1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "qemu/range.h" 29 #include "qapi/qapi-commands-machine-target.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "arm_ldst.h" 34 #include "exec/cpu_ldst.h" 35 #endif 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 #ifndef CONFIG_USER_ONLY 40 41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 42 MMUAccessType access_type, ARMMMUIdx mmu_idx, 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 44 target_ulong *page_size_ptr, 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 46 #endif 47 48 static void switch_mode(CPUARMState *env, int mode); 49 50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 51 { 52 int nregs; 53 54 /* VFP data registers are always little-endian. */ 55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 56 if (reg < nregs) { 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 58 return 8; 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 stq_le_p(buf, q[0]); 66 stq_le_p(buf + 8, q[1]); 67 return 16; 68 } 69 } 70 switch (reg - nregs) { 71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 int nregs; 81 82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 /* 128 bit FP register */ 109 { 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 stq_le_p(buf, q[0]); 112 stq_le_p(buf + 8, q[1]); 113 return 16; 114 } 115 case 32: 116 /* FPSR */ 117 stl_p(buf, vfp_get_fpsr(env)); 118 return 4; 119 case 33: 120 /* FPCR */ 121 stl_p(buf, vfp_get_fpcr(env)); 122 return 4; 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 212 { 213 ARMCPU *cpu = env_archcpu(env); 214 const ARMCPRegInfo *ri; 215 uint32_t key; 216 217 key = cpu->dyn_xml.cpregs_keys[reg]; 218 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 219 if (ri) { 220 if (cpreg_field_is_64bit(ri)) { 221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 222 } else { 223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 224 } 225 } 226 return 0; 227 } 228 229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 230 { 231 return 0; 232 } 233 234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 235 { 236 /* Return true if the regdef would cause an assertion if you called 237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 238 * program bug for it not to have the NO_RAW flag). 239 * NB that returning false here doesn't necessarily mean that calling 240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 241 * read/write access functions which are safe for raw use" from "has 242 * read/write access functions which have side effects but has forgotten 243 * to provide raw access functions". 244 * The tests here line up with the conditions in read/write_raw_cp_reg() 245 * and assertions in raw_read()/raw_write(). 246 */ 247 if ((ri->type & ARM_CP_CONST) || 248 ri->fieldoffset || 249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 250 return false; 251 } 252 return true; 253 } 254 255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 256 { 257 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 258 int i; 259 bool ok = true; 260 261 for (i = 0; i < cpu->cpreg_array_len; i++) { 262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 263 const ARMCPRegInfo *ri; 264 uint64_t newval; 265 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 267 if (!ri) { 268 ok = false; 269 continue; 270 } 271 if (ri->type & ARM_CP_NO_RAW) { 272 continue; 273 } 274 275 newval = read_raw_cp_reg(&cpu->env, ri); 276 if (kvm_sync) { 277 /* 278 * Only sync if the previous list->cpustate sync succeeded. 279 * Rather than tracking the success/failure state for every 280 * item in the list, we just recheck "does the raw write we must 281 * have made in write_list_to_cpustate() read back OK" here. 282 */ 283 uint64_t oldval = cpu->cpreg_values[i]; 284 285 if (oldval == newval) { 286 continue; 287 } 288 289 write_raw_cp_reg(&cpu->env, ri, oldval); 290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 291 continue; 292 } 293 294 write_raw_cp_reg(&cpu->env, ri, newval); 295 } 296 cpu->cpreg_values[i] = newval; 297 } 298 return ok; 299 } 300 301 bool write_list_to_cpustate(ARMCPU *cpu) 302 { 303 int i; 304 bool ok = true; 305 306 for (i = 0; i < cpu->cpreg_array_len; i++) { 307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 308 uint64_t v = cpu->cpreg_values[i]; 309 const ARMCPRegInfo *ri; 310 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 312 if (!ri) { 313 ok = false; 314 continue; 315 } 316 if (ri->type & ARM_CP_NO_RAW) { 317 continue; 318 } 319 /* Write value and confirm it reads back as written 320 * (to catch read-only registers and partially read-only 321 * registers where the incoming migration value doesn't match) 322 */ 323 write_raw_cp_reg(&cpu->env, ri, v); 324 if (read_raw_cp_reg(&cpu->env, ri) != v) { 325 ok = false; 326 } 327 } 328 return ok; 329 } 330 331 static void add_cpreg_to_list(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 342 /* The value array need not be initialized at this point */ 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static void count_cpreg(gpointer key, gpointer opaque) 348 { 349 ARMCPU *cpu = opaque; 350 uint64_t regidx; 351 const ARMCPRegInfo *ri; 352 353 regidx = *(uint32_t *)key; 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 355 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 357 cpu->cpreg_array_len++; 358 } 359 } 360 361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 362 { 363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 365 366 if (aidx > bidx) { 367 return 1; 368 } 369 if (aidx < bidx) { 370 return -1; 371 } 372 return 0; 373 } 374 375 void init_cpreg_list(ARMCPU *cpu) 376 { 377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 378 * Note that we require cpreg_tuples[] to be sorted by key ID. 379 */ 380 GList *keys; 381 int arraylen; 382 383 keys = g_hash_table_get_keys(cpu->cp_regs); 384 keys = g_list_sort(keys, cpreg_key_compare); 385 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, count_cpreg, cpu); 389 390 arraylen = cpu->cpreg_array_len; 391 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 392 cpu->cpreg_values = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 396 cpu->cpreg_array_len = 0; 397 398 g_list_foreach(keys, add_cpreg_to_list, cpu); 399 400 assert(cpu->cpreg_array_len == arraylen); 401 402 g_list_free(keys); 403 } 404 405 /* 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 408 * 409 * access_el3_aa32ns: Used to check AArch32 register views. 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 411 */ 412 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 413 const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 bool secure = arm_is_secure_below_el3(env); 417 418 assert(!arm_el_is_aa64(env, 3)); 419 if (secure) { 420 return CP_ACCESS_TRAP_UNCATEGORIZED; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (!arm_el_is_aa64(env, 3)) { 430 return access_el3_aa32ns(env, ri, isread); 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Some secure-only AArch32 registers trap to EL3 if used from 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 438 * We assume that the .access field is set to PL1_RW. 439 */ 440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 441 const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 3) { 445 return CP_ACCESS_OK; 446 } 447 if (arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL3; 449 } 450 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 451 return CP_ACCESS_TRAP_UNCATEGORIZED; 452 } 453 454 /* Check for traps to "powerdown debug" registers, which are controlled 455 * by MDCR.TDOSA 456 */ 457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 462 (env->cp15.mdcr_el2 & MDCR_TDE) || 463 (arm_hcr_el2_eff(env) & HCR_TGE); 464 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to "debug ROM" registers, which are controlled 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 482 (env->cp15.mdcr_el2 & MDCR_TDE) || 483 (arm_hcr_el2_eff(env) & HCR_TGE); 484 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 486 return CP_ACCESS_TRAP_EL2; 487 } 488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 489 return CP_ACCESS_TRAP_EL3; 490 } 491 return CP_ACCESS_OK; 492 } 493 494 /* Check for traps to general debug registers, which are controlled 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 496 */ 497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 498 bool isread) 499 { 500 int el = arm_current_el(env); 501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 502 (env->cp15.mdcr_el2 & MDCR_TDE) || 503 (arm_hcr_el2_eff(env) & HCR_TGE); 504 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 506 return CP_ACCESS_TRAP_EL2; 507 } 508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 509 return CP_ACCESS_TRAP_EL3; 510 } 511 return CP_ACCESS_OK; 512 } 513 514 /* Check for traps to performance monitor registers, which are controlled 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 516 */ 517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 518 bool isread) 519 { 520 int el = arm_current_el(env); 521 522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 523 && !arm_is_secure_below_el3(env)) { 524 return CP_ACCESS_TRAP_EL2; 525 } 526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 527 return CP_ACCESS_TRAP_EL3; 528 } 529 return CP_ACCESS_OK; 530 } 531 532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 533 { 534 ARMCPU *cpu = env_archcpu(env); 535 536 raw_write(env, ri, value); 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 538 } 539 540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 541 { 542 ARMCPU *cpu = env_archcpu(env); 543 544 if (raw_read(env, ri) != value) { 545 /* Unlike real hardware the qemu TLB uses virtual addresses, 546 * not modified virtual addresses, so this causes a TLB flush. 547 */ 548 tlb_flush(CPU(cpu)); 549 raw_write(env, ri, value); 550 } 551 } 552 553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 ARMCPU *cpu = env_archcpu(env); 557 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 559 && !extended_addresses_enabled(env)) { 560 /* For VMSA (when not using the LPAE long descriptor page table 561 * format) this register includes the ASID, so do a TLB flush. 562 * For PMSA it is purely a process ID and no action is needed. 563 */ 564 tlb_flush(CPU(cpu)); 565 } 566 raw_write(env, ri, value); 567 } 568 569 /* IS variants of TLB operations must affect all cores */ 570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_all_cpus_synced(cs); 576 } 577 578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_all_cpus_synced(cs); 584 } 585 586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 592 } 593 594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 600 } 601 602 /* 603 * Non-IS variants of TLB operations are upgraded to 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 605 * force broadcast of these operations. 606 */ 607 static bool tlb_force_broadcast(CPUARMState *env) 608 { 609 return (env->cp15.hcr_el2 & HCR_FB) && 610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 611 } 612 613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 /* Invalidate all (TLBIALL) */ 617 ARMCPU *cpu = env_archcpu(env); 618 619 if (tlb_force_broadcast(env)) { 620 tlbiall_is_write(env, NULL, value); 621 return; 622 } 623 624 tlb_flush(CPU(cpu)); 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 ARMCPU *cpu = env_archcpu(env); 632 633 if (tlb_force_broadcast(env)) { 634 tlbimva_is_write(env, NULL, value); 635 return; 636 } 637 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 ARMCPU *cpu = env_archcpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlbiasid_is_write(env, NULL, value); 649 return; 650 } 651 652 tlb_flush(CPU(cpu)); 653 } 654 655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 659 ARMCPU *cpu = env_archcpu(env); 660 661 if (tlb_force_broadcast(env)) { 662 tlbimvaa_is_write(env, NULL, value); 663 return; 664 } 665 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 667 } 668 669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = env_cpu(env); 673 674 tlb_flush_by_mmuidx(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_S12NSE1 | 687 ARMMMUIdxBit_S12NSE0 | 688 ARMMMUIdxBit_S2NS); 689 } 690 691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 /* Invalidate by IPA. This has to invalidate any structures that 695 * contain only stage 2 translation information, but does not need 696 * to apply to structures that contain combined stage 1 and stage 2 697 * translation information. 698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 699 */ 700 CPUState *cs = env_cpu(env); 701 uint64_t pageaddr; 702 703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 704 return; 705 } 706 707 pageaddr = sextract64(value << 12, 0, 40); 708 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 710 } 711 712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 uint64_t pageaddr; 717 718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 719 return; 720 } 721 722 pageaddr = sextract64(value << 12, 0, 40); 723 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 725 ARMMMUIdxBit_S2NS); 726 } 727 728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 734 } 735 736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 742 } 743 744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 745 uint64_t value) 746 { 747 CPUState *cs = env_cpu(env); 748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 749 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 758 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 760 ARMMMUIdxBit_S1E2); 761 } 762 763 static const ARMCPRegInfo cp_reginfo[] = { 764 /* Define the secure and non-secure FCSE identifier CP registers 765 * separately because there is no secure bank in V8 (no _EL3). This allows 766 * the secure register to be properly reset and migrated. There is also no 767 * v8 EL1 version of the register so the non-secure instance stands alone. 768 */ 769 { .name = "FCSEIDR", 770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 774 { .name = "FCSEIDR_S", 775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 779 /* Define the secure and non-secure context identifier CP registers 780 * separately because there is no secure bank in V8 (no _EL3). This allows 781 * the secure register to be properly reset and migrated. In the 782 * non-secure case, the 32-bit register will have reset and migration 783 * disabled during registration as it is handled by the 64-bit instance. 784 */ 785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 795 REGINFO_SENTINEL 796 }; 797 798 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 799 /* NB: Some of these registers exist in v8 but with more precise 800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 801 */ 802 /* MMU Domain access control / MPU write buffer control */ 803 { .name = "DACR", 804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 805 .access = PL1_RW, .resetvalue = 0, 806 .writefn = dacr_write, .raw_writefn = raw_write, 807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 808 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 810 * For v6 and v5, these mappings are overly broad. 811 */ 812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 820 /* Cache maintenance ops; some of this space may be overridden later. */ 821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 824 REGINFO_SENTINEL 825 }; 826 827 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 828 /* Not all pre-v6 cores implemented this WFI, so this is slightly 829 * over-broad. 830 */ 831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 832 .access = PL1_W, .type = ARM_CP_WFI }, 833 REGINFO_SENTINEL 834 }; 835 836 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 838 * is UNPREDICTABLE; we choose to NOP as most implementations do). 839 */ 840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 841 .access = PL1_W, .type = ARM_CP_WFI }, 842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 844 * OMAPCP will override this space. 845 */ 846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 848 .resetvalue = 0 }, 849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 851 .resetvalue = 0 }, 852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 855 .resetvalue = 0 }, 856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 857 * implementing it as RAZ means the "debug architecture version" bits 858 * will read as a reserved value, which should cause Linux to not try 859 * to use the debug hardware. 860 */ 861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 863 /* MMU TLB control. Note that the wildcarding means we cover not just 864 * the unified TLB ops but also the dside/iside/inner-shareable variants. 865 */ 866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 868 .type = ARM_CP_NO_RAW }, 869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 871 .type = ARM_CP_NO_RAW }, 872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 874 .type = ARM_CP_NO_RAW }, 875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 877 .type = ARM_CP_NO_RAW }, 878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 882 REGINFO_SENTINEL 883 }; 884 885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 886 uint64_t value) 887 { 888 uint32_t mask = 0; 889 890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 891 if (!arm_feature(env, ARM_FEATURE_V8)) { 892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 895 */ 896 if (arm_feature(env, ARM_FEATURE_VFP)) { 897 /* VFP coprocessor: cp10 & cp11 [23:20] */ 898 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 899 900 if (!arm_feature(env, ARM_FEATURE_NEON)) { 901 /* ASEDIS [31] bit is RAO/WI */ 902 value |= (1 << 31); 903 } 904 905 /* VFPv3 and upwards with NEON implement 32 double precision 906 * registers (D0-D31). 907 */ 908 if (!arm_feature(env, ARM_FEATURE_NEON) || 909 !arm_feature(env, ARM_FEATURE_VFP3)) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x10 1020 #define PMCRD 0x8 1021 #define PMCRC 0x4 1022 #define PMCRP 0x2 1023 #define PMCRE 0x1 1024 1025 #define PMXEVTYPER_P 0x80000000 1026 #define PMXEVTYPER_U 0x40000000 1027 #define PMXEVTYPER_NSK 0x20000000 1028 #define PMXEVTYPER_NSU 0x10000000 1029 #define PMXEVTYPER_NSH 0x08000000 1030 #define PMXEVTYPER_M 0x04000000 1031 #define PMXEVTYPER_MT 0x02000000 1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1035 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1036 PMXEVTYPER_EVTCOUNT) 1037 1038 #define PMCCFILTR 0xf8000000 1039 #define PMCCFILTR_M PMXEVTYPER_M 1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1041 1042 static inline uint32_t pmu_num_counters(CPUARMState *env) 1043 { 1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1045 } 1046 1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1048 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1049 { 1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1051 } 1052 1053 typedef struct pm_event { 1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1056 bool (*supported)(CPUARMState *); 1057 /* 1058 * Retrieve the current count of the underlying event. The programmed 1059 * counters hold a difference from the return value from this function 1060 */ 1061 uint64_t (*get_count)(CPUARMState *); 1062 /* 1063 * Return how many nanoseconds it will take (at a minimum) for count events 1064 * to occur. A negative value indicates the counter will never overflow, or 1065 * that the counter has otherwise arranged for the overflow bit to be set 1066 * and the PMU interrupt to be raised on overflow. 1067 */ 1068 int64_t (*ns_per_count)(uint64_t); 1069 } pm_event; 1070 1071 static bool event_always_supported(CPUARMState *env) 1072 { 1073 return true; 1074 } 1075 1076 static uint64_t swinc_get_count(CPUARMState *env) 1077 { 1078 /* 1079 * SW_INCR events are written directly to the pmevcntr's by writes to 1080 * PMSWINC, so there is no underlying count maintained by the PMU itself 1081 */ 1082 return 0; 1083 } 1084 1085 static int64_t swinc_ns_per(uint64_t ignored) 1086 { 1087 return -1; 1088 } 1089 1090 /* 1091 * Return the underlying cycle count for the PMU cycle counters. If we're in 1092 * usermode, simply return 0. 1093 */ 1094 static uint64_t cycles_get_count(CPUARMState *env) 1095 { 1096 #ifndef CONFIG_USER_ONLY 1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1099 #else 1100 return cpu_get_host_ticks(); 1101 #endif 1102 } 1103 1104 #ifndef CONFIG_USER_ONLY 1105 static int64_t cycles_ns_per(uint64_t cycles) 1106 { 1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1108 } 1109 1110 static bool instructions_supported(CPUARMState *env) 1111 { 1112 return use_icount == 1 /* Precise instruction counting */; 1113 } 1114 1115 static uint64_t instructions_get_count(CPUARMState *env) 1116 { 1117 return (uint64_t)cpu_get_icount_raw(); 1118 } 1119 1120 static int64_t instructions_ns_per(uint64_t icount) 1121 { 1122 return cpu_icount_to_ns((int64_t)icount); 1123 } 1124 #endif 1125 1126 static const pm_event pm_events[] = { 1127 { .number = 0x000, /* SW_INCR */ 1128 .supported = event_always_supported, 1129 .get_count = swinc_get_count, 1130 .ns_per_count = swinc_ns_per, 1131 }, 1132 #ifndef CONFIG_USER_ONLY 1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1134 .supported = instructions_supported, 1135 .get_count = instructions_get_count, 1136 .ns_per_count = instructions_ns_per, 1137 }, 1138 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1139 .supported = event_always_supported, 1140 .get_count = cycles_get_count, 1141 .ns_per_count = cycles_ns_per, 1142 } 1143 #endif 1144 }; 1145 1146 /* 1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1148 * events (i.e. the statistical profiling extension), this implementation 1149 * should first be updated to something sparse instead of the current 1150 * supported_event_map[] array. 1151 */ 1152 #define MAX_EVENT_ID 0x11 1153 #define UNSUPPORTED_EVENT UINT16_MAX 1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1155 1156 /* 1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1158 * of ARM event numbers to indices in our pm_events array. 1159 * 1160 * Note: Events in the 0x40XX range are not currently supported. 1161 */ 1162 void pmu_init(ARMCPU *cpu) 1163 { 1164 unsigned int i; 1165 1166 /* 1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1168 * events to them 1169 */ 1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1171 supported_event_map[i] = UNSUPPORTED_EVENT; 1172 } 1173 cpu->pmceid0 = 0; 1174 cpu->pmceid1 = 0; 1175 1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1177 const pm_event *cnt = &pm_events[i]; 1178 assert(cnt->number <= MAX_EVENT_ID); 1179 /* We do not currently support events in the 0x40xx range */ 1180 assert(cnt->number <= 0x3f); 1181 1182 if (cnt->supported(&cpu->env)) { 1183 supported_event_map[cnt->number] = i; 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1185 if (cnt->number & 0x20) { 1186 cpu->pmceid1 |= event_mask; 1187 } else { 1188 cpu->pmceid0 |= event_mask; 1189 } 1190 } 1191 } 1192 } 1193 1194 /* 1195 * Check at runtime whether a PMU event is supported for the current machine 1196 */ 1197 static bool event_supported(uint16_t number) 1198 { 1199 if (number > MAX_EVENT_ID) { 1200 return false; 1201 } 1202 return supported_event_map[number] != UNSUPPORTED_EVENT; 1203 } 1204 1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1206 bool isread) 1207 { 1208 /* Performance monitor registers user accessibility is controlled 1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1210 * trapping to EL2 or EL3 for other accesses. 1211 */ 1212 int el = arm_current_el(env); 1213 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1215 return CP_ACCESS_TRAP; 1216 } 1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1218 && !arm_is_secure_below_el3(env)) { 1219 return CP_ACCESS_TRAP_EL2; 1220 } 1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1222 return CP_ACCESS_TRAP_EL3; 1223 } 1224 1225 return CP_ACCESS_OK; 1226 } 1227 1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1229 const ARMCPRegInfo *ri, 1230 bool isread) 1231 { 1232 /* ER: event counter read trap control */ 1233 if (arm_feature(env, ARM_FEATURE_V8) 1234 && arm_current_el(env) == 0 1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1236 && isread) { 1237 return CP_ACCESS_OK; 1238 } 1239 1240 return pmreg_access(env, ri, isread); 1241 } 1242 1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1244 const ARMCPRegInfo *ri, 1245 bool isread) 1246 { 1247 /* SW: software increment write trap control */ 1248 if (arm_feature(env, ARM_FEATURE_V8) 1249 && arm_current_el(env) == 0 1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1251 && !isread) { 1252 return CP_ACCESS_OK; 1253 } 1254 1255 return pmreg_access(env, ri, isread); 1256 } 1257 1258 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1259 const ARMCPRegInfo *ri, 1260 bool isread) 1261 { 1262 /* ER: event counter read trap control */ 1263 if (arm_feature(env, ARM_FEATURE_V8) 1264 && arm_current_el(env) == 0 1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1266 return CP_ACCESS_OK; 1267 } 1268 1269 return pmreg_access(env, ri, isread); 1270 } 1271 1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1273 const ARMCPRegInfo *ri, 1274 bool isread) 1275 { 1276 /* CR: cycle counter read trap control */ 1277 if (arm_feature(env, ARM_FEATURE_V8) 1278 && arm_current_el(env) == 0 1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1280 && isread) { 1281 return CP_ACCESS_OK; 1282 } 1283 1284 return pmreg_access(env, ri, isread); 1285 } 1286 1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1288 * the current EL, security state, and register configuration. 1289 */ 1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1291 { 1292 uint64_t filter; 1293 bool e, p, u, nsk, nsu, nsh, m; 1294 bool enabled, prohibited, filtered; 1295 bool secure = arm_is_secure(env); 1296 int el = arm_current_el(env); 1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1298 1299 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1300 return false; 1301 } 1302 1303 if (!arm_feature(env, ARM_FEATURE_EL2) || 1304 (counter < hpmn || counter == 31)) { 1305 e = env->cp15.c9_pmcr & PMCRE; 1306 } else { 1307 e = env->cp15.mdcr_el2 & MDCR_HPME; 1308 } 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1310 1311 if (!secure) { 1312 if (el == 2 && (counter < hpmn || counter == 31)) { 1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1314 } else { 1315 prohibited = false; 1316 } 1317 } else { 1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1319 (env->cp15.mdcr_el3 & MDCR_SPME); 1320 } 1321 1322 if (prohibited && counter == 31) { 1323 prohibited = env->cp15.c9_pmcr & PMCRDP; 1324 } 1325 1326 if (counter == 31) { 1327 filter = env->cp15.pmccfiltr_el0; 1328 } else { 1329 filter = env->cp15.c14_pmevtyper[counter]; 1330 } 1331 1332 p = filter & PMXEVTYPER_P; 1333 u = filter & PMXEVTYPER_U; 1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1337 m = arm_el_is_aa64(env, 1) && 1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1339 1340 if (el == 0) { 1341 filtered = secure ? u : u != nsu; 1342 } else if (el == 1) { 1343 filtered = secure ? p : p != nsk; 1344 } else if (el == 2) { 1345 filtered = !nsh; 1346 } else { /* EL3 */ 1347 filtered = m != p; 1348 } 1349 1350 if (counter != 31) { 1351 /* 1352 * If not checking PMCCNTR, ensure the counter is setup to an event we 1353 * support 1354 */ 1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1356 if (!event_supported(event)) { 1357 return false; 1358 } 1359 } 1360 1361 return enabled && !prohibited && !filtered; 1362 } 1363 1364 static void pmu_update_irq(CPUARMState *env) 1365 { 1366 ARMCPU *cpu = env_archcpu(env); 1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1369 } 1370 1371 /* 1372 * Ensure c15_ccnt is the guest-visible count so that operations such as 1373 * enabling/disabling the counter or filtering, modifying the count itself, 1374 * etc. can be done logically. This is essentially a no-op if the counter is 1375 * not enabled at the time of the call. 1376 */ 1377 static void pmccntr_op_start(CPUARMState *env) 1378 { 1379 uint64_t cycles = cycles_get_count(env); 1380 1381 if (pmu_counter_enabled(env, 31)) { 1382 uint64_t eff_cycles = cycles; 1383 if (env->cp15.c9_pmcr & PMCRD) { 1384 /* Increment once every 64 processor clock cycles */ 1385 eff_cycles /= 64; 1386 } 1387 1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1389 1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1391 1ull << 63 : 1ull << 31; 1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1393 env->cp15.c9_pmovsr |= (1 << 31); 1394 pmu_update_irq(env); 1395 } 1396 1397 env->cp15.c15_ccnt = new_pmccntr; 1398 } 1399 env->cp15.c15_ccnt_delta = cycles; 1400 } 1401 1402 /* 1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1405 * pmccntr_op_start. 1406 */ 1407 static void pmccntr_op_finish(CPUARMState *env) 1408 { 1409 if (pmu_counter_enabled(env, 31)) { 1410 #ifndef CONFIG_USER_ONLY 1411 /* Calculate when the counter will next overflow */ 1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1413 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1414 remaining_cycles = (uint32_t)remaining_cycles; 1415 } 1416 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1417 1418 if (overflow_in > 0) { 1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1420 overflow_in; 1421 ARMCPU *cpu = env_archcpu(env); 1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1423 } 1424 #endif 1425 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1427 if (env->cp15.c9_pmcr & PMCRD) { 1428 /* Increment once every 64 processor clock cycles */ 1429 prev_cycles /= 64; 1430 } 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1432 } 1433 } 1434 1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1436 { 1437 1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1439 uint64_t count = 0; 1440 if (event_supported(event)) { 1441 uint16_t event_idx = supported_event_map[event]; 1442 count = pm_events[event_idx].get_count(env); 1443 } 1444 1445 if (pmu_counter_enabled(env, counter)) { 1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1447 1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1449 env->cp15.c9_pmovsr |= (1 << counter); 1450 pmu_update_irq(env); 1451 } 1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1453 } 1454 env->cp15.c14_pmevcntr_delta[counter] = count; 1455 } 1456 1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1458 { 1459 if (pmu_counter_enabled(env, counter)) { 1460 #ifndef CONFIG_USER_ONLY 1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1462 uint16_t event_idx = supported_event_map[event]; 1463 uint64_t delta = UINT32_MAX - 1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1466 1467 if (overflow_in > 0) { 1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1469 overflow_in; 1470 ARMCPU *cpu = env_archcpu(env); 1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1472 } 1473 #endif 1474 1475 env->cp15.c14_pmevcntr_delta[counter] -= 1476 env->cp15.c14_pmevcntr[counter]; 1477 } 1478 } 1479 1480 void pmu_op_start(CPUARMState *env) 1481 { 1482 unsigned int i; 1483 pmccntr_op_start(env); 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 pmevcntr_op_start(env, i); 1486 } 1487 } 1488 1489 void pmu_op_finish(CPUARMState *env) 1490 { 1491 unsigned int i; 1492 pmccntr_op_finish(env); 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 pmevcntr_op_finish(env, i); 1495 } 1496 } 1497 1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1499 { 1500 pmu_op_start(&cpu->env); 1501 } 1502 1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1504 { 1505 pmu_op_finish(&cpu->env); 1506 } 1507 1508 void arm_pmu_timer_cb(void *opaque) 1509 { 1510 ARMCPU *cpu = opaque; 1511 1512 /* 1513 * Update all the counter values based on the current underlying counts, 1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1516 * counter may expire. 1517 */ 1518 pmu_op_start(&cpu->env); 1519 pmu_op_finish(&cpu->env); 1520 } 1521 1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 pmu_op_start(env); 1526 1527 if (value & PMCRC) { 1528 /* The counter has been reset */ 1529 env->cp15.c15_ccnt = 0; 1530 } 1531 1532 if (value & PMCRP) { 1533 unsigned int i; 1534 for (i = 0; i < pmu_num_counters(env); i++) { 1535 env->cp15.c14_pmevcntr[i] = 0; 1536 } 1537 } 1538 1539 /* only the DP, X, D and E bits are writable */ 1540 env->cp15.c9_pmcr &= ~0x39; 1541 env->cp15.c9_pmcr |= (value & 0x39); 1542 1543 pmu_op_finish(env); 1544 } 1545 1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value) 1548 { 1549 unsigned int i; 1550 for (i = 0; i < pmu_num_counters(env); i++) { 1551 /* Increment a counter's count iff: */ 1552 if ((value & (1 << i)) && /* counter's bit is set */ 1553 /* counter is enabled and not filtered */ 1554 pmu_counter_enabled(env, i) && 1555 /* counter is SW_INCR */ 1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1557 pmevcntr_op_start(env, i); 1558 1559 /* 1560 * Detect if this write causes an overflow since we can't predict 1561 * PMSWINC overflows like we can for other events 1562 */ 1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1564 1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1566 env->cp15.c9_pmovsr |= (1 << i); 1567 pmu_update_irq(env); 1568 } 1569 1570 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1571 1572 pmevcntr_op_finish(env, i); 1573 } 1574 } 1575 } 1576 1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1578 { 1579 uint64_t ret; 1580 pmccntr_op_start(env); 1581 ret = env->cp15.c15_ccnt; 1582 pmccntr_op_finish(env); 1583 return ret; 1584 } 1585 1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1592 * accessed. 1593 */ 1594 env->cp15.c9_pmselr = value & 0x1f; 1595 } 1596 1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 pmccntr_op_start(env); 1601 env->cp15.c15_ccnt = value; 1602 pmccntr_op_finish(env); 1603 } 1604 1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint64_t cur_val = pmccntr_read(env, NULL); 1609 1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1611 } 1612 1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1614 uint64_t value) 1615 { 1616 pmccntr_op_start(env); 1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1622 uint64_t value) 1623 { 1624 pmccntr_op_start(env); 1625 /* M is not accessible from AArch32 */ 1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1627 (value & PMCCFILTR); 1628 pmccntr_op_finish(env); 1629 } 1630 1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 /* M is not visible in AArch32 */ 1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1635 } 1636 1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 value &= pmu_counter_mask(env); 1641 env->cp15.c9_pmcnten |= value; 1642 } 1643 1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 value &= pmu_counter_mask(env); 1648 env->cp15.c9_pmcnten &= ~value; 1649 } 1650 1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 value &= pmu_counter_mask(env); 1655 env->cp15.c9_pmovsr &= ~value; 1656 pmu_update_irq(env); 1657 } 1658 1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 value &= pmu_counter_mask(env); 1663 env->cp15.c9_pmovsr |= value; 1664 pmu_update_irq(env); 1665 } 1666 1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value, const uint8_t counter) 1669 { 1670 if (counter == 31) { 1671 pmccfiltr_write(env, ri, value); 1672 } else if (counter < pmu_num_counters(env)) { 1673 pmevcntr_op_start(env, counter); 1674 1675 /* 1676 * If this counter's event type is changing, store the current 1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1678 * pmevcntr_op_finish has the correct baseline when it converts back to 1679 * a delta. 1680 */ 1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1682 PMXEVTYPER_EVTCOUNT; 1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1684 if (old_event != new_event) { 1685 uint64_t count = 0; 1686 if (event_supported(new_event)) { 1687 uint16_t event_idx = supported_event_map[new_event]; 1688 count = pm_events[event_idx].get_count(env); 1689 } 1690 env->cp15.c14_pmevcntr_delta[counter] = count; 1691 } 1692 1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1694 pmevcntr_op_finish(env, counter); 1695 } 1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1697 * PMSELR value is equal to or greater than the number of implemented 1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1699 */ 1700 } 1701 1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1703 const uint8_t counter) 1704 { 1705 if (counter == 31) { 1706 return env->cp15.pmccfiltr_el0; 1707 } else if (counter < pmu_num_counters(env)) { 1708 return env->cp15.c14_pmevtyper[counter]; 1709 } else { 1710 /* 1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1713 */ 1714 return 0; 1715 } 1716 } 1717 1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1722 pmevtyper_write(env, ri, value, counter); 1723 } 1724 1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1729 env->cp15.c14_pmevtyper[counter] = value; 1730 1731 /* 1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1733 * pmu_op_finish calls when loading saved state for a migration. Because 1734 * we're potentially updating the type of event here, the value written to 1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1736 * different counter type. Therefore, we need to set this value to the 1737 * current count for the counter type we're writing so that pmu_op_finish 1738 * has the correct count for its calculation. 1739 */ 1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1741 if (event_supported(event)) { 1742 uint16_t event_idx = supported_event_map[event]; 1743 env->cp15.c14_pmevcntr_delta[counter] = 1744 pm_events[event_idx].get_count(env); 1745 } 1746 } 1747 1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 return pmevtyper_read(env, ri, counter); 1752 } 1753 1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1758 } 1759 1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1763 } 1764 1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 uint64_t value, uint8_t counter) 1767 { 1768 if (counter < pmu_num_counters(env)) { 1769 pmevcntr_op_start(env, counter); 1770 env->cp15.c14_pmevcntr[counter] = value; 1771 pmevcntr_op_finish(env, counter); 1772 } 1773 /* 1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1775 * are CONSTRAINED UNPREDICTABLE. 1776 */ 1777 } 1778 1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint8_t counter) 1781 { 1782 if (counter < pmu_num_counters(env)) { 1783 uint64_t ret; 1784 pmevcntr_op_start(env, counter); 1785 ret = env->cp15.c14_pmevcntr[counter]; 1786 pmevcntr_op_finish(env, counter); 1787 return ret; 1788 } else { 1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1790 * are CONSTRAINED UNPREDICTABLE. */ 1791 return 0; 1792 } 1793 } 1794 1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1799 pmevcntr_write(env, ri, value, counter); 1800 } 1801 1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1805 return pmevcntr_read(env, ri, counter); 1806 } 1807 1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1812 assert(counter < pmu_num_counters(env)); 1813 env->cp15.c14_pmevcntr[counter] = value; 1814 pmevcntr_write(env, ri, value, counter); 1815 } 1816 1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1820 assert(counter < pmu_num_counters(env)); 1821 return env->cp15.c14_pmevcntr[counter]; 1822 } 1823 1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1833 } 1834 1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 if (arm_feature(env, ARM_FEATURE_V8)) { 1839 env->cp15.c9_pmuserenr = value & 0xf; 1840 } else { 1841 env->cp15.c9_pmuserenr = value & 1; 1842 } 1843 } 1844 1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* We have no event counters so only the C bit can be changed */ 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pminten |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 value &= pmu_counter_mask(env); 1858 env->cp15.c9_pminten &= ~value; 1859 pmu_update_irq(env); 1860 } 1861 1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Note that even though the AArch64 view of this register has bits 1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1867 * architectural requirements for bits which are RES0 only in some 1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1870 */ 1871 raw_write(env, ri, value & ~0x1FULL); 1872 } 1873 1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1875 { 1876 /* Begin with base v8.0 state. */ 1877 uint32_t valid_mask = 0x3fff; 1878 ARMCPU *cpu = env_archcpu(env); 1879 1880 if (arm_el_is_aa64(env, 3)) { 1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1882 valid_mask &= ~SCR_NET; 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 } 1886 1887 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1888 valid_mask &= ~SCR_HCE; 1889 1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1891 * supported if EL2 exists. The bit is UNK/SBZP when 1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1893 * when EL2 is unavailable. 1894 * On ARMv8, this bit is always available. 1895 */ 1896 if (arm_feature(env, ARM_FEATURE_V7) && 1897 !arm_feature(env, ARM_FEATURE_V8)) { 1898 valid_mask &= ~SCR_SMD; 1899 } 1900 } 1901 if (cpu_isar_feature(aa64_lor, cpu)) { 1902 valid_mask |= SCR_TLOR; 1903 } 1904 if (cpu_isar_feature(aa64_pauth, cpu)) { 1905 valid_mask |= SCR_API | SCR_APK; 1906 } 1907 1908 /* Clear all-context RES0 bits. */ 1909 value &= valid_mask; 1910 raw_write(env, ri, value); 1911 } 1912 1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1914 { 1915 ARMCPU *cpu = env_archcpu(env); 1916 1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1918 * bank 1919 */ 1920 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1921 ri->secure & ARM_CP_SECSTATE_S); 1922 1923 return cpu->ccsidr[index]; 1924 } 1925 1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint64_t value) 1928 { 1929 raw_write(env, ri, value & 0xf); 1930 } 1931 1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1933 { 1934 CPUState *cs = env_cpu(env); 1935 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1936 uint64_t ret = 0; 1937 1938 if (hcr_el2 & HCR_IMO) { 1939 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1940 ret |= CPSR_I; 1941 } 1942 } else { 1943 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1944 ret |= CPSR_I; 1945 } 1946 } 1947 1948 if (hcr_el2 & HCR_FMO) { 1949 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1950 ret |= CPSR_F; 1951 } 1952 } else { 1953 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1954 ret |= CPSR_F; 1955 } 1956 } 1957 1958 /* External aborts are not possible in QEMU so A bit is always clear */ 1959 return ret; 1960 } 1961 1962 static const ARMCPRegInfo v7_cp_reginfo[] = { 1963 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1964 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1965 .access = PL1_W, .type = ARM_CP_NOP }, 1966 /* Performance monitors are implementation defined in v7, 1967 * but with an ARM recommended set of registers, which we 1968 * follow. 