= val & CPSR_AIF & mask; 6082 6083 if (write_type != CPSRWriteRaw && 6084 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6085 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6086 /* Note that we can only get here in USR mode if this is a 6087 * gdb stub write; for this case we follow the architectural 6088 * behaviour for guest writes in USR mode of ignoring an attempt 6089 * to switch mode. (Those are caught by translate.c for writes 6090 * triggered by guest instructions.) 6091 */ 6092 mask &= ~CPSR_M; 6093 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6094 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6095 * v7, and has defined behaviour in v8: 6096 * + leave CPSR.M untouched 6097 * + allow changes to the other CPSR fields 6098 * + set PSTATE.IL 6099 * For user changes via the GDB stub, we don't set PSTATE.IL, 6100 * as this would be unnecessarily harsh for a user error. 6101 */ 6102 mask &= ~CPSR_M; 6103 if (write_type != CPSRWriteByGDBStub && 6104 arm_feature(env, ARM_FEATURE_V8)) { 6105 mask |= CPSR_IL; 6106 val |= CPSR_IL; 6107 } 6108 } else { 6109 switch_mode(env, val & CPSR_M); 6110 } 6111 } 6112 mask &= ~CACHED_CPSR_BITS; 6113 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6114 } 6115 6116 /* Sign/zero extend */ 6117 uint32_t HELPER(sxtb16)(uint32_t x) 6118 { 6119 uint32_t res; 6120 res = (uint16_t)(int8_t)x; 6121 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6122 return res; 6123 } 6124 6125 uint32_t HELPER(uxtb16)(uint32_t x) 6126 { 6127 uint32_t res; 6128 res = (uint16_t)(uint8_t)x; 6129 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6130 return res; 6131 } 6132 6133 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6134 { 6135 if (den == 0) 6136 return 0; 6137 if (num == INT_MIN && den == -1) 6138 return INT_MIN; 6139 return num / den; 6140 } 6141 6142 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6143 { 6144 if (den == 0) 6145 return 0; 6146 return num / den; 6147 } 6148 6149 uint32_t HELPER(rbit)(uint32_t x) 6150 { 6151 return revbit32(x); 6152 } 6153 6154 #if defined(CONFIG_USER_ONLY) 6155 6156 /* These should probably raise undefined insn exceptions. */ 6157 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6158 { 6159 ARMCPU *cpu = arm_env_get_cpu(env); 6160 6161 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6162 } 6163 6164 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6165 { 6166 ARMCPU *cpu = arm_env_get_cpu(env); 6167 6168 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6169 return 0; 6170 } 6171 6172 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6173 { 6174 /* translate.c should never generate calls here in user-only mode */ 6175 g_assert_not_reached(); 6176 } 6177 6178 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6179 { 6180 /* translate.c should never generate calls here in user-only mode */ 6181 g_assert_not_reached(); 6182 } 6183 6184 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6185 { 6186 /* The TT instructions can be used by unprivileged code, but in 6187 * user-only emulation we don't have the MPU. 6188 * Luckily since we know we are NonSecure unprivileged (and that in 6189 * turn means that the A flag wasn't specified), all the bits in the 6190 * register must be zero: 6191 * IREGION: 0 because IRVALID is 0 6192 * IRVALID: 0 because NS 6193 * S: 0 because NS 6194 * NSRW: 0 because NS 6195 * NSR: 0 because NS 6196 * RW: 0 because unpriv and A flag not set 6197 * R: 0 because unpriv and A flag not set 6198 * SRVALID: 0 because NS 6199 * MRVALID: 0 because unpriv and A flag not set 6200 * SREGION: 0 becaus SRVALID is 0 6201 * MREGION: 0 because MRVALID is 0 6202 */ 6203 return 0; 6204 } 6205 6206 void switch_mode(CPUARMState *env, int mode) 6207 { 6208 ARMCPU *cpu = arm_env_get_cpu(env); 6209 6210 if (mode != ARM_CPU_MODE_USR) { 6211 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6212 } 6213 } 6214 6215 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6216 uint32_t cur_el, bool secure) 6217 { 6218 return 1; 6219 } 6220 6221 void aarch64_sync_64_to_32(CPUARMState *env) 6222 { 6223 g_assert_not_reached(); 6224 } 6225 6226 #else 6227 6228 void switch_mode(CPUARMState *env, int mode) 6229 { 6230 int old_mode; 6231 int i; 6232 6233 old_mode = env->uncached_cpsr & CPSR_M; 6234 if (mode == old_mode) 6235 return; 6236 6237 if (old_mode == ARM_CPU_MODE_FIQ) { 6238 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6239 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6240 } else if (mode == ARM_CPU_MODE_FIQ) { 6241 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6242 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6243 } 6244 6245 i = bank_number(old_mode); 6246 env->banked_r13[i] = env->regs[13]; 6247 env->banked_r14[i] = env->regs[14]; 6248 env->banked_spsr[i] = env->spsr; 6249 6250 i = bank_number(mode); 6251 env->regs[13] = env->banked_r13[i]; 6252 env->regs[14] = env->banked_r14[i]; 6253 env->spsr = env->banked_spsr[i]; 6254 } 6255 6256 /* Physical Interrupt Target EL Lookup Table 6257 * 6258 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6259 * 6260 * The below multi-dimensional table is used for looking up the target 6261 * exception level given numerous condition criteria. Specifically, the 6262 * target EL is based on SCR and HCR routing controls as well as the 6263 * currently executing EL and secure state. 6264 * 6265 * Dimensions: 6266 * target_el_table[2][2][2][2][2][4] 6267 * | | | | | +--- Current EL 6268 * | | | | +------ Non-secure(0)/Secure(1) 6269 * | | | +--------- HCR mask override 6270 * | | +------------ SCR exec state control 6271 * | +--------------- SCR mask override 6272 * +------------------ 32-bit(0)/64-bit(1) EL3 6273 * 6274 * The table values are as such: 6275 * 0-3 = EL0-EL3 6276 * -1 = Cannot occur 6277 * 6278 * The ARM ARM target EL table includes entries indicating that an "exception 6279 * is not taken". The two cases where this is applicable are: 6280 * 1) An exception is taken from EL3 but the SCR does not have the exception 6281 * routed to EL3. 6282 * 2) An exception is taken from EL2 but the HCR does not have the exception 6283 * routed to EL2. 6284 * In these two cases, the below table contain a target of EL1. This value is 6285 * returned as it is expected that the consumer of the table data will check 6286 * for "target EL >= current EL" to ensure the exception is not taken. 6287 * 6288 * SCR HCR 6289 * 64 EA AMO From 6290 * BIT IRQ IMO Non-secure Secure 6291 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6292 */ 6293 static const int8_t target_el_table[2][2][2][2][2][4] = { 6294 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6295 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6296 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6297 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6298 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6299 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6300 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6301 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6302 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6303 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6304 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6305 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6306 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6307 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6308 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6309 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6310 }; 6311 6312 /* 6313 * Determine the target EL for physical exceptions 6314 */ 6315 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6316 uint32_t cur_el, bool secure) 6317 { 6318 CPUARMState *env = cs->env_ptr; 6319 int rw; 6320 int scr; 6321 int hcr; 6322 int target_el; 6323 /* Is the highest EL AArch64? */ 6324 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6325 6326 if (arm_feature(env, ARM_FEATURE_EL3)) { 6327 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6328 } else { 6329 /* Either EL2 is the highest EL (and so the EL2 register width 6330 * is given by is64); or there is no EL2 or EL3, in which case 6331 * the value of 'rw' does not affect the table lookup anyway. 6332 */ 6333 rw = is64; 6334 } 6335 6336 switch (excp_idx) { 6337 case EXCP_IRQ: 6338 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6339 hcr = arm_hcr_el2_imo(env); 6340 break; 6341 case EXCP_FIQ: 6342 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6343 hcr = arm_hcr_el2_fmo(env); 6344 break; 6345 default: 6346 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6347 hcr = arm_hcr_el2_amo(env); 6348 break; 6349 }; 6350 6351 /* If HCR.TGE is set then HCR is treated as being 1 */ 6352 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6353 6354 /* Perform a table-lookup for the target EL given the current state */ 6355 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6356 6357 assert(target_el > 0); 6358 6359 return target_el; 6360 } 6361 6362 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6363 ARMMMUIdx mmu_idx, bool ignfault) 6364 { 6365 CPUState *cs = CPU(cpu); 6366 CPUARMState *env = &cpu->env; 6367 MemTxAttrs attrs = {}; 6368 MemTxResult txres; 6369 target_ulong page_size; 6370 hwaddr physaddr; 6371 int prot; 6372 ARMMMUFaultInfo fi; 6373 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6374 int exc; 6375 bool exc_secure; 6376 6377 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6378 &attrs, &prot, &page_size, &fi, NULL)) { 6379 /* MPU/SAU lookup failed */ 6380 if (fi.type == ARMFault_QEMU_SFault) { 6381 qemu_log_mask(CPU_LOG_INT, 6382 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6383 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6384 env->v7m.sfar = addr; 6385 exc = ARMV7M_EXCP_SECURE; 6386 exc_secure = false; 6387 } else { 6388 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6389 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6390 exc = ARMV7M_EXCP_MEM; 6391 exc_secure = secure; 6392 } 6393 goto pend_fault; 6394 } 6395 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6396 attrs, &txres); 6397 if (txres != MEMTX_OK) { 6398 /* BusFault trying to write the data */ 6399 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6400 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6401 exc = ARMV7M_EXCP_BUS; 6402 exc_secure = false; 6403 goto pend_fault; 6404 } 6405 return true; 6406 6407 pend_fault: 6408 /* By pending the exception at this point we are making 6409 * the IMPDEF choice "overridden exceptions pended" (see the 6410 * MergeExcInfo() pseudocode). The other choice would be to not 6411 * pend them now and then make a choice about which to throw away 6412 * later if we have two derived exceptions. 6413 * The only case when we must not pend the exception but instead 6414 * throw it away is if we are doing the push of the callee registers 6415 * and we've already generated a derived exception. Even in this 6416 * case we will still update the fault status registers. 6417 */ 6418 if (!ignfault) { 6419 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6420 } 6421 return false; 6422 } 6423 6424 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6425 ARMMMUIdx mmu_idx) 6426 { 6427 CPUState *cs = CPU(cpu); 6428 CPUARMState *env = &cpu->env; 6429 MemTxAttrs attrs = {}; 6430 MemTxResult txres; 6431 target_ulong page_size; 6432 hwaddr physaddr; 6433 int prot; 6434 ARMMMUFaultInfo fi; 6435 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6436 int exc; 6437 bool exc_secure; 6438 uint32_t value; 6439 6440 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6441 &attrs, &prot, &page_size, &fi, NULL)) { 6442 /* MPU/SAU lookup failed */ 6443 if (fi.type == ARMFault_QEMU_SFault) { 6444 qemu_log_mask(CPU_LOG_INT, 6445 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6446 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6447 env->v7m.sfar = addr; 6448 exc = ARMV7M_EXCP_SECURE; 6449 exc_secure = false; 6450 } else { 6451 qemu_log_mask(CPU_LOG_INT, 6452 "...MemManageFault with CFSR.MUNSTKERR\n"); 6453 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6454 exc = ARMV7M_EXCP_MEM; 6455 exc_secure = secure; 6456 } 6457 goto pend_fault; 6458 } 6459 6460 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6461 attrs, &txres); 6462 if (txres != MEMTX_OK) { 6463 /* BusFault trying to read the data */ 6464 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6465 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6466 exc = ARMV7M_EXCP_BUS; 6467 exc_secure = false; 6468 goto pend_fault; 6469 } 6470 6471 *dest = value; 6472 return true; 6473 6474 pend_fault: 6475 /* By pending the exception at this point we are making 6476 * the IMPDEF choice "overridden exceptions pended" (see the 6477 * MergeExcInfo() pseudocode). The other choice would be to not 6478 * pend them now and then make a choice about which to throw away 6479 * later if we have two derived exceptions. 6480 */ 6481 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6482 return false; 6483 } 6484 6485 /* Return true if we're using the process stack pointer (not the MSP) */ 6486 static bool v7m_using_psp(CPUARMState *env) 6487 { 6488 /* Handler mode always uses the main stack; for thread mode 6489 * the CONTROL.SPSEL bit determines the answer. 6490 * Note that in v7M it is not possible to be in Handler mode with 6491 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6492 */ 6493 return !arm_v7m_is_handler_mode(env) && 6494 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6495 } 6496 6497 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6498 * This may change the current stack pointer between Main and Process 6499 * stack pointers if it is done for the CONTROL register for the current 6500 * security state. 6501 */ 6502 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6503 bool new_spsel, 6504 bool secstate) 6505 { 6506 bool old_is_psp = v7m_using_psp(env); 6507 6508 env->v7m.control[secstate] = 6509 deposit32(env->v7m.control[secstate], 6510 R_V7M_CONTROL_SPSEL_SHIFT, 6511 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6512 6513 if (secstate == env->v7m.secure) { 6514 bool new_is_psp = v7m_using_psp(env); 6515 uint32_t tmp; 6516 6517 if (old_is_psp != new_is_psp) { 6518 tmp = env->v7m.other_sp; 6519 env->v7m.other_sp = env->regs[13]; 6520 env->regs[13] = tmp; 6521 } 6522 } 6523 } 6524 6525 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6526 * stack pointer between Main and Process stack pointers. 6527 */ 6528 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6529 { 6530 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6531 } 6532 6533 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6534 { 6535 /* Write a new value to v7m.exception, thus transitioning into or out 6536 * of Handler mode; this may result in a change of active stack pointer. 6537 */ 6538 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6539 uint32_t tmp; 6540 6541 env->v7m.exception = new_exc; 6542 6543 new_is_psp = v7m_using_psp(env); 6544 6545 if (old_is_psp != new_is_psp) { 6546 tmp = env->v7m.other_sp; 6547 env->v7m.other_sp = env->regs[13]; 6548 env->regs[13] = tmp; 6549 } 6550 } 6551 6552 /* Switch M profile security state between NS and S */ 6553 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6554 { 6555 uint32_t new_ss_msp, new_ss_psp; 6556 6557 if (env->v7m.secure == new_secstate) { 6558 return; 6559 } 6560 6561 /* All the banked state is accessed by looking at env->v7m.secure 6562 * except for the stack pointer; rearrange the SP appropriately. 6563 */ 6564 new_ss_msp = env->v7m.other_ss_msp; 6565 new_ss_psp = env->v7m.other_ss_psp; 6566 6567 if (v7m_using_psp(env)) { 6568 env->v7m.other_ss_psp = env->regs[13]; 6569 env->v7m.other_ss_msp = env->v7m.other_sp; 6570 } else { 6571 env->v7m.other_ss_msp = env->regs[13]; 6572 env->v7m.other_ss_psp = env->v7m.other_sp; 6573 } 6574 6575 env->v7m.secure = new_secstate; 6576 6577 if (v7m_using_psp(env)) { 6578 env->regs[13] = new_ss_psp; 6579 env->v7m.other_sp = new_ss_msp; 6580 } else { 6581 env->regs[13] = new_ss_msp; 6582 env->v7m.other_sp = new_ss_psp; 6583 } 6584 } 6585 6586 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6587 { 6588 /* Handle v7M BXNS: 6589 * - if the return value is a magic value, do exception return (like BX) 6590 * - otherwise bit 0 of the return value is the target security state 6591 */ 6592 uint32_t min_magic; 6593 6594 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6595 /* Covers FNC_RETURN and EXC_RETURN magic */ 6596 min_magic = FNC_RETURN_MIN_MAGIC; 6597 } else { 6598 /* EXC_RETURN magic only */ 6599 min_magic = EXC_RETURN_MIN_MAGIC; 6600 } 6601 6602 if (dest >= min_magic) { 6603 /* This is an exception return magic value; put it where 6604 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6605 * Note that if we ever add gen_ss_advance() singlestep support to 6606 * M profile this should count as an "instruction execution complete" 6607 * event (compare gen_bx_excret_final_code()). 6608 */ 6609 env->regs[15] = dest & ~1; 6610 env->thumb = dest & 1; 6611 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6612 /* notreached */ 6613 } 6614 6615 /* translate.c should have made BXNS UNDEF unless we're secure */ 6616 assert(env->v7m.secure); 6617 6618 switch_v7m_security_state(env, dest & 1); 6619 env->thumb = 1; 6620 env->regs[15] = dest & ~1; 6621 } 6622 6623 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6624 { 6625 /* Handle v7M BLXNS: 6626 * - bit 0 of the destination address is the target security state 6627 */ 6628 6629 /* At this point regs[15] is the address just after the BLXNS */ 6630 uint32_t nextinst = env->regs[15] | 1; 6631 uint32_t sp = env->regs[13] - 8; 6632 uint32_t saved_psr; 6633 6634 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6635 assert(env->v7m.secure); 6636 6637 if (dest & 1) { 6638 /* target is Secure, so this is just a normal BLX, 6639 * except that the low bit doesn't indicate Thumb/not. 6640 */ 6641 env->regs[14] = nextinst; 6642 env->thumb = 1; 6643 env->regs[15] = dest & ~1; 6644 return; 6645 } 6646 6647 /* Target is non-secure: first push a stack frame */ 6648 if (!QEMU_IS_ALIGNED(sp, 8)) { 6649 qemu_log_mask(LOG_GUEST_ERROR, 6650 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6651 } 6652 6653 saved_psr = env->v7m.exception; 6654 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6655 saved_psr |= XPSR_SFPA; 6656 } 6657 6658 /* Note that these stores can throw exceptions on MPU faults */ 6659 cpu_stl_data(env, sp, nextinst); 6660 cpu_stl_data(env, sp + 4, saved_psr); 6661 6662 env->regs[13] = sp; 6663 env->regs[14] = 0xfeffffff; 6664 if (arm_v7m_is_handler_mode(env)) { 6665 /* Write a dummy value to IPSR, to avoid leaking the current secure 6666 * exception number to non-secure code. This is guaranteed not 6667 * to cause write_v7m_exception() to actually change stacks. 6668 */ 6669 write_v7m_exception(env, 1); 6670 } 6671 switch_v7m_security_state(env, 0); 6672 env->thumb = 1; 6673 env->regs[15] = dest; 6674 } 6675 6676 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6677 bool spsel) 6678 { 6679 /* Return a pointer to the location where we currently store the 6680 * stack pointer for the requested security state and thread mode. 6681 * This pointer will become invalid if the CPU state is updated 6682 * such that the stack pointers are switched around (eg changing 6683 * the SPSEL control bit). 6684 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6685 * Unlike that pseudocode, we require the caller to pass us in the 6686 * SPSEL control bit value; this is because we also use this 6687 * function in handling of pushing of the callee-saves registers 6688 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6689 * and in the tailchain codepath the SPSEL bit comes from the exception 6690 * return magic LR value from the previous exception. The pseudocode 6691 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6692 * to make this utility function generic enough to do the job. 6693 */ 6694 bool want_psp = threadmode && spsel; 6695 6696 if (secure == env->v7m.secure) { 6697 if (want_psp == v7m_using_psp(env)) { 6698 return &env->regs[13]; 6699 } else { 6700 return &env->v7m.other_sp; 6701 } 6702 } else { 6703 if (want_psp) { 6704 return &env->v7m.other_ss_psp; 6705 } else { 6706 return &env->v7m.other_ss_msp; 6707 } 6708 } 6709 } 6710 6711 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6712 uint32_t *pvec) 6713 { 6714 CPUState *cs = CPU(cpu); 6715 CPUARMState *env = &cpu->env; 6716 MemTxResult result; 6717 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6718 uint32_t vector_entry; 6719 MemTxAttrs attrs = {}; 6720 ARMMMUIdx mmu_idx; 6721 bool exc_secure; 6722 6723 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6724 6725 /* We don't do a get_phys_addr() here because the rules for vector 6726 * loads are special: they always use the default memory map, and 6727 * the default memory map permits reads from all addresses. 6728 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6729 * that we want this special case which would always say "yes", 6730 * we just do the SAU lookup here followed by a direct physical load. 6731 */ 6732 attrs.secure = targets_secure; 6733 attrs.user = false; 6734 6735 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6736 V8M_SAttributes sattrs = {}; 6737 6738 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6739 if (sattrs.ns) { 6740 attrs.secure = false; 6741 } else if (!targets_secure) { 6742 /* NS access to S memory */ 6743 goto load_fail; 6744 } 6745 } 6746 6747 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6748 attrs, &result); 6749 if (result != MEMTX_OK) { 6750 goto load_fail; 6751 } 6752 *pvec = vector_entry; 6753 return true; 6754 6755 load_fail: 6756 /* All vector table fetch fails are reported as HardFault, with 6757 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6758 * technically the underlying exception is a MemManage or BusFault 6759 * that is escalated to HardFault.) This is a terminal exception, 6760 * so we will either take the HardFault immediately or else enter 6761 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6762 */ 6763 exc_secure = targets_secure || 6764 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6765 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6766 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6767 return false; 6768 } 6769 6770 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6771 bool ignore_faults) 6772 { 6773 /* For v8M, push the callee-saves register part of the stack frame. 6774 * Compare the v8M pseudocode PushCalleeStack(). 6775 * In the tailchaining case this may not be the current stack. 6776 */ 6777 CPUARMState *env = &cpu->env; 6778 uint32_t *frame_sp_p; 6779 uint32_t frameptr; 6780 ARMMMUIdx mmu_idx; 6781 bool stacked_ok; 6782 6783 if (dotailchain) { 6784 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6785 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6786 !mode; 6787 6788 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6789 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6790 lr & R_V7M_EXCRET_SPSEL_MASK); 6791 } else { 6792 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6793 frame_sp_p = &env->regs[13]; 6794 } 6795 6796 frameptr = *frame_sp_p - 0x28; 6797 6798 /* Write as much of the stack frame as we can. A write failure may 6799 * cause us to pend a derived exception. 6800 */ 6801 stacked_ok = 6802 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6803 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6804 ignore_faults) && 6805 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6806 ignore_faults) && 6807 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6808 ignore_faults) && 6809 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6810 ignore_faults) && 6811 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6812 ignore_faults) && 6813 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6814 ignore_faults) && 6815 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6816 ignore_faults) && 6817 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6818 ignore_faults); 6819 6820 /* Update SP regardless of whether any of the stack accesses failed. 6821 * When we implement v8M stack limit checking then this attempt to 6822 * update SP might also fail and result in a derived exception. 6823 */ 6824 *frame_sp_p = frameptr; 6825 6826 return !stacked_ok; 6827 } 6828 6829 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6830 bool ignore_stackfaults) 6831 { 6832 /* Do the "take the exception" parts of exception entry, 6833 * but not the pushing of state to the stack. This is 6834 * similar to the pseudocode ExceptionTaken() function. 6835 */ 6836 CPUARMState *env = &cpu->env; 6837 uint32_t addr; 6838 bool targets_secure; 6839 int exc; 6840 bool push_failed = false; 6841 6842 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6843 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 6844 targets_secure ? "secure" : "nonsecure", exc); 6845 6846 if (arm_feature(env, ARM_FEATURE_V8)) { 6847 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6848 (lr & R_V7M_EXCRET_S_MASK)) { 6849 /* The background code (the owner of the registers in the 6850 * exception frame) is Secure. This means it may either already 6851 * have or now needs to push callee-saves registers. 