1969 * 1970 * Performance registers fall into three categories: 1971 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1972 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1973 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1974 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1975 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1976 */ 1977 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1978 .access = PL0_RW, .type = ARM_CP_ALIAS, 1979 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1980 .writefn = pmcntenset_write, 1981 .accessfn = pmreg_access, 1982 .raw_writefn = raw_write }, 1983 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1984 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1985 .access = PL0_RW, .accessfn = pmreg_access, 1986 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1987 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1988 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1989 .access = PL0_RW, 1990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1991 .accessfn = pmreg_access, 1992 .writefn = pmcntenclr_write, 1993 .type = ARM_CP_ALIAS }, 1994 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1996 .access = PL0_RW, .accessfn = pmreg_access, 1997 .type = ARM_CP_ALIAS, 1998 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1999 .writefn = pmcntenclr_write }, 2000 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2001 .access = PL0_RW, .type = ARM_CP_IO, 2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2003 .accessfn = pmreg_access, 2004 .writefn = pmovsr_write, 2005 .raw_writefn = raw_write }, 2006 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2008 .access = PL0_RW, .accessfn = pmreg_access, 2009 .type = ARM_CP_ALIAS | ARM_CP_IO, 2010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2011 .writefn = pmovsr_write, 2012 .raw_writefn = raw_write }, 2013 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2014 .access = PL0_W, .accessfn = pmreg_access_swinc, 2015 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2016 .writefn = pmswinc_write }, 2017 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2019 .access = PL0_W, .accessfn = pmreg_access_swinc, 2020 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2021 .writefn = pmswinc_write }, 2022 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2023 .access = PL0_RW, .type = ARM_CP_ALIAS, 2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2025 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2026 .raw_writefn = raw_write}, 2027 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2029 .access = PL0_RW, .accessfn = pmreg_access_selr, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2031 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2032 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2033 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2034 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2035 .accessfn = pmreg_access_ccntr }, 2036 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2037 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2038 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2039 .type = ARM_CP_IO, 2040 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2041 .readfn = pmccntr_read, .writefn = pmccntr_write, 2042 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2043 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2044 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2045 .access = PL0_RW, .accessfn = pmreg_access, 2046 .type = ARM_CP_ALIAS | ARM_CP_IO, 2047 .resetvalue = 0, }, 2048 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2050 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2051 .access = PL0_RW, .accessfn = pmreg_access, 2052 .type = ARM_CP_IO, 2053 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2054 .resetvalue = 0, }, 2055 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2056 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2057 .accessfn = pmreg_access, 2058 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2059 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2061 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2062 .accessfn = pmreg_access, 2063 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2064 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2065 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2066 .accessfn = pmreg_access_xevcntr, 2067 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2068 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2070 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2071 .accessfn = pmreg_access_xevcntr, 2072 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2073 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2074 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2076 .resetvalue = 0, 2077 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2078 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2080 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2082 .resetvalue = 0, 2083 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2084 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2085 .access = PL1_RW, .accessfn = access_tpm, 2086 .type = ARM_CP_ALIAS | ARM_CP_IO, 2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2088 .resetvalue = 0, 2089 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2090 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2091 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2092 .access = PL1_RW, .accessfn = access_tpm, 2093 .type = ARM_CP_IO, 2094 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2095 .writefn = pmintenset_write, .raw_writefn = raw_write, 2096 .resetvalue = 0x0 }, 2097 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2098 .access = PL1_RW, .accessfn = access_tpm, 2099 .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2101 .writefn = pmintenclr_write, }, 2102 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2104 .access = PL1_RW, .accessfn = access_tpm, 2105 .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2107 .writefn = pmintenclr_write }, 2108 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2109 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2110 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2113 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2115 offsetof(CPUARMState, cp15.csselr_ns) } }, 2116 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2117 * just RAZ for all cores: 2118 */ 2119 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2120 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2122 /* Auxiliary fault status registers: these also are IMPDEF, and we 2123 * choose to RAZ/WI for all cores. 2124 */ 2125 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2126 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2127 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2128 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2131 /* MAIR can just read-as-written because we don't implement caches 2132 * and so don't need to care about memory attributes. 2133 */ 2134 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2135 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2136 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2137 .resetvalue = 0 }, 2138 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2139 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2141 .resetvalue = 0 }, 2142 /* For non-long-descriptor page tables these are PRRR and NMRR; 2143 * regardless they still act as reads-as-written for QEMU. 2144 */ 2145 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2146 * allows them to assign the correct fieldoffset based on the endianness 2147 * handled in the field definitions. 2148 */ 2149 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2150 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2151 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2152 offsetof(CPUARMState, cp15.mair0_ns) }, 2153 .resetfn = arm_cp_reset_ignore }, 2154 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2155 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2157 offsetof(CPUARMState, cp15.mair1_ns) }, 2158 .resetfn = arm_cp_reset_ignore }, 2159 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2161 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2162 /* 32 bit ITLB invalidates */ 2163 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2165 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2167 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2169 /* 32 bit DTLB invalidates */ 2170 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2172 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2174 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2176 /* 32 bit TLB invalidates */ 2177 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2179 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2181 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2183 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2184 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2185 REGINFO_SENTINEL 2186 }; 2187 2188 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2189 /* 32 bit TLB invalidates, Inner Shareable */ 2190 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2192 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2194 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2195 .type = ARM_CP_NO_RAW, .access = PL1_W, 2196 .writefn = tlbiasid_is_write }, 2197 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2198 .type = ARM_CP_NO_RAW, .access = PL1_W, 2199 .writefn = tlbimvaa_is_write }, 2200 REGINFO_SENTINEL 2201 }; 2202 2203 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2204 /* PMOVSSET is not implemented in v7 before v7ve */ 2205 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsset_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2213 .access = PL0_RW, .accessfn = pmreg_access, 2214 .type = ARM_CP_ALIAS | ARM_CP_IO, 2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2216 .writefn = pmovsset_write, 2217 .raw_writefn = raw_write }, 2218 REGINFO_SENTINEL 2219 }; 2220 2221 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2222 uint64_t value) 2223 { 2224 value &= 1; 2225 env->teecr = value; 2226 } 2227 2228 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2229 bool isread) 2230 { 2231 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2232 return CP_ACCESS_TRAP; 2233 } 2234 return CP_ACCESS_OK; 2235 } 2236 2237 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2238 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2239 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2240 .resetvalue = 0, 2241 .writefn = teecr_write }, 2242 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2243 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2244 .accessfn = teehbr_access, .resetvalue = 0 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2249 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2250 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2251 .access = PL0_RW, 2252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2253 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2254 .access = PL0_RW, 2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2256 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2257 .resetfn = arm_cp_reset_ignore }, 2258 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2259 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2260 .access = PL0_R|PL1_W, 2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2262 .resetvalue = 0}, 2263 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2264 .access = PL0_R|PL1_W, 2265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2266 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2267 .resetfn = arm_cp_reset_ignore }, 2268 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2269 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2270 .access = PL1_RW, 2271 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2272 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2273 .access = PL1_RW, 2274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2275 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2276 .resetvalue = 0 }, 2277 REGINFO_SENTINEL 2278 }; 2279 2280 #ifndef CONFIG_USER_ONLY 2281 2282 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2283 bool isread) 2284 { 2285 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2286 * Writable only at the highest implemented exception level. 2287 */ 2288 int el = arm_current_el(env); 2289 2290 switch (el) { 2291 case 0: 2292 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2293 return CP_ACCESS_TRAP; 2294 } 2295 break; 2296 case 1: 2297 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2298 arm_is_secure_below_el3(env)) { 2299 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2300 return CP_ACCESS_TRAP_UNCATEGORIZED; 2301 } 2302 break; 2303 case 2: 2304 case 3: 2305 break; 2306 } 2307 2308 if (!isread && el < arm_highest_el(env)) { 2309 return CP_ACCESS_TRAP_UNCATEGORIZED; 2310 } 2311 2312 return CP_ACCESS_OK; 2313 } 2314 2315 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2316 bool isread) 2317 { 2318 unsigned int cur_el = arm_current_el(env); 2319 bool secure = arm_is_secure(env); 2320 2321 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2322 if (cur_el == 0 && 2323 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2324 return CP_ACCESS_TRAP; 2325 } 2326 2327 if (arm_feature(env, ARM_FEATURE_EL2) && 2328 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2329 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2330 return CP_ACCESS_TRAP_EL2; 2331 } 2332 return CP_ACCESS_OK; 2333 } 2334 2335 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2336 bool isread) 2337 { 2338 unsigned int cur_el = arm_current_el(env); 2339 bool secure = arm_is_secure(env); 2340 2341 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2342 * EL0[PV]TEN is zero. 2343 */ 2344 if (cur_el == 0 && 2345 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2346 return CP_ACCESS_TRAP; 2347 } 2348 2349 if (arm_feature(env, ARM_FEATURE_EL2) && 2350 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2351 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2352 return CP_ACCESS_TRAP_EL2; 2353 } 2354 return CP_ACCESS_OK; 2355 } 2356 2357 static CPAccessResult gt_pct_access(CPUARMState *env, 2358 const ARMCPRegInfo *ri, 2359 bool isread) 2360 { 2361 return gt_counter_access(env, GTIMER_PHYS, isread); 2362 } 2363 2364 static CPAccessResult gt_vct_access(CPUARMState *env, 2365 const ARMCPRegInfo *ri, 2366 bool isread) 2367 { 2368 return gt_counter_access(env, GTIMER_VIRT, isread); 2369 } 2370 2371 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2372 bool isread) 2373 { 2374 return gt_timer_access(env, GTIMER_PHYS, isread); 2375 } 2376 2377 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2378 bool isread) 2379 { 2380 return gt_timer_access(env, GTIMER_VIRT, isread); 2381 } 2382 2383 static CPAccessResult gt_stimer_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 /* The AArch64 register view of the secure physical timer is 2388 * always accessible from EL3, and configurably accessible from 2389 * Secure EL1. 2390 */ 2391 switch (arm_current_el(env)) { 2392 case 1: 2393 if (!arm_is_secure(env)) { 2394 return CP_ACCESS_TRAP; 2395 } 2396 if (!(env->cp15.scr_el3 & SCR_ST)) { 2397 return CP_ACCESS_TRAP_EL3; 2398 } 2399 return CP_ACCESS_OK; 2400 case 0: 2401 case 2: 2402 return CP_ACCESS_TRAP; 2403 case 3: 2404 return CP_ACCESS_OK; 2405 default: 2406 g_assert_not_reached(); 2407 } 2408 } 2409 2410 static uint64_t gt_get_countervalue(CPUARMState *env) 2411 { 2412 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2413 } 2414 2415 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2416 { 2417 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2418 2419 if (gt->ctl & 1) { 2420 /* Timer enabled: calculate and set current ISTATUS, irq, and 2421 * reset timer to when ISTATUS next has to change 2422 */ 2423 uint64_t offset = timeridx == GTIMER_VIRT ? 2424 cpu->env.cp15.cntvoff_el2 : 0; 2425 uint64_t count = gt_get_countervalue(&cpu->env); 2426 /* Note that this must be unsigned 64 bit arithmetic: */ 2427 int istatus = count - offset >= gt->cval; 2428 uint64_t nexttick; 2429 int irqstate; 2430 2431 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2432 2433 irqstate = (istatus && !(gt->ctl & 2)); 2434 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2435 2436 if (istatus) { 2437 /* Next transition is when count rolls back over to zero */ 2438 nexttick = UINT64_MAX; 2439 } else { 2440 /* Next transition is when we hit cval */ 2441 nexttick = gt->cval + offset; 2442 } 2443 /* Note that the desired next expiry time might be beyond the 2444 * signed-64-bit range of a QEMUTimer -- in this case we just 2445 * set the timer for as far in the future as possible. When the 2446 * timer expires we will reset the timer for any remaining period. 2447 */ 2448 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2449 nexttick = INT64_MAX / GTIMER_SCALE; 2450 } 2451 timer_mod(cpu->gt_timer[timeridx], nexttick); 2452 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2453 } else { 2454 /* Timer disabled: ISTATUS and timer output always clear */ 2455 gt->ctl &= ~4; 2456 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2457 timer_del(cpu->gt_timer[timeridx]); 2458 trace_arm_gt_recalc_disabled(timeridx); 2459 } 2460 } 2461 2462 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2463 int timeridx) 2464 { 2465 ARMCPU *cpu = env_archcpu(env); 2466 2467 timer_del(cpu->gt_timer[timeridx]); 2468 } 2469 2470 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2471 { 2472 return gt_get_countervalue(env); 2473 } 2474 2475 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2476 { 2477 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2478 } 2479 2480 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2481 int timeridx, 2482 uint64_t value) 2483 { 2484 trace_arm_gt_cval_write(timeridx, value); 2485 env->cp15.c14_timer[timeridx].cval = value; 2486 gt_recalc_timer(env_archcpu(env), timeridx); 2487 } 2488 2489 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2490 int timeridx) 2491 { 2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2493 2494 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2495 (gt_get_countervalue(env) - offset)); 2496 } 2497 2498 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2499 int timeridx, 2500 uint64_t value) 2501 { 2502 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2503 2504 trace_arm_gt_tval_write(timeridx, value); 2505 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2506 sextract64(value, 0, 32); 2507 gt_recalc_timer(env_archcpu(env), timeridx); 2508 } 2509 2510 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2511 int timeridx, 2512 uint64_t value) 2513 { 2514 ARMCPU *cpu = env_archcpu(env); 2515 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2516 2517 trace_arm_gt_ctl_write(timeridx, value); 2518 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2519 if ((oldval ^ value) & 1) { 2520 /* Enable toggled */ 2521 gt_recalc_timer(cpu, timeridx); 2522 } else if ((oldval ^ value) & 2) { 2523 /* IMASK toggled: don't need to recalculate, 2524 * just set the interrupt line based on ISTATUS 2525 */ 2526 int irqstate = (oldval & 4) && !(value & 2); 2527 2528 trace_arm_gt_imask_toggle(timeridx, irqstate); 2529 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2530 } 2531 } 2532 2533 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2534 { 2535 gt_timer_reset(env, ri, GTIMER_PHYS); 2536 } 2537 2538 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2539 uint64_t value) 2540 { 2541 gt_cval_write(env, ri, GTIMER_PHYS, value); 2542 } 2543 2544 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2545 { 2546 return gt_tval_read(env, ri, GTIMER_PHYS); 2547 } 2548 2549 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2550 uint64_t value) 2551 { 2552 gt_tval_write(env, ri, GTIMER_PHYS, value); 2553 } 2554 2555 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 uint64_t value) 2557 { 2558 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2559 } 2560 2561 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 gt_timer_reset(env, ri, GTIMER_VIRT); 2564 } 2565 2566 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 uint64_t value) 2568 { 2569 gt_cval_write(env, ri, GTIMER_VIRT, value); 2570 } 2571 2572 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2573 { 2574 return gt_tval_read(env, ri, GTIMER_VIRT); 2575 } 2576 2577 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2578 uint64_t value) 2579 { 2580 gt_tval_write(env, ri, GTIMER_VIRT, value); 2581 } 2582 2583 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2584 uint64_t value) 2585 { 2586 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2587 } 2588 2589 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2590 uint64_t value) 2591 { 2592 ARMCPU *cpu = env_archcpu(env); 2593 2594 trace_arm_gt_cntvoff_write(value); 2595 raw_write(env, ri, value); 2596 gt_recalc_timer(cpu, GTIMER_VIRT); 2597 } 2598 2599 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2600 { 2601 gt_timer_reset(env, ri, GTIMER_HYP); 2602 } 2603 2604 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2605 uint64_t value) 2606 { 2607 gt_cval_write(env, ri, GTIMER_HYP, value); 2608 } 2609 2610 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2611 { 2612 return gt_tval_read(env, ri, GTIMER_HYP); 2613 } 2614 2615 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2616 uint64_t value) 2617 { 2618 gt_tval_write(env, ri, GTIMER_HYP, value); 2619 } 2620 2621 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2622 uint64_t value) 2623 { 2624 gt_ctl_write(env, ri, GTIMER_HYP, value); 2625 } 2626 2627 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2628 { 2629 gt_timer_reset(env, ri, GTIMER_SEC); 2630 } 2631 2632 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 gt_cval_write(env, ri, GTIMER_SEC, value); 2636 } 2637 2638 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2639 { 2640 return gt_tval_read(env, ri, GTIMER_SEC); 2641 } 2642 2643 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2644 uint64_t value) 2645 { 2646 gt_tval_write(env, ri, GTIMER_SEC, value); 2647 } 2648 2649 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2650 uint64_t value) 2651 { 2652 gt_ctl_write(env, ri, GTIMER_SEC, value); 2653 } 2654 2655 void arm_gt_ptimer_cb(void *opaque) 2656 { 2657 ARMCPU *cpu = opaque; 2658 2659 gt_recalc_timer(cpu, GTIMER_PHYS); 2660 } 2661 2662 void arm_gt_vtimer_cb(void *opaque) 2663 { 2664 ARMCPU *cpu = opaque; 2665 2666 gt_recalc_timer(cpu, GTIMER_VIRT); 2667 } 2668 2669 void arm_gt_htimer_cb(void *opaque) 2670 { 2671 ARMCPU *cpu = opaque; 2672 2673 gt_recalc_timer(cpu, GTIMER_HYP); 2674 } 2675 2676 void arm_gt_stimer_cb(void *opaque) 2677 { 2678 ARMCPU *cpu = opaque; 2679 2680 gt_recalc_timer(cpu, GTIMER_SEC); 2681 } 2682 2683 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2684 /* Note that CNTFRQ is purely reads-as-written for the benefit 2685 * of software; writing it doesn't actually change the timer frequency. 2686 * Our reset value matches the fixed frequency we implement the timer at. 2687 */ 2688 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2689 .type = ARM_CP_ALIAS, 2690 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2691 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2692 }, 2693 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2694 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2695 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2696 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2697 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2698 }, 2699 /* overall control: mostly access permissions */ 2700 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2701 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2702 .access = PL1_RW, 2703 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2704 .resetvalue = 0, 2705 }, 2706 /* per-timer control */ 2707 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2708 .secure = ARM_CP_SECSTATE_NS, 2709 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2710 .accessfn = gt_ptimer_access, 2711 .fieldoffset = offsetoflow32(CPUARMState, 2712 cp15.c14_timer[GTIMER_PHYS].ctl), 2713 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2714 }, 2715 { .name = "CNTP_CTL_S", 2716 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2717 .secure = ARM_CP_SECSTATE_S, 2718 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2719 .accessfn = gt_ptimer_access, 2720 .fieldoffset = offsetoflow32(CPUARMState, 2721 cp15.c14_timer[GTIMER_SEC].ctl), 2722 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2723 }, 2724 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2726 .type = ARM_CP_IO, .access = PL0_RW, 2727 .accessfn = gt_ptimer_access, 2728 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2729 .resetvalue = 0, 2730 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2731 }, 2732 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2733 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2734 .accessfn = gt_vtimer_access, 2735 .fieldoffset = offsetoflow32(CPUARMState, 2736 cp15.c14_timer[GTIMER_VIRT].ctl), 2737 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2738 }, 2739 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2740 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2741 .type = ARM_CP_IO, .access = PL0_RW, 2742 .accessfn = gt_vtimer_access, 2743 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2744 .resetvalue = 0, 2745 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2746 }, 2747 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2748 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2749 .secure = ARM_CP_SECSTATE_NS, 2750 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2751 .accessfn = gt_ptimer_access, 2752 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2753 }, 2754 { .name = "CNTP_TVAL_S", 2755 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2756 .secure = ARM_CP_SECSTATE_S, 2757 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2758 .accessfn = gt_ptimer_access, 2759 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2760 }, 2761 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2762 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2763 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2764 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2765 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2766 }, 2767 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2768 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2769 .accessfn = gt_vtimer_access, 2770 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2771 }, 2772 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2773 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2774 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2775 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2776 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2777 }, 2778 /* The counter itself */ 2779 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2781 .accessfn = gt_pct_access, 2782 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2783 }, 2784 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2787 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2788 }, 2789 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2790 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2791 .accessfn = gt_vct_access, 2792 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2793 }, 2794 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2795 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2796 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2797 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2798 }, 2799 /* Comparison value, indicating when the timer goes off */ 2800 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2801 .secure = ARM_CP_SECSTATE_NS, 2802 .access = PL0_RW, 2803 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2804 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2805 .accessfn = gt_ptimer_access, 2806 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2807 }, 2808 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2809 .secure = ARM_CP_SECSTATE_S, 2810 .access = PL0_RW, 2811 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2812 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2813 .accessfn = gt_ptimer_access, 2814 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2815 }, 2816 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2817 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2818 .access = PL0_RW, 2819 .type = ARM_CP_IO, 2820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2821 .resetvalue = 0, .accessfn = gt_ptimer_access, 2822 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2823 }, 2824 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2825 .access = PL0_RW, 2826 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2827 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2828 .accessfn = gt_vtimer_access, 2829 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2830 }, 2831 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2832 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2833 .access = PL0_RW, 2834 .type = ARM_CP_IO, 2835 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2836 .resetvalue = 0, .accessfn = gt_vtimer_access, 2837 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2838 }, 2839 /* Secure timer -- this is actually restricted to only EL3 2840 * and configurably Secure-EL1 via the accessfn. 2841 */ 2842 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2843 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2844 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2845 .accessfn = gt_stimer_access, 2846 .readfn = gt_sec_tval_read, 2847 .writefn = gt_sec_tval_write, 2848 .resetfn = gt_sec_timer_reset, 2849 }, 2850 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2851 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2852 .type = ARM_CP_IO, .access = PL1_RW, 2853 .accessfn = gt_stimer_access, 2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2855 .resetvalue = 0, 2856 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2857 }, 2858 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2859 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2860 .type = ARM_CP_IO, .access = PL1_RW, 2861 .accessfn = gt_stimer_access, 2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2863 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2864 }, 2865 REGINFO_SENTINEL 2866 }; 2867 2868 #else 2869 2870 /* In user-mode most of the generic timer registers are inaccessible 2871 * however modern kernels (4.12+) allow access to cntvct_el0 2872 */ 2873 2874 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2875 { 2876 /* Currently we have no support for QEMUTimer in linux-user so we 2877 * can't call gt_get_countervalue(env), instead we directly 2878 * call the lower level functions. 2879 */ 2880 return cpu_get_clock() / GTIMER_SCALE; 2881 } 2882 2883 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2884 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2886 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2887 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2888 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2889 }, 2890 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2892 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2893 .readfn = gt_virt_cnt_read, 2894 }, 2895 REGINFO_SENTINEL 2896 }; 2897 2898 #endif 2899 2900 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2901 { 2902 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2903 raw_write(env, ri, value); 2904 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2905 raw_write(env, ri, value & 0xfffff6ff); 2906 } else { 2907 raw_write(env, ri, value & 0xfffff1ff); 2908 } 2909 } 2910 2911 #ifndef CONFIG_USER_ONLY 2912 /* get_phys_addr() isn't present for user-mode-only targets */ 2913 2914 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2915 bool isread) 2916 { 2917 if (ri->opc2 & 4) { 2918 /* The ATS12NSO* operations must trap to EL3 if executed in 2919 * Secure EL1 (which can only happen if EL3 is AArch64). 2920 * They are simply UNDEF if executed from NS EL1. 2921 * They function normally from EL2 or EL3. 2922 */ 2923 if (arm_current_el(env) == 1) { 2924 if (arm_is_secure_below_el3(env)) { 2925 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2926 } 2927 return CP_ACCESS_TRAP_UNCATEGORIZED; 2928 } 2929 } 2930 return CP_ACCESS_OK; 2931 } 2932 2933 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2934 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2935 { 2936 hwaddr phys_addr; 2937 target_ulong page_size; 2938 int prot; 2939 bool ret; 2940 uint64_t par64; 2941 bool format64 = false; 2942 MemTxAttrs attrs = {}; 2943 ARMMMUFaultInfo fi = {}; 2944 ARMCacheAttrs cacheattrs = {}; 2945 2946 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2947 &prot, &page_size, &fi, &cacheattrs); 2948 2949 if (ret) { 2950 /* 2951 * Some kinds of translation fault must cause exceptions rather 2952 * than being reported in the PAR. 2953 */ 2954 int current_el = arm_current_el(env); 2955 int target_el; 2956 uint32_t syn, fsr, fsc; 2957 bool take_exc = false; 2958 2959 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 2960 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { 2961 /* 2962 * Synchronous stage 2 fault on an access made as part of the 2963 * translation table walk for AT S1E0* or AT S1E1* insn 2964 * executed from NS EL1. If this is a synchronous external abort 2965 * and SCR_EL3.EA == 1, then we take a synchronous external abort 2966 * to EL3. Otherwise the fault is taken as an exception to EL2, 2967 * and HPFAR_EL2 holds the faulting IPA. 2968 */ 2969 if (fi.type == ARMFault_SyncExternalOnWalk && 2970 (env->cp15.scr_el3 & SCR_EA)) { 2971 target_el = 3; 2972 } else { 2973 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 2974 target_el = 2; 2975 } 2976 take_exc = true; 2977 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 2978 /* 2979 * Synchronous external aborts during a translation table walk 2980 * are taken as Data Abort exceptions. 2981 */ 2982 if (fi.stage2) { 2983 if (current_el == 3) { 2984 target_el = 3; 2985 } else { 2986 target_el = 2; 2987 } 2988 } else { 2989 target_el = exception_target_el(env); 2990 } 2991 take_exc = true; 2992 } 2993 2994 if (take_exc) { 2995 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 2996 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 2997 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 2998 fsr = arm_fi_to_lfsc(&fi); 2999 fsc = extract32(fsr, 0, 6); 3000 } else { 3001 fsr = arm_fi_to_sfsc(&fi); 3002 fsc = 0x3f; 3003 } 3004 /* 3005 * Report exception with ESR indicating a fault due to a 3006 * translation table walk for a cache maintenance instruction. 3007 */ 3008 syn = syn_data_abort_no_iss(current_el == target_el, 3009 fi.ea, 1, fi.s1ptw, 1, fsc); 3010 env->exception.vaddress = value; 3011 env->exception.fsr = fsr; 3012 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3013 } 3014 } 3015 3016 if (is_a64(env)) { 3017 format64 = true; 3018 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3019 /* 3020 * ATS1Cxx: 3021 * * TTBCR.EAE determines whether the result is returned using the 3022 * 32-bit or the 64-bit PAR format 3023 * * Instructions executed in Hyp mode always use the 64bit format 3024 * 3025 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3026 * * The Non-secure TTBCR.EAE bit is set to 1 3027 * * The implementation includes EL2, and the value of HCR.VM is 1 3028 * 3029 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3030 * 3031 * ATS1Hx always uses the 64bit format. 3032 */ 3033 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3034 3035 if (arm_feature(env, ARM_FEATURE_EL2)) { 3036 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 3037 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3038 } else { 3039 format64 |= arm_current_el(env) == 2; 3040 } 3041 } 3042 } 3043 3044 if (format64) { 3045 /* Create a 64-bit PAR */ 3046 par64 = (1 << 11); /* LPAE bit always set */ 3047 if (!ret) { 3048 par64 |= phys_addr & ~0xfffULL; 3049 if (!attrs.secure) { 3050 par64 |= (1 << 9); /* NS */ 3051 } 3052 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3053 par64 |= cacheattrs.shareability << 7; /* SH */ 3054 } else { 3055 uint32_t fsr = arm_fi_to_lfsc(&fi); 3056 3057 par64 |= 1; /* F */ 3058 par64 |= (fsr & 0x3f) << 1; /* FS */ 3059 if (fi.stage2) { 3060 par64 |= (1 << 9); /* S */ 3061 } 3062 if (fi.s1ptw) { 3063 par64 |= (1 << 8); /* PTW */ 3064 } 3065 } 3066 } else { 3067 /* fsr is a DFSR/IFSR value for the short descriptor 3068 * translation table format (with WnR always clear). 3069 * Convert it to a 32-bit PAR. 3070 */ 3071 if (!ret) { 3072 /* We do not set any attribute bits in the PAR */ 3073 if (page_size == (1 << 24) 3074 && arm_feature(env, ARM_FEATURE_V7)) { 3075 par64 = (phys_addr & 0xff000000) | (1 << 1); 3076 } else { 3077 par64 = phys_addr & 0xfffff000; 3078 } 3079 if (!attrs.secure) { 3080 par64 |= (1 << 9); /* NS */ 3081 } 3082 } else { 3083 uint32_t fsr = arm_fi_to_sfsc(&fi); 3084 3085 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3086 ((fsr & 0xf) << 1) | 1; 3087 } 3088 } 3089 return par64; 3090 } 3091 3092 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3093 { 3094 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3095 uint64_t par64; 3096 ARMMMUIdx mmu_idx; 3097 int el = arm_current_el(env); 3098 bool secure = arm_is_secure_below_el3(env); 3099 3100 switch (ri->opc2 & 6) { 3101 case 0: 3102 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3103 switch (el) { 3104 case 3: 3105 mmu_idx = ARMMMUIdx_S1E3; 3106 break; 3107 case 2: 3108 mmu_idx = ARMMMUIdx_S1NSE1; 3109 break; 3110 case 1: 3111 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3112 break; 3113 default: 3114 g_assert_not_reached(); 3115 } 3116 break; 3117 case 2: 3118 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3119 switch (el) { 3120 case 3: 3121 mmu_idx = ARMMMUIdx_S1SE0; 3122 break; 3123 case 2: 3124 mmu_idx = ARMMMUIdx_S1NSE0; 3125 break; 3126 case 1: 3127 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3128 break; 3129 default: 3130 g_assert_not_reached(); 3131 } 3132 break; 3133 case 4: 3134 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3135 mmu_idx = ARMMMUIdx_S12NSE1; 3136 break; 3137 case 6: 3138 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3139 mmu_idx = ARMMMUIdx_S12NSE0; 3140 break; 3141 default: 3142 g_assert_not_reached(); 3143 } 3144 3145 par64 = do_ats_write(env, value, access_type, mmu_idx); 3146 3147 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3148 } 3149 3150 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3151 uint64_t value) 3152 { 3153 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3154 uint64_t par64; 3155 3156 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3157 3158 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3159 } 3160 3161 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3162 bool isread) 3163 { 3164 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3165 return CP_ACCESS_TRAP; 3166 } 3167 return CP_ACCESS_OK; 3168 } 3169 3170 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3171 uint64_t value) 3172 { 3173 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3174 ARMMMUIdx mmu_idx; 3175 int secure = arm_is_secure_below_el3(env); 3176 3177 switch (ri->opc2 & 6) { 3178 case 0: 3179 switch (ri->opc1) { 3180 case 0: /* AT S1E1R, AT S1E1W */ 3181 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3182 break; 3183 case 4: /* AT S1E2R, AT S1E2W */ 3184 mmu_idx = ARMMMUIdx_S1E2; 3185 break; 3186 case 6: /* AT S1E3R, AT S1E3W */ 3187 mmu_idx = ARMMMUIdx_S1E3; 3188 break; 3189 default: 3190 g_assert_not_reached(); 3191 } 3192 break; 3193 case 2: /* AT S1E0R, AT S1E0W */ 3194 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3195 break; 3196 case 4: /* AT S12E1R, AT S12E1W */ 3197 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3198 break; 3199 case 6: /* AT S12E0R, AT S12E0W */ 3200 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3201 break; 3202 default: 3203 g_assert_not_reached(); 3204 } 3205 3206 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3207 } 3208 #endif 3209 3210 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3211 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3212 .access = PL1_RW, .resetvalue = 0, 3213 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3214 offsetoflow32(CPUARMState, cp15.par_ns) }, 3215 .writefn = par_write }, 3216 #ifndef CONFIG_USER_ONLY 3217 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3218 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3219 .access = PL1_W, .accessfn = ats_access, 3220 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3221 #endif 3222 REGINFO_SENTINEL 3223 }; 3224 3225 /* Return basic MPU access permission bits. */ 3226 static uint32_t simple_mpu_ap_bits(uint32_t val) 3227 { 3228 uint32_t ret; 3229 uint32_t mask; 3230 int i; 3231 ret = 0; 3232 mask = 3; 3233 for (i = 0; i < 16; i += 2) { 3234 ret |= (val >> i) & mask; 3235 mask <<= 2; 3236 } 3237 return ret; 3238 } 3239 3240 /* Pad basic MPU access permission bits to extended format. */ 3241 static uint32_t extended_mpu_ap_bits(uint32_t val) 3242 { 3243 uint32_t ret; 3244 uint32_t mask; 3245 int i; 3246 ret = 0; 3247 mask = 3; 3248 for (i = 0; i < 16; i += 2) { 3249 ret |= (val & mask) << i; 3250 mask <<= 2; 3251 } 3252 return ret; 3253 } 3254 3255 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3256 uint64_t value) 3257 { 3258 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3259 } 3260 3261 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3262 { 3263 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3264 } 3265 3266 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3267 uint64_t value) 3268 { 3269 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3270 } 3271 3272 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3273 { 3274 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3275 } 3276 3277 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3278 { 3279 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3280 3281 if (!u32p) { 3282 return 0; 3283 } 3284 3285 u32p += env->pmsav7.rnr[M_REG_NS]; 3286 return *u32p; 3287 } 3288 3289 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3290 uint64_t value) 3291 { 3292 ARMCPU *cpu = env_archcpu(env); 3293 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3294 3295 if (!u32p) { 3296 return; 3297 } 3298 3299 u32p += env->pmsav7.rnr[M_REG_NS]; 3300 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3301 *u32p = value; 3302 } 3303 3304 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3305 uint64_t value) 3306 { 3307 ARMCPU *cpu = env_archcpu(env); 3308 uint32_t nrgs = cpu->pmsav7_dregion; 3309 3310 if (value >= nrgs) { 3311 qemu_log_mask(LOG_GUEST_ERROR, 3312 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3313 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3314 return; 3315 } 3316 3317 raw_write(env, ri, value); 3318 } 3319 3320 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3321 /* Reset for all these registers is handled in arm_cpu_reset(), 3322 * because the PMSAv7 is also used by M-profile CPUs, which do 3323 * not register cpregs but still need the state to be reset. 3324 */ 3325 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3326 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3327 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3328 .readfn = pmsav7_read, .writefn = pmsav7_write, 3329 .resetfn = arm_cp_reset_ignore }, 3330 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3331 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3332 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3333 .readfn = pmsav7_read, .writefn = pmsav7_write, 3334 .resetfn = arm_cp_reset_ignore }, 3335 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3336 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3337 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3338 .readfn = pmsav7_read, .writefn = pmsav7_write, 3339 .resetfn = arm_cp_reset_ignore }, 3340 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3341 .access = PL1_RW, 3342 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3343 .writefn = pmsav7_rgnr_write, 3344 .resetfn = arm_cp_reset_ignore }, 3345 REGINFO_SENTINEL 3346 }; 3347 3348 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3349 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3350 .access = PL1_RW, .type = ARM_CP_ALIAS, 3351 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3352 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3353 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3354 .access = PL1_RW, .type = ARM_CP_ALIAS, 3355 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3356 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3357 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3358 .access = PL1_RW, 3359 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3360 .resetvalue = 0, }, 3361 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3362 .access = PL1_RW, 3363 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3364 .resetvalue = 0, }, 3365 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3366 .access = PL1_RW, 3367 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3368 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3369 .access = PL1_RW, 3370 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3371 /* Protection region base and size registers */ 3372 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3373 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3374 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3375 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3376 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3377 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3378 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3379 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3380 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3381 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3382 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3383 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3384 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3387 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3390 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3393 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3396 REGINFO_SENTINEL 3397 }; 3398 3399 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3400 uint64_t value) 3401 { 3402 TCR *tcr = raw_ptr(env, ri); 3403 int maskshift = extract32(value, 0, 3); 3404 3405 if (!arm_feature(env, ARM_FEATURE_V8)) { 3406 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3407 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3408 * using Long-desciptor translation table format */ 3409 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3410 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3411 /* In an implementation that includes the Security Extensions 3412 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3413 * Short-descriptor translation table format. 3414 */ 3415 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3416 } else { 3417 value &= TTBCR_N; 3418 } 3419 } 3420 3421 /* Update the masks corresponding to the TCR bank being written 3422 * Note that we always calculate mask and base_mask, but 3423 * they are only used for short-descriptor tables (ie if EAE is 0); 3424 * for long-descriptor tables the TCR fields are used differently 3425 * and the mask and base_mask values are meaningless. 3426 */ 3427 tcr->raw_tcr = value; 3428 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3429 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3430 } 3431 3432 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3433 uint64_t value) 3434 { 3435 ARMCPU *cpu = env_archcpu(env); 3436 TCR *tcr = raw_ptr(env, ri); 3437 3438 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3439 /* With LPAE the TTBCR could result in a change of ASID 3440 * via the TTBCR.A1 bit, so do a TLB flush. 3441 */ 3442 tlb_flush(CPU(cpu)); 3443 } 3444 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3445 value = deposit64(tcr->raw_tcr, 0, 32, value); 3446 vmsa_ttbcr_raw_write(env, ri, value); 3447 } 3448 3449 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3450 { 3451 TCR *tcr = raw_ptr(env, ri); 3452 3453 /* Reset both the TCR as well as the masks corresponding to the bank of 3454 * the TCR being reset. 3455 */ 3456 tcr->raw_tcr = 0; 3457 tcr->mask = 0; 3458 tcr->base_mask = 0xffffc000u; 3459 } 3460 3461 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3462 uint64_t value) 3463 { 3464 ARMCPU *cpu = env_archcpu(env); 3465 TCR *tcr = raw_ptr(env, ri); 3466 3467 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3468 tlb_flush(CPU(cpu)); 3469 tcr->raw_tcr = value; 3470 } 3471 3472 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3473 uint64_t value) 3474 { 3475 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3476 if (cpreg_field_is_64bit(ri) && 3477 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3478 ARMCPU *cpu = env_archcpu(env); 3479 tlb_flush(CPU(cpu)); 3480 } 3481 raw_write(env, ri, value); 3482 } 3483 3484 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3485 uint64_t value) 3486 { 3487 ARMCPU *cpu = env_archcpu(env); 3488 CPUState *cs = CPU(cpu); 3489 3490 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3491 if (raw_read(env, ri) != value) { 3492 tlb_flush_by_mmuidx(cs, 3493 ARMMMUIdxBit_S12NSE1 | 3494 ARMMMUIdxBit_S12NSE0 | 3495 ARMMMUIdxBit_S2NS); 3496 raw_write(env, ri, value); 3497 } 3498 } 3499 3500 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3501 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3502 .access = PL1_RW, .type = ARM_CP_ALIAS, 3503 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3504 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3505 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3506 .access = PL1_RW, .resetvalue = 0, 3507 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3508 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3509 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3510 .access = PL1_RW, .resetvalue = 0, 3511 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3512 offsetof(CPUARMState, cp15.dfar_ns) } }, 3513 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3515 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3516 .resetvalue = 0, }, 3517 REGINFO_SENTINEL 3518 }; 3519 3520 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3521 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3523 .access = PL1_RW, 3524 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3525 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3526 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3527 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3528 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3529 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3530 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3531 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3532 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3533 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3534 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3535 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3536 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3537 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3538 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3539 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3540 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3541 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3542 .raw_writefn = vmsa_ttbcr_raw_write, 3543 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3544 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3545 REGINFO_SENTINEL 3546 }; 3547 3548 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3549 * qemu tlbs nor adjusting cached masks. 3550 */ 3551 static const ARMCPRegInfo ttbcr2_reginfo = { 3552 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3553 .access = PL1_RW, .type = ARM_CP_ALIAS, 3554 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3555 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3556 }; 3557 3558 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3559 uint64_t value) 3560 { 3561 env->cp15.c15_ticonfig = value & 0xe7; 3562 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3563 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3564 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3565 } 3566 3567 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3568 uint64_t value) 3569 { 3570 env->cp15.c15_threadid = value & 0xffff; 3571 } 3572 3573 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3574 uint64_t value) 3575 { 3576 /* Wait-for-interrupt (deprecated) */ 3577 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3578 } 3579 3580 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 /* On OMAP there are registers indicating the max/min index of dcache lines 3584 * containing a dirty line; cache flush operations have to reset these. 3585 */ 3586 env->cp15.c15_i_max = 0x000; 3587 env->cp15.c15_i_min = 0xff0; 3588 } 3589 3590 static const ARMCPRegInfo omap_cp_reginfo[] = { 3591 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3592 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3593 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3594 .resetvalue = 0, }, 3595 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3596 .access = PL1_RW, .type = ARM_CP_NOP }, 3597 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3598 .access = PL1_RW, 3599 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3600 .writefn = omap_ticonfig_write }, 3601 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3602 .access = PL1_RW, 3603 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3604 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3605 .access = PL1_RW, .resetvalue = 0xff0, 3606 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3607 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3608 .access = PL1_RW, 3609 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3610 .writefn = omap_threadid_write }, 3611 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3612 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3613 .type = ARM_CP_NO_RAW, 3614 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3615 /* TODO: Peripheral port remap register: 3616 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3617 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3618 * when MMU is off. 3619 */ 3620 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3621 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3622 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3623 .writefn = omap_cachemaint_write }, 3624 { .name = "C9", .cp = 15, .crn = 9, 3625 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3626 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3627 REGINFO_SENTINEL 3628 }; 3629 3630 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3631 uint64_t value) 3632 { 3633 env->cp15.c15_cpar = value & 0x3fff; 3634 } 3635 3636 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3637 { .name = "XSCALE_CPAR", 3638 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3640 .writefn = xscale_cpar_write, }, 3641 { .name = "XSCALE_AUXCR", 3642 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3644 .resetvalue = 0, }, 3645 /* XScale specific cache-lockdown: since we have no cache we NOP these 3646 * and hope the guest does not really rely on cache behaviour. 3647 */ 3648 { .name = "XSCALE_LOCK_ICACHE_LINE", 3649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3650 .access = PL1_W, .type = ARM_CP_NOP }, 3651 { .name = "XSCALE_UNLOCK_ICACHE", 3652 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3653 .access = PL1_W, .type = ARM_CP_NOP }, 3654 { .name = "XSCALE_DCACHE_LOCK", 3655 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3656 .access = PL1_RW, .type = ARM_CP_NOP }, 3657 { .name = "XSCALE_UNLOCK_DCACHE", 3658 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3659 .access = PL1_W, .type = ARM_CP_NOP }, 3660 REGINFO_SENTINEL 3661 }; 3662 3663 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3664 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3665 * implementation of this implementation-defined space. 3666 * Ideally this should eventually disappear in favour of actually 3667 * implementing the correct behaviour for all cores. 3668 */ 3669 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3670 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3671 .access = PL1_RW, 3672 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3673 .resetvalue = 0 }, 3674 REGINFO_SENTINEL 3675 }; 3676 3677 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3678 /* Cache status: RAZ because we have no cache so it's always clean */ 3679 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3680 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3681 .resetvalue = 0 }, 3682 REGINFO_SENTINEL 3683 }; 3684 3685 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3686 /* We never have a a block transfer operation in progress */ 3687 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3688 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3689 .resetvalue = 0 }, 3690 /* The cache ops themselves: these all NOP for QEMU */ 3691 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3693 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3694 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3695 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3697 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3699 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3700 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3701 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3702 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3703 REGINFO_SENTINEL 3704 }; 3705 3706 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3707 /* The cache test-and-clean instructions always return (1 << 30) 3708 * to indicate that there are no dirty cache lines. 3709 */ 3710 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3711 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3712 .resetvalue = (1 << 30) }, 3713 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3714 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3715 .resetvalue = (1 << 30) }, 3716 REGINFO_SENTINEL 3717 }; 3718 3719 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3720 /* Ignore ReadBuffer accesses */ 3721 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3723 .access = PL1_RW, .resetvalue = 0, 3724 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3725 REGINFO_SENTINEL 3726 }; 3727 3728 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 ARMCPU *cpu = env_archcpu(env); 3731 unsigned int cur_el = arm_current_el(env); 3732 bool secure = arm_is_secure(env); 3733 3734 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3735 return env->cp15.vpidr_el2; 3736 } 3737 return raw_read(env, ri); 3738 } 3739 3740 static uint64_t mpidr_read_val(CPUARMState *env) 3741 { 3742 ARMCPU *cpu = env_archcpu(env); 3743 uint64_t mpidr = cpu->mp_affinity; 3744 3745 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3746 mpidr |= (1U << 31); 3747 /* Cores which are uniprocessor (non-coherent) 3748 * but still implement the MP extensions set 3749 * bit 30. (For instance, Cortex-R5). 3750 */ 3751 if (cpu->mp_is_up) { 3752 mpidr |= (1u << 30); 3753 } 3754 } 3755 return mpidr; 3756 } 3757 3758 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3759 { 3760 unsigned int cur_el = arm_current_el(env); 3761 bool secure = arm_is_secure(env); 3762 3763 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3764 return env->cp15.vmpidr_el2; 3765 } 3766 return mpidr_read_val(env); 3767 } 3768 3769 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3770 /* NOP AMAIR0/1 */ 3771 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3772 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3773 .access = PL1_RW, .type = ARM_CP_CONST, 3774 .resetvalue = 0 }, 3775 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3776 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3777 .access = PL1_RW, .type = ARM_CP_CONST, 3778 .resetvalue = 0 }, 3779 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3780 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3781 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3782 offsetof(CPUARMState, cp15.par_ns)} }, 3783 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3784 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3785 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3786 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3787 .writefn = vmsa_ttbr_write, }, 3788 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3791 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3792 .writefn = vmsa_ttbr_write, }, 3793 REGINFO_SENTINEL 3794 }; 3795 3796 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3797 { 3798 return vfp_get_fpcr(env); 3799 } 3800 3801 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3802 uint64_t value) 3803 { 3804 vfp_set_fpcr(env, value); 3805 } 3806 3807 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3808 { 3809 return vfp_get_fpsr(env); 3810 } 3811 3812 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3813 uint64_t value) 3814 { 3815 vfp_set_fpsr(env, value); 3816 } 3817 3818 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3819 bool isread) 3820 { 3821 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3822 return CP_ACCESS_TRAP; 3823 } 3824 return CP_ACCESS_OK; 3825 } 3826 3827 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3828 uint64_t value) 3829 { 3830 env->daif = value & PSTATE_DAIF; 3831 } 3832 3833 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3834 const ARMCPRegInfo *ri, 3835 bool isread) 3836 { 3837 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3838 * SCTLR_EL1.UCI is set. 3839 */ 3840 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3841 return CP_ACCESS_TRAP; 3842 } 3843 return CP_ACCESS_OK; 3844 } 3845 3846 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3847 * Page D4-1736 (DDI0487A.b) 3848 */ 3849 3850 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3851 uint64_t value) 3852 { 3853 CPUState *cs = env_cpu(env); 3854 bool sec = arm_is_secure_below_el3(env); 3855 3856 if (sec) { 3857 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3858 ARMMMUIdxBit_S1SE1 | 3859 ARMMMUIdxBit_S1SE0); 3860 } else { 3861 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3862 ARMMMUIdxBit_S12NSE1 | 3863 ARMMMUIdxBit_S12NSE0); 3864 } 3865 } 3866 3867 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 CPUState *cs = env_cpu(env); 3871 3872 if (tlb_force_broadcast(env)) { 3873 tlbi_aa64_vmalle1is_write(env, NULL, value); 3874 return; 3875 } 3876 3877 if (arm_is_secure_below_el3(env)) { 3878 tlb_flush_by_mmuidx(cs, 3879 ARMMMUIdxBit_S1SE1 | 3880 ARMMMUIdxBit_S1SE0); 3881 } else { 3882 tlb_flush_by_mmuidx(cs, 3883 ARMMMUIdxBit_S12NSE1 | 3884 ARMMMUIdxBit_S12NSE0); 3885 } 3886 } 3887 3888 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3889 uint64_t value) 3890 { 3891 /* Note that the 'ALL' scope must invalidate both stage 1 and 3892 * stage 2 translations, whereas most other scopes only invalidate 3893 * stage 1 translations. 3894 */ 3895 ARMCPU *cpu = env_archcpu(env); 3896 CPUState *cs = CPU(cpu); 3897 3898 if (arm_is_secure_below_el3(env)) { 3899 tlb_flush_by_mmuidx(cs, 3900 ARMMMUIdxBit_S1SE1 | 3901 ARMMMUIdxBit_S1SE0); 3902 } else { 3903 if (arm_feature(env, ARM_FEATURE_EL2)) { 3904 tlb_flush_by_mmuidx(cs, 3905 ARMMMUIdxBit_S12NSE1 | 3906 ARMMMUIdxBit_S12NSE0 | 3907 ARMMMUIdxBit_S2NS); 3908 } else { 3909 tlb_flush_by_mmuidx(cs, 3910 ARMMMUIdxBit_S12NSE1 | 3911 ARMMMUIdxBit_S12NSE0); 3912 } 3913 } 3914 } 3915 3916 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3917 uint64_t value) 3918 { 3919 ARMCPU *cpu = env_archcpu(env); 3920 CPUState *cs = CPU(cpu); 3921 3922 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3923 } 3924 3925 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 ARMCPU *cpu = env_archcpu(env); 3929 CPUState *cs = CPU(cpu); 3930 3931 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3932 } 3933 3934 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3935 uint64_t value) 3936 { 3937 /* Note that the 'ALL' scope must invalidate both stage 1 and 3938 * stage 2 translations, whereas most other scopes only invalidate 3939 * stage 1 translations. 3940 */ 3941 CPUState *cs = env_cpu(env); 3942 bool sec = arm_is_secure_below_el3(env); 3943 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3944 3945 if (sec) { 3946 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3947 ARMMMUIdxBit_S1SE1 | 3948 ARMMMUIdxBit_S1SE0); 3949 } else if (has_el2) { 3950 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3951 ARMMMUIdxBit_S12NSE1 | 3952 ARMMMUIdxBit_S12NSE0 | 3953 ARMMMUIdxBit_S2NS); 3954 } else { 3955 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3956 ARMMMUIdxBit_S12NSE1 | 3957 ARMMMUIdxBit_S12NSE0); 3958 } 3959 } 3960 3961 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 CPUState *cs = env_cpu(env); 3965 3966 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3967 } 3968 3969 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3970 uint64_t value) 3971 { 3972 CPUState *cs = env_cpu(env); 3973 3974 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3975 } 3976 3977 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 /* Invalidate by VA, EL2 3981 * Currently handles both VAE2 and VALE2, since we don't support 3982 * flush-last-level-only. 3983 */ 3984 ARMCPU *cpu = env_archcpu(env); 3985 CPUState *cs = CPU(cpu); 3986 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3987 3988 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3989 } 3990 3991 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3992 uint64_t value) 3993 { 3994 /* Invalidate by VA, EL3 3995 * Currently handles both VAE3 and VALE3, since we don't support 3996 * flush-last-level-only. 3997 */ 3998 ARMCPU *cpu = env_archcpu(env); 3999 CPUState *cs = CPU(cpu); 4000 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4001 4002 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 4003 } 4004 4005 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4006 uint64_t value) 4007 { 4008 ARMCPU *cpu = env_archcpu(env); 4009 CPUState *cs = CPU(cpu); 4010 bool sec = arm_is_secure_below_el3(env); 4011 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4012 4013 if (sec) { 4014 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4015 ARMMMUIdxBit_S1SE1 | 4016 ARMMMUIdxBit_S1SE0); 4017 } else { 4018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4019 ARMMMUIdxBit_S12NSE1 | 4020 ARMMMUIdxBit_S12NSE0); 4021 } 4022 } 4023 4024 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4025 uint64_t value) 4026 { 4027 /* Invalidate by VA, EL1&0 (AArch64 version). 4028 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4029 * since we don't support flush-for-specific-ASID-only or 4030 * flush-last-level-only. 4031 */ 4032 ARMCPU *cpu = env_archcpu(env); 4033 CPUState *cs = CPU(cpu); 4034 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4035 4036 if (tlb_force_broadcast(env)) { 4037 tlbi_aa64_vae1is_write(env, NULL, value); 4038 return; 4039 } 4040 4041 if (arm_is_secure_below_el3(env)) { 4042 tlb_flush_page_by_mmuidx(cs, pageaddr, 4043 ARMMMUIdxBit_S1SE1 | 4044 ARMMMUIdxBit_S1SE0); 4045 } else { 4046 tlb_flush_page_by_mmuidx(cs, pageaddr, 4047 ARMMMUIdxBit_S12NSE1 | 4048 ARMMMUIdxBit_S12NSE0); 4049 } 4050 } 4051 4052 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4053 uint64_t value) 4054 { 4055 CPUState *cs = env_cpu(env); 4056 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4057 4058 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4059 ARMMMUIdxBit_S1E2); 4060 } 4061 4062 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4063 uint64_t value) 4064 { 4065 CPUState *cs = env_cpu(env); 4066 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4067 4068 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4069 ARMMMUIdxBit_S1E3); 4070 } 4071 4072 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4073 uint64_t value) 4074 { 4075 /* Invalidate by IPA. This has to invalidate any structures that 4076 * contain only stage 2 translation information, but does not need 4077 * to apply to structures that contain combined stage 1 and stage 2 4078 * translation information. 4079 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4080 */ 4081 ARMCPU *cpu = env_archcpu(env); 4082 CPUState *cs = CPU(cpu); 4083 uint64_t pageaddr; 4084 4085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4086 return; 4087 } 4088 4089 pageaddr = sextract64(value << 12, 0, 48); 4090 4091 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4092 } 4093 4094 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 CPUState *cs = env_cpu(env); 4098 uint64_t pageaddr; 4099 4100 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4101 return; 4102 } 4103 4104 pageaddr = sextract64(value << 12, 0, 48); 4105 4106 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4107 ARMMMUIdxBit_S2NS); 4108 } 4109 4110 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4111 bool isread) 4112 { 4113 /* We don't implement EL2, so the only control on DC ZVA is the 4114 * bit in the SCTLR which can prohibit access for EL0. 4115 */ 4116 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4117 return CP_ACCESS_TRAP; 4118 } 4119 return CP_ACCESS_OK; 4120 } 4121 4122 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4123 { 4124 ARMCPU *cpu = env_archcpu(env); 4125 int dzp_bit = 1 << 4; 4126 4127 /* DZP indicates whether DC ZVA access is allowed */ 4128 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4129 dzp_bit = 0; 4130 } 4131 return cpu->dcz_blocksize | dzp_bit; 4132 } 4133 4134 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4135 bool isread) 4136 { 4137 if (!(env->pstate & PSTATE_SP)) { 4138 /* Access to SP_EL0 is undefined if it's being used as 4139 * the stack pointer. 4140 */ 4141 return CP_ACCESS_TRAP_UNCATEGORIZED; 4142 } 4143 return CP_ACCESS_OK; 4144 } 4145 4146 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4147 { 4148 return env->pstate & PSTATE_SP; 4149 } 4150 4151 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4152 { 4153 update_spsel(env, val); 4154 } 4155 4156 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4157 uint64_t value) 4158 { 4159 ARMCPU *cpu = env_archcpu(env); 4160 4161 if (raw_read(env, ri) == value) { 4162 /* Skip the TLB flush if nothing actually changed; Linux likes 4163 * to do a lot of pointless SCTLR writes. 4164 */ 4165 return; 4166 } 4167 4168 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4169 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4170 value &= ~SCTLR_M; 4171 } 4172 4173 raw_write(env, ri, value); 4174 /* ??? Lots of these bits are not implemented. */ 4175 /* This may enable/disable the MMU, so do a TLB flush. */ 4176 tlb_flush(CPU(cpu)); 4177 4178 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4179 /* 4180 * Normally we would always end the TB on an SCTLR write; see the 4181 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4182 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4183 * of hflags from the translator, so do it here. 4184 */ 4185 arm_rebuild_hflags(env); 4186 } 4187 } 4188 4189 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4190 bool isread) 4191 { 4192 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4193 return CP_ACCESS_TRAP_FP_EL2; 4194 } 4195 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4196 return CP_ACCESS_TRAP_FP_EL3; 4197 } 4198 return CP_ACCESS_OK; 4199 } 4200 4201 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4202 uint64_t value) 4203 { 4204 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4205 } 4206 4207 static const ARMCPRegInfo v8_cp_reginfo[] = { 4208 /* Minimal set of EL0-visible registers. This will need to be expanded 4209 * significantly for system emulation of AArch64 CPUs. 4210 */ 4211 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4212 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4213 .access = PL0_RW, .type = ARM_CP_NZCV }, 4214 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4216 .type = ARM_CP_NO_RAW, 4217 .access = PL0_RW, .accessfn = aa64_daif_access, 4218 .fieldoffset = offsetof(CPUARMState, daif), 4219 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4220 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4221 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4222 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4223 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4224 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4225 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4226 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4227 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4228 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4229 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4230 .access = PL0_R, .type = ARM_CP_NO_RAW, 4231 .readfn = aa64_dczid_read }, 4232 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4233 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4234 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4235 #ifndef CONFIG_USER_ONLY 4236 /* Avoid overhead of an access check that always passes in user-mode */ 4237 .accessfn = aa64_zva_access, 4238 #endif 4239 }, 4240 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4241 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4242 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4243 /* Cache ops: all NOPs since we don't emulate caches */ 4244 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4246 .access = PL1_W, .type = ARM_CP_NOP }, 4247 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4249 .access = PL1_W, .type = ARM_CP_NOP }, 4250 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4252 .access = PL0_W, .type = ARM_CP_NOP, 4253 .accessfn = aa64_cacheop_access }, 4254 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4256 .access = PL1_W, .type = ARM_CP_NOP }, 4257 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4259 .access = PL1_W, .type = ARM_CP_NOP }, 4260 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4262 .access = PL0_W, .type = ARM_CP_NOP, 4263 .accessfn = aa64_cacheop_access }, 4264 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4265 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4266 .access = PL1_W, .type = ARM_CP_NOP }, 4267 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4268 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4269 .access = PL0_W, .type = ARM_CP_NOP, 4270 .accessfn = aa64_cacheop_access }, 4271 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4272 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4273 .access = PL0_W, .type = ARM_CP_NOP, 4274 .accessfn = aa64_cacheop_access }, 4275 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4276 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4277 .access = PL1_W, .type = ARM_CP_NOP }, 4278 /* TLBI operations */ 4279 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4280 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4281 .access = PL1_W, .type = ARM_CP_NO_RAW, 4282 .writefn = tlbi_aa64_vmalle1is_write }, 4283 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4284 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4285 .access = PL1_W, .type = ARM_CP_NO_RAW, 4286 .writefn = tlbi_aa64_vae1is_write }, 4287 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4288 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4289 .access = PL1_W, .type = ARM_CP_NO_RAW, 4290 .writefn = tlbi_aa64_vmalle1is_write }, 4291 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4292 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4293 .access = PL1_W, .type = ARM_CP_NO_RAW, 4294 .writefn = tlbi_aa64_vae1is_write }, 4295 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4296 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4297 .access = PL1_W, .type = ARM_CP_NO_RAW, 4298 .writefn = tlbi_aa64_vae1is_write }, 4299 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4301 .access = PL1_W, .type = ARM_CP_NO_RAW, 4302 .writefn = tlbi_aa64_vae1is_write }, 4303 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4305 .access = PL1_W, .type = ARM_CP_NO_RAW, 4306 .writefn = tlbi_aa64_vmalle1_write }, 4307 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4308 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4309 .access = PL1_W, .type = ARM_CP_NO_RAW, 4310 .writefn = tlbi_aa64_vae1_write }, 4311 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4312 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4313 .access = PL1_W, .type = ARM_CP_NO_RAW, 4314 .writefn = tlbi_aa64_vmalle1_write }, 4315 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4317 .access = PL1_W, .type = ARM_CP_NO_RAW, 4318 .writefn = tlbi_aa64_vae1_write }, 4319 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4321 .access = PL1_W, .type = ARM_CP_NO_RAW, 4322 .writefn = tlbi_aa64_vae1_write }, 4323 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4325 .access = PL1_W, .type = ARM_CP_NO_RAW, 4326 .writefn = tlbi_aa64_vae1_write }, 4327 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4328 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4329 .access = PL2_W, .type = ARM_CP_NO_RAW, 4330 .writefn = tlbi_aa64_ipas2e1is_write }, 4331 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4332 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4333 .access = PL2_W, .type = ARM_CP_NO_RAW, 4334 .writefn = tlbi_aa64_ipas2e1is_write }, 4335 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4337 .access = PL2_W, .type = ARM_CP_NO_RAW, 4338 .writefn = tlbi_aa64_alle1is_write }, 4339 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4340 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4341 .access = PL2_W, .type = ARM_CP_NO_RAW, 4342 .writefn = tlbi_aa64_alle1is_write }, 4343 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4344 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4345 .access = PL2_W, .type = ARM_CP_NO_RAW, 4346 .writefn = tlbi_aa64_ipas2e1_write }, 4347 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4349 .access = PL2_W, .type = ARM_CP_NO_RAW, 4350 .writefn = tlbi_aa64_ipas2e1_write }, 4351 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4353 .access = PL2_W, .type = ARM_CP_NO_RAW, 4354 .writefn = tlbi_aa64_alle1_write }, 4355 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4356 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4357 .access = PL2_W, .type = ARM_CP_NO_RAW, 4358 .writefn = tlbi_aa64_alle1is_write }, 4359 #ifndef CONFIG_USER_ONLY 4360 /* 64 bit address translation operations */ 4361 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4362 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4363 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4364 .writefn = ats_write64 }, 4365 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4366 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4367 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4368 .writefn = ats_write64 }, 4369 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4370 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4371 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4372 .writefn = ats_write64 }, 4373 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4374 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4375 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4376 .writefn = ats_write64 }, 4377 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4378 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4379 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4380 .writefn = ats_write64 }, 4381 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4382 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4383 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4384 .writefn = ats_write64 }, 4385 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4386 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4387 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4388 .writefn = ats_write64 }, 4389 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4390 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4391 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4392 .writefn = ats_write64 }, 4393 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4394 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4395 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4396 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4397 .writefn = ats_write64 }, 4398 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4399 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4400 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4401 .writefn = ats_write64 }, 4402 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4403 .type = ARM_CP_ALIAS, 4404 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4405 .access = PL1_RW, .resetvalue = 0, 4406 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4407 .writefn = par_write }, 4408 #endif 4409 /* TLB invalidate last level of translation table walk */ 4410 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4412 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4413 .type = ARM_CP_NO_RAW, .access = PL1_W, 4414 .writefn = tlbimvaa_is_write }, 4415 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4417 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4419 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4420 .type = ARM_CP_NO_RAW, .access = PL2_W, 4421 .writefn = tlbimva_hyp_write }, 4422 { .name = "TLBIMVALHIS", 4423 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4424 .type = ARM_CP_NO_RAW, .access = PL2_W, 4425 .writefn = tlbimva_hyp_is_write }, 4426 { .name = "TLBIIPAS2", 4427 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4428 .type = ARM_CP_NO_RAW, .access = PL2_W, 4429 .writefn = tlbiipas2_write }, 4430 { .name = "TLBIIPAS2IS", 4431 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4432 .type = ARM_CP_NO_RAW, .access = PL2_W, 4433 .writefn = tlbiipas2_is_write }, 4434 { .name = "TLBIIPAS2L", 4435 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4436 .type = ARM_CP_NO_RAW, .access = PL2_W, 4437 .writefn = tlbiipas2_write }, 4438 { .name = "TLBIIPAS2LIS", 4439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4440 .type = ARM_CP_NO_RAW, .access = PL2_W, 4441 .writefn = tlbiipas2_is_write }, 4442 /* 32 bit cache operations */ 4443 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4444 .type = ARM_CP_NOP, .access = PL1_W }, 4445 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4446 .type = ARM_CP_NOP, .access = PL1_W }, 4447 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4448 .type = ARM_CP_NOP, .access = PL1_W }, 4449 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4450 .type = ARM_CP_NOP, .access = PL1_W }, 4451 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4452 .type = ARM_CP_NOP, .access = PL1_W }, 4453 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4454 .type = ARM_CP_NOP, .access = PL1_W }, 4455 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4456 .type = ARM_CP_NOP, .access = PL1_W }, 4457 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4458 .type = ARM_CP_NOP, .access = PL1_W }, 4459 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4460 .type = ARM_CP_NOP, .access = PL1_W }, 4461 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4462 .type = ARM_CP_NOP, .access = PL1_W }, 4463 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4464 .type = ARM_CP_NOP, .access = PL1_W }, 4465 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4466 .type = ARM_CP_NOP, .access = PL1_W }, 4467 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4468 .type = ARM_CP_NOP, .access = PL1_W }, 4469 /* MMU Domain access control / MPU write buffer control */ 4470 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4471 .access = PL1_RW, .resetvalue = 0, 4472 .writefn = dacr_write, .raw_writefn = raw_write, 4473 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4474 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4475 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4476 .type = ARM_CP_ALIAS, 4477 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4478 .access = PL1_RW, 4479 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4480 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4481 .type = ARM_CP_ALIAS, 4482 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4483 .access = PL1_RW, 4484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4485 /* We rely on the access checks not allowing the guest to write to the 4486 * state field when SPSel indicates that it's being used as the stack 4487 * pointer. 4488 */ 4489 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4490 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4491 .access = PL1_RW, .accessfn = sp_el0_access, 4492 .type = ARM_CP_ALIAS, 4493 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4494 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4495 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4496 .access = PL2_RW, .type = ARM_CP_ALIAS, 4497 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4498 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4499 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4500 .type = ARM_CP_NO_RAW, 4501 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4502 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4503 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4504 .type = ARM_CP_ALIAS, 4505 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4506 .access = PL2_RW, .accessfn = fpexc32_access }, 4507 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4508 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4509 .access = PL2_RW, .resetvalue = 0, 4510 .writefn = dacr_write, .raw_writefn = raw_write, 4511 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4512 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4514 .access = PL2_RW, .resetvalue = 0, 4515 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4516 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4517 .type = ARM_CP_ALIAS, 4518 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4519 .access = PL2_RW, 4520 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4521 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4522 .type = ARM_CP_ALIAS, 4523 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4524 .access = PL2_RW, 4525 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4526 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4527 .type = ARM_CP_ALIAS, 4528 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4529 .access = PL2_RW, 4530 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4531 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4532 .type = ARM_CP_ALIAS, 4533 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4534 .access = PL2_RW, 4535 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4536 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4537 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4538 .resetvalue = 0, 4539 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4540 { .name = "SDCR", .type = ARM_CP_ALIAS, 4541 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4542 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4543 .writefn = sdcr_write, 4544 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4545 REGINFO_SENTINEL 4546 }; 4547 4548 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4549 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4550 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4551 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4552 .access = PL2_RW, 4553 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4554 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4555 .type = ARM_CP_NO_RAW, 4556 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4557 .access = PL2_RW, 4558 .type = ARM_CP_CONST, .resetvalue = 0 }, 4559 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4560 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4561 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4562 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4563 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4564 .access = PL2_RW, 4565 .type = ARM_CP_CONST, .resetvalue = 0 }, 4566 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4567 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4568 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4569 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4570 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4571 .access = PL2_RW, .type = ARM_CP_CONST, 4572 .resetvalue = 0 }, 4573 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4574 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4576 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4577 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4578 .access = PL2_RW, .type = ARM_CP_CONST, 4579 .resetvalue = 0 }, 4580 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4581 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4582 .access = PL2_RW, .type = ARM_CP_CONST, 4583 .resetvalue = 0 }, 4584 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4585 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4586 .access = PL2_RW, .type = ARM_CP_CONST, 4587 .resetvalue = 0 }, 4588 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4589 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4590 .access = PL2_RW, .type = ARM_CP_CONST, 4591 .resetvalue = 0 }, 4592 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4594 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4595 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4597 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4598 .type = ARM_CP_CONST, .resetvalue = 0 }, 4599 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4600 .cp = 15, .opc1 = 6, .crm = 2, 4601 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4602 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4603 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4604 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4605 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4606 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4607 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4608 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4609 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4610 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4611 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4612 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4613 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4614 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4615 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4616 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4617 .resetvalue = 0 }, 4618 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4619 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4620 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4621 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4623 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4624 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4625 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4626 .resetvalue = 0 }, 4627 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4628 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4629 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4630 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4631 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4632 .resetvalue = 0 }, 4633 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4634 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4636 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4637 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4638 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4639 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4640 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4641 .access = PL2_RW, .accessfn = access_tda, 4642 .type = ARM_CP_CONST, .resetvalue = 0 }, 4643 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4644 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4645 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4646 .type = ARM_CP_CONST, .resetvalue = 0 }, 4647 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4648 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4649 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4650 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4651 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4652 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4653 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4654 .type = ARM_CP_CONST, 4655 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4656 .access = PL2_RW, .resetvalue = 0 }, 4657 REGINFO_SENTINEL 4658 }; 4659 4660 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4661 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4662 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4663 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4664 .access = PL2_RW, 4665 .type = ARM_CP_CONST, .resetvalue = 0 }, 4666 REGINFO_SENTINEL 4667 }; 4668 4669 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4670 { 4671 ARMCPU *cpu = env_archcpu(env); 4672 uint64_t valid_mask = HCR_MASK; 4673 4674 if (arm_feature(env, ARM_FEATURE_EL3)) { 4675 valid_mask &= ~HCR_HCD; 4676 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4677 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4678 * However, if we're using the SMC PSCI conduit then QEMU is 4679 * effectively acting like EL3 firmware and so the guest at 4680 * EL2 should retain the ability to prevent EL1 from being 4681 * able to make SMC calls into the ersatz firmware, so in 4682 * that case HCR.TSC should be read/write. 