6852 */ 6853 if (targets_secure) { 6854 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6855 /* We took an exception from Secure to NonSecure 6856 * (which means the callee-saved registers got stacked) 6857 * and are now tailchaining to a Secure exception. 6858 * Clear DCRS so eventual return from this Secure 6859 * exception unstacks the callee-saved registers. 6860 */ 6861 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6862 } 6863 } else { 6864 /* We're going to a non-secure exception; push the 6865 * callee-saves registers to the stack now, if they're 6866 * not already saved. 6867 */ 6868 if (lr & R_V7M_EXCRET_DCRS_MASK && 6869 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6870 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6871 ignore_stackfaults); 6872 } 6873 lr |= R_V7M_EXCRET_DCRS_MASK; 6874 } 6875 } 6876 6877 lr &= ~R_V7M_EXCRET_ES_MASK; 6878 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6879 lr |= R_V7M_EXCRET_ES_MASK; 6880 } 6881 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6882 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6883 lr |= R_V7M_EXCRET_SPSEL_MASK; 6884 } 6885 6886 /* Clear registers if necessary to prevent non-secure exception 6887 * code being able to see register values from secure code. 6888 * Where register values become architecturally UNKNOWN we leave 6889 * them with their previous values. 6890 */ 6891 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6892 if (!targets_secure) { 6893 /* Always clear the caller-saved registers (they have been 6894 * pushed to the stack earlier in v7m_push_stack()). 6895 * Clear callee-saved registers if the background code is 6896 * Secure (in which case these regs were saved in 6897 * v7m_push_callee_stack()). 6898 */ 6899 int i; 6900 6901 for (i = 0; i < 13; i++) { 6902 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6903 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6904 env->regs[i] = 0; 6905 } 6906 } 6907 /* Clear EAPSR */ 6908 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6909 } 6910 } 6911 } 6912 6913 if (push_failed && !ignore_stackfaults) { 6914 /* Derived exception on callee-saves register stacking: 6915 * we might now want to take a different exception which 6916 * targets a different security state, so try again from the top. 6917 */ 6918 qemu_log_mask(CPU_LOG_INT, 6919 "...derived exception on callee-saves register stacking"); 6920 v7m_exception_taken(cpu, lr, true, true); 6921 return; 6922 } 6923 6924 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6925 /* Vector load failed: derived exception */ 6926 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 6927 v7m_exception_taken(cpu, lr, true, true); 6928 return; 6929 } 6930 6931 /* Now we've done everything that might cause a derived exception 6932 * we can go ahead and activate whichever exception we're going to 6933 * take (which might now be the derived exception). 6934 */ 6935 armv7m_nvic_acknowledge_irq(env->nvic); 6936 6937 /* Switch to target security state -- must do this before writing SPSEL */ 6938 switch_v7m_security_state(env, targets_secure); 6939 write_v7m_control_spsel(env, 0); 6940 arm_clear_exclusive(env); 6941 /* Clear IT bits */ 6942 env->condexec_bits = 0; 6943 env->regs[14] = lr; 6944 env->regs[15] = addr & 0xfffffffe; 6945 env->thumb = addr & 1; 6946 } 6947 6948 static bool v7m_push_stack(ARMCPU *cpu) 6949 { 6950 /* Do the "set up stack frame" part of exception entry, 6951 * similar to pseudocode PushStack(). 6952 * Return true if we generate a derived exception (and so 6953 * should ignore further stack faults trying to process 6954 * that derived exception.) 6955 */ 6956 bool stacked_ok; 6957 CPUARMState *env = &cpu->env; 6958 uint32_t xpsr = xpsr_read(env); 6959 uint32_t frameptr = env->regs[13]; 6960 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6961 6962 /* Align stack pointer if the guest wants that */ 6963 if ((frameptr & 4) && 6964 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6965 frameptr -= 4; 6966 xpsr |= XPSR_SPREALIGN; 6967 } 6968 6969 frameptr -= 0x20; 6970 6971 /* Write as much of the stack frame as we can. If we fail a stack 6972 * write this will result in a derived exception being pended 6973 * (which may be taken in preference to the one we started with 6974 * if it has higher priority). 6975 */ 6976 stacked_ok = 6977 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6978 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6979 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6980 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6981 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6982 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6983 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6984 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6985 6986 /* Update SP regardless of whether any of the stack accesses failed. 6987 * When we implement v8M stack limit checking then this attempt to 6988 * update SP might also fail and result in a derived exception. 6989 */ 6990 env->regs[13] = frameptr; 6991 6992 return !stacked_ok; 6993 } 6994 6995 static void do_v7m_exception_exit(ARMCPU *cpu) 6996 { 6997 CPUARMState *env = &cpu->env; 6998 uint32_t excret; 6999 uint32_t xpsr; 7000 bool ufault = false; 7001 bool sfault = false; 7002 bool return_to_sp_process; 7003 bool return_to_handler; 7004 bool rettobase = false; 7005 bool exc_secure = false; 7006 bool return_to_secure; 7007 7008 /* If we're not in Handler mode then jumps to magic exception-exit 7009 * addresses don't have magic behaviour. However for the v8M 7010 * security extensions the magic secure-function-return has to 7011 * work in thread mode too, so to avoid doing an extra check in 7012 * the generated code we allow exception-exit magic to also cause the 7013 * internal exception and bring us here in thread mode. Correct code 7014 * will never try to do this (the following insn fetch will always 7015 * fault) so we the overhead of having taken an unnecessary exception 7016 * doesn't matter. 7017 */ 7018 if (!arm_v7m_is_handler_mode(env)) { 7019 return; 7020 } 7021 7022 /* In the spec pseudocode ExceptionReturn() is called directly 7023 * from BXWritePC() and gets the full target PC value including 7024 * bit zero. In QEMU's implementation we treat it as a normal 7025 * jump-to-register (which is then caught later on), and so split 7026 * the target value up between env->regs[15] and env->thumb in 7027 * gen_bx(). Reconstitute it. 7028 */ 7029 excret = env->regs[15]; 7030 if (env->thumb) { 7031 excret |= 1; 7032 } 7033 7034 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7035 " previous exception %d\n", 7036 excret, env->v7m.exception); 7037 7038 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 7039 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 7040 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 7041 excret); 7042 } 7043 7044 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7045 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 7046 * we pick which FAULTMASK to clear. 7047 */ 7048 if (!env->v7m.secure && 7049 ((excret & R_V7M_EXCRET_ES_MASK) || 7050 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 7051 sfault = 1; 7052 /* For all other purposes, treat ES as 0 (R_HXSR) */ 7053 excret &= ~R_V7M_EXCRET_ES_MASK; 7054 } 7055 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 7056 } 7057 7058 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 7059 /* Auto-clear FAULTMASK on return from other than NMI. 7060 * If the security extension is implemented then this only 7061 * happens if the raw execution priority is >= 0; the 7062 * value of the ES bit in the exception return value indicates 7063 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 7064 */ 7065 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7066 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 7067 env->v7m.faultmask[exc_secure] = 0; 7068 } 7069 } else { 7070 env->v7m.faultmask[M_REG_NS] = 0; 7071 } 7072 } 7073 7074 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7075 exc_secure)) { 7076 case -1: 7077 /* attempt to exit an exception that isn't active */ 7078 ufault = true; 7079 break; 7080 case 0: 7081 /* still an irq active now */ 7082 break; 7083 case 1: 7084 /* we returned to base exception level, no nesting. 7085 * (In the pseudocode this is written using "NestedActivation != 1" 7086 * where we have 'rettobase == false'.) 7087 */ 7088 rettobase = true; 7089 break; 7090 default: 7091 g_assert_not_reached(); 7092 } 7093 7094 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7095 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7096 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7097 (excret & R_V7M_EXCRET_S_MASK); 7098 7099 if (arm_feature(env, ARM_FEATURE_V8)) { 7100 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7101 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7102 * we choose to take the UsageFault. 7103 */ 7104 if ((excret & R_V7M_EXCRET_S_MASK) || 7105 (excret & R_V7M_EXCRET_ES_MASK) || 7106 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7107 ufault = true; 7108 } 7109 } 7110 if (excret & R_V7M_EXCRET_RES0_MASK) { 7111 ufault = true; 7112 } 7113 } else { 7114 /* For v7M we only recognize certain combinations of the low bits */ 7115 switch (excret & 0xf) { 7116 case 1: /* Return to Handler */ 7117 break; 7118 case 13: /* Return to Thread using Process stack */ 7119 case 9: /* Return to Thread using Main stack */ 7120 /* We only need to check NONBASETHRDENA for v7M, because in 7121 * v8M this bit does not exist (it is RES1). 7122 */ 7123 if (!rettobase && 7124 !(env->v7m.ccr[env->v7m.secure] & 7125 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7126 ufault = true; 7127 } 7128 break; 7129 default: 7130 ufault = true; 7131 } 7132 } 7133 7134 /* 7135 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7136 * Handler mode (and will be until we write the new XPSR.Interrupt 7137 * field) this does not switch around the current stack pointer. 7138 * We must do this before we do any kind of tailchaining, including 7139 * for the derived exceptions on integrity check failures, or we will 7140 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 7141 */ 7142 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7143 7144 if (sfault) { 7145 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7146 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7147 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7148 "stackframe: failed EXC_RETURN.ES validity check\n"); 7149 v7m_exception_taken(cpu, excret, true, false); 7150 return; 7151 } 7152 7153 if (ufault) { 7154 /* Bad exception return: instead of popping the exception 7155 * stack, directly take a usage fault on the current stack. 7156 */ 7157 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7159 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7160 "stackframe: failed exception return integrity check\n"); 7161 v7m_exception_taken(cpu, excret, true, false); 7162 return; 7163 } 7164 7165 /* 7166 * Tailchaining: if there is currently a pending exception that 7167 * is high enough priority to preempt execution at the level we're 7168 * about to return to, then just directly take that exception now, 7169 * avoiding an unstack-and-then-stack. Note that now we have 7170 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 7171 * our current execution priority is already the execution priority we are 7172 * returning to -- none of the state we would unstack or set based on 7173 * the EXCRET value affects it. 7174 */ 7175 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 7176 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 7177 v7m_exception_taken(cpu, excret, true, false); 7178 return; 7179 } 7180 7181 switch_v7m_security_state(env, return_to_secure); 7182 7183 { 7184 /* The stack pointer we should be reading the exception frame from 7185 * depends on bits in the magic exception return type value (and 7186 * for v8M isn't necessarily the stack pointer we will eventually 7187 * end up resuming execution with). Get a pointer to the location 7188 * in the CPU state struct where the SP we need is currently being 7189 * stored; we will use and modify it in place. 7190 * We use this limited C variable scope so we don't accidentally 7191 * use 'frame_sp_p' after we do something that makes it invalid. 7192 */ 7193 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7194 return_to_secure, 7195 !return_to_handler, 7196 return_to_sp_process); 7197 uint32_t frameptr = *frame_sp_p; 7198 bool pop_ok = true; 7199 ARMMMUIdx mmu_idx; 7200 bool return_to_priv = return_to_handler || 7201 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 7202 7203 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7204 return_to_priv); 7205 7206 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7207 arm_feature(env, ARM_FEATURE_V8)) { 7208 qemu_log_mask(LOG_GUEST_ERROR, 7209 "M profile exception return with non-8-aligned SP " 7210 "for destination state is UNPREDICTABLE\n"); 7211 } 7212 7213 /* Do we need to pop callee-saved registers? */ 7214 if (return_to_secure && 7215 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7216 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7217 uint32_t expected_sig = 0xfefa125b; 7218 uint32_t actual_sig; 7219 7220 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7221 7222 if (pop_ok && expected_sig != actual_sig) { 7223 /* Take a SecureFault on the current stack */ 7224 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7225 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7226 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7227 "stackframe: failed exception return integrity " 7228 "signature check\n"); 7229 v7m_exception_taken(cpu, excret, true, false); 7230 return; 7231 } 7232 7233 pop_ok = pop_ok && 7234 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7235 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7236 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7237 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7238 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7239 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7240 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7241 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7242 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7243 7244 frameptr += 0x28; 7245 } 7246 7247 /* Pop registers */ 7248 pop_ok = pop_ok && 7249 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7250 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7251 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7252 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7253 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7254 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7255 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7256 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7257 7258 if (!pop_ok) { 7259 /* v7m_stack_read() pended a fault, so take it (as a tail 7260 * chained exception on the same stack frame) 7261 */ 7262 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 7263 v7m_exception_taken(cpu, excret, true, false); 7264 return; 7265 } 7266 7267 /* Returning from an exception with a PC with bit 0 set is defined 7268 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7269 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7270 * the lsbit, and there are several RTOSes out there which incorrectly 7271 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7272 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7273 * complain about the badly behaved guest. 7274 */ 7275 if (env->regs[15] & 1) { 7276 env->regs[15] &= ~1U; 7277 if (!arm_feature(env, ARM_FEATURE_V8)) { 7278 qemu_log_mask(LOG_GUEST_ERROR, 7279 "M profile return from interrupt with misaligned " 7280 "PC is UNPREDICTABLE on v7M\n"); 7281 } 7282 } 7283 7284 if (arm_feature(env, ARM_FEATURE_V8)) { 7285 /* For v8M we have to check whether the xPSR exception field 7286 * matches the EXCRET value for return to handler/thread 7287 * before we commit to changing the SP and xPSR. 7288 */ 7289 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7290 if (return_to_handler != will_be_handler) { 7291 /* Take an INVPC UsageFault on the current stack. 7292 * By this point we will have switched to the security state 7293 * for the background state, so this UsageFault will target 7294 * that state. 7295 */ 7296 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7297 env->v7m.secure); 7298 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7299 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7300 "stackframe: failed exception return integrity " 7301 "check\n"); 7302 v7m_exception_taken(cpu, excret, true, false); 7303 return; 7304 } 7305 } 7306 7307 /* Commit to consuming the stack frame */ 7308 frameptr += 0x20; 7309 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7310 * pre-exception SP was not 8-aligned and we added a padding word to 7311 * align it, so we undo this by ORing in the bit that increases it 7312 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7313 * would work too but a logical OR is how the pseudocode specifies it.) 7314 */ 7315 if (xpsr & XPSR_SPREALIGN) { 7316 frameptr |= 4; 7317 } 7318 *frame_sp_p = frameptr; 7319 } 7320 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7321 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7322 7323 /* The restored xPSR exception field will be zero if we're 7324 * resuming in Thread mode. If that doesn't match what the 7325 * exception return excret specified then this is a UsageFault. 7326 * v7M requires we make this check here; v8M did it earlier. 7327 */ 7328 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7329 /* Take an INVPC UsageFault by pushing the stack again; 7330 * we know we're v7M so this is never a Secure UsageFault. 7331 */ 7332 bool ignore_stackfaults; 7333 7334 assert(!arm_feature(env, ARM_FEATURE_V8)); 7335 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7336 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7337 ignore_stackfaults = v7m_push_stack(cpu); 7338 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7339 "failed exception return integrity check\n"); 7340 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7341 return; 7342 } 7343 7344 /* Otherwise, we have a successful exception exit. */ 7345 arm_clear_exclusive(env); 7346 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7347 } 7348 7349 static bool do_v7m_function_return(ARMCPU *cpu) 7350 { 7351 /* v8M security extensions magic function return. 7352 * We may either: 7353 * (1) throw an exception (longjump) 7354 * (2) return true if we successfully handled the function return 7355 * (3) return false if we failed a consistency check and have 7356 * pended a UsageFault that needs to be taken now 7357 * 7358 * At this point the magic return value is split between env->regs[15] 7359 * and env->thumb. We don't bother to reconstitute it because we don't 7360 * need it (all values are handled the same way). 7361 */ 7362 CPUARMState *env = &cpu->env; 7363 uint32_t newpc, newpsr, newpsr_exc; 7364 7365 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7366 7367 { 7368 bool threadmode, spsel; 7369 TCGMemOpIdx oi; 7370 ARMMMUIdx mmu_idx; 7371 uint32_t *frame_sp_p; 7372 uint32_t frameptr; 7373 7374 /* Pull the return address and IPSR from the Secure stack */ 7375 threadmode = !arm_v7m_is_handler_mode(env); 7376 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7377 7378 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7379 frameptr = *frame_sp_p; 7380 7381 /* These loads may throw an exception (for MPU faults). We want to 7382 * do them as secure, so work out what MMU index that is. 7383 */ 7384 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7385 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7386 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7387 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7388 7389 /* Consistency checks on new IPSR */ 7390 newpsr_exc = newpsr & XPSR_EXCP; 7391 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7392 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7393 /* Pend the fault and tell our caller to take it */ 7394 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7395 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7396 env->v7m.secure); 7397 qemu_log_mask(CPU_LOG_INT, 7398 "...taking INVPC UsageFault: " 7399 "IPSR consistency check failed\n"); 7400 return false; 7401 } 7402 7403 *frame_sp_p = frameptr + 8; 7404 } 7405 7406 /* This invalidates frame_sp_p */ 7407 switch_v7m_security_state(env, true); 7408 env->v7m.exception = newpsr_exc; 7409 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7410 if (newpsr & XPSR_SFPA) { 7411 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7412 } 7413 xpsr_write(env, 0, XPSR_IT); 7414 env->thumb = newpc & 1; 7415 env->regs[15] = newpc & ~1; 7416 7417 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7418 return true; 7419 } 7420 7421 static void arm_log_exception(int idx) 7422 { 7423 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7424 const char *exc = NULL; 7425 static const char * const excnames[] = { 7426 [EXCP_UDEF] = "Undefined Instruction", 7427 [EXCP_SWI] = "SVC", 7428 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7429 [EXCP_DATA_ABORT] = "Data Abort", 7430 [EXCP_IRQ] = "IRQ", 7431 [EXCP_FIQ] = "FIQ", 7432 [EXCP_BKPT] = "Breakpoint", 7433 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7434 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7435 [EXCP_HVC] = "Hypervisor Call", 7436 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7437 [EXCP_SMC] = "Secure Monitor Call", 7438 [EXCP_VIRQ] = "Virtual IRQ", 7439 [EXCP_VFIQ] = "Virtual FIQ", 7440 [EXCP_SEMIHOST] = "Semihosting call", 7441 [EXCP_NOCP] = "v7M NOCP UsageFault", 7442 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7443 }; 7444 7445 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7446 exc = excnames[idx]; 7447 } 7448 if (!exc) { 7449 exc = "unknown"; 7450 } 7451 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7452 } 7453 } 7454 7455 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7456 uint32_t addr, uint16_t *insn) 7457 { 7458 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7459 * or false on failure (in which case we will have pended the appropriate 7460 * exception). 7461 * We need to do the instruction fetch's MPU and SAU checks 7462 * like this because there is no MMU index that would allow 7463 * doing the load with a single function call. Instead we must 7464 * first check that the security attributes permit the load 7465 * and that they don't mismatch on the two halves of the instruction, 7466 * and then we do the load as a secure load (ie using the security 7467 * attributes of the address, not the CPU, as architecturally required). 7468 */ 7469 CPUState *cs = CPU(cpu); 7470 CPUARMState *env = &cpu->env; 7471 V8M_SAttributes sattrs = {}; 7472 MemTxAttrs attrs = {}; 7473 ARMMMUFaultInfo fi = {}; 7474 MemTxResult txres; 7475 target_ulong page_size; 7476 hwaddr physaddr; 7477 int prot; 7478 7479 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7480 if (!sattrs.nsc || sattrs.ns) { 7481 /* This must be the second half of the insn, and it straddles a 7482 * region boundary with the second half not being S&NSC. 7483 */ 7484 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7485 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7486 qemu_log_mask(CPU_LOG_INT, 7487 "...really SecureFault with SFSR.INVEP\n"); 7488 return false; 7489 } 7490 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7491 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7492 /* the MPU lookup failed */ 7493 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7494 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7495 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7496 return false; 7497 } 7498 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7499 attrs, &txres); 7500 if (txres != MEMTX_OK) { 7501 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7502 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7503 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7504 return false; 7505 } 7506 return true; 7507 } 7508 7509 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7510 { 7511 /* Check whether this attempt to execute code in a Secure & NS-Callable 7512 * memory region is for an SG instruction; if so, then emulate the 7513 * effect of the SG instruction and return true. Otherwise pend 7514 * the correct kind of exception and return false. 7515 */ 7516 CPUARMState *env = &cpu->env; 7517 ARMMMUIdx mmu_idx; 7518 uint16_t insn; 7519 7520 /* We should never get here unless get_phys_addr_pmsav8() caused 7521 * an exception for NS executing in S&NSC memory. 7522 */ 7523 assert(!env->v7m.secure); 7524 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7525 7526 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7527 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7528 7529 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7530 return false; 7531 } 7532 7533 if (!env->thumb) { 7534 goto gen_invep; 7535 } 7536 7537 if (insn != 0xe97f) { 7538 /* Not an SG instruction first half (we choose the IMPDEF 7539 * early-SG-check option). 