4683 */ 4684 valid_mask &= ~HCR_TSC; 4685 } 4686 if (cpu_isar_feature(aa64_lor, cpu)) { 4687 valid_mask |= HCR_TLOR; 4688 } 4689 if (cpu_isar_feature(aa64_pauth, cpu)) { 4690 valid_mask |= HCR_API | HCR_APK; 4691 } 4692 4693 /* Clear RES0 bits. */ 4694 value &= valid_mask; 4695 4696 /* These bits change the MMU setup: 4697 * HCR_VM enables stage 2 translation 4698 * HCR_PTW forbids certain page-table setups 4699 * HCR_DC Disables stage1 and enables stage2 translation 4700 */ 4701 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4702 tlb_flush(CPU(cpu)); 4703 } 4704 env->cp15.hcr_el2 = value; 4705 4706 /* 4707 * Updates to VI and VF require us to update the status of 4708 * virtual interrupts, which are the logical OR of these bits 4709 * and the state of the input lines from the GIC. (This requires 4710 * that we have the iothread lock, which is done by marking the 4711 * reginfo structs as ARM_CP_IO.) 4712 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4713 * possible for it to be taken immediately, because VIRQ and 4714 * VFIQ are masked unless running at EL0 or EL1, and HCR 4715 * can only be written at EL2. 4716 */ 4717 g_assert(qemu_mutex_iothread_locked()); 4718 arm_cpu_update_virq(cpu); 4719 arm_cpu_update_vfiq(cpu); 4720 } 4721 4722 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4723 uint64_t value) 4724 { 4725 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4726 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4727 hcr_write(env, NULL, value); 4728 } 4729 4730 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4731 uint64_t value) 4732 { 4733 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4734 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4735 hcr_write(env, NULL, value); 4736 } 4737 4738 /* 4739 * Return the effective value of HCR_EL2. 4740 * Bits that are not included here: 4741 * RW (read from SCR_EL3.RW as needed) 4742 */ 4743 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4744 { 4745 uint64_t ret = env->cp15.hcr_el2; 4746 4747 if (arm_is_secure_below_el3(env)) { 4748 /* 4749 * "This register has no effect if EL2 is not enabled in the 4750 * current Security state". This is ARMv8.4-SecEL2 speak for 4751 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4752 * 4753 * Prior to that, the language was "In an implementation that 4754 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4755 * as if this field is 0 for all purposes other than a direct 4756 * read or write access of HCR_EL2". With lots of enumeration 4757 * on a per-field basis. In current QEMU, this is condition 4758 * is arm_is_secure_below_el3. 4759 * 4760 * Since the v8.4 language applies to the entire register, and 4761 * appears to be backward compatible, use that. 4762 */ 4763 ret = 0; 4764 } else if (ret & HCR_TGE) { 4765 /* These bits are up-to-date as of ARMv8.4. */ 4766 if (ret & HCR_E2H) { 4767 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4768 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4769 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4770 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4771 } else { 4772 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4773 } 4774 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4775 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4776 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4777 HCR_TLOR); 4778 } 4779 4780 return ret; 4781 } 4782 4783 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4784 uint64_t value) 4785 { 4786 /* 4787 * For A-profile AArch32 EL3, if NSACR.CP10 4788 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4789 */ 4790 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4791 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4792 value &= ~(0x3 << 10); 4793 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4794 } 4795 env->cp15.cptr_el[2] = value; 4796 } 4797 4798 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4799 { 4800 /* 4801 * For A-profile AArch32 EL3, if NSACR.CP10 4802 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4803 */ 4804 uint64_t value = env->cp15.cptr_el[2]; 4805 4806 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4807 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4808 value |= 0x3 << 10; 4809 } 4810 return value; 4811 } 4812 4813 static const ARMCPRegInfo el2_cp_reginfo[] = { 4814 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4815 .type = ARM_CP_IO, 4816 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4817 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4818 .writefn = hcr_write }, 4819 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4820 .type = ARM_CP_ALIAS | ARM_CP_IO, 4821 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4822 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4823 .writefn = hcr_writelow }, 4824 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4825 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4826 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4827 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4828 .type = ARM_CP_ALIAS, 4829 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4830 .access = PL2_RW, 4831 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4832 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4833 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4834 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4835 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4836 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4837 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4838 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4839 .type = ARM_CP_ALIAS, 4840 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4841 .access = PL2_RW, 4842 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4843 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4844 .type = ARM_CP_ALIAS, 4845 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4846 .access = PL2_RW, 4847 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4848 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4849 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4850 .access = PL2_RW, .writefn = vbar_write, 4851 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4852 .resetvalue = 0 }, 4853 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4855 .access = PL3_RW, .type = ARM_CP_ALIAS, 4856 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4857 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4858 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4859 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4860 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4861 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4862 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4863 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4864 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4865 .resetvalue = 0 }, 4866 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4867 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4868 .access = PL2_RW, .type = ARM_CP_ALIAS, 4869 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4870 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4871 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4872 .access = PL2_RW, .type = ARM_CP_CONST, 4873 .resetvalue = 0 }, 4874 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4875 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4876 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4877 .access = PL2_RW, .type = ARM_CP_CONST, 4878 .resetvalue = 0 }, 4879 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4880 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4881 .access = PL2_RW, .type = ARM_CP_CONST, 4882 .resetvalue = 0 }, 4883 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4884 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4885 .access = PL2_RW, .type = ARM_CP_CONST, 4886 .resetvalue = 0 }, 4887 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4888 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4889 .access = PL2_RW, 4890 /* no .writefn needed as this can't cause an ASID change; 4891 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4892 */ 4893 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4894 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4895 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4896 .type = ARM_CP_ALIAS, 4897 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4898 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4899 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4901 .access = PL2_RW, 4902 /* no .writefn needed as this can't cause an ASID change; 4903 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4904 */ 4905 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4906 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4907 .cp = 15, .opc1 = 6, .crm = 2, 4908 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4909 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4910 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4911 .writefn = vttbr_write }, 4912 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4914 .access = PL2_RW, .writefn = vttbr_write, 4915 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4916 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4917 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4918 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4919 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4920 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4921 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4922 .access = PL2_RW, .resetvalue = 0, 4923 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4924 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4926 .access = PL2_RW, .resetvalue = 0, 4927 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4928 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4929 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4931 { .name = "TLBIALLNSNH", 4932 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4933 .type = ARM_CP_NO_RAW, .access = PL2_W, 4934 .writefn = tlbiall_nsnh_write }, 4935 { .name = "TLBIALLNSNHIS", 4936 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4937 .type = ARM_CP_NO_RAW, .access = PL2_W, 4938 .writefn = tlbiall_nsnh_is_write }, 4939 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4940 .type = ARM_CP_NO_RAW, .access = PL2_W, 4941 .writefn = tlbiall_hyp_write }, 4942 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4943 .type = ARM_CP_NO_RAW, .access = PL2_W, 4944 .writefn = tlbiall_hyp_is_write }, 4945 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4946 .type = ARM_CP_NO_RAW, .access = PL2_W, 4947 .writefn = tlbimva_hyp_write }, 4948 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4949 .type = ARM_CP_NO_RAW, .access = PL2_W, 4950 .writefn = tlbimva_hyp_is_write }, 4951 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4953 .type = ARM_CP_NO_RAW, .access = PL2_W, 4954 .writefn = tlbi_aa64_alle2_write }, 4955 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4957 .type = ARM_CP_NO_RAW, .access = PL2_W, 4958 .writefn = tlbi_aa64_vae2_write }, 4959 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4961 .access = PL2_W, .type = ARM_CP_NO_RAW, 4962 .writefn = tlbi_aa64_vae2_write }, 4963 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4965 .access = PL2_W, .type = ARM_CP_NO_RAW, 4966 .writefn = tlbi_aa64_alle2is_write }, 4967 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4969 .type = ARM_CP_NO_RAW, .access = PL2_W, 4970 .writefn = tlbi_aa64_vae2is_write }, 4971 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4973 .access = PL2_W, .type = ARM_CP_NO_RAW, 4974 .writefn = tlbi_aa64_vae2is_write }, 4975 #ifndef CONFIG_USER_ONLY 4976 /* Unlike the other EL2-related AT operations, these must 4977 * UNDEF from EL3 if EL2 is not implemented, which is why we 4978 * define them here rather than with the rest of the AT ops. 4979 */ 4980 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4982 .access = PL2_W, .accessfn = at_s1e2_access, 4983 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4984 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4986 .access = PL2_W, .accessfn = at_s1e2_access, 4987 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4988 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4989 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4990 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4991 * to behave as if SCR.NS was 1. 4992 */ 4993 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4994 .access = PL2_W, 4995 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4996 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4997 .access = PL2_W, 4998 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4999 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5000 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5001 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5002 * reset values as IMPDEF. We choose to reset to 3 to comply with 5003 * both ARMv7 and ARMv8. 5004 */ 5005 .access = PL2_RW, .resetvalue = 3, 5006 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5007 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5009 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5010 .writefn = gt_cntvoff_write, 5011 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5012 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5013 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5014 .writefn = gt_cntvoff_write, 5015 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5016 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5018 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5019 .type = ARM_CP_IO, .access = PL2_RW, 5020 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5021 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5023 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5024 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5025 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5026 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5027 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5028 .resetfn = gt_hyp_timer_reset, 5029 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5030 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5031 .type = ARM_CP_IO, 5032 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5033 .access = PL2_RW, 5034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5035 .resetvalue = 0, 5036 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5037 #endif 5038 /* The only field of MDCR_EL2 that has a defined architectural reset value 5039 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5040 * don't implement any PMU event counters, so using zero as a reset 5041 * value for MDCR_EL2 is okay 5042 */ 5043 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5044 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5045 .access = PL2_RW, .resetvalue = 0, 5046 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5047 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5048 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5049 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5050 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5051 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5052 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5053 .access = PL2_RW, 5054 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5055 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5056 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5057 .access = PL2_RW, 5058 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5059 REGINFO_SENTINEL 5060 }; 5061 5062 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5063 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5064 .type = ARM_CP_ALIAS | ARM_CP_IO, 5065 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5066 .access = PL2_RW, 5067 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5068 .writefn = hcr_writehigh }, 5069 REGINFO_SENTINEL 5070 }; 5071 5072 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5073 bool isread) 5074 { 5075 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5076 * At Secure EL1 it traps to EL3. 5077 */ 5078 if (arm_current_el(env) == 3) { 5079 return CP_ACCESS_OK; 5080 } 5081 if (arm_is_secure_below_el3(env)) { 5082 return CP_ACCESS_TRAP_EL3; 5083 } 5084 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5085 if (isread) { 5086 return CP_ACCESS_OK; 5087 } 5088 return CP_ACCESS_TRAP_UNCATEGORIZED; 5089 } 5090 5091 static const ARMCPRegInfo el3_cp_reginfo[] = { 5092 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5095 .resetvalue = 0, .writefn = scr_write }, 5096 { .name = "SCR", .type = ARM_CP_ALIAS, 5097 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5098 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5099 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5100 .writefn = scr_write }, 5101 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5102 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5103 .access = PL3_RW, .resetvalue = 0, 5104 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5105 { .name = "SDER", 5106 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5107 .access = PL3_RW, .resetvalue = 0, 5108 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5109 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5110 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5111 .writefn = vbar_write, .resetvalue = 0, 5112 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5113 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5114 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5115 .access = PL3_RW, .resetvalue = 0, 5116 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5117 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5118 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5119 .access = PL3_RW, 5120 /* no .writefn needed as this can't cause an ASID change; 5121 * we must provide a .raw_writefn and .resetfn because we handle 5122 * reset and migration for the AArch32 TTBCR(S), which might be 5123 * using mask and base_mask. 5124 */ 5125 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5126 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5127 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5128 .type = ARM_CP_ALIAS, 5129 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5130 .access = PL3_RW, 5131 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5132 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5134 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5135 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5137 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5138 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5139 .type = ARM_CP_ALIAS, 5140 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5141 .access = PL3_RW, 5142 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5143 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5144 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5145 .access = PL3_RW, .writefn = vbar_write, 5146 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5147 .resetvalue = 0 }, 5148 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5149 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5150 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5151 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5152 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5153 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5154 .access = PL3_RW, .resetvalue = 0, 5155 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5156 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5157 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5158 .access = PL3_RW, .type = ARM_CP_CONST, 5159 .resetvalue = 0 }, 5160 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5161 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5162 .access = PL3_RW, .type = ARM_CP_CONST, 5163 .resetvalue = 0 }, 5164 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5165 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5166 .access = PL3_RW, .type = ARM_CP_CONST, 5167 .resetvalue = 0 }, 5168 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5169 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5170 .access = PL3_W, .type = ARM_CP_NO_RAW, 5171 .writefn = tlbi_aa64_alle3is_write }, 5172 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5173 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5174 .access = PL3_W, .type = ARM_CP_NO_RAW, 5175 .writefn = tlbi_aa64_vae3is_write }, 5176 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5177 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5178 .access = PL3_W, .type = ARM_CP_NO_RAW, 5179 .writefn = tlbi_aa64_vae3is_write }, 5180 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5181 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5182 .access = PL3_W, .type = ARM_CP_NO_RAW, 5183 .writefn = tlbi_aa64_alle3_write }, 5184 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5186 .access = PL3_W, .type = ARM_CP_NO_RAW, 5187 .writefn = tlbi_aa64_vae3_write }, 5188 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5189 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5190 .access = PL3_W, .type = ARM_CP_NO_RAW, 5191 .writefn = tlbi_aa64_vae3_write }, 5192 REGINFO_SENTINEL 5193 }; 5194 5195 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5196 bool isread) 5197 { 5198 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5199 * but the AArch32 CTR has its own reginfo struct) 5200 */ 5201 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5202 return CP_ACCESS_TRAP; 5203 } 5204 return CP_ACCESS_OK; 5205 } 5206 5207 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5208 uint64_t value) 5209 { 5210 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5211 * read via a bit in OSLSR_EL1. 5212 */ 5213 int oslock; 5214 5215 if (ri->state == ARM_CP_STATE_AA32) { 5216 oslock = (value == 0xC5ACCE55); 5217 } else { 5218 oslock = value & 1; 5219 } 5220 5221 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5222 } 5223 5224 static const ARMCPRegInfo debug_cp_reginfo[] = { 5225 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5226 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5227 * unlike DBGDRAR it is never accessible from EL0. 5228 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5229 * accessor. 5230 */ 5231 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5232 .access = PL0_R, .accessfn = access_tdra, 5233 .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5235 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5236 .access = PL1_R, .accessfn = access_tdra, 5237 .type = ARM_CP_CONST, .resetvalue = 0 }, 5238 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5239 .access = PL0_R, .accessfn = access_tdra, 5240 .type = ARM_CP_CONST, .resetvalue = 0 }, 5241 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5242 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5243 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5244 .access = PL1_RW, .accessfn = access_tda, 5245 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5246 .resetvalue = 0 }, 5247 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5248 * We don't implement the configurable EL0 access. 5249 */ 5250 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5251 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5252 .type = ARM_CP_ALIAS, 5253 .access = PL1_R, .accessfn = access_tda, 5254 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5255 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5256 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5257 .access = PL1_W, .type = ARM_CP_NO_RAW, 5258 .accessfn = access_tdosa, 5259 .writefn = oslar_write }, 5260 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5261 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5262 .access = PL1_R, .resetvalue = 10, 5263 .accessfn = access_tdosa, 5264 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5265 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5266 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5267 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5268 .access = PL1_RW, .accessfn = access_tdosa, 5269 .type = ARM_CP_NOP }, 5270 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5271 * implement vector catch debug events yet. 5272 */ 5273 { .name = "DBGVCR", 5274 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5275 .access = PL1_RW, .accessfn = access_tda, 5276 .type = ARM_CP_NOP }, 5277 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5278 * to save and restore a 32-bit guest's DBGVCR) 5279 */ 5280 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5281 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5282 .access = PL2_RW, .accessfn = access_tda, 5283 .type = ARM_CP_NOP }, 5284 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5285 * Channel but Linux may try to access this register. The 32-bit 5286 * alias is DBGDCCINT. 5287 */ 5288 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5289 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5290 .access = PL1_RW, .accessfn = access_tda, 5291 .type = ARM_CP_NOP }, 5292 REGINFO_SENTINEL 5293 }; 5294 5295 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5296 /* 64 bit access versions of the (dummy) debug registers */ 5297 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5298 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5299 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5300 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5301 REGINFO_SENTINEL 5302 }; 5303 5304 /* Return the exception level to which exceptions should be taken 5305 * via SVEAccessTrap. If an exception should be routed through 5306 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5307 * take care of raising that exception. 5308 * C.f. the ARM pseudocode function CheckSVEEnabled. 5309 */ 5310 int sve_exception_el(CPUARMState *env, int el) 5311 { 5312 #ifndef CONFIG_USER_ONLY 5313 if (el <= 1) { 5314 bool disabled = false; 5315 5316 /* The CPACR.ZEN controls traps to EL1: 5317 * 0, 2 : trap EL0 and EL1 accesses 5318 * 1 : trap only EL0 accesses 5319 * 3 : trap no accesses 5320 */ 5321 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5322 disabled = true; 5323 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5324 disabled = el == 0; 5325 } 5326 if (disabled) { 5327 /* route_to_el2 */ 5328 return (arm_feature(env, ARM_FEATURE_EL2) 5329 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5330 } 5331 5332 /* Check CPACR.FPEN. */ 5333 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5334 disabled = true; 5335 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5336 disabled = el == 0; 5337 } 5338 if (disabled) { 5339 return 0; 5340 } 5341 } 5342 5343 /* CPTR_EL2. Since TZ and TFP are positive, 5344 * they will be zero when EL2 is not present. 5345 */ 5346 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5347 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5348 return 2; 5349 } 5350 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5351 return 0; 5352 } 5353 } 5354 5355 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5356 if (arm_feature(env, ARM_FEATURE_EL3) 5357 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5358 return 3; 5359 } 5360 #endif 5361 return 0; 5362 } 5363 5364 /* 5365 * Given that SVE is enabled, return the vector length for EL. 5366 */ 5367 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5368 { 5369 ARMCPU *cpu = env_archcpu(env); 5370 uint32_t zcr_len = cpu->sve_max_vq - 1; 5371 5372 if (el <= 1) { 5373 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5374 } 5375 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5376 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5377 } 5378 if (arm_feature(env, ARM_FEATURE_EL3)) { 5379 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5380 } 5381 return zcr_len; 5382 } 5383 5384 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5385 uint64_t value) 5386 { 5387 int cur_el = arm_current_el(env); 5388 int old_len = sve_zcr_len_for_el(env, cur_el); 5389 int new_len; 5390 5391 /* Bits other than [3:0] are RAZ/WI. */ 5392 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 5393 raw_write(env, ri, value & 0xf); 5394 5395 /* 5396 * Because we arrived here, we know both FP and SVE are enabled; 5397 * otherwise we would have trapped access to the ZCR_ELn register. 5398 */ 5399 new_len = sve_zcr_len_for_el(env, cur_el); 5400 if (new_len < old_len) { 5401 aarch64_sve_narrow_vq(env, new_len + 1); 5402 } 5403 } 5404 5405 static const ARMCPRegInfo zcr_el1_reginfo = { 5406 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5407 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5408 .access = PL1_RW, .type = ARM_CP_SVE, 5409 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5410 .writefn = zcr_write, .raw_writefn = raw_write 5411 }; 5412 5413 static const ARMCPRegInfo zcr_el2_reginfo = { 5414 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5415 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5416 .access = PL2_RW, .type = ARM_CP_SVE, 5417 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5418 .writefn = zcr_write, .raw_writefn = raw_write 5419 }; 5420 5421 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5422 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5423 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5424 .access = PL2_RW, .type = ARM_CP_SVE, 5425 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5426 }; 5427 5428 static const ARMCPRegInfo zcr_el3_reginfo = { 5429 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5431 .access = PL3_RW, .type = ARM_CP_SVE, 5432 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5433 .writefn = zcr_write, .raw_writefn = raw_write 5434 }; 5435 5436 void hw_watchpoint_update(ARMCPU *cpu, int n) 5437 { 5438 CPUARMState *env = &cpu->env; 5439 vaddr len = 0; 5440 vaddr wvr = env->cp15.dbgwvr[n]; 5441 uint64_t wcr = env->cp15.dbgwcr[n]; 5442 int mask; 5443 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5444 5445 if (env->cpu_watchpoint[n]) { 5446 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5447 env->cpu_watchpoint[n] = NULL; 5448 } 5449 5450 if (!extract64(wcr, 0, 1)) { 5451 /* E bit clear : watchpoint disabled */ 5452 return; 5453 } 5454 5455 switch (extract64(wcr, 3, 2)) { 5456 case 0: 5457 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5458 return; 5459 case 1: 5460 flags |= BP_MEM_READ; 5461 break; 5462 case 2: 5463 flags |= BP_MEM_WRITE; 5464 break; 5465 case 3: 5466 flags |= BP_MEM_ACCESS; 5467 break; 5468 } 5469 5470 /* Attempts to use both MASK and BAS fields simultaneously are 5471 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5472 * thus generating a watchpoint for every byte in the masked region. 5473 */ 5474 mask = extract64(wcr, 24, 4); 5475 if (mask == 1 || mask == 2) { 5476 /* Reserved values of MASK; we must act as if the mask value was 5477 * some non-reserved value, or as if the watchpoint were disabled. 5478 * We choose the latter. 5479 */ 5480 return; 5481 } else if (mask) { 5482 /* Watchpoint covers an aligned area up to 2GB in size */ 5483 len = 1ULL << mask; 5484 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5485 * whether the watchpoint fires when the unmasked bits match; we opt 5486 * to generate the exceptions. 5487 */ 5488 wvr &= ~(len - 1); 5489 } else { 5490 /* Watchpoint covers bytes defined by the byte address select bits */ 5491 int bas = extract64(wcr, 5, 8); 5492 int basstart; 5493 5494 if (bas == 0) { 5495 /* This must act as if the watchpoint is disabled */ 5496 return; 5497 } 5498 5499 if (extract64(wvr, 2, 1)) { 5500 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5501 * ignored, and BAS[3:0] define which bytes to watch. 5502 */ 5503 bas &= 0xf; 5504 } 5505 /* The BAS bits are supposed to be programmed to indicate a contiguous 5506 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5507 * we fire for each byte in the word/doubleword addressed by the WVR. 5508 * We choose to ignore any non-zero bits after the first range of 1s. 5509 */ 5510 basstart = ctz32(bas); 5511 len = cto32(bas >> basstart); 5512 wvr += basstart; 5513 } 5514 5515 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5516 &env->cpu_watchpoint[n]); 5517 } 5518 5519 void hw_watchpoint_update_all(ARMCPU *cpu) 5520 { 5521 int i; 5522 CPUARMState *env = &cpu->env; 5523 5524 /* Completely clear out existing QEMU watchpoints and our array, to 5525 * avoid possible stale entries following migration load. 5526 */ 5527 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5528 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5529 5530 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5531 hw_watchpoint_update(cpu, i); 5532 } 5533 } 5534 5535 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5536 uint64_t value) 5537 { 5538 ARMCPU *cpu = env_archcpu(env); 5539 int i = ri->crm; 5540 5541 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5542 * register reads and behaves as if values written are sign extended. 5543 * Bits [1:0] are RES0. 5544 */ 5545 value = sextract64(value, 0, 49) & ~3ULL; 5546 5547 raw_write(env, ri, value); 5548 hw_watchpoint_update(cpu, i); 5549 } 5550 5551 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5552 uint64_t value) 5553 { 5554 ARMCPU *cpu = env_archcpu(env); 5555 int i = ri->crm; 5556 5557 raw_write(env, ri, value); 5558 hw_watchpoint_update(cpu, i); 5559 } 5560 5561 void hw_breakpoint_update(ARMCPU *cpu, int n) 5562 { 5563 CPUARMState *env = &cpu->env; 5564 uint64_t bvr = env->cp15.dbgbvr[n]; 5565 uint64_t bcr = env->cp15.dbgbcr[n]; 5566 vaddr addr; 5567 int bt; 5568 int flags = BP_CPU; 5569 5570 if (env->cpu_breakpoint[n]) { 5571 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5572 env->cpu_breakpoint[n] = NULL; 5573 } 5574 5575 if (!extract64(bcr, 0, 1)) { 5576 /* E bit clear : watchpoint disabled */ 5577 return; 5578 } 5579 5580 bt = extract64(bcr, 20, 4); 5581 5582 switch (bt) { 5583 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5584 case 5: /* linked address mismatch (reserved if AArch64) */ 5585 qemu_log_mask(LOG_UNIMP, 5586 "arm: address mismatch breakpoint types not implemented\n"); 5587 return; 5588 case 0: /* unlinked address match */ 5589 case 1: /* linked address match */ 5590 { 5591 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5592 * we behave as if the register was sign extended. Bits [1:0] are 5593 * RES0. The BAS field is used to allow setting breakpoints on 16 5594 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5595 * a bp will fire if the addresses covered by the bp and the addresses 5596 * covered by the insn overlap but the insn doesn't start at the 5597 * start of the bp address range. We choose to require the insn and 5598 * the bp to have the same address. The constraints on writing to 5599 * BAS enforced in dbgbcr_write mean we have only four cases: 5600 * 0b0000 => no breakpoint 5601 * 0b0011 => breakpoint on addr 5602 * 0b1100 => breakpoint on addr + 2 5603 * 0b1111 => breakpoint on addr 5604 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5605 */ 5606 int bas = extract64(bcr, 5, 4); 5607 addr = sextract64(bvr, 0, 49) & ~3ULL; 5608 if (bas == 0) { 5609 return; 5610 } 5611 if (bas == 0xc) { 5612 addr += 2; 5613 } 5614 break; 5615 } 5616 case 2: /* unlinked context ID match */ 5617 case 8: /* unlinked VMID match (reserved if no EL2) */ 5618 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5619 qemu_log_mask(LOG_UNIMP, 5620 "arm: unlinked context breakpoint types not implemented\n"); 5621 return; 5622 case 9: /* linked VMID match (reserved if no EL2) */ 5623 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5624 case 3: /* linked context ID match */ 5625 default: 5626 /* We must generate no events for Linked context matches (unless 5627 * they are linked to by some other bp/wp, which is handled in 5628 * updates for the linking bp/wp). We choose to also generate no events 5629 * for reserved values. 5630 */ 5631 return; 5632 } 5633 5634 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5635 } 5636 5637 void hw_breakpoint_update_all(ARMCPU *cpu) 5638 { 5639 int i; 5640 CPUARMState *env = &cpu->env; 5641 5642 /* Completely clear out existing QEMU breakpoints and our array, to 5643 * avoid possible stale entries following migration load. 5644 */ 5645 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5646 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5647 5648 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5649 hw_breakpoint_update(cpu, i); 5650 } 5651 } 5652 5653 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5654 uint64_t value) 5655 { 5656 ARMCPU *cpu = env_archcpu(env); 5657 int i = ri->crm; 5658 5659 raw_write(env, ri, value); 5660 hw_breakpoint_update(cpu, i); 5661 } 5662 5663 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5664 uint64_t value) 5665 { 5666 ARMCPU *cpu = env_archcpu(env); 5667 int i = ri->crm; 5668 5669 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5670 * copy of BAS[0]. 5671 */ 5672 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5673 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5674 5675 raw_write(env, ri, value); 5676 hw_breakpoint_update(cpu, i); 5677 } 5678 5679 static void define_debug_regs(ARMCPU *cpu) 5680 { 5681 /* Define v7 and v8 architectural debug registers. 5682 * These are just dummy implementations for now. 5683 */ 5684 int i; 5685 int wrps, brps, ctx_cmps; 5686 ARMCPRegInfo dbgdidr = { 5687 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5688 .access = PL0_R, .accessfn = access_tda, 5689 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5690 }; 5691 5692 /* Note that all these register fields hold "number of Xs minus 1". */ 5693 brps = extract32(cpu->dbgdidr, 24, 4); 5694 wrps = extract32(cpu->dbgdidr, 28, 4); 5695 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5696 5697 assert(ctx_cmps <= brps); 5698 5699 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5700 * of the debug registers such as number of breakpoints; 5701 * check that if they both exist then they agree. 5702 */ 5703 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5704 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5705 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5706 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5707 } 5708 5709 define_one_arm_cp_reg(cpu, &dbgdidr); 5710 define_arm_cp_regs(cpu, debug_cp_reginfo); 5711 5712 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5713 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5714 } 5715 5716 for (i = 0; i < brps + 1; i++) { 5717 ARMCPRegInfo dbgregs[] = { 5718 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5719 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5720 .access = PL1_RW, .accessfn = access_tda, 5721 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5722 .writefn = dbgbvr_write, .raw_writefn = raw_write 5723 }, 5724 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5725 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5726 .access = PL1_RW, .accessfn = access_tda, 5727 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5728 .writefn = dbgbcr_write, .raw_writefn = raw_write 5729 }, 5730 REGINFO_SENTINEL 5731 }; 5732 define_arm_cp_regs(cpu, dbgregs); 5733 } 5734 5735 for (i = 0; i < wrps + 1; i++) { 5736 ARMCPRegInfo dbgregs[] = { 5737 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5738 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5739 .access = PL1_RW, .accessfn = access_tda, 5740 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5741 .writefn = dbgwvr_write, .raw_writefn = raw_write 5742 }, 5743 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5744 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5745 .access = PL1_RW, .accessfn = access_tda, 5746 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5747 .writefn = dbgwcr_write, .raw_writefn = raw_write 5748 }, 5749 REGINFO_SENTINEL 5750 }; 5751 define_arm_cp_regs(cpu, dbgregs); 5752 } 5753 } 5754 5755 /* We don't know until after realize whether there's a GICv3 5756 * attached, and that is what registers the gicv3 sysregs. 5757 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5758 * at runtime. 5759 */ 5760 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5761 { 5762 ARMCPU *cpu = env_archcpu(env); 5763 uint64_t pfr1 = cpu->id_pfr1; 5764 5765 if (env->gicv3state) { 5766 pfr1 |= 1 << 28; 5767 } 5768 return pfr1; 5769 } 5770 5771 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5772 { 5773 ARMCPU *cpu = env_archcpu(env); 5774 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5775 5776 if (env->gicv3state) { 5777 pfr0 |= 1 << 24; 5778 } 5779 return pfr0; 5780 } 5781 5782 /* Shared logic between LORID and the rest of the LOR* registers. 5783 * Secure state has already been delt with. 5784 */ 5785 static CPAccessResult access_lor_ns(CPUARMState *env) 5786 { 5787 int el = arm_current_el(env); 5788 5789 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5790 return CP_ACCESS_TRAP_EL2; 5791 } 5792 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5793 return CP_ACCESS_TRAP_EL3; 5794 } 5795 return CP_ACCESS_OK; 5796 } 5797 5798 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5799 bool isread) 5800 { 5801 if (arm_is_secure_below_el3(env)) { 5802 /* Access ok in secure mode. */ 5803 return CP_ACCESS_OK; 5804 } 5805 return access_lor_ns(env); 5806 } 5807 5808 static CPAccessResult access_lor_other(CPUARMState *env, 5809 const ARMCPRegInfo *ri, bool isread) 5810 { 5811 if (arm_is_secure_below_el3(env)) { 5812 /* Access denied in secure mode. */ 5813 return CP_ACCESS_TRAP; 5814 } 5815 return access_lor_ns(env); 5816 } 5817 5818 #ifdef TARGET_AARCH64 5819 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5820 bool isread) 5821 { 5822 int el = arm_current_el(env); 5823 5824 if (el < 2 && 5825 arm_feature(env, ARM_FEATURE_EL2) && 5826 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5827 return CP_ACCESS_TRAP_EL2; 5828 } 5829 if (el < 3 && 5830 arm_feature(env, ARM_FEATURE_EL3) && 5831 !