7540 */ 7541 goto gen_invep; 7542 } 7543 7544 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7545 return false; 7546 } 7547 7548 if (insn != 0xe97f) { 7549 /* Not an SG instruction second half (yes, both halves of the SG 7550 * insn have the same hex value) 7551 */ 7552 goto gen_invep; 7553 } 7554 7555 /* OK, we have confirmed that we really have an SG instruction. 7556 * We know we're NS in S memory so don't need to repeat those checks. 7557 */ 7558 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7559 ", executing it\n", env->regs[15]); 7560 env->regs[14] &= ~1; 7561 switch_v7m_security_state(env, true); 7562 xpsr_write(env, 0, XPSR_IT); 7563 env->regs[15] += 4; 7564 return true; 7565 7566 gen_invep: 7567 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7568 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7569 qemu_log_mask(CPU_LOG_INT, 7570 "...really SecureFault with SFSR.INVEP\n"); 7571 return false; 7572 } 7573 7574 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7575 { 7576 ARMCPU *cpu = ARM_CPU(cs); 7577 CPUARMState *env = &cpu->env; 7578 uint32_t lr; 7579 bool ignore_stackfaults; 7580 7581 arm_log_exception(cs->exception_index); 7582 7583 /* For exceptions we just mark as pending on the NVIC, and let that 7584 handle it. */ 7585 switch (cs->exception_index) { 7586 case EXCP_UDEF: 7587 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7588 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7589 break; 7590 case EXCP_NOCP: 7591 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7592 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7593 break; 7594 case EXCP_INVSTATE: 7595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7596 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7597 break; 7598 case EXCP_SWI: 7599 /* The PC already points to the next instruction. */ 7600 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7601 break; 7602 case EXCP_PREFETCH_ABORT: 7603 case EXCP_DATA_ABORT: 7604 /* Note that for M profile we don't have a guest facing FSR, but 7605 * the env->exception.fsr will be populated by the code that 7606 * raises the fault, in the A profile short-descriptor format. 7607 */ 7608 switch (env->exception.fsr & 0xf) { 7609 case M_FAKE_FSR_NSC_EXEC: 7610 /* Exception generated when we try to execute code at an address 7611 * which is marked as Secure & Non-Secure Callable and the CPU 7612 * is in the Non-Secure state. The only instruction which can 7613 * be executed like this is SG (and that only if both halves of 7614 * the SG instruction have the same security attributes.) 7615 * Everything else must generate an INVEP SecureFault, so we 7616 * emulate the SG instruction here. 7617 */ 7618 if (v7m_handle_execute_nsc(cpu)) { 7619 return; 7620 } 7621 break; 7622 case M_FAKE_FSR_SFAULT: 7623 /* Various flavours of SecureFault for attempts to execute or 7624 * access data in the wrong security state. 7625 */ 7626 switch (cs->exception_index) { 7627 case EXCP_PREFETCH_ABORT: 7628 if (env->v7m.secure) { 7629 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7630 qemu_log_mask(CPU_LOG_INT, 7631 "...really SecureFault with SFSR.INVTRAN\n"); 7632 } else { 7633 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7634 qemu_log_mask(CPU_LOG_INT, 7635 "...really SecureFault with SFSR.INVEP\n"); 7636 } 7637 break; 7638 case EXCP_DATA_ABORT: 7639 /* This must be an NS access to S memory */ 7640 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7641 qemu_log_mask(CPU_LOG_INT, 7642 "...really SecureFault with SFSR.AUVIOL\n"); 7643 break; 7644 } 7645 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7646 break; 7647 case 0x8: /* External Abort */ 7648 switch (cs->exception_index) { 7649 case EXCP_PREFETCH_ABORT: 7650 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7651 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7652 break; 7653 case EXCP_DATA_ABORT: 7654 env->v7m.cfsr[M_REG_NS] |= 7655 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7656 env->v7m.bfar = env->exception.vaddress; 7657 qemu_log_mask(CPU_LOG_INT, 7658 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7659 env->v7m.bfar); 7660 break; 7661 } 7662 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7663 break; 7664 default: 7665 /* All other FSR values are either MPU faults or "can't happen 7666 * for M profile" cases. 7667 */ 7668 switch (cs->exception_index) { 7669 case EXCP_PREFETCH_ABORT: 7670 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7671 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7672 break; 7673 case EXCP_DATA_ABORT: 7674 env->v7m.cfsr[env->v7m.secure] |= 7675 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7676 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7677 qemu_log_mask(CPU_LOG_INT, 7678 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7679 env->v7m.mmfar[env->v7m.secure]); 7680 break; 7681 } 7682 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7683 env->v7m.secure); 7684 break; 7685 } 7686 break; 7687 case EXCP_BKPT: 7688 if (semihosting_enabled()) { 7689 int nr; 7690 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7691 if (nr == 0xab) { 7692 env->regs[15] += 2; 7693 qemu_log_mask(CPU_LOG_INT, 7694 "...handling as semihosting call 0x%x\n", 7695 env->regs[0]); 7696 env->regs[0] = do_arm_semihosting(env); 7697 return; 7698 } 7699 } 7700 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7701 break; 7702 case EXCP_IRQ: 7703 break; 7704 case EXCP_EXCEPTION_EXIT: 7705 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7706 /* Must be v8M security extension function return */ 7707 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7708 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7709 if (do_v7m_function_return(cpu)) { 7710 return; 7711 } 7712 } else { 7713 do_v7m_exception_exit(cpu); 7714 return; 7715 } 7716 break; 7717 default: 7718 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7719 return; /* Never happens. Keep compiler happy. */ 7720 } 7721 7722 if (arm_feature(env, ARM_FEATURE_V8)) { 7723 lr = R_V7M_EXCRET_RES1_MASK | 7724 R_V7M_EXCRET_DCRS_MASK | 7725 R_V7M_EXCRET_FTYPE_MASK; 7726 /* The S bit indicates whether we should return to Secure 7727 * or NonSecure (ie our current state). 7728 * The ES bit indicates whether we're taking this exception 7729 * to Secure or NonSecure (ie our target state). We set it 7730 * later, in v7m_exception_taken(). 7731 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7732 * This corresponds to the ARM ARM pseudocode for v8M setting 7733 * some LR bits in PushStack() and some in ExceptionTaken(); 7734 * the distinction matters for the tailchain cases where we 7735 * can take an exception without pushing the stack. 7736 */ 7737 if (env->v7m.secure) { 7738 lr |= R_V7M_EXCRET_S_MASK; 7739 } 7740 } else { 7741 lr = R_V7M_EXCRET_RES1_MASK | 7742 R_V7M_EXCRET_S_MASK | 7743 R_V7M_EXCRET_DCRS_MASK | 7744 R_V7M_EXCRET_FTYPE_MASK | 7745 R_V7M_EXCRET_ES_MASK; 7746 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7747 lr |= R_V7M_EXCRET_SPSEL_MASK; 7748 } 7749 } 7750 if (!arm_v7m_is_handler_mode(env)) { 7751 lr |= R_V7M_EXCRET_MODE_MASK; 7752 } 7753 7754 ignore_stackfaults = v7m_push_stack(cpu); 7755 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7756 } 7757 7758 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7759 * register set. This is necessary when switching between AArch32 and AArch64 7760 * execution state. 7761 */ 7762 void aarch64_sync_32_to_64(CPUARMState *env) 7763 { 7764 int i; 7765 uint32_t mode = env->uncached_cpsr & CPSR_M; 7766 7767 /* We can blanket copy R[0:7] to X[0:7] */ 7768 for (i = 0; i < 8; i++) { 7769 env->xregs[i] = env->regs[i]; 7770 } 7771 7772 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7773 * Otherwise, they come from the banked user regs. 7774 */ 7775 if (mode == ARM_CPU_MODE_FIQ) { 7776 for (i = 8; i < 13; i++) { 7777 env->xregs[i] = env->usr_regs[i - 8]; 7778 } 7779 } else { 7780 for (i = 8; i < 13; i++) { 7781 env->xregs[i] = env->regs[i]; 7782 } 7783 } 7784 7785 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7786 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7787 * from the mode banked register. 7788 */ 7789 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7790 env->xregs[13] = env->regs[13]; 7791 env->xregs[14] = env->regs[14]; 7792 } else { 7793 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7794 /* HYP is an exception in that it is copied from r14 */ 7795 if (mode == ARM_CPU_MODE_HYP) { 7796 env->xregs[14] = env->regs[14]; 7797 } else { 7798 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7799 } 7800 } 7801 7802 if (mode == ARM_CPU_MODE_HYP) { 7803 env->xregs[15] = env->regs[13]; 7804 } else { 7805 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7806 } 7807 7808 if (mode == ARM_CPU_MODE_IRQ) { 7809 env->xregs[16] = env->regs[14]; 7810 env->xregs[17] = env->regs[13]; 7811 } else { 7812 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7813 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7814 } 7815 7816 if (mode == ARM_CPU_MODE_SVC) { 7817 env->xregs[18] = env->regs[14]; 7818 env->xregs[19] = env->regs[13]; 7819 } else { 7820 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7821 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7822 } 7823 7824 if (mode == ARM_CPU_MODE_ABT) { 7825 env->xregs[20] = env->regs[14]; 7826 env->xregs[21] = env->regs[13]; 7827 } else { 7828 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7829 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7830 } 7831 7832 if (mode == ARM_CPU_MODE_UND) { 7833 env->xregs[22] = env->regs[14]; 7834 env->xregs[23] = env->regs[13]; 7835 } else { 7836 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7837 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7838 } 7839 7840 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7841 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7842 * FIQ bank for r8-r14. 7843 */ 7844 if (mode == ARM_CPU_MODE_FIQ) { 7845 for (i = 24; i < 31; i++) { 7846 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7847 } 7848 } else { 7849 for (i = 24; i < 29; i++) { 7850 env->xregs[i] = env->fiq_regs[i - 24]; 7851 } 7852 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7853 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7854 } 7855 7856 env->pc = env->regs[15]; 7857 } 7858 7859 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7860 * register set. This is necessary when switching between AArch32 and AArch64 7861 * execution state. 7862 */ 7863 void aarch64_sync_64_to_32(CPUARMState *env) 7864 { 7865 int i; 7866 uint32_t mode = env->uncached_cpsr & CPSR_M; 7867 7868 /* We can blanket copy X[0:7] to R[0:7] */ 7869 for (i = 0; i < 8; i++) { 7870 env->regs[i] = env->xregs[i]; 7871 } 7872 7873 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7874 * Otherwise, we copy x8-x12 into the banked user regs. 7875 */ 7876 if (mode == ARM_CPU_MODE_FIQ) { 7877 for (i = 8; i < 13; i++) { 7878 env->usr_regs[i - 8] = env->xregs[i]; 7879 } 7880 } else { 7881 for (i = 8; i < 13; i++) { 7882 env->regs[i] = env->xregs[i]; 7883 } 7884 } 7885 7886 /* Registers r13 & r14 depend on the current mode. 7887 * If we are in a given mode, we copy the corresponding x registers to r13 7888 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7889 * for the mode. 7890 */ 7891 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7892 env->regs[13] = env->xregs[13]; 7893 env->regs[14] = env->xregs[14]; 7894 } else { 7895 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7896 7897 /* HYP is an exception in that it does not have its own banked r14 but 7898 * shares the USR r14 7899 */ 7900 if (mode == ARM_CPU_MODE_HYP) { 7901 env->regs[14] = env->xregs[14]; 7902 } else { 7903 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7904 } 7905 } 7906 7907 if (mode == ARM_CPU_MODE_HYP) { 7908 env->regs[13] = env->xregs[15]; 7909 } else { 7910 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7911 } 7912 7913 if (mode == ARM_CPU_MODE_IRQ) { 7914 env->regs[14] = env->xregs[16]; 7915 env->regs[13] = env->xregs[17]; 7916 } else { 7917 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7918 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7919 } 7920 7921 if (mode == ARM_CPU_MODE_SVC) { 7922 env->regs[14] = env->xregs[18]; 7923 env->regs[13] = env->xregs[19]; 7924 } else { 7925 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7926 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7927 } 7928 7929 if (mode == ARM_CPU_MODE_ABT) { 7930 env->regs[14] = env->xregs[20]; 7931 env->regs[13] = env->xregs[21]; 7932 } else { 7933 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7934 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7935 } 7936 7937 if (mode == ARM_CPU_MODE_UND) { 7938 env->regs[14] = env->xregs[22]; 7939 env->regs[13] = env->xregs[23]; 7940 } else { 7941 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7942 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7943 } 7944 7945 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7946 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7947 * FIQ bank for r8-r14. 7948 */ 7949 if (mode == ARM_CPU_MODE_FIQ) { 7950 for (i = 24; i < 31; i++) { 7951 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7952 } 7953 } else { 7954 for (i = 24; i < 29; i++) { 7955 env->fiq_regs[i - 24] = env->xregs[i]; 7956 } 7957 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7958 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7959 } 7960 7961 env->regs[15] = env->pc; 7962 } 7963 7964 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7965 { 7966 ARMCPU *cpu = ARM_CPU(cs); 7967 CPUARMState *env = &cpu->env; 7968 uint32_t addr; 7969 uint32_t mask; 7970 int new_mode; 7971 uint32_t offset; 7972 uint32_t moe; 7973 7974 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7975 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7976 case EC_BREAKPOINT: 7977 case EC_BREAKPOINT_SAME_EL: 7978 moe = 1; 7979 break; 7980 case EC_WATCHPOINT: 7981 case EC_WATCHPOINT_SAME_EL: 7982 moe = 10; 7983 break; 7984 case EC_AA32_BKPT: 7985 moe = 3; 7986 break; 7987 case EC_VECTORCATCH: 7988 moe = 5; 7989 break; 7990 default: 7991 moe = 0; 7992 break; 7993 } 7994 7995 if (moe) { 7996 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7997 } 7998 7999 /* TODO: Vectored interrupt controller. */ 8000 switch (cs->exception_index) { 8001 case EXCP_UDEF: 8002 new_mode = ARM_CPU_MODE_UND; 8003 addr = 0x04; 8004 mask = CPSR_I; 8005 if (env->thumb) 8006 offset = 2; 8007 else 8008 offset = 4; 8009 break; 8010 case EXCP_SWI: 8011 new_mode = ARM_CPU_MODE_SVC; 8012 addr = 0x08; 8013 mask = CPSR_I; 8014 /* The PC already points to the next instruction. */ 8015 offset = 0; 8016 break; 8017 case EXCP_BKPT: 8018 /* Fall through to prefetch abort. */ 8019 case EXCP_PREFETCH_ABORT: 8020 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8021 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8022 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8023 env->exception.fsr, (uint32_t)env->exception.vaddress); 8024 new_mode = ARM_CPU_MODE_ABT; 8025 addr = 0x0c; 8026 mask = CPSR_A | CPSR_I; 8027 offset = 4; 8028 break; 8029 case EXCP_DATA_ABORT: 8030 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8031 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8032 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8033 env->exception.fsr, 8034 (uint32_t)env->exception.vaddress); 8035 new_mode = ARM_CPU_MODE_ABT; 8036 addr = 0x10; 8037 mask = CPSR_A | CPSR_I; 8038 offset = 8; 8039 break; 8040 case EXCP_IRQ: 8041 new_mode = ARM_CPU_MODE_IRQ; 8042 addr = 0x18; 8043 /* Disable IRQ and imprecise data aborts. */ 8044 mask = CPSR_A | CPSR_I; 8045 offset = 4; 8046 if (env->cp15.scr_el3 & SCR_IRQ) { 8047 /* IRQ routed to monitor mode */ 8048 new_mode = ARM_CPU_MODE_MON; 8049 mask |= CPSR_F; 8050 } 8051 break; 8052 case EXCP_FIQ: 8053 new_mode = ARM_CPU_MODE_FIQ; 8054 addr = 0x1c; 8055 /* Disable FIQ, IRQ and imprecise data aborts. */ 8056 mask = CPSR_A | CPSR_I | CPSR_F; 8057 if (env->cp15.scr_el3 & SCR_FIQ) { 8058 /* FIQ routed to monitor mode */ 8059 new_mode = ARM_CPU_MODE_MON; 8060 } 8061 offset = 4; 8062 break; 8063 case EXCP_VIRQ: 8064 new_mode = ARM_CPU_MODE_IRQ; 8065 addr = 0x18; 8066 /* Disable IRQ and imprecise data aborts. */ 8067 mask = CPSR_A | CPSR_I; 8068 offset = 4; 8069 break; 8070 case EXCP_VFIQ: 8071 new_mode = ARM_CPU_MODE_FIQ; 8072 addr = 0x1c; 8073 /* Disable FIQ, IRQ and imprecise data aborts. */ 8074 mask = CPSR_A | CPSR_I | CPSR_F; 8075 offset = 4; 8076 break; 8077 case EXCP_SMC: 8078 new_mode = ARM_CPU_MODE_MON; 8079 addr = 0x08; 8080 mask = CPSR_A | CPSR_I | CPSR_F; 8081 offset = 0; 8082 break; 8083 default: 8084 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8085 return; /* Never happens. Keep compiler happy. */ 8086 } 8087 8088 if (new_mode == ARM_CPU_MODE_MON) { 8089 addr += env->cp15.mvbar; 8090 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8091 /* High vectors. When enabled, base address cannot be remapped. */ 8092 addr += 0xffff0000; 8093 } else { 8094 /* ARM v7 architectures provide a vector base address register to remap 8095 * the interrupt vector table. 8096 * This register is only followed in non-monitor mode, and is banked. 8097 * Note: only bits 31:5 are valid. 8098 */ 8099 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8100 } 8101 8102 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8103 env->cp15.scr_el3 &= ~SCR_NS; 8104 } 8105 8106 switch_mode (env, new_mode); 8107 /* For exceptions taken to AArch32 we must clear the SS bit in both 8108 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8109 */ 8110 env->uncached_cpsr &= ~PSTATE_SS; 8111 env->spsr = cpsr_read(env); 8112 /* Clear IT bits. */ 8113 env->condexec_bits = 0; 8114 /* Switch to the new mode, and to the correct instruction set. */ 8115 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8116 /* Set new mode endianness */ 8117 env->uncached_cpsr &= ~CPSR_E; 8118 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8119 env->uncached_cpsr |= CPSR_E; 8120 } 8121 env->daif |= mask; 8122 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8123 * and we should just guard the thumb mode on V4 */ 8124 if (arm_feature(env, ARM_FEATURE_V4T)) { 8125 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8126 } 8127 env->regs[14] = env->regs[15] + offset; 8128 env->regs[15] = addr; 8129 } 8130 8131 /* Handle exception entry to a target EL which is using AArch64 */ 8132 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8133 { 8134 ARMCPU *cpu = ARM_CPU(cs); 8135 CPUARMState *env = &cpu->env; 8136 unsigned int new_el = env->exception.target_el; 8137 target_ulong addr = env->cp15.vbar_el[new_el]; 8138 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8139 8140 if (arm_current_el(env) < new_el) { 8141 /* Entry vector offset depends on whether the implemented EL 8142 * immediately lower than the target level is using AArch32 or AArch64 8143 */ 8144 bool is_aa64; 8145 8146 switch (new_el) { 8147 case 3: 8148 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8149 break; 8150 case 2: 8151 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8152 break; 8153 case 1: 8154 is_aa64 = is_a64(env); 8155 break; 8156 default: 8157 g_assert_not_reached(); 8158 } 8159 8160 if (is_aa64) { 8161 addr += 0x400; 8162 } else { 8163 addr += 0x600; 8164 } 8165 } else if (pstate_read(env) & PSTATE_SP) { 8166 addr += 0x200; 8167 } 8168 8169 switch (cs->exception_index) { 8170 case EXCP_PREFETCH_ABORT: 8171 case EXCP_DATA_ABORT: 8172 env->cp15.far_el[new_el] = env->exception.vaddress; 8173 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8174 env->cp15.far_el[new_el]); 8175 /* fall through */ 8176 case EXCP_BKPT: 8177 case EXCP_UDEF: 8178 case EXCP_SWI: 8179 case EXCP_HVC: 8180 case EXCP_HYP_TRAP: 8181 case EXCP_SMC: 8182 env->cp15.esr_el[new_el] = env->exception.syndrome; 8183 break; 8184 case EXCP_IRQ: 8185 case EXCP_VIRQ: 8186 addr += 0x80; 8187 break; 8188 case EXCP_FIQ: 8189 case EXCP_VFIQ: 8190 addr += 0x100; 8191 break; 8192 case EXCP_SEMIHOST: 8193 qemu_log_mask(CPU_LOG_INT, 8194 "...handling as semihosting call 0x%" PRIx64 "\n", 8195 env->xregs[0]); 8196 env->xregs[0] = do_arm_semihosting(env); 8197 return; 8198 default: 8199 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8200 } 8201 8202 if (is_a64(env)) { 8203 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8204 aarch64_save_sp(env, arm_current_el(env)); 8205 env->elr_el[new_el] = env->pc; 8206 } else { 8207 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8208 env->elr_el[new_el] = env->regs[15]; 8209 8210 aarch64_sync_32_to_64(env); 8211 8212 env->condexec_bits = 0; 8213 } 8214 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8215 env->elr_el[new_el]); 8216 8217 pstate_write(env, PSTATE_DAIF | new_mode); 8218 env->aarch64 = 1; 8219 aarch64_restore_sp(env, new_el); 8220 8221 env->pc = addr; 8222 8223 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8224 new_el, env->pc, pstate_read(env)); 8225 } 8226 8227 static inline bool check_for_semihosting(CPUState *cs) 8228 { 8229 /* Check whether this exception is a semihosting call; if so 8230 * then handle it and return true; otherwise return false. 8231 */ 8232 ARMCPU *cpu = ARM_CPU(cs); 8233 CPUARMState *env = &cpu->env; 8234 8235 if (is_a64(env)) { 8236 if (cs->exception_index == EXCP_SEMIHOST) { 8237 /* This is always the 64-bit semihosting exception. 8238 * The "is this usermode" and "is semihosting enabled" 8239 * checks have been done at translate time. 8240 */ 8241 qemu_log_mask(CPU_LOG_INT, 8242 "...handling as semihosting call 0x%" PRIx64 "\n", 8243 env->xregs[0]); 8244 env->xregs[0] = do_arm_semihosting(env); 8245 return true; 8246 } 8247 return false; 8248 } else { 8249 uint32_t imm; 8250 8251 /* Only intercept calls from privileged modes, to provide some 8252 * semblance of security. 8253 */ 8254 if (cs->exception_index != EXCP_SEMIHOST && 8255 (!semihosting_enabled() || 8256 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8257 return false; 8258 } 8259 8260 switch (cs->exception_index) { 8261 case EXCP_SEMIHOST: 8262 /* This is always a semihosting call; the "is this usermode" 8263 * and "is semihosting enabled" checks have been done at 8264 * translate time. 8265 */ 8266 break; 8267 case EXCP_SWI: 8268 /* Check for semihosting interrupt. */ 8269 if (env->thumb) { 8270 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8271 & 0xff; 8272 if (imm == 0xab) { 8273 break; 8274 } 8275 } else { 8276 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8277 & 0xffffff; 8278 if (imm == 0x123456) { 8279 break; 8280 } 8281 } 8282 return false; 8283 case EXCP_BKPT: 8284 /* See if this is a semihosting syscall. */ 8285 if (env->thumb) { 8286 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8287 & 0xff; 8288 if (imm == 0xab) { 8289 env->regs[15] += 2; 8290 break; 8291 } 8292 } 8293 return false; 8294 default: 8295 return false; 8296 } 8297 8298 qemu_log_mask(CPU_LOG_INT, 8299 "...handling as semihosting call 0x%x\n", 8300 env->regs[0]); 8301 env->regs[0] = do_arm_semihosting(env); 8302 return true; 8303 } 8304 } 8305 8306 /* Handle a CPU exception for A and R profile CPUs. 8307 * Do any appropriate logging, handle PSCI calls, and then hand off 8308 * to the AArch64-entry or AArch32-entry function depending on the 8309 * target exception level's register width. 8310 */ 8311 void arm_cpu_do_interrupt(CPUState *cs) 8312 { 8313 ARMCPU *cpu = ARM_CPU(cs); 8314 CPUARMState *env = &cpu->env; 8315 unsigned int new_el = env->exception.target_el; 8316 8317 assert(!arm_feature(env, ARM_FEATURE_M)); 8318 8319 arm_log_exception(cs->exception_index); 8320 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8321 new_el); 8322 if (qemu_loglevel_mask(CPU_LOG_INT) 8323 && !excp_is_internal(cs->exception_index)) { 8324 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8325 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8326 env->exception.syndrome); 8327 } 8328 8329 if (arm_is_psci_call(cpu, cs->exception_index)) { 8330 arm_handle_psci_call(cpu); 8331 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8332 return; 8333 } 8334 8335 /* Semihosting semantics depend on the register width of the 8336 * code that caused the exception, not the target exception level, 8337 * so must be handled here. 8338 */ 8339 if (check_for_semihosting(cs)) { 8340 return; 8341 } 8342 8343 /* Hooks may change global state so BQL should be held, also the 8344 * BQL needs to be held for any modification of 8345 * cs->interrupt_request. 8346 */ 8347 g_assert(qemu_mutex_iothread_locked()); 8348 8349 arm_call_pre_el_change_hook(cpu); 8350 8351 assert(!excp_is_internal(cs->exception_index)); 8352 if (arm_el_is_aa64(env, new_el)) { 8353 arm_cpu_do_interrupt_aarch64(cs); 8354 } else { 8355 arm_cpu_do_interrupt_aarch32(cs); 8356 } 8357 8358 arm_call_el_change_hook(cpu); 8359 8360 if (!kvm_enabled()) { 8361 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8362 } 8363 } 8364 8365 /* Return the exception level which controls this address translation regime */ 8366 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8367 { 8368 switch (mmu_idx) { 8369 case ARMMMUIdx_S2NS: 8370 case ARMMMUIdx_S1E2: 8371 return 2; 8372 case ARMMMUIdx_S1E3: 8373 return 3; 8374 case ARMMMUIdx_S1SE0: 8375 return arm_el_is_aa64(env, 3) ? 