(env->cp15.scr_el3 & SCR_APK)) { 5832 return CP_ACCESS_TRAP_EL3; 5833 } 5834 return CP_ACCESS_OK; 5835 } 5836 5837 static const ARMCPRegInfo pauth_reginfo[] = { 5838 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5839 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5840 .access = PL1_RW, .accessfn = access_pauth, 5841 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5842 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5843 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5844 .access = PL1_RW, .accessfn = access_pauth, 5845 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5846 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5848 .access = PL1_RW, .accessfn = access_pauth, 5849 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5850 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5852 .access = PL1_RW, .accessfn = access_pauth, 5853 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5854 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5856 .access = PL1_RW, .accessfn = access_pauth, 5857 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5858 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5860 .access = PL1_RW, .accessfn = access_pauth, 5861 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5862 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5864 .access = PL1_RW, .accessfn = access_pauth, 5865 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5866 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5868 .access = PL1_RW, .accessfn = access_pauth, 5869 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5870 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5872 .access = PL1_RW, .accessfn = access_pauth, 5873 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5874 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5876 .access = PL1_RW, .accessfn = access_pauth, 5877 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5878 REGINFO_SENTINEL 5879 }; 5880 5881 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5882 { 5883 Error *err = NULL; 5884 uint64_t ret; 5885 5886 /* Success sets NZCV = 0000. */ 5887 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5888 5889 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5890 /* 5891 * ??? Failed, for unknown reasons in the crypto subsystem. 5892 * The best we can do is log the reason and return the 5893 * timed-out indication to the guest. There is no reason 5894 * we know to expect this failure to be transitory, so the 5895 * guest may well hang retrying the operation. 5896 */ 5897 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5898 ri->name, error_get_pretty(err)); 5899 error_free(err); 5900 5901 env->ZF = 0; /* NZCF = 0100 */ 5902 return 0; 5903 } 5904 return ret; 5905 } 5906 5907 /* We do not support re-seeding, so the two registers operate the same. */ 5908 static const ARMCPRegInfo rndr_reginfo[] = { 5909 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5910 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5911 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5912 .access = PL0_R, .readfn = rndr_readfn }, 5913 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5914 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5915 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5916 .access = PL0_R, .readfn = rndr_readfn }, 5917 REGINFO_SENTINEL 5918 }; 5919 #endif 5920 5921 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5922 bool isread) 5923 { 5924 int el = arm_current_el(env); 5925 5926 if (el == 0) { 5927 uint64_t sctlr = arm_sctlr(env, el); 5928 if (!(sctlr & SCTLR_EnRCTX)) { 5929 return CP_ACCESS_TRAP; 5930 } 5931 } else if (el == 1) { 5932 uint64_t hcr = arm_hcr_el2_eff(env); 5933 if (hcr & HCR_NV) { 5934 return CP_ACCESS_TRAP_EL2; 5935 } 5936 } 5937 return CP_ACCESS_OK; 5938 } 5939 5940 static const ARMCPRegInfo predinv_reginfo[] = { 5941 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5942 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5943 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5944 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5945 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5946 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5947 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5948 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5949 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5950 /* 5951 * Note the AArch32 opcodes have a different OPC1. 5952 */ 5953 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5954 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5955 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5956 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5957 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5958 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5959 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5960 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5961 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5962 REGINFO_SENTINEL 5963 }; 5964 5965 void register_cp_regs_for_features(ARMCPU *cpu) 5966 { 5967 /* Register all the coprocessor registers based on feature bits */ 5968 CPUARMState *env = &cpu->env; 5969 if (arm_feature(env, ARM_FEATURE_M)) { 5970 /* M profile has no coprocessor registers */ 5971 return; 5972 } 5973 5974 define_arm_cp_regs(cpu, cp_reginfo); 5975 if (!arm_feature(env, ARM_FEATURE_V8)) { 5976 /* Must go early as it is full of wildcards that may be 5977 * overridden by later definitions. 5978 */ 5979 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5980 } 5981 5982 if (arm_feature(env, ARM_FEATURE_V6)) { 5983 /* The ID registers all have impdef reset values */ 5984 ARMCPRegInfo v6_idregs[] = { 5985 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5987 .access = PL1_R, .type = ARM_CP_CONST, 5988 .resetvalue = cpu->id_pfr0 }, 5989 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5990 * the value of the GIC field until after we define these regs. 5991 */ 5992 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5994 .access = PL1_R, .type = ARM_CP_NO_RAW, 5995 .readfn = id_pfr1_read, 5996 .writefn = arm_cp_write_ignore }, 5997 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5999 .access = PL1_R, .type = ARM_CP_CONST, 6000 .resetvalue = cpu->id_dfr0 }, 6001 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 6002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 6003 .access = PL1_R, .type = ARM_CP_CONST, 6004 .resetvalue = cpu->id_afr0 }, 6005 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 6006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 6007 .access = PL1_R, .type = ARM_CP_CONST, 6008 .resetvalue = cpu->id_mmfr0 }, 6009 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6011 .access = PL1_R, .type = ARM_CP_CONST, 6012 .resetvalue = cpu->id_mmfr1 }, 6013 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6015 .access = PL1_R, .type = ARM_CP_CONST, 6016 .resetvalue = cpu->id_mmfr2 }, 6017 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6019 .access = PL1_R, .type = ARM_CP_CONST, 6020 .resetvalue = cpu->id_mmfr3 }, 6021 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6023 .access = PL1_R, .type = ARM_CP_CONST, 6024 .resetvalue = cpu->isar.id_isar0 }, 6025 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6027 .access = PL1_R, .type = ARM_CP_CONST, 6028 .resetvalue = cpu->isar.id_isar1 }, 6029 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6031 .access = PL1_R, .type = ARM_CP_CONST, 6032 .resetvalue = cpu->isar.id_isar2 }, 6033 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6035 .access = PL1_R, .type = ARM_CP_CONST, 6036 .resetvalue = cpu->isar.id_isar3 }, 6037 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6039 .access = PL1_R, .type = ARM_CP_CONST, 6040 .resetvalue = cpu->isar.id_isar4 }, 6041 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6043 .access = PL1_R, .type = ARM_CP_CONST, 6044 .resetvalue = cpu->isar.id_isar5 }, 6045 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6047 .access = PL1_R, .type = ARM_CP_CONST, 6048 .resetvalue = cpu->id_mmfr4 }, 6049 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6051 .access = PL1_R, .type = ARM_CP_CONST, 6052 .resetvalue = cpu->isar.id_isar6 }, 6053 REGINFO_SENTINEL 6054 }; 6055 define_arm_cp_regs(cpu, v6_idregs); 6056 define_arm_cp_regs(cpu, v6_cp_reginfo); 6057 } else { 6058 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6059 } 6060 if (arm_feature(env, ARM_FEATURE_V6K)) { 6061 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6062 } 6063 if (arm_feature(env, ARM_FEATURE_V7MP) && 6064 !arm_feature(env, ARM_FEATURE_PMSA)) { 6065 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 6066 } 6067 if (arm_feature(env, ARM_FEATURE_V7VE)) { 6068 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 6069 } 6070 if (arm_feature(env, ARM_FEATURE_V7)) { 6071 /* v7 performance monitor control register: same implementor 6072 * field as main ID register, and we implement four counters in 6073 * addition to the cycle count register. 6074 */ 6075 unsigned int i, pmcrn = 4; 6076 ARMCPRegInfo pmcr = { 6077 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6078 .access = PL0_RW, 6079 .type = ARM_CP_IO | ARM_CP_ALIAS, 6080 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6081 .accessfn = pmreg_access, .writefn = pmcr_write, 6082 .raw_writefn = raw_write, 6083 }; 6084 ARMCPRegInfo pmcr64 = { 6085 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6086 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6087 .access = PL0_RW, .accessfn = pmreg_access, 6088 .type = ARM_CP_IO, 6089 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6090 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6091 .writefn = pmcr_write, .raw_writefn = raw_write, 6092 }; 6093 define_one_arm_cp_reg(cpu, &pmcr); 6094 define_one_arm_cp_reg(cpu, &pmcr64); 6095 for (i = 0; i < pmcrn; i++) { 6096 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6097 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6098 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6099 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6100 ARMCPRegInfo pmev_regs[] = { 6101 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6102 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6103 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6104 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6105 .accessfn = pmreg_access }, 6106 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6108 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6109 .type = ARM_CP_IO, 6110 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6111 .raw_readfn = pmevcntr_rawread, 6112 .raw_writefn = pmevcntr_rawwrite }, 6113 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6114 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6115 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6116 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6117 .accessfn = pmreg_access }, 6118 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6119 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6120 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6121 .type = ARM_CP_IO, 6122 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6123 .raw_writefn = pmevtyper_rawwrite }, 6124 REGINFO_SENTINEL 6125 }; 6126 define_arm_cp_regs(cpu, pmev_regs); 6127 g_free(pmevcntr_name); 6128 g_free(pmevcntr_el0_name); 6129 g_free(pmevtyper_name); 6130 g_free(pmevtyper_el0_name); 6131 } 6132 ARMCPRegInfo clidr = { 6133 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6134 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6135 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6136 }; 6137 define_one_arm_cp_reg(cpu, &clidr); 6138 define_arm_cp_regs(cpu, v7_cp_reginfo); 6139 define_debug_regs(cpu); 6140 } else { 6141 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6142 } 6143 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6144 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6145 ARMCPRegInfo v81_pmu_regs[] = { 6146 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6147 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6148 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6149 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6150 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6151 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6152 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6153 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6154 REGINFO_SENTINEL 6155 }; 6156 define_arm_cp_regs(cpu, v81_pmu_regs); 6157 } 6158 if (arm_feature(env, ARM_FEATURE_V8)) { 6159 /* AArch64 ID registers, which all have impdef reset values. 6160 * Note that within the ID register ranges the unused slots 6161 * must all RAZ, not UNDEF; future architecture versions may 6162 * define new registers here. 6163 */ 6164 ARMCPRegInfo v8_idregs[] = { 6165 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6166 * know the right value for the GIC field until after we 6167 * define these regs. 6168 */ 6169 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6171 .access = PL1_R, .type = ARM_CP_NO_RAW, 6172 .readfn = id_aa64pfr0_read, 6173 .writefn = arm_cp_write_ignore }, 6174 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6176 .access = PL1_R, .type = ARM_CP_CONST, 6177 .resetvalue = cpu->isar.id_aa64pfr1}, 6178 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6180 .access = PL1_R, .type = ARM_CP_CONST, 6181 .resetvalue = 0 }, 6182 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6184 .access = PL1_R, .type = ARM_CP_CONST, 6185 .resetvalue = 0 }, 6186 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6188 .access = PL1_R, .type = ARM_CP_CONST, 6189 /* At present, only SVEver == 0 is defined anyway. */ 6190 .resetvalue = 0 }, 6191 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6193 .access = PL1_R, .type = ARM_CP_CONST, 6194 .resetvalue = 0 }, 6195 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6197 .access = PL1_R, .type = ARM_CP_CONST, 6198 .resetvalue = 0 }, 6199 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6201 .access = PL1_R, .type = ARM_CP_CONST, 6202 .resetvalue = 0 }, 6203 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6205 .access = PL1_R, .type = ARM_CP_CONST, 6206 .resetvalue = cpu->id_aa64dfr0 }, 6207 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6209 .access = PL1_R, .type = ARM_CP_CONST, 6210 .resetvalue = cpu->id_aa64dfr1 }, 6211 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6213 .access = PL1_R, .type = ARM_CP_CONST, 6214 .resetvalue = 0 }, 6215 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6217 .access = PL1_R, .type = ARM_CP_CONST, 6218 .resetvalue = 0 }, 6219 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6221 .access = PL1_R, .type = ARM_CP_CONST, 6222 .resetvalue = cpu->id_aa64afr0 }, 6223 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6225 .access = PL1_R, .type = ARM_CP_CONST, 6226 .resetvalue = cpu->id_aa64afr1 }, 6227 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6229 .access = PL1_R, .type = ARM_CP_CONST, 6230 .resetvalue = 0 }, 6231 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6233 .access = PL1_R, .type = ARM_CP_CONST, 6234 .resetvalue = 0 }, 6235 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6237 .access = PL1_R, .type = ARM_CP_CONST, 6238 .resetvalue = cpu->isar.id_aa64isar0 }, 6239 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6241 .access = PL1_R, .type = ARM_CP_CONST, 6242 .resetvalue = cpu->isar.id_aa64isar1 }, 6243 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6245 .access = PL1_R, .type = ARM_CP_CONST, 6246 .resetvalue = 0 }, 6247 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6249 .access = PL1_R, .type = ARM_CP_CONST, 6250 .resetvalue = 0 }, 6251 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6253 .access = PL1_R, .type = ARM_CP_CONST, 6254 .resetvalue = 0 }, 6255 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6257 .access = PL1_R, .type = ARM_CP_CONST, 6258 .resetvalue = 0 }, 6259 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6261 .access = PL1_R, .type = ARM_CP_CONST, 6262 .resetvalue = 0 }, 6263 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6265 .access = PL1_R, .type = ARM_CP_CONST, 6266 .resetvalue = 0 }, 6267 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6269 .access = PL1_R, .type = ARM_CP_CONST, 6270 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6271 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6273 .access = PL1_R, .type = ARM_CP_CONST, 6274 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6275 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6277 .access = PL1_R, .type = ARM_CP_CONST, 6278 .resetvalue = 0 }, 6279 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6281 .access = PL1_R, .type = ARM_CP_CONST, 6282 .resetvalue = 0 }, 6283 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6285 .access = PL1_R, .type = ARM_CP_CONST, 6286 .resetvalue = 0 }, 6287 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6289 .access = PL1_R, .type = ARM_CP_CONST, 6290 .resetvalue = 0 }, 6291 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6293 .access = PL1_R, .type = ARM_CP_CONST, 6294 .resetvalue = 0 }, 6295 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6297 .access = PL1_R, .type = ARM_CP_CONST, 6298 .resetvalue = 0 }, 6299 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6301 .access = PL1_R, .type = ARM_CP_CONST, 6302 .resetvalue = cpu->isar.mvfr0 }, 6303 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6305 .access = PL1_R, .type = ARM_CP_CONST, 6306 .resetvalue = cpu->isar.mvfr1 }, 6307 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6309 .access = PL1_R, .type = ARM_CP_CONST, 6310 .resetvalue = cpu->isar.mvfr2 }, 6311 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6313 .access = PL1_R, .type = ARM_CP_CONST, 6314 .resetvalue = 0 }, 6315 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6317 .access = PL1_R, .type = ARM_CP_CONST, 6318 .resetvalue = 0 }, 6319 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6321 .access = PL1_R, .type = ARM_CP_CONST, 6322 .resetvalue = 0 }, 6323 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6325 .access = PL1_R, .type = ARM_CP_CONST, 6326 .resetvalue = 0 }, 6327 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6329 .access = PL1_R, .type = ARM_CP_CONST, 6330 .resetvalue = 0 }, 6331 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6332 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6333 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6334 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6335 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6336 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6337 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6338 .resetvalue = cpu->pmceid0 }, 6339 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6340 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6341 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6342 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6343 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6345 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6346 .resetvalue = cpu->pmceid1 }, 6347 REGINFO_SENTINEL 6348 }; 6349 #ifdef CONFIG_USER_ONLY 6350 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6351 { .name = "ID_AA64PFR0_EL1", 6352 .exported_bits = 0x000f000f00ff0000, 6353 .fixed_bits = 0x0000000000000011 }, 6354 { .name = "ID_AA64PFR1_EL1", 6355 .exported_bits = 0x00000000000000f0 }, 6356 { .name = "ID_AA64PFR*_EL1_RESERVED", 6357 .is_glob = true }, 6358 { .name = "ID_AA64ZFR0_EL1" }, 6359 { .name = "ID_AA64MMFR0_EL1", 6360 .fixed_bits = 0x00000000ff000000 }, 6361 { .name = "ID_AA64MMFR1_EL1" }, 6362 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6363 .is_glob = true }, 6364 { .name = "ID_AA64DFR0_EL1", 6365 .fixed_bits = 0x0000000000000006 }, 6366 { .name = "ID_AA64DFR1_EL1" }, 6367 { .name = "ID_AA64DFR*_EL1_RESERVED", 6368 .is_glob = true }, 6369 { .name = "ID_AA64AFR*", 6370 .is_glob = true }, 6371 { .name = "ID_AA64ISAR0_EL1", 6372 .exported_bits = 0x00fffffff0fffff0 }, 6373 { .name = "ID_AA64ISAR1_EL1", 6374 .exported_bits = 0x000000f0ffffffff }, 6375 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6376 .is_glob = true }, 6377 REGUSERINFO_SENTINEL 6378 }; 6379 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6380 #endif 6381 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6382 if (!arm_feature(env, ARM_FEATURE_EL3) && 6383 !arm_feature(env, ARM_FEATURE_EL2)) { 6384 ARMCPRegInfo rvbar = { 6385 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6386 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6387 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6388 }; 6389 define_one_arm_cp_reg(cpu, &rvbar); 6390 } 6391 define_arm_cp_regs(cpu, v8_idregs); 6392 define_arm_cp_regs(cpu, v8_cp_reginfo); 6393 } 6394 if (arm_feature(env, ARM_FEATURE_EL2)) { 6395 uint64_t vmpidr_def = mpidr_read_val(env); 6396 ARMCPRegInfo vpidr_regs[] = { 6397 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6398 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6399 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6400 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6401 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6402 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6403 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6404 .access = PL2_RW, .resetvalue = cpu->midr, 6405 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6406 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6407 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6408 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6409 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6410 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6411 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6412 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6413 .access = PL2_RW, 6414 .resetvalue = vmpidr_def, 6415 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6416 REGINFO_SENTINEL 6417 }; 6418 define_arm_cp_regs(cpu, vpidr_regs); 6419 define_arm_cp_regs(cpu, el2_cp_reginfo); 6420 if (arm_feature(env, ARM_FEATURE_V8)) { 6421 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6422 } 6423 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6424 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6425 ARMCPRegInfo rvbar = { 6426 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6427 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6428 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6429 }; 6430 define_one_arm_cp_reg(cpu, &rvbar); 6431 } 6432 } else { 6433 /* If EL2 is missing but higher ELs are enabled, we need to 6434 * register the no_el2 reginfos. 6435 */ 6436 if (arm_feature(env, ARM_FEATURE_EL3)) { 6437 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6438 * of MIDR_EL1 and MPIDR_EL1. 6439 */ 6440 ARMCPRegInfo vpidr_regs[] = { 6441 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6442 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6443 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6444 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6445 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6446 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6447 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6448 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6449 .type = ARM_CP_NO_RAW, 6450 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6451 REGINFO_SENTINEL 6452 }; 6453 define_arm_cp_regs(cpu, vpidr_regs); 6454 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6455 if (arm_feature(env, ARM_FEATURE_V8)) { 6456 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6457 } 6458 } 6459 } 6460 if (arm_feature(env, ARM_FEATURE_EL3)) { 6461 define_arm_cp_regs(cpu, el3_cp_reginfo); 6462 ARMCPRegInfo el3_regs[] = { 6463 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6464 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6465 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6466 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6467 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6468 .access = PL3_RW, 6469 .raw_writefn = raw_write, .writefn = sctlr_write, 6470 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6471 .resetvalue = cpu->reset_sctlr }, 6472 REGINFO_SENTINEL 6473 }; 6474 6475 define_arm_cp_regs(cpu, el3_regs); 6476 } 6477 /* The behaviour of NSACR is sufficiently various that we don't 6478 * try to describe it in a single reginfo: 6479 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6480 * reads as constant 0xc00 from NS EL1 and NS EL2 6481 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6482 * if v7 without EL3, register doesn't exist 6483 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6484 */ 6485 if (arm_feature(env, ARM_FEATURE_EL3)) { 6486 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6487 ARMCPRegInfo nsacr = { 6488 .name = "NSACR", .type = ARM_CP_CONST, 6489 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6490 .access = PL1_RW, .accessfn = nsacr_access, 6491 .resetvalue = 0xc00 6492 }; 6493 define_one_arm_cp_reg(cpu, &nsacr); 6494 } else { 6495 ARMCPRegInfo nsacr = { 6496 .name = "NSACR", 6497 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6498 .access = PL3_RW | PL1_R, 6499 .resetvalue = 0, 6500 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6501 }; 6502 define_one_arm_cp_reg(cpu, &nsacr); 6503 } 6504 } else { 6505 if (arm_feature(env, ARM_FEATURE_V8)) { 6506 ARMCPRegInfo nsacr = { 6507 .name = "NSACR", .type = ARM_CP_CONST, 6508 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6509 .access = PL1_R, 6510 .resetvalue = 0xc00 6511 }; 6512 define_one_arm_cp_reg(cpu, &nsacr); 6513 } 6514 } 6515 6516 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6517 if (arm_feature(env, ARM_FEATURE_V6)) { 6518 /* PMSAv6 not implemented */ 6519 assert(arm_feature(env, ARM_FEATURE_V7)); 6520 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6521 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6522 } else { 6523 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6524 } 6525 } else { 6526 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6527 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6528 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6529 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6530 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6531 } 6532 } 6533 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6534 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6535 } 6536 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6537 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6538 } 6539 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6540 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6541 } 6542 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6543 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6544 } 6545 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6546 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6547 } 6548 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6549 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6550 } 6551 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6552 define_arm_cp_regs(cpu, omap_cp_reginfo); 6553 } 6554 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6555 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6556 } 6557 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6558 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6559 } 6560 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6561 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6562 } 6563 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6564 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6565 } 6566 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6567 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6568 * be read-only (ie write causes UNDEF exception). 6569 */ 6570 { 6571 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6572 /* Pre-v8 MIDR space. 6573 * Note that the MIDR isn't a simple constant register because 6574 * of the TI925 behaviour where writes to another register can 6575 * cause the MIDR value to change. 6576 * 6577 * Unimplemented registers in the c15 0 0 0 space default to 6578 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6579 * and friends override accordingly. 6580 */ 6581 { .name = "MIDR", 6582 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6583 .access = PL1_R, .resetvalue = cpu->midr, 6584 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6585 .readfn = midr_read, 6586 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6587 .type = ARM_CP_OVERRIDE }, 6588 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6589 { .name = "DUMMY", 6590 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6591 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6592 { .name = "DUMMY", 6593 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6594 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6595 { .name = "DUMMY", 6596 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6597 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6598 { .name = "DUMMY", 6599 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6600 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6601 { .name = "DUMMY", 6602 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6603 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6604 REGINFO_SENTINEL 6605 }; 6606 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6607 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6609 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6610 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6611 .readfn = midr_read }, 6612 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6613 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6614 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6615 .access = PL1_R, .resetvalue = cpu->midr }, 6616 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6617 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6618 .access = PL1_R, .resetvalue = cpu->midr }, 6619 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6621 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6622 REGINFO_SENTINEL 6623 }; 6624 ARMCPRegInfo id_cp_reginfo[] = { 6625 /* These are common to v8 and pre-v8 */ 6626 { .name = "CTR", 6627 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6628 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6629 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6630 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6631 .access = PL0_R, .accessfn = ctr_el0_access, 6632 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6633 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6634 { .name = "TCMTR", 6635 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6636 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6637 REGINFO_SENTINEL 6638 }; 6639 /* TLBTR is specific to VMSA */ 6640 ARMCPRegInfo id_tlbtr_reginfo = { 6641 .name = "TLBTR", 6642 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6643 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6644 }; 6645 /* MPUIR is specific to PMSA V6+ */ 6646 ARMCPRegInfo id_mpuir_reginfo = { 6647 .name = "MPUIR", 6648 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6649 .access = PL1_R, .type = ARM_CP_CONST, 6650 .resetvalue = cpu->pmsav7_dregion << 8 6651 }; 6652 ARMCPRegInfo crn0_wi_reginfo = { 6653 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6654 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6655 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6656 }; 6657 #ifdef CONFIG_USER_ONLY 6658 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6659 { .name = "MIDR_EL1", 6660 .exported_bits = 0x00000000ffffffff }, 6661 { .name = "REVIDR_EL1" }, 6662 REGUSERINFO_SENTINEL 6663 }; 6664 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6665 #endif 6666 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6667 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6668 ARMCPRegInfo *r; 6669 /* Register the blanket "writes ignored" value first to cover the 6670 * whole space. Then update the specific ID registers to allow write 6671 * access, so that they ignore writes rather than causing them to 6672 * UNDEF. 6673 */ 6674 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6675 for (r = id_pre_v8_midr_cp_reginfo; 6676 r->type != ARM_CP_SENTINEL; r++) { 6677 r->access = PL1_RW; 6678 } 6679 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6680 r->access = PL1_RW; 6681 } 6682 id_mpuir_reginfo.access = PL1_RW; 6683 id_tlbtr_reginfo.access = PL1_RW; 6684 } 6685 if (arm_feature(env, ARM_FEATURE_V8)) { 6686 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6687 } else { 6688 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6689 } 6690 define_arm_cp_regs(cpu, id_cp_reginfo); 6691 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6692 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6693 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6694 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6695 } 6696 } 6697 6698 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6699 ARMCPRegInfo mpidr_cp_reginfo[] = { 6700 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6701 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6702 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6703 REGINFO_SENTINEL 6704 }; 6705 #ifdef CONFIG_USER_ONLY 6706 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6707 { .name = "MPIDR_EL1", 6708 .fixed_bits = 0x0000000080000000 }, 6709 REGUSERINFO_SENTINEL 6710 }; 6711 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6712 #endif 6713 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6714 } 6715 6716 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6717 ARMCPRegInfo auxcr_reginfo[] = { 6718 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6719 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6720 .access = PL1_RW, .type = ARM_CP_CONST, 6721 .resetvalue = cpu->reset_auxcr }, 6722 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6723 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6724 .access = PL2_RW, .type = ARM_CP_CONST, 6725 .resetvalue = 0 }, 6726 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6727 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6728 .access = PL3_RW, .type = ARM_CP_CONST, 6729 .resetvalue = 0 }, 6730 REGINFO_SENTINEL 6731 }; 6732 define_arm_cp_regs(cpu, auxcr_reginfo); 6733 if (arm_feature(env, ARM_FEATURE_V8)) { 6734 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6735 ARMCPRegInfo hactlr2_reginfo = { 6736 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6737 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6738 .access = PL2_RW, .type = ARM_CP_CONST, 6739 .resetvalue = 0 6740 }; 6741 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6742 } 6743 } 6744 6745 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6746 /* 6747 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 6748 * There are two flavours: 6749 * (1) older 32-bit only cores have a simple 32-bit CBAR 6750 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 6751 * 32-bit register visible to AArch32 at a different encoding 6752 * to the "flavour 1" register and with the bits rearranged to 6753 * be able to squash a 64-bit address into the 32-bit view. 6754 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 6755 * in future if we support AArch32-only configs of some of the 6756 * AArch64 cores we might need to add a specific feature flag 6757 * to indicate cores with "flavour 2" CBAR. 6758 */ 6759 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6760 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6761 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6762 | extract64(cpu->reset_cbar, 32, 12); 6763 ARMCPRegInfo cbar_reginfo[] = { 6764 { .name = "CBAR", 6765 .type = ARM_CP_CONST, 6766 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 6767 .access = PL1_R, .resetvalue = cbar32 }, 6768 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6769 .type = ARM_CP_CONST, 6770 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6771 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6772 REGINFO_SENTINEL 6773 }; 6774 /* We don't implement a r/w 64 bit CBAR currently */ 6775 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6776 define_arm_cp_regs(cpu, cbar_reginfo); 6777 } else { 6778 ARMCPRegInfo cbar = { 6779 .name = "CBAR", 6780 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6781 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6782 .fieldoffset = offsetof(CPUARMState, 6783 cp15.c15_config_base_address) 6784 }; 6785 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6786 cbar.access = PL1_R; 6787 cbar.fieldoffset = 0; 6788 cbar.type = ARM_CP_CONST; 6789 } 6790 define_one_arm_cp_reg(cpu, &cbar); 6791 } 6792 } 6793 6794 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6795 ARMCPRegInfo vbar_cp_reginfo[] = { 6796 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6797 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6798 .access = PL1_RW, .writefn = vbar_write, 6799 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6800 offsetof(CPUARMState, cp15.vbar_ns) }, 6801 .resetvalue = 0 }, 6802 REGINFO_SENTINEL 6803 }; 6804 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6805 } 6806 6807 /* Generic registers whose values depend on the implementation */ 6808 { 6809 ARMCPRegInfo sctlr = { 6810 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6811 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6812 .access = PL1_RW, 6813 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6814 offsetof(CPUARMState, cp15.sctlr_ns) }, 6815 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6816 .raw_writefn = raw_write, 6817 }; 6818 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6819 /* Normally we would always end the TB on an SCTLR write, but Linux 6820 * arch/arm/mach-pxa/sleep.S expects two instructions following 6821 * an MMU enable to execute from cache. Imitate this behaviour. 6822 */ 6823 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6824 } 6825 define_one_arm_cp_reg(cpu, &sctlr); 6826 } 6827 6828 if (cpu_isar_feature(aa64_lor, cpu)) { 6829 /* 6830 * A trivial implementation of ARMv8.1-LOR leaves all of these 6831 * registers fixed at 0, which indicates that there are zero 6832 * supported Limited Ordering regions. 6833 */ 6834 static const ARMCPRegInfo lor_reginfo[] = { 6835 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6837 .access = PL1_RW, .accessfn = access_lor_other, 6838 .type = ARM_CP_CONST, .resetvalue = 0 }, 6839 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6841 .access = PL1_RW, .accessfn = access_lor_other, 6842 .type = ARM_CP_CONST, .resetvalue = 0 }, 6843 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6845 .access = PL1_RW, .accessfn = access_lor_other, 6846 .type = ARM_CP_CONST, .resetvalue = 0 }, 6847 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6849 .access = PL1_RW, .accessfn = access_lor_other, 6850 .type = ARM_CP_CONST, .resetvalue = 0 }, 6851 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6853 .access = PL1_R, .accessfn = access_lorid, 6854 .type = ARM_CP_CONST, .resetvalue = 0 }, 6855 REGINFO_SENTINEL 6856 }; 6857 define_arm_cp_regs(cpu, lor_reginfo); 6858 } 6859 6860 if (cpu_isar_feature(aa64_sve, cpu)) { 6861 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6862 if (arm_feature(env, ARM_FEATURE_EL2)) { 6863 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6864 } else { 6865 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6866 } 6867 if (arm_feature(env, ARM_FEATURE_EL3)) { 6868 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6869 } 6870 } 6871 6872 #ifdef TARGET_AARCH64 6873 if (cpu_isar_feature(aa64_pauth, cpu)) { 6874 define_arm_cp_regs(cpu, pauth_reginfo); 6875 } 6876 if (cpu_isar_feature(aa64_rndr, cpu)) { 6877 define_arm_cp_regs(cpu, rndr_reginfo); 6878 } 6879 #endif 6880 6881 /* 6882 * While all v8.0 cpus support aarch64, QEMU does have configurations 6883 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6884 * which will set ID_ISAR6. 6885 */ 6886 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6887 ? cpu_isar_feature(aa64_predinv, cpu) 6888 : cpu_isar_feature(aa32_predinv, cpu)) { 6889 define_arm_cp_regs(cpu, predinv_reginfo); 6890 } 6891 } 6892 6893 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6894 { 6895 CPUState *cs = CPU(cpu); 6896 CPUARMState *env = &cpu->env; 6897 6898 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6899 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6900 aarch64_fpu_gdb_set_reg, 6901 34, "aarch64-fpu.xml", 0); 6902 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6903 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6904 51, "arm-neon.xml", 0); 6905 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6906 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6907 35, "arm-vfp3.xml", 0); 6908 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6909 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6910 19, "arm-vfp.xml", 0); 6911 } 6912 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6913 arm_gen_dynamic_xml(cs), 6914 "system-registers.xml", 0); 6915 } 6916 6917 /* Sort alphabetically by type name, except for "any". */ 6918 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6919 { 6920 ObjectClass *class_a = (ObjectClass *)a; 6921 ObjectClass *class_b = (ObjectClass *)b; 6922 const char *name_a, *name_b; 6923 6924 name_a = object_class_get_name(class_a); 6925 name_b = object_class_get_name(class_b); 6926 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6927 return 1; 6928 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6929 return -1; 6930 } else { 6931 return strcmp(name_a, name_b); 6932 } 6933 } 6934 6935 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6936 { 6937 ObjectClass *oc = data; 6938 const char *typename; 6939 char *name; 6940 6941 typename = object_class_get_name(oc); 6942 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6943 qemu_printf(" %s\n", name); 6944 g_free(name); 6945 } 6946 6947 void arm_cpu_list(void) 6948 { 6949 GSList *list; 6950 6951 list = object_class_get_list(TYPE_ARM_CPU, false); 6952 list = g_slist_sort(list, arm_cpu_list_compare); 6953 qemu_printf("Available CPUs:\n"); 6954 g_slist_foreach(list, arm_cpu_list_entry, NULL); 6955 g_slist_free(list); 6956 } 6957 6958 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6959 { 6960 ObjectClass *oc = data; 6961 CpuDefinitionInfoList **cpu_list = user_data; 6962 CpuDefinitionInfoList *entry; 6963 CpuDefinitionInfo *info; 6964 const char *typename; 6965 6966 typename = object_class_get_name(oc); 6967 info = g_malloc0(sizeof(*info)); 6968 info->name = g_strndup(typename, 6969 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6970 info->q_typename = g_strdup(typename); 6971 6972 entry = g_malloc0(sizeof(*entry)); 6973 entry->value = info; 6974 entry->next = *cpu_list; 6975 *cpu_list = entry; 6976 } 6977 6978 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6979 { 6980 CpuDefinitionInfoList *cpu_list = NULL; 6981 GSList *list; 6982 6983 list = object_class_get_list(TYPE_ARM_CPU, false); 6984 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6985 g_slist_free(list); 6986 6987 return cpu_list; 6988 } 6989 6990 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6991 void *opaque, int state, int secstate, 6992 int crm, int opc1, int opc2, 6993 const char *name) 6994 { 6995 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6996 * add a single reginfo struct to the hash table. 6997 */ 6998 uint32_t *key = g_new(uint32_t, 1); 6999 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 7000 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 7001 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 7002 7003 r2->name = g_strdup(name); 7004 /* Reset the secure state to the specific incoming state. This is 7005 * necessary as the register may have been defined with both states. 7006 */ 7007 r2->secure = secstate; 7008 7009 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7010 /* Register is banked (using both entries in array). 7011 * Overwriting fieldoffset as the array is only used to define 7012 * banked registers but later only fieldoffset is used. 7013 */ 7014 r2->fieldoffset = r->bank_fieldoffsets[ns]; 7015 } 7016 7017 if (state == ARM_CP_STATE_AA32) { 7018 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7019 /* If the register is banked then we don't need to migrate or 7020 * reset the 32-bit instance in certain cases: 7021 * 7022 * 1) If the register has both 32-bit and 64-bit instances then we 7023 * can count on the 64-bit instance taking care of the 7024 * non-secure bank. 7025 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7026 * taking care of the secure bank. This requires that separate 7027 * 32 and 64-bit definitions are provided. 