1 : 3; 8376 case ARMMMUIdx_S1SE1: 8377 case ARMMMUIdx_S1NSE0: 8378 case ARMMMUIdx_S1NSE1: 8379 case ARMMMUIdx_MPrivNegPri: 8380 case ARMMMUIdx_MUserNegPri: 8381 case ARMMMUIdx_MPriv: 8382 case ARMMMUIdx_MUser: 8383 case ARMMMUIdx_MSPrivNegPri: 8384 case ARMMMUIdx_MSUserNegPri: 8385 case ARMMMUIdx_MSPriv: 8386 case ARMMMUIdx_MSUser: 8387 return 1; 8388 default: 8389 g_assert_not_reached(); 8390 } 8391 } 8392 8393 /* Return the SCTLR value which controls this address translation regime */ 8394 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8395 { 8396 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8397 } 8398 8399 /* Return true if the specified stage of address translation is disabled */ 8400 static inline bool regime_translation_disabled(CPUARMState *env, 8401 ARMMMUIdx mmu_idx) 8402 { 8403 if (arm_feature(env, ARM_FEATURE_M)) { 8404 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8405 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8406 case R_V7M_MPU_CTRL_ENABLE_MASK: 8407 /* Enabled, but not for HardFault and NMI */ 8408 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8409 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8410 /* Enabled for all cases */ 8411 return false; 8412 case 0: 8413 default: 8414 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8415 * we warned about that in armv7m_nvic.c when the guest set it. 8416 */ 8417 return true; 8418 } 8419 } 8420 8421 if (mmu_idx == ARMMMUIdx_S2NS) { 8422 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8423 } 8424 8425 if (env->cp15.hcr_el2 & HCR_TGE) { 8426 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8427 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8428 return true; 8429 } 8430 } 8431 8432 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8433 } 8434 8435 static inline bool regime_translation_big_endian(CPUARMState *env, 8436 ARMMMUIdx mmu_idx) 8437 { 8438 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8439 } 8440 8441 /* Return the TCR controlling this translation regime */ 8442 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8443 { 8444 if (mmu_idx == ARMMMUIdx_S2NS) { 8445 return &env->cp15.vtcr_el2; 8446 } 8447 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8448 } 8449 8450 /* Convert a possible stage1+2 MMU index into the appropriate 8451 * stage 1 MMU index 8452 */ 8453 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8454 { 8455 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8456 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8457 } 8458 return mmu_idx; 8459 } 8460 8461 /* Returns TBI0 value for current regime el */ 8462 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8463 { 8464 TCR *tcr; 8465 uint32_t el; 8466 8467 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8468 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8469 */ 8470 mmu_idx = stage_1_mmu_idx(mmu_idx); 8471 8472 tcr = regime_tcr(env, mmu_idx); 8473 el = regime_el(env, mmu_idx); 8474 8475 if (el > 1) { 8476 return extract64(tcr->raw_tcr, 20, 1); 8477 } else { 8478 return extract64(tcr->raw_tcr, 37, 1); 8479 } 8480 } 8481 8482 /* Returns TBI1 value for current regime el */ 8483 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8484 { 8485 TCR *tcr; 8486 uint32_t el; 8487 8488 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8489 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8490 */ 8491 mmu_idx = stage_1_mmu_idx(mmu_idx); 8492 8493 tcr = regime_tcr(env, mmu_idx); 8494 el = regime_el(env, mmu_idx); 8495 8496 if (el > 1) { 8497 return 0; 8498 } else { 8499 return extract64(tcr->raw_tcr, 38, 1); 8500 } 8501 } 8502 8503 /* Return the TTBR associated with this translation regime */ 8504 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8505 int ttbrn) 8506 { 8507 if (mmu_idx == ARMMMUIdx_S2NS) { 8508 return env->cp15.vttbr_el2; 8509 } 8510 if (ttbrn == 0) { 8511 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8512 } else { 8513 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8514 } 8515 } 8516 8517 /* Return true if the translation regime is using LPAE format page tables */ 8518 static inline bool regime_using_lpae_format(CPUARMState *env, 8519 ARMMMUIdx mmu_idx) 8520 { 8521 int el = regime_el(env, mmu_idx); 8522 if (el == 2 || arm_el_is_aa64(env, el)) { 8523 return true; 8524 } 8525 if (arm_feature(env, ARM_FEATURE_LPAE) 8526 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8527 return true; 8528 } 8529 return false; 8530 } 8531 8532 /* Returns true if the stage 1 translation regime is using LPAE format page 8533 * tables. Used when raising alignment exceptions, whose FSR changes depending 8534 * on whether the long or short descriptor format is in use. */ 8535 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8536 { 8537 mmu_idx = stage_1_mmu_idx(mmu_idx); 8538 8539 return regime_using_lpae_format(env, mmu_idx); 8540 } 8541 8542 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8543 { 8544 switch (mmu_idx) { 8545 case ARMMMUIdx_S1SE0: 8546 case ARMMMUIdx_S1NSE0: 8547 case ARMMMUIdx_MUser: 8548 case ARMMMUIdx_MSUser: 8549 case ARMMMUIdx_MUserNegPri: 8550 case ARMMMUIdx_MSUserNegPri: 8551 return true; 8552 default: 8553 return false; 8554 case ARMMMUIdx_S12NSE0: 8555 case ARMMMUIdx_S12NSE1: 8556 g_assert_not_reached(); 8557 } 8558 } 8559 8560 /* Translate section/page access permissions to page 8561 * R/W protection flags 8562 * 8563 * @env: CPUARMState 8564 * @mmu_idx: MMU index indicating required translation regime 8565 * @ap: The 3-bit access permissions (AP[2:0]) 8566 * @domain_prot: The 2-bit domain access permissions 8567 */ 8568 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8569 int ap, int domain_prot) 8570 { 8571 bool is_user = regime_is_user(env, mmu_idx); 8572 8573 if (domain_prot == 3) { 8574 return PAGE_READ | PAGE_WRITE; 8575 } 8576 8577 switch (ap) { 8578 case 0: 8579 if (arm_feature(env, ARM_FEATURE_V7)) { 8580 return 0; 8581 } 8582 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8583 case SCTLR_S: 8584 return is_user ? 0 : PAGE_READ; 8585 case SCTLR_R: 8586 return PAGE_READ; 8587 default: 8588 return 0; 8589 } 8590 case 1: 8591 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8592 case 2: 8593 if (is_user) { 8594 return PAGE_READ; 8595 } else { 8596 return PAGE_READ | PAGE_WRITE; 8597 } 8598 case 3: 8599 return PAGE_READ | PAGE_WRITE; 8600 case 4: /* Reserved. */ 8601 return 0; 8602 case 5: 8603 return is_user ? 0 : PAGE_READ; 8604 case 6: 8605 return PAGE_READ; 8606 case 7: 8607 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8608 return 0; 8609 } 8610 return PAGE_READ; 8611 default: 8612 g_assert_not_reached(); 8613 } 8614 } 8615 8616 /* Translate section/page access permissions to page 8617 * R/W protection flags. 8618 * 8619 * @ap: The 2-bit simple AP (AP[2:1]) 8620 * @is_user: TRUE if accessing from PL0 8621 */ 8622 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8623 { 8624 switch (ap) { 8625 case 0: 8626 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8627 case 1: 8628 return PAGE_READ | PAGE_WRITE; 8629 case 2: 8630 return is_user ? 0 : PAGE_READ; 8631 case 3: 8632 return PAGE_READ; 8633 default: 8634 g_assert_not_reached(); 8635 } 8636 } 8637 8638 static inline int 8639 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8640 { 8641 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8642 } 8643 8644 /* Translate S2 section/page access permissions to protection flags 8645 * 8646 * @env: CPUARMState 8647 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8648 * @xn: XN (execute-never) bit 8649 */ 8650 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8651 { 8652 int prot = 0; 8653 8654 if (s2ap & 1) { 8655 prot |= PAGE_READ; 8656 } 8657 if (s2ap & 2) { 8658 prot |= PAGE_WRITE; 8659 } 8660 if (!xn) { 8661 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8662 prot |= PAGE_EXEC; 8663 } 8664 } 8665 return prot; 8666 } 8667 8668 /* Translate section/page access permissions to protection flags 8669 * 8670 * @env: CPUARMState 8671 * @mmu_idx: MMU index indicating required translation regime 8672 * @is_aa64: TRUE if AArch64 8673 * @ap: The 2-bit simple AP (AP[2:1]) 8674 * @ns: NS (non-secure) bit 8675 * @xn: XN (execute-never) bit 8676 * @pxn: PXN (privileged execute-never) bit 8677 */ 8678 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8679 int ap, int ns, int xn, int pxn) 8680 { 8681 bool is_user = regime_is_user(env, mmu_idx); 8682 int prot_rw, user_rw; 8683 bool have_wxn; 8684 int wxn = 0; 8685 8686 assert(mmu_idx != ARMMMUIdx_S2NS); 8687 8688 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8689 if (is_user) { 8690 prot_rw = user_rw; 8691 } else { 8692 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8693 } 8694 8695 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8696 return prot_rw; 8697 } 8698 8699 /* TODO have_wxn should be replaced with 8700 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8701 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8702 * compatible processors have EL2, which is required for [U]WXN. 8703 */ 8704 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8705 8706 if (have_wxn) { 8707 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8708 } 8709 8710 if (is_aa64) { 8711 switch (regime_el(env, mmu_idx)) { 8712 case 1: 8713 if (!is_user) { 8714 xn = pxn || (user_rw & PAGE_WRITE); 8715 } 8716 break; 8717 case 2: 8718 case 3: 8719 break; 8720 } 8721 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8722 switch (regime_el(env, mmu_idx)) { 8723 case 1: 8724 case 3: 8725 if (is_user) { 8726 xn = xn || !(user_rw & PAGE_READ); 8727 } else { 8728 int uwxn = 0; 8729 if (have_wxn) { 8730 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8731 } 8732 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8733 (uwxn && (user_rw & PAGE_WRITE)); 8734 } 8735 break; 8736 case 2: 8737 break; 8738 } 8739 } else { 8740 xn = wxn = 0; 8741 } 8742 8743 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8744 return prot_rw; 8745 } 8746 return prot_rw | PAGE_EXEC; 8747 } 8748 8749 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8750 uint32_t *table, uint32_t address) 8751 { 8752 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8753 TCR *tcr = regime_tcr(env, mmu_idx); 8754 8755 if (address & tcr->mask) { 8756 if (tcr->raw_tcr & TTBCR_PD1) { 8757 /* Translation table walk disabled for TTBR1 */ 8758 return false; 8759 } 8760 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8761 } else { 8762 if (tcr->raw_tcr & TTBCR_PD0) { 8763 /* Translation table walk disabled for TTBR0 */ 8764 return false; 8765 } 8766 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8767 } 8768 *table |= (address >> 18) & 0x3ffc; 8769 return true; 8770 } 8771 8772 /* Translate a S1 pagetable walk through S2 if needed. */ 8773 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8774 hwaddr addr, MemTxAttrs txattrs, 8775 ARMMMUFaultInfo *fi) 8776 { 8777 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8778 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8779 target_ulong s2size; 8780 hwaddr s2pa; 8781 int s2prot; 8782 int ret; 8783 8784 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8785 &txattrs, &s2prot, &s2size, fi, NULL); 8786 if (ret) { 8787 assert(fi->type != ARMFault_None); 8788 fi->s2addr = addr; 8789 fi->stage2 = true; 8790 fi->s1ptw = true; 8791 return ~0; 8792 } 8793 addr = s2pa; 8794 } 8795 return addr; 8796 } 8797 8798 /* All loads done in the course of a page table walk go through here. */ 8799 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8800 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8801 { 8802 ARMCPU *cpu = ARM_CPU(cs); 8803 CPUARMState *env = &cpu->env; 8804 MemTxAttrs attrs = {}; 8805 MemTxResult result = MEMTX_OK; 8806 AddressSpace *as; 8807 uint32_t data; 8808 8809 attrs.secure = is_secure; 8810 as = arm_addressspace(cs, attrs); 8811 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8812 if (fi->s1ptw) { 8813 return 0; 8814 } 8815 if (regime_translation_big_endian(env, mmu_idx)) { 8816 data = address_space_ldl_be(as, addr, attrs, &result); 8817 } else { 8818 data = address_space_ldl_le(as, addr, attrs, &result); 8819 } 8820 if (result == MEMTX_OK) { 8821 return data; 8822 } 8823 fi->type = ARMFault_SyncExternalOnWalk; 8824 fi->ea = arm_extabort_type(result); 8825 return 0; 8826 } 8827 8828 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8829 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8830 { 8831 ARMCPU *cpu = ARM_CPU(cs); 8832 CPUARMState *env = &cpu->env; 8833 MemTxAttrs attrs = {}; 8834 MemTxResult result = MEMTX_OK; 8835 AddressSpace *as; 8836 uint64_t data; 8837 8838 attrs.secure = is_secure; 8839 as = arm_addressspace(cs, attrs); 8840 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8841 if (fi->s1ptw) { 8842 return 0; 8843 } 8844 if (regime_translation_big_endian(env, mmu_idx)) { 8845 data = address_space_ldq_be(as, addr, attrs, &result); 8846 } else { 8847 data = address_space_ldq_le(as, addr, attrs, &result); 8848 } 8849 if (result == MEMTX_OK) { 8850 return data; 8851 } 8852 fi->type = ARMFault_SyncExternalOnWalk; 8853 fi->ea = arm_extabort_type(result); 8854 return 0; 8855 } 8856 8857 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8858 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8859 hwaddr *phys_ptr, int *prot, 8860 target_ulong *page_size, 8861 ARMMMUFaultInfo *fi) 8862 { 8863 CPUState *cs = CPU(arm_env_get_cpu(env)); 8864 int level = 1; 8865 uint32_t table; 8866 uint32_t desc; 8867 int type; 8868 int ap; 8869 int domain = 0; 8870 int domain_prot; 8871 hwaddr phys_addr; 8872 uint32_t dacr; 8873 8874 /* Pagetable walk. */ 8875 /* Lookup l1 descriptor. */ 8876 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8877 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8878 fi->type = ARMFault_Translation; 8879 goto do_fault; 8880 } 8881 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8882 mmu_idx, fi); 8883 if (fi->type != ARMFault_None) { 8884 goto do_fault; 8885 } 8886 type = (desc & 3); 8887 domain = (desc >> 5) & 0x0f; 8888 if (regime_el(env, mmu_idx) == 1) { 8889 dacr = env->cp15.dacr_ns; 8890 } else { 8891 dacr = env->cp15.dacr_s; 8892 } 8893 domain_prot = (dacr >> (domain * 2)) & 3; 8894 if (type == 0) { 8895 /* Section translation fault. */ 8896 fi->type = ARMFault_Translation; 8897 goto do_fault; 8898 } 8899 if (type != 2) { 8900 level = 2; 8901 } 8902 if (domain_prot == 0 || domain_prot == 2) { 8903 fi->type = ARMFault_Domain; 8904 goto do_fault; 8905 } 8906 if (type == 2) { 8907 /* 1Mb section. */ 8908 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8909 ap = (desc >> 10) & 3; 8910 *page_size = 1024 * 1024; 8911 } else { 8912 /* Lookup l2 entry. */ 8913 if (type == 1) { 8914 /* Coarse pagetable. */ 8915 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8916 } else { 8917 /* Fine pagetable. */ 8918 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8919 } 8920 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8921 mmu_idx, fi); 8922 if (fi->type != ARMFault_None) { 8923 goto do_fault; 8924 } 8925 switch (desc & 3) { 8926 case 0: /* Page translation fault. */ 8927 fi->type = ARMFault_Translation; 8928 goto do_fault; 8929 case 1: /* 64k page. */ 8930 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8931 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8932 *page_size = 0x10000; 8933 break; 8934 case 2: /* 4k page. */ 8935 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8936 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8937 *page_size = 0x1000; 8938 break; 8939 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8940 if (type == 1) { 8941 /* ARMv6/XScale extended small page format */ 8942 if (arm_feature(env, ARM_FEATURE_XSCALE) 8943 || arm_feature(env, ARM_FEATURE_V6)) { 8944 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8945 *page_size = 0x1000; 8946 } else { 8947 /* UNPREDICTABLE in ARMv5; we choose to take a 8948 * page translation fault. 8949 */ 8950 fi->type = ARMFault_Translation; 8951 goto do_fault; 8952 } 8953 } else { 8954 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8955 *page_size = 0x400; 8956 } 8957 ap = (desc >> 4) & 3; 8958 break; 8959 default: 8960 /* Never happens, but compiler isn't smart enough to tell. */ 8961 abort(); 8962 } 8963 } 8964 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8965 *prot |= *prot ? PAGE_EXEC : 0; 8966 if (!(*prot & (1 << access_type))) { 8967 /* Access permission fault. */ 8968 fi->type = ARMFault_Permission; 8969 goto do_fault; 8970 } 8971 *phys_ptr = phys_addr; 8972 return false; 8973 do_fault: 8974 fi->domain = domain; 8975 fi->level = level; 8976 return true; 8977 } 8978 8979 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8980 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8981 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8982 target_ulong *page_size, ARMMMUFaultInfo *fi) 8983 { 8984 CPUState *cs = CPU(arm_env_get_cpu(env)); 8985 int level = 1; 8986 uint32_t table; 8987 uint32_t desc; 8988 uint32_t xn; 8989 uint32_t pxn = 0; 8990 int type; 8991 int ap; 8992 int domain = 0; 8993 int domain_prot; 8994 hwaddr phys_addr; 8995 uint32_t dacr; 8996 bool ns; 8997 8998 /* Pagetable walk. */ 8999 /* Lookup l1 descriptor. */ 9000 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9001 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9002 fi->type = ARMFault_Translation; 9003 goto do_fault; 9004 } 9005 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9006 mmu_idx, fi); 9007 if (fi->type != ARMFault_None) { 9008 goto do_fault; 9009 } 9010 type = (desc & 3); 9011 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9012 /* Section translation fault, or attempt to use the encoding 9013 * which is Reserved on implementations without PXN. 9014 */ 9015 fi->type = ARMFault_Translation; 9016 goto do_fault; 9017 } 9018 if ((type == 1) || !(desc & (1 << 18))) { 9019 /* Page or Section. */ 9020 domain = (desc >> 5) & 0x0f; 9021 } 9022 if (regime_el(env, mmu_idx) == 1) { 9023 dacr = env->cp15.dacr_ns; 9024 } else { 9025 dacr = env->cp15.dacr_s; 9026 } 9027 if (type == 1) { 9028 level = 2; 9029 } 9030 domain_prot = (dacr >> (domain * 2)) & 3; 9031 if (domain_prot == 0 || domain_prot == 2) { 9032 /* Section or Page domain fault */ 9033 fi->type = ARMFault_Domain; 9034 goto do_fault; 9035 } 9036 if (type != 1) { 9037 if (desc & (1 << 18)) { 9038 /* Supersection. */ 9039 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9040 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9041 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9042 *page_size = 0x1000000; 9043 } else { 9044 /* Section. */ 9045 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9046 *page_size = 0x100000; 9047 } 9048 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9049 xn = desc & (1 << 4); 9050 pxn = desc & 1; 9051 ns = extract32(desc, 19, 1); 9052 } else { 9053 if (arm_feature(env, ARM_FEATURE_PXN)) { 9054 pxn = (desc >> 2) & 1; 9055 } 9056 ns = extract32(desc, 3, 1); 9057 /* Lookup l2 entry. */ 9058 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9059 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9060 mmu_idx, fi); 9061 if (fi->type != ARMFault_None) { 9062 goto do_fault; 9063 } 9064 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9065 switch (desc & 3) { 9066 case 0: /* Page translation fault. */ 9067 fi->type = ARMFault_Translation; 9068 goto do_fault; 9069 case 1: /* 64k page. */ 9070 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9071 xn = desc & (1 << 15); 9072 *page_size = 0x10000; 9073 break; 9074 case 2: case 3: /* 4k page. */ 9075 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9076 xn = desc & 1; 9077 *page_size = 0x1000; 9078 break; 9079 default: 9080 /* Never happens, but compiler isn't smart enough to tell. */ 9081 abort(); 9082 } 9083 } 9084 if (domain_prot == 3) { 9085 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9086 } else { 9087 if (pxn && !regime_is_user(env, mmu_idx)) { 9088 xn = 1; 9089 } 9090 if (xn && access_type == MMU_INST_FETCH) { 9091 fi->type = ARMFault_Permission; 9092 goto do_fault; 9093 } 9094 9095 if (arm_feature(env, ARM_FEATURE_V6K) && 9096 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9097 /* The simplified model uses AP[0] as an access control bit. */ 9098 if ((ap & 1) == 0) { 9099 /* Access flag fault. */ 9100 fi->type = ARMFault_AccessFlag; 9101 goto do_fault; 9102 } 9103 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9104 } else { 9105 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9106 } 9107 if (*prot && !xn) { 9108 *prot |= PAGE_EXEC; 9109 } 9110 if (!(*prot & (1 << access_type))) { 9111 /* Access permission fault. */ 9112 fi->type = ARMFault_Permission; 9113 goto do_fault; 9114 } 9115 } 9116 if (ns) { 9117 /* The NS bit will (as required by the architecture) have no effect if 9118 * the CPU doesn't support TZ or this is a non-secure translation 9119 * regime, because the attribute will already be non-secure. 9120 */ 9121 attrs->secure = false; 9122 } 9123 *phys_ptr = phys_addr; 9124 return false; 9125 do_fault: 9126 fi->domain = domain; 9127 fi->level = level; 9128 return true; 9129 } 9130 9131 /* 9132 * check_s2_mmu_setup 9133 * @cpu: ARMCPU 9134 * @is_aa64: True if the translation regime is in AArch64 state 9135 * @startlevel: Suggested starting level 9136 * @inputsize: Bitsize of IPAs 9137 * @stride: Page-table stride (See the ARM ARM) 9138 * 9139 * Returns true if the suggested S2 translation parameters are OK and 9140 * false otherwise. 9141 */ 9142 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9143 int inputsize, int stride) 9144 { 9145 const int grainsize = stride + 3; 9146 int startsizecheck; 9147 9148 /* Negative levels are never allowed. */ 9149 if (level < 0) { 9150 return false; 9151 } 9152 9153 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9154 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9155 return false; 9156 } 9157 9158 if (is_aa64) { 9159 CPUARMState *env = &cpu->env; 9160 unsigned int pamax = arm_pamax(cpu); 9161 9162 switch (stride) { 9163 case 13: /* 64KB Pages. */ 9164 if (level == 0 || (level == 1 && pamax <= 42)) { 9165 return false; 9166 } 9167 break; 9168 case 11: /* 16KB Pages. */ 9169 if (level == 0 || (level == 1 && pamax <= 40)) { 9170 return false; 9171 } 9172 break; 9173 case 9: /* 4KB Pages. */ 9174 if (level == 0 && pamax <= 42) { 9175 return false; 9176 } 9177 break; 9178 default: 9179 g_assert_not_reached(); 9180 } 9181 9182 /* Inputsize checks. */ 9183 if (inputsize > pamax && 9184 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9185 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9186 return false; 9187 } 9188 } else { 9189 /* AArch32 only supports 4KB pages. Assert on that. */ 9190 assert(stride == 9); 9191 9192 if (level == 0) { 9193 return false; 9194 } 9195 } 9196 return true; 9197 } 9198 9199 /* Translate from the 4-bit stage 2 representation of 9200 * memory attributes (without cache-allocation hints) to 9201 * the 8-bit representation of the stage 1 MAIR registers 9202 * (which includes allocation hints). 9203 * 9204 * ref: shared/translation/attrs/S2AttrDecode() 9205 * .../S2ConvertAttrsHints() 9206 */ 9207 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9208 { 9209 uint8_t hiattr = extract32(s2attrs, 2, 2); 9210 uint8_t loattr = extract32(s2attrs, 0, 2); 9211 uint8_t hihint = 0, lohint = 0; 9212 9213 if (hiattr != 0) { /* normal memory */ 9214 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9215 hiattr = loattr = 1; /* non-cacheable */ 9216 } else { 9217 if (hiattr != 1) { /* Write-through or write-back */ 9218 hihint = 3; /* RW allocate */ 9219 } 9220 if (loattr != 1) { /* Write-through or write-back */ 9221 lohint = 3; /* RW allocate */ 9222 } 9223 } 9224 } 9225 9226 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9227 } 9228 9229 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9230 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9231 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9232 target_ulong *page_size_ptr, 9233 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9234 { 9235 ARMCPU *cpu = arm_env_get_cpu(env); 9236 CPUState *cs = CPU(cpu); 9237 /* Read an LPAE long-descriptor translation table. */ 9238 ARMFaultType fault_type = ARMFault_Translation; 9239 uint32_t level; 9240 uint32_t epd = 0; 9241 int32_t t0sz, t1sz; 9242 uint32_t tg; 9243 uint64_t ttbr; 9244 int ttbr_select; 9245 hwaddr descaddr, indexmask, indexmask_grainsize; 9246 uint32_t tableattrs; 9247 target_ulong page_size; 9248 uint32_t attrs; 9249 int32_t stride = 9; 9250 int32_t addrsize; 9251 int inputsize; 9252 int32_t tbi = 0; 9253 TCR *tcr = regime_tcr(env, mmu_idx); 9254 int ap, ns, xn, pxn; 9255 uint32_t el = regime_el(env, mmu_idx); 9256 bool ttbr1_valid = true; 9257 uint64_t descaddrmask; 9258 bool aarch64 = arm_el_is_aa64(env, el); 9259 9260 /* TODO: 9261 * This code does not handle the different format TCR for VTCR_EL2. 9262 * This code also does not support shareability levels. 9263 * Attribute and permission bit handling should also be checked when adding 9264 * support for those page table walks. 9265 */ 9266 if (aarch64) { 9267 level = 0; 9268 addrsize = 64; 9269 if (el > 1) { 9270 if (mmu_idx != ARMMMUIdx_S2NS) { 9271 tbi = extract64(tcr->raw_tcr, 20, 1); 9272 } 9273 } else { 9274 if (extract64(address, 55, 1)) { 9275 tbi = extract64(tcr->raw_tcr, 38, 1); 9276 } else { 9277 tbi = extract64(tcr->raw_tcr, 37, 1); 9278 } 9279 } 9280 tbi *= 8; 9281 9282 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9283 * invalid. 9284 */ 9285 if (el > 1) { 9286 ttbr1_valid = false; 9287 } 9288 } else { 9289 level = 1; 9290 addrsize = 32; 9291 /* There is no TTBR1 for EL2 */ 9292 if (el == 2) { 9293 ttbr1_valid = false; 9294 } 9295 } 9296 9297 /* Determine whether this address is in the region controlled by 9298 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9299 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9300 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9301 */ 9302 if (aarch64) { 9303 /* AArch64 translation. */ 9304 t0sz = extract32(tcr->raw_tcr, 0, 6); 9305 t0sz = MIN(t0sz, 39); 9306 t0sz = MAX(t0sz, 16); 9307 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9308 /* AArch32 stage 1 translation. */ 9309 t0sz = extract32(tcr->raw_tcr, 0, 3); 9310 } else { 9311 /* AArch32 stage 2 translation. */ 9312 bool sext = extract32(tcr->raw_tcr, 4, 1); 9313 bool sign = extract32(tcr->raw_tcr, 3, 1); 9314 /* Address size is 40-bit for a stage 2 translation, 9315 * and t0sz can be negative (from -8 to 7), 9316 * so we need to adjust it to use the TTBR selecting logic below. 9317 */ 9318 addrsize = 40; 9319 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9320 9321 /* If the sign-extend bit is not the same as t0sz[3], the result 9322 * is unpredictable. Flag this as a guest error. */ 9323 if (sign != sext) { 9324 qemu_log_mask(LOG_GUEST_ERROR, 9325 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9326 } 9327 } 9328 t1sz = extract32(tcr->raw_tcr, 16, 6); 9329 if (aarch64) { 9330 t1sz = MIN(t1sz, 39); 9331 t1sz = MAX(t1sz, 16); 9332 } 9333 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9334 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9335 ttbr_select = 0; 9336 } else if (ttbr1_valid && t1sz && 9337 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9338 /* there is a ttbr1 region and we are in it (high bits all one) */ 9339 ttbr_select = 1; 9340 } else if (!t0sz) { 9341 /* ttbr0 region is "everything not in the ttbr1 region" */ 9342 ttbr_select = 0; 9343 } else if (!t1sz && ttbr1_valid) { 9344 /* ttbr1 region is "everything not in the ttbr0 region" */ 9345 ttbr_select = 1; 9346 } else { 9347 /* in the gap between the two regions, this is a Translation fault */ 9348 fault_type = ARMFault_Translation; 9349 goto do_fault; 9350 } 9351 9352 /* Note that QEMU ignores shareability and cacheability attributes, 9353 * so we don't need to do anything with the SH, ORGN, IRGN fields 9354 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9355 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9356 * implement any ASID-like capability so we can ignore it (instead 9357 * we will always flush the TLB any time the ASID is changed). 9358 */ 9359 if (ttbr_select == 0) { 9360 ttbr = regime_ttbr(env, mmu_idx, 0); 9361 if (el < 2) { 9362 epd = extract32(tcr->raw_tcr, 7, 1); 9363 } 9364 inputsize = addrsize - t0sz; 9365 9366 tg = extract32(tcr->raw_tcr, 14, 2); 9367 if (tg == 1) { /* 64KB pages */ 9368 stride = 13; 9369 } 9370 if (tg == 2) { /* 16KB pages */ 9371 stride = 11; 9372 } 9373 } else { 9374 /* We should only be here if TTBR1 is valid */ 9375 assert(ttbr1_valid); 9376 9377 ttbr = regime_ttbr(env, mmu_idx, 1); 9378 epd = extract32(tcr->raw_tcr, 23, 1); 9379 inputsize = addrsize - t1sz; 9380 9381 tg = extract32(tcr->raw_tcr, 30, 2); 9382 if (tg == 3) { /* 64KB pages */ 9383 stride = 13; 9384 } 9385 if (tg == 1) { /* 16KB pages */ 9386 stride = 11; 9387 } 9388 } 9389 9390 /* Here we should have set up all the parameters for the translation: 9391 * inputsize, ttbr, epd, stride, tbi 9392 */ 9393 9394 if (epd) { 9395 /* Translation table walk disabled => Translation fault on TLB miss 9396 * Note: This is always 0 on 64-bit EL2 and EL3. 9397 */ 9398 goto do_fault; 9399 } 9400 9401 if (mmu_idx != ARMMMUIdx_S2NS) { 9402 /* The starting level depends on the virtual address size (which can 9403 * be up to 48 bits) and the translation granule size. It indicates 9404 * the number of strides (stride bits at a time) needed to 9405 * consume the bits of the input address. In the pseudocode this is: 9406 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9407 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9408 * our 'stride + 3' and 'stride' is our 'stride'. 9409 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9410 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9411 * = 4 - (inputsize - 4) / stride; 9412 */ 9413 level = 4 - (inputsize - 4) / stride; 9414 } else { 9415 /* For stage 2 translations the starting level is specified by the 9416 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9417 */ 9418 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9419 uint32_t startlevel; 9420 bool ok; 9421 9422 if (!aarch64 || stride == 9) { 9423 /* AArch32 or 4KB pages */ 9424 startlevel = 2 - sl0; 9425 } else { 9426 /* 16KB or 64KB pages */ 9427 startlevel = 3 - sl0; 9428 } 9429 9430 /* Check that the starting level is valid. */ 9431 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9432 inputsize, stride); 9433 if (!ok) { 9434 fault_type = ARMFault_Translation; 9435 goto do_fault; 9436 } 9437 level = startlevel; 9438 } 9439 9440 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9441 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9442 9443 /* Now we can extract the actual base address from the TTBR */ 9444 descaddr = extract64(ttbr, 0, 48); 9445 descaddr &= ~indexmask; 9446 9447 /* The address field in the descriptor goes up to bit 39 for ARMv7 9448 * but up to bit 47 for ARMv8, but we use the descaddrmask 9449 * up to bit 39 for AArch32, because we don't need other bits in that case 9450 * to construct next descriptor address (anyway they should be all zeroes). 9451 */ 9452 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9453 ~indexmask_grainsize; 9454 9455 /* Secure accesses start with the page table in secure memory and 9456 * can be downgraded to non-secure at any step. Non-secure accesses 9457 * remain non-secure. We implement this by just ORing in the NSTable/NS 9458 * bits at each step. 9459 */ 9460 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9461 for (;;) { 9462 uint64_t descriptor; 9463 bool nstable; 9464 9465 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9466 descaddr &= ~7ULL; 9467 nstable = extract32(tableattrs, 4, 1); 9468 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9469 if (fi->type != ARMFault_None) { 9470 goto do_fault; 9471 } 9472 9473 if (!(descriptor & 1) || 9474 (!(descriptor & 2) && (level == 3))) { 9475 /* Invalid, or the Reserved level 3 encoding */ 9476 goto do_fault; 9477 } 9478 descaddr = descriptor & descaddrmask; 9479 9480 if ((descriptor & 2) && (level < 3)) { 9481 /* Table entry. The top five bits are attributes which may 9482 * propagate down through lower levels of the table (and 9483 * which are all arranged so that 0 means "no effect", so 9484 * we can gather them up by ORing in the bits at each level). 9485 */ 9486 tableattrs |= extract64(descriptor, 59, 5); 9487 level++; 9488 indexmask = indexmask_grainsize; 9489 continue; 9490 } 9491 /* Block entry at level 1 or 2, or page entry at level 3. 9492 * These are basically the same thing, although the number 9493 * of bits we pull in from the vaddr varies. 9494 */ 9495 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9496 descaddr |= (address & (page_size - 1)); 9497 /* Extract attributes from the descriptor */ 9498 attrs = extract64(descriptor, 2, 10) 9499 | (extract64(descriptor, 52, 12) << 10); 9500 9501 if (mmu_idx == ARMMMUIdx_S2NS) { 9502 /* Stage 2 table descriptors do not include any attribute fields */ 9503 break; 9504 } 9505 /* Merge in attributes from table descriptors */ 9506 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9507 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9508 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9509 * means "force PL1 access only", which means forcing AP[1] to 0. 9510 */ 9511 if (extract32(tableattrs, 2, 1)) { 9512 attrs &= ~(1 << 4); 9513 } 9514 attrs |= nstable << 3; /* NS */ 9515 break; 9516 } 9517 /* Here descaddr is the final physical address, and attributes 9518 * are all in attrs. 9519 */ 9520 fault_type = ARMFault_AccessFlag; 9521 if ((attrs & (1 << 8)) == 0) { 9522 /* Access flag */ 9523 goto do_fault; 9524 } 9525 9526 ap = extract32(attrs, 4, 2); 9527 xn = extract32(attrs, 12, 1); 9528 9529 if (mmu_idx == ARMMMUIdx_S2NS) { 9530 ns = true; 9531 *prot = get_S2prot(env, ap, xn); 9532 } else { 9533 ns = extract32(attrs, 3, 1); 9534 pxn = extract32(attrs, 11, 1); 9535 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9536 } 9537 9538 fault_type = ARMFault_Permission; 9539 if (!(*prot & (1 << access_type))) { 9540 goto do_fault; 9541 } 9542 9543 if (ns) { 9544 /* The NS bit will (as required by the architecture) have no effect if 9545 * the CPU doesn't support TZ or this is a non-secure translation 9546 * regime, because the attribute will already be non-secure. 9547 */ 9548 txattrs->secure = false; 9549 } 9550 9551 if (cacheattrs != NULL) { 9552 if (mmu_idx == ARMMMUIdx_S2NS) { 9553 cacheattrs->attrs = convert_stage2_attrs(env, 9554 extract32(attrs, 0, 4)); 9555 } else { 9556 /* Index into MAIR registers for cache attributes */ 9557 uint8_t attrindx = extract32(attrs, 0, 3); 9558 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9559 assert(attrindx <= 7); 9560 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9561 } 9562 cacheattrs->shareability = extract32(attrs, 6, 2); 9563 } 9564 9565 *phys_ptr = descaddr; 9566 *page_size_ptr = page_size; 9567 return false; 9568 9569 do_fault: 9570 fi->type = fault_type; 9571 fi->level = level; 9572 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9573 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9574 return true; 9575 } 9576 9577 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9578 ARMMMUIdx mmu_idx, 9579 int32_t address, int *prot) 9580 { 9581 if (!arm_feature(env, ARM_FEATURE_M)) { 9582 *prot = PAGE_READ | PAGE_WRITE; 9583 switch (address) { 9584 case 0xF0000000 ... 0xFFFFFFFF: 9585 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9586 /* hivecs execing is ok */ 9587 *prot |= PAGE_EXEC; 9588 } 9589 break; 9590 case 0x00000000 ... 0x7FFFFFFF: 9591 *prot |= PAGE_EXEC; 9592 break; 9593 } 9594 } else { 9595 /* Default system address map for M profile cores. 9596 * The architecture specifies which regions are execute-never; 9597 * at the MPU level no other checks are defined. 9598 */ 9599 switch (address) { 9600 case 0x00000000 ... 0x1fffffff: /* ROM */ 9601 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9602 case 0x60000000 ... 0x7fffffff: /* RAM */ 9603 case 0x80000000 ... 0x9fffffff: /* RAM */ 9604 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9605 break; 9606 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9607 case 0xa0000000 ... 0xbfffffff: /* Device */ 9608 case 0xc0000000 ... 0xdfffffff: /* Device */ 9609 case 0xe0000000 ... 0xffffffff: /* System */ 9610 *prot = PAGE_READ | PAGE_WRITE; 9611 break; 9612 default: 9613 g_assert_not_reached(); 9614 } 9615 } 9616 } 9617 9618 static bool pmsav7_use_background_region(ARMCPU *cpu, 9619 ARMMMUIdx mmu_idx, bool is_user) 9620 { 9621 /* Return true if we should use the default memory map as a 9622 * "background" region if there are no hits against any MPU regions. 9623 */ 9624 CPUARMState *env = &cpu->env; 9625 9626 if (is_user) { 9627 return false; 9628 } 9629 9630 if (arm_feature(env, ARM_FEATURE_M)) { 9631 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9632 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9633 } else { 9634 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9635 } 9636 } 9637 9638 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9639 { 9640 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9641 return arm_feature(env, ARM_FEATURE_M) && 9642 extract32(address, 20, 12) == 0xe00; 9643 } 9644 9645 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9646 { 9647 /* True if address is in the M profile system region 9648 * 0xe0000000 - 0xffffffff 9649 */ 9650 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9651 } 9652 9653 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9654 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9655 hwaddr *phys_ptr, int *prot, 9656 target_ulong *page_size, 9657 ARMMMUFaultInfo *fi) 9658 { 9659 ARMCPU *cpu = arm_env_get_cpu(env); 9660 int n; 9661 bool is_user = regime_is_user(env, mmu_idx); 9662 9663 *phys_ptr = address; 9664 *page_size = TARGET_PAGE_SIZE; 9665 *prot = 0; 9666 9667 if (regime_translation_disabled(env, mmu_idx) || 9668 m_is_ppb_region(env, address)) { 9669 /* MPU disabled or M profile PPB access: use default memory map. 9670 * The other case which uses the default memory map in the 9671 * v7M ARM ARM pseudocode is exception vector reads from the vector 9672 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9673 * which always does a direct read using address_space_ldl(), rather 9674 * than going via this function, so we don't need to check that here. 9675 */ 9676 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9677 } else { /* MPU enabled */ 9678 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9679 /* region search */ 9680 uint32_t base = env->pmsav7.drbar[n]; 9681 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9682 uint32_t rmask; 9683 bool srdis = false; 9684 9685 if (!(env->pmsav7.drsr[n] & 0x1)) { 9686 continue; 9687 } 9688 9689 if (!rsize) { 9690 qemu_log_mask(LOG_GUEST_ERROR, 9691 "DRSR[%d]: Rsize field cannot be 0\n", n); 9692 continue; 9693 } 9694 rsize++; 9695 rmask = (1ull << rsize) - 1; 9696 9697 if (base & rmask) { 9698 qemu_log_mask(LOG_GUEST_ERROR, 9699 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9700 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9701 n, base, rmask); 9702 continue; 9703 } 9704 9705 if (address < base || address > base + rmask) { 9706 /* 9707 * Address not in this region. We must check whether the 9708 * region covers addresses in the same page as our address. 9709 * In that case we must not report a size that covers the 9710 * whole page for a subsequent hit against a different MPU 9711 * region or the background region, because it would result in 9712 * incorrect TLB hits for subsequent accesses to addresses that 9713 * are in this MPU region. 9714 */ 9715 if (ranges_overlap(base, rmask, 9716 address & TARGET_PAGE_MASK, 9717 TARGET_PAGE_SIZE)) { 9718 *page_size = 1; 9719 } 9720 continue; 9721 } 9722 9723 /* Region matched */ 9724 9725 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9726 int i, snd; 9727 uint32_t srdis_mask; 9728 9729 rsize -= 3; /* sub region size (power of 2) */ 9730 snd = ((address - base) >> rsize) & 0x7; 9731 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9732 9733 srdis_mask = srdis ? 0x3 : 0x0; 9734 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9735 /* This will check in groups of 2, 4 and then 8, whether 9736 * the subregion bits are consistent. rsize is incremented 9737 * back up to give the region size, considering consistent 9738 * adjacent subregions as one region. Stop testing if rsize 9739 * is already big enough for an entire QEMU page. 9740 */ 9741 int snd_rounded = snd & ~(i - 1); 9742 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9743 snd_rounded + 8, i); 9744 if (srdis_mask ^ srdis_multi) { 9745 break; 9746 } 9747 srdis_mask = (srdis_mask << i) | srdis_mask; 9748 rsize++; 9749 } 9750 } 9751 if (srdis) { 9752 continue; 9753 } 9754 if (rsize < TARGET_PAGE_BITS) { 9755 *page_size = 1 << rsize; 9756 } 9757 break; 9758 } 9759 9760 if (n == -1) { /* no hits */ 9761 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9762 /* background fault */ 9763 fi->type = ARMFault_Background; 9764 return true; 9765 } 9766 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9767 } else { /* a MPU hit! */ 9768 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9769 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9770 9771 if (m_is_system_region(env, address)) { 9772 /* System space is always execute never */ 9773 xn = 1; 9774 } 9775 9776 if (is_user) { /* User mode AP bit decoding */ 9777 switch (ap) { 9778 case 0: 9779 case 1: 9780 case 5: 9781 break; /* no access */ 9782 case 3: 9783 *prot |= PAGE_WRITE; 9784 /* fall through */ 9785 case 2: 9786 case 6: 9787 *prot |= PAGE_READ | PAGE_EXEC; 9788 break; 9789 case 7: 9790 /* for v7M, same as 6; for R profile a reserved value */ 9791 if (arm_feature(env, ARM_FEATURE_M)) { 9792 *prot |= PAGE_READ | PAGE_EXEC; 9793 break; 9794 } 9795 /* fall through */ 9796 default: 9797 qemu_log_mask(LOG_GUEST_ERROR, 9798 "DRACR[%d]: Bad value for AP bits: 0x%" 9799 PRIx32 "\n", n, ap); 9800 } 9801 } else { /* Priv. mode AP bits decoding */ 9802 switch (ap) { 9803 case 0: 9804 break; /* no access */ 9805 case 1: 9806 case 2: 9807 case 3: 9808 *prot |= PAGE_WRITE; 9809 /* fall through */ 9810 case 5: 9811 case 6: 9812 *prot |= PAGE_READ | PAGE_EXEC; 9813 break; 9814 case 7: 9815 /* for v7M, same as 6; for R profile a reserved value */ 9816 if (arm_feature(env, ARM_FEATURE_M)) { 9817 *prot |= PAGE_READ | PAGE_EXEC; 9818 break; 9819 } 9820 /* fall through */ 9821 default: 9822 qemu_log_mask(LOG_GUEST_ERROR, 9823 "DRACR[%d]: Bad value for AP bits: 0x%" 9824 PRIx32 "\n", n, ap); 9825 } 9826 } 9827 9828 /* execute never */ 9829 if (xn) { 9830 *prot &= ~PAGE_EXEC; 9831 } 9832 } 9833 } 9834 9835 fi->type = ARMFault_Permission; 9836 fi->level = 1; 9837 return !(*prot & (1 << access_type)); 9838 } 9839 9840 static bool v8m_is_sau_exempt(CPUARMState *env, 9841 uint32_t address, MMUAccessType access_type) 9842 { 9843 /* The architecture specifies that certain address ranges are 9844 * exempt from v8M SAU/IDAU checks. 9845 */ 9846 return 9847 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9848 (address >= 0xe0000000 && address <= 0xe0002fff) || 9849 (address >= 0xe000e000 && address <= 0xe000efff) || 9850 (address >= 0xe002e000 && address <= 0xe002efff) || 9851 (address >= 0xe0040000 && address <= 0xe0041fff) || 9852 (address >= 0xe00ff000 && address <= 0xe00fffff); 9853 } 9854 9855 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9856 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9857 V8M_SAttributes *sattrs) 9858 { 9859 /* Look up the security attributes for this address. Compare the 9860 * pseudocode SecurityCheck() function. 9861 * We assume the caller has zero-initialized *sattrs. 9862 */ 9863 ARMCPU *cpu = arm_env_get_cpu(env); 9864 int r; 9865 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9866 int idau_region = IREGION_NOTVALID; 9867 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 9868 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 9869 9870 if (cpu->idau) { 9871 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9872 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9873 9874 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9875 &idau_nsc); 9876 } 9877 9878 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9879 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9880 return; 9881 } 9882 9883 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9884 sattrs->ns = !regime_is_secure(env, mmu_idx); 9885 return; 9886 } 9887 9888 if (idau_region != IREGION_NOTVALID) { 9889 sattrs->irvalid = true; 9890 sattrs->iregion = idau_region; 9891 } 9892 9893 switch (env->sau.ctrl & 3) { 9894 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9895 break; 9896 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9897 sattrs->ns = true; 9898 break; 9899 default: /* SAU.ENABLE == 1 */ 9900 for (r = 0; r < cpu->sau_sregion; r++) { 9901 if (env->sau.rlar[r] & 1) { 9902 uint32_t base = env->sau.rbar[r] & ~0x1f; 9903 uint32_t limit = env->sau.rlar[r] | 0x1f; 9904 9905 if (base <= address && limit >= address) { 9906 if (base > addr_page_base || limit < addr_page_limit) { 9907 sattrs->subpage = true; 9908 } 9909 if (sattrs->srvalid) { 9910 /* If we hit in more than one region then we must report 9911 * as Secure, not NS-Callable, with no valid region 9912 * number info. 9913 */ 9914 sattrs->ns = false; 9915 sattrs->nsc = false; 9916 sattrs->sregion = 0; 9917 sattrs->srvalid = false; 9918 break; 9919 } else { 9920 if (env->sau.rlar[r] & 2) { 9921 sattrs->nsc = true; 9922 } else { 9923 sattrs->ns = true; 9924 } 9925 sattrs->srvalid = true; 9926 sattrs->sregion = r; 9927 } 9928 } else { 9929 /* 9930 * Address not in this region. We must check whether the 9931 * region covers addresses in the same page as our address. 9932 * In that case we must not report a size that covers the 9933 * whole page for a subsequent hit against a different MPU 9934 * region or the background region, because it would result 9935 * in incorrect TLB hits for subsequent accesses to 9936 * addresses that are in this MPU region. 9937 */ 9938 if (limit >= base && 9939 ranges_overlap(base, limit - base + 1, 9940 addr_page_base, 9941 TARGET_PAGE_SIZE)) { 9942 sattrs->subpage = true; 9943 } 9944 } 9945 } 9946 } 9947 9948 /* The IDAU will override the SAU lookup results if it specifies 9949 * higher security than the SAU does. 9950 */ 9951 if (!idau_ns) { 9952 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 9953 sattrs->ns = false; 9954 sattrs->nsc = idau_nsc; 9955 } 9956 } 9957 break; 9958 } 9959 } 9960 9961 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9962 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9963 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9964 int *prot, bool *is_subpage, 9965 ARMMMUFaultInfo *fi, uint32_t *mregion) 9966 { 9967 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9968 * that a full phys-to-virt translation does). 9969 * mregion is (if not NULL) set to the region number which matched, 9970 * or -1 if no region number is returned (MPU off, address did not 9971 * hit a region, address hit in multiple regions). 9972 * We set is_subpage to true if the region hit doesn't cover the 9973 * entire TARGET_PAGE the address is within. 9974 */ 9975 ARMCPU *cpu = arm_env_get_cpu(env); 9976 bool is_user = regime_is_user(env, mmu_idx); 9977 uint32_t secure = regime_is_secure(env, mmu_idx); 9978 int n; 9979 int matchregion = -1; 9980 bool hit = false; 9981 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 9982 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 9983 9984 *is_subpage = false; 9985 *phys_ptr = address; 9986 *prot = 0; 9987 if (mregion) { 9988 *mregion = -1; 9989 } 9990 9991 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9992 * was an exception vector read from the vector table (which is always 9993 * done using the default system address map), because those accesses 9994 * are done in arm_v7m_load_vector(), which always does a direct 9995 * read using address_space_ldl(), rather than going via this function. 9996 */ 9997 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9998 hit = true; 9999 } else if (m_is_ppb_region(env, address)) { 10000 hit = true; 10001 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10002 hit = true; 10003 } else { 10004 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10005 /* region search */ 10006 /* Note that the base address is bits [31:5] from the register 10007 * with bits [4:0] all zeroes, but the limit address is bits 10008 * [31:5] from the register with bits [4:0] all ones. 10009 */ 10010 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10011 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10012 10013 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10014 /* Region disabled */ 10015 continue; 10016 } 10017 10018 if (address < base || address > limit) { 10019 /* 10020 * Address not in this region. We must check whether the 10021 * region covers addresses in the same page as our address. 10022 * In that case we must not report a size that covers the 10023 * whole page for a subsequent hit against a different MPU 10024 * region or the background region, because it would result in 10025 * incorrect TLB hits for subsequent accesses to addresses that 10026 * are in this MPU region. 10027 */ 10028 if (limit >= base && 10029 ranges_overlap(base, limit - base + 1, 10030 addr_page_base, 10031 TARGET_PAGE_SIZE)) { 10032 *is_subpage = true; 10033 } 10034 continue; 10035 } 10036 10037 if (base > addr_page_base || limit < addr_page_limit) { 10038 *is_subpage = true; 10039 } 10040 10041 if (hit) { 10042 /* Multiple regions match -- always a failure (unlike 10043 * PMSAv7 where highest-numbered-region wins) 10044 */ 10045 fi->type = ARMFault_Permission; 10046 fi->level = 1; 10047 return true; 10048 } 10049 10050 matchregion = n; 10051 hit = true; 10052 } 10053 } 10054 10055 if (!hit) { 10056 /* background fault */ 10057 fi->type = ARMFault_Background; 10058 return true; 10059 } 10060 10061 if (matchregion == -1) { 10062 /* hit using the background region */ 10063 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10064 } else { 10065 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10066 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10067 10068 if (m_is_system_region(env, address)) { 10069 /* System space is always execute never */ 10070 xn = 1; 10071 } 10072 10073 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10074 if (*prot && !xn) { 10075 *prot |= PAGE_EXEC; 10076 } 10077 /* We don't need to look the attribute up in the MAIR0/MAIR1 10078 * registers because that only tells us about cacheability. 10079 */ 10080 if (mregion) { 10081 *mregion = matchregion; 10082 } 10083 } 10084 10085 fi->type = ARMFault_Permission; 10086 fi->level = 1; 10087 return !