7028 */ 7029 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7030 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7031 r2->type |= ARM_CP_ALIAS; 7032 } 7033 } else if ((secstate != r->secure) && !ns) { 7034 /* The register is not banked so we only want to allow migration of 7035 * the non-secure instance. 7036 */ 7037 r2->type |= ARM_CP_ALIAS; 7038 } 7039 7040 if (r->state == ARM_CP_STATE_BOTH) { 7041 /* We assume it is a cp15 register if the .cp field is left unset. 7042 */ 7043 if (r2->cp == 0) { 7044 r2->cp = 15; 7045 } 7046 7047 #ifdef HOST_WORDS_BIGENDIAN 7048 if (r2->fieldoffset) { 7049 r2->fieldoffset += sizeof(uint32_t); 7050 } 7051 #endif 7052 } 7053 } 7054 if (state == ARM_CP_STATE_AA64) { 7055 /* To allow abbreviation of ARMCPRegInfo 7056 * definitions, we treat cp == 0 as equivalent to 7057 * the value for "standard guest-visible sysreg". 7058 * STATE_BOTH definitions are also always "standard 7059 * sysreg" in their AArch64 view (the .cp value may 7060 * be non-zero for the benefit of the AArch32 view). 7061 */ 7062 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7063 r2->cp = CP_REG_ARM64_SYSREG_CP; 7064 } 7065 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7066 r2->opc0, opc1, opc2); 7067 } else { 7068 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7069 } 7070 if (opaque) { 7071 r2->opaque = opaque; 7072 } 7073 /* reginfo passed to helpers is correct for the actual access, 7074 * and is never ARM_CP_STATE_BOTH: 7075 */ 7076 r2->state = state; 7077 /* Make sure reginfo passed to helpers for wildcarded regs 7078 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7079 */ 7080 r2->crm = crm; 7081 r2->opc1 = opc1; 7082 r2->opc2 = opc2; 7083 /* By convention, for wildcarded registers only the first 7084 * entry is used for migration; the others are marked as 7085 * ALIAS so we don't try to transfer the register 7086 * multiple times. Special registers (ie NOP/WFI) are 7087 * never migratable and not even raw-accessible. 7088 */ 7089 if ((r->type & ARM_CP_SPECIAL)) { 7090 r2->type |= ARM_CP_NO_RAW; 7091 } 7092 if (((r->crm == CP_ANY) && crm != 0) || 7093 ((r->opc1 == CP_ANY) && opc1 != 0) || 7094 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7095 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7096 } 7097 7098 /* Check that raw accesses are either forbidden or handled. Note that 7099 * we can't assert this earlier because the setup of fieldoffset for 7100 * banked registers has to be done first. 7101 */ 7102 if (!(r2->type & ARM_CP_NO_RAW)) { 7103 assert(!raw_accessors_invalid(r2)); 7104 } 7105 7106 /* Overriding of an existing definition must be explicitly 7107 * requested. 7108 */ 7109 if (!(r->type & ARM_CP_OVERRIDE)) { 7110 ARMCPRegInfo *oldreg; 7111 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7112 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7113 fprintf(stderr, "Register redefined: cp=%d %d bit " 7114 "crn=%d crm=%d opc1=%d opc2=%d, " 7115 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7116 r2->crn, r2->crm, r2->opc1, r2->opc2, 7117 oldreg->name, r2->name); 7118 g_assert_not_reached(); 7119 } 7120 } 7121 g_hash_table_insert(cpu->cp_regs, key, r2); 7122 } 7123 7124 7125 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7126 const ARMCPRegInfo *r, void *opaque) 7127 { 7128 /* Define implementations of coprocessor registers. 7129 * We store these in a hashtable because typically 7130 * there are less than 150 registers in a space which 7131 * is 16*16*16*8*8 = 262144 in size. 7132 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7133 * If a register is defined twice then the second definition is 7134 * used, so this can be used to define some generic registers and 7135 * then override them with implementation specific variations. 7136 * At least one of the original and the second definition should 7137 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7138 * against accidental use. 7139 * 7140 * The state field defines whether the register is to be 7141 * visible in the AArch32 or AArch64 execution state. If the 7142 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7143 * reginfo structure for the AArch32 view, which sees the lower 7144 * 32 bits of the 64 bit register. 7145 * 7146 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7147 * be wildcarded. AArch64 registers are always considered to be 64 7148 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7149 * the register, if any. 7150 */ 7151 int crm, opc1, opc2, state; 7152 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7153 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7154 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7155 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7156 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7157 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7158 /* 64 bit registers have only CRm and Opc1 fields */ 7159 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7160 /* op0 only exists in the AArch64 encodings */ 7161 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7162 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7163 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7164 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7165 * encodes a minimum access level for the register. We roll this 7166 * runtime check into our general permission check code, so check 7167 * here that the reginfo's specified permissions are strict enough 7168 * to encompass the generic architectural permission check. 7169 */ 7170 if (r->state != ARM_CP_STATE_AA32) { 7171 int mask = 0; 7172 switch (r->opc1) { 7173 case 0: 7174 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7175 mask = PL0U_R | PL1_RW; 7176 break; 7177 case 1: case 2: 7178 /* min_EL EL1 */ 7179 mask = PL1_RW; 7180 break; 7181 case 3: 7182 /* min_EL EL0 */ 7183 mask = PL0_RW; 7184 break; 7185 case 4: 7186 /* min_EL EL2 */ 7187 mask = PL2_RW; 7188 break; 7189 case 5: 7190 /* unallocated encoding, so not possible */ 7191 assert(false); 7192 break; 7193 case 6: 7194 /* min_EL EL3 */ 7195 mask = PL3_RW; 7196 break; 7197 case 7: 7198 /* min_EL EL1, secure mode only (we don't check the latter) */ 7199 mask = PL1_RW; 7200 break; 7201 default: 7202 /* broken reginfo with out-of-range opc1 */ 7203 assert(false); 7204 break; 7205 } 7206 /* assert our permissions are not too lax (stricter is fine) */ 7207 assert((r->access & ~mask) == 0); 7208 } 7209 7210 /* Check that the register definition has enough info to handle 7211 * reads and writes if they are permitted. 7212 */ 7213 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7214 if (r->access & PL3_R) { 7215 assert((r->fieldoffset || 7216 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7217 r->readfn); 7218 } 7219 if (r->access & PL3_W) { 7220 assert((r->fieldoffset || 7221 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7222 r->writefn); 7223 } 7224 } 7225 /* Bad type field probably means missing sentinel at end of reg list */ 7226 assert(cptype_valid(r->type)); 7227 for (crm = crmmin; crm <= crmmax; crm++) { 7228 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7229 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7230 for (state = ARM_CP_STATE_AA32; 7231 state <= ARM_CP_STATE_AA64; state++) { 7232 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7233 continue; 7234 } 7235 if (state == ARM_CP_STATE_AA32) { 7236 /* Under AArch32 CP registers can be common 7237 * (same for secure and non-secure world) or banked. 7238 */ 7239 char *name; 7240 7241 switch (r->secure) { 7242 case ARM_CP_SECSTATE_S: 7243 case ARM_CP_SECSTATE_NS: 7244 add_cpreg_to_hashtable(cpu, r, opaque, state, 7245 r->secure, crm, opc1, opc2, 7246 r->name); 7247 break; 7248 default: 7249 name = g_strdup_printf("%s_S", r->name); 7250 add_cpreg_to_hashtable(cpu, r, opaque, state, 7251 ARM_CP_SECSTATE_S, 7252 crm, opc1, opc2, name); 7253 g_free(name); 7254 add_cpreg_to_hashtable(cpu, r, opaque, state, 7255 ARM_CP_SECSTATE_NS, 7256 crm, opc1, opc2, r->name); 7257 break; 7258 } 7259 } else { 7260 /* AArch64 registers get mapped to non-secure instance 7261 * of AArch32 */ 7262 add_cpreg_to_hashtable(cpu, r, opaque, state, 7263 ARM_CP_SECSTATE_NS, 7264 crm, opc1, opc2, r->name); 7265 } 7266 } 7267 } 7268 } 7269 } 7270 } 7271 7272 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7273 const ARMCPRegInfo *regs, void *opaque) 7274 { 7275 /* Define a whole list of registers */ 7276 const ARMCPRegInfo *r; 7277 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7278 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7279 } 7280 } 7281 7282 /* 7283 * Modify ARMCPRegInfo for access from userspace. 7284 * 7285 * This is a data driven modification directed by 7286 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7287 * user-space cannot alter any values and dynamic values pertaining to 7288 * execution state are hidden from user space view anyway. 7289 */ 7290 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7291 { 7292 const ARMCPRegUserSpaceInfo *m; 7293 ARMCPRegInfo *r; 7294 7295 for (m = mods; m->name; m++) { 7296 GPatternSpec *pat = NULL; 7297 if (m->is_glob) { 7298 pat = g_pattern_spec_new(m->name); 7299 } 7300 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7301 if (pat && g_pattern_match_string(pat, r->name)) { 7302 r->type = ARM_CP_CONST; 7303 r->access = PL0U_R; 7304 r->resetvalue = 0; 7305 /* continue */ 7306 } else if (strcmp(r->name, m->name) == 0) { 7307 r->type = ARM_CP_CONST; 7308 r->access = PL0U_R; 7309 r->resetvalue &= m->exported_bits; 7310 r->resetvalue |= m->fixed_bits; 7311 break; 7312 } 7313 } 7314 if (pat) { 7315 g_pattern_spec_free(pat); 7316 } 7317 } 7318 } 7319 7320 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7321 { 7322 return g_hash_table_lookup(cpregs, &encoded_cp); 7323 } 7324 7325 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7326 uint64_t value) 7327 { 7328 /* Helper coprocessor write function for write-ignore registers */ 7329 } 7330 7331 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7332 { 7333 /* Helper coprocessor write function for read-as-zero registers */ 7334 return 0; 7335 } 7336 7337 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7338 { 7339 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7340 } 7341 7342 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7343 { 7344 /* Return true if it is not valid for us to switch to 7345 * this CPU mode (ie all the UNPREDICTABLE cases in 7346 * the ARM ARM CPSRWriteByInstr pseudocode). 7347 */ 7348 7349 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7350 if (write_type == CPSRWriteByInstr && 7351 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7352 mode == ARM_CPU_MODE_HYP)) { 7353 return 1; 7354 } 7355 7356 switch (mode) { 7357 case ARM_CPU_MODE_USR: 7358 return 0; 7359 case ARM_CPU_MODE_SYS: 7360 case ARM_CPU_MODE_SVC: 7361 case ARM_CPU_MODE_ABT: 7362 case ARM_CPU_MODE_UND: 7363 case ARM_CPU_MODE_IRQ: 7364 case ARM_CPU_MODE_FIQ: 7365 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7366 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7367 */ 7368 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7369 * and CPS are treated as illegal mode changes. 7370 */ 7371 if (write_type == CPSRWriteByInstr && 7372 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7373 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7374 return 1; 7375 } 7376 return 0; 7377 case ARM_CPU_MODE_HYP: 7378 return !arm_feature(env, ARM_FEATURE_EL2) 7379 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7380 case ARM_CPU_MODE_MON: 7381 return arm_current_el(env) < 3; 7382 default: 7383 return 1; 7384 } 7385 } 7386 7387 uint32_t cpsr_read(CPUARMState *env) 7388 { 7389 int ZF; 7390 ZF = (env->ZF == 0); 7391 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7392 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7393 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7394 | ((env->condexec_bits & 0xfc) << 8) 7395 | (env->GE << 16) | (env->daif & CPSR_AIF); 7396 } 7397 7398 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7399 CPSRWriteType write_type) 7400 { 7401 uint32_t changed_daif; 7402 7403 if (mask & CPSR_NZCV) { 7404 env->ZF = (~val) & CPSR_Z; 7405 env->NF = val; 7406 env->CF = (val >> 29) & 1; 7407 env->VF = (val << 3) & 0x80000000; 7408 } 7409 if (mask & CPSR_Q) 7410 env->QF = ((val & CPSR_Q) != 0); 7411 if (mask & CPSR_T) 7412 env->thumb = ((val & CPSR_T) != 0); 7413 if (mask & CPSR_IT_0_1) { 7414 env->condexec_bits &= ~3; 7415 env->condexec_bits |= (val >> 25) & 3; 7416 } 7417 if (mask & CPSR_IT_2_7) { 7418 env->condexec_bits &= 3; 7419 env->condexec_bits |= (val >> 8) & 0xfc; 7420 } 7421 if (mask & CPSR_GE) { 7422 env->GE = (val >> 16) & 0xf; 7423 } 7424 7425 /* In a V7 implementation that includes the security extensions but does 7426 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7427 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7428 * bits respectively. 7429 * 7430 * In a V8 implementation, it is permitted for privileged software to 7431 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7432 */ 7433 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7434 arm_feature(env, ARM_FEATURE_EL3) && 7435 !arm_feature(env, ARM_FEATURE_EL2) && 7436 !arm_is_secure(env)) { 7437 7438 changed_daif = (env->daif ^ val) & mask; 7439 7440 if (changed_daif & CPSR_A) { 7441 /* Check to see if we are allowed to change the masking of async 7442 * abort exceptions from a non-secure state. 7443 */ 7444 if (!(env->cp15.scr_el3 & SCR_AW)) { 7445 qemu_log_mask(LOG_GUEST_ERROR, 7446 "Ignoring attempt to switch CPSR_A flag from " 7447 "non-secure world with SCR.AW bit clear\n"); 7448 mask &= ~CPSR_A; 7449 } 7450 } 7451 7452 if (changed_daif & CPSR_F) { 7453 /* Check to see if we are allowed to change the masking of FIQ 7454 * exceptions from a non-secure state. 7455 */ 7456 if (!(env->cp15.scr_el3 & SCR_FW)) { 7457 qemu_log_mask(LOG_GUEST_ERROR, 7458 "Ignoring attempt to switch CPSR_F flag from " 7459 "non-secure world with SCR.FW bit clear\n"); 7460 mask &= ~CPSR_F; 7461 } 7462 7463 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7464 * If this bit is set software is not allowed to mask 7465 * FIQs, but is allowed to set CPSR_F to 0. 7466 */ 7467 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7468 (val & CPSR_F)) { 7469 qemu_log_mask(LOG_GUEST_ERROR, 7470 "Ignoring attempt to enable CPSR_F flag " 7471 "(non-maskable FIQ [NMFI] support enabled)\n"); 7472 mask &= ~CPSR_F; 7473 } 7474 } 7475 } 7476 7477 env->daif &= ~(CPSR_AIF & mask); 7478 env->daif |= val & CPSR_AIF & mask; 7479 7480 if (write_type != CPSRWriteRaw && 7481 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7482 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7483 /* Note that we can only get here in USR mode if this is a 7484 * gdb stub write; for this case we follow the architectural 7485 * behaviour for guest writes in USR mode of ignoring an attempt 7486 * to switch mode. (Those are caught by translate.c for writes 7487 * triggered by guest instructions.) 7488 */ 7489 mask &= ~CPSR_M; 7490 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7491 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7492 * v7, and has defined behaviour in v8: 7493 * + leave CPSR.M untouched 7494 * + allow changes to the other CPSR fields 7495 * + set PSTATE.IL 7496 * For user changes via the GDB stub, we don't set PSTATE.IL, 7497 * as this would be unnecessarily harsh for a user error. 7498 */ 7499 mask &= ~CPSR_M; 7500 if (write_type != CPSRWriteByGDBStub && 7501 arm_feature(env, ARM_FEATURE_V8)) { 7502 mask |= CPSR_IL; 7503 val |= CPSR_IL; 7504 } 7505 qemu_log_mask(LOG_GUEST_ERROR, 7506 "Illegal AArch32 mode switch attempt from %s to %s\n", 7507 aarch32_mode_name(env->uncached_cpsr), 7508 aarch32_mode_name(val)); 7509 } else { 7510 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7511 write_type == CPSRWriteExceptionReturn ? 7512 "Exception return from AArch32" : 7513 "AArch32 mode switch from", 7514 aarch32_mode_name(env->uncached_cpsr), 7515 aarch32_mode_name(val), env->regs[15]); 7516 switch_mode(env, val & CPSR_M); 7517 } 7518 } 7519 mask &= ~CACHED_CPSR_BITS; 7520 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7521 } 7522 7523 /* Sign/zero extend */ 7524 uint32_t HELPER(sxtb16)(uint32_t x) 7525 { 7526 uint32_t res; 7527 res = (uint16_t)(int8_t)x; 7528 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7529 return res; 7530 } 7531 7532 uint32_t HELPER(uxtb16)(uint32_t x) 7533 { 7534 uint32_t res; 7535 res = (uint16_t)(uint8_t)x; 7536 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7537 return res; 7538 } 7539 7540 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7541 { 7542 if (den == 0) 7543 return 0; 7544 if (num == INT_MIN && den == -1) 7545 return INT_MIN; 7546 return num / den; 7547 } 7548 7549 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7550 { 7551 if (den == 0) 7552 return 0; 7553 return num / den; 7554 } 7555 7556 uint32_t HELPER(rbit)(uint32_t x) 7557 { 7558 return revbit32(x); 7559 } 7560 7561 #ifdef CONFIG_USER_ONLY 7562 7563 static void switch_mode(CPUARMState *env, int mode) 7564 { 7565 ARMCPU *cpu = env_archcpu(env); 7566 7567 if (mode != ARM_CPU_MODE_USR) { 7568 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7569 } 7570 } 7571 7572 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7573 uint32_t cur_el, bool secure) 7574 { 7575 return 1; 7576 } 7577 7578 void aarch64_sync_64_to_32(CPUARMState *env) 7579 { 7580 g_assert_not_reached(); 7581 } 7582 7583 #else 7584 7585 static void switch_mode(CPUARMState *env, int mode) 7586 { 7587 int old_mode; 7588 int i; 7589 7590 old_mode = env->uncached_cpsr & CPSR_M; 7591 if (mode == old_mode) 7592 return; 7593 7594 if (old_mode == ARM_CPU_MODE_FIQ) { 7595 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7596 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7597 } else if (mode == ARM_CPU_MODE_FIQ) { 7598 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7599 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7600 } 7601 7602 i = bank_number(old_mode); 7603 env->banked_r13[i] = env->regs[13]; 7604 env->banked_spsr[i] = env->spsr; 7605 7606 i = bank_number(mode); 7607 env->regs[13] = env->banked_r13[i]; 7608 env->spsr = env->banked_spsr[i]; 7609 7610 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7611 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7612 } 7613 7614 /* Physical Interrupt Target EL Lookup Table 7615 * 7616 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7617 * 7618 * The below multi-dimensional table is used for looking up the target 7619 * exception level given numerous condition criteria. Specifically, the 7620 * target EL is based on SCR and HCR routing controls as well as the 7621 * currently executing EL and secure state. 7622 * 7623 * Dimensions: 7624 * target_el_table[2][2][2][2][2][4] 7625 * | | | | | +--- Current EL 7626 * | | | | +------ Non-secure(0)/Secure(1) 7627 * | | | +--------- HCR mask override 7628 * | | +------------ SCR exec state control 7629 * | +--------------- SCR mask override 7630 * +------------------ 32-bit(0)/64-bit(1) EL3 7631 * 7632 * The table values are as such: 7633 * 0-3 = EL0-EL3 7634 * -1 = Cannot occur 7635 * 7636 * The ARM ARM target EL table includes entries indicating that an "exception 7637 * is not taken". The two cases where this is applicable are: 7638 * 1) An exception is taken from EL3 but the SCR does not have the exception 7639 * routed to EL3. 7640 * 2) An exception is taken from EL2 but the HCR does not have the exception 7641 * routed to EL2. 7642 * In these two cases, the below table contain a target of EL1. This value is 7643 * returned as it is expected that the consumer of the table data will check 7644 * for "target EL >= current EL" to ensure the exception is not taken. 7645 * 7646 * SCR HCR 7647 * 64 EA AMO From 7648 * BIT IRQ IMO Non-secure Secure 7649 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7650 */ 7651 static const int8_t target_el_table[2][2][2][2][2][4] = { 7652 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7653 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7654 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7655 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7656 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7657 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7658 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7659 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7660 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7661 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7662 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7663 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7664 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7665 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7666 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7667 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7668 }; 7669 7670 /* 7671 * Determine the target EL for physical exceptions 7672 */ 7673 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7674 uint32_t cur_el, bool secure) 7675 { 7676 CPUARMState *env = cs->env_ptr; 7677 bool rw; 7678 bool scr; 7679 bool hcr; 7680 int target_el; 7681 /* Is the highest EL AArch64? */ 7682 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7683 uint64_t hcr_el2; 7684 7685 if (arm_feature(env, ARM_FEATURE_EL3)) { 7686 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7687 } else { 7688 /* Either EL2 is the highest EL (and so the EL2 register width 7689 * is given by is64); or there is no EL2 or EL3, in which case 7690 * the value of 'rw' does not affect the table lookup anyway. 7691 */ 7692 rw = is64; 7693 } 7694 7695 hcr_el2 = arm_hcr_el2_eff(env); 7696 switch (excp_idx) { 7697 case EXCP_IRQ: 7698 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7699 hcr = hcr_el2 & HCR_IMO; 7700 break; 7701 case EXCP_FIQ: 7702 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7703 hcr = hcr_el2 & HCR_FMO; 7704 break; 7705 default: 7706 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7707 hcr = hcr_el2 & HCR_AMO; 7708 break; 7709 }; 7710 7711 /* Perform a table-lookup for the target EL given the current state */ 7712 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7713 7714 assert(target_el > 0); 7715 7716 return target_el; 7717 } 7718 7719 void arm_log_exception(int idx) 7720 { 7721 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7722 const char *exc = NULL; 7723 static const char * const excnames[] = { 7724 [EXCP_UDEF] = "Undefined Instruction", 7725 [EXCP_SWI] = "SVC", 7726 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7727 [EXCP_DATA_ABORT] = "Data Abort", 7728 [EXCP_IRQ] = "IRQ", 7729 [EXCP_FIQ] = "FIQ", 7730 [EXCP_BKPT] = "Breakpoint", 7731 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7732 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7733 [EXCP_HVC] = "Hypervisor Call", 7734 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7735 [EXCP_SMC] = "Secure Monitor Call", 7736 [EXCP_VIRQ] = "Virtual IRQ", 7737 [EXCP_VFIQ] = "Virtual FIQ", 7738 [EXCP_SEMIHOST] = "Semihosting call", 7739 [EXCP_NOCP] = "v7M NOCP UsageFault", 7740 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7741 [EXCP_STKOF] = "v8M STKOF UsageFault", 7742 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7743 [EXCP_LSERR] = "v8M LSERR UsageFault", 7744 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7745 }; 7746 7747 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7748 exc = excnames[idx]; 7749 } 7750 if (!exc) { 7751 exc = "unknown"; 7752 } 7753 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7754 } 7755 } 7756 7757 /* 7758 * Function used to synchronize QEMU's AArch64 register set with AArch32 7759 * register set. This is necessary when switching between AArch32 and AArch64 7760 * execution state. 7761 */ 7762 void aarch64_sync_32_to_64(CPUARMState *env) 7763 { 7764 int i; 7765 uint32_t mode = env->uncached_cpsr & CPSR_M; 7766 7767 /* We can blanket copy R[0:7] to X[0:7] */ 7768 for (i = 0; i < 8; i++) { 7769 env->xregs[i] = env->regs[i]; 7770 } 7771 7772 /* 7773 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7774 * Otherwise, they come from the banked user regs. 7775 */ 7776 if (mode == ARM_CPU_MODE_FIQ) { 7777 for (i = 8; i < 13; i++) { 7778 env->xregs[i] = env->usr_regs[i - 8]; 7779 } 7780 } else { 7781 for (i = 8; i < 13; i++) { 7782 env->xregs[i] = env->regs[i]; 7783 } 7784 } 7785 7786 /* 7787 * Registers x13-x23 are the various mode SP and FP registers. Registers 7788 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7789 * from the mode banked register. 7790 */ 7791 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7792 env->xregs[13] = env->regs[13]; 7793 env->xregs[14] = env->regs[14]; 7794 } else { 7795 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7796 /* HYP is an exception in that it is copied from r14 */ 7797 if (mode == ARM_CPU_MODE_HYP) { 7798 env->xregs[14] = env->regs[14]; 7799 } else { 7800 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 7801 } 7802 } 7803 7804 if (mode == ARM_CPU_MODE_HYP) { 7805 env->xregs[15] = env->regs[13]; 7806 } else { 7807 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7808 } 7809 7810 if (mode == ARM_CPU_MODE_IRQ) { 7811 env->xregs[16] = env->regs[14]; 7812 env->xregs[17] = env->regs[13]; 7813 } else { 7814 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 7815 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7816 } 7817 7818 if (mode == ARM_CPU_MODE_SVC) { 7819 env->xregs[18] = env->regs[14]; 7820 env->xregs[19] = env->regs[13]; 7821 } else { 7822 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 7823 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7824 } 7825 7826 if (mode == ARM_CPU_MODE_ABT) { 7827 env->xregs[20] = env->regs[14]; 7828 env->xregs[21] = env->regs[13]; 7829 } else { 7830 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 7831 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7832 } 7833 7834 if (mode == ARM_CPU_MODE_UND) { 7835 env->xregs[22] = env->regs[14]; 7836 env->xregs[23] = env->regs[13]; 7837 } else { 7838 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 7839 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7840 } 7841 7842 /* 7843 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7844 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7845 * FIQ bank for r8-r14. 7846 */ 7847 if (mode == ARM_CPU_MODE_FIQ) { 7848 for (i = 24; i < 31; i++) { 7849 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7850 } 7851 } else { 7852 for (i = 24; i < 29; i++) { 7853 env->xregs[i] = env->fiq_regs[i - 24]; 7854 } 7855 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7856 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 7857 } 7858 7859 env->pc = env->regs[15]; 7860 } 7861 7862 /* 7863 * Function used to synchronize QEMU's AArch32 register set with AArch64 7864 * register set. This is necessary when switching between AArch32 and AArch64 7865 * execution state. 7866 */ 7867 void aarch64_sync_64_to_32(CPUARMState *env) 7868 { 7869 int i; 7870 uint32_t mode = env->uncached_cpsr & CPSR_M; 7871 7872 /* We can blanket copy X[0:7] to R[0:7] */ 7873 for (i = 0; i < 8; i++) { 7874 env->regs[i] = env->xregs[i]; 7875 } 7876 7877 /* 7878 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7879 * Otherwise, we copy x8-x12 into the banked user regs. 7880 */ 7881 if (mode == ARM_CPU_MODE_FIQ) { 7882 for (i = 8; i < 13; i++) { 7883 env->usr_regs[i - 8] = env->xregs[i]; 7884 } 7885 } else { 7886 for (i = 8; i < 13; i++) { 7887 env->regs[i] = env->xregs[i]; 7888 } 7889 } 7890 7891 /* 7892 * Registers r13 & r14 depend on the current mode. 7893 * If we are in a given mode, we copy the corresponding x registers to r13 7894 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7895 * for the mode. 7896 */ 7897 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7898 env->regs[13] = env->xregs[13]; 7899 env->regs[14] = env->xregs[14]; 7900 } else { 7901 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7902 7903 /* 7904 * HYP is an exception in that it does not have its own banked r14 but 7905 * shares the USR r14 7906 */ 7907 if (mode == ARM_CPU_MODE_HYP) { 7908 env->regs[14] = env->xregs[14]; 7909 } else { 7910 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7911 } 7912 } 7913 7914 if (mode == ARM_CPU_MODE_HYP) { 7915 env->regs[13] = env->xregs[15]; 7916 } else { 7917 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7918 } 7919 7920 if (mode == ARM_CPU_MODE_IRQ) { 7921 env->regs[14] = env->xregs[16]; 7922 env->regs[13] = env->xregs[17]; 7923 } else { 7924 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7925 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7926 } 7927 7928 if (mode == ARM_CPU_MODE_SVC) { 7929 env->regs[14] = env->xregs[18]; 7930 env->regs[13] = env->xregs[19]; 7931 } else { 7932 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7933 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7934 } 7935 7936 if (mode == ARM_CPU_MODE_ABT) { 7937 env->regs[14] = env->xregs[20]; 7938 env->regs[13] = env->xregs[21]; 7939 } else { 7940 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7941 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7942 } 7943 7944 if (mode == ARM_CPU_MODE_UND) { 7945 env->regs[14] = env->xregs[22]; 7946 env->regs[13] = env->xregs[23]; 7947 } else { 7948 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7949 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7950 } 7951 7952 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7953 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7954 * FIQ bank for r8-r14. 7955 */ 7956 if (mode == ARM_CPU_MODE_FIQ) { 7957 for (i = 24; i < 31; i++) { 7958 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7959 } 7960 } else { 7961 for (i = 24; i < 29; i++) { 7962 env->fiq_regs[i - 24] = env->xregs[i]; 7963 } 7964 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7965 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7966 } 7967 7968 env->regs[15] = env->pc; 7969 } 7970 7971 static void take_aarch32_exception(CPUARMState *env, int new_mode, 7972 uint32_t mask, uint32_t offset, 7973 uint32_t newpc) 7974 { 7975 /* Change the CPU state so as to actually take the exception. */ 7976 switch_mode(env, new_mode); 7977 /* 7978 * For exceptions taken to AArch32 we must clear the SS bit in both 7979 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7980 */ 7981 env->uncached_cpsr &= ~PSTATE_SS; 7982 env->spsr = cpsr_read(env); 7983 /* Clear IT bits. */ 7984 env->condexec_bits = 0; 7985 /* Switch to the new mode, and to the correct instruction set. */ 7986 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7987 /* Set new mode endianness */ 7988 env->uncached_cpsr &= ~CPSR_E; 7989 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7990 env->uncached_cpsr |= CPSR_E; 7991 } 7992 /* J and IL must always be cleared for exception entry */ 7993 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 7994 env->daif |= mask; 7995 7996 if (new_mode == ARM_CPU_MODE_HYP) { 7997 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 7998 env->elr_el[2] = env->regs[15]; 7999 } else { 8000 /* 8001 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8002 * and we should just guard the thumb mode on V4 8003 */ 8004 if (arm_feature(env, ARM_FEATURE_V4T)) { 8005 env->thumb = 8006 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8007 } 8008 env->regs[14] = env->regs[15] + offset; 8009 } 8010 env->regs[15] = newpc; 8011 arm_rebuild_hflags(env); 8012 } 8013 8014 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8015 { 8016 /* 8017 * Handle exception entry to Hyp mode; this is sufficiently 8018 * different to entry to other AArch32 modes that we handle it 8019 * separately here. 8020 * 8021 * The vector table entry used is always the 0x14 Hyp mode entry point, 8022 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8023 * The offset applied to the preferred return address is always zero 8024 * (see DDI0487C.a section G1.12.3). 8025 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8026 */ 8027 uint32_t addr, mask; 8028 ARMCPU *cpu = ARM_CPU(cs); 8029 CPUARMState *env = &cpu->env; 8030 8031 switch (cs->exception_index) { 8032 case EXCP_UDEF: 8033 addr = 0x04; 8034 break; 8035 case EXCP_SWI: 8036 addr = 0x14; 8037 break; 8038 case EXCP_BKPT: 8039 /* Fall through to prefetch abort. */ 8040 case EXCP_PREFETCH_ABORT: 8041 env->cp15.ifar_s = env->exception.vaddress; 8042 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8043 (uint32_t)env->exception.vaddress); 8044 addr = 0x0c; 8045 break; 8046 case EXCP_DATA_ABORT: 8047 env->cp15.dfar_s = env->exception.vaddress; 8048 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8049 (uint32_t)env->exception.vaddress); 8050 addr = 0x10; 8051 break; 8052 case EXCP_IRQ: 8053 addr = 0x18; 8054 break; 8055 case EXCP_FIQ: 8056 addr = 0x1c; 8057 break; 8058 case EXCP_HVC: 8059 addr = 0x08; 8060 break; 8061 case EXCP_HYP_TRAP: 8062 addr = 0x14; 8063 break; 8064 default: 8065 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8066 } 8067 8068 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8069 if (!arm_feature(env, ARM_FEATURE_V8)) { 8070 /* 8071 * QEMU syndrome values are v8-style. v7 has the IL bit 8072 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8073 * If this is a v7 CPU, squash the IL bit in those cases. 8074 */ 8075 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8076 (cs->exception_index == EXCP_DATA_ABORT && 8077 !(env->exception.syndrome & ARM_EL_ISV)) || 8078 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8079 env->exception.syndrome &= ~ARM_EL_IL; 8080 } 8081 } 8082 env->cp15.esr_el[2] = env->exception.syndrome; 8083 } 8084 8085 if (arm_current_el(env) != 2 && addr < 0x14) { 8086 addr = 0x14; 8087 } 8088 8089 mask = 0; 8090 if (!(env->cp15.scr_el3 & SCR_EA)) { 8091 mask |= CPSR_A; 8092 } 8093 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8094 mask |= CPSR_I; 8095 } 8096 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8097 mask |= CPSR_F; 8098 } 8099 8100 addr += env->cp15.hvbar; 8101 8102 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8103 } 8104 8105 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8106 { 8107 ARMCPU *cpu = ARM_CPU(cs); 8108 CPUARMState *env = &cpu->env; 8109 uint32_t addr; 8110 uint32_t mask; 8111 int new_mode; 8112 uint32_t offset; 8113 uint32_t moe; 8114 8115 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8116 switch (syn_get_ec(env->exception.syndrome)) { 8117 case EC_BREAKPOINT: 8118 case EC_BREAKPOINT_SAME_EL: 8119 moe = 1; 8120 break; 8121 case EC_WATCHPOINT: 8122 case EC_WATCHPOINT_SAME_EL: 8123 moe = 10; 8124 break; 8125 case EC_AA32_BKPT: 8126 moe = 3; 8127 break; 8128 case EC_VECTORCATCH: 8129 moe = 5; 8130 break; 8131 default: 8132 moe = 0; 8133 break; 8134 } 8135 8136 if (moe) { 8137 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8138 } 8139 8140 if (env->exception.target_el == 2) { 8141 arm_cpu_do_interrupt_aarch32_hyp(cs); 8142 return; 8143 } 8144 8145 switch (cs->exception_index) { 8146 case EXCP_UDEF: 8147 new_mode = ARM_CPU_MODE_UND; 8148 addr = 0x04; 8149 mask = CPSR_I; 8150 if (env->thumb) 8151 offset = 2; 8152 else 8153 offset = 4; 8154 break; 8155 case EXCP_SWI: 8156 new_mode = ARM_CPU_MODE_SVC; 8157 addr = 0x08; 8158 mask = CPSR_I; 8159 /* The PC already points to the next instruction. */ 8160 offset = 0; 8161 break; 8162 case EXCP_BKPT: 8163 /* Fall through to prefetch abort. */ 8164 case EXCP_PREFETCH_ABORT: 8165 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8166 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8167 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8168 env->exception.fsr, (uint32_t)env->exception.vaddress); 8169 new_mode = ARM_CPU_MODE_ABT; 8170 addr = 0x0c; 8171 mask = CPSR_A | CPSR_I; 8172 offset = 4; 8173 break; 8174 case EXCP_DATA_ABORT: 8175 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8176 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8177 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8178 env->exception.fsr, 8179 (uint32_t)env->exception.vaddress); 8180 new_mode = ARM_CPU_MODE_ABT; 8181 addr = 0x10; 8182 mask = CPSR_A | CPSR_I; 8183 offset = 8; 8184 break; 8185 case EXCP_IRQ: 8186 new_mode = ARM_CPU_MODE_IRQ; 8187 addr = 0x18; 8188 /* Disable IRQ and imprecise data aborts. */ 8189 mask = CPSR_A | CPSR_I; 8190 offset = 4; 8191 if (env->cp15.scr_el3 & SCR_IRQ) { 8192 /* IRQ routed to monitor mode */ 8193 new_mode = ARM_CPU_MODE_MON; 8194 mask |= CPSR_F; 8195 } 8196 break; 8197 case EXCP_FIQ: 8198 new_mode = ARM_CPU_MODE_FIQ; 8199 addr = 0x1c; 8200 /* Disable FIQ, IRQ and imprecise data aborts. */ 8201 mask = CPSR_A | CPSR_I | CPSR_F; 8202 if (env->cp15.scr_el3 & SCR_FIQ) { 8203 /* FIQ routed to monitor mode */ 8204 new_mode = ARM_CPU_MODE_MON; 8205 } 8206 offset = 4; 8207 break; 8208 case EXCP_VIRQ: 8209 new_mode = ARM_CPU_MODE_IRQ; 8210 addr = 0x18; 8211 /* Disable IRQ and imprecise data aborts. */ 8212 mask = CPSR_A | CPSR_I; 8213 offset = 4; 8214 break; 8215 case EXCP_VFIQ: 8216 new_mode = ARM_CPU_MODE_FIQ; 8217 addr = 0x1c; 8218 /* Disable FIQ, IRQ and imprecise data aborts. */ 8219 mask = CPSR_A | CPSR_I | CPSR_F; 8220 offset = 4; 8221 break; 8222 case EXCP_SMC: 8223 new_mode = ARM_CPU_MODE_MON; 8224 addr = 0x08; 8225 mask = CPSR_A | CPSR_I | CPSR_F; 8226 offset = 0; 8227 break; 8228 default: 8229 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8230 return; /* Never happens. Keep compiler happy. */ 8231 } 8232 8233 if (new_mode == ARM_CPU_MODE_MON) { 8234 addr += env->cp15.mvbar; 8235 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8236 /* High vectors. When enabled, base address cannot be remapped. */ 8237 addr += 0xffff0000; 8238 } else { 8239 /* ARM v7 architectures provide a vector base address register to remap 8240 * the interrupt vector table. 8241 * This register is only followed in non-monitor mode, and is banked. 8242 * Note: only bits 31:5 are valid. 8243 */ 8244 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8245 } 8246 8247 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8248 env->cp15.scr_el3 &= ~SCR_NS; 8249 } 8250 8251 take_aarch32_exception(env, new_mode, mask, offset, addr); 8252 } 8253 8254 /* Handle exception entry to a target EL which is using AArch64 */ 8255 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8256 { 8257 ARMCPU *cpu = ARM_CPU(cs); 8258 CPUARMState *env = &cpu->env; 8259 unsigned int new_el = env->exception.target_el; 8260 target_ulong addr = env->cp15.vbar_el[new_el]; 8261 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8262 unsigned int cur_el = arm_current_el(env); 8263 8264 /* 8265 * Note that new_el can never be 0. If cur_el is 0, then 8266 * el0_a64 is is_a64(), else el0_a64 is ignored. 8267 */ 8268 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8269 8270 if (cur_el < new_el) { 8271 /* Entry vector offset depends on whether the implemented EL 8272 * immediately lower than the target level is using AArch32 or AArch64 8273 */ 8274 bool is_aa64; 8275 8276 switch (new_el) { 8277 case 3: 8278 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8279 break; 8280 case 2: 8281 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8282 break; 8283 case 1: 8284 is_aa64 = is_a64(env); 8285 break; 8286 default: 8287 g_assert_not_reached(); 8288 } 8289 8290 if (is_aa64) { 8291 addr += 0x400; 8292 } else { 8293 addr += 0x600; 8294 } 8295 } else if (pstate_read(env) & PSTATE_SP) { 8296 addr += 0x200; 8297 } 8298 8299 switch (cs->exception_index) { 8300 case EXCP_PREFETCH_ABORT: 8301 case EXCP_DATA_ABORT: 8302 env->cp15.far_el[new_el] = env->exception.vaddress; 8303 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8304 env->cp15.far_el[new_el]); 8305 /* fall through */ 8306 case EXCP_BKPT: 8307 case EXCP_UDEF: 8308 case EXCP_SWI: 8309 case EXCP_HVC: 8310 case EXCP_HYP_TRAP: 8311 case EXCP_SMC: 8312 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8313 /* 8314 * QEMU internal FP/SIMD syndromes from AArch32 include the 8315 * TA and coproc fields which are only exposed if the exception 8316 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8317 * AArch64 format syndrome. 8318 */ 8319 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8320 } 8321 env->cp15.esr_el[new_el] = env->exception.syndrome; 8322 break; 8323 case EXCP_IRQ: 8324 case EXCP_VIRQ: 8325 addr += 0x80; 8326 break; 8327 case EXCP_FIQ: 8328 case EXCP_VFIQ: 8329 addr += 0x100; 8330 break; 8331 case EXCP_SEMIHOST: 8332 qemu_log_mask(CPU_LOG_INT, 8333 "...handling as semihosting call 0x%" PRIx64 "\n", 8334 env->xregs[0]); 8335 env->xregs[0] = do_arm_semihosting(env); 8336 return; 8337 default: 8338 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8339 } 8340 8341 if (is_a64(env)) { 8342 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8343 aarch64_save_sp(env, arm_current_el(env)); 8344 env->elr_el[new_el] = env->pc; 8345 } else { 8346 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8347 env->elr_el[new_el] = env->regs[15]; 8348 8349 aarch64_sync_32_to_64(env); 8350 8351 env->condexec_bits = 0; 8352 } 8353 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8354 env->elr_el[new_el]); 8355 8356 pstate_write(env, PSTATE_DAIF | new_mode); 8357 env->aarch64 = 1; 8358 aarch64_restore_sp(env, new_el); 8359 helper_rebuild_hflags_a64(env, new_el); 8360 8361 env->pc = addr; 8362 8363 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8364 new_el, env->pc, pstate_read(env)); 8365 } 8366 8367 /* 8368 * Do semihosting call and set the appropriate return value. All the 8369 * permission and validity checks have been done at translate time. 8370 * 8371 * We only see semihosting exceptions in TCG only as they are not 8372 * trapped to the hypervisor in KVM. 8373 */ 8374 #ifdef CONFIG_TCG 8375 static void handle_semihosting(CPUState *cs) 8376 { 8377 ARMCPU *cpu = ARM_CPU(cs); 8378 CPUARMState *env = &cpu->env; 8379 8380 if (is_a64(env)) { 8381 qemu_log_mask(CPU_LOG_INT, 8382 "...handling as semihosting call 0x%" PRIx64 "\n", 8383 env->xregs[0]); 8384 env->xregs[0] = do_arm_semihosting(env); 8385 } else { 8386 qemu_log_mask(CPU_LOG_INT, 8387 "...handling as semihosting call 0x%x\n", 8388 env->regs[0]); 8389 env->regs[0] = do_arm_semihosting(env); 8390 } 8391 } 8392 #endif 8393 8394 /* Handle a CPU exception for A and R profile CPUs. 8395 * Do any appropriate logging, handle PSCI calls, and then hand off 8396 * to the AArch64-entry or AArch32-entry function depending on the 8397 * target exception level's register width. 8398 */ 8399 void arm_cpu_do_interrupt(CPUState *cs) 8400 { 8401 ARMCPU *cpu = ARM_CPU(cs); 8402 CPUARMState *env = &cpu->env; 8403 unsigned int new_el = env->exception.target_el; 8404 8405 assert(!arm_feature(env, ARM_FEATURE_M)); 8406 8407 arm_log_exception(cs->exception_index); 8408 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8409 new_el); 8410 if (qemu_loglevel_mask(CPU_LOG_INT) 8411 && !excp_is_internal(cs->exception_index)) { 8412 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8413 syn_get_ec(env->exception.syndrome), 8414 env->exception.syndrome); 8415 } 8416 8417 if (arm_is_psci_call(cpu, cs->exception_index)) { 8418 arm_handle_psci_call(cpu); 8419 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8420 return; 8421 } 8422 8423 /* 8424 * Semihosting semantics depend on the register width of the code 8425 * that caused the exception, not the target exception level, so 8426 * must be handled here. 8427 */ 8428 #ifdef CONFIG_TCG 8429 if (cs->exception_index == EXCP_SEMIHOST) { 8430 handle_semihosting(cs); 8431 return; 8432 } 8433 #endif 8434 8435 /* Hooks may change global state so BQL should be held, also the 8436 * BQL needs to be held for any modification of 8437 * cs->interrupt_request. 8438 */ 8439 g_assert(qemu_mutex_iothread_locked()); 8440 8441 arm_call_pre_el_change_hook(cpu); 8442 8443 assert(!excp_is_internal(cs->exception_index)); 8444 if (arm_el_is_aa64(env, new_el)) { 8445 arm_cpu_do_interrupt_aarch64(cs); 8446 } else { 8447 arm_cpu_do_interrupt_aarch32(cs); 8448 } 8449 8450 arm_call_el_change_hook(cpu); 8451 8452 if (!kvm_enabled()) { 8453 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8454 } 8455 } 8456 #endif /* !CONFIG_USER_ONLY */ 8457 8458 /* Return the exception level which controls this address translation regime */ 8459 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8460 { 8461 switch (mmu_idx) { 8462 case ARMMMUIdx_S2NS: 8463 case ARMMMUIdx_S1E2: 8464 return 2; 8465 case ARMMMUIdx_S1E3: 8466 return 3; 8467 case ARMMMUIdx_S1SE0: 8468 return arm_el_is_aa64(env, 3) ? 1 : 3; 8469 case ARMMMUIdx_S1SE1: 8470 case ARMMMUIdx_S1NSE0: 8471 case ARMMMUIdx_S1NSE1: 8472 case ARMMMUIdx_MPrivNegPri: 8473 case ARMMMUIdx_MUserNegPri: 8474 case ARMMMUIdx_MPriv: 8475 case ARMMMUIdx_MUser: 8476 case ARMMMUIdx_MSPrivNegPri: 8477 case ARMMMUIdx_MSUserNegPri: 8478 case ARMMMUIdx_MSPriv: 8479 case ARMMMUIdx_MSUser: 8480 return 1; 8481 default: 8482 g_assert_not_reached(); 8483 } 8484 } 8485 8486 #ifndef CONFIG_USER_ONLY 8487 8488 /* Return the SCTLR value which controls this address translation regime */ 8489 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8490 { 8491 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8492 } 8493 8494 /* Return true if the specified stage of address translation is disabled */ 8495 static inline bool regime_translation_disabled(CPUARMState *env, 8496 ARMMMUIdx mmu_idx) 8497 { 8498 if (arm_feature(env, ARM_FEATURE_M)) { 8499 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8500 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8501 case R_V7M_MPU_CTRL_ENABLE_MASK: 8502 /* Enabled, but not for HardFault and NMI */ 8503 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8504 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8505 /* Enabled for all cases */ 8506 return false; 8507 case 0: 8508 default: 8509 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8510 * we warned about that in armv7m_nvic.c when the guest set it. 8511 */ 8512 return true; 8513 } 8514 } 8515 8516 if (mmu_idx == ARMMMUIdx_S2NS) { 8517 /* HCR.DC means HCR.VM behaves as 1 */ 8518 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8519 } 8520 8521 if (env->cp15.hcr_el2 & HCR_TGE) { 8522 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8523 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8524 return true; 8525 } 8526 } 8527 8528 if ((env->cp15.hcr_el2 & HCR_DC) && 8529 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8530 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8531 return true; 8532 } 8533 8534 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8535 } 8536 8537 static inline bool regime_translation_big_endian(CPUARMState *env, 8538 ARMMMUIdx mmu_idx) 8539 { 8540 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8541 } 8542 8543 /* Return the TTBR associated with this translation regime */ 8544 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8545 int ttbrn) 8546 { 8547 if (mmu_idx == ARMMMUIdx_S2NS) { 8548 return env->cp15.vttbr_el2; 8549 } 8550 if (ttbrn == 0) { 8551 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8552 } else { 8553 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8554 } 8555 } 8556 8557 #endif /* !CONFIG_USER_ONLY */ 8558 8559 /* Return the TCR controlling this translation regime */ 8560 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8561 { 8562 if (mmu_idx == ARMMMUIdx_S2NS) { 8563 return &env->cp15.vtcr_el2; 8564 } 8565 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8566 } 8567 8568 /* Convert a possible stage1+2 MMU index into the appropriate 8569 * stage 1 MMU index 8570 */ 8571 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8572 { 8573 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8574 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8575 } 8576 return mmu_idx; 8577 } 8578 8579 /* Return true if the translation regime is using LPAE format page tables */ 8580 static inline bool regime_using_lpae_format(CPUARMState *env, 8581 ARMMMUIdx mmu_idx) 8582 { 8583 int el = regime_el(env, mmu_idx); 8584 if (el == 2 || arm_el_is_aa64(env, el)) { 8585 return true; 8586 } 8587 if (arm_feature(env, ARM_FEATURE_LPAE) 8588 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8589 return true; 8590 } 8591 return false; 8592 } 8593 8594 /* Returns true if the stage 1 translation regime is using LPAE format page 8595 * tables. Used when raising alignment exceptions, whose FSR changes depending 8596 * on whether the long or short descriptor format is in use. */ 8597 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8598 { 8599 mmu_idx = stage_1_mmu_idx(mmu_idx); 8600 8601 return regime_using_lpae_format(env, mmu_idx); 8602 } 8603 8604 #ifndef CONFIG_USER_ONLY 8605 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8606 { 8607 switch (mmu_idx) { 8608 case ARMMMUIdx_S1SE0: 8609 case ARMMMUIdx_S1NSE0: 8610 case ARMMMUIdx_MUser: 8611 case ARMMMUIdx_MSUser: 8612 case ARMMMUIdx_MUserNegPri: 8613 case ARMMMUIdx_MSUserNegPri: 8614 return true; 8615 default: 8616 return false; 8617 case ARMMMUIdx_S12NSE0: 8618 case ARMMMUIdx_S12NSE1: 8619 g_assert_not_reached(); 8620 } 8621 } 8622 8623 /* Translate section/page access permissions to page 8624 * R/W protection flags 8625 * 8626 * @env: CPUARMState 8627 * @mmu_idx: MMU index indicating required translation regime 8628 * @ap: The 3-bit access permissions (AP[2:0]) 8629 * @domain_prot: The 2-bit domain access permissions 8630 */ 8631 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8632 int ap, int domain_prot) 8633 { 8634 bool is_user = regime_is_user(env, mmu_idx); 8635 8636 if (domain_prot == 3) { 8637 return PAGE_READ | PAGE_WRITE; 8638 } 8639 8640 switch (ap) { 8641 case 0: 8642 if (arm_feature(env, ARM_FEATURE_V7)) { 8643 return 0; 8644 } 8645 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8646 case SCTLR_S: 8647 return is_user ? 0 : PAGE_READ; 8648 case SCTLR_R: 8649 return PAGE_READ; 8650 default: 8651 return 0; 8652 } 8653 case 1: 8654 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8655 case 2: 8656 if (is_user) { 8657 return PAGE_READ; 8658 } else { 8659 return PAGE_READ | PAGE_WRITE; 8660 } 8661 case 3: 8662 return PAGE_READ | PAGE_WRITE; 8663 case 4: /* Reserved. */ 8664 return 0; 8665 case 5: 8666 return is_user ? 0 : PAGE_READ; 8667 case 6: 8668 return PAGE_READ; 8669 case 7: 8670 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8671 return 0; 8672 } 8673 return PAGE_READ; 8674 default: 8675 g_assert_not_reached(); 8676 } 8677 } 8678 8679 /* Translate section/page access permissions to page 8680 * R/W protection flags. 8681 * 8682 * @ap: The 2-bit simple AP (AP[2:1]) 8683 * @is_user: TRUE if accessing from PL0 8684 */ 8685 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8686 { 8687 switch (ap) { 8688 case 0: 8689 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8690 case 1: 8691 return PAGE_READ | PAGE_WRITE; 8692 case 2: 8693 return is_user ? 0 : PAGE_READ; 8694 case 3: 8695 return PAGE_READ; 8696 default: 8697 g_assert_not_reached(); 8698 } 8699 } 8700 8701 static inline int 8702 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8703 { 8704 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8705 } 8706 8707 /* Translate S2 section/page access permissions to protection flags 8708 * 8709 * @env: CPUARMState 8710 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8711 * @xn: XN (execute-never) bit 8712 */ 8713 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8714 { 8715 int prot = 0; 8716 8717 if (s2ap & 1) { 8718 prot |= PAGE_READ; 8719 } 8720 if (s2ap & 2) { 8721 prot |= PAGE_WRITE; 8722 } 8723 if (!xn) { 8724 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8725 prot |= PAGE_EXEC; 8726 } 8727 } 8728 return prot; 8729 } 8730 8731 /* Translate section/page access permissions to protection flags 8732 * 8733 * @env: CPUARMState 8734 * @mmu_idx: MMU index indicating required translation regime 8735 * @is_aa64: TRUE if AArch64 8736 * @ap: The 2-bit simple AP (AP[2:1]) 8737 * @ns: NS (non-secure) bit 8738 * @xn: XN (execute-never) bit 8739 * @pxn: PXN (privileged execute-never) bit 8740 */ 8741 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8742 int ap, int ns, int xn, int pxn) 8743 { 8744 bool is_user = regime_is_user(env, mmu_idx); 8745 int prot_rw, user_rw; 8746 bool have_wxn; 8747 int wxn = 0; 8748 8749 assert(mmu_idx != ARMMMUIdx_S2NS); 8750 8751 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8752 if (is_user) { 8753 prot_rw = user_rw; 8754 } else { 8755 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8756 } 8757 8758 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8759 return prot_rw; 8760 } 8761 8762 /* TODO have_wxn should be replaced with 8763 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8764 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8765 * compatible processors have EL2, which is required for [U]WXN. 8766 */ 8767 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8768 8769 if (have_wxn) { 8770 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8771 } 8772 8773 if (is_aa64) { 8774 switch (regime_el(env, mmu_idx)) { 8775 case 1: 8776 if (!is_user) { 8777 xn = pxn || (user_rw & PAGE_WRITE); 8778 } 8779 break; 8780 case 2: 8781 case 3: 8782 break; 8783 } 8784 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8785 switch (regime_el(env, mmu_idx)) { 8786 case 1: 8787 case 3: 8788 if (is_user) { 8789 xn = xn || !(user_rw & PAGE_READ); 8790 } else { 8791 int uwxn = 0; 8792 if (have_wxn) { 8793 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8794 } 8795 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8796 (uwxn && (user_rw & PAGE_WRITE)); 8797 } 8798 break; 8799 case 2: 8800 break; 8801 } 8802 } else { 8803 xn = wxn = 0; 8804 } 8805 8806 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8807 return prot_rw; 8808 } 8809 return prot_rw | PAGE_EXEC; 8810 } 8811 8812 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8813 uint32_t *table, uint32_t address) 8814 { 8815 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8816 TCR *tcr = regime_tcr(env, mmu_idx); 8817 8818 if (address & tcr->mask) { 8819 if (tcr->raw_tcr & TTBCR_PD1) { 8820 /* Translation table walk disabled for TTBR1 */ 8821 return false; 8822 } 8823 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8824 } else { 8825 if (tcr->raw_tcr & TTBCR_PD0) { 8826 /* Translation table walk disabled for TTBR0 */ 8827 return false; 8828 } 8829 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8830 } 8831 *table |= (address >> 18) & 0x3ffc; 8832 return true; 8833 } 8834 8835 /* Translate a S1 pagetable walk through S2 if needed. */ 8836 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8837 hwaddr addr, MemTxAttrs txattrs, 8838 ARMMMUFaultInfo *fi) 8839 { 8840 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8841 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8842 target_ulong s2size; 8843 hwaddr s2pa; 8844 int s2prot; 8845 int ret; 8846 ARMCacheAttrs cacheattrs = {}; 8847 ARMCacheAttrs *pcacheattrs = NULL; 8848 8849 if (env->cp15.hcr_el2 & HCR_PTW) { 8850 /* 8851 * PTW means we must fault if this S1 walk touches S2 Device 8852 * memory; otherwise we don't care about the attributes and can 8853 * save the S2 translation the effort of computing them. 8854 */ 8855 pcacheattrs = &cacheattrs; 8856 } 8857 8858 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8859 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 8860 if (ret) { 8861 assert(fi->type != ARMFault_None); 8862 fi->s2addr = addr; 8863 fi->stage2 = true; 8864 fi->s1ptw = true; 8865 return ~0; 8866 } 8867 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 8868 /* Access was to Device memory: generate Permission fault */ 8869 fi->type = ARMFault_Permission; 8870 fi->s2addr = addr; 8871 fi->stage2 = true; 8872 fi->s1ptw = true; 8873 return ~0; 8874 } 8875 addr = s2pa; 8876 } 8877 return addr; 8878 } 8879 8880 /* All loads done in the course of a page table walk go through here. */ 8881 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8882 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8883 { 8884 ARMCPU *cpu = ARM_CPU(cs); 8885 CPUARMState *env = &cpu->env; 8886 MemTxAttrs attrs = {}; 8887 MemTxResult result = MEMTX_OK; 8888 AddressSpace *as; 8889 uint32_t data; 8890 8891 attrs.secure = is_secure; 8892 as = arm_addressspace(cs, attrs); 8893 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8894 if (fi->s1ptw) { 8895 return 0; 8896 } 8897 if (regime_translation_big_endian(env, mmu_idx)) { 8898 data = address_space_ldl_be(as, addr, attrs, &result); 8899 } else { 8900 data = address_space_ldl_le(as, addr, attrs, &result); 8901 } 8902 if (result == MEMTX_OK) { 8903 return data; 8904 } 8905 fi->type = ARMFault_SyncExternalOnWalk; 8906 fi->ea = arm_extabort_type(result); 8907 return 0; 8908 } 8909 8910 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8911 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8912 { 8913 ARMCPU *cpu = ARM_CPU(cs); 8914 CPUARMState *env = &cpu->env; 8915 MemTxAttrs attrs = {}; 8916 MemTxResult result = MEMTX_OK; 8917 AddressSpace *as; 8918 uint64_t data; 8919 8920 attrs.secure = is_secure; 8921 as = arm_addressspace(cs, attrs); 8922 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8923 if (fi->s1ptw) { 8924 return 0; 8925 } 8926 if (regime_translation_big_endian(env, mmu_idx)) { 8927 data = address_space_ldq_be(as, addr, attrs, &result); 8928 } else { 8929 data = address_space_ldq_le(as, addr, attrs, &result); 8930 } 8931 if (result == MEMTX_OK) { 8932 return data; 8933 } 8934 fi->type = ARMFault_SyncExternalOnWalk; 8935 fi->ea = arm_extabort_type(result); 8936 return 0; 8937 } 8938 8939 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8940 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8941 hwaddr *phys_ptr, int *prot, 8942 target_ulong *page_size, 8943 ARMMMUFaultInfo *fi) 8944 { 8945 CPUState *cs = env_cpu(env); 8946 int level = 1; 8947 uint32_t table; 8948 uint32_t desc; 8949 int type; 8950 int ap; 8951 int domain = 0; 8952 int domain_prot; 8953 hwaddr phys_addr; 8954 uint32_t dacr; 8955 8956 /* Pagetable walk. */ 8957 /* Lookup l1 descriptor. */ 8958 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8959 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8960 fi->type = ARMFault_Translation; 8961 goto do_fault; 8962 } 8963 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8964 mmu_idx, fi); 8965 if (fi->type != ARMFault_None) { 8966 goto do_fault; 8967 } 8968 type = (desc & 3); 8969 domain = (desc >> 5) & 0x0f; 8970 if (regime_el(env, mmu_idx) == 1) { 8971 dacr = env->cp15.dacr_ns; 8972 } else { 8973 dacr = env->cp15.dacr_s; 8974 } 8975 domain_prot = (dacr >> (domain * 2)) & 3; 8976 if (type == 0) { 8977 /* Section translation fault. */ 8978 fi->type = ARMFault_Translation; 8979 goto do_fault; 8980 } 8981 if (type != 2) { 8982 level = 2; 8983 } 8984 if (domain_prot == 0 || domain_prot == 2) { 8985 fi->type = ARMFault_Domain; 8986 goto do_fault; 8987 } 8988 if (type == 2) { 8989 /* 1Mb section. */ 8990 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8991 ap = (desc >> 10) & 3; 8992 *page_size = 1024 * 1024; 8993 } else { 8994 /* Lookup l2 entry. */ 8995 if (type == 1) { 8996 /* Coarse pagetable. */ 8997 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8998 } else { 8999 /* Fine pagetable. */ 9000 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9001 } 9002 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9003 mmu_idx, fi); 9004 if (fi->type != ARMFault_None) { 9005 goto do_fault; 9006 } 9007 switch (desc & 3) { 9008 case 0: /* Page translation fault. */ 9009 fi->type = ARMFault_Translation; 9010 goto do_fault; 9011 case 1: /* 64k page. */ 9012 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9013 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9014 *page_size = 0x10000; 9015 break; 9016 case 2: /* 4k page. */ 9017 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9018 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9019 *page_size = 0x1000; 9020 break; 9021 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9022 if (type == 1) { 9023 /* ARMv6/XScale extended small page format */ 9024 if (arm_feature(env, ARM_FEATURE_XSCALE) 9025 || arm_feature(env, ARM_FEATURE_V6)) { 9026 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9027 *page_size = 0x1000; 9028 } else { 9029 /* UNPREDICTABLE in ARMv5; we choose to take a 9030 * page translation fault. 9031 */ 9032 fi->type = ARMFault_Translation; 9033 goto do_fault; 9034 } 9035 } else { 9036 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9037 *page_size = 0x400; 9038 } 9039 ap = (desc >> 4) & 3; 9040 break; 9041 default: 9042 /* Never happens, but compiler isn't smart enough to tell. */ 9043 abort(); 9044 } 9045 } 9046 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9047 *prot |= *prot ? PAGE_EXEC : 0; 9048 if (!(*prot & (1 << access_type))) { 9049 /* Access permission fault. */ 9050 fi->type = ARMFault_Permission; 9051 goto do_fault; 9052 } 9053 *phys_ptr = phys_addr; 9054 return false; 9055 do_fault: 9056 fi->domain = domain; 9057 fi->level = level; 9058 return true; 9059 } 9060 9061 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9062 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9063 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9064 target_ulong *page_size, ARMMMUFaultInfo *fi) 9065 { 9066 CPUState *cs = env_cpu(env); 9067 int level = 1; 9068 uint32_t table; 9069 uint32_t desc; 9070 uint32_t xn; 9071 uint32_t pxn = 0; 9072 int type; 9073 int ap; 9074 int domain = 0; 9075 int domain_prot; 9076 hwaddr phys_addr; 9077 uint32_t dacr; 9078 bool ns; 9079 9080 /* Pagetable walk. */ 9081 /* Lookup l1 descriptor. */ 9082 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9083 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9084 fi->type = ARMFault_Translation; 9085 goto do_fault; 9086 } 9087 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9088 mmu_idx, fi); 9089 if (fi->type != ARMFault_None) { 9090 goto do_fault; 9091 } 9092 type = (desc & 3); 9093 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9094 /* Section translation fault, or attempt to use the encoding 9095 * which is Reserved on implementations without PXN. 9096 */ 9097 fi->type = ARMFault_Translation; 9098 goto do_fault; 9099 } 9100 if ((type == 1) || !(desc & (1 << 18))) { 9101 /* Page or Section. */ 9102 domain = (desc >> 5) & 0x0f; 9103 } 9104 if (regime_el(env, mmu_idx) == 1) { 9105 dacr = env->cp15.dacr_ns; 9106 } else { 9107 dacr = env->cp15.dacr_s; 9108 } 9109 if (type == 1) { 9110 level = 2; 9111 } 9112 domain_prot = (dacr >> (domain * 2)) & 3; 9113 if (domain_prot == 0 || domain_prot == 2) { 9114 /* Section or Page domain fault */ 9115 fi->type = ARMFault_Domain; 9116 goto do_fault; 9117 } 9118 if (type != 1) { 9119 if (desc & (1 << 18)) { 9120 /* Supersection. */ 9121 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9122 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9123 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9124 *page_size = 0x1000000; 9125 } else { 9126 /* Section. */ 9127 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9128 *page_size = 0x100000; 9129 } 9130 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9131 xn = desc & (1 << 4); 9132 pxn = desc & 1; 9133 ns = extract32(desc, 19, 1); 9134 } else { 9135 if (arm_feature(env, ARM_FEATURE_PXN)) { 9136 pxn = (desc >> 2) & 1; 9137 } 9138 ns = extract32(desc, 3, 1); 9139 /* Lookup l2 entry. */ 9140 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9141 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9142 mmu_idx, fi); 9143 if (fi->type != ARMFault_None) { 9144 goto do_fault; 9145 } 9146 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9147 switch (desc & 3) { 9148 case 0: /* Page translation fault. */ 9149 fi->type = ARMFault_Translation; 9150 goto do_fault; 9151 case 1: /* 64k page. */ 9152 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9153 xn = desc & (1 << 15); 9154 *page_size = 0x10000; 9155 break; 9156 case 2: case 3: /* 4k page. */ 9157 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9158 xn = desc & 1; 9159 *page_size = 0x1000; 9160 break; 9161 default: 9162 /* Never happens, but compiler isn't smart enough to tell. */ 9163 abort(); 9164 } 9165 } 9166 if (domain_prot == 3) { 9167 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9168 } else { 9169 if (pxn && !regime_is_user(env, mmu_idx)) { 9170 xn = 1; 9171 } 9172 if (xn && access_type == MMU_INST_FETCH) { 9173 fi->type = ARMFault_Permission; 9174 goto do_fault; 9175 } 9176 9177 if (arm_feature(env, ARM_FEATURE_V6K) && 9178 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9179 /* The simplified model uses AP[0] as an access control bit. */ 9180 if ((ap & 1) == 0) { 9181 /* Access flag fault. */ 9182 fi->type = ARMFault_AccessFlag; 9183 goto do_fault; 9184 } 9185 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9186 } else { 9187 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9188 } 9189 if (*prot && !xn) { 9190 *prot |= PAGE_EXEC; 9191 } 9192 if (!(*prot & (1 << access_type))) { 9193 /* Access permission fault. */ 9194 fi->type = ARMFault_Permission; 9195 goto do_fault; 9196 } 9197 } 9198 if (ns) { 9199 /* The NS bit will (as required by the architecture) have no effect if 9200 * the CPU doesn't support TZ or this is a non-secure translation 9201 * regime, because the attribute will already be non-secure. 9202 */ 9203 attrs->secure = false; 9204 } 9205 *phys_ptr = phys_addr; 9206 return false; 9207 do_fault: 9208 fi->domain = domain; 9209 fi->level = level; 9210 return true; 9211 } 9212 9213 /* 9214 * check_s2_mmu_setup 9215 * @cpu: ARMCPU 9216 * @is_aa64: True if the translation regime is in AArch64 state 9217 * @startlevel: Suggested starting level 9218 * @inputsize: Bitsize of IPAs 9219 * @stride: Page-table stride (See the ARM ARM) 9220 * 9221 * Returns true if the suggested S2 translation parameters are OK and 9222 * false otherwise. 9223 */ 9224 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9225 int inputsize, int stride) 9226 { 9227 const int grainsize = stride + 3; 9228 int startsizecheck; 9229 9230 /* Negative levels are never allowed. */ 9231 if (level < 0) { 9232 return false; 9233 } 9234 9235 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9236 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9237 return false; 9238 } 9239 9240 if (is_aa64) { 9241 CPUARMState *env = &cpu->env; 9242 unsigned int pamax = arm_pamax(cpu); 9243 9244 switch (stride) { 9245 case 13: /* 64KB Pages. */ 9246 if (level == 0 || (level == 1 && pamax <= 42)) { 9247 return false; 9248 } 9249 break; 9250 case 11: /* 16KB Pages. */ 9251 if (level == 0 || (level == 1 && pamax <= 40)) { 9252 return false; 9253 } 9254 break; 9255 case 9: /* 4KB Pages. */ 9256 if (level == 0 && pamax <= 42) { 9257 return false; 9258 } 9259 break; 9260 default: 9261 g_assert_not_reached(); 9262 } 9263 9264 /* Inputsize checks. */ 9265 if (inputsize > pamax && 9266 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9267 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9268 return false; 9269 } 9270 } else { 9271 /* AArch32 only supports 4KB pages. Assert on that. */ 9272 assert(stride == 9); 9273 9274 if (level == 0) { 9275 return false; 9276 } 9277 } 9278 return true; 9279 } 9280 9281 /* Translate from the 4-bit stage 2 representation of 9282 * memory attributes (without cache-allocation hints) to 9283 * the 8-bit representation of the stage 1 MAIR registers 9284 * (which includes allocation hints). 9285 * 9286 * ref: shared/translation/attrs/S2AttrDecode() 9287 * .../S2ConvertAttrsHints() 9288 */ 9289 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9290 { 9291 uint8_t hiattr = extract32(s2attrs, 2, 2); 9292 uint8_t loattr = extract32(s2attrs, 0, 2); 9293 uint8_t hihint = 0, lohint = 0; 9294 9295 if (hiattr != 0) { /* normal memory */ 9296 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9297 hiattr = loattr = 1; /* non-cacheable */ 9298 } else { 9299 if (hiattr != 1) { /* Write-through or write-back */ 9300 hihint = 3; /* RW allocate */ 9301 } 9302 if (loattr != 1) { /* Write-through or write-back */ 9303 lohint = 3; /* RW allocate */ 9304 } 9305 } 9306 } 9307 9308 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9309 } 9310 #endif /* !CONFIG_USER_ONLY */ 9311 9312 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9313 ARMMMUIdx mmu_idx) 9314 { 9315 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9316 uint32_t el = regime_el(env, mmu_idx); 9317 bool tbi, tbid, epd, hpd, using16k, using64k; 9318 int select, tsz; 9319 9320 /* 9321 * Bit 55 is always between the two regions, and is canonical for 9322 * determining if address tagging is enabled. 9323 */ 9324 select = extract64(va, 55, 1); 9325 9326 if (el > 1) { 9327 tsz = extract32(tcr, 0, 6); 9328 using64k = extract32(tcr, 14, 1); 9329 using16k = extract32(tcr, 15, 1); 9330 if (mmu_idx == ARMMMUIdx_S2NS) { 9331 /* VTCR_EL2 */ 9332 tbi = tbid = hpd = false; 9333 } else { 9334 tbi = extract32(tcr, 20, 1); 9335 hpd = extract32(tcr, 24, 1); 9336 tbid = extract32(tcr, 29, 1); 9337 } 9338 epd = false; 9339 } else if (!select) { 9340 tsz = extract32(tcr, 0, 6); 9341 epd = extract32(tcr, 7, 1); 9342 using64k = extract32(tcr, 14, 1); 9343 using16k = extract32(tcr, 15, 1); 9344 tbi = extract64(tcr, 37, 1); 9345 hpd = extract64(tcr, 41, 1); 9346 tbid = extract64(tcr, 51, 1); 9347 } else { 9348 int tg = extract32(tcr, 30, 2); 9349 using16k = tg == 1; 9350 using64k = tg == 3; 9351 tsz = extract32(tcr, 16, 6); 9352 epd = extract32(tcr, 23, 1); 9353 tbi = extract64(tcr, 38, 1); 9354 hpd = extract64(tcr, 42, 1); 9355 tbid = extract64(tcr, 52, 1); 9356 } 9357 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9358 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9359 9360 return (ARMVAParameters) { 9361 .tsz = tsz, 9362 .select = select, 9363 .tbi = tbi, 9364 .tbid = tbid, 9365 .epd = epd, 9366 .hpd = hpd, 9367 .using16k = using16k, 9368 .using64k = using64k, 9369 }; 9370 } 9371 9372 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9373 ARMMMUIdx mmu_idx, bool data) 9374 { 9375 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9376 9377 /* Present TBI as a composite with TBID. */ 9378 ret.tbi &= (data || !ret.tbid); 9379 return ret; 9380 } 9381 9382 #ifndef CONFIG_USER_ONLY 9383 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9384 ARMMMUIdx mmu_idx) 9385 { 9386 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9387 uint32_t el = regime_el(env, mmu_idx); 9388 int select, tsz; 9389 bool epd, hpd; 9390 9391 if (mmu_idx == ARMMMUIdx_S2NS) { 9392 /* VTCR */ 9393 bool sext = extract32(tcr, 4, 1); 9394 bool sign = extract32(tcr, 3, 1); 9395 9396 /* 9397 * If the sign-extend bit is not the same as t0sz[3], the result 9398 * is unpredictable. Flag this as a guest error. 9399 */ 9400 if (sign != sext) { 9401 qemu_log_mask(LOG_GUEST_ERROR, 9402 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9403 } 9404 tsz = sextract32(tcr, 0, 4) + 8; 9405 select = 0; 9406 hpd = false; 9407 epd = false; 9408 } else if (el == 2) { 9409 /* HTCR */ 9410 tsz = extract32(tcr, 0, 3); 9411 select = 0; 9412 hpd = extract64(tcr, 24, 1); 9413 epd = false; 9414 } else { 9415 int t0sz = extract32(tcr, 0, 3); 9416 int t1sz = extract32(tcr, 16, 3); 9417 9418 if (t1sz == 0) { 9419 select = va > (0xffffffffu >> t0sz); 9420 } else { 9421 /* Note that we will detect errors later. */ 9422 select = va >= ~(0xffffffffu >> t1sz); 9423 } 9424 if (!select) { 9425 tsz = t0sz; 9426 epd = extract32(tcr, 7, 1); 9427 hpd = extract64(tcr, 41, 1); 9428 } else { 9429 tsz = t1sz; 9430 epd = extract32(tcr, 23, 1); 9431 hpd = extract64(tcr, 42, 1); 9432 } 9433 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9434 hpd &= extract32(tcr, 6, 1); 9435 } 9436 9437 return (ARMVAParameters) { 9438 .tsz = tsz, 9439 .select = select, 9440 .epd = epd, 9441 .hpd = hpd, 9442 }; 9443 } 9444 9445 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9446 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9447 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9448 target_ulong *page_size_ptr, 9449 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9450 { 9451 ARMCPU *cpu = env_archcpu(env); 9452 CPUState *cs = CPU(cpu); 9453 /* Read an LPAE long-descriptor translation table. */ 9454 ARMFaultType fault_type = ARMFault_Translation; 9455 uint32_t level; 9456 ARMVAParameters param; 9457 uint64_t ttbr; 9458 hwaddr descaddr, indexmask, indexmask_grainsize; 9459 uint32_t tableattrs; 9460 target_ulong page_size; 9461 uint32_t attrs; 9462 int32_t stride; 9463 int addrsize, inputsize; 9464 TCR *tcr = regime_tcr(env, mmu_idx); 9465 int ap, ns, xn, pxn; 9466 uint32_t el = regime_el(env, mmu_idx); 9467 bool ttbr1_valid; 9468 uint64_t descaddrmask; 9469 bool aarch64 = arm_el_is_aa64(env, el); 9470 bool guarded = false; 9471 9472 /* TODO: 9473 * This code does not handle the different format TCR for VTCR_EL2. 9474 * This code also does not support shareability levels. 9475 * Attribute and permission bit handling should also be checked when adding 9476 * support for those page table walks. 9477 */ 9478 if (aarch64) { 9479 param = aa64_va_parameters(env, address, mmu_idx, 9480 access_type != MMU_INST_FETCH); 9481 level = 0; 9482 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9483 * invalid. 9484 */ 9485 ttbr1_valid = (el < 2); 9486 addrsize = 64 - 8 * param.tbi; 9487 inputsize = 64 - param.tsz; 9488 } else { 9489 param = aa32_va_parameters(env, address, mmu_idx); 9490 level = 1; 9491 /* There is no TTBR1 for EL2 */ 9492 ttbr1_valid = (el != 2); 9493 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9494 inputsize = addrsize - param.tsz; 9495 } 9496 9497 /* 9498 * We determined the region when collecting the parameters, but we 9499 * have not yet validated that the address is valid for the region. 9500 * Extract the top bits and verify that they all match select. 9501 * 9502 * For aa32, if inputsize == addrsize, then we have selected the 9503 * region by exclusion in aa32_va_parameters and there is no more 9504 * validation to do here. 9505 */ 9506 if (inputsize < addrsize) { 9507 target_ulong top_bits = sextract64(address, inputsize, 9508 addrsize - inputsize); 9509 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9510 /* The gap between the two regions is a Translation fault */ 9511 fault_type = ARMFault_Translation; 9512 goto do_fault; 9513 } 9514 } 9515 9516 if (param.using64k) { 9517 stride = 13; 9518 } else if (param.using16k) { 9519 stride = 11; 9520 } else { 9521 stride = 9; 9522 } 9523 9524 /* Note that QEMU ignores shareability and cacheability attributes, 9525 * so we don't need to do anything with the SH, ORGN, IRGN fields 9526 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9527 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9528 * implement any ASID-like capability so we can ignore it (instead 9529 * we will always flush the TLB any time the ASID is changed). 9530 */ 9531 ttbr = regime_ttbr(env, mmu_idx, param.select); 9532 9533 /* Here we should have set up all the parameters for the translation: 9534 * inputsize, ttbr, epd, stride, tbi 9535 */ 9536 9537 if (param.epd) { 9538 /* Translation table walk disabled => Translation fault on TLB miss 9539 * Note: This is always 0 on 64-bit EL2 and EL3. 9540 */ 9541 goto do_fault; 9542 } 9543 9544 if (mmu_idx != ARMMMUIdx_S2NS) { 9545 /* The starting level depends on the virtual address size (which can 9546 * be up to 48 bits) and the translation granule size. It indicates 9547 * the number of strides (stride bits at a time) needed to 9548 * consume the bits of the input address. In the pseudocode this is: 9549 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9550 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9551 * our 'stride + 3' and 'stride' is our 'stride'. 9552 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9553 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9554 * = 4 - (inputsize - 4) / stride; 9555 */ 9556 level = 4 - (inputsize - 4) / stride; 9557 } else { 9558 /* For stage 2 translations the starting level is specified by the 9559 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9560 */ 9561 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9562 uint32_t startlevel; 9563 bool ok; 9564 9565 if (!aarch64 || stride == 9) { 9566 /* AArch32 or 4KB pages */ 9567 startlevel = 2 - sl0; 9568 } else { 9569 /* 16KB or 64KB pages */ 9570 startlevel = 3 - sl0; 9571 } 9572 9573 /* Check that the starting level is valid. */ 9574 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9575 inputsize, stride); 9576 if (!ok) { 9577 fault_type = ARMFault_Translation; 9578 goto do_fault; 9579 } 9580 level = startlevel; 9581 } 9582 9583 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9584 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9585 9586 /* Now we can extract the actual base address from the TTBR */ 9587 descaddr = extract64(ttbr, 0, 48); 9588 descaddr &= ~indexmask; 9589 9590 /* The address field in the descriptor goes up to bit 39 for ARMv7 9591 * but up to bit 47 for ARMv8, but we use the descaddrmask 9592 * up to bit 39 for AArch32, because we don't need other bits in that case 9593 * to construct next descriptor address (anyway they should be all zeroes). 9594 */ 9595 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9596 ~indexmask_grainsize; 9597 9598 /* Secure accesses start with the page table in secure memory and 9599 * can be downgraded to non-secure at any step. Non-secure accesses 9600 * remain non-secure. We implement this by just ORing in the NSTable/NS 9601 * bits at each step. 9602 */ 9603 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9604 for (;;) { 9605 uint64_t descriptor; 9606 bool nstable; 9607 9608 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9609 descaddr &= ~7ULL; 9610 nstable = extract32(tableattrs, 4, 1); 9611 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9612 if (fi->type != ARMFault_None) { 9613 goto do_fault; 9614 } 9615 9616 if (!(descriptor & 1) || 9617 (!(descriptor & 2) && (level == 3))) { 9618 /* Invalid, or the Reserved level 3 encoding */ 9619 goto do_fault; 9620 } 9621 descaddr = descriptor & descaddrmask; 9622 9623 if ((descriptor & 2) && (level < 3)) { 9624 /* Table entry. The top five bits are attributes which may 9625 * propagate down through lower levels of the table (and 9626 * which are all arranged so that 0 means "no effect", so 9627 * we can gather them up by ORing in the bits at each level). 9628 */ 9629 tableattrs |= extract64(descriptor, 59, 5); 9630 level++; 9631 indexmask = indexmask_grainsize; 9632 continue; 9633 } 9634 /* Block entry at level 1 or 2, or page entry at level 3. 9635 * These are basically the same thing, although the number 9636 * of bits we pull in from the vaddr varies. 9637 */ 9638 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9639 descaddr |= (address & (page_size - 1)); 9640 /* Extract attributes from the descriptor */ 9641 attrs = extract64(descriptor, 2, 10) 9642 | (extract64(descriptor, 52, 12) << 10); 9643 9644 if (mmu_idx == ARMMMUIdx_S2NS) { 9645 /* Stage 2 table descriptors do not include any attribute fields */ 9646 break; 9647 } 9648 /* Merge in attributes from table descriptors */ 9649 attrs |= nstable << 3; /* NS */ 9650 guarded = extract64(descriptor, 50, 1); /* GP */ 9651 if (param.hpd) { 9652 /* HPD disables all the table attributes except NSTable. */ 9653 break; 9654 } 9655 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9656 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9657 * means "force PL1 access only", which means forcing AP[1] to 0. 9658 */ 9659 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9660 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9661 break; 9662 } 9663 /* Here descaddr is the final physical address, and attributes 9664 * are all in attrs. 9665 */ 9666 fault_type = ARMFault_AccessFlag; 9667 if ((attrs & (1 << 8)) == 0) { 9668 /* Access flag */ 9669 goto do_fault; 9670 } 9671 9672 ap = extract32(attrs, 4, 2); 9673 xn = extract32(attrs, 12, 1); 9674 9675 if (mmu_idx == ARMMMUIdx_S2NS) { 9676 ns = true; 9677 *prot = get_S2prot(env, ap, xn); 9678 } else { 9679 ns = extract32(attrs, 3, 1); 9680 pxn = extract32(attrs, 11, 1); 9681 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9682 } 9683 9684 fault_type = ARMFault_Permission; 9685 if (!(*prot & (1 << access_type))) { 9686 goto do_fault; 9687 } 9688 9689 if (ns) { 9690 /* The NS bit will (as required by the architecture) have no effect if 9691 * the CPU doesn't support TZ or this is a non-secure translation 9692 * regime, because the attribute will already be non-secure. 9693 */ 9694 txattrs->secure = false; 9695 } 9696 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9697 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9698 txattrs->target_tlb_bit0 = true; 9699 } 9700 9701 if (cacheattrs != NULL) { 9702 if (mmu_idx == ARMMMUIdx_S2NS) { 9703 cacheattrs->attrs = convert_stage2_attrs(env, 9704 extract32(attrs, 0, 4)); 9705 } else { 9706 /* Index into MAIR registers for cache attributes */ 9707 uint8_t attrindx = extract32(attrs, 0, 3); 9708 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9709 assert(attrindx <= 7); 9710 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9711 } 9712 cacheattrs->shareability = extract32(attrs, 6, 2); 9713 } 9714 9715 *phys_ptr = descaddr; 9716 *page_size_ptr = page_size; 9717 return false; 9718 9719 do_fault: 9720 fi->type = fault_type; 9721 fi->level = level; 9722 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9723 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9724 return true; 9725 } 9726 9727 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9728 ARMMMUIdx mmu_idx, 9729 int32_t address, int *prot) 9730 { 9731 if (!arm_feature(env, ARM_FEATURE_M)) { 9732 *prot = PAGE_READ | PAGE_WRITE; 9733 switch (address) { 9734 case 0xF0000000 ... 0xFFFFFFFF: 9735 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9736 /* hivecs execing is ok */ 9737 *prot |= PAGE_EXEC; 9738 } 9739 break; 9740 case 0x00000000 ... 0x7FFFFFFF: 9741 *prot |= PAGE_EXEC; 9742 break; 9743 } 9744 } else { 9745 /* Default system address map for M profile cores. 9746 * The architecture specifies which regions are execute-never; 9747 * at the MPU level no other checks are defined. 9748 */ 9749 switch (address) { 9750 case 0x00000000 ... 0x1fffffff: /* ROM */ 9751 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9752 case 0x60000000 ... 0x7fffffff: /* RAM */ 9753 case 0x80000000 ... 0x9fffffff: /* RAM */ 9754 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9755 break; 9756 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9757 case 0xa0000000 ... 0xbfffffff: /* Device */ 9758 case 0xc0000000 ... 0xdfffffff: /* Device */ 9759 case 0xe0000000 ... 0xffffffff: /* System */ 9760 *prot = PAGE_READ | PAGE_WRITE; 9761 break; 9762 default: 9763 g_assert_not_reached(); 9764 } 9765 } 9766 } 9767 9768 static bool pmsav7_use_background_region(ARMCPU *cpu, 9769 ARMMMUIdx mmu_idx, bool is_user) 9770 { 9771 /* Return true if we should use the default memory map as a 9772 * "background" region if there are no hits against any MPU regions. 9773 */ 9774 CPUARMState *env = &cpu->env; 9775 9776 if (is_user) { 9777 return false; 9778 } 9779 9780 if (arm_feature(env, ARM_FEATURE_M)) { 9781 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9782 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9783 } else { 9784 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9785 } 9786 } 9787 9788 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9789 { 9790 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9791 return arm_feature(env, ARM_FEATURE_M) && 9792 extract32(address, 20, 12) == 0xe00; 9793 } 9794 9795 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9796 { 9797 /* True if address is in the M profile system region 9798 * 0xe0000000 - 0xffffffff 9799 */ 9800 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9801 } 9802 9803 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9804 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9805 hwaddr *phys_ptr, int *prot, 9806 target_ulong *page_size, 9807 ARMMMUFaultInfo *fi) 9808 { 9809 ARMCPU *cpu = env_archcpu(env); 9810 int n; 9811 bool is_user = regime_is_user(env, mmu_idx); 9812 9813 *phys_ptr = address; 9814 *page_size = TARGET_PAGE_SIZE; 9815 *prot = 0; 9816 9817 if (regime_translation_disabled(env, mmu_idx) || 9818 m_is_ppb_region(env, address)) { 9819 /* MPU disabled or M profile PPB access: use default memory map. 9820 * The other case which uses the default memory map in the 9821 * v7M ARM ARM pseudocode is exception vector reads from the vector 9822 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9823 * which always does a direct read using address_space_ldl(), rather 9824 * than going via this function, so we don't need to check that here. 9825 */ 9826 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9827 } else { /* MPU enabled */ 9828 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9829 /* region search */ 9830 uint32_t base = env->pmsav7.drbar[n]; 9831 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9832 uint32_t rmask; 9833 bool srdis = false; 9834 9835 if (!(env->pmsav7.drsr[n] & 0x1)) { 9836 continue; 9837 } 9838 9839 if (!rsize) { 9840 qemu_log_mask(LOG_GUEST_ERROR, 9841 "DRSR[%d]: Rsize field cannot be 0\n", n); 9842 continue; 9843 } 9844 rsize++; 9845 rmask = (1ull << rsize) - 1; 9846 9847 if (base & rmask) { 9848 qemu_log_mask(LOG_GUEST_ERROR, 9849 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9850 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9851 n, base, rmask); 9852 continue; 9853 } 9854 9855 if (address < base || address > base + rmask) { 9856 /* 9857 * Address not in this region. We must check whether the 9858 * region covers addresses in the same page as our address. 9859 * In that case we must not report a size that covers the 9860 * whole page for a subsequent hit against a different MPU 9861 * region or the background region, because it would result in 9862 * incorrect TLB hits for subsequent accesses to addresses that 9863 * are in this MPU region. 9864 */ 9865 if (ranges_overlap(base, rmask, 9866 address & TARGET_PAGE_MASK, 9867 TARGET_PAGE_SIZE)) { 9868 *page_size = 1; 9869 } 9870 continue; 9871 } 9872 9873 /* Region matched */ 9874 9875 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9876 int i, snd; 9877 uint32_t srdis_mask; 9878 9879 rsize -= 3; /* sub region size (power of 2) */ 9880 snd = ((address - base) >> rsize) & 0x7; 9881 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9882 9883 srdis_mask = srdis ? 0x3 : 0x0; 9884 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9885 /* This will check in groups of 2, 4 and then 8, whether 9886 * the subregion bits are consistent. rsize is incremented 9887 * back up to give the region size, considering consistent 9888 * adjacent subregions as one region. Stop testing if rsize 9889 * is already big enough for an entire QEMU page. 9890 */ 9891 int snd_rounded = snd & ~(i - 1); 9892 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9893 snd_rounded + 8, i); 9894 if (srdis_mask ^ srdis_multi) { 9895 break; 9896 } 9897 srdis_mask = (srdis_mask << i) | srdis_mask; 9898 rsize++; 9899 } 9900 } 9901 if (srdis) { 9902 continue; 9903 } 9904 if (rsize < TARGET_PAGE_BITS) { 9905 *page_size = 1 << rsize; 9906 } 9907 break; 9908 } 9909 9910 if (n == -1) { /* no hits */ 9911 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9912 /* background fault */ 9913 fi->type = ARMFault_Background; 9914 return true; 9915 } 9916 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9917 } else { /* a MPU hit! */ 9918 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9919 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9920 9921 if (m_is_system_region(env, address)) { 9922 /* System space is always execute never */ 9923 xn = 1; 9924 } 9925 9926 if (is_user) { /* User mode AP bit decoding */ 9927 switch (ap) { 9928 case 0: 9929 case 1: 9930 case 5: 9931 break; /* no access */ 9932 case 3: 9933 *prot |= PAGE_WRITE; 9934 /* fall through */ 9935 case 2: 9936 case 6: 9937 *prot |= PAGE_READ | PAGE_EXEC; 9938 break; 9939 case 7: 9940 /* for v7M, same as 6; for R profile a reserved value */ 9941 if (arm_feature(env, ARM_FEATURE_M)) { 9942 *prot |= PAGE_READ | PAGE_EXEC; 9943 break; 9944 } 9945 /* fall through */ 9946 default: 9947 qemu_log_mask(LOG_GUEST_ERROR, 9948 "DRACR[%d]: Bad value for AP bits: 0x%" 9949 PRIx32 "\n", n, ap); 9950 } 9951 } else { /* Priv. mode AP bits decoding */ 9952 switch (ap) { 9953 case 0: 9954 break; /* no access */ 9955 case 1: 9956 case 2: 9957 case 3: 9958 *prot |= PAGE_WRITE; 9959 /* fall through */ 9960 case 5: 9961 case 6: 9962 *prot |= PAGE_READ | PAGE_EXEC; 9963 break; 9964 case 7: 9965 /* for v7M, same as 6; for R profile a reserved value */ 9966 if (arm_feature(env, ARM_FEATURE_M)) { 9967 *prot |= PAGE_READ | PAGE_EXEC; 9968 break; 9969 } 9970 /* fall through */ 9971 default: 9972 qemu_log_mask(LOG_GUEST_ERROR, 9973 "DRACR[%d]: Bad value for AP bits: 0x%" 9974 PRIx32 "\n", n, ap); 9975 } 9976 } 9977 9978 /* execute never */ 9979 if (xn) { 9980 *prot &= ~PAGE_EXEC; 9981 } 9982 } 9983 } 9984 9985 fi->type = ARMFault_Permission; 9986 fi->level = 1; 9987 return !(*prot & (1 << access_type)); 9988 } 9989 9990 static bool v8m_is_sau_exempt(CPUARMState *env, 9991 uint32_t address, MMUAccessType access_type) 9992 { 9993 /* The architecture specifies that certain address ranges are 9994 * exempt from v8M SAU/IDAU checks. 