(*prot & (1 << access_type)); 10088 } 10089 10090 10091 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10092 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10093 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10094 int *prot, target_ulong *page_size, 10095 ARMMMUFaultInfo *fi) 10096 { 10097 uint32_t secure = regime_is_secure(env, mmu_idx); 10098 V8M_SAttributes sattrs = {}; 10099 bool ret; 10100 bool mpu_is_subpage; 10101 10102 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10103 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10104 if (access_type == MMU_INST_FETCH) { 10105 /* Instruction fetches always use the MMU bank and the 10106 * transaction attribute determined by the fetch address, 10107 * regardless of CPU state. This is painful for QEMU 10108 * to handle, because it would mean we need to encode 10109 * into the mmu_idx not just the (user, negpri) information 10110 * for the current security state but also that for the 10111 * other security state, which would balloon the number 10112 * of mmu_idx values needed alarmingly. 10113 * Fortunately we can avoid this because it's not actually 10114 * possible to arbitrarily execute code from memory with 10115 * the wrong security attribute: it will always generate 10116 * an exception of some kind or another, apart from the 10117 * special case of an NS CPU executing an SG instruction 10118 * in S&NSC memory. So we always just fail the translation 10119 * here and sort things out in the exception handler 10120 * (including possibly emulating an SG instruction). 10121 */ 10122 if (sattrs.ns != !secure) { 10123 if (sattrs.nsc) { 10124 fi->type = ARMFault_QEMU_NSCExec; 10125 } else { 10126 fi->type = ARMFault_QEMU_SFault; 10127 } 10128 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10129 *phys_ptr = address; 10130 *prot = 0; 10131 return true; 10132 } 10133 } else { 10134 /* For data accesses we always use the MMU bank indicated 10135 * by the current CPU state, but the security attributes 10136 * might downgrade a secure access to nonsecure. 10137 */ 10138 if (sattrs.ns) { 10139 txattrs->secure = false; 10140 } else if (!secure) { 10141 /* NS access to S memory must fault. 10142 * Architecturally we should first check whether the 10143 * MPU information for this address indicates that we 10144 * are doing an unaligned access to Device memory, which 10145 * should generate a UsageFault instead. QEMU does not 10146 * currently check for that kind of unaligned access though. 10147 * If we added it we would need to do so as a special case 10148 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10149 */ 10150 fi->type = ARMFault_QEMU_SFault; 10151 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10152 *phys_ptr = address; 10153 *prot = 0; 10154 return true; 10155 } 10156 } 10157 } 10158 10159 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10160 txattrs, prot, &mpu_is_subpage, fi, NULL); 10161 /* 10162 * TODO: this is a temporary hack to ignore the fact that the SAU region 10163 * is smaller than a page if this is an executable region. We never 10164 * supported small MPU regions, but we did (accidentally) allow small 10165 * SAU regions, and if we now made small SAU regions not be executable 10166 * then this would break previously working guest code. We can't 10167 * remove this until/unless we implement support for execution from 10168 * small regions. 10169 */ 10170 if (*prot & PAGE_EXEC) { 10171 sattrs.subpage = false; 10172 } 10173 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10174 return ret; 10175 } 10176 10177 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10178 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10179 hwaddr *phys_ptr, int *prot, 10180 ARMMMUFaultInfo *fi) 10181 { 10182 int n; 10183 uint32_t mask; 10184 uint32_t base; 10185 bool is_user = regime_is_user(env, mmu_idx); 10186 10187 if (regime_translation_disabled(env, mmu_idx)) { 10188 /* MPU disabled. */ 10189 *phys_ptr = address; 10190 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10191 return false; 10192 } 10193 10194 *phys_ptr = address; 10195 for (n = 7; n >= 0; n--) { 10196 base = env->cp15.c6_region[n]; 10197 if ((base & 1) == 0) { 10198 continue; 10199 } 10200 mask = 1 << ((base >> 1) & 0x1f); 10201 /* Keep this shift separate from the above to avoid an 10202 (undefined) << 32. */ 10203 mask = (mask << 1) - 1; 10204 if (((base ^ address) & ~mask) == 0) { 10205 break; 10206 } 10207 } 10208 if (n < 0) { 10209 fi->type = ARMFault_Background; 10210 return true; 10211 } 10212 10213 if (access_type == MMU_INST_FETCH) { 10214 mask = env->cp15.pmsav5_insn_ap; 10215 } else { 10216 mask = env->cp15.pmsav5_data_ap; 10217 } 10218 mask = (mask >> (n * 4)) & 0xf; 10219 switch (mask) { 10220 case 0: 10221 fi->type = ARMFault_Permission; 10222 fi->level = 1; 10223 return true; 10224 case 1: 10225 if (is_user) { 10226 fi->type = ARMFault_Permission; 10227 fi->level = 1; 10228 return true; 10229 } 10230 *prot = PAGE_READ | PAGE_WRITE; 10231 break; 10232 case 2: 10233 *prot = PAGE_READ; 10234 if (!is_user) { 10235 *prot |= PAGE_WRITE; 10236 } 10237 break; 10238 case 3: 10239 *prot = PAGE_READ | PAGE_WRITE; 10240 break; 10241 case 5: 10242 if (is_user) { 10243 fi->type = ARMFault_Permission; 10244 fi->level = 1; 10245 return true; 10246 } 10247 *prot = PAGE_READ; 10248 break; 10249 case 6: 10250 *prot = PAGE_READ; 10251 break; 10252 default: 10253 /* Bad permission. */ 10254 fi->type = ARMFault_Permission; 10255 fi->level = 1; 10256 return true; 10257 } 10258 *prot |= PAGE_EXEC; 10259 return false; 10260 } 10261 10262 /* Combine either inner or outer cacheability attributes for normal 10263 * memory, according to table D4-42 and pseudocode procedure 10264 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10265 * 10266 * NB: only stage 1 includes allocation hints (RW bits), leading to 10267 * some asymmetry. 10268 */ 10269 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10270 { 10271 if (s1 == 4 || s2 == 4) { 10272 /* non-cacheable has precedence */ 10273 return 4; 10274 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10275 /* stage 1 write-through takes precedence */ 10276 return s1; 10277 } else if (extract32(s2, 2, 2) == 2) { 10278 /* stage 2 write-through takes precedence, but the allocation hint 10279 * is still taken from stage 1 10280 */ 10281 return (2 << 2) | extract32(s1, 0, 2); 10282 } else { /* write-back */ 10283 return s1; 10284 } 10285 } 10286 10287 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10288 * and CombineS1S2Desc() 10289 * 10290 * @s1: Attributes from stage 1 walk 10291 * @s2: Attributes from stage 2 walk 10292 */ 10293 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10294 { 10295 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10296 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10297 ARMCacheAttrs ret; 10298 10299 /* Combine shareability attributes (table D4-43) */ 10300 if (s1.shareability == 2 || s2.shareability == 2) { 10301 /* if either are outer-shareable, the result is outer-shareable */ 10302 ret.shareability = 2; 10303 } else if (s1.shareability == 3 || s2.shareability == 3) { 10304 /* if either are inner-shareable, the result is inner-shareable */ 10305 ret.shareability = 3; 10306 } else { 10307 /* both non-shareable */ 10308 ret.shareability = 0; 10309 } 10310 10311 /* Combine memory type and cacheability attributes */ 10312 if (s1hi == 0 || s2hi == 0) { 10313 /* Device has precedence over normal */ 10314 if (s1lo == 0 || s2lo == 0) { 10315 /* nGnRnE has precedence over anything */ 10316 ret.attrs = 0; 10317 } else if (s1lo == 4 || s2lo == 4) { 10318 /* non-Reordering has precedence over Reordering */ 10319 ret.attrs = 4; /* nGnRE */ 10320 } else if (s1lo == 8 || s2lo == 8) { 10321 /* non-Gathering has precedence over Gathering */ 10322 ret.attrs = 8; /* nGRE */ 10323 } else { 10324 ret.attrs = 0xc; /* GRE */ 10325 } 10326 10327 /* Any location for which the resultant memory type is any 10328 * type of Device memory is always treated as Outer Shareable. 10329 */ 10330 ret.shareability = 2; 10331 } else { /* Normal memory */ 10332 /* Outer/inner cacheability combine independently */ 10333 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10334 | combine_cacheattr_nibble(s1lo, s2lo); 10335 10336 if (ret.attrs == 0x44) { 10337 /* Any location for which the resultant memory type is Normal 10338 * Inner Non-cacheable, Outer Non-cacheable is always treated 10339 * as Outer Shareable. 10340 */ 10341 ret.shareability = 2; 10342 } 10343 } 10344 10345 return ret; 10346 } 10347 10348 10349 /* get_phys_addr - get the physical address for this virtual address 10350 * 10351 * Find the physical address corresponding to the given virtual address, 10352 * by doing a translation table walk on MMU based systems or using the 10353 * MPU state on MPU based systems. 10354 * 10355 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10356 * prot and page_size may not be filled in, and the populated fsr value provides 10357 * information on why the translation aborted, in the format of a 10358 * DFSR/IFSR fault register, with the following caveats: 10359 * * we honour the short vs long DFSR format differences. 10360 * * the WnR bit is never set (the caller must do this). 10361 * * for PSMAv5 based systems we don't bother to return a full FSR format 10362 * value. 10363 * 10364 * @env: CPUARMState 10365 * @address: virtual address to get physical address for 10366 * @access_type: 0 for read, 1 for write, 2 for execute 10367 * @mmu_idx: MMU index indicating required translation regime 10368 * @phys_ptr: set to the physical address corresponding to the virtual address 10369 * @attrs: set to the memory transaction attributes to use 10370 * @prot: set to the permissions for the page containing phys_ptr 10371 * @page_size: set to the size of the page containing phys_ptr 10372 * @fi: set to fault info if the translation fails 10373 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10374 */ 10375 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10376 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10377 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10378 target_ulong *page_size, 10379 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10380 { 10381 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10382 /* Call ourselves recursively to do the stage 1 and then stage 2 10383 * translations. 10384 */ 10385 if (arm_feature(env, ARM_FEATURE_EL2)) { 10386 hwaddr ipa; 10387 int s2_prot; 10388 int ret; 10389 ARMCacheAttrs cacheattrs2 = {}; 10390 10391 ret = get_phys_addr(env, address, access_type, 10392 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10393 prot, page_size, fi, cacheattrs); 10394 10395 /* If S1 fails or S2 is disabled, return early. */ 10396 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10397 *phys_ptr = ipa; 10398 return ret; 10399 } 10400 10401 /* S1 is done. Now do S2 translation. */ 10402 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10403 phys_ptr, attrs, &s2_prot, 10404 page_size, fi, 10405 cacheattrs != NULL ? &cacheattrs2 : NULL); 10406 fi->s2addr = ipa; 10407 /* Combine the S1 and S2 perms. */ 10408 *prot &= s2_prot; 10409 10410 /* Combine the S1 and S2 cache attributes, if needed */ 10411 if (!ret && cacheattrs != NULL) { 10412 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10413 } 10414 10415 return ret; 10416 } else { 10417 /* 10418 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10419 */ 10420 mmu_idx = stage_1_mmu_idx(mmu_idx); 10421 } 10422 } 10423 10424 /* The page table entries may downgrade secure to non-secure, but 10425 * cannot upgrade an non-secure translation regime's attributes 10426 * to secure. 10427 */ 10428 attrs->secure = regime_is_secure(env, mmu_idx); 10429 attrs->user = regime_is_user(env, mmu_idx); 10430 10431 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10432 * In v7 and earlier it affects all stage 1 translations. 10433 */ 10434 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10435 && !arm_feature(env, ARM_FEATURE_V8)) { 10436 if (regime_el(env, mmu_idx) == 3) { 10437 address += env->cp15.fcseidr_s; 10438 } else { 10439 address += env->cp15.fcseidr_ns; 10440 } 10441 } 10442 10443 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10444 bool ret; 10445 *page_size = TARGET_PAGE_SIZE; 10446 10447 if (arm_feature(env, ARM_FEATURE_V8)) { 10448 /* PMSAv8 */ 10449 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10450 phys_ptr, attrs, prot, page_size, fi); 10451 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10452 /* PMSAv7 */ 10453 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10454 phys_ptr, prot, page_size, fi); 10455 } else { 10456 /* Pre-v7 MPU */ 10457 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10458 phys_ptr, prot, fi); 10459 } 10460 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10461 " mmu_idx %u -> %s (prot %c%c%c)\n", 10462 access_type == MMU_DATA_LOAD ? "reading" : 10463 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10464 (uint32_t)address, mmu_idx, 10465 ret ? "Miss" : "Hit", 10466 *prot & PAGE_READ ? 'r' : '-', 10467 *prot & PAGE_WRITE ? 'w' : '-', 10468 *prot & PAGE_EXEC ? 'x' : '-'); 10469 10470 return ret; 10471 } 10472 10473 /* Definitely a real MMU, not an MPU */ 10474 10475 if (regime_translation_disabled(env, mmu_idx)) { 10476 /* MMU disabled. */ 10477 *phys_ptr = address; 10478 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10479 *page_size = TARGET_PAGE_SIZE; 10480 return 0; 10481 } 10482 10483 if (regime_using_lpae_format(env, mmu_idx)) { 10484 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10485 phys_ptr, attrs, prot, page_size, 10486 fi, cacheattrs); 10487 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10488 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10489 phys_ptr, attrs, prot, page_size, fi); 10490 } else { 10491 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10492 phys_ptr, prot, page_size, fi); 10493 } 10494 } 10495 10496 /* Walk the page table and (if the mapping exists) add the page 10497 * to the TLB. Return false on success, or true on failure. Populate 10498 * fsr with ARM DFSR/IFSR fault register format value on failure. 10499 */ 10500 bool arm_tlb_fill(CPUState *cs, vaddr address, 10501 MMUAccessType access_type, int mmu_idx, 10502 ARMMMUFaultInfo *fi) 10503 { 10504 ARMCPU *cpu = ARM_CPU(cs); 10505 CPUARMState *env = &cpu->env; 10506 hwaddr phys_addr; 10507 target_ulong page_size; 10508 int prot; 10509 int ret; 10510 MemTxAttrs attrs = {}; 10511 10512 ret = get_phys_addr(env, address, access_type, 10513 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10514 &attrs, &prot, &page_size, fi, NULL); 10515 if (!ret) { 10516 /* 10517 * Map a single [sub]page. Regions smaller than our declared 10518 * target page size are handled specially, so for those we 10519 * pass in the exact addresses. 10520 */ 10521 if (page_size >= TARGET_PAGE_SIZE) { 10522 phys_addr &= TARGET_PAGE_MASK; 10523 address &= TARGET_PAGE_MASK; 10524 } 10525 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10526 prot, mmu_idx, page_size); 10527 return 0; 10528 } 10529 10530 return ret; 10531 } 10532 10533 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10534 MemTxAttrs *attrs) 10535 { 10536 ARMCPU *cpu = ARM_CPU(cs); 10537 CPUARMState *env = &cpu->env; 10538 hwaddr phys_addr; 10539 target_ulong page_size; 10540 int prot; 10541 bool ret; 10542 ARMMMUFaultInfo fi = {}; 10543 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10544 10545 *attrs = (MemTxAttrs) {}; 10546 10547 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10548 attrs, &prot, &page_size, &fi, NULL); 10549 10550 if (ret) { 10551 return -1; 10552 } 10553 return phys_addr; 10554 } 10555 10556 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10557 { 10558 uint32_t mask; 10559 unsigned el = arm_current_el(env); 10560 10561 /* First handle registers which unprivileged can read */ 10562 10563 switch (reg) { 10564 case 0 ... 7: /* xPSR sub-fields */ 10565 mask = 0; 10566 if ((reg & 1) && el) { 10567 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10568 } 10569 if (!(reg & 4)) { 10570 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10571 } 10572 /* EPSR reads as zero */ 10573 return xpsr_read(env) & mask; 10574 break; 10575 case 20: /* CONTROL */ 10576 return env->v7m.control[env->v7m.secure]; 10577 case 0x94: /* CONTROL_NS */ 10578 /* We have to handle this here because unprivileged Secure code 10579 * can read the NS CONTROL register. 10580 */ 10581 if (!env->v7m.secure) { 10582 return 0; 10583 } 10584 return env->v7m.control[M_REG_NS]; 10585 } 10586 10587 if (el == 0) { 10588 return 0; /* unprivileged reads others as zero */ 10589 } 10590 10591 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10592 switch (reg) { 10593 case 0x88: /* MSP_NS */ 10594 if (!env->v7m.secure) { 10595 return 0; 10596 } 10597 return env->v7m.other_ss_msp; 10598 case 0x89: /* PSP_NS */ 10599 if (!env->v7m.secure) { 10600 return 0; 10601 } 10602 return env->v7m.other_ss_psp; 10603 case 0x8a: /* MSPLIM_NS */ 10604 if (!env->v7m.secure) { 10605 return 0; 10606 } 10607 return env->v7m.msplim[M_REG_NS]; 10608 case 0x8b: /* PSPLIM_NS */ 10609 if (!env->v7m.secure) { 10610 return 0; 10611 } 10612 return env->v7m.psplim[M_REG_NS]; 10613 case 0x90: /* PRIMASK_NS */ 10614 if (!env->v7m.secure) { 10615 return 0; 10616 } 10617 return env->v7m.primask[M_REG_NS]; 10618 case 0x91: /* BASEPRI_NS */ 10619 if (!env->v7m.secure) { 10620 return 0; 10621 } 10622 return env->v7m.basepri[M_REG_NS]; 10623 case 0x93: /* FAULTMASK_NS */ 10624 if (!env->v7m.secure) { 10625 return 0; 10626 } 10627 return env->v7m.faultmask[M_REG_NS]; 10628 case 0x98: /* SP_NS */ 10629 { 10630 /* This gives the non-secure SP selected based on whether we're 10631 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10632 */ 10633 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10634 10635 if (!env->v7m.secure) { 10636 return 0; 10637 } 10638 if (!arm_v7m_is_handler_mode(env) && spsel) { 10639 return env->v7m.other_ss_psp; 10640 } else { 10641 return env->v7m.other_ss_msp; 10642 } 10643 } 10644 default: 10645 break; 10646 } 10647 } 10648 10649 switch (reg) { 10650 case 8: /* MSP */ 10651 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10652 case 9: /* PSP */ 10653 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10654 case 10: /* MSPLIM */ 10655 if (!arm_feature(env, ARM_FEATURE_V8)) { 10656 goto bad_reg; 10657 } 10658 return env->v7m.msplim[env->v7m.secure]; 10659 case 11: /* PSPLIM */ 10660 if (!arm_feature(env, ARM_FEATURE_V8)) { 10661 goto bad_reg; 10662 } 10663 return env->v7m.psplim[env->v7m.secure]; 10664 case 16: /* PRIMASK */ 10665 return env->v7m.primask[env->v7m.secure]; 10666 case 17: /* BASEPRI */ 10667 case 18: /* BASEPRI_MAX */ 10668 return env->v7m.basepri[env->v7m.secure]; 10669 case 19: /* FAULTMASK */ 10670 return env->v7m.faultmask[env->v7m.secure]; 10671 default: 10672 bad_reg: 10673 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10674 " register %d\n", reg); 10675 return 0; 10676 } 10677 } 10678 10679 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10680 { 10681 /* We're passed bits [11..0] of the instruction; extract 10682 * SYSm and the mask bits. 10683 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10684 * we choose to treat them as if the mask bits were valid. 10685 * NB that the pseudocode 'mask' variable is bits [11..10], 10686 * whereas ours is [11..8]. 10687 */ 10688 uint32_t mask = extract32(maskreg, 8, 4); 10689 uint32_t reg = extract32(maskreg, 0, 8); 10690 10691 if (arm_current_el(env) == 0 && reg > 7) { 10692 /* only xPSR sub-fields may be written by unprivileged */ 10693 return; 10694 } 10695 10696 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10697 switch (reg) { 10698 case 0x88: /* MSP_NS */ 10699 if (!env->v7m.secure) { 10700 return; 10701 } 10702 env->v7m.other_ss_msp = val; 10703 return; 10704 case 0x89: /* PSP_NS */ 10705 if (!env->v7m.secure) { 10706 return; 10707 } 10708 env->v7m.other_ss_psp = val; 10709 return; 10710 case 0x8a: /* MSPLIM_NS */ 10711 if (!env->v7m.secure) { 10712 return; 10713 } 10714 env->v7m.msplim[M_REG_NS] = val & ~7; 10715 return; 10716 case 0x8b: /* PSPLIM_NS */ 10717 if (!env->v7m.secure) { 10718 return; 10719 } 10720 env->v7m.psplim[M_REG_NS] = val & ~7; 10721 return; 10722 case 0x90: /* PRIMASK_NS */ 10723 if (!env->v7m.secure) { 10724 return; 10725 } 10726 env->v7m.primask[M_REG_NS] = val & 1; 10727 return; 10728 case 0x91: /* BASEPRI_NS */ 10729 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 10730 return; 10731 } 10732 env->v7m.basepri[M_REG_NS] = val & 0xff; 10733 return; 10734 case 0x93: /* FAULTMASK_NS */ 10735 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 10736 return; 10737 } 10738 env->v7m.faultmask[M_REG_NS] = val & 1; 10739 return; 10740 case 0x94: /* CONTROL_NS */ 10741 if (!env->v7m.secure) { 10742 return; 10743 } 10744 write_v7m_control_spsel_for_secstate(env, 10745 val & R_V7M_CONTROL_SPSEL_MASK, 10746 M_REG_NS); 10747 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 10748 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10749 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10750 } 10751 return; 10752 case 0x98: /* SP_NS */ 10753 { 10754 /* This gives the non-secure SP selected based on whether we're 10755 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10756 */ 10757 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10758 10759 if (!env->v7m.secure) { 10760 return; 10761 } 10762 if (!arm_v7m_is_handler_mode(env) && spsel) { 10763 env->v7m.other_ss_psp = val; 10764 } else { 10765 env->v7m.other_ss_msp = val; 10766 } 10767 return; 10768 } 10769 default: 10770 break; 10771 } 10772 } 10773 10774 switch (reg) { 10775 case 0 ... 7: /* xPSR sub-fields */ 10776 /* only APSR is actually writable */ 10777 if (!(reg & 4)) { 10778 uint32_t apsrmask = 0; 10779 10780 if (mask & 8) { 10781 apsrmask |= XPSR_NZCV | XPSR_Q; 10782 } 10783 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10784 apsrmask |= XPSR_GE; 10785 } 10786 xpsr_write(env, val, apsrmask); 10787 } 10788 break; 10789 case 8: /* MSP */ 10790 if (v7m_using_psp(env)) { 10791 env->v7m.other_sp = val; 10792 } else { 10793 env->regs[13] = val; 10794 } 10795 break; 10796 case 9: /* PSP */ 10797 if (v7m_using_psp(env)) { 10798 env->regs[13] = val; 10799 } else { 10800 env->v7m.other_sp = val; 10801 } 10802 break; 10803 case 10: /* MSPLIM */ 10804 if (!arm_feature(env, ARM_FEATURE_V8)) { 10805 goto bad_reg; 10806 } 10807 env->v7m.msplim[env->v7m.secure] = val & ~7; 10808 break; 10809 case 11: /* PSPLIM */ 10810 if (!arm_feature(env, ARM_FEATURE_V8)) { 10811 goto bad_reg; 10812 } 10813 env->v7m.psplim[env->v7m.secure] = val & ~7; 10814 break; 10815 case 16: /* PRIMASK */ 10816 env->v7m.primask[env->v7m.secure] = val & 1; 10817 break; 10818 case 17: /* BASEPRI */ 10819 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 10820 goto bad_reg; 10821 } 10822 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10823 break; 10824 case 18: /* BASEPRI_MAX */ 10825 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 10826 goto bad_reg; 10827 } 10828 val &= 0xff; 10829 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10830 || env->v7m.basepri[env->v7m.secure] == 0)) { 10831 env->v7m.basepri[env->v7m.secure] = val; 10832 } 10833 break; 10834 case 19: /* FAULTMASK */ 10835 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 10836 goto bad_reg; 10837 } 10838 env->v7m.faultmask[env->v7m.secure] = val & 1; 10839 break; 10840 case 20: /* CONTROL */ 10841 /* Writing to the SPSEL bit only has an effect if we are in 10842 * thread mode; other bits can be updated by any privileged code. 10843 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10844 * env->v7m.control, so we only need update the others. 10845 * For v7M, we must just ignore explicit writes to SPSEL in handler 10846 * mode; for v8M the write is permitted but will have no effect. 10847 */ 10848 if (arm_feature(env, ARM_FEATURE_V8) || 10849 !arm_v7m_is_handler_mode(env)) { 10850 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10851 } 10852 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 10853 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10854 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10855 } 10856 break; 10857 default: 10858 bad_reg: 10859 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10860 " register %d\n", reg); 10861 return; 10862 } 10863 } 10864 10865 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10866 { 10867 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10868 bool forceunpriv = op & 1; 10869 bool alt = op & 2; 10870 V8M_SAttributes sattrs = {}; 10871 uint32_t tt_resp; 10872 bool r, rw, nsr, nsrw, mrvalid; 10873 int prot; 10874 ARMMMUFaultInfo fi = {}; 10875 MemTxAttrs attrs = {}; 10876 hwaddr phys_addr; 10877 ARMMMUIdx mmu_idx; 10878 uint32_t mregion; 10879 bool targetpriv; 10880 bool targetsec = env->v7m.secure; 10881 bool is_subpage; 10882 10883 /* Work out what the security state and privilege level we're 10884 * interested in is... 10885 */ 10886 if (alt) { 10887 targetsec = !targetsec; 10888 } 10889 10890 if (forceunpriv) { 10891 targetpriv = false; 10892 } else { 10893 targetpriv = arm_v7m_is_handler_mode(env) || 10894 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10895 } 10896 10897 /* ...and then figure out which MMU index this is */ 10898 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10899 10900 /* We know that the MPU and SAU don't care about the access type 10901 * for our purposes beyond that we don't want to claim to be 10902 * an insn fetch, so we arbitrarily call this a read. 10903 */ 10904 10905 /* MPU region info only available for privileged or if 10906 * inspecting the other MPU state. 