9995 */ 9996 return 9997 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9998 (address >= 0xe0000000 && address <= 0xe0002fff) || 9999 (address >= 0xe000e000 && address <= 0xe000efff) || 10000 (address >= 0xe002e000 && address <= 0xe002efff) || 10001 (address >= 0xe0040000 && address <= 0xe0041fff) || 10002 (address >= 0xe00ff000 && address <= 0xe00fffff); 10003 } 10004 10005 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10006 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10007 V8M_SAttributes *sattrs) 10008 { 10009 /* Look up the security attributes for this address. Compare the 10010 * pseudocode SecurityCheck() function. 10011 * We assume the caller has zero-initialized *sattrs. 10012 */ 10013 ARMCPU *cpu = env_archcpu(env); 10014 int r; 10015 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10016 int idau_region = IREGION_NOTVALID; 10017 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10018 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10019 10020 if (cpu->idau) { 10021 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10022 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10023 10024 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10025 &idau_nsc); 10026 } 10027 10028 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10029 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10030 return; 10031 } 10032 10033 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10034 sattrs->ns = !regime_is_secure(env, mmu_idx); 10035 return; 10036 } 10037 10038 if (idau_region != IREGION_NOTVALID) { 10039 sattrs->irvalid = true; 10040 sattrs->iregion = idau_region; 10041 } 10042 10043 switch (env->sau.ctrl & 3) { 10044 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10045 break; 10046 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10047 sattrs->ns = true; 10048 break; 10049 default: /* SAU.ENABLE == 1 */ 10050 for (r = 0; r < cpu->sau_sregion; r++) { 10051 if (env->sau.rlar[r] & 1) { 10052 uint32_t base = env->sau.rbar[r] & ~0x1f; 10053 uint32_t limit = env->sau.rlar[r] | 0x1f; 10054 10055 if (base <= address && limit >= address) { 10056 if (base > addr_page_base || limit < addr_page_limit) { 10057 sattrs->subpage = true; 10058 } 10059 if (sattrs->srvalid) { 10060 /* If we hit in more than one region then we must report 10061 * as Secure, not NS-Callable, with no valid region 10062 * number info. 10063 */ 10064 sattrs->ns = false; 10065 sattrs->nsc = false; 10066 sattrs->sregion = 0; 10067 sattrs->srvalid = false; 10068 break; 10069 } else { 10070 if (env->sau.rlar[r] & 2) { 10071 sattrs->nsc = true; 10072 } else { 10073 sattrs->ns = true; 10074 } 10075 sattrs->srvalid = true; 10076 sattrs->sregion = r; 10077 } 10078 } else { 10079 /* 10080 * Address not in this region. We must check whether the 10081 * region covers addresses in the same page as our address. 10082 * In that case we must not report a size that covers the 10083 * whole page for a subsequent hit against a different MPU 10084 * region or the background region, because it would result 10085 * in incorrect TLB hits for subsequent accesses to 10086 * addresses that are in this MPU region. 10087 */ 10088 if (limit >= base && 10089 ranges_overlap(base, limit - base + 1, 10090 addr_page_base, 10091 TARGET_PAGE_SIZE)) { 10092 sattrs->subpage = true; 10093 } 10094 } 10095 } 10096 } 10097 break; 10098 } 10099 10100 /* 10101 * The IDAU will override the SAU lookup results if it specifies 10102 * higher security than the SAU does. 10103 */ 10104 if (!idau_ns) { 10105 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10106 sattrs->ns = false; 10107 sattrs->nsc = idau_nsc; 10108 } 10109 } 10110 } 10111 10112 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10113 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10114 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10115 int *prot, bool *is_subpage, 10116 ARMMMUFaultInfo *fi, uint32_t *mregion) 10117 { 10118 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10119 * that a full phys-to-virt translation does). 10120 * mregion is (if not NULL) set to the region number which matched, 10121 * or -1 if no region number is returned (MPU off, address did not 10122 * hit a region, address hit in multiple regions). 10123 * We set is_subpage to true if the region hit doesn't cover the 10124 * entire TARGET_PAGE the address is within. 10125 */ 10126 ARMCPU *cpu = env_archcpu(env); 10127 bool is_user = regime_is_user(env, mmu_idx); 10128 uint32_t secure = regime_is_secure(env, mmu_idx); 10129 int n; 10130 int matchregion = -1; 10131 bool hit = false; 10132 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10133 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10134 10135 *is_subpage = false; 10136 *phys_ptr = address; 10137 *prot = 0; 10138 if (mregion) { 10139 *mregion = -1; 10140 } 10141 10142 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10143 * was an exception vector read from the vector table (which is always 10144 * done using the default system address map), because those accesses 10145 * are done in arm_v7m_load_vector(), which always does a direct 10146 * read using address_space_ldl(), rather than going via this function. 10147 */ 10148 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10149 hit = true; 10150 } else if (m_is_ppb_region(env, address)) { 10151 hit = true; 10152 } else { 10153 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10154 hit = true; 10155 } 10156 10157 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10158 /* region search */ 10159 /* Note that the base address is bits [31:5] from the register 10160 * with bits [4:0] all zeroes, but the limit address is bits 10161 * [31:5] from the register with bits [4:0] all ones. 10162 */ 10163 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10164 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10165 10166 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10167 /* Region disabled */ 10168 continue; 10169 } 10170 10171 if (address < base || address > limit) { 10172 /* 10173 * Address not in this region. We must check whether the 10174 * region covers addresses in the same page as our address. 10175 * In that case we must not report a size that covers the 10176 * whole page for a subsequent hit against a different MPU 10177 * region or the background region, because it would result in 10178 * incorrect TLB hits for subsequent accesses to addresses that 10179 * are in this MPU region. 10180 */ 10181 if (limit >= base && 10182 ranges_overlap(base, limit - base + 1, 10183 addr_page_base, 10184 TARGET_PAGE_SIZE)) { 10185 *is_subpage = true; 10186 } 10187 continue; 10188 } 10189 10190 if (base > addr_page_base || limit < addr_page_limit) { 10191 *is_subpage = true; 10192 } 10193 10194 if (matchregion != -1) { 10195 /* Multiple regions match -- always a failure (unlike 10196 * PMSAv7 where highest-numbered-region wins) 10197 */ 10198 fi->type = ARMFault_Permission; 10199 fi->level = 1; 10200 return true; 10201 } 10202 10203 matchregion = n; 10204 hit = true; 10205 } 10206 } 10207 10208 if (!hit) { 10209 /* background fault */ 10210 fi->type = ARMFault_Background; 10211 return true; 10212 } 10213 10214 if (matchregion == -1) { 10215 /* hit using the background region */ 10216 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10217 } else { 10218 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10219 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10220 10221 if (m_is_system_region(env, address)) { 10222 /* System space is always execute never */ 10223 xn = 1; 10224 } 10225 10226 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10227 if (*prot && !xn) { 10228 *prot |= PAGE_EXEC; 10229 } 10230 /* We don't need to look the attribute up in the MAIR0/MAIR1 10231 * registers because that only tells us about cacheability. 10232 */ 10233 if (mregion) { 10234 *mregion = matchregion; 10235 } 10236 } 10237 10238 fi->type = ARMFault_Permission; 10239 fi->level = 1; 10240 return !(*prot & (1 << access_type)); 10241 } 10242 10243 10244 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10245 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10246 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10247 int *prot, target_ulong *page_size, 10248 ARMMMUFaultInfo *fi) 10249 { 10250 uint32_t secure = regime_is_secure(env, mmu_idx); 10251 V8M_SAttributes sattrs = {}; 10252 bool ret; 10253 bool mpu_is_subpage; 10254 10255 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10256 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10257 if (access_type == MMU_INST_FETCH) { 10258 /* Instruction fetches always use the MMU bank and the 10259 * transaction attribute determined by the fetch address, 10260 * regardless of CPU state. This is painful for QEMU 10261 * to handle, because it would mean we need to encode 10262 * into the mmu_idx not just the (user, negpri) information 10263 * for the current security state but also that for the 10264 * other security state, which would balloon the number 10265 * of mmu_idx values needed alarmingly. 10266 * Fortunately we can avoid this because it's not actually 10267 * possible to arbitrarily execute code from memory with 10268 * the wrong security attribute: it will always generate 10269 * an exception of some kind or another, apart from the 10270 * special case of an NS CPU executing an SG instruction 10271 * in S&NSC memory. So we always just fail the translation 10272 * here and sort things out in the exception handler 10273 * (including possibly emulating an SG instruction). 10274 */ 10275 if (sattrs.ns != !secure) { 10276 if (sattrs.nsc) { 10277 fi->type = ARMFault_QEMU_NSCExec; 10278 } else { 10279 fi->type = ARMFault_QEMU_SFault; 10280 } 10281 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10282 *phys_ptr = address; 10283 *prot = 0; 10284 return true; 10285 } 10286 } else { 10287 /* For data accesses we always use the MMU bank indicated 10288 * by the current CPU state, but the security attributes 10289 * might downgrade a secure access to nonsecure. 10290 */ 10291 if (sattrs.ns) { 10292 txattrs->secure = false; 10293 } else if (!secure) { 10294 /* NS access to S memory must fault. 10295 * Architecturally we should first check whether the 10296 * MPU information for this address indicates that we 10297 * are doing an unaligned access to Device memory, which 10298 * should generate a UsageFault instead. QEMU does not 10299 * currently check for that kind of unaligned access though. 10300 * If we added it we would need to do so as a special case 10301 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10302 */ 10303 fi->type = ARMFault_QEMU_SFault; 10304 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10305 *phys_ptr = address; 10306 *prot = 0; 10307 return true; 10308 } 10309 } 10310 } 10311 10312 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10313 txattrs, prot, &mpu_is_subpage, fi, NULL); 10314 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10315 return ret; 10316 } 10317 10318 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10319 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10320 hwaddr *phys_ptr, int *prot, 10321 ARMMMUFaultInfo *fi) 10322 { 10323 int n; 10324 uint32_t mask; 10325 uint32_t base; 10326 bool is_user = regime_is_user(env, mmu_idx); 10327 10328 if (regime_translation_disabled(env, mmu_idx)) { 10329 /* MPU disabled. */ 10330 *phys_ptr = address; 10331 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10332 return false; 10333 } 10334 10335 *phys_ptr = address; 10336 for (n = 7; n >= 0; n--) { 10337 base = env->cp15.c6_region[n]; 10338 if ((base & 1) == 0) { 10339 continue; 10340 } 10341 mask = 1 << ((base >> 1) & 0x1f); 10342 /* Keep this shift separate from the above to avoid an 10343 (undefined) << 32. */ 10344 mask = (mask << 1) - 1; 10345 if (((base ^ address) & ~mask) == 0) { 10346 break; 10347 } 10348 } 10349 if (n < 0) { 10350 fi->type = ARMFault_Background; 10351 return true; 10352 } 10353 10354 if (access_type == MMU_INST_FETCH) { 10355 mask = env->cp15.pmsav5_insn_ap; 10356 } else { 10357 mask = env->cp15.pmsav5_data_ap; 10358 } 10359 mask = (mask >> (n * 4)) & 0xf; 10360 switch (mask) { 10361 case 0: 10362 fi->type = ARMFault_Permission; 10363 fi->level = 1; 10364 return true; 10365 case 1: 10366 if (is_user) { 10367 fi->type = ARMFault_Permission; 10368 fi->level = 1; 10369 return true; 10370 } 10371 *prot = PAGE_READ | PAGE_WRITE; 10372 break; 10373 case 2: 10374 *prot = PAGE_READ; 10375 if (!is_user) { 10376 *prot |= PAGE_WRITE; 10377 } 10378 break; 10379 case 3: 10380 *prot = PAGE_READ | PAGE_WRITE; 10381 break; 10382 case 5: 10383 if (is_user) { 10384 fi->type = ARMFault_Permission; 10385 fi->level = 1; 10386 return true; 10387 } 10388 *prot = PAGE_READ; 10389 break; 10390 case 6: 10391 *prot = PAGE_READ; 10392 break; 10393 default: 10394 /* Bad permission. */ 10395 fi->type = ARMFault_Permission; 10396 fi->level = 1; 10397 return true; 10398 } 10399 *prot |= PAGE_EXEC; 10400 return false; 10401 } 10402 10403 /* Combine either inner or outer cacheability attributes for normal 10404 * memory, according to table D4-42 and pseudocode procedure 10405 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10406 * 10407 * NB: only stage 1 includes allocation hints (RW bits), leading to 10408 * some asymmetry. 10409 */ 10410 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10411 { 10412 if (s1 == 4 || s2 == 4) { 10413 /* non-cacheable has precedence */ 10414 return 4; 10415 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10416 /* stage 1 write-through takes precedence */ 10417 return s1; 10418 } else if (extract32(s2, 2, 2) == 2) { 10419 /* stage 2 write-through takes precedence, but the allocation hint 10420 * is still taken from stage 1 10421 */ 10422 return (2 << 2) | extract32(s1, 0, 2); 10423 } else { /* write-back */ 10424 return s1; 10425 } 10426 } 10427 10428 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10429 * and CombineS1S2Desc() 10430 * 10431 * @s1: Attributes from stage 1 walk 10432 * @s2: Attributes from stage 2 walk 10433 */ 10434 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10435 { 10436 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10437 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10438 ARMCacheAttrs ret; 10439 10440 /* Combine shareability attributes (table D4-43) */ 10441 if (s1.shareability == 2 || s2.shareability == 2) { 10442 /* if either are outer-shareable, the result is outer-shareable */ 10443 ret.shareability = 2; 10444 } else if (s1.shareability == 3 || s2.shareability == 3) { 10445 /* if either are inner-shareable, the result is inner-shareable */ 10446 ret.shareability = 3; 10447 } else { 10448 /* both non-shareable */ 10449 ret.shareability = 0; 10450 } 10451 10452 /* Combine memory type and cacheability attributes */ 10453 if (s1hi == 0 || s2hi == 0) { 10454 /* Device has precedence over normal */ 10455 if (s1lo == 0 || s2lo == 0) { 10456 /* nGnRnE has precedence over anything */ 10457 ret.attrs = 0; 10458 } else if (s1lo == 4 || s2lo == 4) { 10459 /* non-Reordering has precedence over Reordering */ 10460 ret.attrs = 4; /* nGnRE */ 10461 } else if (s1lo == 8 || s2lo == 8) { 10462 /* non-Gathering has precedence over Gathering */ 10463 ret.attrs = 8; /* nGRE */ 10464 } else { 10465 ret.attrs = 0xc; /* GRE */ 10466 } 10467 10468 /* Any location for which the resultant memory type is any 10469 * type of Device memory is always treated as Outer Shareable. 10470 */ 10471 ret.shareability = 2; 10472 } else { /* Normal memory */ 10473 /* Outer/inner cacheability combine independently */ 10474 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10475 | combine_cacheattr_nibble(s1lo, s2lo); 10476 10477 if (ret.attrs == 0x44) { 10478 /* Any location for which the resultant memory type is Normal 10479 * Inner Non-cacheable, Outer Non-cacheable is always treated 10480 * as Outer Shareable. 10481 */ 10482 ret.shareability = 2; 10483 } 10484 } 10485 10486 return ret; 10487 } 10488 10489 10490 /* get_phys_addr - get the physical address for this virtual address 10491 * 10492 * Find the physical address corresponding to the given virtual address, 10493 * by doing a translation table walk on MMU based systems or using the 10494 * MPU state on MPU based systems. 10495 * 10496 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10497 * prot and page_size may not be filled in, and the populated fsr value provides 10498 * information on why the translation aborted, in the format of a 10499 * DFSR/IFSR fault register, with the following caveats: 10500 * * we honour the short vs long DFSR format differences. 10501 * * the WnR bit is never set (the caller must do this). 10502 * * for PSMAv5 based systems we don't bother to return a full FSR format 10503 * value. 10504 * 10505 * @env: CPUARMState 10506 * @address: virtual address to get physical address for 10507 * @access_type: 0 for read, 1 for write, 2 for execute 10508 * @mmu_idx: MMU index indicating required translation regime 10509 * @phys_ptr: set to the physical address corresponding to the virtual address 10510 * @attrs: set to the memory transaction attributes to use 10511 * @prot: set to the permissions for the page containing phys_ptr 10512 * @page_size: set to the size of the page containing phys_ptr 10513 * @fi: set to fault info if the translation fails 10514 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10515 */ 10516 bool get_phys_addr(CPUARMState *env, target_ulong address, 10517 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10518 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10519 target_ulong *page_size, 10520 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10521 { 10522 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10523 /* Call ourselves recursively to do the stage 1 and then stage 2 10524 * translations. 10525 */ 10526 if (arm_feature(env, ARM_FEATURE_EL2)) { 10527 hwaddr ipa; 10528 int s2_prot; 10529 int ret; 10530 ARMCacheAttrs cacheattrs2 = {}; 10531 10532 ret = get_phys_addr(env, address, access_type, 10533 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10534 prot, page_size, fi, cacheattrs); 10535 10536 /* If S1 fails or S2 is disabled, return early. */ 10537 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10538 *phys_ptr = ipa; 10539 return ret; 10540 } 10541 10542 /* S1 is done. Now do S2 translation. */ 10543 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10544 phys_ptr, attrs, &s2_prot, 10545 page_size, fi, 10546 cacheattrs != NULL ? &cacheattrs2 : NULL); 10547 fi->s2addr = ipa; 10548 /* Combine the S1 and S2 perms. */ 10549 *prot &= s2_prot; 10550 10551 /* Combine the S1 and S2 cache attributes, if needed */ 10552 if (!ret && cacheattrs != NULL) { 10553 if (env->cp15.hcr_el2 & HCR_DC) { 10554 /* 10555 * HCR.DC forces the first stage attributes to 10556 * Normal Non-Shareable, 10557 * Inner Write-Back Read-Allocate Write-Allocate, 10558 * Outer Write-Back Read-Allocate Write-Allocate. 10559 */ 10560 cacheattrs->attrs = 0xff; 10561 cacheattrs->shareability = 0; 10562 } 10563 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10564 } 10565 10566 return ret; 10567 } else { 10568 /* 10569 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10570 */ 10571 mmu_idx = stage_1_mmu_idx(mmu_idx); 10572 } 10573 } 10574 10575 /* The page table entries may downgrade secure to non-secure, but 10576 * cannot upgrade an non-secure translation regime's attributes 10577 * to secure. 10578 */ 10579 attrs->secure = regime_is_secure(env, mmu_idx); 10580 attrs->user = regime_is_user(env, mmu_idx); 10581 10582 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10583 * In v7 and earlier it affects all stage 1 translations. 10584 */ 10585 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10586 && !arm_feature(env, ARM_FEATURE_V8)) { 10587 if (regime_el(env, mmu_idx) == 3) { 10588 address += env->cp15.fcseidr_s; 10589 } else { 10590 address += env->cp15.fcseidr_ns; 10591 } 10592 } 10593 10594 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10595 bool ret; 10596 *page_size = TARGET_PAGE_SIZE; 10597 10598 if (arm_feature(env, ARM_FEATURE_V8)) { 10599 /* PMSAv8 */ 10600 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10601 phys_ptr, attrs, prot, page_size, fi); 10602 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10603 /* PMSAv7 */ 10604 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10605 phys_ptr, prot, page_size, fi); 10606 } else { 10607 /* Pre-v7 MPU */ 10608 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10609 phys_ptr, prot, fi); 10610 } 10611 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10612 " mmu_idx %u -> %s (prot %c%c%c)\n", 10613 access_type == MMU_DATA_LOAD ? "reading" : 10614 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10615 (uint32_t)address, mmu_idx, 10616 ret ? "Miss" : "Hit", 10617 *prot & PAGE_READ ? 'r' : '-', 10618 *prot & PAGE_WRITE ? 'w' : '-', 10619 *prot & PAGE_EXEC ? 'x' : '-'); 10620 10621 return ret; 10622 } 10623 10624 /* Definitely a real MMU, not an MPU */ 10625 10626 if (regime_translation_disabled(env, mmu_idx)) { 10627 /* MMU disabled. */ 10628 *phys_ptr = address; 10629 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10630 *page_size = TARGET_PAGE_SIZE; 10631 return 0; 10632 } 10633 10634 if (regime_using_lpae_format(env, mmu_idx)) { 10635 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10636 phys_ptr, attrs, prot, page_size, 10637 fi, cacheattrs); 10638 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10639 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10640 phys_ptr, attrs, prot, page_size, fi); 10641 } else { 10642 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10643 phys_ptr, prot, page_size, fi); 10644 } 10645 } 10646 10647 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10648 MemTxAttrs *attrs) 10649 { 10650 ARMCPU *cpu = ARM_CPU(cs); 10651 CPUARMState *env = &cpu->env; 10652 hwaddr phys_addr; 10653 target_ulong page_size; 10654 int prot; 10655 bool ret; 10656 ARMMMUFaultInfo fi = {}; 10657 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10658 10659 *attrs = (MemTxAttrs) {}; 10660 10661 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10662 attrs, &prot, &page_size, &fi, NULL); 10663 10664 if (ret) { 10665 return -1; 10666 } 10667 return phys_addr; 10668 } 10669 10670 #endif 10671 10672 /* Note that signed overflow is undefined in C. The following routines are 10673 careful to use unsigned types where modulo arithmetic is required. 10674 Failure to do so _will_ break on newer gcc. */ 10675 10676 /* Signed saturating arithmetic. */ 10677 10678 /* Perform 16-bit signed saturating addition. */ 10679 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10680 { 10681 uint16_t res; 10682 10683 res = a + b; 10684 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10685 if (a & 0x8000) 10686 res = 0x8000; 10687 else 10688 res = 0x7fff; 10689 } 10690 return res; 10691 } 10692 10693 /* Perform 8-bit signed saturating addition. */ 10694 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10695 { 10696 uint8_t res; 10697 10698 res = a + b; 10699 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10700 if (a & 0x80) 10701 res = 0x80; 10702 else 10703 res = 0x7f; 10704 } 10705 return res; 10706 } 10707 10708 /* Perform 16-bit signed saturating subtraction. */ 10709 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10710 { 10711 uint16_t res; 10712 10713 res = a - b; 10714 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10715 if (a & 0x8000) 10716 res = 0x8000; 10717 else 10718 res = 0x7fff; 10719 } 10720 return res; 10721 } 10722 10723 /* Perform 8-bit signed saturating subtraction. */ 10724 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10725 { 10726 uint8_t res; 10727 10728 res = a - b; 10729 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10730 if (a & 0x80) 10731 res = 0x80; 10732 else 10733 res = 0x7f; 10734 } 10735 return res; 10736 } 10737 10738 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10739 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10740 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10741 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10742 #define PFX q 10743 10744 #include "op_addsub.h" 10745 10746 /* Unsigned saturating arithmetic. */ 10747 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10748 { 10749 uint16_t res; 10750 res = a + b; 10751 if (res < a) 10752 res = 0xffff; 10753 return res; 10754 } 10755 10756 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10757 { 10758 if (a > b) 10759 return a - b; 10760 else 10761 return 0; 10762 } 10763 10764 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10765 { 10766 uint8_t res; 10767 res = a + b; 10768 if (res < a) 10769 res = 0xff; 10770 return res; 10771 } 10772 10773 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10774 { 10775 if (a > b) 10776 return a - b; 10777 else 10778 return 0; 10779 } 10780 10781 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10782 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10783 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10784 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10785 #define PFX uq 10786 10787 #include "op_addsub.h" 10788 10789 /* Signed modulo arithmetic. */ 10790 #define SARITH16(a, b, n, op) do { \ 10791 int32_t sum; \ 10792 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10793 RESULT(sum, n, 16); \ 10794 if (sum >= 0) \ 10795 ge |= 3 << (n * 2); \ 10796 } while(0) 10797 10798 #define SARITH8(a, b, n, op) do { \ 10799 int32_t sum; \ 10800 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10801 RESULT(sum, n, 8); \ 10802 if (sum >= 0) \ 10803 ge |= 1 << n; \ 10804 } while(0) 10805 10806 10807 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10808 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10809 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10810 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10811 #define PFX s 10812 #define ARITH_GE 10813 10814 #include "op_addsub.h" 10815 10816 /* Unsigned modulo arithmetic. */ 10817 #define ADD16(a, b, n) do { \ 10818 uint32_t sum; \ 10819 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10820 RESULT(sum, n, 16); \ 10821 if ((sum >> 16) == 1) \ 10822 ge |= 3 << (n * 2); \ 10823 } while(0) 10824 10825 #define ADD8(a, b, n) do { \ 10826 uint32_t sum; \ 10827 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10828 RESULT(sum, n, 8); \ 10829 if ((sum >> 8) == 1) \ 10830 ge |= 1 << n; \ 10831 } while(0) 10832 10833 #define SUB16(a, b, n) do { \ 10834 uint32_t sum; \ 10835 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10836 RESULT(sum, n, 16); \ 10837 if ((sum >> 16) == 0) \ 10838 ge |= 3 << (n * 2); \ 10839 } while(0) 10840 10841 #define SUB8(a, b, n) do { \ 10842 uint32_t sum; \ 10843 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10844 RESULT(sum, n, 8); \ 10845 if ((sum >> 8) == 0) \ 10846 ge |= 1 << n; \ 10847 } while(0) 10848 10849 #define PFX u 10850 #define ARITH_GE 10851 10852 #include "op_addsub.h" 10853 10854 /* Halved signed arithmetic. */ 10855 #define ADD16(a, b, n) \ 10856 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10857 #define SUB16(a, b, n) \ 10858 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10859 #define ADD8(a, b, n) \ 10860 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10861 #define SUB8(a, b, n) \ 10862 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10863 #define PFX sh 10864 10865 #include "op_addsub.h" 10866 10867 /* Halved unsigned arithmetic. */ 10868 #define ADD16(a, b, n) \ 10869 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10870 #define SUB16(a, b, n) \ 10871 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10872 #define ADD8(a, b, n) \ 10873 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10874 #define SUB8(a, b, n) \ 10875 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10876 #define PFX uh 10877 10878 #include "op_addsub.h" 10879 10880 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10881 { 10882 if (a > b) 10883 return a - b; 10884 else 10885 return b - a; 10886 } 10887 10888 /* Unsigned sum of absolute byte differences. */ 10889 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10890 { 10891 uint32_t sum; 10892 sum = do_usad(a, b); 10893 sum += do_usad(a >> 8, b >> 8); 10894 sum += do_usad(a >> 16, b >>16); 10895 sum += do_usad(a >> 24, b >> 24); 10896 return sum; 10897 } 10898 10899 /* For ARMv6 SEL instruction. */ 10900 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10901 { 10902 uint32_t mask; 10903 10904 mask = 0; 10905 if (flags & 1) 10906 mask |= 0xff; 10907 if (flags & 2) 10908 mask |= 0xff00; 10909 if (flags & 4) 10910 mask |= 0xff0000; 10911 if (flags & 8) 10912 mask |= 0xff000000; 10913 return (a & mask) | (b & ~mask); 10914 } 10915 10916 /* CRC helpers. 10917 * The upper bytes of val (above the number specified by 'bytes') must have 10918 * been zeroed out by the caller. 10919 */ 10920 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10921 { 10922 uint8_t buf[4]; 10923 10924 stl_le_p(buf, val); 10925 10926 /* zlib crc32 converts the accumulator and output to one's complement. */ 10927 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10928 } 10929 10930 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10931 { 10932 uint8_t buf[4]; 10933 10934 stl_le_p(buf, val); 10935 10936 /* Linux crc32c converts the output to one's complement. */ 10937 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10938 } 10939 10940 /* Return the exception level to which FP-disabled exceptions should 10941 * be taken, or 0 if FP is enabled. 10942 */ 10943 int fp_exception_el(CPUARMState *env, int cur_el) 10944 { 10945 #ifndef CONFIG_USER_ONLY 10946 int fpen; 10947 10948 /* CPACR and the CPTR registers don't exist before v6, so FP is 10949 * always accessible 10950 */ 10951 if (!arm_feature(env, ARM_FEATURE_V6)) { 10952 return 0; 10953 } 10954 10955 if (arm_feature(env, ARM_FEATURE_M)) { 10956 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10957 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10958 return 1; 10959 } 10960 10961 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10962 if (!extract32(env->v7m.nsacr, 10, 1)) { 10963 /* FP insns cause a NOCP UsageFault taken to Secure */ 10964 return 3; 10965 } 10966 } 10967 10968 return 0; 10969 } 10970 10971 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10972 * 0, 2 : trap EL0 and EL1/PL1 accesses 10973 * 1 : trap only EL0 accesses 10974 * 3 : trap no accesses 10975 */ 10976 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 10977 switch (fpen) { 10978 case 0: 10979 case 2: 10980 if (cur_el == 0 || cur_el == 1) { 10981 /* Trap to PL1, which might be EL1 or EL3 */ 10982 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 10983 return 3; 10984 } 10985 return 1; 10986 } 10987 if (cur_el == 3 && !is_a64(env)) { 10988 /* Secure PL1 running at EL3 */ 10989 return 3; 10990 } 10991 break; 10992 case 1: 10993 if (cur_el == 0) { 10994 return 1; 10995 } 10996 break; 10997 case 3: 10998 break; 10999 } 11000 11001 /* 11002 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11003 * to control non-secure access to the FPU. It doesn't have any 11004 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11005 */ 11006 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11007 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11008 if (!extract32(env->cp15.nsacr, 10, 1)) { 11009 /* FP insns act as UNDEF */ 11010 return cur_el == 2 ? 2 : 1; 11011 } 11012 } 11013 11014 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11015 * check because zero bits in the registers mean "don't trap". 11016 */ 11017 11018 /* CPTR_EL2 : present in v7VE or v8 */ 11019 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11020 && !arm_is_secure_below_el3(env)) { 11021 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11022 return 2; 11023 } 11024 11025 /* CPTR_EL3 : present in v8 */ 11026 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11027 /* Trap all FP ops to EL3 */ 11028 return 3; 11029 } 11030 #endif 11031 return 0; 11032 } 11033 11034 #ifndef CONFIG_TCG 11035 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11036 { 11037 g_assert_not_reached(); 11038 } 11039 #endif 11040 11041 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11042 { 11043 if (arm_feature(env, ARM_FEATURE_M)) { 11044 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11045 } 11046 11047 if (el < 2 && arm_is_secure_below_el3(env)) { 11048 return ARMMMUIdx_S1SE0 + el; 11049 } else { 11050 return ARMMMUIdx_S12NSE0 + el; 11051 } 11052 } 11053 11054 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11055 { 11056 return arm_mmu_idx_el(env, arm_current_el(env)); 11057 } 11058 11059 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11060 { 11061 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11062 } 11063 11064 #ifndef CONFIG_USER_ONLY 11065 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11066 { 11067 return stage_1_mmu_idx(arm_mmu_idx(env)); 11068 } 11069 #endif 11070 11071 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 11072 ARMMMUIdx mmu_idx, uint32_t flags) 11073 { 11074 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11075 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 11076 arm_to_core_mmu_idx(mmu_idx)); 11077 11078 if (arm_singlestep_active(env)) { 11079 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11080 } 11081 return flags; 11082 } 11083 11084 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11085 ARMMMUIdx mmu_idx, uint32_t flags) 11086 { 11087 bool sctlr_b = arm_sctlr_b(env); 11088 11089 if (sctlr_b) { 11090 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 11091 } 11092 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11093 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11094 } 11095 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11096 11097 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11098 } 11099 11100 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 11101 ARMMMUIdx mmu_idx) 11102 { 11103 uint32_t flags = 0; 11104 11105 /* v8M always enables the fpu. */ 11106 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11107 11108 if (arm_v7m_is_handler_mode(env)) { 11109 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11110 } 11111 11112 /* 11113 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11114 * is suppressing them because the requested execution priority 11115 * is less than 0. 11116 */ 11117 if (arm_feature(env, ARM_FEATURE_V8) && 11118 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11119 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11120 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11121 } 11122 11123 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11124 } 11125 11126 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 11127 { 11128 int flags = 0; 11129 11130 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 11131 arm_debug_target_el(env)); 11132 return flags; 11133 } 11134 11135 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 11136 ARMMMUIdx mmu_idx) 11137 { 11138 uint32_t flags = rebuild_hflags_aprofile(env); 11139 11140 if (arm_el_is_aa64(env, 1)) { 11141 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11142 } 11143 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11144 } 11145 11146 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11147 ARMMMUIdx mmu_idx) 11148 { 11149 uint32_t flags = rebuild_hflags_aprofile(env); 11150 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11151 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11152 uint64_t sctlr; 11153 int tbii, tbid; 11154 11155 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11156 11157 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11158 if (regime_el(env, stage1) < 2) { 11159 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11160 tbid = (p1.tbi << 1) | p0.tbi; 11161 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11162 } else { 11163 tbid = p0.tbi; 11164 tbii = tbid & !p0.tbid; 11165 } 11166 11167 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11168 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11169 11170 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11171 int sve_el = sve_exception_el(env, el); 11172 uint32_t zcr_len; 11173 11174 /* 11175 * If SVE is disabled, but FP is enabled, 11176 * then the effective len is 0. 11177 */ 11178 if (sve_el != 0 && fp_el == 0) { 11179 zcr_len = 0; 11180 } else { 11181 zcr_len = sve_zcr_len_for_el(env, el); 11182 } 11183 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11184 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11185 } 11186 11187 sctlr = arm_sctlr(env, el); 11188 11189 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11190 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11191 } 11192 11193 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11194 /* 11195 * In order to save space in flags, we record only whether 11196 * pauth is "inactive", meaning all insns are implemented as 11197 * a nop, or "active" when some action must be performed. 11198 * The decision of which action to take is left to a helper. 11199 */ 11200 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11201 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11202 } 11203 } 11204 11205 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11206 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11207 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11208 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11209 } 11210 } 11211 11212 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11213 } 11214 11215 static uint32_t rebuild_hflags_internal(CPUARMState *env) 11216 { 11217 int el = arm_current_el(env); 11218 int fp_el = fp_exception_el(env, el); 11219 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11220 11221 if (is_a64(env)) { 11222 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11223 } else if (arm_feature(env, ARM_FEATURE_M)) { 11224 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11225 } else { 11226 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11227 } 11228 } 11229 11230 void arm_rebuild_hflags(CPUARMState *env) 11231 { 11232 env->hflags = rebuild_hflags_internal(env); 11233 } 11234 11235 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11236 { 11237 int fp_el = fp_exception_el(env, el); 11238 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11239 11240 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11241 } 11242 11243 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11244 { 11245 int fp_el = fp_exception_el(env, el); 11246 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11247 11248 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11249 } 11250 11251 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11252 { 11253 int fp_el = fp_exception_el(env, el); 11254 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11255 11256 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11257 } 11258 11259 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11260 target_ulong *cs_base, uint32_t *pflags) 11261 { 11262 uint32_t flags = env->hflags; 11263 uint32_t pstate_for_ss; 11264 11265 *cs_base = 0; 11266 #ifdef CONFIG_DEBUG_TCG 11267 assert(flags == rebuild_hflags_internal(env)); 11268 #endif 11269 11270 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 11271 *pc = env->pc; 11272 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11273 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11274 } 11275 pstate_for_ss = env->pstate; 11276 } else { 11277 *pc = env->regs[15]; 11278 11279 if (arm_feature(env, ARM_FEATURE_M)) { 11280 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11281 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11282 != env->v7m.secure) { 11283 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11284 } 11285 11286 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11287 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11288 (env->v7m.secure && 11289 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11290 /* 11291 * ASPEN is set, but FPCA/SFPA indicate that there is no 11292 * active FP context; we must create a new FP context before 11293 * executing any FP insn. 11294 */ 11295 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11296 } 11297 11298 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11299 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11300 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11301 } 11302 } else { 11303 /* 11304 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11305 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11306 */ 11307 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11308 flags = FIELD_DP32(flags, TBFLAG_A32, 11309 XSCALE_CPAR, env->cp15.c15_cpar); 11310 } else { 11311 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 11312 env->vfp.vec_len); 11313 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 11314 env->vfp.vec_stride); 11315 } 11316 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11317 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11318 } 11319 } 11320 11321 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11322 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11323 pstate_for_ss = env->uncached_cpsr; 11324 } 11325 11326 /* 11327 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11328 * states defined in the ARM ARM for software singlestep: 11329 * SS_ACTIVE PSTATE.SS State 11330 * 0 x Inactive (the TB flag for SS is always 0) 11331 * 1 0 Active-pending 11332 * 1 1 Active-not-pending 11333 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 11334 */ 11335 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 11336 (pstate_for_ss & PSTATE_SS)) { 11337 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11338 } 11339 11340 *pflags = flags; 11341 } 11342 11343 #ifdef TARGET_AARCH64 11344 /* 11345 * The manual says that when SVE is enabled and VQ is widened the 11346 * implementation is allowed to zero the previously inaccessible 11347 * portion of the registers. The corollary to that is that when 11348 * SVE is enabled and VQ is narrowed we are also allowed to zero 11349 * the now inaccessible portion of the registers. 11350 * 11351 * The intent of this is that no predicate bit beyond VQ is ever set. 11352 * Which means that some operations on predicate registers themselves 11353 * may operate on full uint64_t or even unrolled across the maximum 11354 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11355 * may well be cheaper than conditionals to restrict the operation 11356 * to the relevant portion of a uint16_t[16]. 11357 */ 11358 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11359 { 11360 int i, j; 11361 uint64_t pmask; 11362 11363 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11364 assert(vq <= env_archcpu(env)->sve_max_vq); 11365 11366 /* Zap the high bits of the zregs. */ 11367 for (i = 0; i < 32; i++) { 11368 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11369 } 11370 11371 /* Zap the high bits of the pregs and ffr. */ 11372 pmask = 0; 11373 if (vq & 3) { 11374 pmask = ~(-1ULL << (16 * (vq & 3))); 11375 } 11376 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11377 for (i = 0; i < 17; ++i) { 11378 env->vfp.pregs[i].p[j] &= pmask; 11379 } 11380 pmask = 0; 11381 } 11382 } 11383 11384 /* 11385 * Notice a change in SVE vector size when changing EL. 11386 */ 11387 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11388 int new_el, bool el0_a64) 11389 { 11390 ARMCPU *cpu = env_archcpu(env); 11391 int old_len, new_len; 11392 bool old_a64, new_a64; 11393 11394 /* Nothing to do if no SVE. */ 11395 if (!cpu_isar_feature(aa64_sve, cpu)) { 11396 return; 11397 } 11398 11399 /* Nothing to do if FP is disabled in either EL. */ 11400 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11401 return; 11402 } 11403 11404 /* 11405 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11406 * at ELx, or not available because the EL is in AArch32 state, then 11407 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11408 * has an effective value of 0". 11409 * 11410 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11411 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11412 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11413 * we already have the correct register contents when encountering the 11414 * vq0->vq0 transition between EL0->EL1. 11415 */ 11416 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11417 old_len = (old_a64 && !sve_exception_el(env, old_el) 11418 ? sve_zcr_len_for_el(env, old_el) : 0); 11419 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11420 new_len = (new_a64 && !sve_exception_el(env, new_el) 11421 ? sve_zcr_len_for_el(env, new_el) : 0); 11422 11423 /* When changing vector length, clear inaccessible state. */ 11424 if (new_len < old_len) { 11425 aarch64_sve_narrow_vq(env, new_len + 1); 11426 } 11427 } 11428 #endif 11429