10907 */ 10908 if (arm_current_el(env) != 0 || alt) { 10909 /* We can ignore the return value as prot is always set */ 10910 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10911 &phys_addr, &attrs, &prot, &is_subpage, 10912 &fi, &mregion); 10913 if (mregion == -1) { 10914 mrvalid = false; 10915 mregion = 0; 10916 } else { 10917 mrvalid = true; 10918 } 10919 r = prot & PAGE_READ; 10920 rw = prot & PAGE_WRITE; 10921 } else { 10922 r = false; 10923 rw = false; 10924 mrvalid = false; 10925 mregion = 0; 10926 } 10927 10928 if (env->v7m.secure) { 10929 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10930 nsr = sattrs.ns && r; 10931 nsrw = sattrs.ns && rw; 10932 } else { 10933 sattrs.ns = true; 10934 nsr = false; 10935 nsrw = false; 10936 } 10937 10938 tt_resp = (sattrs.iregion << 24) | 10939 (sattrs.irvalid << 23) | 10940 ((!sattrs.ns) << 22) | 10941 (nsrw << 21) | 10942 (nsr << 20) | 10943 (rw << 19) | 10944 (r << 18) | 10945 (sattrs.srvalid << 17) | 10946 (mrvalid << 16) | 10947 (sattrs.sregion << 8) | 10948 mregion; 10949 10950 return tt_resp; 10951 } 10952 10953 #endif 10954 10955 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10956 { 10957 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10958 * Note that we do not implement the (architecturally mandated) 10959 * alignment fault for attempts to use this on Device memory 10960 * (which matches the usual QEMU behaviour of not implementing either 10961 * alignment faults or any memory attribute handling). 10962 */ 10963 10964 ARMCPU *cpu = arm_env_get_cpu(env); 10965 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10966 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10967 10968 #ifndef CONFIG_USER_ONLY 10969 { 10970 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10971 * the block size so we might have to do more than one TLB lookup. 10972 * We know that in fact for any v8 CPU the page size is at least 4K 10973 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10974 * 1K as an artefact of legacy v5 subpage support being present in the 10975 * same QEMU executable. 10976 */ 10977 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10978 void *hostaddr[maxidx]; 10979 int try, i; 10980 unsigned mmu_idx = cpu_mmu_index(env, false); 10981 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10982 10983 for (try = 0; try < 2; try++) { 10984 10985 for (i = 0; i < maxidx; i++) { 10986 hostaddr[i] = tlb_vaddr_to_host(env, 10987 vaddr + TARGET_PAGE_SIZE * i, 10988 1, mmu_idx); 10989 if (!hostaddr[i]) { 10990 break; 10991 } 10992 } 10993 if (i == maxidx) { 10994 /* If it's all in the TLB it's fair game for just writing to; 10995 * we know we don't need to update dirty status, etc. 10996 */ 10997 for (i = 0; i < maxidx - 1; i++) { 10998 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10999 } 11000 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 11001 return; 11002 } 11003 /* OK, try a store and see if we can populate the tlb. This 11004 * might cause an exception if the memory isn't writable, 11005 * in which case we will longjmp out of here. We must for 11006 * this purpose use the actual register value passed to us 11007 * so that we get the fault address right. 11008 */ 11009 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 11010 /* Now we can populate the other TLB entries, if any */ 11011 for (i = 0; i < maxidx; i++) { 11012 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 11013 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 11014 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 11015 } 11016 } 11017 } 11018 11019 /* Slow path (probably attempt to do this to an I/O device or 11020 * similar, or clearing of a block of code we have translations 11021 * cached for). Just do a series of byte writes as the architecture 11022 * demands. It's not worth trying to use a cpu_physical_memory_map(), 11023 * memset(), unmap() sequence here because: 11024 * + we'd need to account for the blocksize being larger than a page 11025 * + the direct-RAM access case is almost always going to be dealt 11026 * with in the fastpath code above, so there's no speed benefit 11027 * + we would have to deal with the map returning NULL because the 11028 * bounce buffer was in use 11029 */ 11030 for (i = 0; i < blocklen; i++) { 11031 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 11032 } 11033 } 11034 #else 11035 memset(g2h(vaddr), 0, blocklen); 11036 #endif 11037 } 11038 11039 /* Note that signed overflow is undefined in C. The following routines are 11040 careful to use unsigned types where modulo arithmetic is required. 11041 Failure to do so _will_ break on newer gcc. */ 11042 11043 /* Signed saturating arithmetic. */ 11044 11045 /* Perform 16-bit signed saturating addition. */ 11046 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11047 { 11048 uint16_t res; 11049 11050 res = a + b; 11051 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11052 if (a & 0x8000) 11053 res = 0x8000; 11054 else 11055 res = 0x7fff; 11056 } 11057 return res; 11058 } 11059 11060 /* Perform 8-bit signed saturating addition. */ 11061 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11062 { 11063 uint8_t res; 11064 11065 res = a + b; 11066 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11067 if (a & 0x80) 11068 res = 0x80; 11069 else 11070 res = 0x7f; 11071 } 11072 return res; 11073 } 11074 11075 /* Perform 16-bit signed saturating subtraction. */ 11076 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11077 { 11078 uint16_t res; 11079 11080 res = a - b; 11081 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11082 if (a & 0x8000) 11083 res = 0x8000; 11084 else 11085 res = 0x7fff; 11086 } 11087 return res; 11088 } 11089 11090 /* Perform 8-bit signed saturating subtraction. */ 11091 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11092 { 11093 uint8_t res; 11094 11095 res = a - b; 11096 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11097 if (a & 0x80) 11098 res = 0x80; 11099 else 11100 res = 0x7f; 11101 } 11102 return res; 11103 } 11104 11105 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11106 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11107 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11108 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11109 #define PFX q 11110 11111 #include "op_addsub.h" 11112 11113 /* Unsigned saturating arithmetic. */ 11114 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11115 { 11116 uint16_t res; 11117 res = a + b; 11118 if (res < a) 11119 res = 0xffff; 11120 return res; 11121 } 11122 11123 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11124 { 11125 if (a > b) 11126 return a - b; 11127 else 11128 return 0; 11129 } 11130 11131 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11132 { 11133 uint8_t res; 11134 res = a + b; 11135 if (res < a) 11136 res = 0xff; 11137 return res; 11138 } 11139 11140 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11141 { 11142 if (a > b) 11143 return a - b; 11144 else 11145 return 0; 11146 } 11147 11148 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11149 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11150 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11151 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11152 #define PFX uq 11153 11154 #include "op_addsub.h" 11155 11156 /* Signed modulo arithmetic. */ 11157 #define SARITH16(a, b, n, op) do { \ 11158 int32_t sum; \ 11159 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11160 RESULT(sum, n, 16); \ 11161 if (sum >= 0) \ 11162 ge |= 3 << (n * 2); \ 11163 } while(0) 11164 11165 #define SARITH8(a, b, n, op) do { \ 11166 int32_t sum; \ 11167 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11168 RESULT(sum, n, 8); \ 11169 if (sum >= 0) \ 11170 ge |= 1 << n; \ 11171 } while(0) 11172 11173 11174 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11175 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11176 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11177 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11178 #define PFX s 11179 #define ARITH_GE 11180 11181 #include "op_addsub.h" 11182 11183 /* Unsigned modulo arithmetic. */ 11184 #define ADD16(a, b, n) do { \ 11185 uint32_t sum; \ 11186 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11187 RESULT(sum, n, 16); \ 11188 if ((sum >> 16) == 1) \ 11189 ge |= 3 << (n * 2); \ 11190 } while(0) 11191 11192 #define ADD8(a, b, n) do { \ 11193 uint32_t sum; \ 11194 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11195 RESULT(sum, n, 8); \ 11196 if ((sum >> 8) == 1) \ 11197 ge |= 1 << n; \ 11198 } while(0) 11199 11200 #define SUB16(a, b, n) do { \ 11201 uint32_t sum; \ 11202 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11203 RESULT(sum, n, 16); \ 11204 if ((sum >> 16) == 0) \ 11205 ge |= 3 << (n * 2); \ 11206 } while(0) 11207 11208 #define SUB8(a, b, n) do { \ 11209 uint32_t sum; \ 11210 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11211 RESULT(sum, n, 8); \ 11212 if ((sum >> 8) == 0) \ 11213 ge |= 1 << n; \ 11214 } while(0) 11215 11216 #define PFX u 11217 #define ARITH_GE 11218 11219 #include "op_addsub.h" 11220 11221 /* Halved signed arithmetic. */ 11222 #define ADD16(a, b, n) \ 11223 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11224 #define SUB16(a, b, n) \ 11225 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11226 #define ADD8(a, b, n) \ 11227 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11228 #define SUB8(a, b, n) \ 11229 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11230 #define PFX sh 11231 11232 #include "op_addsub.h" 11233 11234 /* Halved unsigned arithmetic. */ 11235 #define ADD16(a, b, n) \ 11236 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11237 #define SUB16(a, b, n) \ 11238 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11239 #define ADD8(a, b, n) \ 11240 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11241 #define SUB8(a, b, n) \ 11242 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11243 #define PFX uh 11244 11245 #include "op_addsub.h" 11246 11247 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11248 { 11249 if (a > b) 11250 return a - b; 11251 else 11252 return b - a; 11253 } 11254 11255 /* Unsigned sum of absolute byte differences. */ 11256 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11257 { 11258 uint32_t sum; 11259 sum = do_usad(a, b); 11260 sum += do_usad(a >> 8, b >> 8); 11261 sum += do_usad(a >> 16, b >>16); 11262 sum += do_usad(a >> 24, b >> 24); 11263 return sum; 11264 } 11265 11266 /* For ARMv6 SEL instruction. */ 11267 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11268 { 11269 uint32_t mask; 11270 11271 mask = 0; 11272 if (flags & 1) 11273 mask |= 0xff; 11274 if (flags & 2) 11275 mask |= 0xff00; 11276 if (flags & 4) 11277 mask |= 0xff0000; 11278 if (flags & 8) 11279 mask |= 0xff000000; 11280 return (a & mask) | (b & ~mask); 11281 } 11282 11283 /* VFP support. We follow the convention used for VFP instructions: 11284 Single precision routines have a "s" suffix, double precision a 11285 "d" suffix. */ 11286 11287 /* Convert host exception flags to vfp form. */ 11288 static inline int vfp_exceptbits_from_host(int host_bits) 11289 { 11290 int target_bits = 0; 11291 11292 if (host_bits & float_flag_invalid) 11293 target_bits |= 1; 11294 if (host_bits & float_flag_divbyzero) 11295 target_bits |= 2; 11296 if (host_bits & float_flag_overflow) 11297 target_bits |= 4; 11298 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11299 target_bits |= 8; 11300 if (host_bits & float_flag_inexact) 11301 target_bits |= 0x10; 11302 if (host_bits & float_flag_input_denormal) 11303 target_bits |= 0x80; 11304 return target_bits; 11305 } 11306 11307 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11308 { 11309 int i; 11310 uint32_t fpscr; 11311 11312 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11313 | (env->vfp.vec_len << 16) 11314 | (env->vfp.vec_stride << 20); 11315 i = get_float_exception_flags(&env->vfp.fp_status); 11316 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11317 i |= get_float_exception_flags(&env->vfp.fp_status_f16); 11318 fpscr |= vfp_exceptbits_from_host(i); 11319 return fpscr; 11320 } 11321 11322 uint32_t vfp_get_fpscr(CPUARMState *env) 11323 { 11324 return HELPER(vfp_get_fpscr)(env); 11325 } 11326 11327 /* Convert vfp exception flags to target form. */ 11328 static inline int vfp_exceptbits_to_host(int target_bits) 11329 { 11330 int host_bits = 0; 11331 11332 if (target_bits & 1) 11333 host_bits |= float_flag_invalid; 11334 if (target_bits & 2) 11335 host_bits |= float_flag_divbyzero; 11336 if (target_bits & 4) 11337 host_bits |= float_flag_overflow; 11338 if (target_bits & 8) 11339 host_bits |= float_flag_underflow; 11340 if (target_bits & 0x10) 11341 host_bits |= float_flag_inexact; 11342 if (target_bits & 0x80) 11343 host_bits |= float_flag_input_denormal; 11344 return host_bits; 11345 } 11346 11347 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11348 { 11349 int i; 11350 uint32_t changed; 11351 11352 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11353 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11354 env->vfp.vec_len = (val >> 16) & 7; 11355 env->vfp.vec_stride = (val >> 20) & 3; 11356 11357 changed ^= val; 11358 if (changed & (3 << 22)) { 11359 i = (val >> 22) & 3; 11360 switch (i) { 11361 case FPROUNDING_TIEEVEN: 11362 i = float_round_nearest_even; 11363 break; 11364 case FPROUNDING_POSINF: 11365 i = float_round_up; 11366 break; 11367 case FPROUNDING_NEGINF: 11368 i = float_round_down; 11369 break; 11370 case FPROUNDING_ZERO: 11371 i = float_round_to_zero; 11372 break; 11373 } 11374 set_float_rounding_mode(i, &env->vfp.fp_status); 11375 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11376 } 11377 if (changed & FPCR_FZ16) { 11378 bool ftz_enabled = val & FPCR_FZ16; 11379 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11380 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11381 } 11382 if (changed & FPCR_FZ) { 11383 bool ftz_enabled = val & FPCR_FZ; 11384 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11385 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11386 } 11387 if (changed & FPCR_DN) { 11388 bool dnan_enabled = val & FPCR_DN; 11389 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11390 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11391 } 11392 11393 /* The exception flags are ORed together when we read fpscr so we 11394 * only need to preserve the current state in one of our 11395 * float_status values. 11396 */ 11397 i = vfp_exceptbits_to_host(val); 11398 set_float_exception_flags(i, &env->vfp.fp_status); 11399 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11400 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11401 } 11402 11403 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11404 { 11405 HELPER(vfp_set_fpscr)(env, val); 11406 } 11407 11408 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11409 11410 #define VFP_BINOP(name) \ 11411 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11412 { \ 11413 float_status *fpst = fpstp; \ 11414 return float32_ ## name(a, b, fpst); \ 11415 } \ 11416 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11417 { \ 11418 float_status *fpst = fpstp; \ 11419 return float64_ ## name(a, b, fpst); \ 11420 } 11421 VFP_BINOP(add) 11422 VFP_BINOP(sub) 11423 VFP_BINOP(mul) 11424 VFP_BINOP(div) 11425 VFP_BINOP(min) 11426 VFP_BINOP(max) 11427 VFP_BINOP(minnum) 11428 VFP_BINOP(maxnum) 11429 #undef VFP_BINOP 11430 11431 float32 VFP_HELPER(neg, s)(float32 a) 11432 { 11433 return float32_chs(a); 11434 } 11435 11436 float64 VFP_HELPER(neg, d)(float64 a) 11437 { 11438 return float64_chs(a); 11439 } 11440 11441 float32 VFP_HELPER(abs, s)(float32 a) 11442 { 11443 return float32_abs(a); 11444 } 11445 11446 float64 VFP_HELPER(abs, d)(float64 a) 11447 { 11448 return float64_abs(a); 11449 } 11450 11451 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11452 { 11453 return float32_sqrt(a, &env->vfp.fp_status); 11454 } 11455 11456 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11457 { 11458 return float64_sqrt(a, &env->vfp.fp_status); 11459 } 11460 11461 /* XXX: check quiet/signaling case */ 11462 #define DO_VFP_cmp(p, type) \ 11463 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11464 { \ 11465 uint32_t flags; \ 11466 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11467 case 0: flags = 0x6; break; \ 11468 case -1: flags = 0x8; break; \ 11469 case 1: flags = 0x2; break; \ 11470 default: case 2: flags = 0x3; break; \ 11471 } \ 11472 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11473 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11474 } \ 11475 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11476 { \ 11477 uint32_t flags; \ 11478 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11479 case 0: flags = 0x6; break; \ 11480 case -1: flags = 0x8; break; \ 11481 case 1: flags = 0x2; break; \ 11482 default: case 2: flags = 0x3; break; \ 11483 } \ 11484 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11485 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11486 } 11487 DO_VFP_cmp(s, float32) 11488 DO_VFP_cmp(d, float64) 11489 #undef DO_VFP_cmp 11490 11491 /* Integer to float and float to integer conversions */ 11492 11493 #define CONV_ITOF(name, ftype, fsz, sign) \ 11494 ftype HELPER(name)(uint32_t x, void *fpstp) \ 11495 { \ 11496 float_status *fpst = fpstp; \ 11497 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11498 } 11499 11500 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 11501 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 11502 { \ 11503 float_status *fpst = fpstp; \ 11504 if (float##fsz##_is_any_nan(x)) { \ 11505 float_raise(float_flag_invalid, fpst); \ 11506 return 0; \ 11507 } \ 11508 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11509 } 11510 11511 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 11512 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 11513 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 11514 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 11515 11516 FLOAT_CONVS(si, h, uint32_t, 16, ) 11517 FLOAT_CONVS(si, s, float32, 32, ) 11518 FLOAT_CONVS(si, d, float64, 64, ) 11519 FLOAT_CONVS(ui, h, uint32_t, 16, u) 11520 FLOAT_CONVS(ui, s, float32, 32, u) 11521 FLOAT_CONVS(ui, d, float64, 64, u) 11522 11523 #undef CONV_ITOF 11524 #undef CONV_FTOI 11525 #undef FLOAT_CONVS 11526 11527 /* floating point conversion */ 11528 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11529 { 11530 return float32_to_float64(x, &env->vfp.fp_status); 11531 } 11532 11533 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11534 { 11535 return float64_to_float32(x, &env->vfp.fp_status); 11536 } 11537 11538 /* VFP3 fixed point conversion. */ 11539 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11540 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11541 void *fpstp) \ 11542 { \ 11543 float_status *fpst = fpstp; \ 11544 float##fsz tmp; \ 11545 tmp = itype##_to_##float##fsz(x, fpst); \ 11546 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11547 } 11548 11549 /* Notice that we want only input-denormal exception flags from the 11550 * scalbn operation: the other possible flags (overflow+inexact if 11551 * we overflow to infinity, output-denormal) aren't correct for the 11552 * complete scale-and-convert operation. 11553 */ 11554 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11555 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11556 uint32_t shift, \ 11557 void *fpstp) \ 11558 { \ 11559 float_status *fpst = fpstp; \ 11560 int old_exc_flags = get_float_exception_flags(fpst); \ 11561 float##fsz tmp; \ 11562 if (float##fsz##_is_any_nan(x)) { \ 11563 float_raise(float_flag_invalid, fpst); \ 11564 return 0; \ 11565 } \ 11566 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11567 old_exc_flags |= get_float_exception_flags(fpst) \ 11568 & float_flag_input_denormal; \ 11569 set_float_exception_flags(old_exc_flags, fpst); \ 11570 return float##fsz##_to_##itype##round(tmp, fpst); \ 11571 } 11572 11573 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11574 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11575 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11576 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11577 11578 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11579 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11580 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11581 11582 VFP_CONV_FIX(sh, d, 64, 64, int16) 11583 VFP_CONV_FIX(sl, d, 64, 64, int32) 11584 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11585 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11586 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11587 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11588 VFP_CONV_FIX(sh, s, 32, 32, int16) 11589 VFP_CONV_FIX(sl, s, 32, 32, int32) 11590 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11591 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11592 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11593 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11594 11595 #undef VFP_CONV_FIX 11596 #undef VFP_CONV_FIX_FLOAT 11597 #undef VFP_CONV_FLOAT_FIX_ROUND 11598 #undef VFP_CONV_FIX_A64 11599 11600 /* Conversion to/from f16 can overflow to infinity before/after scaling. 11601 * Therefore we convert to f64, scale, and then convert f64 to f16; or 11602 * vice versa for conversion to integer. 11603 * 11604 * For 16- and 32-bit integers, the conversion to f64 never rounds. 11605 * For 64-bit integers, any integer that would cause rounding will also 11606 * overflow to f16 infinity, so there is no double rounding problem. 11607 */ 11608 11609 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst) 11610 { 11611 return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst); 11612 } 11613 11614 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 11615 { 11616 return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst); 11617 } 11618 11619 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 11620 { 11621 return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst); 11622 } 11623 11624 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 11625 { 11626 return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst); 11627 } 11628 11629 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 11630 { 11631 return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst); 11632 } 11633 11634 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst) 11635 { 11636 if (unlikely(float16_is_any_nan(f))) { 11637 float_raise(float_flag_invalid, fpst); 11638 return 0; 11639 } else { 11640 int old_exc_flags = get_float_exception_flags(fpst); 11641 float64 ret; 11642 11643 ret = float16_to_float64(f, true, fpst); 11644 ret = float64_scalbn(ret, shift, fpst); 11645 old_exc_flags |= get_float_exception_flags(fpst) 11646 & float_flag_input_denormal; 11647 set_float_exception_flags(old_exc_flags, fpst); 11648 11649 return ret; 11650 } 11651 } 11652 11653 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) 11654 { 11655 return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst); 11656 } 11657 11658 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) 11659 { 11660 return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst); 11661 } 11662 11663 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) 11664 { 11665 return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst); 11666 } 11667 11668 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) 11669 { 11670 return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst); 11671 } 11672 11673 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) 11674 { 11675 return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst); 11676 } 11677 11678 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) 11679 { 11680 return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst); 11681 } 11682 11683 /* Set the current fp rounding mode and return the old one. 11684 * The argument is a softfloat float_round_ value. 11685 */ 11686 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11687 { 11688 float_status *fp_status = fpstp; 11689 11690 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11691 set_float_rounding_mode(rmode, fp_status); 11692 11693 return prev_rmode; 11694 } 11695 11696 /* Set the current fp rounding mode in the standard fp status and return 11697 * the old one. This is for NEON instructions that need to change the 11698 * rounding mode but wish to use the standard FPSCR values for everything 11699 * else. Always set the rounding mode back to the correct value after 11700 * modifying it. 11701 * The argument is a softfloat float_round_ value. 11702 */ 11703 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11704 { 11705 float_status *fp_status = &env->vfp.standard_fp_status; 11706 11707 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11708 set_float_rounding_mode(rmode, fp_status); 11709 11710 return prev_rmode; 11711 } 11712 11713 /* Half precision conversions. */ 11714 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 11715 { 11716 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11717 * it would affect flushing input denormals. 11718 */ 11719 float_status *fpst = fpstp; 11720 flag save = get_flush_inputs_to_zero(fpst); 11721 set_flush_inputs_to_zero(false, fpst); 11722 float32 r = float16_to_float32(a, !ahp_mode, fpst); 11723 set_flush_inputs_to_zero(save, fpst); 11724 return r; 11725 } 11726 11727 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 11728 { 11729 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11730 * it would affect flushing output denormals. 11731 */ 11732 float_status *fpst = fpstp; 11733 flag save = get_flush_to_zero(fpst); 11734 set_flush_to_zero(false, fpst); 11735 float16 r = float32_to_float16(a, !ahp_mode, fpst); 11736 set_flush_to_zero(save, fpst); 11737 return r; 11738 } 11739 11740 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 11741 { 11742 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11743 * it would affect flushing input denormals. 11744 */ 11745 float_status *fpst = fpstp; 11746 flag save = get_flush_inputs_to_zero(fpst); 11747 set_flush_inputs_to_zero(false, fpst); 11748 float64 r = float16_to_float64(a, !ahp_mode, fpst); 11749 set_flush_inputs_to_zero(save, fpst); 11750 return r; 11751 } 11752 11753 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 11754 { 11755 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11756 * it would affect flushing output denormals. 11757 */ 11758 float_status *fpst = fpstp; 11759 flag save = get_flush_to_zero(fpst); 11760 set_flush_to_zero(false, fpst); 11761 float16 r = float64_to_float16(a, !ahp_mode, fpst); 11762 set_flush_to_zero(save, fpst); 11763 return r; 11764 } 11765 11766 #define float32_two make_float32(0x40000000) 11767 #define float32_three make_float32(0x40400000) 11768 #define float32_one_point_five make_float32(0x3fc00000) 11769 11770 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11771 { 11772 float_status *s = &env->vfp.standard_fp_status; 11773 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11774 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11775 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11776 float_raise(float_flag_input_denormal, s); 11777 } 11778 return float32_two; 11779 } 11780 return float32_sub(float32_two, float32_mul(a, b, s), s); 11781 } 11782 11783 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11784 { 11785 float_status *s = &env->vfp.standard_fp_status; 11786 float32 product; 11787 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11788 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11789 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11790 float_raise(float_flag_input_denormal, s); 11791 } 11792 return float32_one_point_five; 11793 } 11794 product = float32_mul(a, b, s); 11795 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11796 } 11797 11798 /* NEON helpers. */ 11799 11800 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11801 * int->float conversions at run-time. */ 11802 #define float64_256 make_float64(0x4070000000000000LL) 11803 #define float64_512 make_float64(0x4080000000000000LL) 11804 #define float16_maxnorm make_float16(0x7bff) 11805 #define float32_maxnorm make_float32(0x7f7fffff) 11806 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11807 11808 /* Reciprocal functions 11809 * 11810 * The algorithm that must be used to calculate the estimate 11811 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 11812 */ 11813 11814 /* See RecipEstimate() 11815 * 11816 * input is a 9 bit fixed point number 11817 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 11818 * result range 256 .. 511 for a number from 1.0 to 511/256. 11819 */ 11820 11821 static int recip_estimate(int input) 11822 { 11823 int a, b, r; 11824 assert(256 <= input && input < 512); 11825 a = (input * 2) + 1; 11826 b = (1 << 19) / a; 11827 r = (b + 1) >> 1; 11828 assert(256 <= r && r < 512); 11829 return r; 11830 } 11831 11832 /* 11833 * Common wrapper to call recip_estimate 11834 * 11835 * The parameters are exponent and 64 bit fraction (without implicit 11836 * bit) where the binary point is nominally at bit 52. Returns a 11837 * float64 which can then be rounded to the appropriate size by the 11838 * callee. 11839 */ 11840 11841 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 11842 { 11843 uint32_t scaled, estimate; 11844 uint64_t result_frac; 11845 int result_exp; 11846 11847 /* Handle sub-normals */ 11848 if (*exp == 0) { 11849 if (extract64(frac, 51, 1) == 0) { 11850 *exp = -1; 11851 frac <<= 2; 11852 } else { 11853 frac <<= 1; 11854 } 11855 } 11856 11857 /* scaled = UInt('1':fraction<51:44>) */ 11858 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11859 estimate = recip_estimate(scaled); 11860 11861 result_exp = exp_off - *exp; 11862 result_frac = deposit64(0, 44, 8, estimate); 11863 if (result_exp == 0) { 11864 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 11865 } else if (result_exp == -1) { 11866 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 11867 result_exp = 0; 11868 } 11869 11870 *exp = result_exp; 11871 11872 return result_frac; 11873 } 11874 11875 static bool round_to_inf(float_status *fpst, bool sign_bit) 11876 { 11877 switch (fpst->float_rounding_mode) { 11878 case float_round_nearest_even: /* Round to Nearest */ 11879 return true; 11880 case float_round_up: /* Round to +Inf */ 11881 return !sign_bit; 11882 case float_round_down: /* Round to -Inf */ 11883 return sign_bit; 11884 case float_round_to_zero: /* Round to Zero */ 11885 return false; 11886 } 11887 11888 g_assert_not_reached(); 11889 } 11890 11891 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 11892 { 11893 float_status *fpst = fpstp; 11894 float16 f16 = float16_squash_input_denormal(input, fpst); 11895 uint32_t f16_val = float16_val(f16); 11896 uint32_t f16_sign = float16_is_neg(f16); 11897 int f16_exp = extract32(f16_val, 10, 5); 11898 uint32_t f16_frac = extract32(f16_val, 0, 10); 11899 uint64_t f64_frac; 11900 11901 if (float16_is_any_nan(f16)) { 11902 float16 nan = f16; 11903 if (float16_is_signaling_nan(f16, fpst)) { 11904 float_raise(float_flag_invalid, fpst); 11905 nan = float16_silence_nan(f16, fpst); 11906 } 11907 if (fpst->default_nan_mode) { 11908 nan = float16_default_nan(fpst); 11909 } 11910 return nan; 11911 } else if (float16_is_infinity(f16)) { 11912 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11913 } else if (float16_is_zero(f16)) { 11914 float_raise(float_flag_divbyzero, fpst); 11915 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 11916 } else if (float16_abs(f16) < (1 << 8)) { 11917 /* Abs(value) < 2.0^-16 */ 11918 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11919 if (round_to_inf(fpst, f16_sign)) { 11920 return float16_set_sign(float16_infinity, f16_sign); 11921 } else { 11922 return float16_set_sign(float16_maxnorm, f16_sign); 11923 } 11924 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 11925 float_raise(float_flag_underflow, fpst); 11926 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11927 } 11928 11929 f64_frac = call_recip_estimate(&f16_exp, 29, 11930 ((uint64_t) f16_frac) << (52 - 10)); 11931 11932 /* result = sign : result_exp<4:0> : fraction<51:42> */ 11933 f16_val = deposit32(0, 15, 1, f16_sign); 11934 f16_val = deposit32(f16_val, 10, 5, f16_exp); 11935 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 11936 return make_float16(f16_val); 11937 } 11938 11939 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11940 { 11941 float_status *fpst = fpstp; 11942 float32 f32 = float32_squash_input_denormal(input, fpst); 11943 uint32_t f32_val = float32_val(f32); 11944 bool f32_sign = float32_is_neg(f32); 11945 int f32_exp = extract32(f32_val, 23, 8); 11946 uint32_t f32_frac = extract32(f32_val, 0, 23); 11947 uint64_t f64_frac; 11948 11949 if (float32_is_any_nan(f32)) { 11950 float32 nan = f32; 11951 if (float32_is_signaling_nan(f32, fpst)) { 11952 float_raise(float_flag_invalid, fpst); 11953 nan = float32_silence_nan(f32, fpst); 11954 } 11955 if (fpst->default_nan_mode) { 11956 nan = float32_default_nan(fpst); 11957 } 11958 return nan; 11959 } else if (float32_is_infinity(f32)) { 11960 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11961 } else if (float32_is_zero(f32)) { 11962 float_raise(float_flag_divbyzero, fpst); 11963 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11964 } else if (float32_abs(f32) < (1ULL << 21)) { 11965 /* Abs(value) < 2.0^-128 */ 11966 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11967 if (round_to_inf(fpst, f32_sign)) { 11968 return float32_set_sign(float32_infinity, f32_sign); 11969 } else { 11970 return float32_set_sign(float32_maxnorm, f32_sign); 11971 } 11972 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11973 float_raise(float_flag_underflow, fpst); 11974 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11975 } 11976 11977 f64_frac = call_recip_estimate(&f32_exp, 253, 11978 ((uint64_t) f32_frac) << (52 - 23)); 11979 11980 /* result = sign : result_exp<7:0> : fraction<51:29> */ 11981 f32_val = deposit32(0, 31, 1, f32_sign); 11982 f32_val = deposit32(f32_val, 23, 8, f32_exp); 11983 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 11984 return make_float32(f32_val); 11985 } 11986 11987 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11988 { 11989 float_status *fpst = fpstp; 11990 float64 f64 = float64_squash_input_denormal(input, fpst); 11991 uint64_t f64_val = float64_val(f64); 11992 bool f64_sign = float64_is_neg(f64); 11993 int f64_exp = extract64(f64_val, 52, 11); 11994 uint64_t f64_frac = extract64(f64_val, 0, 52); 11995 11996 /* Deal with any special cases */ 11997 if (float64_is_any_nan(f64)) { 11998 float64 nan = f64; 11999 if (float64_is_signaling_nan(f64, fpst)) { 12000 float_raise(float_flag_invalid, fpst); 12001 nan = float64_silence_nan(f64, fpst); 12002 } 12003 if (fpst->default_nan_mode) { 12004 nan = float64_default_nan(fpst); 12005 } 12006 return nan; 12007 } else if (float64_is_infinity(f64)) { 12008 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12009 } else if (float64_is_zero(f64)) { 12010 float_raise(float_flag_divbyzero, fpst); 12011 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12012 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 12013 /* Abs(value) < 2.0^-1024 */ 12014 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12015 if (round_to_inf(fpst, f64_sign)) { 12016 return float64_set_sign(float64_infinity, f64_sign); 12017 } else { 12018 return float64_set_sign(float64_maxnorm, f64_sign); 12019 } 12020 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 12021 float_raise(float_flag_underflow, fpst); 12022 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12023 } 12024 12025 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 12026 12027 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 12028 f64_val = deposit64(0, 63, 1, f64_sign); 12029 f64_val = deposit64(f64_val, 52, 11, f64_exp); 12030 f64_val = deposit64(f64_val, 0, 52, f64_frac); 12031 return make_float64(f64_val); 12032 } 12033 12034 /* The algorithm that must be used to calculate the estimate 12035 * is specified by the ARM ARM. 12036 */ 12037 12038 static int do_recip_sqrt_estimate(int a) 12039 { 12040 int b, estimate; 12041 12042 assert(128 <= a && a < 512); 12043 if (a < 256) { 12044 a = a * 2 + 1; 12045 } else { 12046 a = (a >> 1) << 1; 12047 a = (a + 1) * 2; 12048 } 12049 b = 512; 12050 while (a * (b + 1) * (b + 1) < (1 << 28)) { 12051 b += 1; 12052 } 12053 estimate = (b + 1) / 2; 12054 assert(256 <= estimate && estimate < 512); 12055 12056 return estimate; 12057 } 12058 12059 12060 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 12061 { 12062 int estimate; 12063 uint32_t scaled; 12064 12065 if (*exp == 0) { 12066 while (extract64(frac, 51, 1) == 0) { 12067 frac = frac << 1; 12068 *exp -= 1; 12069 } 12070 frac = extract64(frac, 0, 51) << 1; 12071 } 12072 12073 if (*exp & 1) { 12074 /* scaled = UInt('01':fraction<51:45>) */ 12075 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 12076 } else { 12077 /* scaled = UInt('1':fraction<51:44>) */ 12078 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12079 } 12080 estimate = do_recip_sqrt_estimate(scaled); 12081 12082 *exp = (exp_off - *exp) / 2; 12083 return extract64(estimate, 0, 8) << 44; 12084 } 12085 12086 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 12087 { 12088 float_status *s = fpstp; 12089 float16 f16 = float16_squash_input_denormal(input, s); 12090 uint16_t val = float16_val(f16); 12091 bool f16_sign = float16_is_neg(f16); 12092 int f16_exp = extract32(val, 10, 5); 12093 uint16_t f16_frac = extract32(val, 0, 10); 12094 uint64_t f64_frac; 12095 12096 if (float16_is_any_nan(f16)) { 12097 float16 nan = f16; 12098 if (float16_is_signaling_nan(f16, s)) { 12099 float_raise(float_flag_invalid, s); 12100 nan = float16_silence_nan(f16, s); 12101 } 12102 if (s->default_nan_mode) { 12103 nan = float16_default_nan(s); 12104 } 12105 return nan; 12106 } else if (float16_is_zero(f16)) { 12107 float_raise(float_flag_divbyzero, s); 12108 return float16_set_sign(float16_infinity, f16_sign); 12109 } else if (f16_sign) { 12110 float_raise(float_flag_invalid, s); 12111 return float16_default_nan(s); 12112 } else if (float16_is_infinity(f16)) { 12113 return float16_zero; 12114 } 12115 12116 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12117 * preserving the parity of the exponent. */ 12118 12119 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 12120 12121 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 12122 12123 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 12124 val = deposit32(0, 15, 1, f16_sign); 12125 val = deposit32(val, 10, 5, f16_exp); 12126 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 12127 return make_float16(val); 12128 } 12129 12130 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 12131 { 12132 float_status *s = fpstp; 12133 float32 f32 = float32_squash_input_denormal(input, s); 12134 uint32_t val = float32_val(f32); 12135 uint32_t f32_sign = float32_is_neg(f32); 12136 int f32_exp = extract32(val, 23, 8); 12137 uint32_t f32_frac = extract32(val, 0, 23); 12138 uint64_t f64_frac; 12139 12140 if (float32_is_any_nan(f32)) { 12141 float32 nan = f32; 12142 if (float32_is_signaling_nan(f32, s)) { 12143 float_raise(float_flag_invalid, s); 12144 nan = float32_silence_nan(f32, s); 12145 } 12146 if (s->default_nan_mode) { 12147 nan = float32_default_nan(s); 12148 } 12149 return nan; 12150 } else if (float32_is_zero(f32)) { 12151 float_raise(float_flag_divbyzero, s); 12152 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12153 } else if (float32_is_neg(f32)) { 12154 float_raise(float_flag_invalid, s); 12155 return float32_default_nan(s); 12156 } else if (float32_is_infinity(f32)) { 12157 return float32_zero; 12158 } 12159 12160 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12161 * preserving the parity of the exponent. */ 12162 12163 f64_frac = ((uint64_t) f32_frac) << 29; 12164 12165 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 12166 12167 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 12168 val = deposit32(0, 31, 1, f32_sign); 12169 val = deposit32(val, 23, 8, f32_exp); 12170 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 12171 return make_float32(val); 12172 } 12173 12174 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 12175 { 12176 float_status *s = fpstp; 12177 float64 f64 = float64_squash_input_denormal(input, s); 12178 uint64_t val = float64_val(f64); 12179 bool f64_sign = float64_is_neg(f64); 12180 int f64_exp = extract64(val, 52, 11); 12181 uint64_t f64_frac = extract64(val, 0, 52); 12182 12183 if (float64_is_any_nan(f64)) { 12184 float64 nan = f64; 12185 if (float64_is_signaling_nan(f64, s)) { 12186 float_raise(float_flag_invalid, s); 12187 nan = float64_silence_nan(f64, s); 12188 } 12189 if (s->default_nan_mode) { 12190 nan = float64_default_nan(s); 12191 } 12192 return nan; 12193 } else if (float64_is_zero(f64)) { 12194 float_raise(float_flag_divbyzero, s); 12195 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12196 } else if (float64_is_neg(f64)) { 12197 float_raise(float_flag_invalid, s); 12198 return float64_default_nan(s); 12199 } else if (float64_is_infinity(f64)) { 12200 return float64_zero; 12201 } 12202 12203 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 12204 12205 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 12206 val = deposit64(0, 61, 1, f64_sign); 12207 val = deposit64(val, 52, 11, f64_exp); 12208 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 12209 return make_float64(val); 12210 } 12211 12212 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 12213 { 12214 /* float_status *s = fpstp; */ 12215 int input, estimate; 12216 12217 if ((a & 0x80000000) == 0) { 12218 return 0xffffffff; 12219 } 12220 12221 input = extract32(a, 23, 9); 12222 estimate = recip_estimate(input); 12223 12224 return deposit32(0, (32 - 9), 9, estimate); 12225 } 12226 12227 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 12228 { 12229 int estimate; 12230 12231 if ((a & 0xc0000000) == 0) { 12232 return 0xffffffff; 12233 } 12234 12235 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 12236 12237 return deposit32(0, 23, 9, estimate); 12238 } 12239 12240 /* VFPv4 fused multiply-accumulate */ 12241 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 12242 { 12243 float_status *fpst = fpstp; 12244 return float32_muladd(a, b, c, 0, fpst); 12245 } 12246 12247 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12248 { 12249 float_status *fpst = fpstp; 12250 return float64_muladd(a, b, c, 0, fpst); 12251 } 12252 12253 /* ARMv8 round to integral */ 12254 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12255 { 12256 return float32_round_to_int(x, fp_status); 12257 } 12258 12259 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12260 { 12261 return float64_round_to_int(x, fp_status); 12262 } 12263 12264 float32 HELPER(rints)(float32 x, void *fp_status) 12265 { 12266 int old_flags = get_float_exception_flags(fp_status), new_flags; 12267 float32 ret; 12268 12269 ret = float32_round_to_int(x, fp_status); 12270 12271 /* Suppress any inexact exceptions the conversion produced */ 12272 if (!(old_flags & float_flag_inexact)) { 12273 new_flags = get_float_exception_flags(fp_status); 12274 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12275 } 12276 12277 return ret; 12278 } 12279 12280 float64 HELPER(rintd)(float64 x, void *fp_status) 12281 { 12282 int old_flags = get_float_exception_flags(fp_status), new_flags; 12283 float64 ret; 12284 12285 ret = float64_round_to_int(x, fp_status); 12286 12287 new_flags = get_float_exception_flags(fp_status); 12288 12289 /* Suppress any inexact exceptions the conversion produced */ 12290 if (!(old_flags & float_flag_inexact)) { 12291 new_flags = get_float_exception_flags(fp_status); 12292 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12293 } 12294 12295 return ret; 12296 } 12297 12298 /* Convert ARM rounding mode to softfloat */ 12299 int arm_rmode_to_sf(int rmode) 12300 { 12301 switch (rmode) { 12302 case FPROUNDING_TIEAWAY: 12303 rmode = float_round_ties_away; 12304 break; 12305 case FPROUNDING_ODD: 12306 /* FIXME: add support for TIEAWAY and ODD */ 12307 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12308 rmode); 12309 case FPROUNDING_TIEEVEN: 12310 default: 12311 rmode = float_round_nearest_even; 12312 break; 12313 case FPROUNDING_POSINF: 12314 rmode = float_round_up; 12315 break; 12316 case FPROUNDING_NEGINF: 12317 rmode = float_round_down; 12318 break; 12319 case FPROUNDING_ZERO: 12320 rmode = float_round_to_zero; 12321 break; 12322 } 12323 return rmode; 12324 } 12325 12326 /* CRC helpers. 12327 * The upper bytes of val (above the number specified by 'bytes') must have 12328 * been zeroed out by the caller. 12329 */ 12330 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12331 { 12332 uint8_t buf[4]; 12333 12334 stl_le_p(buf, val); 12335 12336 /* zlib crc32 converts the accumulator and output to one's complement. */ 12337 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12338 } 12339 12340 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12341 { 12342 uint8_t buf[4]; 12343 12344 stl_le_p(buf, val); 12345 12346 /* Linux crc32c converts the output to one's complement. */ 12347 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12348 } 12349 12350 /* Return the exception level to which FP-disabled exceptions should 12351 * be taken, or 0 if FP is enabled. 12352 */ 12353 static inline int fp_exception_el(CPUARMState *env) 12354 { 12355 #ifndef CONFIG_USER_ONLY 12356 int fpen; 12357 int cur_el = arm_current_el(env); 12358 12359 /* CPACR and the CPTR registers don't exist before v6, so FP is 12360 * always accessible 12361 */ 12362 if (!arm_feature(env, ARM_FEATURE_V6)) { 12363 return 0; 12364 } 12365 12366 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12367 * 0, 2 : trap EL0 and EL1/PL1 accesses 12368 * 1 : trap only EL0 accesses 12369 * 3 : trap no accesses 12370 */ 12371 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12372 switch (fpen) { 12373 case 0: 12374 case 2: 12375 if (cur_el == 0 || cur_el == 1) { 12376 /* Trap to PL1, which might be EL1 or EL3 */ 12377 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12378 return 3; 12379 } 12380 return 1; 12381 } 12382 if (cur_el == 3 && !is_a64(env)) { 12383 /* Secure PL1 running at EL3 */ 12384 return 3; 12385 } 12386 break; 12387 case 1: 12388 if (cur_el == 0) { 12389 return 1; 12390 } 12391 break; 12392 case 3: 12393 break; 12394 } 12395 12396 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12397 * check because zero bits in the registers mean "don't trap". 12398 */ 12399 12400 /* CPTR_EL2 : present in v7VE or v8 */ 12401 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12402 && !arm_is_secure_below_el3(env)) { 12403 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12404 return 2; 12405 } 12406 12407 /* CPTR_EL3 : present in v8 */ 12408 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12409 /* Trap all FP ops to EL3 */ 12410 return 3; 12411 } 12412 #endif 12413 return 0; 12414 } 12415 12416 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12417 target_ulong *cs_base, uint32_t *pflags) 12418 { 12419 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12420 int fp_el = fp_exception_el(env); 12421 uint32_t flags; 12422 12423 if (is_a64(env)) { 12424 int sve_el = sve_exception_el(env); 12425 uint32_t zcr_len; 12426 12427 *pc = env->pc; 12428 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12429 /* Get control bits for tagged addresses */ 12430 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12431 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12432 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12433 12434 /* If SVE is disabled, but FP is enabled, 12435 then the effective len is 0. */ 12436 if (sve_el != 0 && fp_el == 0) { 12437 zcr_len = 0; 12438 } else { 12439 int current_el = arm_current_el(env); 12440 ARMCPU *cpu = arm_env_get_cpu(env); 12441 12442 zcr_len = cpu->sve_max_vq - 1; 12443 if (current_el <= 1) { 12444 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 12445 } 12446 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12447 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12448 } 12449 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12450 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12451 } 12452 } 12453 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12454 } else { 12455 *pc = env->regs[15]; 12456 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12457 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12458 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12459 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12460 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12461 if (!(access_secure_reg(env))) { 12462 flags |= ARM_TBFLAG_NS_MASK; 12463 } 12464 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12465 || arm_el_is_aa64(env, 1)) { 12466 flags |= ARM_TBFLAG_VFPEN_MASK; 12467 } 12468 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12469 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12470 } 12471 12472 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12473 12474 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12475 * states defined in the ARM ARM for software singlestep: 12476 * SS_ACTIVE PSTATE.SS State 12477 * 0 x Inactive (the TB flag for SS is always 0) 12478 * 1 0 Active-pending 12479 * 1 1 Active-not-pending 12480 */ 12481 if (arm_singlestep_active(env)) { 12482 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12483 if (is_a64(env)) { 12484 if (env->pstate & PSTATE_SS) { 12485 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12486 } 12487 } else { 12488 if (env->uncached_cpsr & PSTATE_SS) { 12489 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12490 } 12491 } 12492 } 12493 if (arm_cpu_data_is_big_endian(env)) { 12494 flags |= ARM_TBFLAG_BE_DATA_MASK; 12495 } 12496 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12497 12498 if (arm_v7m_is_handler_mode(env)) { 12499 flags |= ARM_TBFLAG_HANDLER_MASK; 12500 } 12501 12502 *pflags = flags; 12503 *cs_base = 0; 12504 } 12505